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Chromatin determinants impart
camptothecin sensitivity
Fabio Puddu1,* , Israel Salguero1, Mareike Herzog1,2, Nicola J Geisler1, Vincenzo Costanzo3 &

Stephen P Jackson1,**

Abstract

Camptothecin-induced locking of topoisomerase 1 on DNA generates
a physical barrier to replication fork progression and creates topolog-
ical stress. By allowing replisome rotation, absence of the Tof1/Csm3
complex promotes the conversion of impending topological stress to
DNA catenation and causes camptothecin hypersensitivity. Through
synthetic viability screening, we discovered that histone H4 K16
deacetylation drives the sensitivity of yeast cells to camptothecin
and that inactivation of this pathway by mutating H4 K16 or the
genes SIR1-4 suppresses much of the hypersensitivity of tof1Δ strains
towards this agent. We show that disruption of rDNA or telomeric
silencing does not mediate camptothecin resistance but that disrup-
tion of Sir1-dependent chromatin domains is sufficient to suppress
camptothecin sensitivity in wild-type and tof1Δ cells. We suggest
that topoisomerase 1 inhibition in proximity of these domains causes
topological stress that leads to DNA hypercatenation, especially in
the absence of the Tof1/Csm3 complex. Finally, we provide evidence
of the evolutionarily conservation of this mechanism.
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Introduction

Separation of the two parental DNA strands during DNA replication

creates positive supercoiling ahead of the replication fork. Such

over-winding hinders replisome progression and must be removed

for DNA replication to be completed. In eukaryotes, two DNA topoi-

somerases, Top1 and Top2, cooperate to allow DNA replication and

segregation. The main DNA topoisomerase that relaxes positive

supercoiling during DNA replication is considered to be Top1, a

type-IB topoisomerase, while Top2 activity seems to be concentrated

behind replication forks [1–3]. Despite the importance of DNA

uncoiling for replication, Saccharomyces cerevisiae cells lacking

Top1 can fully replicate their genome because in the absence of

Top1, positive supercoils can either be relaxed directly by Top2

[4,5] or indirectly by rotation of replication forks along their axes,

converting impending positive supercoiling into intertwines/

catenation between the two daughter DNA strands [6]. The catena-

tion generated in this way is an obstacle to chromosome segregation

and must be resolved by Top2, a type II topoisomerase, before the

onset of mitosis [3,7]. In contrast to Top1, Top2 is essential in yeast

cells because a certain amount of catenation is generated even in

wild-type cells, possibly because Top1 cannot relieve topological

stress between replisomes converging towards replication termina-

tion zones [8]. Consistent with this model, increased fork rotation

has been observed when replication forks approach stable fork-

pausing structures, such as centromeres, tRNA genes, inactive repli-

cation origins [9], and potentially retrotransposon long terminal

repeats (LTRs) and transcriptionally repressed chromatin [10,11].

To reduce the requirement for decatenation, replisome rotation is

normally restricted by the Tof1/Csm3 complex [9], the yeast

homolog of the mammalian Timeless/Tipin complex. Tof1 and

Csm3 are also crucial for proper pausing of replication forks at repli-

cation fork barriers present in the tandem arrays that form the large

ribosomal DNA (rDNA) locus [12]. Independently of these func-

tions, the Tof1/Csm3 complex also interacts with Mrc1 [13], which

functions as an adaptor to transmit signals from the apical replica-

tion-checkpoint kinase Mec1 to the transducer kinase Rad53 during

replication stress induced by nucleotide depletion [14]. The fact that

tof1Δ strains, similar to mrc1Δ strains, show synergistic phenotypes

in combination with loss of Rad9—the other major checkpoint adap-

tor protein in S. cerevisiae—suggests that the Tof1/Csm3 complex

recruits Mrc1 for the purpose of Rad53 activation [12,15]. In this

regard, it is noteworthy that Mrc1 also has checkpoint-independent

functions and can be recruited to replication forks independently of

Tof1/Csm3 [14,16,17].

Despite the above findings, certain results have remained unex-

plained, and the precise roles of the Tof1/Csm3 complex have

remained elusive. For instance, tof1Δ and csm3Δ yeast strains were

shown to be hypersensitive to high doses of camptothecin [18], a

drug that induces DNA double-strand DNA breaks (DSBs) during S
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phase by trapping Top1 in a covalent complex with DNA. These

strains, however, are not hypersensitive to other agents that induce

DSBs, such as ionising radiation, or to drugs such as hydroxyurea

that affect S phase progression [18], suggesting that the camp-

tothecin hypersensitivity of tof1Δ and csm3Δ strains might arise

through topologically stressed DNA structures generated by Top1

inhibition rather than from DNA damage per se [19,20].

Here, we show that histone H4 K16 deacetylation by the yeast

sirtuin complex drives the sensitivity of wild-type cells to camp-

tothecin. Our results also show that the disruption of chromatin

domains bearing deacetylated H4 K16 rescues the camptothecin

hypersensitivity of tof1Δ and csm3Δ cells, suggesting that the

increased sister chromatid catenation generated in the absence of

these proteins promotes camptothecin toxicity. Finally, we show

that the role of sirtuins in driving camptothecin sensitivity in S. cere-

visiae is evolutionarily conserved in the yeast Schizosaccharomyces

pombe and in human cells.

Results

To better understand the roles of the Tof1/Csm3 complex during

DNA replication, we investigated the basis for the camptothecin

hypersensitivity of TOF1- or CSM3-deleted cells. This hypersensitiv-

ity arises from the well-established trapping of Top1 in a covalent

complex with DNA, as shown by the fact that it was rescued by

TOP1 deletion (Fig 1A). Notably, mrc1Δ strains were not hypersen-

sitive to camptothecin (Fig 1A; [18]), indicating that a defect in

replication-checkpoint activation does not explain the camptothecin

hypersensitivity of tof1Δ or csm3Δ strains. Moreover, this hypersen-

sitivity does not appear to arise from issues connected to fork paus-

ing at the replication fork barrier on rDNA, as pausing-deficient

fob1Δ strains were not hypersensitive to camptothecin, and FOB1

deletion did not alleviate the camptothecin hypersensitivity of a

csm3Δ strain (Fig 1B).

SIR gene mutations suppress camptothecin hypersensitivity of
tof1Δ/csm3Δ cells

To understand the origin of the hypersensitivity of tof1Δ and csm3Δ

strains to camptothecin, we carried out a synthetic viability genomic

screening [21] to identify mutations capable of suppressing such

hypersensitivity (Fig 1C). We plated approximately 1 × 107 cells on

a YPD plate supplemented with 20 lM camptothecin (Fig EV1A),

isolated sixteen resistant colonies, and verified that they indeed

displayed both resistance to camptothecin and to the antibiotic

G418, a readout for TOF1 deletion, which was later confirmed by

whole-genome sequencing (Figs 1D and EV1B). This validation

ensured that the cells isolated did not merely survive camptothecin

treatment, but carried genetic (or epigenetic) marks conferring camp-

tothecin resistance. We then sequenced their genomic DNAs to iden-

tify candidate mutations responsible for the suppression phenotype

(all the mutations identified in each strain are listed in Table EV1).

Two of the sixteen strains—the most resistant ones—carried muta-

tions that inactivated TOP1, which encodes the drug target. Three

strains carried either of two nonsense mutations that inactivated

SIR3, while eight of the remaining strains carried a nonsense muta-

tion inactivating SIR4 (Fig 1D; premature stop codons are designated

by a Δ following the position of the last amino acid residue encoded

by the truncated gene). Importantly, we validated these putative

drivers of camptothecin resistance by directly introducing deletions

of SIR3 and SIR4 in tof1Δ and csm3Δ strains and establishing that

SIR3 or SIR4 inactivation suppressed camptothecin hypersensitivity

(Fig 2A). In the three remaining suppressor strains—the weakest

suppressors—we could not identify any mutation responsible for the

suppression. In one of these, no mutations were detected, while the

other two carried point mutations in IME2 (inducer of MEiosis,

which is not expressed in exponentially growing cells) or IRC15.

However, ensuing studies established that neither IME2 nor IRC15

deletion suppressed the camptothecin hypersensitivity of tof1Δ cells

(Fig EV1C and D; the reasons for the decreased camptothecin sensi-

tivity of these three strains therefore remain to be defined).

Sir3 and Sir4 form a ternary protein complex with the histone

deacetylase catalytic subunit Sir2 (reviewed in [22]), with removal

of any of the three subunits inactivating the transcriptional silencing

functions of the complex [23]. Significantly, we established that loss

of Sir2 alleviated the camptothecin hypersensitivity of tof1Δ cells to

a similar extent as conferred by Sir3 or Sir4 loss (Figs 2B and EV2B,

lower panel). Furthermore, by increasing the concentration of camp-

tothecin, we found that deletion of SIR2, SIR3, and SIR4 also

promoted camptothecin resistance in a wild-type yeast background

(Figs 2B and EV2B, upper panel). Interestingly, in wild-type cells,

deletion of SIR2 suppressed camptothecin sensitivity to a similar

extent as conferred by TOP1 deletion, and combining the deletions

did not further increase resistance to camptothecin (Fig EV1E). By

contrast, SIR2 deletion did not alleviate the strong camptothecin

hypersensitivity of a rad51Δ strain, which is severely defective in

repairing DSBs induced by camptothecin (Fig 2C). These data indi-

cated that the SIR complex is a major mediator of camptothecin

sensitivity, but crucially, inactivation of the SIR complex does not

act as a general suppressor of camptothecin toxicity, for example by

reducing Top1 activity, cell permeability to camptothecin, or DSB

induction by camptothecin.

SIR proteins mediate camptothecin sensitivity via histone
H4-K16 deacetylation

To assess whether loss of the deacetylase activity of the Sir complex

was responsible for the suppression of tof1Δ hypersensitivity to

camptothecin, we used the small-molecule Sir2 inhibitor, sirtinol

[24]. This work established that addition of 20 lM sirtinol strongly

suppressed the camptothecin sensitivity of a tof1Δ strain (Fig 2D).

While Sir2 homologs in higher eukaryotes have been implicated in

deacetylating proteins involved in DNA repair, such as PARP1,

Ku70, and CtIP [25–27], the prime target for S. cerevisiae Sir2 is

histone H4 lysine 16 (H4-K16), which is found in an acetylated state

through much of the transcriptionally active yeast genome. In S.

cerevisiae, deacetylation of this residue by Sir2 allows binding of

Sir3, thus recruiting further Sir2 that removes acetylation marks

from flanking H4-K16 residues, a process that is then propagated to

produce a transcriptionally silent heterochromatic state [22]. To

explore whether the relevant target for Sir2 in relation to its effects

on the camptothecin sensitivity of tof1Δ cells was H4-K16, we

mutated this residue to glutamine (Q), a residue that mimics a

constitutively acetylated lysine and abrogates Sir3 binding [28].

Strikingly, this hhf-K16Q mutation suppressed the camptothecin
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hypersensitivity of a tof1Δ strain, and at higher doses also reduced

the camptothecin sensitivity of a wild-type strain (Fig 2E). Similarly,

mutation of H4-K16 to glycine (G), which prevents binding by Sir3

[28], strongly counteracted the camptothecin sensitivity of both

tof1Δ and wild-type cells. Taken together, these results highlighted a

correlation between chromatin association of the SIR complex and

camptothecin sensitivity.

A deacetylated H4-K16 template promotes
camptothecin-induced mitotic arrest

To further explore how TOF1 or CSM3 deletion causes camptothecin

hypersensitivity, we took advantage of the fact that camptothecin

treatment of synchronised wild-type cells released from G1 into S

phase leads to a prolonged G2/M cell cycle delay [29]. We first

assessed the effect of TOF1 and CSM3 deletion on this particular

phenotype by arresting wild-type, tof1Δ and csm3Δ cultures in G1

by alpha-factor treatment, and then releasing them from this arrest

either in the presence or in the absence of camptothecin. As

expected, wild-type cells treated in this way with camptothecin did

not delay bulk DNA replication compared to strains released in the

absence of camptothecin, although they did exhibit delayed exit

from the subsequent mitosis (Fig 3A). Significantly, compared to

wild-type controls, cells deleted for TOF1 or CSM3 arrested for

longer periods of time in G2/M following camptothecin treatment

(Fig 3A bottom panels), a phenotype that correlated with persis-

tence of the mitotic cyclin, Clb2 (Fig 3B). Nevertheless, these cells

eventually re-entered the cell cycle and continued proliferating,

consistent with the fact that tof1Δ and csm3Δ strains were not

killed by acute camptothecin treatment (Fig 3C; note that a

repair-defective rad51Δ strain was hypersensitive even to acute

camptothecin treatment).

Collectively, the data we had obtained supported a model in

which the mechanism by which the SIR complex yields camp-

tothecin sensitivity is via effects on H4-K16 deacetylation. In this

regard, we reasoned that the SIR complex might impart

A B

C

D

Figure 1. A synthetic viability screening to identify the cause for the hypersensitivity of tof1Δ yeast cells to camptothecin.

A Loss of Tof1 and Csm3 but not Mrc1 causes hypersensitivity to camptothecin in a Top1-dependent manner.
B Loss of pausing at the replication fork barrier on rDNA does not affect camptothecin hypersensitivity.
C Outline of the procedure for a synthetic viability screen.
D Synthetic viability screening identifies sir3 and sir4 alleles as suppressors of the camptothecin hypersensitivity of tof1Δ strains.
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camptothecin sensitivity either by deacetylating newly incorporated

histone H4 during DNA replication, or by it broadly promoting a

condensed chromatin template that impairs DNA replication in the

presence of camptothecin. If Sir2 deacetylation activity during S

phase promoted camptothecin sensitivity, one would expect that

addition of sirtinol after the release from G1 would circumvent the

extended mitotic delay induced by camptothecin in tof1Δ cells.

Conversely, if broad acetylation of the chromatin template was

required to rescue the tof1Δ phenotype, sirtinol should lead to

suppression of extended mitotic delay only if tof1Δ cells were pre-

grown in the presence of sirtinol. To discriminate between these

two hypotheses, we grew hml and hml, tof1Δ cells either in the

presence or in the absence of sirtinol, and then synchronised them

in G1 by addition of alpha-factor (Fig 3D). We used a mutant hml

background because sirtinol makes wild-type cells insensitive to

alpha-factor by derepressing the HML/R (HM) loci [24] (impor-

tantly, as shown in Fig EV1F, HML mutation did not affect camp-

tothecin sensitivity). We then released the G1-synchronised cells

into S phase in the presence of camptothecin alone, or in the pres-

ence of camptothecin plus sirtinol. While addition of sirtinol after

the G1 release was not sufficient to rescue the mitotic delay of

tof1Δ cells (Figs 3D and EV1G), pre-growing tof1Δ cells in the

presence of sirtinol suppressed their mitotic delay, whether or not

sirtinol was present during the subsequent camptothecin treat-

ment. A similar effect, albeit smaller, could be observed in a wild-

type strain (Figs 3D and EV1G). Taken together, these findings

supported a model in which camptothecin leads to replication-

associated problems that arise within chromatin regions containing

deacetylated H4-K16, with cells lacking Tof1 or Csm3 being partic-

ularly sensitive to such problems.

Multiple HM-like chromatin regions govern
camptothecin sensitivity

The yeast genome contains three well-studied heterochromatic

regions that are transcriptionally silenced by SIR proteins: the rDNA

array, subtelomeric regions and the cryptic mating-type loci

(Fig 4A–C). To establish whether loss of rDNA silencing mediated

the suppression of tof1Δ camptothecin hypersensitivity upon SIR

protein loss, we used a strain carrying a deletion of the entire rDNA

locus complemented by a multi-copy plasmid containing the rDNA

repeat unit [30]. We found that deletion of the rDNA locus did not

A

D

B

C

E

Figure 2. Loss of the SIR complex suppresses camptothecin hypersensitivity of tof1Δ yeast strains.

A Deletion of SIR3 or SIR4 suppresses the camptothecin hypersensitivity of tof1Δ and csm3Δ cells.
B Deletion of SIR2 also suppresses camptothecin hypersensitivity of tof1Δ cells and reduces camptothecin sensitivity of a wild-type strain.
C Deletion of SIR2 cannot suppress camptothecin hypersensitivity of a rad51Δ strain.
D Inhibition of Sir2 deacetylase activity with sirtinol suppresses camptothecin hypersensitivity of tof1Δ cells.
E Mutations that mimic a permanently acetylated H4-K16 (K16Q) or that remove the binding site for Sir3 (K16G) also suppress camptothecin sensitivity of wild-type

and tof1Δ strains.
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reduce the hypersensitivity of tof1Δ cells to camptothecin (Fig 4A),

indicating that this genomic region is not the prime target of the SIR

complex that mediates camptothecin toxicity in tof1Δ cells. This

notion was also supported by the fact that, while we observed

suppression of camptothecin sensitivity with sir2Δ, sir3Δ, or sir4Δ,

silencing of the rDNA locus only requires Sir2, with SIR4 deletion

A B

C

D

Figure 3. A deacetylated H4-K16 template mediates sensitivity to camptothecin during DNA replication.

A A wild-type yeast strain released into S phase in the presence of 20 lM camptothecin does not exhibit delayed progression through S phase, but exhibits delayed
progression through the subsequent mitosis. In the absence of Tof1 or Csm3, camptothecin-treated cells remain arrested in G2/M for longer periods of time than
wild-type cells.

B tof1Δ and csm3Δ cells released into S phase in the presence of camptothecin exhibit delayed destruction of the mitotic cyclin Clb2.
C tof1Δ and csm3Δ cells are not hypersensitive to transient camptothecin treatment.
D tof1Δ cells and congenic wild-type cells were pre-grown either in the absence or in the presence of sirtinol. They were subsequently synchronised in G1 and released

into S phase in the presence of camptothecin, either with or without sirtinol. Cell cycle progression was monitored by FACS analysis. Quantification of G1 cells shows
that sirtinol addition during camptothecin treatment does not suppress the mitotic delay of tof1Δ cells, while pre-growth in the presence of sirtinol is sufficient to
suppress the camptothecin hypersensitivity phenotype of tof1Δ cells. A representative experiment is shown.

Source data are available online for this figure.
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actually increasing rDNA silencing by delocalising Sir2 from telo-

meres [31].

To determine if loss of subtelomeric silencing could rescue the

camptothecin hypersensitivity of tof1Δ cells, we employed a strain

carrying a C-terminal truncation of Rap1 (rap1Δ663), the so-called

rap1-17 allele. This mutation completely disrupts transcriptional

silencing at telomeres (telomere position effect) and partially affects

silencing of the cryptic mating-type locus HML [32]. While strains

carrying the rap1Δ663 allele grew slower than wild-type strains,

presumably due to the role of Rap1 in regulating transcription of genes

involved in ribosome formation and glycolysis [33,34], they did not

display altered sensitivity to camptothecin (Fig 4B). The rap1Δ663

mutation also failed to suppress the camptothecin hypersensitivity of

tof1Δ cells (Fig 4B), indicating that loss of telomere position effect

does not promote survival in the presence of this drug.

At the cryptic mating-type loci HML and HMR, silencing is estab-

lished by replication origin recognition complex (ORC)-mediated

recruitment of Sir1, which then attracts the SIR complex via an

interaction with Sir4 [35,36]. Sir4 binding is also stabilised by an

interaction with Rap1, which binds to its DNA consensus sequence

located next to the ORC binding site ACS (ARS consensus sequence,

Fig 4C). For these reasons, deletion of SIR1 results in partial loss of

silencing at the cryptic mating-type loci, but does not affect telom-

eric or rDNA silencing [37]. Strikingly, we found that SIR1 deletion

strongly alleviated the camptothecin hypersensitivity of a tof1Δ

strain (Fig 4C). Importantly, SIR1 deletion did not further improve

the survival of tof1Δsir2Δ strains, suggesting that Sir1 mediates

camptothecin sensitivity entirely via its connection to the Sir2/3/4

complex (Fig 4D). Furthermore, similar to what we had observed

for SIR2, SIR3, or SIR4 deletion, disruption of SIR1 also decreased

the sensitivity of a wild-type strain to high levels of camptothecin

but it did not rescue the camptothecin hypersensitivity of a rad51Δ

strain (Figs 4C and EV2A and B). These data were thus consistent

with our conclusions that camptothecin sensitivity is not mainly

generated via the rDNA or telomeric loci. Moreover, they indicated

that the features of the chromatin template that are toxic to tof1Δ

and wild-type cells in the presence of camptothecin are generated in

a Sir1-dependent manner.

Various SIR-bound genomic regions mediate
camptothecin sensitivity

Our findings suggested that loss of the SIR complex might promote

camptothecin resistance via effects on the HM loci. To test whether

this might be connected to changes on the HM chromatin template

itself or associated expression of genetic information from the

normally silenced HML locus, we analysed the sensitivity of diploid

tof1Δ/tof1Δ cells that simultaneously express the genetic informa-

tion encoded by HMR and HML. If transcription of genetic informa-

tion from the HML locus reduced the camptothecin hypersensitivity

of MATa tof1Δ strains, one would expect a homozygous tof1Δ

diploid strain to be less camptothecin sensitive than the correspond-

ing haploid strain; however, this was not the case (Fig 4E). More-

over, the camptothecin hypersensitivity of diploid tof1Δ/tof1Δ cells

was also rescued by sirtinol, clearly establishing that chromatin

alterations, rather than expression of HM genetic information, are

responsible for suppression of camptothecin hypersensitivity

(Fig 4E).

A

D E

B C

Figure 4. Disruption of Sir1-dependent silencing suppresses camptothecin hypersensitivity of tof1Δ cells.

A Disruption of the rDNA locus is not sufficient to suppress camptothecin hypersensitivity of tof1Δ cells.
B A mutation in RAP1 that disrupts telomeric silencing does not suppress camptothecin hypersensitivity of tof1Δ cells.
C Deletion of SIR1 suppresses camptothecin sensitivity in wild-type and tof1Δ cells.
D SIR1 deletion is epistatic with SIR2 deletion with respect to suppression of camptothecin hypersensitivity of tof1Δ strains.
E Homozygous tof1Δ/tof1Δ diploid cells are as sensitive to camptothecin as tof1Δ haploids, and their hypersensitivity can be alleviated by sirtinol.

EMBO reports ª 2017 The Authors

EMBO reports SIR proteins drive camptothecin sensitivity Fabio Puddu et al

6

Published online: April 7, 2017 



While the above findings suggested that the chromatin status of

the HM locus governs camptothecin sensitivity, when we deleted

the HML and HMR loci, we were surprised to observe that this did

not rescue the camptothecin hypersensitivity of tof1Δ cells (Fig 5A).

This observation therefore strongly suggested the existence of other

genomic loci targeted by Sir1-4 as governing camptothecin sensitiv-

ity. To attempt to identify such loci, we analysed chromatin

immunoprecipitation-sequencing (ChIP-seq) data for Sir2, Sir3, Sir4,

GFP, acetylated histone H4-K16, and histone H3 [38,39]. In these

datasets, we searched for genomic regions displaying higher associa-

tion with Sir2, Sir3, and Sir4 compared to neighbouring regions.

From the ensuing list, we then removed regions displaying

increased GFP binding to exclude ChIP bias towards highly

expressed genes [39]. We also removed regions where we did not

observe decreased histone H4-K16 acetylation (the consequence SIR

complex binding) compared to neighbouring regions, as well as

regions also displaying reduced histone H3 ChIP signals suggesting

depletion of nucleosomes. Genomic regions identified in this

manner localised to confirmed open reading frames (ORFs; Figs 5B

and EV2C).

We then defined a “SIR-binding score” (the fraction of nucleo-

tides for which the above conditions held) for every ORF in the

yeast genome. While the majority of all ORFs essentially had a null

SIR score (indicative of no enrichment of SIR complex binding), we

found that 82 of them showed an enrichment of Sir2/3/4 and

concomitant loss of H4-K16 acetylation along more than 20% of

their sequence (Table EV4). Of these 82 ORFs, 28 were localised in

subtelomeric regions or in regions proximal to the HM loci (Fig 5C,

small grey dots), while the remaining 54 hits were positioned along

chromosome lengths (Fig 5C, green dots). Although the majority of

the identified ORFs are expressed at high levels during exponential

growth, high expression was not sufficient for a high SIR score

(Fig EV2D based on data from [40]). Taken together, these findings

highlighted how, in addition to functioning at its well-defined target

loci, the SIR complex may also act at a variety of loci scattered

throughout the genome, and suggested that these loci might also

promote camptothecin toxicity in wild-type and tof1Δ cells.

Recruitment of Sir1 at HM loci requires its interaction with the

bromo-adjacent domain (BAH) region of Orc1 [36,41,42]. We there-

fore assessed whether any of the loci we identified above were also

positioned in proximity to a site bound by ORC. Thus, we calculated

the distance between the centre of each ORF and the nearest ORC

binding site [43]. This revealed that ~50% of SIR-enriched ORFs

were located less than ~750 bp from a site of ORC binding (Fig 5D),

a distance considerably shorter than the median value of 7.7 kbp for

all yeast ORFs. We therefore reasoned that, if ORC has a functional

role in recruiting the SIR complex to these genomic loci, it should be

possible to suppress the camptothecin hypersensitivity of tof1Δ cells

by preventing ORC-mediated recruitment of Sir1. In line with this

hypothesis—and in contrast to what we had observed upon deleting

the HM locus—deleting the BAH domain of Orc1 markedly

suppressed the camptothecin hypersensitivity of tof1Δ cells (Fig 5E;

effects of ORC1 deletion could not be studied because it is an essen-

tial gene). In agreement with the proposed role of Orc1 BAH domain

in recruiting the SIR complex, deletion of SIR2 did not further

enhance camptothecin resistance of orc1ΔBAH cells, either in a

wild-type or a tof1Δ background (Fig 5F and G). These findings thus

suggested that the chromatin substrates that become toxic to tof1Δ

cells exposed to camptothecin are at least partially formed in an

ORC-dependent manner.

Evidence for an evolutionarily conserved connection between
sirtuin function and camptothecin sensitivity

Consistent with a model in which SIR proteins might promote camp-

tothecin sensitivity in other organisms, we found that sir2Δ

S. pombe strains were more resistant to camptothecin than control

sir2+ strains (Fig 6A). Moreover, in line with our findings in

budding yeast, addition of sirtinol to the growth medium reduced

the camptothecin sensitivity of wild-type S. pombe cells (Fig 6B).

Next, we tested whether sirtinol affected the camptothecin sensi-

tivity of hTERT-immortalised, non-transformed human RPE-1 cells.

In line with previous studies [44,45], we found that sirtinol induced

a dose-dependent killing of human cells (Fig 6C). However, when

the cells were pre-incubated with sirtinol for 24 h prior to camp-

tothecin addition, a protective effect on the survival to camptothecin

was observed (Fig 6D). As expected, flow cytometry analysis based

on DNA content showed that camptothecin induced a replication-

dependent cell cycle arrest, with the majority of cells in G2/M after

24 h of camptothecin treatment. By contrast, camptothecin-induced

G2/M accumulation was much less pronounced when cells had

been pre-treated with sirtinol (Fig 6E). Importantly, when we used

EdU pulse-labelling to quantify DNA replication, we found that

neither the proportion of EdU-incorporating cells nor the average

intensity of EdU per cell was significantly affected by sirtinol

(Fig 6F), indicating that replication was not inhibited by the sirtinol

concentration used in our experimental setting. Collectively, these

results supported a model in which cell killing induced by camp-

tothecin is to a large degree mediated by the action of sirtuins, via a

mechanism that is conserved from yeast to human cells.

Discussion

By using a synthetic viability screening approach [21], we identified

the SIR3 and SIR4 genes as major mediators of the sensitivity of both

wild-type and tof1Δ cells to camptothecin. We subsequently estab-

lished that SIR2 and SIR1 also function in a similar way (these genes

were likely not found in our initial screen because of the relatively

small number of suppressor strains analysed). We established that,

rather than by reducing camptothecin action, deletion of these SIR

genes removes a factor that hinders cell proliferation in the presence

of camptothecin in wild-type cells and that is particularly toxic to

cells lacking the Tof1-Csm3 replication-pausing complex. Camp-

tothecin promotes the accumulation of positive supercoiling during

DNA replication by locking topoisomerase 1 on DNA in a non-

functional state [19,20]. Since Tof1 and Csm3 function to restrict

replisome rotation during DNA replication [9], and since an impor-

tant factor driving fork rotation is positive supercoiling [19], we

hypothesise that an excess of camptothecin-induced positive super-

coiling is the factor that is alleviated by deletion of SIR genes.

While camptothecin is a Top1 inhibitor, lack of Top1 activity is

not sufficient to explain the hypersensitivity of tof1Δ and csm3Δ

cells, as deletion of TOP1 is not toxic to tof1Δ cells. Instead, camp-

tothecin-mediated locking of Top1 on DNA could be the source of

topological stress, either directly by creating topologically closed
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Figure 5. Disruption of ORC1-mediated binding of the SIR complex to highly transcribed genes suppresses camptothecin hypersensitivity of tof1Δ cells.

A Deletion of HML and HMR does not suppress camptothecin hypersensitivity of tof1Δ strains.
B Analysis of ChIP-seq data for the proteins indicated on the y-axes. Enrichments are plotted as a function of the genomic coordinate; in green is the

protein/modification tested; in grey are controls. The ORFs indicated at the top of each graph are identified by two vertical red lines. The horizontal red lines indicate
the thresholds used in this work to determine enrichment (Sir2/Sir3/Sir4/GFP/H3) or loss (H4-K16) of ChIP signal.

C Identification of regions bound by the SIR complex: for each ORF in the genome, a “SIR score” was calculated as the fraction of the ORF for which both increased Sir2,
Sir3, Sir4, and decreased H4-K16ac were observed. ORFs were sorted based of their “SIR score”. Subtelomeric ORFs and ORFs proximal to HML and HMR are shown
with small grey dots, while remaining ORFs are shown with large green dots.

D SIR-positive ORFs are on average located closer to sites of ORC binding than ORFs in general. All yeast ORFs are shown in purple as a function of their distance from
the nearest site of ORC binding. Non-telomeric and non-HM SIR-positive ORFs (SIR score > 0.2) are shown in green.

E Deletion of the BAH domain of ORC1 partially rescues camptothecin hypersensitivity of tof1Δ cells.
F In a tof1Δorc1ΔBAH background, deletion of SIR2 does not further increase camptothecin resistance.
G SIR2 deletion and orc1ΔBAH mutation are epistatic with regard to camptothecin resistance.
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domains, or indirectly by preventing Top2 action—similar to what

is thought to happen when a catalytically inactive Top2 that still

retains an ability to bind DNA is expressed [46].

Lack of Sir2, Sir3, or Sir4 leads to loss of histone H4 lysine 16

(H4-K16) deacetylation and subsequent impairment in heterochro-

matin formation. We have observed that inhibition of Sir2 deacety-

lase activity or mutation of H4-K16 to glutamine (a residue that

mimics an acetylated lysine) also increases the camptothecin resis-

tance of both wild-type and tof1Δ cells. Importantly, we have estab-

lished that the cell cycle delay observed in camptothecin-treated

tof1Δ cells can only be suppressed if Sir2 activity is inhibited prior

to camptothecin treatment, suggesting that it is the state of the chro-

matin template itself that becomes toxic to cells when replicated in

the presence of camptothecin.

Yeast genomes contain three well-characterised regions of tran-

scriptionally silenced chromatin: the ribosomal DNA, subtelomeric

regions and the cryptic mating-type loci HML and HMR; and of

these, only the cryptic mating-type loci require Sir1 for their

silencing [37]. The fact that SIR1 deletion also suppresses the camp-

tothecin sensitivity of tof1Δ cells initially suggested to us that HML

and HMR represent the chromatin templates that are toxic to tof1Δ

cells in the presence of camptothecin. However, we did not observe

a reduction in tof1Δ sensitivity to camptothecin by deleting HML

and HMR, meaning that these two genomic loci alone are not

responsible for the strong camptothecin sensitivity phenotype

displayed by tof1Δ cells.

Analysis of publicly available ChIP-seq data allowed us to iden-

tify various genomic loci that exhibit enhanced localisation of Sir2,

Sir3 and Sir4 as well as H4-K16 under-acetylation. Notably, we

found that these genomic loci colocalise with confirmed ORFs and

are located closer to sites of ORC binding than the average yeast

ORF. Indeed, we found that many of these sites colocalise with

genomic loci that were previously shown to bind ORC despite not

having replication origin activity [43]. Importantly, we note that

some of the SIR-enriched loci also colocalise with sites of replication

fork pausing and sites enriched in binding of Rrm3, a DNA helicase

A

C

E F

D

B

Figure 6. The role of sirtuins in driving camptothecin sensitivity appears to be evolutionarily conserved.

A Schizosaccharomyces pombe sir2Δ cells are more resistant to camptothecin than congenic wild-type controls.
B Sirtinol alleviates camptothecin sensitivity of wild-type S. pombe cells.
C Sirtinol is cytotoxic for non-transformed human cells. Clonogenic capacity of cells was measured after 48-h treatment with indicated doses of sirtinol. Average and

standard deviation (n = 4) are shown for each point.
D Sirtinol rescues camptothecin-mediated lethality in human cells. Cells were pre-treated with 50 lM sirtinol for 24 h and then incubated for another 24 h in the

presence of 50 lM sirtinol, 30 nM camptothecin or a combination of both drugs. Average and standard deviation (n = 4) are shown for each point.
E 48-h treatment with sirtinol does not affect the cell cycle distribution, but partially alleviates the G2/M arrest caused by camptothecin. A representative experiment is

shown.
F Sirtinol does not inhibit DNA replication in hTERT RPE-1 cells. A representative experiment is shown.
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that relieves replication fork pauses [47,48], suggesting that SIR-

enriched loci are inherently difficult to replicate even in the absence

of camptothecin. The fact that these ORFs are amongst the most

highly expressed yeast genes and yet exhibit enhanced recruitment

of the SIR silencing complex and markers of histone H4 deacetyla-

tion is enigmatic. One possibility is that strong transcription could

prevent heterochromatin formation despite the presence of the SIR

complex. Indeed, it has been shown that promoter strength affects

the efficiency of silencing [49]. In this regard, the sensitivity of yeast

cells to camptothecin might stem from DNA catenation that is

generated when replication forks approach barriers created by the

Sir2/3/4 complex, a phenotype that would be exacerbated by the

absence of the Tof1/Csm3 complex. We note that increased catena-

tion would likely require time to be resolved, thereby potentially

accounting for the M/G1 delay observed following camptothecin

treatment in wild-type cells and more strongly in tof1Δ cells.

Another possibility is that SIR-mediated genomic loci could be

particularly prone to replication-induced topological stress and

would therefore be more frequently targeted by Top1 and more

susceptible to camptothecin-induced DNA damage. In this context,

replisome instability caused by TOF1 deletion would increase the

chance of fork breakdown or failure to rescue fork reversal events.

We have also provided evidence that the role of sirtuins in driv-

ing camptothecin sensitivity is evolutionarily conserved from yeast

to humans. In the case of S. pombe, either loss or inhibition of Sir2,

the fission yeast SIR2 ortholog, results in camptothecin resistance.

As in S. cerevisiae, fission yeast Sir2 is involved in the heterochro-

matin assembly within the mating-type locus, subtelomeric regions

and centromeric DNA [50,51] by deacetylating histone H3-K9 and

histone H4-K16. Furthermore, we have found that sirtinol protects

non-transformed human RPE-1 cells from killing by camptothecin

via a mechanism that does not appear to reflect effects on DNA

replication per se. As in yeast, human SIRT1 and SIRT2 deacetylate

H3-K9 and H4-K16, among other substrates, and promote hete-

rochromatin formation and gene silencing [52,53]. This suggests

that the role of sirtuins in camptothecin-mediated lethality in human

cells may be similar to that in yeast, although alternative mecha-

nisms cannot be ruled out due to the considerable number of

sirtuin-dependent pathways documented in mammalian systems.

Inhibition of topoisomerase 1 is a widely used therapeutic strat-

egy to selectively kill proliferating cancer cells, with camptothecin

analogues being part of the standard of care provided by many

cancer clinics worldwide. Various mechanisms of camptothecin

resistance have been observed, ranging from overexpression of

drug-efflux transporters, which actively reduce intracellular drug

concentration [54], to specific Top1 mutations that prevent its inter-

action with camptothecin [55,56]. On the other hand, several sirtuin

inhibitors have been shown to exhibit cytotoxic activity against vari-

ous cancer cell lines (reviewed in [57]) and are currently being

assessed for their potential clinical applicability [58,59]. Using

budding yeast as a model system, we have found that inhibition of

histone H4-K16 deacetylation by inactivation of the SIR protein

complex represents an additional mechanism of camptothecin resis-

tance and that this mechanism is likely conserved in fission yeast

and in human cells. Further studies will be required to determine

the precise mechanism-of-action of sirtinol in both transformed and

non-transformed human cells and whether sirtuins play a role in the

emergence of resistance to camptothecin analogues in cancers.

Materials and Methods

Yeast strains and plasmids

Yeast strains used for this work are haploid derivatives of W303

unless otherwise indicated and are listed in Table EV1. All deletions

were introduced by one-step gene disruption/tagging [60]. Strains

carrying histone H4 mutations were obtained by plasmid shuffling,

transforming the strain JHY6 (hht1-hhf1Δ::KanMX6 hht2-hhf2Δ::

HPH) with plasmids obtained by site-directed mutagenesis of plas-

mid pMR206 (HHT2-HHF2; TRP1). Isolation of suppressor strains

was carried out as previously described [21]. The number of colo-

nies sequenced was determined by reason of economics. S. pombe

strains used were 49 (h+ ade6-M210 leu1-32 ura4-D18) and 34 (h+

sir2::kanMX6 ade6-M216 leu1-32 ura4-D18).

Whole-genome paired-end DNA sequencing and data analysis

Whole-genome paired-end DNA sequencing and data analysis were

performed as previously described [21]. All raw sequencing data are

available from the European Nucleotide Archive (ENA) under the

accession codes detailed in Table EV2. SNPs and indels were identi-

fied by using the SAMtools (v0.1.19) mpileup function, which finds

putative variants and indels from alignments and assigns likeli-

hoods, and BCFtools that performs the variant calling [61]. The

following parameters were used: for SAMtools (v0.1.19) mpileup

“-EDS -C50 -m2 -F0.0005 -d 10000” and for BCFtools (v0.1.19) view

“-p 0.99 –vcgN”. Functional consequences of the variants were

produced by using the Ensembl VEP [62].

Drug sensitivity assays

Overnight-grown saturated cultures of the indicated strains were

serially diluted (10 fold) in water; 10-ll drops of each dilution were

deposited on each plate. Images were scanned 2–3 days after plating

and growth at 30°C. Each experiment was repeated at least twice

(n ≥ 2).

Analysis of yeast cell cycle progression and Western blotting

Exponentially growing cultures (30°C) were synchronised in G1 by

addition of 5 lg/ml alpha-factor for 2 h. G1-synchronised cultures

were then transferred to fresh YPD and released into S phase in the

presence or in the absence of camptothecin and/or sirtinol; 45 min

after the release, 20 lg/ml alpha-factor was added to allow quan-

tification of G1 cells by preventing re-entry into the cell cycle. To

detect Clb2, trichloroacetic acid protein extracts were separated on

10% polyacrylamide gels and Clb2 detection was carried out using

anti-Clb2 antibodies (Santa Cruz sc9071).

Analysis of ChIP-seq data

Reads were aligned using BWA-MEM, and duplicates marked with

Picard. For each genomic coordinate, coverage was calculated

using samtools and bedtools (samtools view -q10 -b $filename|

genomeCoverageBed -d -ibam stdin -g) and normalised using the

genomewide median of each sample. For each coordinate, the

enrichment (E) was calculated as the ratio of the normalised
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coverages of IP and input samples. Every genomic position show-

ing Esir2 > 1.75 and Esir3 > 1.5 and Esir4 > 2 and EGFP < 3 and

EH4-K16ac < 0.3 and EH3 > 0.75 was exported to a bed file. These

values were determined empirically, and small adjustments did

not substantially alter the final results. For every ORF, the total

number (T) of positions (nucleotides) for which the above condi-

tions held was calculated by querying the bed file. The final SIR

score was obtained by dividing this number (T) by the length of

the ORF.

Human cell culture

hTERT RPE-1 cells were cultured in Dulbecco’s modified Eagle’s

(DME)/F12 1:1 medium (Sigma-Aldrich) supplemented with 10%

foetal bovine serum (BioSera), 2 mM L-glutamine, 100 units/ml

penicillin and 100 lg/ml streptomycin (Sigma-Aldrich) and buffered

with 0.2% Na(CO3)2.

Clonogenic survival assays

Cells were treated for 48 h with 50 lM sirtinol (Tocris), with camp-

tothecin 30 nM for 24 h or pre-treated with sirtinol for 24 h and

then incubated with camptothecin and sirtinol for another 24 h as

indicated. Cells were then washed three times with PBS and left to

form colonies for 7–14 days. Colonies were stained with 0.1% (w/v)

crystal violet in 20% (v/v) ethanol for counting. Results were

normalised to plating efficiencies of untreated cells.

Human flow cytometry assays

Flow cytometry assays were performed as described in [63]. A 1-h

pulse of 10 lM EdU was performed after 48 h of the indicated treat-

ment. After fixation and permeabilisation, Alexa Fluor 488 azide

(Invitrogen) was used for the click reaction to detect the incorpo-

rated EdU. Finally, cells were resuspended in FACS buffer with DAPI

and analysed in a BD LSRFortessaTM cell analyser.

Data availability: referenced data

ChIP-seq data were downloaded from the Sequence Read Archive

(NCBI) using accession numbers specified in Table EV3 and origi-

nated from the following publications: (i) Thurtle and Rine [38]; (ii)

Teytelman et al [39].

Expanded View for this article is available online.
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