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ABSTRACT  

In addition to the deposition of β-amyloid plaques, neurofibrillary tangles composed of aggregated 

hyperphosphorylated tau are one of the pathological hallmarks of Alzheimer’s disease and other 

neurodegenerative disorders. Until now, our understanding about the natural history and 

topography of tau deposition has only been based on post-mortem and cerebrospinal fluid studies, 

and evidence continues to implicate tau as a central driver of downstream neurodegenerative 

processes and cognitive decline. Recently, it has become possible to assess the regional 

distribution and severity of tau burden in vivo with the development of novel radiotracers for 

positron emission tomography (PET) imaging. In this article, we provide a comprehensive 

discussion of tau pathophysiology, its quantification with novel PET radiotracers, as well as a 

systematic review of tau PET imaging in normal aging and various dementia conditions: mild 

cognitive impairment, Alzheimer’s disease, frontotemporal dementia, progressive supranuclear 

palsy, and Lewy body dementia. We discuss the main findings in relation to group differences, 

clinical-cognitive correlations of tau PET, and multi-modal relationships among tau PET and other 

pathological markers. Collectively, the small but growing literature of tau PET has yielded 

consistent anatomical patterns of tau accumulation that recapitulate post-mortem distribution of 

neurofibrillary tangles which correlate with cognitive functions and other markers of pathology. In 

general, AD is characterised by increased tracer retention in the inferior temporal lobe, extending 

into the frontal and parietal regions in more severe cases. It is also noted that the spatial 

topography of tau accumulation is markedly distinct to that of amyloid burden in aging and AD. 

Tau PET imaging has also revealed characteristic spatial patterns among various non-AD 

tauopathies, supporting its potential role for differential diagnosis. Finally, we propose novel 

directions for future tau research, including (a) longitudinal imaging in preclinical dementia, (b) 

multi-modal mapping of tau pathology onto other pathological processes such as 
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neuroinflammation, and (c) the need for more validation studies against post-mortem samples of 

the same subjects. 

Keywords: dementia; tau; PET; MRI; neurodegeneration; tauopathies; cognitive impairment.  

 

1. INTRODUCTION 

There are now 30 million people living with dementia world-wide, and the number is expected to 

rise to 115 million in 2050 (World Alzheimer Report 2010, www.alz.org). Alzheimer’s disease (AD) 

is the most common cause making up approximately 60-70%. Other common causes of dementia 

include vascular dementia, Lewy body dementia (LBD) and frontotemporal dementia (FTD). It is 

now established that dementia has an insidious latency period, with pathological changes 

preceding symptom onset by several decades (Trojanowski et al., 2010).  

 

The key neuropathological substrates of AD are tau neurofibrillary tangles (NFTs) and β-amyloid 

plaques, although activated microglia and cerebrovascular changes also contribute to the overall 

neuropathological landscape. The ‘amyloid cascade hypothesis’ posits an initiating event of 

amyloidosis, with subsequent tau pathology and other downstream processes involving 

neurotoxicity, synaptic dysfunction, progressive cerebral atrophy and finally cognitive and 

functional decline (Hardy and Selkoe, 2002). However, the causal role of β-amyloid has been 

increasingly contested in light of several emerging lines of evidence: (a) approximately 30% of 

healthy elderly individuals have significant levels of β-amyloid deposition without overt clinical 

symptoms (Rowe et al., 2010); (b) several anti-amyloid interventions have failed to halt or reverse 

the disease progression of AD (Karran and Hardy, 2014; Siemers et al., 2015); (c) levels of β-

amyloid tend to stagnate by the time of clinical onset and show poor correlations with disease 

severity (Giannakopoulos et al., 2003). In contrast to the early plateauing of β-amyloid levels, the 

presence and extent of NFTs and neuronal injury increase in parallel with disease duration and 
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severity of symptoms (Gómez-Isla et al., 1997). Furthermore, there is convergent evidence that 

tau, rather than amyloid pathology, is more closely related to memory decline in post-mortem 

studies of AD (Van Rossum et al., 2012). 

 

Abnormal aggregation of the tau protein is also central to the pathophysiology of other conditions 

apart from AD, including frontotemporal dementia (FTD) and corticobasal syndrome (CBS), 

progressive supranuclear palsy (PSP) and to smaller extent in Lewy body dementias (LBDs). Due 

to overlapping symptoms and neuropathological changes among these conditions, differential 

diagnosis may be challenging, resulting in sub-optimal therapeutic interventions and inaccurate 

prognosis. Current approaches that have well-established clinical utility for diagnosis and 

assessing disease progression in dementia include longitudinal measures of brain atrophy on 

structural MRI (Frisoni et al., 2010; Mak et al., 2015; see Mak et al., 2016 for a review) and 

cerebral metabolism using 18F-fluorodeoxyglucose (FDG-PET) (Firbank et al., 2015; Mosconi, 

2013). However, while these imaging measures are highly sensitive to structural and functional 

changes, they are non-specific markers of synaptic dysfunction, neuronal loss and macroscopic 

atrophy – all of which are also implicated in other neuropsychiatric diseases such as schizophrenia 

and late-life depression (Colloby et al., 2012, 2011; Sasamoto et al., 2014). More specific markers 

of AD would include the levels of β-amyloid (Aβ1-42) and tau (total-tau and phosphorylated-tau181p) 

in the cerebrospinal fluid (CSF) (Agarwal, 2012). However, the procedure is painfully invasive, and 

CSF measures do not provide spatial information about the distribution of amyloid and tau in the 

brain. Considering the stereotypical topography of NFTs in AD and regionally-distinct NFTs in 

other tauopathies (Braak and Braak, 1991; Dickson, 1999), the absence of anatomical localisation 

in CSF measures makes it less ideal for disease monitoring, evaluation of therapeutic outcomes, 

and differential diagnosis (i.e. similar overall magnitude of tau may occur in different regions of the 

brain).  
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Using molecular imaging techniques such as PET and Pittsburgh Compound B ([11C]PIB) or other 

more recently developed fluorine-18 labelled radioligands, it has been possible to characterise 

amyloid burden in vivo for more than a decade (Klunk et al., 2004; O’Brien and Herholz, 2015). In 

contrast, it was only very recently that PET radiotracers for tau were developed to assess both the 

regional distribution and the severity of tau pathology (Villemagne et al., 2015). This major 

scientific advancement could potentially provide a marker of disease progression and aid in the 

differential diagnosis of neurodegenerative disorders by revealing disease-specific topography of 

tau deposition.  

 

The purpose of this systematic review is to provide a comprehensive summary of the fast-growing 

literature of tau PET imaging studies in humans. This paper is divided into two broad sections. We 

first describe the pathophysiology of tau in dementia, briefly summarise the characteristics of 

various tau PET tracers as well as methods of quantification, before reviewing the literature of tau 

PET imaging across multiple dementia conditions. Group comparisons of tau deposition as well as 

correlations with clinical features and cognitive impairment will be discussed in detail. Finally, 

directions for future research will be proposed.  

 

2. PATHOPHYSIOLOGY OF TAU IN DEMENTIA AND RELATED CONDITIONS 

2.1. Hyperphosphorylation of tau  

Tau is a multi-functional, natively unfolded protein that is located predominantly within axons. 

Under normal conditions, tau binds to microtubule and provides mechanistic stabilisation (see 

Wang and Mandelkow, 2015 for a review). Microtubules comprise the cell cytoskeleton and are 

thus critical for maintaining the cellular structural integrity and axonal transport from the soma to 

the synaptic terminals. In the human brain, tau exists as six distinct isoforms due to the alternate 
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mRNA splicing (i.e. exons 2, 3, and 10) of the microtubule associated protein tau (MAPT) gene on 

chromosome 17, resulting in different numbers of C-terminal repeat sequences: 3-repeat (3R) or 

4-repeat (4R) forms. 4R tau isoforms with a fourth microtubule-binding repeat region are encoded 

by exon 10 while tau mRNAs without exon 10 are transcribed a 3R tau isoform. The healthy adult 

human cortex has an approximately proportional ratio of 3R and 4R tau isoforms (Spillantini and 

Goedert, 2013). All six forms of tau are found in AD as opposed to a relative overexpression of 4R 

tau isoforms in PSP and CBD. The significance of the ratio of the two different isoforms in 

neurodegenerative diseases is as yet unclear, however it may relate to their differing abilities to 

stabilize microtubules. The microtubule can switch repeatedly between polymerisation and 

depolymerisation with rapid shrinking phases. Tau isoforms with 4 repeats shift microtubule 

dynamics towards assembly by a greater degree than those with 3 repeats. Importantly, the ability 

of tau to alter microtubule stability is also influenced by post-translational modifications such as 

phosphorylation. Phosphorylation reduces the affinity of tau for microtubules and thus prevents its 

stabilising effect, thereby switching towards greater disassembly. Although the understanding of 

the numerous heterogeneous phosphorylation sites on tau is limited, it has been shown that both 

3R and 4R isoforms can produce aggregates and can be phosphorylated at multiple different sites. 

The resultant change in microtubule dynamics leads to impaired axonal transport in neural cells 

and the hyperphosphorylated tau aggregates forming structures such as NFTs. The final result of 

these processes is neuronal dysfunction and cell death (Spillantini and Goedert, 2013; Wang and 

Mandelkow, 2015). 

 

2.2. Tauopathies 

As mentioned, tau pathology is now recognised as a key driver behind various neurodegenerative 

conditions that are collectively termed as tauopathies. These include AD as well as the broad 

spectrum of frontotemporal lobar degeneration with tau pathology. These tauopathies differ by 
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affected brain regions as well as isomeric forms of aggregated tau. There are also ultrastructural 

distinctions of aggregated tau between AD and non-AD tauopathies. In AD, NFTs typically exist as 

paired helical filaments, whereas in PSP and CBD, tau filaments are straight. There is also well-

established evidence for disease-specific spatial patterns of tau accumulation. In AD, the earliest 

aggregation of tau are preferentially found in the transentorhinal cortex, before extending widely to 

the medial and inferior temporal lobe, the parietal regions and the posterior cingulate cortex (Braak 

and Braak, 1991). This hierarchical pattern is distinct from the midbrain and frontostriatal 

accumulation found in PSP and CBD respectively (Braak et al., 1992; Dickson, 1999; Williams et 

al., 2007). In summary, the heterogeneous spatial topography of tau accumulation across various 

conditions presents a valuable opportunity for clinical differential diagnosis among these 

tauopathies. In the next section, we provide a brief summary of presently available tau radiotracers 

and discuss their strengths and weaknesses. For a more in-depth review on the pharmacokinetic 

characteristics of tau imaging ligands, the readers are directed to another review by Harada and 

colleagues (Harada et al., 2016). 

 

3. DEVELOPMENT AND CHARACTERISTICS OF TAU PET RADIOTRACERS  

3.1. Challenges of tau imaging 

The robust associations of NFT density with neuronal dysfunction and cognitive impairment have 

been a strong impetus behind a global effort to develop a PET tracer for in vivo imaging of 

aggregated tau. However, progress for tau tracers has considerably lagged behind its amyloid 

counterparts due to several challenges: (a) tau is intracellular, thus requiring the ligand to cross 

the plasma cell membrane and the blood-brain barrier, imposing restrictions on molecular size and 

lipophilicity; (b) tau neurofibrillary tangles are structurally homologous with β-amyloid aggregates, 

but are present in lower concentrations, thus requiring tau ligands to have high selectivity (20 – 50 

fold affinity) for tau over β-amyloid (Schafer et al., 2012), and finally, (c) the tau protein has 
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multiple conformations (paired helical filaments vs straight), six isoforms (AD: 3R4R, PSP/FTD: 

4R) and numerous post-translational modifications, all of which are factors that could affect sites 

for ligand binding.  

 

3.2. [18F]FDDNP 

One of the earliest radioligands developed for tau was [18F]FDDNP, which was capable of 

detecting group differences among healthy controls, MCI, and AD (Barrio et al., 2008; Small et al., 

2006). However, it has low selectivity for tau, such that its uptake reflects a combination of amyloid 

and tau deposition, and therefore its use is limited with respect to tau imaging specifically. 

 

3.3. THK compounds 

Okamura and colleagues developed the first tau-selective ligand, [18F]THK523, after inspecting a 

series of quinolone and benzimidazole derivatives that bind preferentially to NFTs over β-amyloid 

(Okamura et al., 2005). The selectivity of [18F]THK523 for phosphorylated tau over β-amyloid was 

also confirmed in post-mortem studies (Fodero-Tavoletti et al., 2014). The use of [18F]THK523 has 

been validated through a series of in vitro, ex vivo, and in vivo experiments (Fodero-Tavoletti et 

al., 2011). It possesses fast reversible kinetics and its distribution mirrors the Braak topography of 

tau in AD (Braak and Braak, 1991). In clinical studies, [18F]THK523 binding was shown to be 

higher in the cortical and hippocampal regions of AD patients compared to age-matched healthy 

individuals (Villemagne et al., 2014). However, it is not without several limitations. Firstly, 

[18F]THK253 has significant retention within the white matter, limiting accurate quantification of 

radioligand uptake (Villemagne et al., 2014). Secondly, [18F]THK523 does not appear to bind to 

tau aggregates in non-AD tauopathies such as PSP and CBD (Fodero-Tavoletti et al., 2014). 

Other THK compounds have since been developed, including [18F]THK5105, [18F]THK5117 (in the 

S-form enantiomer also referred to as [18F]HK5317 (Chiotis et al., 2016) and [18F]THK5351 
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(Okamura et al., 2013). These ligands have higher affinity for tau compared to [18F]THK523, 

although substantial white matter binding was still reported for [18F]THK5105 and [18F]THK5117 

(Harada et al., 2016). [18F]THK5351 (also known as GE-216) is the latest addition to the 

arylquinoline series and it shows faster kinetics, lower white matter binding, and consequently 

higher signal-to-noise ratio compared to [18F]THK5105 and [18F]THK5117 (Harada et al., 2015b). 

 

Previous groups have observed a possible off-target binding of THK compounds to striatal regions 

such as the basal ganglia (Harada et al., Human Amyloid Imaging 2017). However, there is recent 

evidence from competition studies suggesting that [18F]THK-5351 may not be selective for tau but 

also binds to MAO-B sites (Guo et al., Human Amyloid Imaging 2017). A single dose of selegiline 

(MAO-B inhibitor) resulted in a substantial decrease (36.2 – 51.3%) of [18F]THK5351 uptake 

among MCI and PSP patients (Ng et al., 2017 Human Amyloid Imaging 2017; Figure 1). 

Furthermore, there is also new autoradiographic data showing that [18F]THK5351 has lower 

binding in AD compared to AV-1451, as well as increased off-target binding (Lowe et al., Human 

Amyloid Imaging 2017). Overall, these recent findings cast doubt on the utility of [18F]THK5351 for 

clinical use.  

 

 

3.4. [18F]AV-1451 

More recently, benzimidazole pyrimidines derivatives have been identified as promising 

candidates for application as tau tracers (Xia et al., 2013a). Developed by Kolb and colleagues, 

[18F]AV1451 (formerly known as T807) is the most widely used tracer at present. Post-mortem 

studies have shown that [18F]AV1451 binds to tau with 25-fold higher affinity than for β-amyloid or 

other common protein aggregates (Xia et al., 2013b). The radioligand also has low retention in the 

white matter thereby facilitating ease of its quantification. Human studies using [18F]AV1451 have 
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identified binding patterns that parallel with neuropathological stages of tau (Johnson et al., 2016; 

Ossenkoppele et al., 2016), as well as showing strong correlations with cognitive decline (i.e. 

episodic memory) and levels of CSF tau (Brier et al., 2016; Chhatwal et al., 2016). 

 

However, there is recent autoradiographic evidence that [18F]AV1451 binding was less evident in 

non-AD tauopathies (Lowe et al., 2016). In addition, there are reports of substantial off-target 

binding of [18F]AV1451 in the basal ganglia and the substantia nigra (a brain region known for iron 

accumulation) in the absence of tau pathology (Lowe et al., 2016). There is also an ongoing 

debate about [18F]AV1451 binding in the choroid plexus. High retention in the choroid plexus of 

elderly controls have been attributed to off-target binding (Marquié et al., 2015), although this view 

has been challenged by recent histological evidence that the epithelial cells of choroid plexus 

contain tangle-like structures that are morphologically similar to Biondi “ring” tangles (Ikonomovic 

et al., 2016). 

 

3.5. [11C]PBB3 

[11C]PBB3 is another tau radiotracer developed by Maruyama and colleagues (Maruyama et al., 

2013a). It has 40 – 50 fold higher affinity for NFTs than for amyloid plaques, and possesses good 

blood-brain barrier penetration and rapid washout (Kimura et al., 2015). As with [18F]AV-1451, 

there is minimal white matter binding, although non-specific retention has been observed in dural 

venous sinuses. A notable advantage of this radiotracer compared to its counterparts is its affinity 

for both the 3R and 4R tau isoforms in several non-AD tauopathies (ie. non-PHF tau 

conformations), thereby rendering it particularly useful for differential diagnosis on the basis of 

regional tau topography (Maruyama et al., 2013b). However, the existence of a radiolabelled 

metabolite entering the brain poses a significant limitation for quantification of [11C]PBB3. 
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3.6. Tracers for the future 

Reflecting the very high pace of developments in the tau PET imaging literature, several novel 

tracers were recently presented at the Human Amyloid Imaging 2017. In this section, we briefly 

discuss some of these up and coming tau radiotracers, including Merck’s [18F]MK-6240, Roche’s 

[18F]RO6958948, Genenetch’s [18F]GTP1 and new analogues of [11C]PBB3. 

 

3.6.1. [18F]MK-6240 

One of the most promising candidates appears to be the [18F]MK-6240 tracer. It has high 

specificity and selectivity for NFT and as well as good pharmacokinetic properties (Walji et al., 

2016). Blocking studies in rhesus monkey also demonstrated no apparent off-target binding, 

constituting a potential advantage over the widely-used [18F]AV1451 (Hostetler et al., 2016). On 

the basis of these favourable preclinical findings, [18F]MK-6240 has been subjected to clinical 

evaluations in AD patients (Sur et al., Human Amyloid Imaging 2017, Salinas et al., Human 

Amyloid Imaging 2017). [18F]MK-6240 showed a peak brain uptake of ~ 5 SUV and quick washout 

from all regions in healthy controls, whereas substantial retention was observed in the MTL and 

expected neocortical regions in AD. Quantitative analyses of dynamic data in 3 AD patients and 3 

healthy controls showed good correspondence with standardized uptake ratio (SUVR; discussed 

in Section 4) and MTL uptake was strongly correlated with MMSE (R2 > 0.9) (Salinas et al., 

Human Amyloid Imaging 2017). Future studies investigating the utility of [18F]MK-6240 in non-AD 

tauopathies are keenly anticipated. 

 

3.6.2. [18F]RO6958948 

Developed by Roche, the [18F]RO6958948 compound is another high-affinity tau radioligand with 

desirable clinical profile and kinetic characteristics, such as rapid brain entry and washout, safe 

metabolic profile and low affinity for amyloid deposits. Preliminary data from a Phase I trial of 
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[18F]RO6958948 showed that it is capable of separating AD patients from controls (Wong et al., 

2015). Since then, Wong and colleagues have investigated the longitudinal trajectory (8 – 22 

months) of [18F]RO6958948 in 4 AD patients. 3 of the 4 AD patients showed significant increase in 

tau accumulation particularly within Braak-stage regions, highlighting the potential for 

[18F]RO6958948 to track tau progression (Wong et al., Humam Amyloid Imaging 2017). Honer and 

colleagues presented preliminary in vitro data directly comparing [18F]RO6958948 to [18F]AV1451 

and [18F]THK535, showing that all tracers demonstrated a similar profile of binding to overlapping 

tau aggregates in AD and non-AD tauopathies. However, none of the tracers showed significant 

binding to tau pathology in PSP, CBD and Pick’s disease (Honer et al., Human Amyloid Imaging 

2017). 

 

3.6.3. [18F] Genentech tau probe 1 

The Genentech tau probe 1 (GTP-1) is another tau PET tracer that exhibits desirable 

pharmacokinetics (Bohorquez et al., Human Amyloid Imaging 2017). Baseline and longitudinal 

data (6 – 12 months) in AD were recently reported (Weimer et al., Human Amyloid Imaging 2017). 

At baseline, the authors reported a graded increase in both the intensity (SUVR) and extent (% of 

suprathreshold voxels) of increased tau pathology as a function of disease severity (prodromal, 

mild, and moderate AD). Longitudinally, GTP-1 was able to demonstrate progression of tau burden 

in mild and moderate AD subjects within 6 – 9 months. This pattern contrasted against that of the 

healthy controls, who showed low baseline tau burden and no longitudinal increase over the 

follow-up period. 

 

3.6.4. Analogues of [11C]PBB3 

To overcome some of the limitations associated with the [11C]PBB3, Shimada and colleagues 

have developed new fluorinated PBB3 derivatives, such as [18F]AM-PBB3 and [18F]PM-PBB3 
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(Shimada et al.; Ono et al., Human Amyloid Imaging 2017). As previously described, the chief 

disadvantages of the [11C]PBB3 include the short half-life of carbon-11 (t1/2 = 20 minutes), 

significant off-target binding in striatal regions and limited dynamic range. Preliminary 

examinations of the [18F] PBB3 derivatives in 4 AD patients and 4 age-matched healthy controls 

showed that AM-PBB3 yielded a 1.5 – 2 fold greater dynamic range than its [11C]based 

predecessor without substantial off-target signals in the basal ganglia and thalamus (Shimada et 

al., Human Amyloid Imaging 2017).  

 

3.7. The road ahead for tau radiotracers 

It is clear from the plethora of tracers that the field of tau imaging is progressing very rapidly. 

Nevertheless, there are still unresolved ambiguities about the binding characteristics of some 

radioligands. The sources of off-target binding may soon be clarified by competition studies (Ng et 

al., Human Amyloid Imaging 2017), or even resolved by novel tracers that do not have off-target 

binding (i.e. [18F]MK-6240 and [18F]AM-PBB3). Ultimately, validation of these promising tracers will 

require cross-comparisons of in vivo findings with post-mortem tau quantification. Moving forward, 

the reproducibility and test-retest reliability of in vivo tau quantifications will be a crucial 

requirement in order for tau imaging to be utilised as (a) surrogate markers of disease monitoring 

and target engagement in clinical trials, (b) for elucidating the natural history of tau progression 

and (c) ultimately how it relates to the evolution of cognitive and clinical symptoms across the 

spectrum of tauopathies. 

 

4. QUANTIFICATION OF TAU RADIOLIGAND BINDING  

4.1. Standardized uptake value ratios 

In the majority of all clinical PET tau studies published to date, radioligand binding was assessed 

using SUVR. Briefly, uptake in the target region is normalized by subject weight and injected 
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radioactivity, and divided with the corresponding value obtained from the cerebellum, which serves 

as the reference region. Hence, SUVR represents a semi-quantitative estimation of the ratio 

between total and non-specific binding. This approach is clinically attractive, since there is no 

arterial sampling, and patient time in the PET system can be limited to a short time frame, typically 

the interval between 80-100 minutes after injection. However, since radioligand delivery to the 

brain cannot be controlled for, differences in blood flow may affect SUV values in both target and 

reference regions. Furthermore, due to lack of true equilibrium, SUVR may show a time- 

dependent bias relative to quantitative methods, as has been demonstrated e.g. for amyloid 

radioligands (van Berckel et al., 2013).  

 

4.2. Pharmacokinetic modelling of dynamic data 

Another alternative when a reference region devoid of the target protein can be established is to 

use the time activity curve (TAC) from this region as input in pharmacokinetic modelling of 

dynamic data, for instance the simplified reference tissue model (SRTM) (Lammertsma and Hume, 

1996) or linear methods e.g. the reference Logan plot (Logan et al., 1996). Ideally, both static and 

dynamic simplified approaches should be validated using full pharmacokinetic analyses with 

metabolite-corrected arterial plasma radioactivity as input function (AIF). By using compartmental 

modelling or graphical methods, quantitative estimates of regional radioligand binding, such as 

total volume of distribution (VT) or Distribution volume Ratio (DVR) (Logan et al., 1990) (Innis et 

al., 2007) can be obtained as reference.  

 

Very recently, a limited number of pharmacokinetic modelling papers have emerged for tau 

radioligands. In a study by Hahn and colleagues, dynamic [18F]AV1451 data and AIF were 

obtained in 15 control subjects and patients with neurodegenerative disorders (Hahn et al., 2016). 

AIF Logan showed good correspondence to both SRTM2 and Logan plot (R2=0.92 and 0.99 for 
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over 80 minutes) as well as SUVr (0-88-0.94 when employing scanning time for over 100 

minutes). In a subsequent study, reference Logan showed good correspondence to VT obtained 

using a 2-tissue compartment model (R2 = 0.96) in 4 healthy control subjects, 3 TBI and 4 MCI 

patients although a negative bias was shown for higher values (Wooten et al., 2016). SUVr 

showed comparable correspondence and negligible bias (R2 = 0.96). In addition to these AIF-

based analyses, Scherbinin et al compared SUVr to reference tissue Logan in 19 individuals, 

finding high correlations (R2<0.86), although a two-fold overestimation was observed using SUVr 

(Shcherbinin et al., 2016). A time-frame and intensity-dependent bias for SUVr compared to 

reference tissue models was confirmed also by Baker et al, examining 43 control subjects and AD 

patients (Baker et al., 2016).  

 

For [18F]THK5117, quantification models were evaluated in 9 subjects with AD or MCI (Jonasson 

et al., 2016). Both SRTM and reference Logan showed excellent correspondence to AIF Logan, 

with R2 values approaching 1, whereas SUVr values were less strongly correlated (R2=0.84) and 

showed a 50% overestimation. Quantification of [11C]CBPP3 was evaluated by Kimura and 

colleagues in a sample of 14 healthy control subjects and AD patients (Kimura et al., 2015). A dual 

arterial input function model was employed, since this radioligand has shown to yield a 

radiolabelled metabolite with blood-brain barrier penetrance (Hashimoto et al., 2014). A graphical 

analysis showed strong correlations to the MRTM reference tissue model (R2=1) as well as SUVr 

values (R2=0.97), however in the latter case there was a time-dependent bias of 5-12%. 

Furthermore, the brain-penetrant radiometabolite with unknown affinity for tau renders the 

validation less certain.  

 

4.3. Reference regions 
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A prerequisite for all reference tissue approaches is that the reference region contains no specific 

binding and hence can be used as an approximation of non-displaceable volume of distribution 

(VND). Evidence of lack of cerebellar tau comes in the form of post-mortem studies showing no 

binding as determined using an in vitro binding assay (Marquié et al., 2015). In addition, PET 

studies have revealed similar kinetics in cerebellum in patients to that of cortical regions in healthy 

control subjects, with no difference (Wooten et al., 2016) or even higher cerebellar VT values in 

control subjects (Hahn et al., 2016). Although confirmation of the assumption requires 

demonstrating lack of specific binding as determined in vivo using a blocking design, studies 

performed thus far support the use of cerebellum as reference region for both dynamic and static 

methods. One exception is dentate nucleus which shows presence of tau in PSP patients both in 

vitro and in vivo (Cho et al., 2016c; Smith et al., 2016b; Whitwell et al., 2016), suggesting that this 

section of cerebellum should be omitted from the reference ROI. In addition, ROIs including 

superior parts of cerebellum may be contaminated by spill-over effects from neighbouring cortical 

regions and increase variability in cross-sectional comparisons (Baker et al., Human Amyloid 

Imaging 2017). In summary, current evidence supports the use of reference tissue approaches for 

quantifying tau radioligand binding, obliterating the need for arterial blood sampling in clinical 

studies. According to some reports, SUVr may lead to a time-dependent bias, and reference tissue 

models applied on dynamic data may therefore be considered a possible compromise between 

clinical feasibility and accuracy.  

 

5. METHODS  

To investigate the current studies in which imaging of tau was performed in dementia patients; a 

literature search was carried out using the following search terms: ((Dementia OR Alzheimer* OR 

mild cognitive impairment OR Parkinson* OR front* OR vascular OR Lewy body disease) AND 

(tau OR neurofibrillary tangles) AND (PET OR imaging OR Neuroimaging)). Using the above 



Tau imaging in dementia 17 

search strategy 1618 titles and abstracts were identified on 26th August 2016 (BH) – 31st 

December 2016 (EM). These papers were screened on the basis of relevance of title and abstract 

to the review. To be included articles had to be written in English and the studies had to use in 

vivo neuroimaging of tau in human dementia patients. Greater weight will be ascribed to studies 

with more than 5 subject per group compared to single-case studies. To ensure that all relevant 

references were sourced, references were in turn reviewed for other relevant articles. 

 

 

 

 

6. RESULTS 

6.1. Normal ageing  

Several studies have characterised the in vivo pattern of tau pathology in cognitively normal older 

subjects. Focal uptake has been observed in the medial temporal lobe structures (Table 1; Figure 

2), including the entorhinal cortex, parahippocampal gyrus and hippocampus (Ossenkoppele et al., 

2016; Smith et al., 2016b). Limited tau localisations in medial and inferior temporal regions were 

also reported, corresponding with Braak stage III/IV (Johnson et al., 2016). Interestingly, these 

findings were extended by another study revealing a differential topography of tau accumulation 

according to amyloid status (Schöll et al., 2016). Consistent with previous studies (Johnson et al., 

2016; Ossenkoppele et al., 2016), amyloid-negative subjects showed focal uptake in the medial 

temporal lobe whereas amyloid-positive subjects had a wider distribution involving the inferior and 

lateral temporal lobes as well as the posterior cingulate cortex (Schöll et al., 2016). It is noteworthy 

that tau burden in these structures were strongly correlated with increasing age (Johnson et al., 

2016; Schöll et al., 2016). Whether these regionally-specific associations constitute primary age-

related tauopathy (PART) remains a topic of future investigation (Crary et al., 2014).  
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6.2. Mild cognitive impairment and Alzheimer’s disease 

At present, the majority of tau PET imaging studies have focussed on patients with MCI and AD 

(Chiotis et al., 2016; Cho et al., 2016a, 2016b; Harada et al., 2015a; Ishiki et al., 2015a; Johnson 

et al., 2016; Kimura et al., 2015; Okamura et al., 2014; Ossenkoppele et al., 2016; Schöll et al., 

2016; Schwarz et al., 2016; Villemagne et al., 2014). Elevated tau accumulation in predominantly 

temporo-parietal cortices has been consistently reported in AD (Figure 2), leading to excellent 

discrimination from healthy controls, (Chiotis et al., 2016; Harada et al., 2015a, 2015c; Okamura et 

al., 2014; Villemagne et al., 2014). Furthermore, the regional topography of in vivo tau 

accumulation is strikingly consistent across various radioactive tracers and parallel closely with 

post-mortem spreading patterns of NFTs and neurodegeneration (Braak and Braak, 1991; 

Schwarz et al., 2016; Villemagne et al., 2014).  

 

Somewhat surprisingly, increased hippocampal tau binding in AD relative to controls has not been 

robustly reported (Harada et al., 2015a; Johnson et al., 2016). This could be attributed to a 

number of factors: (a) both tau PET imaging and histopathological data have frequently shown 

focal hippocampal and transenthorinal tau accumulation in the non-demented elderly population 

(Kuzuhara et al., 1989), (b) signal from “off-target” binding in the choroid plexus may spill into the 

hippocampus, thereby diminishing group differences or (c) limited resolution of PET imaging to 

localise ligand binding within the hippocampus, resulting in an underestimation of PET signal in 

patient groups where substantial atrophy is present. 

 

To date, there is only one longitudinal report of tau progression in AD (Ishiki et al., 2015b), 

although several large-scale studies are ongoing. Using the [18F]THK5117 tracer, Ishikii and 

colleagues have investigated the accumulation of tau over 1.2 – 1.5 years in a small sample of 5 
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AD and 5 age-matched healthy controls. The AD group showed significantly greater annual 

increase of tau burden in the middle and inferior temporal cortices (+4.98%) and in the fusiform 

gyrus (+5.2%) compared to 2% in the control group, which also correlated with the rate of 

cognitive decline. Further longitudinal studies with larger samples and analyses of test-retest 

reliability of tau PET quantification are warranted to replicate this finding. 

 

Compared to the diffuse pattern of tau in AD, MCI appears to be characterised with a more focal 

pattern of tau burden in entorhinal regions (Chiotis et al., 2016; Cho et al., 2016b). Group 

comparisons between MCI and AD have yielded inconsistent findings of no significant differences 

(Chiotis et al., 2016) and increased tau burden in AD (Cho et al., 2016b). Divergent spreading 

patterns of tau and amyloid in a relatively large sample (53 AD, 75 MCI and 67 healthy controls) 

were also reported (Cho et al., 2016a). Consistent with neuropathological data, amyloid pathology 

was present in diffuse regions throughout the neocortex while tau accumulation was frequently 

localised to the medial temporal lobe region and progressed in a step-wise fashion to other 

temporo-parietal regions and the posterior cingulate cortex (Cho et al., 2016a).  

 

Histopathological and CSF studies have described strong correlations between tau pathology and 

cognitive impairment (Han et al., 2012; Van Rossum et al., 2012). In this regard, in vivo tau PET 

imaging has greatly expanded our interpretations of the CSF-cognition correlations by providing 

additional spatial information at the vertex-wise and regions-of-interest (ROI) scales. In one study, 

despite an absence of cognitive correlations with global cortical tau, increased [18F]AV1451 

binding in bilateral orbitofrontal and temporal cortices were associated with poorer MMSE scores 

(Ossenkoppele et al., 2016). Interestingly, visuospatial performance was also correlated with 

increased binding in the bilateral occipital lobe and temporo-parietal cortices (Ossenkoppele et al., 

2016). Numerous PET studies have reported moderate to strong correlations between tau and 
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cognition in MCI and AD, including visual, verbal and episodic memory function (Cho et al., 2016b; 

Ossenkoppele et al., 2016; Saint-Aubert et al., 2016), language (Ossenkoppele et al., 2016) as 

well as global cognition (Cho et al., 2016a, 2016b; Ishiki et al., 2015a; Saint-Aubert et al., 2016). 

 

6.3. Frontotemporal dementia  

6.3.1. MAPT-related FTD  

FTD is a progressive neurodegenerative syndrome and it is the third most common cause of 

degenerative dementia, accounting for between 5 – 15 % of dementia patients (Neary et al., 

1998). On structural MRI, FTD is typically characterised by cortical atrophy in prefrontal and 

temporal cortices (Rohrer and Rosen, 2013). The MAPT gene is one of the most prevalent genes 

implicated in FTD and is located on chromosome 17q51. Mutation carriers often demonstrate 

behavioural changes, dementia and parkinsonism (Rademakers et al., 2004; Rizzu et al., 1999). 

To date, there are only 2 tau-PET case studies involving MAPT carriers (Bevan Jones et al., 2016; 

Smith et al., 2016a). Among 3 patients harbouring a p.R406W MAPT mutation, increased 

[18F]AV1451 retention was most evident in the temporal poles, hippocampus and the inferior 

temporal gyrus as well as the frontal lobe (Smith et al., 2016a). These descriptive findings were 

later extended by a comparative single-case study of a 10 + 16C>T MAPT mutation carrier with 

behavioural variant FTD (bvFTD) versus a group of 12 aged-matched healthy controls (Bevan 

Jones et al., 2016). The bvFTD patient demonstrated increased [18F]AV1451 uptake in anterior 

temporal lobes and ventral anterior cingulate cortex, both of which are regions prone to tau 

accumulation in FTD (Kertesz et al., 2005).  

 

6.3.2 Progressive Supranuclear Palsy  

PSP is a rare neurological disorder that is characterised by vertical gaze palsy, rigidity, instability 

and dementia (Steele et al., 1964). At present, there are 6 PET studies in PSP (Cho et al., 2016c; 
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Kepe et al., 2013; Lopera et al., 2013; Smith et al., 2016b; Whitwell et al., 2016; Passamonti et al., 

2017). The first tau-PET study in PSP reported that PSP subjects (n=15) showed significantly 

increased [18F]FDDNP binding in several subcortical regions, particularly the subthalamic and 

midbrain regions, compared to age-matched healthy controls (n=5) and individuals with early-

stage Parkinson’s disease (PD) (n=8) (Kepe et al., 2013). Indeed, the differential tau profiles could 

be clinically important for differential diagnosis considering the overlapping symptoms in the early 

stages of PSP and PD. A subset of severe-PSP subjects also had increased tau burden in the 

frontal cortical regions, which was, in turn, correlated with disease severity (PSP Rating Scale). 

These findings have since been confirmed by recent studies using the [18F]AV1451 tracer (Smith 

et al., 2016b; Passamonti et al., 2017) (Figure 3). Subcortical involvement in PSP compared to 

age-matched controls have been reported particularly in the midbrain and the globus pallidus, 

putamen, caudate nucleus and thalamus (Cho et al., 2016c; Smith et al., 2016b; Whitwell et al., 

2016). This is consistent with findings from two single PSP case studies which also used 

[18F]AV1451 (Chiotis et al., 2016; Hammes et al., 2016).  

 

However, autoradiographic analyses of the PSP tissues (n = 3) have not revealed any specific 

binding of [18F]AV1451 to tau aggregates in neither the frontal cortical tissue nor in the putamen. 

This corroborates with previous ex vivo evidence suggesting negligible or suboptimal binding of 

[18F]AV1451 to straight tau filaments in non-AD tauopathies (Fodero-Tavoletti et al., 2014; 

Normandin et al., 2015; Sander et al., 2016). In summary, there is convergent in vivo evidence for 

increased tau burden in the midbrain in PSP and this agrees with the known neuropathological 

data (Dickson, 1999). However, poor agreement with post-mortem studies and substantial overlap 

with healthy controls precludes a straightforward recommendation on the clinical utility of tau PET 

for PSP at this stage.  
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6.4. Lewy body diseases 

Lewy body diseases, such as dementia with Lewy bodies (DLB) and Parkinson’s disease (PD) are 

characterised by intraneuronal inclusions of alpha-synuclein, known as Lewy bodies. DLB is the 

second leading cause of degenerative dementia after AD, accounting for 15% of dementia cases 

at autopsy. Core features of DLB include the clinical triad of parkinsonism, fluctuating cognitive 

impairment and recurrent visual hallucinations (Mckeith et al., 2005). In addition to the hallmark 

pathology of Lewy bodies, DLB patients often have co-existing AD pathologies, such as 

extracellular amyloid plaques and NFTs (Ballard et al., 2006; Colom-Cadena et al., 2013). Despite 

being present at levels that are markedly lower compared to AD, there is increasing evidence to 

suggest that these pathologies contribute to the clinical presentation and aggravate the rates of 

neurodegeneration in dementia with Lewy bodies (DLB) (Nedelska et al., 2015; Sarro et al., 2016). 

 

There have been 2 published studies on tau imaging in DLB to date (Gomperts, 2016; Kantarci et 

al., 2016). Gomperts and colleagues (2016) reported increased [18F]AV1451 uptake in the 

temporo-parietal cortices and precuneus among DLB (n=7) and PD patients with cognitive 

impairment (n=8) relative to amyloid-negative controls (n=29) (Gomperts et al., 2016). This pattern 

of increased tau uptake was also significantly correlated with MMSE scores. In contrast, PD 

patients with normal cognition did not show any evidence for increased tau burden. Rather 

intriguingly, significant tau burden was present despite minimal amyloid in the DLB group, 

suggesting that extensive tauopathy is possible without amyloid deposition in Lewy body diseases. 

With the caveat of the small sample size, this observation seemingly contrasts with the widely 

accepted notion that in AD, pathological spreading of tau from transentorhinal regions to other 

cortices occurs after an abnormal threshold of β-amyloid accumulation (Bloom, 2014; Stancu et 

al., 2014), and might instead support a growing literature suggesting a synergistic interaction 

between α-synuclein and tau (see Moussaud et al., 2014 for a review).  
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Consistent with the relative preservation of the medial temporal lobe structure in DLB (Burton et 

al., 2009; Firbank et al., 2010; Mak et al., 2017, 2015b), [18F]AV1451 uptake showed a clear 

separation between DLB (maximum [18F]AV1451 SUVR in MTL = 1.33) and AD (minimum 

[18F]AV1451 SUVR in MTL = 1.38) (Kantarci et al., 2016). Furthermore, the regions with the 

highest burden of tau in the DLB group were in the occipital visual association cortices, suggesting 

an atypical profile of tau progression that deviates from the classical Braak staging. 

 

7. RELATION OF IN VIVO TAU DEPOSITION TO OTHER MARKERS OF PATHOLOGIES  

Advances in neuroimaging methods and intra-individual registration across multimodal datasets 

have enabled the precise quantification of both subtle and widespread patterns of downstream 

neurodegeneration across the dementia spectrum, from normal aging to preclinical stages and 

established dementia (see Mak et al., 2016; Pini et al., 2016; Villemagne and Chételat, 2016 for a 

series of reviews). Briefly, there are characteristic profiles of grey and white matter changes that 

most likely reflect underlying differences in pathophysiology among different conditions (Mak et al., 

2014; Whitwell et al., 2007). PET imaging in dementia has enabled the in vivo characterisation of 

hypometabolism (Mosconi, 2013), amyloid accumulation (O’Brien and Herholz, 2015) and tau 

deposition, all of which are considered to be upstream processes. The combination of these 

modalities allows the investigation of tau pathology in relation to other markers of pathologies and 

further clarifies the relationships among amyloid β, tau deposition and atrophy. These research 

endeavours have also been spurred by methodological advances. One particular example is the 

relatively recent implementation of surface-based approaches for smoothing of PET data, which 

have been demonstrated to yield less bias and higher reliability of parametric analyses compared 

to volumetric methods (Greve et al., 2014; Matheson et al., NRM2016) 
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7.1. Tau and structural atrophy 

Consistent with CSF studies, in vivo tau burden has been linked to cortical thinning and 

hippocampal atrophy in AD (Cho et al., 2016b; Okamura et al., 2014; Sepulcre et al., 2016; 

Villemagne et al., 2014; Wang et al., 2016). This is in agreement with post-mortem evidence 

showing that the density of NFTs strongly correlates with atrophy whereas β-amyloid does not 

(Burton et al., 2009; Gómez-Isla et al., 1997). Our group has also shown that the extent of tau 

pathology overlaps with and exceeds that of cortical atrophy in AD (Figure 4; Mak et al., Submitted 

to AAIC 2017). These findings collectively fit within the model that tau is intimately related to 

cortical atrophy as seen on MRI, a validated marker of disease progression in clinical trials. 

However, there are unresolved wrinkles in the relationship between tau and atrophy. In one study, 

the association between hippocampal tau and volume was only significant in amyloid-positive 

subjects (Wang et al., 2016). This intriguing finding suggests that hippocampal tau alone is 

insufficient in driving gross atrophy, and that additional accumulation of β-amyloid is necessary to 

potentiate tau-related atrophy in the hippocampus. While this might reflect a dose-dependent 

relationship between atrophy and tau that accompanies abnormal levels of amyloid, the authors 

did not find any significant differences in hippocampal tau between both amyloid subgroups. 

Alternatively, rather than increasing tau burden, β-amyloid may convert tau into its neurotoxic 

form, leading to cellular dysfunction and eventually cell death (Patel et al., 2015). There is also 

recent evidence that tau and amyloid could be associated with distinct spatial patterns of atrophy, 

in that tau is associated with local atrophy in temporal regions whereas amyloid is associated with 

distributed GM loss respectively (Sepulcre et al., 2016).  
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7.2. Tau and hypometabolism 

As described, hyperphosphorylation of tau results in synaptic dysfunction and eventual neuronal 

death. Consequently, these processes induce a reduction in neuronal energy demand or 

hypometabolism, which can be quantified using PET imaging with [18F]-2-fluorodeoxy-D-glucose 

(FDG) tracer (Sokoloff, 1981). There is concordant evidence for an inverse coupling between tau 

and hypometabolism in spatially overlapping regions (Chiotis et al., 2016; Lemoine et al., 2015; 

Ossenkoppele et al., 2016; Smith et al., 2016a, 2016c). These findings collectively confirm 

previous correlations between FDG-PET and CSF tau levels in AD (Ceravolo et al., 2008). In one 

study, AD patients showed regional correlations between [18F]THK5317 and [18F]FDG-PET in 

prefrontal cortices and the precuneus (Chiotis et al., 2016), suggesting that hypometabolism could 

be related to propagation of tau pathology beyond the medial temporal lobe. This notion would be 

consistent with conceptual models postulating that tau spreading precedes hypometabolism by 

interfering with microtubule stabilisation, impaired axonal transport, and eventually synaptic and 

neuronal dysfunction (Jack et al., 2013).  

 

8. SUMMARY AND FUTURE DIRECTIONS 

This systematic review summarises the current literature on the novel and rapidly developing area 

of tau PET imaging in dementia and tauopathies. In general, anatomical patterns of tau 

accumulation recapitulate post-mortem topography of NFTs correlate with cognitive domains as 

well as other established markers of neurodegeneration, such as volumetric atrophy and regional 

hypometabolism. However, there are still unresolved concerns about off-target binding and 

imperfect mapping with post-mortem data, particularly in non-AD tauopathies. In the next section, 

we discuss several future directions in tau PET research, focusing on longitudinal design in 

preclinical dementia, multi-modal investigations, and validation studies of tau radiotracers. 
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8.1. Longitudinal tau imaging in preclinical dementia 

To date, there is only 1 published longitudinal study, although several large-scale studies are 

ongoing (e.g. Harvard Aging Brain Study and others). Further studies are needed to clarify the 

natural history of tau propagation and its effect across the spectrum from normal aging, preclinical 

stages to MCI and finally AD. It is now established that structural atrophy (Mak et al., 2016) and 

amyloid accumulation (Chetelat et al., 2013) could occur a decade before clinical onset of 

symptoms in dementia. In a similar – and perhaps more insightful – vein, serial tau PET will be 

useful in the preclinical dementia stages for a number of purposes: (a) characterising the spatio-

temporal accumulation of tau in the absence of neurodegenerative or cerebrovascular factors, (b) 

determine early predictors of cognitive decline and disease progression, and (c) perform disease-

staging within vulnerable subgroups of ApoE 4 carriers, FAD mutation carriers, or individuals with 

a positive family history of dementia. Longitudinal tau imaging will also allow assessment of target-

engagement and serve as an outcome measure of the effectiveness of anti-tau therapies (Wischik 

and Staff, 2009; Yanamandra et al., 2015). However, a necessary prerequisite for these studies is 

to establish test-retest variability for tau radioligands. Recently, THK 5317 was shown to exhibit 

low within-individual variability (1-4%) in five dementia patients (Chiotis et al., 2016)  

 

8.2. Mapping tau pathology to other pathological markers 

Multi-modal studies have a tremendous capacity to establish if and how tau accumulation relates 

to amyloid and other imaging markers (i.e. MRI, diffusion imaging, FLAIR, functional MRI). This 

will clarify the temporal sequence of the neurodegenerative cascade and help to detangle the 

relative contributions of each marker to clinical features and cognitive decline. These markers 

might be used in conjunction with CSF, FDG-PET and structural MRI to facilitate a fine-grained 

stratification of at-risk individuals, such as the recently proposed A/T/N classification scheme (Jack 

et al., 2016). 
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8.2.1. Tau and white matter changes 

As discussed in this review, previous studies have reported associations of local tau burden with 

regional atrophy (Cho et al., 2016b; Okamura et al., 2014; Sepulcre et al., 2016; Villemagne et al., 

2014; Wang et al., 2016) and hypometabolism (Chiotis et al., 2016; Lemoine et al., 2015; 

Ossenkoppele et al., 2016; Smith et al., 2016a, 2016c). However, the impact of tau pathology in 

the white matter remains unexplored despite recent post-mortem evidence implicating cortical tau 

as a strong predictor of white matter hyperintensities (WMHs) (McAleese et al., 2015). Lending 

further support to these autopsy findings, preliminary findings from our group indicated an age-

independent association between [18F]AV1451 uptake in the parietal lobe and WMHs across a 

sample of healthy controls, MCI and AD (Gabel and Mak et al., submitted to AAIC 2017). Future 

work involving DTI and FLAIR sequences will enable the mapping of tau deposition onto white 

matter tracts and structural networks.  

 

8.2.2. Tau and neuroinflammation 

Neuroinflammation is an active process that is proposed to play a key role in the pathophysiology 

of neurodegenerative disorders. Using PET and radioligands for the 18kD Translocator Protein 

(TSPO), which is expressed in microglia and astrocytes, immune activation has been investigated 

in both preclinical and clinical stages of dementia (Fan et al., 2014; Heneka et al., 2015; Stefaniak 

and O’Brien, 2015; Surendranathan et al., 2015). Furthermore it is increasingly recognised that 

microglial activation could promote the hyperphosphorylation of tau and is an early event in mouse 

models of tauopathy (Bhaskar et al., 2010; Yoshiyama et al., 2007). Several efforts are underway 

to investigate neuroinflammatory processes in the presence of tau and other downstream 

pathologies by mapping the co-localisations of tau pathology with neuroinflammation and amyloid 

burden within the same subjects (Bevan-Jones et al., 2017) 
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8.3. Reconciliation of in vivo tau PET with post-mortem samples 

Firstly, for tau PET to be accepted as a clinical biomarker of tau pathology, it is necessary to verify 

whether the amount and spatial extent of radiotracer uptake tallies with the severity of NFTs in the 

brain. At present, most of the tau radiotracers exhibit variable degrees and regional off-target 

binding. The discrepancies between in vivo and post-mortem analyses are most pronounced in 

non-AD tauopathies and further highlight the ongoing need for more validation studies. Although 

several tracers have been validated in post-mortem samples (Chien et al., 2013; Harada et al., 

2015a; Maruyama et al., 2013b), the brain tissues were not taken from the same subjects who had 

undergone in vivo PET imaging. It is currently difficult to determine which of the tracers may be 

most useful going forward as no direct comparison study has taken place. Alternatively, it might 

not be necessary to make such a choice as certain tracers may be preferential for different 

tauopathies depending upon pharmacokinetics across brain regions and the distribution of other 

pathological proteins that may interact with tau binding (Okamura et al., 2015). In addition, the 

test-retest reproducibility of tau quantification methods will have to be evaluated before 

longitudinal tau PET can be used for monitoring therapeutic response or disease progression ( 

Devous et al., 2014). 

 

9. CONCLUSION 

Tau-selective radiotracers have enabled the characterisation of tau burden in the living brain, 

hitherto possible only from post-mortem brains. There is tremendous potential for tau imaging to 

provide novel information about the earliest events in the pathophysiological cascade of AD and 

other dementias. Tau PET has great potential to contribute to the early and differential diagnosis, 

and longitudinal tracking with serial PET will clarify its natural history across the spectrum from 

normal aging to dementia, and promote efforts to developments of anti-tau interventions. 
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FIGURES AND TABLES 

 Spatial topography Group differences Clinical and cognitive 
correlations 

Normal 
aging 

Limited and focal tau 
deposition in medial 
temporal lobe 
structures. 
 
Might represent 
primary age-related 
tauopathy. 

Compared to amyloid-
negative individuals, 
amyloid-positive 
individuals show a 
wider extent of tau that 
involves the temporo-
parietal cortices. 

Strongly correlated with aging.  
 
Local tau burden in Braak I/II 
regions were correlated with 
episodic memory and 
retrospective longitudinal 
decline in episodic memory 
and global cognition. 
 

Mild 
cognitive 
impairment 
and 
Alzheimer’s 
disease 

Parallel with 
neuropathological 
patterns of the 
neurofibrillary tangles. 
 
Widespread neocortical 
regions extending from 
the temporal lobe 
towards the parietal 
cortices and 
precuneus, with relative 
sparing of motor 
regions. 

Elevated tau burden in 
temporo-parietal 
cortices compared to 
controls. 
 
Increased hippocampal 
binding relative to 
controls has not been 
consistently reported. 

MMSE, episodic memory, 
visuospatial domain and 
language. 
 
 
Closely related to atrophy and 
hypometabolism. 

Progressive 
supranuclear 
palsy 

Preferential uptake in 
subcortical rather than 
cortical regions. 

Significant increase in 
the basal ganglia, 
midbrain, and other 
subcortical structures 
including the thalamus 
and putamen 
compared to controls. 

Tau accumulation in the 
globus pallidus was correlated 
with the PSP rating scale. 

Lewy body 
diseases 

Posterior regions 
including the temporo-
parietal cortex, 
precuneus and occipital 
regions. 

DLB and PD subjects 
with cognitive 
impairment had 
increased tau uptake in 
inferior temporal gyrus 
and precuneus 
compared to controls.  
 
Tau deposition in the 
MTL separated AD 
from DLB. 

Increased tau in inferior 
temporal gyrus and precuneus 
was correlated with MMSE 
and CDR. 
 
 
 

 

Table 1. Principal findings from in vivo tau PET studies across various neurodegenerative 
conditions. Abbreviations: AD = Alzheimer’s disease, DLB = Dementia with Lewy bodies, PD = 
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Parkinson’s disease, MMSE = Mini-Mental State Examination, CDR = Clinical Dementia Rating; 
MTL = medial temporal lobe. 
 

 

Figure 1. Selegiline reduces [18F]THK-5351 uptake. Marked reduction of uptake was observed 1 
hour after 10mg Selegiline in a patient (71 years old female). Provided with courtesy from Kok Pin 
Ng (Presented at Human Amyloid Imaging 2017). 
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Figure 2. Visualizing the progressive extent of [18F]AV1451 retention on the cortex across 
the spectrum of normal aging, mild cognitive impairment and Alzheimer’s disease. 
Consistent with the neuropathological progression of tau deposition, several studies have 
identified focal tau accumulation in cognitively normal adults, most prominently in the medial 
temporal lobe structures (Left). In contrast, mild cognitive impairment is characterised with 
increased uptake in the temporal and posterior cingulate regions (Middle), before progressively 
spreading widely across the temporo-parietal cortices in AD (Right). Volumetric data of 
representative subjects are represented in radiological convention. This figure is based on our 
data from the ongoing NIMROD study (Bevan-Jones et al., 2017). 
 

 

Figure 3. Increased [18F]AV1451 retention in midbrain and subcortical structures in PSP at 
the group-averaged level (Passamonti et al., 2017). Similarly, other studies have consistently 
reported increased tau deposition in the globus pallidus, putamen, caudate nucleus and thalamus.  
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Figure 4. Mapping the extent of tau pathology and cortical atrophy in an AD subject. 
Preliminary work from our group has demonstrated that tau pathology (quantified as Z scores of 
[18F]AV-1451) is in excess and spatially overlaps with that of cortical thinning (inverted Z scores) in 
AD. In future, more multi-modal studies with intra-individual coregistrations of PET and MRI data 
will facilitate the investigation of tau deposition and its relationships with other downstream 
markers of neurodegeneration such as cortical thinning. This figure is based on our data from the 
ongoing NIMROD study (Bevan-Jones et al., 2017). 
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