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Abstract	12	

Recent	 developments	 in	 sensory	 and	 communication	 technologies	 have	 made	 the	 development	 of	13	

portable	air-quality	 (AQ)	Micro-Sensing	Units	 (MSUs)	 feasible.	These	MSUs	allow	AQ	measurements	 in	14	

many	 new	 applications,	 such	 as	 ambulatory	 exposure	 analyses	 and	 citizen	 science.	 Typically,	 the	15	

performance	of	these	devices	is	assessed	using	the	mean	error	or	correlation	coefficients	with	respect	to	16	

a	laboratory	equipment.	However,	these	criteria	do	not	represent	how	such	sensors	perform	outside	of	17	

laboratory	conditions	in	large-scale	field	applications,	and	do	not	cover	all	aspects	of	possible	differences	18	

in	performance	between	the	sensor-based	and	standardized	equipment,	or	changes	in	performance	over	19	

time.	This	paper	presents	a	comprehensive	Sensor	Evaluation	Toolbox	(SET)	for	evaluating	AQ	MSUs	by	a	20	

range	of	criteria,	to	better	assess	their	performance	in	varied	applications	and	environments.	Within	the	21	

SET	 are	 included	 four	 new	 schemes	 for	 evaluating	 sensors’	 capability	 to:	 locate	 pollution	 sources;	22	

represent	 the	pollution	 level	 on	 a	 coarse	 scale;	 capture	 the	 high	 temporal	 variability	 of	 the	observed	23	

pollutant	and	their	reliability.	Each	of	the	evaluation	criteria	allows	for	assessing	sensors’	performance	in	24	

a	different	way,	together	constituting	a	holistic	evaluation	of	the	suitability	and	usability	of	the	sensors	in	25	

a	wide	range	of	applications.	Application	of	the	SET	on	measurements	acquired	by	25	MSUs	deployed	in	26	

eight	cities	across	Europe	showed	that	the	suggested	schemes	facilitates	a	comprehensive	cross	platform	27	

analysis	that	can	be	used	to	determine	and	compare	the	sensors’	performance.	The	SET	was	implemented	28	

in	R	and	the	code	is	available	on	the	first	author’s	website.		29	

1 Introduction	30	

Air	pollution	is	recognized	as	a	contributing	factor	to	various	health	outcomes,	and	has	been	associated	31	

with	public	health	risks		[1,	2].	Accurately	assessing	ambient	concentrations	of	different	air	pollutants	is	32	

necessary	in	any	study	on	the	impact	of	air	quality	(AQ)	on	different	health	endpoints.	To	date,	ambient	33	

pollutant	 concentrations	 are	obtained	 from	either	 short	 time-period	measurement	 campaigns	using	 a	34	

large	 number	 of	 sensing	 devices	 (e.g.	 [3]),	 or	 from	 measurements	 reported	 by	 standard	 Air	 Quality	35	

Monitoring	(AQM)	stations	over	extended	time	periods	(e.g.		[4]).	While	the	former	is	limited	in	temporal	36	

representativeness	(e.g.	due	to	inter-seasonal	variation),	the	latter	is	limited	in	spatial	representativeness	37	

(e.g.	due	to	dispersion	patterns)	and	typically	measures	only	a	limited	number	of	criteria	pollutants	[5].	38	

Further,	 regulatory	 AQM	 stations	 require	 certified	 instrumentation	 meeting	 measurement	 accuracy	39	

requirements,	and	an	extensive	set	of	procedures	to	ensure	that	data	quality	remains	satisfactory.	These	40	

requirements,	 typically	 required	 by	 laws	 and	 regulations,	 ensure	 that	measurements	 are	 comparable	41	

across	all	networks	with	similar	requirements,	but	 limit	the	AQM	spatial	deployment	due	to	their	high	42	



investment	and	operational	cost.	As	a	result,	the	AQM	network	has	limited	ability	to	account	for	spatial	43	

variability	 of	 pollution	 levels	 in	 heterogeneous	 regions	 such	 as	 urban	 areas,	which	 in	 return,	 renders	44	

exposure	 assessment	 a	 very	 difficult	 task	 	 [6].	Moreover,	 the	 air-inlets	 of	 AQM	 stations	 are	 typically	45	

located	on	rooftops	or	way	above	the	ground	[7],	thus	misrepresenting	the	true	exposure	of	any	individual	46	

at	head	height.	 47	

Recent	developments	in	sensory	and	communication	technologies	have	made	the	deployment	of	portable	48	

and	relatively	low-cost	Micro	Sensing	Units	(MSUs)	possible.	These	MSUs	can	operate	as	a	set	of	individual	49	

nodes,	or	may	be	interconnected	to	form	a	Wireless	Distributed	Environmental	Sensor	Network	(WDESN)	50	

to	measure	air	pollution	over	 large	spatial	scales.	WDESNs	gather	high-resolution	spatial	and	temporal	51	

data	 from	numerous	 individual	nodes	allowing	 for	a	better	 interpolation	and	 the	generation	of	dense	52	

pollution	 maps,	 which	 are	 closer	 to	 real-life	 pollution	 dispersion	 scenarios	 [8].	 The	 gaseous	 sensors	53	

mounted	on	these	MSUs	are	low-power	and	low-cost,	and	are	based	on	widely	understood	amperometric	54	

sensor	methodologies	designed	for	sensing	selected	gases	at	the	parts-per-million	(ppm)	level	[9,	10,	11].	55	

Electronic	circuitry,	which	applies	signal	processing,	allows	for	the	detection	at	the	part-per-billion	level	56	

[11].	Recent	miniaturization	of	Optical	Particles	Counters	(OPCs)	[12,	13]	and	solid	state	[14,	15]	sensors	57	

allows	to	extend	the	MSUs	capabilities	to	measure	Particulate	Matter	(PM)	as	well.				58	

The	small	size	and	low	power-consumption	of	MSUs	lay	the	path	for	many	new	applications	that	require	59	

AQ	data,	such	as	exposure	analyses	[16,	17],	education	[18],	hot-spot	identification	and	characterization	60	

[19],	 supplementary	 network	 monitoring	 [20,	 21],	 and	 citizen	 science	 [22,	 23,	 24].	 In	 particular,	 the	61	

essence	of	citizen	science	requires	active	participation	of	citizens	in	the	scientific	research	process	[22].	62	

Within	the	context	of	air-quality	research,	MSUs	may	be	deployed	at	citizen's	homes,	monitoring	either	63	

ambient	or	indoor	air	quality	in	their	local	environment.	An	example	is	the	CITI-SENSE	project,	which	aims	64	

at	developing	sensor-	based	citizen	observatories	for	improving	the	quality	of	life	in	cities	[25].			65	

Seminal	studies	that	evaluate	MSUs	in	pre-field	and	field	trials	show	that	these	units	indeed	can	capture	66	

air	pollution	spatio-temporal	variation	[26,	27,	11,	28,	21,	29,	30].	However,	these	studies	have	shown	67	

that	the	MSUs’	main	limitation	is	their	low	accuracy	relative	to	laboratory	equipment	[26,	27,	11,	28,	30]	68	

or	an	AQM	station	[11,	28,	21].		69	

Previously-used	MSU	 calibration	 and	evaluation	measures,	 i.e.,	 sensitivity	 [26,	 27,	 11,	 28],	 correlation	70	

coefficient,	ρ,	coefficient	of	determination,	R2,	[21,	11,	29],	and	the	Root	Mean	Squared	Error,	RMSE	[21,	71	

29]	aim	at	assessing	the	MSUs’	accuracy	and	capability	to	capture	trends	and	values	of	the	pollutants’	true	72	

ambient	levels.	While	these	criteria	evaluate	some	aspects	of	the	sensors’	performance	in	many	fields,	for	73	

some	applications	different	criteria	covering	additional	performance	aspects	may	be	more	adequate	[24].		74	



To	date,	some	personal	exposure	studies	have	supplied	participants	with	MSUs	that	measured	various	air	75	

pollutants	of	exposure	during	daily	routines	(e.g.,	[2,	31]).	However,	exposure	is	affected	by	many	factors,	76	

and	thus	the	variance	of	the	dose	response	function	is	typically	high	and	dominates	the	attributed	relative	77	

risks/hazard	ratios	results,	regardless	of	sensors’	accuracy	[16,	17].	Therefore,	one	common	practice	for	78	

estimating	 individual	 exposure	 is	 to	 use	 a	 coarse	 scale	 [5,	 32,	 25],	 rather	 than	 the	 sensors’	 actual	79	

measurement.	 Educational	 and	 citizen	 science	 applications	 typically	 aim	 at	 fostering	 informal	 and	80	

qualitative	awareness.	The	measuring	range	in	such	applications	is	typically	quantized	into	a	binary	scale,	81	

indicating	the	presence	or	absence	of	a	pollutant.	These	scales	and	measures,	although	quantized,	can	82	

still	be	used	 for	 relational	comparison	of	air-pollution	 levels	among	different	 locations	and	times.	This	83	

motivates	the	need	for	a	more	widely	composed	set	of	criteria	to	characterize	the	MSUs’	actual	(field)	84	

capabilities.	Having	such	criteria	allows	for	custom-made	assessment	of	sensor’s	performance	looking	at	85	

properties	that	are	important	according	to	the	task	and	application	in	hand.			86	

This	work	presents	a	comprehensive	Sensor	Evaluation	Toolkit	(SET)	for	evaluating	and	comparing	the	AQ-87	

MSUs’	performance	and	its	application	on	25	sensors	deployed	in	eight	cities	 in	Europe,	as	part	of	the	88	

CITI-SENSE	project	[25].	The	R	implementation	of	the	SET	is	available	on	the	first	author’s	website.	89	

2 Material	and	Methods	90	

MSU	 evaluation	 can	 be	 executed	 either	 in	 a	 laboratory,	with	 critical	 atmospheric	 ambient	 conditions	91	

measured	and	controlled,	or	in	an	open	uncontrolled	environment.	The	laboratory	provides	calibration	92	

against	 traceable	 reference	 standards.	 In	an	open,	uncontrolled	environment,	 the	MSUs	are	placed	 in	93	

AQM	 stations	 and	 their	 measurements	 are	 compared	 against	 those	 acquired	 by	 AQM	 (reference)	94	

equipment.	While	the	SET	requires	a	reference	device	(dubbed	REF)	to	evaluate	the	MSU	measurements,	95	

it	 does	 not	make	 any	 assertion	on	 the	nature	of	 this	 reference	 equipment.	 The	 evaluation	 involves	 a	96	

comparison	of	two	concentration	time-series:	one	acquired	by	the	MSU,	 !"#$% ,		and	one	obtained	by	97	

the	reference	device,	 !"'() .	Both	time-series	should	be	of	equal	length,	i.e.	consist	of	K	measurements,	98	

with	the	measurement	acquired	more	or	less	simultaneously.		99	

The	 SET	 consists	 of	 eight	 performance	measures,	 including	 the	 classic	measures	of	 RMSE	and	 various	100	

correlations	(described	in	Section	2.1).	Four	new	measures,	within	the	SET,	are	introduced:	the	presence	101	

measure	that	represents	the	sensor’s	availability	over	time	(described	in	Section	2.2);	the	source-analysis,	102	

which	depicts	how	accurately	a	sensor	can	identify	and	locate	a	source	(detailed	in	Section	2.3);	the	match	103	

(detailed	 in	 Section	 2.4)	 that	 evaluates	 the	 sensor’s	 accuracy	when	 the	measured	 concentrations	 are	104	

transformed	 into	 generalized	 coarse	 scales;	 and	 the	 Lower	 Frequencies	 Energy	 Content	 (LFE),	 which	105	



measures	the	MSUs’	ability	to	capture	the	temporal	variability	of	the	observed	pollutant	(Section	2.5).		All	106	

measures	are	then	combined	into	an	Integrated	Performance	Index	(IPI)	(Section	2.6).	 107	

 108	

2.1 Root	Mean	Squared	Error	and	Correlation	Coefficients		109	

The	Root	Mean	Squared	Error	(RMSE)	and	the	Pearson	correlation	measures	are	often	used	to	evaluate	110	

MSUs’	performance	[8,	11,	21,	28,	29].	However,	these	measures	apply	specific	assumptions	on	the	errors	111	

and	their	distributions.	RMSE	measures	the	total	bias	(deviation)	between	two	time	series,	and	is	often	112	

used	to	evaluate	MSU	errors	[21,	28,	11].	While	the	RMSE	is	an	excellent	general-purpose	error	metric	for	113	

numerical	deviations,	 it	severely	amplifies	and	disproportionally	accounts	 for	 large	errors.	Thus,	 if	 two	114	

signals	have	the	same	values	but	a	small	abrupt	large	deviation	the	inter-unit	RMSE	will	be	large.		115	

Correlation	coefficients	are	often	used	for	evaluating	the	similarity	between	two	time	series,	usually	in	116	

complement	to	the	RMSE	[21,	11,	28].	Correlation	coefficients	are	robust	to	abrupt,	large	deviations	and	117	

are	 bounded	 between	 [-1,	 1],	 a	 property	 which	 will	 be	 exploited	 in	 our	 aggregation	 process	 (see	118	

Section	2.6).	Typically,	the	correlation	of	the	tested	device	with	a	reference	is	reported	with	the	Pearson	119	

correlation	 coefficient	 (e.g.,	 [8,	 21,	 11,	 28,	 29]).	 However,	 the	 commonly	 used	 Pearson	 correlation	120	

coefficient,	ρ,	measures	how	well	AQM	measurements	can	be	represented	by	the	MSU	records	using	a	121	

linear	function.	This	measure	is	adequate	if	both	the	AQM	and	the	MSU	are	in	their	linear	sensitivity	range.	122	

Ambient	pollutant	levels	are	often	below	the	linear	range	of	the	MSUs	[26,	27,	30,	28].	Therefore,	the	SET	123	

includes	also	the	Kendall-τ	[33,	34]	and	the	Spearman	rank	correlation	coefficients,	S,	[35],	which	do	not	124	

assume	 normality	 of	 the	 underlying	 variables	 and	 perhaps	 more	 importantly,	 are	 more	 sensitive	 to	125	

monotonic	but	non-linear	relationships.	A	real-life	example	of	using	the	differently	defined	correlation	126	

coefficients	 is	 given	 in	 Section	 S1	of	 the	 supplementary	 information.	 The	example	presents	 seven	NO	127	

MSUs	(CitiSense	Leo	Model,	Ateknea	Solutions	Catalonia,	Spain),	which	are	evaluated	against	a	reference	128	

AQM	 for	 20	 days.	 While	 the	 Pearson	 and	 Kendall-τ	 coefficients	 are	 relatively	 low,	 and	 would	 have	129	

rendered	the	sensor	as	 inadequate,	the	Spearman	coefficient	shows	that	the	sensor	 is	suitable	for	NO	130	

measurements,	given	linearity	is	not	considered.	This	phenomenon	is	due	to	the	low	NO	ambient	levels	131	

out	of	the	linear	response	range	of	the	MSUs	[36].	Thus,	the	multiple	evaluation	criteria	allow	to	better	132	

characterize	MSUs’	suitability	to	different	applications.	133	

	134	

	135	



2.2 Presence	136	

Each	sensor’s	time	series	may	contain	missing	values.	This	may	result	from	the	sensor	malfunctioning	or	137	

from	communication	errors.	The	presence	measure	accounts	for	the	sensor’s	or	system’s	availability	of	a	138	

measurement	at	a	given	time,	and	reports	the	fraction	of	the	acquired	measurements	of	all	theoretically	139	

possible.	The	presence	of	an	MSUs	is	a	significant	factor	in	evaluating	any	outdoor	measuring	device.	For	140	

calculating,	for	example,	averages	during	a	given	time	interval,	a	minimum	data	availability	is	required	to	141	

ensure	 representativity.	 	 Limited	presence	always	brings	about	 the	question	of	 representativity	of	 the	142	

measurements	for	a	given	environment,	and	may	indicate	high	maintenance	costs.	With	that,	sensor’s	143	

presence	is	completely	omitted	from	the	RMSE	and	correlation	evaluation	criteria.	Standard	AQM	stations	144	

are	bounded	to	standards,	connected	to	the	power	grid	and	are	placed	in	dedicated	containers,	where	145	

only	the	inlets	are	exposed	to	outside	and	weather	conditions.	Thus,	measuring	equipment	presence	is	146	

typically	a	non-issue	for	AQMs.	When	it	comes	to	MSUs,	presence	is	often	a	major	hurdle.	This	is	why	this	147	

measure	has	a	larger	significance	when	evaluating	MSUs.		148	

	149	

2.3 Source	Analysis	150	

For	many	applications	such	as	source	apportionment	[37,	38]	or	dispersion	models,	especially	Lagrangian	151	

models	 [39,	 40],	 the	 source	 location	 is	 crucial.	 Bivariate	 polar	 plots,	 which	 represent	 how	 the	152	

concentration	of	a	pollutant	varies	with	the	wind	direction	and	speed	at	the	receptor,	have	proved	to	be	153	

a	useful	tool	for	identifying	and	understanding	pollution	sources	[37,	38,	39,	40,	21].	This	representation	154	

manifests	the	directional	dependence	of	different	sources,	particularly	when	more	than	one	monitoring	155	

site	is	available,	making	source-analysis	ideal	for	WDESN	applications.		156	

The	source	location	analysis	within	the	SET	aims	at	evaluating	how	accurate	the	MSU	is	in	identifying	and	157	

locating	sources.	i.e.,	it	assesses	the	ability	of	the	device	to	react	to	changes	in	observations	within	a	time	158	

interval	that	corresponds	to	wind	direction	change,	and	to	be	sensitive	enough	to	measure	associated	159	

changes	 in	 concentrations.	 This	 is	 achieved	 through	 the	 calculation	 of	 the	 two-dimensional	 Pearson	160	

correlation	between	polar	plots	obtained	from	the	reference	device	and	the	MSU,	treating	both	as	two-161	

dimensional	matrix	arrays	[41].	For	generating	the	polar	plots,	time-matched	measurements	of	the	wind	162	

and	the	pollutant	must	be	available.	This	information	is	typically	obtained	either	from	the	AQM	station	163	

(given	it	measures	these	meteorological	parameters)	or	by	an	externally	collocated	wind	vane.	Section	S2	164	

of	the	Supplementary	material	presents	an	example	of	a	set	of	two	PM2.5	MSUs	evaluated	against	an	AQM	165	

station.	While	all	other	performance	criteria	of	the	two	sensors	are	relatively	similar,	the	source	analysis	166	

score	 of	 the	 two	 sensors	 does	 show	 a	 difference.	 This	may	 be	 attributed	 to	 the	 sensor	 being	 placed	167	



incorrectly	so	it	has	an	obscure	observation.	Thus,	a	low	source	analysis	score	may	allow	us	to	find	the	195	

problem	and	rectify	it.		196	

	197	

2.4 Match	Score	198	

Integrated	AQ	measures,	such	as	the	Air	Quality	Index	(AQI)	[32],	are	often	used	to	convey	the	general	199	

notion	of	severity	of	air-quality	to	the	public,	ranking	observations	according	to	a	chosen	scheme.	Such	200	

measures	may	 also	 be	 used	when	 the	 research	 question	 does	 not	 require	 precise	measurements	 but	201	

rather	a	more	general	interpretation,	such	as	general	risk	estimation	[5,	32]	and	citizen	science	[24].	When	202	

applying	such	an	AQ	grading	scheme,	neither	the	RMSE	nor	the	coefficient	of	determination	represent	203	

well	the	sensor’s	performance,	as	they	penalize	small	pertubations	in	the	measurements.	Thus,	if	an	MSU	204	

deviates,	due	 to	 its	 inaccuracy,	 from	a	 reference	device	and	 if	 its	deviations	are	 randomly	distributed	205	

around	 the	 reference	 value,	 these	 two	 measures	 will	 report	 poor	 performance.	 The	 match	 score	206	

overcomes	this	limitation	and	its	calculation	is	as	follows:		207	

	208	
Algorithm	1	–	Match	Score	209	

As	can	be	seen,	the	match	score	is	the	proportion	of	agreement	among	strata	for	increasing	amount	of	210	

sub-partitions	 between	 the	 reference	 and	 the	MSU	measurements.	 If	 we	would	 like	 to	 compare	 the	211	

different	 MSUs,	 the	 number	 of	 maximum	 sub-partitions,	 D,	 should	 be	 predetermined	 and	 be	 kept	212	

constant	throughout	the	analyses.	Its	value	should	be	the	highest	number	that	still	has	at	least	one	set	of	213	

measurements	c+,-.	and	c+234	that	belong	to	the	same	bin.	In	our	analyses,	after	several	preliminary	214	

runs,	D	was	set	to	10.	215	

	216	

1. Set	COUNT	=	0	

2. Compute	the	dynamic	range	for	{MN#$%}	and	for{MN'()},	i.e.,	[min	{MN#$%},QRS{MN#$%}]		
and	[min({MN'()}) , QRS({MN'()})]	for	all	W ∈ Y.	

3. For	d	=	1	to	D	do:	

a. Divide	MSU’s	dynamic	range	into	d	equal	bins	and	label	them	1	through	d.	

Divide	REF’s	dynamic	range	into	d	equal	bins	and	label	them	1	through	d.	
b. For	each	pair	of	measurements	\c+,-., c+234	], t ∈ T:	

If		c+,-.	and	c+234	belong	to	the	bins	with	the	same	label	→	COUNT	=	COUNT	+	1;	

4. Compute:	hRWMℎ	jMklm = 	 no∙q ∙ !rstY	



2.5 Lower	Frequencies	Energy	(LFE)	217	

The	signal	Lower	Frequency	Energy,	dubbed	LFE,	is	a	characteristic	of	the	signal	rather	than	a	comparative	218	

measure	with	respect	to	a	reference	device.	Let	us	assume	that	p(t)	is	a	continuous	signal	that	represents	219	

the	true	ambient	level	of	a	specific	pollutant	in	a	specific	location.	Both	the	MSU	and	the	AQM	average	220	

p(t)	over	a	small	sliding	temporal-window,	h(t),	of	a	size	Δt,	obtaining	u(W),	and	sample	it	to	obtain	the	221	

aforementioned	 discrete	 time	 series	 !"#$% 	 and	 !"'() .	 Formally,	 the	 averaging	 is	 described	 by	 a	222	

convolution	integral:	223	

u(W) = u v ℎ W − v xv
y

zy
	 Equation	1	

	224	

Let	{	 be	 the	Fourier	 Transform	domain	 coefficients.	 	Applying	 the	Fourier	 Transform	on	p(t)	 and	h(t)	225	

(obtaining	| { 	and	} { )	respectively	and	the	convolution	theorem	[47],	the	Fourier	representation	of	226	

u(W),	| { ,	is	given	by:	227	

|({) = |({) ∙ }({)	 Equation	2	

The	 Fourier	 Transform’s	 amplitude	 of	 h(t)	 is	 presented	 in	 Figure	 1	 for	 four	 different	 window	 sizes:	228	

averaging	over	5,	15,	30	and	60	minutes.	It	can	be	seen	that	at	zero	} { 	receives	a	value	of	one	and	its	229	

value	 decreases	 as	 ω	 (in	 absolute	 value)	 increases.	 Considering	 Equation	 2,	 the	 sampling	 process	230	

suppresses	higher	frequencies,	i.e,	it	applies	low-pass	filter	on	the	observed	signal.	Thus,	larger	window-231	

sizes	in	the	signal	domain,	i.e.	larger	Δt,	represent	narrower	filters	in	the	frequency	domain.			232	

	233	
Figure	1	-	Fourier	Transform	of	h(t)	averaging	over	5	min	period,	i.e.	Δt	=	5	(solid	blue),	Δt	=	15	min	(dashed	red);	Δt	=	30	min	(dot-234	
dash	green);	and	Δt	=	60	min	(dotted	black).		235	

If	 the	 observed	 pollutant	 signal	 changes	 rapidly,	 its	 higher-frequency	 coefficients	 will	 assume	 higher	236	

values.	 Considering	 Equation	 2,	 these	 values	 would	 be	 diminished	 in	 the	 acquired	 signal	 if	 they	 are	237	



multiplied	by	a	narrow	} { ,	i.e.	averaged	over	a	large	temporal-window.	A	real-life	example	is	given	in	238	

Section	S3	in	the	supplementary	material.	239	

The	signal’s	energy	is	a	characteristic	used	in	signal	processing	and	is	given	by:	240	

~ = u W �xW
y

zy
	 Equation	3	

Following	the	Parseval's	theorem	[48],	the	energy	of	a	signal	is	equal	to	the	energy	of	its	Fourier	transform:	241	

~ = | { �x{
y

zy
	 Equation	4	

Hence,	the	function	 | { �	represents	the	energy	distribution	in	the	frequency	domain.	The	smaller	the	242	

energy	 portion	 in	 the	 higher	 frequencies,	 the	 better	 the	 sensor	 can	 capture	 the	 signal’s	 temporal	243	

variability.	Thus,	the	portion	of	the	signal’s	energy	in	the	lower	frequencies,	 i.e.	the	Lower	Frequencies	244	

Energy	(LFE),	can	be	used	for	evaluating	the	sensor’s	capability	to	capture	the	temporal	variability	of	the	245	

pollutant.		After	discrete	sampling	that	accounts	for	the	K	samples	in	the	pollution	time	series	Equation	4	246	

becomes:	247	

~ = | { �Ä
ÅÇn ,	 Equation	5	

and	the	LFE	measure	is	computed	as:	248	

ÉÑ~ = 1 − { ∙ | { �Ä
ÅÇn

~ ∙ Ö Ö − 1
2

	 Equation	6	

where	E	is	given	by	Equation	5.	249	

The	maximum	value	that	LFE	can	obtain	is	1,	which	represents	the	case	where	all	the	information	is	within	250	

the	first	frequency	coefficient,	i.e.,	all	frequency	coefficients,	but	the	first	one,	are	zero.		251	

MSUs	are	typically	self-contained	units	with	their	own	power	supply	and	transmission	modules.	Typically,	252	

data	 acquisition	 and	 transmission	 times	 are	 set	 such	 that	 operational	 energy	 consumption	 (for	 data	253	

acquisition	and	transmission)	is	minimized.	Consequentially,	their	sampling	interval,	Δt,	may	be	long,	i.e.,	254	

low	sampling	rate,	which	corresponds	to	narrow	low-pass	filtering.	Therefore,	while	applicable	to	AQM	255	

and	standard	laboratory	equipment,	a	measure	of	spectral	distribution	is	especially	important	to	MSUs	256	

working	under	power	consumption	constraints.		257	

2.6 Integrated	Performance	Index	(IPI)	258	

The	 SET	 consists	 of	 eight	 different	 performance	 measures	 accounting	 for	 different	 aspects	 of	 signal	259	

acquisition.	 Different	 combinations	 of	 these	 measures	 can	 be	 used	 in	 order	 to	 evaluate	 the	 sensor	260	

performance,	 depends	 on	 the	 specific	 application.	 In	 order	 to	 integrate	 the	 various	 measures,	 it	 is	261	



important	that	they	all	share	the	same	scale.	This	is	inherent	for	the	SET	as	all	measures	span	between	[0,	262	

1].		263	

Integration	of	 several	measures	 into	an	overall	evaluation	measure	can	be	done	either	by	addition	or	264	

multiplication	of	all	measures	together.	The	former	facilitates	an	aggregation	scheme	that	can	account	for	265	

different	weights	for	the	different	measures	by	 introducing	weight	coefficients,	á.	Given	á,	and	Q	 the	266	

measures	vector	for	a	given	sensor	(RMSE,	correlations,	presence,	source	analysis,	match	and	LFE)	and	267	

the	time	series	 !"#$% 	and	 !"'() 	acquired	by	the	sensor	and	a	reference	device	respectively,	the	IPI	is	268	

given	by:	269	

	270	

à|à#$% = áâQâ !"#$% , !"'()
â

	 Equation	7	

2.7 SET	Implementation	and	Application	271	

For	demonstrating	the	method	and	 its	capabilities,	 the	SET	was	 implemented	 in	R.	For	evaluation,	 the	272	

MSUs	are	compared	against	a	reference	device.	This	device	can	be	either	AQM	or	laboratory	calibrated	273	

equipment.	Both	the	MSU	and	the	reference	device	must	measure	the	same	physical	phenomenon	(e.g.,	274	

ambient	levels	of	a	specific	pollutant,	temperature	or	relative	humidity).	The	same	physical	phenomenon	275	

can	be	measured	when	 the	 sensors	are	collocated	 [21,	11,	28]	or	when	 the	observed	phenomenon	 is	276	

uniform	 in	all	measuring	points	 [21,	49].	When	no	AQM	nor	 reference	devices	are	available	 the	same	277	

analysis	can	be	done	with	respect	to	the	average	signal	of	the	entire	sensory	network	in	a	given	region	278	

[21].	Here	we	demonstrate	the	SET	for	collocated	sensors	with	AQM	stations.		279	

For	demonstrating	the	capabilities	and	richness	of	the	suggested	evaluation	toolkit,	twenty-five	MSU	pods	280	

(Geotech	AQMesh,	UK	[50])	were	placed	near	ten	different	AQM	stations	in	eight	cities	in	Europe,	as	part	281	

of	 the	 European	 Union	 7th	 framework	 program	 (FP7)	 CITI-SENSE	 project	 [25].	 The	 full	 deployment,	282	

acquiring	data	for	about	three	months	at	each	location,	 is	detailed	in	Section	S4	of	the	supplementary	283	

material.	Each	AQMesh	unit	was	equipped	with	five	environmental	sensors:	NO,	NO2,	O3,	atmospheric	284	

pressure	 (AP),	 and	 relative	 humidity	 (RH).	 Some	 of	 the	 AQMEsh	 pods	 included	 also	 OPC	 PM	 sensor.	285	

Additionally,	 the	 AQMesh	 measured	 the	 unit’s	 (internal)	 temperature	 (Temp).	 The	 specific	 AQM	286	

parameters	(location,	height	above	ground	level	(AGL)	and	above	sea	level	(ASL))	are	detailed	in	Section	287	

S4	 of	 the	 supplementary	 information.	 The	 average	 temperature	 and	 the	 averages	 of	 all	 measured	288	

pollutants	are	provided	in	Table	1	alongside	their	SET	performance.	The	latter	is	color	coded	to	represent	289	

low	to	high	SET	values	in	a	red-to-green	color	scale.		290	



In	order	to	compare	the	AQM	and	the	MSU	measurements,	the	time	resolution	of	both	should	be	the	291	

same.	If	that	is	not	the	case,	the	finer	time	resolution	time	series	has	been	aggregated	so	it	fits	the	coarser	292	

resolution.	The	MSU	time-series	were	acquired	at	a	15-min	resolution,	while	the	AQM	time-series	had	a	293	

30	 (or	60)	 -min	 resolution.	Hence,	MSU	measurements	were	averaged	 (without	overlap)	 to	produce	a	294	

time-series	that	corresponds	to	the	AQM	temporal	resolution.	295	

3 Results	and	Discussion	296	

3.1 Overview	297	

Table	1	depicts	the	average	values	of	the	measured	environmental	parameters,	showing	that	the	MSUs’	298	

meteorological	measurements	are	more	accurate	than	those	of	pollutant	concentrations.	The	AP,	(pod	299	

internal)	Temp	and	RH	sensors	have,	on	average,	an	Integrated	Performance	Index	(IPI)	of	0.975,	0.875	300	

and	0.851,	respectively.	Among	the	pollutants,	NO	sensors	had	the	highest	IPI,	with	an	average	of	0.705.	301	

O3,	CO	and	NO2	obtained	IPIs	of	0.664,	0.609	and	0.578,	respectively.		302	

The	utilization	of	the	SET	for	evaluating	MSU	performance	is	well	demonstrated	in	Table	1.	Sensor	143,	303	

which	presents	 lower	 IPI	 values	 for	 all	measured	environmental	 parameters,	may	have	experienced	a	304	

systematic	error.	This	may	 result	 from	 incorrect	placement	of	 the	sensor	or	malfunction	of	hardware.	305	

Sensor	GAP	4	presents	low	IPI	for	RH.	The	average	RH	value	that	this	sensor	reported	was	106.4%.	This	306	

clearly	suggests	that	the	sensor	is	faulty	or	overly-offset	for	this	parameter.	Sensor	118	presented	low	IPI	307	

for	CO	and	NO	while	their	average	concentrations	were	much	higher	than	those	measured	by	the	AQM	308	

and	other	collocated	MSUs.	All	these	measurements	were	removed	from	the	following	analysis.		309	

The	richness	offered	by	the	IPI	is	presented	in	Table	2,	through	the	breakdown	of	the	IPI	measure	into	its	310	

components	 (Mean	 (M),	 Match	 score,	 RMSE,	 Pearson	 ρ,	 Kendall	 τ	 and	 Spearman	 (S)	 correlation	311	

coefficients;	Source-analysis	score,	Presence	(Pres.)	and	Lower	Frequencies	Energy	(LFE)	content)	for	two	312	

sensors	–	#118	NO	and	#130	Temp	sensors.	For	both	sensors	the	LFE	measure	is	high,	suggesting	that	the	313	

changes	in	the	observed	signal	are	slower	than	the	sampling	rate.	The	#118	NO	sensor	presents	extremely-314	

low	correlation	values,	while	its	match	score	is	high.	Thus,	while	this	specific	sensor	would	grade	poorly	315	

using	the	traditional	evaluation	tools	(correlation	and	RMSE),	it	would	be	more	than	sufficient	for	many	316	

of	the	aforementioned	applications,	such	as	citizen	science	and	exposure	estimations.	The	Temp	sensor	317	

of	 pod	 #130	 also	 presents	 interesting	 behavior.	 Its	 Match	 as	 well	 as	 its	 correlation	 coefficients	 are	318	

reasonable,	but	its	RMSE	score	is	very	low.	This	suggests	that	while	the	sensor	does	not	represent	the	true	319	

ambient	 levels,	 i.e.,	 it	 has	 some	 bias,	 it	 does	 represent	 the	 signal’s	 behavior	 (i.e.,	 good	 correlations).	320	

Indeed,	 this	 was	 the	 case,	 as	 explained	 in	 section	 3.3.	 Therefore	 we	 conclude	 that	 the	 different	321	



components	 of	 the	 IPI	 measure	 do	 give	 a	 better	 understanding	 of	 the	 sensor	 performance	 and	 its	322	

suitability	for	different	applications.		323	

3.2 Temperature	Impact	on	the	Measurements	324	

Ambient	temperature	has	been	pointed-out	as	a	major	factor	affecting	sensor	performance	[21,	11,	28,	325	

29].	Here	we	examine	 this	 using	 the	 IPI.	 	 Figure	2	 shows	 the	 average	 IPI	 of	 all	 25	MSUs	 for	 all	 seven	326	

measured	parameters,	as	a	function	of	the	average	temperature	that	was	measured	by	the	AQM	station	327	

throughout	the	campaign.	The	temperature	effect	 is	evaluated	over	175	measurements.	Each	of	these	328	

175	measurements	consists	of	more	than	three	months’	worth	of	data.	Thus,	the	temperature	evaluation	329	

is	 based	 on	 a	 large	 dataset.	 No	 apparent	 trend	 is	 observed,	 suggesting	 that	 the	 MSUs	 manage	 to	330	

compensate	for	any	temperature	impact	on	the	measurements.	Previously	reported	temperature	effects	331	

on	AQ	measurements	may	be	attributed	to	higher	pollution	levels	in	winter	time	(due	to	higher	pollution	332	

source	strength	and	pollution	accumulation	during	periods	with	temperature	inversions	[51,	52]).	This	is	333	

because	while	temperature	was	not	found	to	affect	sensors’	performance,	the	measured	ambient	levels,	334	

as	is	shown	later,	do	have	an	effect,	where	the	sensors	performs	better	in	higher	pollution	levels.	Next,	335	

we	analyze	the	IPI	specifically	for	each	measured	parameter.	336	

	337	



Table	1	–	Environm
entally	sensed	indicators	-	m

ean	values	(M
)	and	Integrated	Perform

ance	Index	(IPI)	for	Air	Pressure	(AP);	Tem
perature	(Tem

p);	Relative	Hum
idity	(RH);	nitrogen	

338	
oxide	(N

O
);	nitrogen	dioxide	(N

O
2 );	ozone	(O

3 );	and	carbon	m
onoxide	(CO

)	
339	

Unit	
Location	

AQ
M
		

Tem
p	

[°C]	

AP	
M
SU	Tem

p	
RH	

NO
	

NO
2 	

O
3 	

CO
	

M
	

[m
Bar]	

IPI	
M
	

[°C]	
IPI	

M
	

[%
]	

IPI	
M
	

[ppb]	
IPI	

M
ean	

[ppb]	
IPI	

M
	

[pbb]	
IPI	

M
	

[ppb]	
IPI	

GAP1	
Gal·la	
Placídia		
Barcelona		
Spain	
	

23.62	
1007	

0.949	
24.5	

0.887	
61.6	

0.863	
6.2	

0.656	
13.6	

0.464	
133.8	

0.687	
162.9	

0.587	
GAP2	

23.62	
1008	

0.952	
24.5	

0.892	
62.0	

0.864	
0.1	

0.412	
0.8	

0.455	
178.6	

0.669	
177.0	

0.572	
GAP3	

23.62	
1008	

0.950	
24.5	

0.894	
60.8	

0.853	
1.0	

0.557	
9.4	

0.497	
65.4	

0.699	
137.9	

0.584	
GAP4	

23.62	
1008	

0.944	
24.3	

0.897	
106.4	

0.382	
16.2	

0.667	
9.6	

0.503	
144.8	

0.675	
159.0	

0.569	
GAP5	

23.62	
1009	

0.957	
24.5	

0.901	
68.7	

0.543	
1.9	

0.638	
1.8	

0.481	
153.8	

0.674	
148.3	

0.576	
116	

St	Leonards,	
Edinburgh,	
Scotland	
	

		
		

		
		

		
		

		
7.8	

0.513	
11.7	

0.409	
51.2	

0.649	
58.8	

0.524	
118	

--	 13	
	-- 13	

-- 13	
	-- 13	

	-- 13	
	-- 13	

-- 13	
138.0	

0.501	
8.5	

0.394	
66.9	

0.604	
433.3	

0.451	
120	

		
		

		
		

		
		

		
9.7	

0.514	
9.9	

0.413	
42.5	

0.627	
54.1	

0.482	
135	

Neve	
Shaannan,	
Haifa,	Israel	

12.95	
	-- 13	

	-- 13	
14.7	

0.717	
57.5	

0.860	
3.2	

0.513	
2.7	

0.621	
71.2	

0.663	
103.2	

0.562	

136	
12.95	

	-- 13	
	-- 13	

14.4	
0.689	

57.0	
0.842	

3.3	
0.508	

5.0	
0.640	

44.8	
0.697	

94.4	
0.552	

130	
Igud,		
Haifa,	Israel	

12.97	
	-- 13	

	-- 13	
13.6	

0.712	
57.3	

0.829	
7.2	

0.620	
	-- 13	

	-- 13	
52.3	

0.641	
	-- 13	

	-- 13	
134	

13.65	
	-- 13	

	-- 13	
14.9	

0.705	
58.1	

0.802	
5.9	

0.633	
	-- 13	

	-- 13	
41.9	

0.633	
	-- 13	

	-- 13	
125	

Ljubljana,	
Slovenia	

12.46	
979	

0.989	
13.7	

0.935	
64.9	

0.947	
	-- 13	

	-- 13	
	21	

0.55	
78.4	

0.711	
166.4	

0.769	
128	

12.46	
978	

0.940	
13.8	

0.926	
64.8	

0.945	
	-- 13	

	-- 13	
3800	

0.46	
105.8	

0.687	
175.0	

0.681	
131	

12.46	
980	

0.934	
14.1	

0.908	
63.6	

0.937	
	-- 13	

	-- 13	
	6	

0.54	
96.9	

0.719	
179.8	

0.663	
124	

Kirkeveien,		
O
slo,	

Norw
ay	

	

6.80	
1009	

0.988	
7.9	

0.931	
84.2	

0.889	
27.2	

0.921	
15.5	

0.685	
	-- 13	

	-- 13	
101.2	

0.710	
144	

6.80	
1007	

0.990	
7.9	

0.945	
83.1	

0.895	
30.5	

0.869	
16.9	

0.637	
	-- 13	

	-- 13	
95.6	

0.697	
145	

6.80	
1008	

0.989	
7.8	

0.937	
84.5	

0.893	
23.0	

0.860	
16.5	

0.712	
	-- 13	

	-- 13	
98.8	

0.704	
146	

6.80	
1008	

0.988	
7.9	

0.937	
84.2	

0.896	
37.3	

0.899	
13.7	

0.697	
	-- 13	

	-- 13	
102.1	

0.682	
147	

6.80	
1008	

0.989	
7.9	

0.945	
83.3	

0.892	
25.9	

0.876	
14.4	

0.565	
-- 13		

	-- 13	
94.5	

0.592	
124	

7.26	
1006	

0.976	
9.1	

0.923	
65.9	

0.923	
16.8	

0.859	
9.2	

0.583	
	-- 13	

	-- 13	
	-- 13	

	-- 13	
144	

7.26	
1004	

0.993	
8.8	

0.933	
66.9	

0.931	
16.8	

0.871	
12.2	

0.651	
	-- 13	

	-- 13	
	-- 13	

	-- 13	

																																																													
13	This	specific	environm

ental	variable	w
as	not	m

easured	by	the	AQ
M
	at	the	colocation	tim

e	period.	



145	
7.26	

1004	
0.992	

8.7	
0.937	

67.0	
0.930	

11.9	
0.795	

16.5	
0.692	

	-- 13	
-- 13		

	-- 13	
	-- 13	

146	
7.26	

1005	
0.978	

9.1	
0.924	

66.2	
0.923	

9.8	
0.732	

12.6	
0.647	

	-- 13	
	-- 13	

	-- 13	
-- 13		

147	
7.26	

1005	
0.991	

8.8	
0.945	

66.4	
0.934	

16.4	
0.856	

9.3	
0.659	

	-- 13	
	-- 13	

	-- 13	
	-- 13	

124	

Hjortnes,		
O
slo,	

Norw
ay	

17.80	
1011	

0.983	
20.4	

0.911	
63.0	

0.907	
15.4	

0.842	
17.7	

0.654	
	-- 13	

	-- 13	
	-- 13	

-- 13	
144	

17.80	
1009	

0.991	
20.5	

0.905	
62.8	

0.905	
15.5	

0.843	
22.2	

0.644	
	-- 13	

	-- 13	
	-- 13	

	-- 13	
145	

17.80	
1010	

0.989	
20.4	

0.918	
63.7	

0.911	
5.9	

0.760	
26.9	

0.700	
	-- 13	

	-- 13	
	-- 13	

	-- 13	
146	

17.80	
1010	

0.986	
20.5	

0.917	
63.1	

0.910	
22.5	

0.803	
18.7	

0.635	
	-- 13	

	-- 13	
	-- 13	

-- 13		
147	

17.80	
1010	

0.988	
20.6	

0.920	
61.9	

0.912	
12.7	

0.828	
15.6	

0.634	
	-- 13	

	-- 13	
	-- 13	

-- 13		
611	

O
strava,		

Czech	Rep.	
1.06	

992	
0.975	

4.6	
0.901	

80.5	
0.911	

	-- 13	
	-- 13	

	-- 13	
	-- 13	

30.5	
0.736	

	-- 13	
	-- 13	

612	
1.06	

991	
0.971	

4.6	
0.896	

80.8	
0.895	

	-- 13	
	-- 13	

	-- 13	
	-- 13	

26.3	
0.773	

	-- 13	
	-- 13	

221	
Belgrade,	
Serbia	

5.78	
1008	

0.685	
5.7	

0.885	
82.8	

0.810	
69.7	

0.794	
27.5	

0.591	
35.8	

0.585	
519.8	

0.691	
222	

5.78	
1008	

0.685	
5.7	

0.874	
81.4	

0.815	
81.8	

0.793	
14.3	

0.554	
60.9	

0.537	
537.6	

0.692	
143	

Vienna	
5.08	

		
		

15.1	
0.473	

62.4	
0.402	

13.2	
0.387	

5.5	
0.348	

126.0	
0.402	

	-- 13	
	-- 13	

A
verage IPI 

 
0.953 

 
0.876 

 
0.848 

 
0.711 
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Table	 2	 –	 IPI	 breakdown	 –	Mean	 ambient	 level	 (M);	Match	 score;	 Root	Mean	 Squared	 Error	 (RMSE);	 Pearson	 ρ	 correlation	341	
coefficient;	 Kendall	 τ	 correlation	 coefficient;	 Spearman	 (S)	 correlation	 coefficient;	 Source	 analysis;	 Presence	 (Pres.);	 Low	342	
Frequencies	Energy	(LFE)	content	and	the	integrated	Air	Quality	Index	(IPI)		343	

Sensor	 M	 Match	 RMSE	 ρ	 τ	 S	 Source	 Pres.	 LFE	 IPI	

118	(NO)	 129.9	 0.920	 0.24	 0.063	 0.068	 0.090	 --14	 0.732	 0.976	 0.519	

130	(T)	 13.63	 0.462	 0.003	 0.679	 0.538	 0.712	 --14	 1	 0.997	 0.712	

	344	

	345	
Figure	2	-	IPI	of	the	various	measured	parameters	as	a	function	of	the	ambient	Temperature	346	

3.3 Meteorological	Sensors	347	

Figure	3	presents	the	 IPI	 for	the	Temp,	AP	and	RH	sensors	for	all	MSUs,	as	a	function	of	their	average	348	

values.	The	first	notion	that	arises	from	this	presentation	is	that,	in	general,	the	sensors’	IPI	is	indifferent	349	

to	 changes	 in	 the	 observed	meteorological	 parameter.	 It	 is	worthwhile	mentioning	 that	 the	 batch	 of	350	

temperature	sensors	with	lower	IPI	values	(marked	in	circle	in	Figure	3a)	were	all	obtained	in	the	same	351	

station	 in	 Haifa,	 Israel.	 Further	 queries	 revealed	 that	 temperature	 records	 in	 this	 specific	 AQM	were	352	

measured	inside	the	monitoring	station	rather	than	outside,	where	the	MSUs	were	located.	This	example	353	

demonstrates	once	again	the	use	of	the	SET	to	point	out	sensing	errors.		354	

																																																													
14	The	Source	score	could	not	be	computed	as	no	wind	data	was	collected	at	this	location.	



	 	 	
(a) Temp.	IPI	 (b) AP	IPI	 (c) RH	IPI	

Figure	3	–	IPI	of	a	sensor	as	a	function	of	its	specific	measured	Meteorological	Parameters	–	Temperature	IPI	(a),	Air	Pressure	(AP)	355	
IPI	(b),	and	Relative	Humidity	(RH)	IPI	(c)	356	

3.4 Gaseous	Pollutants	Sensors	357	

Figure	4	depicts	pollutant	specific	sensor’s	IPI	as	a	function	of	the	average	reading.	Thus,	the	IPI	of	each	358	

pollutant’s	sensor,	computed	over	the	entire	campaign,	is	plotted	against	the	same	pollutant’s	campaign	359	

average	reading.	It	is	evident	from	Figure	4	that	the	ambient	level	of	the	observed	pollutant	has	a	direct	360	

impact	on	the	sensing	quality.	The	lower	the	ambient	pollutant	level,	the	lower	the	IPI	and	the	higher	its	361	

variance	 for	 similar	 pollutant’s	 ambient	 levels	 (i.e.,	 the	 sensors	 presents	 lower	 reliability	 for	 lower	362	

pollutants	ambient	levels).	Similar	behavior	was	observed	by	Lerner	et.	al	[29]	and	Moltchanov	et.	al	[21].	363	

Hence,	the	IPI	suggests	that	the	MSU	sensors	are	more	suitable	for	locations	where	the	pollutant	is	known	364	

to	be	high.	Means	 to	extract	 the	 threshold	 are	discussed	next.	 	As	different	pollutants	have	different	365	

ambient	levels,	it	is	important	to	note	that	the	x-axes	of	all	following	figures	present	different	scales.		366	

	 	
	 	



	 	
Figure	4	-IPI	as	a	function	of	Pollutants’	Recorded	campaign	average	levels	for	each	sensor	on	each	node	367	

The	aforementioned	IPI	behavior	as	a	function	of	the	pollutant’s	ambient	level	is	better	observed	when	368	

the	IPI	is	computed	based	on	a	daily	time	series	rather	than	using	the	entire	campaign’s	time	series.	For	369	

example,	Figure	5,	depicts	the	daily	IPI	for	NO2	(a)	and	NO	(b)	from	measurements	obtained	in	Kirkeveien,	370	

Oslo,	by	sensors	#124,	#144,	#145,	#146	and	#147	(see	Section	S4).	One	should	determine	the	minimum	371	

ambient	levels	a	sensor	can	measure	where	the	IPI	measure	is	high	and	the	standard	deviation	is	low	(how	372	

high	and	how	low	is	application	dependent).	Figures	(c)	and	(d)	depict	the	standard	deviation	of	the	IPI,	373	

computed	 for	 the	associated	 IPIs	of	each	decile	of	 the	pollution	 levels.	 It	 is	evident	 that	 the	 standard	374	

deviation	decreases	as	the	 IPI	 increases.	Using	the	notions	above,	a	sensible	threshold	for	the	sensors	375	

described	for	measuring	NO2	and	NO	can	be	ambient	levels	that	are	higher	than	30	ppb.	376	

	 		
(a)	 (b)	

	 	



(c)	 (d)	

Figure	5	-	IPI	as	a	function	of	NO2	(a)	and	NO	(b)	Recorded	Levels	at	Kirkeveien,	Oslo	(daily	score).	The	standard	deviation	of	the	377	
IPI	computed	for	each	pollution	level	decile	are	presented	in	Figures	(c)	and	(d)		for	NO2	and	NO	respectively	378	

Figure	6	demonstrates	the	utilization	of	the	IPI	for	comparison	between	sensors	and	between	different	379	

working	conditions;	The	figure	depicts	the	histograms	of	the	NO	and	NO2	levels	at	Kirkeveien,	Oslo,	which	380	

are	presented	in	Figure	5	(as	time	series).	The	notion	above,	of	the	effect	of	ambient	levels	on	the	sensors’	381	

performance,	 is	evident	 in	Figure	6,	where	a	bimodal	distribution	of	 the	 IPI	 is	well	observed.	The	 two	382	

models	correspond	to	IPI	scores	above	and	below	30	ppb.	Having	the	bimodal	distributions’	parameters	383	

inferred,	one	can	study	their	relations.	Formally,	this	can	be	done	by	the	Kolmogorov-Smirnoff	test	for	384	

discrete	variables	[53,	54]	comparing	the	best	fitting	distribution	with	the	empirical	distribution	and	test	385	

for	significance.	386	

	 	
(a) NO	 (b) NO2	

Figure	6	–	NO	(a)	and	NO2	(b)	IPI	distribution	functions	measured	at	Kirkeveien,	Oslo	(daily	score)	387	

3.5 Particulate	Matter	Sensors	388	

The	SET	criteria	was	applied	to	four	different	PM	sensors,	all	collocated	at	the	Igud	AQM	station	(Haifa,	389	

Israel	–	see		Table	1).	The	four	sensors,	two	DC1700	Dylos	(US)	and	two	optical	counters	integrated	on	the	390	

GeoTech	MSUs,	were	place	next	to	the	AQM’s	inlet	between	December	17th	and	24th,	2015.	The	data	was	391	

recorded	 in	 5	 minutes’	 intervals.	 The	 four	 sensors	 measurements	 are	 displayed	 against	 AQM	 PM	392	

measurements	(all	measurements	are	in	 !"# $% ).		393	

	394	



	395	
Figure	7	–	PM	MSU	measurements	obtained	between	Dec.	17th	and	24th,	2015	plotted	against	collocated	AQM	station.	396	
	397	

Table	 3	 shows	 the	 IPI	 breakdown	 for	 the	 PM	 sensors.	 The	 two	 types	 of	 sensors	 present	 different	398	

characteristics,	 while	 the	 GeoTech	 sensors	 present	 better	 RMSE,	 the	 Dylos	 ones	 have	 better	 match,	399	

correlations	and	eBalance.	Thus,	 the	SET	 is	also	capable	to	evaluate	PM	sensors	and	define	better	the	400	

suitability	of	a	sensor	to	a	specific	application.		401	

	402	
Table	3	–	IPI	breakdown	of	PM	sensors	403	

 Mean	 Match	 RMSE	 Pearson	 Kendall	 Spearman	 Presence	 eBalance	 IPI	
Geo703	 23.766	 0.101	 0.038	 0.147	 0.309	 0.453	 1.000	 0.982	 0.565	
Geo706	 26.926	 0.119	 0.023	 0.259	 0.284	 0.421	 1.000	 0.993	 0.579	
Dylos08	 139.894	 0.311	 0.134	 0.560	 0.468	 0.639	 1.000	 0.997	 0.693	
Dylos09	 152.258	 0.312	 0.147	 0.570	 0.474	 0.647	 1.000	 0.997	 0.695	
	404	

	405	

4 Conclusions	406	

This	paper	presents	 a	 Sensor	 Evaluation	Toolbox	 (SET)	 for	 evaluating	AQ	MSUs	by	a	 range	of	 criteria.		407	

The	 rich	 evaluation	 provided	 by	 the	 suggested	 scheme	 allows	 for	 better	 assessment	 of	 sensors’	408	

performance	 in	 varied	 applications	 and	 environments.	 The	 SET	 consists	 of	 eight	 different	 assessment	409	

criteria:	Root	Mean	Squared	Error	 (RMSE),	 Pearson,	Kandel	 and	 Spearman	 correlations,	 and	 four	new	410	

performance	 measures	 for	 evaluating	 sensors’	 capability	 to:	 locate	 pollution	 sources;	 represent	 the	411	

pollution	level	on	a	coarse	scale;	capture	the	high	temporal	variability	of	the	observed	pollutant	and	their	412	

reliability.		413	



Application	of	the	SET	on	measurements	acquired	by	gaseous	and	PM	MSUs	deployed	in	eight	cities	across	414	

Europe	showed	that	each	of	the	eight	measures	provides	an	important	and	unique	information	on	the	415	

sensor’s	performance	assessing	a	rich	spectrum	of	MSU	capabilities.	The	result	also	demonstrate	how	the	416	

scheme	can	pinpoint	 systematic	as	well	 as	 sensor’s	 specific	 faults.	 Further,	we	demonstrated	 that	 the	417	

Integrated	Performance	Index	(IPI)	can	support	a	methodology	for	determining	the	sensors’	performance,	418	

hence	facilitating	a	true	cross	platform	evaluation.	The	SET	was	implemented	in	R	[55]	and	is	available	on	419	

the	first	author’s	website15.	420	
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