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A B S T R A C T

Cancer cells undergo major changes in energy and biosynthetic metabolism. One of them is the Warburg effect,
in which pyruvate is used for fermentation rather for oxidative phosphorylation. Another major one is their
increased reliance on glutamine, which helps to replenish the pool of Krebs cycle metabolites used for other
purposes, such as amino acid or lipid biosynthesis. Mitochondria are central to these alterations, as the
biochemical pathways linking these processes run through these organelles. Two membranes, an outer and inner
membrane, surround mitochondria, the latter being impermeable to most organic compounds. Therefore, a large
number of transport proteins are needed to link the biochemical pathways of the cytosol and mitochondrial
matrix. Since the transport steps are relatively slow, it is expected that many of these transport steps are altered
when cells become cancerous. In this review, changes in expression and regulation of these transport proteins are
discussed as well as the role of the transported substrates. This article is part of a Special Issue entitled
Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.

1. Alterations of mitochondrial metabolism

It has been long established that metabolism of cancer cells is
different from that of normal cells. In recent years, interest in this
aspect of cancer has significantly increased and has lead to the
provocative proposal that cancer is a metabolic disease, caused by
metabolic defects [1,2]. Whether or not this is true, alterations of
cellular metabolism represent a prominent hallmark of all cancers [3].
Most of these changes directly or indirectly involve mitochondria, thus
making these organelles central players in defining the phenotypic
characteristics of cancer cells. There is no consensus on the causal
relationships between alterations occurring in mitochondria and carci-
nogenesis, but parts of the puzzle are gradually starting to come
together.

In 1920s, Otto Warburg made an observation, which became one of
the most famous, but at the same time highly misinterpreted and
controversial observations in cancer biology. He found that cancer cells,
unlike normal cells, maintain high levels of glycolysis even under
conditions of sufficient oxygenation, or, in other words, they bypass the
Pasteur effect. Warburg named this phenomenon “aerobic fermenta-
tion”, but nowadays it is generally known as the “Warburg effect” – a
term proposed by Efraim Racker in 1972 [4–6].

Warburg proposed the most straightforward and self-evident ex-
planation: cancer cells need to rely glycolysis, because their respiratory

chain does not function properly. Moreover, he stated that the defect in
respiratory chain is the only primary cause of cancer, and all other
manifestations are secondary to it. Nowadays we know that this “self-
evident” explanation is wrong: cancer cells, in most cases, possess fully
functional respiratory chains, which are responsible for the majority of
ATP production [7,8]. Up-regulated glycolysis, however, serves other
metabolic processes, providing building blocks for biosynthetic pro-
cesses in the cell (Fig. 1). The Warburg effect is clearly the most famous
metabolic phenotype in cancer, but definitely not the only one. Another
important feature of most cancer cells is their increased reliance on
glutamine, which is the most abundant amino acid in blood serum.
Increased glutaminolysis helps to replenish the pool of Krebs cycle
metabolites used for other purposes, such as amino acid or lipid
biosynthesis [9–11]. In addition, mitochondria provide many crucial
metabolites for iron sulfur cluster assembly, heme synthesis, sterol and
lipid synthesis, and amino acid synthesis, degradation and interconver-
sions – pathways, which can be highly relevant for cancer metabolism
[12–17]. Moreover, mitochondria are key players in initiation and
execution of apoptosis, and cancer cells need to deal with this aspect of
mitochondrial function as well [18–20].

In this review we will discuss metabolite transport in processes
altered in cancer, focusing on those aspects of metabolism that involve
metabolite transport across the inner membrane of mitochondria and
on the roles of the transported molecules in these processes. We do not
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intend to give a comprehensive overview of cancer cell metabolism,
which can be found in numerous excellent reviews devoted to this topic
[7,8,21–34]. It is important to note that speaking about “typical
metabolism of cancer cells” can be dangerous, as cancer cells are
extremely heterogeneous. Even within a single tumor there are
gradients of gases, metabolites and growth factors. Moreover, tumors
are highly heterogeneous in their cellular components: besides malig-
nantly transformed cells, they contain normal cells of the tissue,
infiltrating immune cells, blood vessels and other components
[35,36]. This heterogeneity is rarely taken into consideration in a
typical study, but it could explain some of the controversies and
contradictory results in the studies discussed in this review.

2. Mitochondrial carriers

The mitochondrial inner membrane is impermeable for most small
hydrophilic molecules, and thus specialized transport proteins are
required for them to traverse the membrane. Most of them belong to
the solute carrier 25 (SLC25) family, which in humans consists of 53
members (Table 1) [37–40]. One important exception is the mitochon-
drial pyruvate carrier, which belongs to a different membrane protein
family and is most likely a heterodimer of two related subunits [41].
Other mitochondrial carriers are monomeric in structure and function
with the exception of the mitochondrial aspartate/glutamate carrier,
which is a structural dimer through dimerization of the N-terminal
regulatory domain, but the carrier domains are not interacting [37,42].

The members of the SLC25 family transport nucleotides (including
ATP and ADP), amino acids, carboxylates, small inorganic ions and
cofactors (vitamins). For nearly half of them, however, the substrate
specificities have not been determined [38]. The role of mitochondrial
carriers goes beyond transport functions. Two mitochondrial carrier

subfamilies have a role in calcium regulation of the mitochondrion, the
mitochondrial aspartate/glutamate carrier [42–46] and ATP-Mg/Pi
carrier [47–49]. Mitochondrial uncoupling protein 1, which also
belongs to the SLC25 family, is responsible for non-shivering thermo-
genesis; other uncoupling proteins may play a role in antioxidant
defense, although the latter is controversial [50–52].

Cancer cells have alterations both in sensitivity to apoptosis and in
mitochondrial metabolic pathways. It is, therefore, not surprising that
many members of the mitochondrial carrier family are involved in
progression of cancer. The role of metabolic alterations involving
mitochondria in cancer is well established, but there is little known
about the role of mitochondrial carriers in this process. In this review,
we will summarize published evidence on their role in cancer and on
their potential as therapeutic targets.

3. Di and tricarboxylate transporters

The mitochondrial citrate carrier (CIC), encoded by the SLC25A1
gene, is located at the crossroad of multiple metabolic pathways that
are important in cancer (Fig. 2). Its physiological role is to exchange
cytosolic malate against citrate or other tricarboxylates, such as
isocitrate or cis-aconitate, produced in mitochondria. Citrate trans-
ported into the cytosol has multiple metabolic roles. It can be cleaved
by ATP citrate lyase in the presence of ATP and CoA to yield acetyl-CoA
and oxaloacetate. Oxaloacetate is converted further to malate, which
can be imported to mitochondria (by citrate or dicarboxylate carriers)
or cleaved by malic enzyme to produce NADPH, which in turn is used in
a number of biosynthetic processes (Fig. 2). Another product of the ATP
citrate lyase, acetyl-CoA, is used for biosynthesis of fatty acids and
sterols, which makes citrate carrier especially important for rapidly
proliferating cells with an increased demand for membrane lipids.
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Fig. 1. Main metabolic alterations in cancer cells.Glucose is the main energy source both in normal and cancer cells, but its metabolism in cancer cell is typically shifted towards
anaerobic glycolysis, ending with increased lactate production even in the presence of sufficient oxygen (Warburg effect). Increased glycolysis serves to provide substrates for synthesis of
some amino acids and for pentose phosphate pathway, which is needed for increased nucleotide synthesis in cancer cells. However, the Krebs cycle remains essential as a source of
metabolites for amino acid and lipid production. The pool of metabolites in Krebs cycle is partly replenished by a supply of alpha-ketoglutarate derived from glutamine and glutamate.
Increased glutamine catabolism (glutaminolysis) is an important characteristic of most cancer cells.Reactions and pathways that are activated in cancer cells are shown as thick arrows;
the ones that are down-regulated are indicated with dashed lines; normal reactions are displayed as thin arrows. Mitochondrial carriers are shown as filled circles, where green indicates
that a carrier has anticancer properties, whereas the red ones support cancer growth.

O. Lytovchenko, E.R.S. Kunji BBA - Bioenergetics xxx (xxxx) xxx–xxx

2



Table 1
Expression and role of mitochondrial carriers in cancer.

Gene Protein name Expression in cancer Physiological effects in cancer cells

SLC25A1 Mitochondrial citrate carrier (CIC) Expression is increased in many cancers
[57,58]
High expression correlates with poor survival
in lung cancer [58,61]
SLC25A1 is a transcriptional target of
oncogenic p53 mutants [58]

Promotes growth of tumor cells [57]
Pharmacological inhibition decreases proliferation of cancer
cells and has anti-tumor effect in vivo [57,60]
Chemical inhibitors of SLC25A1 reduce tumor growth and
increase sensitivity to cisplatin in p53 mutant cell lines [58,61]
Associated with chemotherapy resistance in ovarian cancer cell
lines [59]
Inhibited by doxorubicine (explains mitochondriotoxic effects
of this anticancer substance) [62]
Plays a role in TNFα- and IFNγ-triggered inflammation [194]

SLC25A3 Mitochondrial phosphate carrier (PHC) Can be used as diagnostic marker of chronic
myeloid leukemia progression [100]

Overexpression promotes cytochrome c release and apoptosis
[97]
Depletion has anti-apoptotic effects [97,195]

SLC25A4 Mitochondrial ADP/ATP carrier 1 (AAC1) Expression is lowered in severe cervical
carcinoma [196]
Expression is progressively down-regulated in
patients with prostate cancer [96]

Regulates opening of mitochondrial permeability transition
pore [83]
Overexpression promotes apoptosis in cultured cancer cells and
suppresses tumor growth in vivo [83]
Knock-down induces cell death in human glioblastoma cell line
[85]

SLC25A5 Mitochondrial ADP/ATP carrier-2 (AAC2) Expression is increased in proliferating cells,
including cancer cells [81,197]
One of the lymphatic metastasis-associated
genes in human hepatocellular carcinoma
[198]

shRNA-based knockdown of SLC25A5 inhibits cancer cell
growth in vitro and in vivo [86]
Silencing facilitates pro-apoptotic effect of a chemotherapeutic
lonidamine [197]
Was proposed to be a promising chemotherapeutic target
[72,73,86,197]

SLC25A6 Mitochondrial ADP/ATP carrier-3 (AAC3) Has a pro-apoptotic effect in human cancer cells [79]
Overexpression increases cancer cell sensitivity to ionidamine
and staurosporine [78]

SLC25A8 Mitochondrial uncoupling protein 2 (UCP2) High in a variety of cancers [109–111]
In breast cancer patients, higher UCP2
expression correlates with poor prognosis
[112]

Knockdown or inhibition of UCP2 promotes apoptosis and
increases chemotherapeutic sensitivity in many cancer cells
[112–114]
Overexpression in colon cancer cells increases their resistance
to chemotherapeutics [115]
Mice with UCP2 knockout had reduced risk of skin tumor
formation in vivo [116]

SLC25A9 Mitochondrial uncoupling protein 3 (UCP3) Expression is high in some cancers, such as
renal cell carcinoma [120,121]

Overexpression of UCP3 in keratinocytes reduces
carcinogenesis in human and mouse skin [122,123]
High expression levels are associated with tumor-induced
cachexia [124–128]

SLC25A10 Mitochondrial dicarboxylate carrier (DIC) Up-regulated in many cancers [66] Knockdown of SLC25A10 reduces malignant phenotype of
cancer cells and caused a shift in their metabolism from
glycolysis towards oxidative phosphorylation [66]
Deletion of SLC25A10 is predicted to reduce cancer cell growth
by an in silico metabolic analysis [199]

SLC25A12 Aspartate-glutamate carrier 1 (AGC1), aralar May play an important role in cancer cell metabolism due to its
role in regeneration of the cytosolic glutathione [45]

SLC25A13 Aspartate-glutamate carrier 2 (AGC2), citrin AGC2 deficiency contributes to carcinogenesis in liver in some
Asian populations [135–137]

SLC25A14 Brain mitochondrial carrier protein 1 (BMCP-1)
or mitochondrial uncoupling protein 5 (UCP5)

High expression in colon cancer [131]

SLC25A19 Mitochondrial thiamine pyrophosphate carrier Up-regulated in breast cancer [200] Might mediate toxic effects of some nucleoside analogs used in
anticancer therapies [201]

SLC25A20 Mitochondrial carnitine/acylcarnitine carrier
(CAC)

Down-regulated in bladder cancer [180]

SLC25A21 Mitochondrial Oxodicarboxylate carrier (ODC) Deletion of chromosome region containing SLC25A21 was
reported in lung cancer [69]
SNPs in SLC25A21region correlate with breast cancer risk in
women receiving menopausal hormone replacement therapy
[70]

SLC25A22 Mitochondrial glutamate carrier 1 (GC1) GC1 is up-regulated in colorectal cancer. High
expression correlates with poor prognosis in
patients [134]

GC1 knockdown reduces proliferation and migration of cancer
cells and their tumor formation capacity in nude mice [134]

SLC25A23 Calcium-binding mitochondrial carrier protein 3
(SCaMC-3) or mitochondrial ATP-Mg/Pi carrier
protein 2 (APC2)

Overexpressed in many cancers [92]
Progressively down-regulated in patients with
prostate cancer [96]

SLC25A24 Calcium-binding mitochondrial carrier protein 1
(SCaMC-1) or mitochondrial ATP-Mg/Pi carrier
protein 1 (APC1)

Overexpressed in many cancers [92]

SLC25A25 Calcium-binding mitochondrial carrier protein
(SCaMC-2) or Mitochondrial ATP-Mg/Pi carrier
protein 3 (APC3)

Overexpressed in many cancers [92]

SLC25A26 S-adenosylmethionine mitochondrial carrier
protein (SAMC)

Consistently down-regulated in cervical
carcinomas [179]

SLC25A27 Mitochondrial uncoupling protein 4 (UCP4) Up-regulated in breast cancer [202] Promotes cell survival and inhibits apoptosis [130,131]
(continued on next page)
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Citrate-malate exchange is also the main component of citrate-malate
and isocitrate-oxoglutarate shuttles. Besides that, cytosolic citrate
regulates rate of glycolysis by affecting activity of phosphofructokinase
[53–55] and plays an important role in cytokine-induced inflammatory
pathways [56].

Considering this, it is not surprising that expression of citrate carrier
is increased in most cancers [57–59]. Overexpression of citrate carrier
in cancer cell lines was found to increase their tumorigenic potential,
whereas its pharmacological inhibition by its substrate analogue 1,2,3-
benzenetricarboxylate [60] reduced their proliferation rate and tumor-
igenicity in vitro and in vivo after injection of cancer in nude mice.
Treatment with benzenetricarboxylate reduced tumor growth in mice
without any significant toxicity. The same effect was achieved using
transfection of cancer cells with dominant-negative form of CIC [57].
Expression of SLC25A1 was associated with chemotherapy resistance in
ovarian cancers [59], whereas its inhibition enhanced tumor sensitivity
to platinum-based chemotherapeutics [58].

Another evidence for the role of citrate carrier in tumors is its up-
regulation in cells harboring oncogenic mutations in p53. Transcription
of SLC25A1 is increased as a direct consequence of these p53 mutations
and its inhibition reduces their oncogenic activity [58]. It is tempting to
speculate that overexpression of SLC25A1 can explain some of the
tumorigenic effects of mutated p53 and that its pharmacological
inhibition can help to overcome oncogenic potential of mutated p53
[61]. Citrate carrier has yet another link to cancer: it is inhibited by a
chemotherapeutic doxorubicin, a medication used in cancer therapy
[62]. This, on one hand, can contribute to its mode of action, but may

also be responsible for some of its adverse effects [63].
The exact mechanism by which citrate carrier promotes tumor-

igenicity remains unclear. The initial assumption of its role in lipid
production [64] was questioned by Catalina-Rodrigues et al. [57].
Although the ability of cells to convert glucose into fatty acids was
significantly reduced after inhibition of citrate carrier, overall lipid
levels were not significantly affected. Instead, the authors linked
reduced tumorigenic phenotype of the cells to impairment of their
mitochondrial physiology [57,61].

Malate is another important metabolite, participating in a number
of essential processes. Its conversion to pyruvate catalyzed by NADP+-
dependent malate dehydrogenase (also known as malic enzyme) is one
of the sources of reduced NADPH, an essential cofactor of biosynthetic
processes. Transport of malate is also part of the aspartate-malate
shuttle, involved in the import of reducing equivalents produced during
glycolysis into mitochondria. Cytosolic NADH and NADPH are not able
to cross the inner mitochondrial membrane because there is no
dedicated transporter. Instead, they are used by cytosolic malate
dehydrogenase to reduce cytosolic oxaloacetate to malate, which is
imported into mitochondria and converted to oxaloacetate there,
reducing NAD+ and leading to a net import of reducing equivalents.
This pathway might be especially important for energy metabolism of
cancer cells, due to up-regulated glycolysis [45,65].

Malate is transported into and out of mitochondria by at least two
more carriers, besides CIC: the dicarboxylate carrier DIC (SLC25A10)
and oxoglutarate carrier OGC (SLC25A11) (Table 1, Fig. 2). The
mitochondrial dicarboxylate carrier is up-regulated in many cancers.

Table 1 (continued)

Gene Protein name Expression in cancer Physiological effects in cancer cells

Correlates with prognostic markers in breast
carcinomas [131]

SLC25A28 Mitoferrin-2 (MFRN2) SLC25A28 knockdown reduces sensitivity of human glioma
cells to arsenic trioxide treatment [163] and squamous
carcinoma cells to photodynamic therapy [164]

SLC25A30 Kidney mitochondrial carrier protein 1 or
uncoupling protein 6 (UCP6)

High expression associated with tumorigenesis
induced by gestational arsenic exposure in
mice [181]

SLC25A31 Mitochondrial ADP/ATP carrier 4 (AAC4) Has anti-apoptotic effect in cancer cells, protecting them from
chemotherapeutics ionidamine and staurosporine [78]

SLC25A33 Solute carrier family 25 member 33 or
pyrimidine nucleotide carrier 1 (PNC1)

Promotes cell growth and survival by controlling mitochondrial
genome and preventing mitochondrial dysfunction.
Overexpression may play a role in oncogenesis [182,183]

SLC25A36 Solute carrier family 25 member 36 or
pyrimidine nucleotide carrier 2 (PNC2)

Up-regulated in cervical carcinomas [184]

SLC25A37 Mitoferrin-1 (MFRN) Progressively up-regulated in patients with
prostate cancer-associated fatigue [96]
Up-regulated in refractory anemia with ring
sideroblasts (RARS) [165]

SLC25A38 Solute carrier family 25 member 38 Up-regulated in refractory anemia with ring
sideroblasts (RARS) [165] and in acute
lymphoblastic leukemia [186]

SLC25A43 Solute carrier family 25 member 43 Frequently deleted or down-regulated in
HER2-positive breast cancer and other cancers
[169,170]

Influences cell cycle progression and cell proliferation rate
[169,172]
Knockdown of SLC25A43 reduces sensitivity to
chemotherapeutics in breast cancer cell lines [171]

SLC25A47 Solute carrier family 25 member 47 or
hepatocellular carcinoma down-regulated
mitochondrial carrier protein

Expression is lowered in hepatocellular
carcinoma [173]

SLC25A49 Mitochondrial carrier homolog 1 (MTCH1) Regulates opening of the mitochondrial permeability transition
pore [97]

SLC25A50 Mitochondrial carrier homolog 2 (MTCH2) Expression is lowered in some cancers [176] Regulates opening of the mitochondrial permeability transition
pore and interacts with truncated BID to promote apoptosis
[97,175]
siRNA-mediated knockdown increases invasive properties of
gastric cancer cells [178]
Induction of its expression reduces tumorigenicity of cancer
cells and leads to their growth arrest [203]

SLC25A52 Mitochondrial carrier triple repeat protein 2
(MCART2)

SNPs in SLC25A52 region correlate with breast
cancer risk in women receiving menopausal
hormone replacement therapy [70]
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Its knockdown in cancer cells caused metabolic shift towards less
glycolytic phenotype, reduced their malignancy and increased sensitiv-
ity to anticancer agent cisplatin [66]. There were no studies directly
linking oxoglutarate carrier and cancer, but it was shown to be involved
in regulation of apoptosis, potentially by interacting with Bcl-2 [67,68].

Mitochondrial 2-oxodicarboxylate carrier (ODC), encoded by the
SLC25A21 gene, transports several oxodicarboxylates, such as 2-
oxoadipate, 2-oxoglutarate, 2-oxopimelate and others. Chromosomal
region containing SLC25A21 (14q13.3) was found to be frequently
deleted in lung cancer [69] and two single nucleotide polymorphisms in
the SLC25A21 gene were associated with an increased risk of breast
cancer in women receiving hormone replacement therapy [70].

4. Mitochondrial ADP/ATP carriers

The mitochondrial ADP/ATP carrier (AAC), also called adenine
nucleotide translocase, exist in four isoforms (AAC1-AAC4) encoded by
SLC25A4, SLC25A5, SLC25A6 and SLC25A31, respectively (Table 1)
[71,72]. Its main role is to import ADP from the cytosol and to export
ATP produced in the mitochondrial matrix by ATP synthase. However,
under certain conditions, when mitochondrial ATP production is
impaired, AAC2 can deliver ATP produced by glycolysis into mitochon-
dria for maintenance of membrane potential and other essential
functions [73].

Besides that, they are involved in regulation of cell death and were
believed to be a component of the mitochondrial permeability transi-
tion pore, although this view has been questioned by several studies
[74–77]. Although there is no agreement on the molecular mechanism
by which AAC isoforms regulate cell death, there is no doubt that their
overexpression or knockdown modulates sensitivity of cells to apoptotic
stimuli. Despite a high degree of homology (about 80% pairwise
identity), different isoforms have opposite effects on cell survival.

Fig. 2. The role of carboxylate transport in cellular metabolism.Acetyl-CoA is required for lipid biosynthesis in cytosol. Acetyl-CoA derived from pyruvate in mitochondria cannot cross
the inner mitochondria membrane. Instead, citrate is exported by citrate carrier in exchange to cytosolic malate and serves as a source of cytosolic acetyl-CoA. Oxaloacetate produced in
this reaction is converted to malate, which can enter the mitochondrion with the aid of citrate, oxoglutarate or dicarboxylate carrier. It can also serve as a source of reduced NADPH, an
essential cofactor for various biosynthetic processes. Pyruvate formed in this reaction enters mitochondria using mitochondrial pyruvate carrier and can be converted to produce
mitochondrial acetyl-CoA. Typically, cancer cells have reduced activity of mitochondrial pyruvate carrier and increased expression of the dicarboxylate and citrate carriers.MPC,
mitochondrial pyruvate carrier; DIC, dicarboxylate carrier; OGC, oxoglutarate carrier; CIC, citrate carrier. Carriers promoting cancer cell growth are shown as red circles; carriers with
anti-tumorigenic properties are shown as green circles; carriers, whose role in cancer is unknown, are displayed as white circles. The following enzymes are indicated with numbers: 1,
ATP citrate lyase; 2, malate dehydrogenase; 3, malic enzyme (malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+)); 4, lactate dehydrogenase; 5, pyruvate dehydrogenase.
Not all reaction products and substrates are shown for the purpose of clarity.
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According to current view, AAC1 and AAC3 are pro-apoptotic, whereas
AAC2 and AAC4 are anti-apoptotic (Fig. 3) [73,78–80].

AAC1 (encoded by SLC25A4) is expressed predominantly in brain,
heart and skeletal muscle [81] and is the main pro-apoptotic AAC
isoform. Accordingly, expression of AAC1 was found to be low in many
cancers [82,83] and its overexpression induced apoptosis in several
breast cancer cell lines, most probably, in an NF-kB-dependent manner
[83,84]. Overexpression of AAC1 also inhibited tumorigenicity of
cancer cells in vivo, significantly reducing tumor size in nude mice
[83]. Unexpectedly, lowering of AAC1 expression in human glioblas-
toma cells caused a similar effect, which was not dependent on its ATP/
ADP transport function [85].

On the contrary, overexpression of AAC2 does not induce apoptosis
[80], whereas its down-regulation does [86]. AAC2 is up-regulated in
most cancers and can serve as an indicator of carcinogenesis [73,82].
Knock-down of the SLC25A5 gene encoding AAC2 inhibited growth of
breast cancer cells both in vitro and in vivo [86]. The mechanisms of this
effect are not clear. AAC2 is highly expressed in normal undifferen-
tiated and proliferating cells and may play a role in importing
glycolytically produced ATP from cytosol into mitochondria
[73,81,82]. Although cancer cells generally maintain high levels of
oxidative phosphorylation in mitochondria (as discussed above), this
function of AAC2 may become critical for cancer cell survival under
hypoxic conditions in insufficiently oxygenated layers of solid tumors.
Another hypothesis suggests that dysregulation of AAC isoforms could
contribute to carcinogenesis by affecting nucleotide pools in mitochon-
dria and thus leading to instability of the mitochondrial genome [73].

AAC3 is expressed ubiquitously and in many regards resembles
AAC1. Overexpression of AAC3, similarly to AAC1, induces apoptosis in
cultured cells and sensitizes cancer cells to chemotherapeutics cisplatin
and melphalan, as well as antiproliferative agent all-trans retinoic acid
[78,79,87,88]. AAC3 is selectively required for initiation of tumor
necrosis factor alpha (TNFa)-induced apoptosis and its disruption can
prevent cytochrome c release and membrane potential dissipation
triggered by TNFa treatment [89].

AAC4 is predominantly expressed in testicular germ cells, liver and
brain [71,90]. Its role in cancer has not been studied in much detail, but
it was shown to cause anti-apoptotic effects in cultured cancer cells,
similarly to AAC2. Overexpression of AAC2 also reduced cancer cell
sensitivity to chemotherapeutics ionidamine and staurosporine [78].

To conclude, the four AAC isoforms, despite high similarity, have
opposing effects on apoptosis and cell survival (Fig. 3). Cancer cells
tend to up-regulate anti-apoptotic isoform AAC2, while suppressing
pro-apoptotic AAC1. However, a significant controversy remains about
the molecular mechanisms mediating AAC effects on cell death and
tumorigenicity.

5. ATP-Mg/phosphate carriers

Mitochondrial ATP-Mg/phosphate carriers (APC1-APC4), also
known as calcium-binding mitochondrial carriers (SCaMC1-4), are
encoded by the SLC25A24, SLC25A23, SLC25A25 and SLC25A41 genes,
respectively (Table 1, Fig. 3). They are activated by an increase in
cytosolic calcium and transport Mg-ATP or Mg-ADP in both directions
across the inner mitochondrial membrane in exchange for inorganic
phosphate (Pi). Thus, unlike AAC, they mediate electroneutral net
import or export of adenine nucleotides [49].

There are at least three mechanisms that might link this subfamily
of carriers to carcinogenesis. It has been long known that the total
mitochondrial adenine nucleotide pool regulates opening of the mito-
chondrial permeability transition pore (mPTP) [91], and ATP-Mg/
phosphate carriers might thus contribute to the regulation of cell
survival. In addition, phosphate release from mitochondria could
contribute to buffering calcium in cytosol and thus as well prevent
opening of the permeability transition pore [92]. Finally, it has been
initially proposed that changes in adenine nucleotide pools in mito-

chondria by the transport activity of AAC might affect replication and
maintenance of the mitochondrial genome [73], but this is likely to be
true for ATP-Mg/Pi carriers as well.

APC1 (SCaMC-1/SLC25A24) was found to be up-regulated in many
cancer cell lines, tumors and rapidly proliferating cells [92,93]. The
carrier was not essential for cell proliferation, but demonstrated a
strong cytoprotective effect under oxidative stress and calcium overload
conditions. Knockdown of APC1 increased cancer cell sensitivity to
oxidative stress-induced apoptosis, while its overexpression protected
them from death. The cytoprotective effect of the carrier was attributed
both to an increase in mitochondrial calcium buffering capacity and to
adenine nucleotide transport function of the protein. Selective inhibi-
tion of APC1 was thus suggested to be a promising anticancer strategy
[92].

There is not much data on the role of other ATP-Mg/phosphate
carrier isoforms in cancer, although several gene expression studies
suggest that they might play similar important roles. For example, high
expression of APC2 (SCaMC-3/SLC25A23) was associated with poor 5-
year survival and included in a set of prognostic markers in patients
with diffuse large B cell lymphoma [94]. Its mRNA levels were also
significantly up-regulated in tissue samples of patients with colorectal
cancer [95] and associated with cancer-related fatigue in patients with
prostate cancer [96].

6. Phosphate carrier

Mitochondrial phosphate carrier (PiC), encoded by the SLC25A3
gene (Fig. 3), transports inorganic phosphate from cytosol into mito-
chondrial matrix together with a proton. The phosphate carrier
regulates cytochrome c release from mitochondria and its knockdown
has anti-apoptotic effect, probably, by direct interaction with the
components of the mitochondrial permeability transition pore [97].
Knockout of the SLC25A3 gene in mouse heart did not block mPTP
opening completely, but caused its partial desensitization to calcium-
induced apoptosis [98]. These results suggest that phosphate carrier,
similarly to AAC and ATP-Mg/phosphate carriers, could be involved in
mPTP opening and thus in tumorigenesis. There are no data directly
supporting this hypothesis, but activity of the phosphate carrier was
found to be increased in rat hepatoma [99] and SLC25A3, along with
several other genes, was found to be differentially expressed in early
and late chronic phase of chronic myeloid leukemia (Table 1) [100].

7. Uncoupling proteins

The term “uncoupling proteins” refers to a group of six related
proteins (UCP1-UCP6, encoded by SLC25A7, SLC25A8, SLC25A9,
SLC25A27, SLC25A14 and SLC25A30, respectively), which dissipate
mitochondrial membrane potential and thus uncouple oxidation of
substrates from ADP phosphorylation (Table 1). The five uncoupling
proteins may have different physiological functions, and uncoupling
has not been shown conclusively for most of them. Moreover, the
molecular mechanism of uncoupling is not fully understood and the
substrates of the uncoupling proteins remain unknown. Deregulation of
uncoupling proteins' expression has been associated with a number of
pathological states [8,51,52,101–103].

The best studied one, UCP1, is expressed mostly in brown adipose
tissue and thymus and responsible for non-shivering thermogenesis. To
date, there are no studies directly linking UCP1 to cancer (except of its
expression in brown fat tumors, hibernomas) [104].

UCP2 is a ubiquitously expressed protein. Its function is not fully
defined, but it was shown to export several C4 metabolites (such as
malate, oxaloacetate, aspartate and malonate) out of mitochondria in
an in vitro transport assay [105] and to play a role in antioxidant
defense, insulin production and immunity [106–108]. Many studies
found strong evidence on its role in supporting tumor growth.
Significant up-regulation of UCP2 expression was observed in many
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cancers, including colon cancer [109], head, neck, skin, pancreas and
prostate cancers [110], breast cancer and most other tumors [111]. In
breast cancer patients, higher UCP2 expression correlated with poor
prognosis [112]. Knockdown or inhibition of UCP2 promoted apoptosis
and increased sensitivity to anticancer drugs in hepatocellular carcino-
ma, colon and breast cancer cells [112–114], while its overexpression
in colon cancer cells increased their resistance to chemotherapeutics in
vitro and in mouse xenografts [115]. UCP2 knockout in mice signifi-
cantly reduced formation of benign and malignant skin tumors in vivo
[116]. Accordingly, overexpression of UCP2 in breast cancer cells
increased their tumorigenic phenotype, both in vitro and in vivo in a
mouse xenograft model [111].

However, the view of the UCP2 as a typical tumor-promoting carrier
has been questioned by several other studies. In some, although not all,
lung cancer cells expression of UCP2 was lower than in normal cells
[110,117] and its low expression was associated with chemotherapy
resistance in lung cancer patients [117]. Overexpression of UCP2 was
reported to repress malignant properties of mouse and human cancer
cell lines in vitro and when injected in nude mice [118]. UCP2 knockout
mice were more prone to development of colon tumors than their wild
type littermates [119]. These seemingly controversial findings can be
explained, at least in part, by the dual role that UCP2 plays in tumor
origin and progression. Mild mitochondrial uncoupling has been
proposed to lower ROS formation by respiratory chain [50]. At the
initial stages of tumorigenesis, down-regulation of UCP2 can increase
ROS formation, and promote tumor growth, whereas overexpression of
UCP2 at later stages of tumor progression protects them from apoptosis
and reduces their sensitivity to damaging agents [51,103]. Given the
high degree of controversy surrounding the function of UCP2, its role in
cancer has not been fully defined.

UCP3 is normally expressed in skeletal muscle and heart. It may
play a similar role as UCP2 in several cancers, although the role of
UCP2 is more established and well studied. UCP3 expression is high in
some cancers, such as renal cell carcinoma [120,121]. Interestingly,
overexpression of UCP3 suppressed carcinogenesis in human and mouse
keratinocytes [122,123]. Many studies point out that high UCP3
expression is associated with muscle wasting in tumor-induced cachexia
[124–128].

UCP4 is a brain-specific protein and its role in cancer is controver-
sial. Neuronal differentiation studies using mouse stem cells have
demonstrated that UCP4 is mostly expressed in differentiated non-
proliferating cells, and that its expression in most cancer cell lines is low
[129]. On the other hand, overexpression of UCP4 was demonstrated to
stimulate cell proliferation and inhibit apoptosis, most likely, in an
extracellular signal-regulated kinase (ERK)-dependent manner [130].
Moreover, positivity for UCP4 correlated with prognostic markers in
breast carcinomas [131].

8. Amino acid carriers

There is surprisingly little known about mitochondrial carriers
transporting amino acids. Only carriers for arginine, lysine, aspartate
and glutamate have been identified (Table 1), whereas carriers required
for transport of essential amino acids, as well as cysteine and glutamine
are missing [37,132]. This is especially unfortunate, because amino
acids are among the most cancer-relevant substrates.

There are at least 4 carriers that transport glutamate into mitochon-
dria: glutamate carriers 1 and 2 (SLC25A22 and SLC25A18, respec-
tively) and aspartate/glutamate carriers 1 and 2 (SLC25A12 and
SLC25A13) [43,45,46,133]. Expression of glutamate carrier 1
(SLC25A22) is increased in colorectal cancer and correlates with poor
prognosis in patients. Its knockdown reduces cancer cell proliferation
and migration in vitro, as well as tumor formation in nude mice [134].
Deficiency of aspartate-glutamate carrier-2, citrullinemia, caused by
mutations in the SLC25A13 gene, significantly increases risk of hepatic
cancer in patients, at least in some Asian populations [135–137].

Bioinformatic analysis shows that the aspartate-glutamate carrier 1
(AGC1) gene (SLC25A12) is frequently mutated, amplified or deleted in
many cancers, and its mRNA levels are often elevated. Along with
malate transporters, AGC participates in malate-aspartate shuttle,
which transfers reducing equivalents from cytosol to mitochondria,
and thus might play a special role in redox homeostasis of cancer cells.
Besides that, it may play a role in antioxidant defence by supplying
substrates for cytosolic production of NADPH used for regeneration of
glutathione [45]. Although there is no direct experimental evidence
that targeting AGC can be beneficial for cancer treatment, its role in
cellular metabolism and indirect bioinformatic data suggest that it may
be another promising oncotarget.

Glutamine is the most abundant amino acid in blood serum, and a
significant increase of glutamine catabolism (glutaminolysis) is a
classical hallmark of many cancers [9,10,138–140]. Mitochondrial
glutamine carrier has not been identified, although its activity has
been extensively studied by transport assays for almost half a century
[141–143]. There is no doubt that there is a specialised carrier for this
amino acid, at least in some cell types, but glutamine can be also
deaminated to glutamate in the cytosol and imported into mitochondria
in this form [141,144]. Glutaminolysis fuels the Krebs cycle and acts to
replenish metabolites used for other metabolic purposes. Besides its
obvious metabolic role, increased glutaminolysis was proposed to play
a role in buffering pH changes caused by excessive glycolytic lactate
production [145]. According to this hypothesis, ammonium produced
by glutamine conversion to glutamate prevents acidification of extra-
cellular surroundings and thus promotes survival of cancer cells.
Regardless of the mechanism, the role of glutamine in cancer is
undoubted and glutamine carrier would be one of the most promising
anticancer targets, once discovered.

9. Mitochondrial pyruvate carrier

A recently identified transporter for cytosolic pyruvate does not
belong to the SCL25 family, but its function is especially relevant for
cancer and it attracted significant attention in recent years [146–150].
The fate of cytosolic pyruvate is at the decision point between oxidative
and anaerobic metabolism and is dramatically different between
normal and cancer cells. In normal cells, under aerobic conditions
pyruvate is transported into mitochondria, where it is oxidatively
decarboxylated by the pyruvate dehydrogenase complex to produce
acetyl-CoA, which then enters Krebs cycle. Anaerobic NADH-dependent
reduction of pyruvate catalyzed by cytosolic lactate dehydrogenase
produces lactate, which is normally exported from the cell. Otto
Warburg's observation of increased lactate production in cancer cells
under aerobic conditions was one of the most important observations in
the field and established the entire paradigm of mitochondrial dysfunc-
tion in cancer. There are several mechanisms that can cause this
phenotype in cancer cells, and deregulation of mitochondrial pyruvate
carrier is one of them.

The identity of the mitochondrial pyruvate carrier (MPC) was
discovered in 2012 by Herzig et al. [41] and Bricker et al. [151]. In
mammals, it consists of two homologous subunits, MPC1 and MPC2,
which do not belong to the SLC25 family and most likely function
together as a heterodimer.

The first data on MPC1 expression in cancer come from Schell et al.
[152]. For the first time, they noted down-regulation of MPC1 in many
cancers and its correlation with poor prognosis in patients. Interest-
ingly, re-expression of MPC1 and MPC2 in colon cancer cells reduced
signs of tumorigenicity in cells grown under low-attachment conditions,
without affecting growth in adherent cell culture [152]. Biochemically,
pharmacological inhibition of MPC shifted metabolism from oxidative
phosphorylation towards glycolysis, promoting the Warburg effect in
cancer cells. Unexpectedly, this treatment also increased resistance of
prostate cancer cells to chemotherapeutic cisplatin [153]. Mitochon-
drial pyruvate carrier was found to be one of the main targets of
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lonidamine, a potent anticancer drug, whose mode of action was
previously unknown [154,155].

10. Mitochondrial iron transporters

Iron is one of the central elements required for cancer cell growth
and proliferation [156,157]. Mitochondria play a key role in cellular
iron metabolism, being responsible for heme and iron-sulfur cluster
biosynthesis, and transport of iron into mitochondria is tightly regu-
lated. Two members of the SLC25 family, mitoferrins 1 (SLC25A37) and
2 (SLC25A28), are required for iron import into mitochondria
[158–160]. Although the question is whether the transported species
is free iron [37], changes in expression of these genes led to severe
alterations of iron homeostasis [161,162].

In theory, mitoferrins may play a central role in iron homeostasis in
cancer cells and can be very important oncotargets. However, to date,
there are only few studies linking mitoferrins 1 and 2 directly to cancer.

Expression of mitoferrin-2 influences effects of several anticancer
treatment approaches. Silencing of the mitoferrin-2 gene SLC25A28
reduced sensitivity of human glioma cells to arsenic trioxide treatment
[163] and squamous carcinoma cells to photodynamic therapy [164].
Mitoferrin-1 (SLC25A37) is overexpressed in refractory anemia with
ring sideroblasts (RARS) [165–167], and progressively associated with
fatigue in prostate cancer patients receiving radiotherapy [96,168]. We
believe that question of iron transport into mitochondria requires more
attention.

11. Carriers with unknown substrate specificities

The SLC25 family in humans consists of 53 members, but the
substrate specificity of many carriers has not been assigned and in some
cases is disputed (Table 1) [38]. Some carriers, whose substrate
specificities are unknown, have been nevertheless associated with
different pathological conditions, including cancer (Fig. 3) [63].

Several studies demonstrated association of SLC25A43 with several
tumor types. Chromosomal region containing SLC25A43 is frequently
deleted in some breast tumors, cervical and lung cancers [169] or the
gene is transcriptionally repressed [170]. Knockdown of SLC25A43
reduces sensitivity to chemotherapeutics in breast cancer cell lines
[171]. Interestingly, this mitochondrial protein exerts its effects by
influencing cell cycle progression and cell proliferation rate [169,172].

SLC25A47, a hepatocellular carcinoma-down-regulated protein, has
a self-descriptive name, suggesting its involvement at least in some
forms of hepatic cancer [173]. Its substrate and mechanism of action in
cancer are unknown, but it was proposed to be a liver-specific
uncoupling protein, and it might, similarly to other uncoupling
proteins, regulate ROS production [173,174].

Mitochondrial carrier homologs 1 and 2 (MTCH1 and MTCH2),
encoded by SLC25A49 and SLC25A50, were shown to regulate apop-
tosis by modulating activity of the mitochondrial permeability transi-
tion pore [97]. MTCH2 directly interacts with mitochondrial pro-
apoptotic protein truncated BID (tBID) and recruits it to mitochondria
to activate apoptosis [175]. In agreement with its pro-apoptotic role,
some cancer cells tend to down-regulate MTCH2 by overexpressing its
regulatory miRNA [176]. Single nucleotide polymorphisms (SNPs) in
the SLC25A50 gene are associated with high risk of endometrial cancer
[177]. Bioinformatic analysis revealed that MTCH2 is tightly transcrip-
tionally regulated in multiple solid cancers. Its knockdown in gastric
cancer cells increased their invasive properties, without significantly
affecting proliferation rate [178].

12. Other carriers

There is increasing evidence that other carriers can be associated
with cancer as well. For example, carnitine-acylcarnitine carrier/
SLC25A20 is downregulated in bladder cancer, while expression of S-

adenosylmethionine carrier/SLC25A26 is low in cervical carcinomas
[179,180]. High expression of uncoupling protein 6/SLC25A30 is
associated with carcinogenesis induced by arsenic exposure in mice
[181]. Pyrimidine nucleotide carrier PNC1/SLC25A33 deserves a
special attention, as it was shown to promote cancer cell proliferation,
invasiveness and increase their size [182,183]. Both pyrimidine nucleo-
tide carriers 1 and 2 (SLC25A33 and SLC25A36) are upregulated in
some cancers [182,184]. SLC25A38 (a potential glycine transporter
required for heme biosynthesis [185]) is upregulated in acute lympho-
blastic leukemia [186]. Information about some other carriers with
potential links to cancer is summarised in Table 1.

13. Concluding remarks

Despite almost a century of interest in the role of mitochondria in
cancer, there are still no effective anticancer agents that target
mitochondria. Their development and the continued investigation of
the fundamental mechanisms of carcinogenesis are hindered by a few
technical and conceptual difficulties, some of which are particularly
relevant for studying the role of mitochondrial carriers in cancer.

First, most of the bioinformatics data on carrier expression in cancer
cells or tissues relies on high-throughput transcriptomics data (in most
cases, on microarrays). These data shed light on the importance of
transcriptional regulation in cancer, but should be analyzed with care,
as steady-state mRNA levels of mitochondrial carriers do not always
correlate with protein levels. This has been reported, for example, for
uncoupling proteins and it is possible that other carriers can be
regulated predominantly on a translational level as well [187,188].

Another source of potentially misleading data has to do with the
nature of the experimental model. Many studies, for obvious reasons,
were performed using cultured cells. Whilst this approach provides
valuable information about genetics and molecular biology of cancer,
the physiological and biochemical properties of cultured cells can be
dramatically different from cancer tissues in situ. First of all, tumors
(especially the solid ones) are never uniform. Depending on their size,
several layers of cells with dramatically different properties can be
found within the same tumor [35]. Accordingly, metabolism of cells in
different layers of a solid tumor can be dramatically different, due to
differences in oxygen and nutrient supply, proliferation state etc. A
well-known problem of cultured cells, which is generally largely
ignored, is their oxygenation. Within the body, cells are exposed to
1–11% of oxygen, which is dramatically different from 21% oxygen in
cell culture and can have serious physiological implications [189].
Within tumors, these values can differ from the “normal conditions” in
cell culture incubator even more dramatically. It is generally believed
to be acceptable for most of the cell biology studies, but should be
considered remarkably carefully in studies looking for minor differ-
ences in biochemical pathways that differ cancer cells from normal ones
and make them targetable by metabolism-affecting drugs.

Following the same line of thought, what would we call a “cancer
cell” in an in vitro experiment? Out of the classical 6 cancer “hallmarks”
proposed by Hanahan and Weinberg in 2000 [190], at least 5 are
shared by benign tumors [191], and are hardly applicable to cell culture
conditions. In most cases, “cancer cells” are very different from “cells
derived from cancer tissues and cultured under non-physiological
conditions for limitless number of generations afterwards”. At the same
time, the most practically-relevant targetable metabolic and biochem-
ical features of cancer cells are shared with normal fast-proliferating
cells [29]. This does not mean that the results of cell culture-based
studies are irrelevant, but special attention is needed to distinguish
between cancer-specific and conditions-induced metabolic changes.

There is no doubt that expression of some mitochondrial carriers is
altered in a variety of cancers. However, the reason for these changes is
not obvious. Theoretically, there are three possibilities. First, changes in
expression of mitochondrial carriers can represent an adaptation of
cancer cells to their metabolic challenges. Second, these changes can
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contribute to de novo formation of tumors. Finally, mitochondrial
carriers can be innocent bystanders and indirect targets of unrelated
regulatory circuits and pathways.

In its current state, the field seems to support strongly the first
option. According to the most straightforward explanation, cancer cells
need to adapt their substrate fluxes to challenges caused by fast
proliferation and low oxygenation of cells within tumors. Besides that,
they need to silence pro-apoptotic and up-regulate anti-apoptotic
factors. There are many examples of carriers that fit perfectly to this
model. Citrate carrier is up-regulated in many cancers, because it
transports physiologically important substrates [57,58]. AAC1 and
AAC3 are down-regulated, because they are pro-apoptotic molecules

[79,83]. Expression of uncoupling protein-2 is high at advanced stages
of cancer, because it may protect cancer cells from ROS formation [51].

However, there is increasing evidence for the alternative possibility,
namely, that increased levels of certain metabolites can contribute to
epigenetic and metabolic reprogramming of cells and formation of their
malignant phenotype. Increased formation of reactive oxygen species
and destabilisation of mitochondrial genome can be also involved in
pathogenesis and origination of tumors. This view is supported by
multiple associations between mutations in certain carriers with the
frequency of cancer, even though the underlying molecular mechan-
isms are often unknown [69,70,135,136]. Another important line of
evidence is coming from transgenic mouse models. Knockout or over-
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expression of certain carriers reduces or increases frequency of tumor
formation in vivo (see Table 1), suggesting that carriers, even if not
directly being the cause of cancer, can significantly contribute to its
pathogenesis [116,119].

The third option is rarely taken into consideration, but relatively
high inconsistency of SLC25 gene expression in cancer suggests that at
least in some cases their up- or down-regulation may not have much
physiological meaning. The Oncomine database is a popular resource
combining transcriptomics data from different cancer studies [192]. We
analysed the database searching for datasets, which demonstrate
significant up- or down-regulation of each carrier. Not surprisingly,
for most of the carriers there were studies demonstrating both increase
or decrease of expression (at least, on a transcriptional level) in
different cancers (Fig. 4). It cannot be excluded that in some cases
seemingly physiologically meaningful carrier up- or down-regulation
represents a selection of “convenient” results, which are easy to explain
by a simple mechanistic model. Overall, it must be noted that causative
relationships between expression of mitochondrial carriers and mani-
festations of cancer are missing in many cases.

Similarly, physiological consequences of carrier inactivation can
vary dramatically depending on the type of cancer and other condi-
tions. Achilles' project is a comprehensive study, in which consequences
of RNAi-mediated knockdown or CRISPR-Cas9 knockout were analysed
in more than 200 cancer cell lines [193]. For nearly all of the carriers,
consequences of their inactivation in different cell lines varied drama-
tically, often having opposite results on cell survival in different
cancers.

Regardless of the exact mechanism, promising results obtained with
pharmacological or genetic inhibition of certain carriers should stimu-
late further research in this direction and validation of other oncotar-
gets. Currently, carriers with the highest chances to become valuable
therapeutic targets are citrate carrier (CIC), ADP/ATP carrier (AAC1)
and pyruvate carrier. The roles of some other carriers, such as
dicarboxylate carrier (SLC25A10), APC1 (ScaMC-1, SLC25A24) and
UCP2 (SLC25A8), are less well established, but there are studies
pointing out to their importance. Finally, other members of the
SLC25 family, such as the mitochondrial thiamine pyrophosphate
carrier (SLC25A19), oxoglutarate carrier (SLC25A11), aspartate/gluta-
mate carrier (SLC25A12), SLC25A47, SLC25A50 and others may be
promising as well, but are awaiting a more detailed investigation. A
promising approach could involve simultaneous targeting of several
carriers, which can significantly increase efficiency and specificity of
any potential anticancer therapy, but at the moment there are no
studies investigating synergy between different mitochondrial trans-
porters.
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