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We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and 
determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit 
solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical 
quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the 
usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.
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1. Introduction

The Ginzburg–Landau model is a relativistic U (1)-gauge theory 
with a φ4 potential for the Higgs field, which is relevant in the 
theory of superconductors near the critical coupling. This model 
admits topological solitons called vortices stabilised by the topo-
logical charge. The existence and analyticity properties of Abelian 
vortices on the plane were largely studied in particular in [6,22]. 
Generalised vortices were proposed by Lohe [8], whose model ad-
mits other types of potentials at the expense of minimal coupling 
between the Higgs and gauge fields. In fact, Lohe’s model modify 
the kinetic term of the Higgs field as well as the potential in such 
a way that the Bogomolny argument still holds. The existence of 
generalised vortices under an analytical point of view was estab-
lished in [9].

Integrability of the Abelian-Higgs model is well known on a hy-
perbolic background where the general solution can be explicitly 
described in terms of holomorphic maps [24,21,13,10]. Moreover, 
Painlevé analysis shows these are the only cases in which vortices 
are integrable in the Painlevé sense [20]. However two more iso-
lated integrable cases of Abelian vortices were found by allowing 
the background metric to depend on the Higgs field, allowing the 
Bogomolny equations to be written as sinh-Gordon and Tzitzeica 
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equations [4], albeit they do not arise from a variational principle 
approach from the Ginzburg–Landau model.

In this paper we present another modified version of the 
Abelian-Higgs model by coupling the Yang–Mills term of the La-
grangian with the Higgs field through a continuous function de-
noted by G(|φ|). Under mild conditions on G and upon a suitable 
modification of the potential energy, the model admits vortex-
like topological solitons from the Bogomolny argument. A choice 
of coupling function of the form G(|φ|) = |φ|q+1, where q ∈ R, 
will give rise to a model that includes the usual Abelian-Higgs 
vortices as a particular case (q = −1), but admits further Painlevé-
integrable cases, including those described in [4], providing a vari-
ational approach to them. We determine all the possible values of 
q and all possible background metrics yielding integrable models 
using the Painlevé test.

In section 2 we present the modified Ginzburg–Landau La-
grangian and the corresponding Bogomolny equations, which can 
actually be reduced to a single PDE that will be referred to as the 
modified Taubes equations. On surfaces of revolution, this equation 
admits a symmetry reduction to an ODE by rotational symmetry 
around the origin. On a surface of revolution, if the PDE passes 
the Painlevé test then so does the reduced ODE, but nothing guar-
antees that the converse is true. Thus we perform a separated 
analysis at the reduced ODE in section 3 and at the PDE in sec-
tion 4. It turns out that the analysis of the ODE does not reveal 
more integrable cases than that of the PDE.

Within the class of models considered, there can only be in-
tegrable cases on a hyperbolic background with Gauss curvature 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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−1/2 and on a flat surface. On a hyperbolic surface, the only 
integrable case corresponds to q = −1, which is the usual Abelian-
Higgs model. The converse was already known [20]. On a flat 
background, there are three integrable models, corresponding to 
q = 1/3, q = 0 and q = −1/3. The first two values are equivalent to 
the isolated integrable vortices of [4] while q = −1/3 gives rise to 
a new solution and completes the list of integrable models under 
the class we consider. The Bogomolny equation for this case can be 
written as the Tzitzeica equation. In order to write explicit soliton 
solutions with finite energy, some boundary conditions apply. It is 
not obvious how to apply these boundary conditions to solutions 
of the Tzitzeica equation, but if we restrict to rotationally symmet-
ric solutions and reduce the Tzitzeica PDE to a Painlevé III ODE 
whose solutions are well known in the asymptotics [7], we can 
impose the right boundary conditions by fixing some parameters 
of the third Painlevé transcendents. Besides its integrability fea-
tures, these solutions can be interpreted [4] as usual Abelian-Higgs 
vortices on backgrounds with conical and curvature singularities 
at the origin. It is worth noticing that even though our model 
includes the usual Abelian-Higgs model, there are other types of 
similar integrable vortex equations on different backgrounds [19,
11,12] that it does not cover.

2. Modified Abelian-Higgs model

We start with the Ginzburg–Landau theory with a modified 
Lagrangian on a smooth manifold R × � with Lorentzian metric 
ds2 = dt2 − �(dx2 + dy2),

L =
∫ (

− G(|φ|)2

4
Fμν F μν + 1

2
DμφDμφ − V (|φ|)

)
�d2x, (1)

where G is a continuous function of |φ| on its domain of definition, 
Dμ = ∂μ − iaμ is the covariant derivative and Fμν = ∂μaν −∂νaμ is 
the curvature 2-form of the U (1)-connection a. The space indices 
will be denoted by i, j, k . . . and range from 1 to 2 as (x1, x2) =
(x, y). We will also use complex coordinates z = x + iy and polar 
coordinates z = reiθ , whenever it is convenient.

If the potential is V (|φ|) = 1
8G(|φ|)2

(
1 − |φ|2)2

, which differs 
from the Ginzburg–Landau φ4 theory by the factor G(|φ|)2 in the 
denominator and spontaneously breaks symmetry, then the usual 
Bogomolny argument can be applied. In fact, the modified energy 
functional is

E = 1

2

∫ (
G(|φ|)2

�2
B2 + DiφDiφ + 1

4G(|φ|)2

(
1 − |φ|2

)2
)

�d2x

= 1

2

∫ [
G(|φ|)2

�

(
B − �

2G(|φ|)2
(1 − |φ|2)

)2

+ |Dz̄φ|2

+ B − i
(
∂1(φ̄D2φ) − ∂2(φ̄D1φ)

)]
d2x

= 1

2

∫ [
G(|φ|)2

�

(
B − �

2G(|φ|)2
(1 − |φ|2)

)2

+ |Dz̄φ|2
]

d2x

+ π N, (2)

where B denotes the component F12 and N ≡ 1
2π

∫
�

B is supposed 
to be positive, as the case N < 0 is analogous. We have used the 
boundary conditions |φ| → 1 and Diφ → 0 as z approaches the 
boundary of � in the last equality. We assume that all terms in the 
energy functional are integrable so that it is well defined, which is 
true for the integrable cases analysed here.
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Thus the modified Bogomolny equations are

z̄φ ≡ ∂z̄φ − iaz̄φ = 0 (3)

= �

2G(|φ|)2
(1 − |φ|2). (4)

iminating az̄ in the second equation using the first one, remem-
ring that az̄ = az , gives the modified Taubes equation,

0h + �

G(eh/2)2

(
1 − eh

)
= 0, (5)

here h = ln |φ|2 and 	0 = ∂2
x + ∂2

y is the Laplacian operator. Solv-
g (5) and imposing the boundary conditions above gives rise to 
rtex-like topological solitons the a surface � defined by constant 

e slices with metric

= �(dr2 + r2dθ2),

d Gauss curvature given by

= − 1

2�
	0 ln�.

Notice that equation (5) should be modified in case φ has zeros, 
 this implies the presence of logarithmic singularities for h and 
e term 	0h would generate delta functions. In fact, the usual 
ubes equation (G = 1) is often corrected with delta function 
urces added by hand to take these singularities into account [14], 
hich may occur at a general point and are the coordinates of the 
oduli space of vortices. This means that these log-singularities 
e movable in general and we will bypass them in our Painlevé 
alysis using an exponential change of variables χ = eh in the 
llowing sections.

From now on, as explained in the Introduction, we will assume 
at G(eh/2)2 = e(q+1)h/2, for a general q ∈ R and, in the next sec-
ns, study the integrability features of equation (5). With this 
oice, we are going to impose another two conditions to the Higgs 
ld. First, we require that the Higgs field is non-vanishing except 
 a finite number l of distinct points z1, . . . , zl and secondly that 
 a neighbourhood of each point zi , there exists ni ∈N

∗ such that

= (z − zi)
ni ψi(z, z̄), (6)

here ψi is a continuous function on the neighbourhood that is 
fferentiable everywhere except possibly at zi .

These conditions are the most natural ones to impose when 
eking a generalisation of the Abelian Higgs model. In fact, they 
e immediately satisfied for the Abelian Higgs model, which can 
 proved from the existence of smooth solutions to the Bogo-
olny equations [6]; however, smoothness is an excessively strong 
ndition to impose on the solutions of (3)–(4) in general. We will 
stify these conditions in section 3 in order to rule out solutions 
 smooth surfaces that do not have a similar behaviour as Abelian 
rtices (cf. (10)–(12)).
To begin with, we will suppose that � is a surface of revolution 

 that the conformal factor is only a function of the radial coor-
nate, � = �(r), as well as the modulus of the Higgs field, i.e., 

h(r). This reduces (5) to an ODE, that will be analysed in sec-
n 3. Then, in section 4, we perform the analysis to the PDE (5)
 general.

Painlevé analysis of the ODE

We apply Painlevé analysis [1] to seek choices of � such that 
uation (5) for G(eh/2)2 = e(q+1)h/2 is integrable, assuming cylin-
ical symmetry, that is to say � = �(r) and h = h(r). Because of 
e logarithmic divergence of h where the Higgs field vanishes, we 
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look instead at the equation for χ = eh , for which the ODE reduced 
from (5) is

χ ′′ − χ ′ 2

χ
+ 1

r
χ ′ + �(r)

χ(q−1)/2
(1 − χ) = 0. (7)

In practise, the aim of the analysis is to determine in which 
cases the general solutions of the ODE can be locally written in 
the form χ = (r − r0)

p ∑∞
j=0 χ j(r − r0)

j , where χ j are constants, 
χ0 �= 0, r0 > 0 is arbitrary and p is assumed to be an integer, a hy-
pothesis that will be justified in the next section. The arbitrary 
constant r0 represents the position of a movable singularity (either 
of χ or 1/χ ), that we expect not to be critical (or multivalued) 
for the Painlevé property to hold. We suppose that r0 �= 0 in or-
der to avoid the coordinate singularity at r = 0 of (7). We look for 
the dominant behaviour by substituting χ ∼ χ0 (r − r0)

p in (7), we 
have to study it differently according to p is positive or negative.

We start by supposing that p > 0. Balancing of the dominant 
terms (1st, 2nd and 4th) requires p = 4

1+q > 0 and χ2/p
0 = �(r0)

p . 
Since we are dealing with a second order ODE, its general solution 
should involve two constants of integration. One of them is the 
arbitrary constant r0 itself, the other one will be a χs , for some 
s ≥ 0. The order p + s in which this second constant appears is 
called the order of resonance (or the Fuchs index). Upon substitut-
ing the above series in (7) and balancing all the powers of r − r0, 
the constants χ j should in principle be determined in terms of r0
and χs . Notice that the constant χ0 was fixed above in terms of 
r0, so we can already tell that s > 0. Moreover, χs will be a free 
parameter if and only if the leading order in which it appears in 
the expansion of (7) involves χ j algebraically for some j > s, so 
that χ j can be determined in terms of r0 and χs , for any value 
of χs . This leading order will necessarily come from the dominant 
terms (1st, 2nd and 4th) of (7). Therefore, we look for the order 
of the resonance as follows. Keep just these dominant terms and 

substitute χ =
(

�(r0)
p

)p/2
(r − r0)

p + χs(r − r0)
p+s . Expand the re-

sulting expression in powers of r − r0, keeping only the leading 
order of terms involving χs , which will clearly be linear in χs (be-
cause s > 0):

(r − r0)
p+s−2(s2 − s − 2)χs,

whose vanishing implies s = −1 or s = 2. The second and positive 
root indicates a resonance at order p +2 of the expansion in r − r0, 
which means that χ2 can only appear in the coefficient of order 
(r − r0)

p+1 or higher in the expansion of (7) when χ is replaced 
by the power series. But at these orders the coefficients χ j≥3 are 
present and thus χ2 is not fixed.

We are interested in analysing the order of resonance, as this 
will provide constraints on the geometry of �. Thus, we write χ =(

�(r0)
p

)p/2
(r − r0)

p +χ1(r − r0)
p+1 +χ2(r − r0)

p+2, substitute it in 
(7) and divide by (r − r0)

p to get

(r − r0)
p
(−2(p − 1)p− p

2 �(r0)
p/2χ1 − �(r0)

p−1�′(r0)

r − r0

− p1−p�(r0)
p

(r − r0)2

)

+ 1

r − r0

(
p1− p

2 �(r0)
p
2 −1�′(r0) + p1− p

2 �(r0)
p/2

r0
− 2χ1

)

+ (p − 2)�(r0)
−1�′(r0)χ1 + p + 1

r0
χ1

− 2(p − 1)pp/2−1�(r0)
−p/2χ2

1 + p−p/2+1

�(r0)
p/2−1�′′(r0)

up
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2

− p−p/2+1

r2
0

�(r0)
p/2, (8)

 to order of a positive power of r − r0.
Equating the coefficient of each order to zero, we find condi-

ons on �′′(r0) and χ1. As mentioned above, had we written χ
 an infinite series χ =∑

n≥0 χn(r − r0)
p+n , we would have been 

le to calculate recursively χn (n ≥ 3) in terms of r0 and χ2.
If p ≥ 2, we calculate χ1 from the term of order (r − r0)

−1 and 
en the term of order (r − r0)

0 gives the following equation for 
e conformal factor

0 ln�(r0) = 0,

hich is valid for any r0, yielding a differential equation whose so-
tion is �(r) = c1rc2 , for some constants c1 > 0 and c2 > −2, thus 
e surface � is locally flat. We require that c2 > −2 since the 
igin r = 0 would be at infinite distance from any other point 
herwise. In fact, by performing the change of radial variable 

 = 2
√

c1
c2+2 r

c2+2
2 , the metric becomes dR2 +

(
c2+2

2

)2
R2dθ2 so that 

e can set � = 1 in (7) at the expense of introducing a deficit at 
e angular variable θ , characterising a conical singularity at the 
igin. We suppose that the background is a smooth manifold and 
erefore we do not take into account these singularities and sup-
se c2 = 0.
If p = 2, the term of order (r − r0)

p−2 in (8) contributes. Thus, 
e vanishing of (8) at orders (r − r0)

−1 and (r − r0)
0 implies χ1 =(

�′(r0) + �(r0)
r0

)
and

0 ln�(r0) = �(r0). (9)

is equation means that � has constant Gauss curvature −1/2. 
is is not surprising as for p = 2, q = 1 thus equation (5) is the 
ual Taubes equation, up to replacing h by −h, whose Painlevé 
tegrability was studied in [20]. Solutions to the modified Taubes 
uation in this case would involve a Blaschke product but from 
ndition (6) the magnetic field B would not be integrable due to 
vergences where the Higgs field vanishes and thus we would not 
 able to define a magnetic flux and the energy would be infi-
te. Let us however point out that this case admits the following 
lutions

= 4r2(ln r)2

(1 − r2)2
, (10)

= (rc+1 − r−c+1)2

c2(1 − r2)2
, 0 < c < 1, (11)

= 4r2 sin2(c ln r)

c2(1 − r2)2
, c > 0, (12)

hich are not analogous to Abelian vortices on smooth surfaces 
d can be ruled out by the conditions imposed in the end of sec-

on 2. These solutions were obtained from results of [18] (cf. also 
ction 5 of [3]).

If p = 1 then all the terms in (8) contribute and we find that 
e conformal factor should satisfy the following differential equa-

on

′′(r0) − �′(r0)
2

�(r0)
+ �′(r0)

r0
− �′(r0)

√
�(r0) − 2�(r0)

3/2

r0
= 0,

(13)

hich can be rewritten in terms of F (r) = √
�(r) as

′′(r) − F ′(r)2

+ F ′(r) − F (r)2

− F (r)F ′(r) = 0. (14)

F (r) r r
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Its general solution is

F (r) = C1

r

(C2r)C1

1 − (C2r)C1
, (15)

where C1 and C2 are arbitrary positive constants, so that the origin 
r = 0 is at finite distance from any other point. Under the change 
of variables R = (C2r)C1/2, equation (7) becomes

d2χ

dR2
− 1

χ

(
dχ

dR

)
+ 1

R

dχ

dR
+ 4R2

(1 − R2)2

1

χ
(1 − χ) = 0, (16)

where we assume that 0 ≤ R < 1. A one parameter family of solu-
tions to this equation was given in [20] (cf. equations (2.15)–(2.16) 
of this reference). It satisfies the necessary conditions for Painlevé 
property established so far, but its analysis is not finished yet. 
To complete Painlevé test we follow the usual procedure. Expand 
χ = χ0(R − R0) + χ1(R − R0)

2 + χ2(R − R0)
3 + · · · , substitute it 

in (16) and expand the left hand side in powers of R − R0. The 
vanishing of the leading order implies

χ0 = ± 2R0

1 − R2
0

,

where 0 ≤ R0 < 1. The case in which we choose the + sign was 
already analysed above and led us to equation (13). Now, if we 
choose the − sign, the vanishing of the new leading term implies

χ1 = −3
1 + R2

0

(1 − R2
0)

2
.

With these choices of χ0 and χ1, the left hand side of (16) be-
comes

− 16R0

(1 − R2
0)

3
(R − R0) + O

(
(R − R0)

2
)

,

whose first term cannot be eliminated by any choice of χi . This 
means that the expansion of χ should involve logarithmic terms 
of the form ln(R − R0). Therefore, equation (16) does not pass the 
Painlevé test. Another solution to (14) can be obtained by taking 
the limit C1 → 0 in (15) and then equation (7) becomes

d2χ

dR2
− 1

χ

(
dχ

dR

)
+ 1

R

dχ

dR
+ R2

(ln R)2

1

χ
(1 − χ) = 0, R = C2r,

which also fails the Painlevé test as a similar calculation shows.
In the case p < 0, a similar procedure will lead to the con-

dition p = − 4
1−q . The conditions for Painlevé integrability can be 

derived from the case p > 0 above. In fact, under the change of 
variables χ → 1/χ in equation (7), q is changed into −q or, writ-
ing this equation in terms of p using q = 4−|p|

p , p is changed into 
−p. Therefore, the conditions for Painlevé integrability in the cases 
p = −1, p = −2 and p ≤ −3 are the same as in the cases p = 1, 
p = 2 and p ≥ 3, respectively. Namely, for p = −1, there are no 
integrable soliton solutions, for p = −2, � must be a hyperbolic 
space with constant curvature −1/2 and for p < −2, � must be 
flat up to conical singularities. Even though from the integrability 
point of view cases p = −2 (or q = −1) and p = 2 (or q = 1) are 
the same, for p = −2 we obtain the ordinary Taubes equations of 
the Abelian Higgs model, which admits soliton solutions satisfying 
our conditions as opposed to the case p = 2.

To complete the integrability analysis we need to have a closer 
look in the range |p| ≥ 3, in which case −1/3 ≤ q ≤ 1/3. This is 
because for this range of q, we can find a p1 > 0 and a p2 < 0
such that q = 1

pi
(4 − |pi |) , i = 1, 2. But for Painlevé integrability to 

take place, the integrability conditions should hold for all possible 
choices of leading order p. Therefore, we have to solve
1

p1
(4 − p1) = q = 1

p2
(4 + p2) ,

for integers p1 > 0 and p2 < 0. There are exactly three solutions to 
this equation: (p1, p2) = (6, −3), (4, −4) and (3, −6), yielding q =
− 1

3 , 0 and 1
3 , respectively. Since the cases q = 1/3 and q = 0 lead 

to the models studied in [4], we will present the explicit vortex 
solutions to the case q = −1/3 in section 4.1 (cf. equation (22)), 
after the Painlevé analysis of the PDE.

4. Painlevé analysis of the PDE

We will find all possible choices of G(eh/2)2 = e(q+1)h/2 and 
of background metric � such that equation (5) admits has the 
Painlevé property, now without imposing any symmetry to the 
PDE. We will do the analysis using the method proposed by Weiss, 
Tabor and Carnevale [23], which is the analogue for PDEs. As in 
the previous section, in order to avoid the logarithmic singularities 
in the analysis we look instead at the equation for χ = eh ,

	0χ − 1

χ
|∇χ |2 + �(x, y)

χ(q−1)/2
(1 − χ) = 0, (17)

where ∇χ = (∂xχ, ∂yχ) is the gradient vector of χ and |∇χ |2 =
(∂xχ)2 + (

∂yχ
)2

is its Euclidean norm.
We look for the dominant behaviour by setting

χ ∼ χ0(x, y)ϕ(x, y)p,

where χ0 is a non-zero function to be determined and p is an 
integer, as justified bellow. Keeping the lowest order terms in ϕ , 
we find

χ
(1−q)/2
0 �(1 − χ0 ϕp)ϕp(1−q)/2 − p χ0 |∇ϕ|2 ϕp−2 = 0. (18)

We then need to separate the analysis into two different cases, 
p > 0 and p < 0.

If p > 0 then the term in ϕp in the parenthesis of (18) is of 
higher order and can be neglected at this stage. Then we equate 
the powers of ϕ for the remaining two terms, p(1 − q)/2 = p − 2
which gives a relation between q and p, which will be convenient 
to be solved for q:

q = 4 − p

p
.

We solve (18) for χ0 to find

χ0 =
(

�

p|∇ϕ|2
)p/2

.

Anticipating from the ODE analysis above that there will be a 
resonance at second order, we expand χ as χ = ϕp(χ0 + χ1ϕ +
χ2ϕ

2), substitute it in (17), divide by ϕp and expand the whole 
expression in powers of ϕ up to the first two lowest orders, which 
are ϕ−1 and ϕ0, keeping the terms of order ϕp−2 and ϕp−1. The 
terms of order ϕp−2 and ϕp−1 are

−p1−p�p|∇ϕ|2−2pϕp−2 (19)

and

−2(p − 1)

(
�

p

)p/2

|∇ϕ|2−pχ1ϕ
p−1, (20)

respectively, which arise from the very last term in (17).
These terms will not contribute to the analysis if p > 2. There-

fore, we will separate the analysis into the cases p = 1, p = 2 and 
p ≥ 3.
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If p = 1, then the vanishing of the term of order ϕ−1, which 
involves (19), gives rise to an algebraic equation for χ1 whose so-
lution is

χ1 =
√

�(x, y)

2|∇ϕ|3
(
	0ϕ −√

�(x, y)|∇ϕ|
)

.

Then the term of order ϕ0 will not depend on χ2, manifesting 
the resonance at this order predicted above. Instead, this term 
is a fairly big expression involving ϕ and � (and their partial 
derivatives up to second order) that should vanish for any small 
function ϕ . Making the choices ϕ = ±εx, ϕ = ±ε y and ϕ = εxy, 
where ε is a small positive constant, we get differential equations 
for � that can only be solved by � = 0. This case is thus not in-
teresting for our purposes.

If p = 2 then q = 1 and a change of variables of the form χ →
χ−1 will put (17) in the form of the usual Taubes equation, whose 
Painlevé analysis requires � to be a hyperbolic space of curvature 
−1/2 [20]. As for the ODE in the previous section, condition (6)
implies that the divergence of the magnetic field (4) at each zero 
of the Higgs field would make the magnetic flux infinite, and thus 
no solution would fit our requirements.

If p ≥ 3 then the lowest order term is(
�

p|∇ϕ|2
)p/2 [

p	0ϕ − 2
( p

�

)p/2 |∇ϕ|p+2χ1

]
1

ϕ
.

The term in brackets should vanish, resulting in an equation for χ1
which can be solved by

χ1 = p2

2�

(
�

p|∇ϕ|2
)(p+2)/2

	0ϕ.

This choice of χ1 annihilates the term of order ϕ−1 and we are 
left with the term of order ϕ0 which is

− p

2
	0 ln�

(
�

p|∇ϕ|2
)p/2

.

We notice that it does not involve χ2, indicating the resonance 
anticipated earlier. The conformal factor � should then satisfy 
	0 ln � = 0. In other terms, the metric should be flat, up to possi-
ble conical singularities. Thus, we can choose local coordinates to 
set � = 1 under smoothness assumptions.

As for the ODE, the conditions for Painlevé integrability in the 
cases p = −1, p = −2 and p ≤ −3 are the same as for p = 1, p = 2
and p ≥ 3, respectively, as we can go from p to −p by changing 
χ into χ−1. Therefore, the integrable cases for the PDE correspond 
to the same as for the ODE, that is to say either � is a hyperbolic 
surface of curvature −1/2 and |q| = 1 or � is flat and |q| = 1/3. 
Notice however that for p = 1 (or q = 1) we did not have a soli-
ton solution but for p = −1 (or q = −1) we find exactly the usual 
Abelian Higgs model on hyperbolic surfaces, whose solutions are 
well understood.

Here it is worth pausing to explain why we require p to be 
an integer. If p is not an integer then the PDE does not ad-
mit the Painlevé property, however it may be transformed into 
one having this property under a change of variables replacing 
χ by some power of χ , which might reveal further integrabil-
ity properties. However, once we substitute the series expansion 
χ = ϕp ∑

k≥0 χkϕ
k in (17) and divide the left hand side by ϕp , the 

resulting expression takes the form

(power series in ϕ) − �ϕp−2

⎛
⎝∑

k≥0

χkϕ
k

⎞
⎠

2 p−1
p

= 0,
and for the second term to vanish for p non-integer while χ0 �= 0
we would need to require that � = 0, which is not of our interest.

We have done the Painlevé analysis by expanding the χ in 
power series of ϕ . We could have also used the “reduced ansatz” 
proposed by M. Kruskal and explained in [23] which consists 
in supposing that ∂xϕ �= 0 and expanding χ in power series of 
x − ψ(y), where ψ is a function such that ϕ(ψ(y), y) = 0 that ex-
ists by the implicit function theorem. Even though this ansatz is 
clearly analogous to the Painlevé analysis for ODEs and can sim-
plify calculations considerably, in our case we would have needed 
to expand �(x, y) in power series of x − ψ(y) with respect to the 
first variable and thus we decided not to use it. Anyway, similar 
calculations with this ansatz yield the same results.

4.1. Explicit solutions

For � = 1 and q = 0, (17) becomes the sinh-Gordon equation 
	0

h
2 = sinh h

2 while for q = ± 1
3 , it becomes the Tzitzéica equation 

[15,16,5]

	0u + 1

3

(
e−2u − eu

)
= 0, (21)

where u = qh. These equations were studied in the context of 
Abelian vortices in [4], where the cases considered correspond to 
q = 1

3 and q = 0 in our language. However, the analysis presented 
here points to a new solution in the case q = − 1

3 and completes 
the list of integrable cases under the class of models considered. 
We will focus on the details of this new solution, bearing in mind 
that it is analogous for the other two cases.

We still need to apply the boundary conditions so that we 
can calculate physical quantities such as the energy, magnetic flux 
and vortex strength. We thus have to know the behaviour of the 
asymptotics of the solutions to (21). If we apply the cylindrical 
symmetry reduction u = u(r), supposing that u is only a func-
tion of the radial coordinate, (21) reduces to a Painlevé III equation 
with choice of parameters (1, 0, 0, −1) under the change of vari-

ables u(r) = ln w(r) − 1
2 ln r + 1

4 ln 27
4 , r = 3

√
3

2 ρ2/3:

d2 w

dρ2
= 1

w

(
dw

dρ

)2

− 1

ρ

dw

dρ
+ w2

ρ
− 1

w
.

The behaviour of its solutions in the asymptotics were studied in 
[7]. We thus apply this reduction and equation (18) in [7] with 
g1 = g2 = 0, g3 = 1, τ = r2

12 and s = 1 + 2 cos
[
π
9 (6 − 2N)

]
to find

h = − 3u ∼r→0

− 3 ln

⎡
⎢⎣2α

9
(N − 3)212

N
3

r− 2N
3(

1 − α12
1
3 (N−3)r− 2

3 (N−3)
)2

⎤
⎥⎦ ,

(22)

where

α = 3
2
3 (N−3)

�
(

1
3

(
2 + N

3

))
�
(

1
3

(
1 + 2N

3

))
�
(

1
3

(
4 − N

3

))
�
(

1
3

(
5 − 2N

3

))
and N is the topological charge (or vortex number), which is al-
lowed to take values N = 1 and N = 2.

The results below Figure 1 in the same reference gives the be-
haviour at r → ∞

h = −3u ∼r→∞ −3
√

3 {
1 + 2 cos

[π
(6 − 2N)

]}
K0(r), (23)
π 9
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Fig. 1. Square of the modulus of the Higgs field |φ|2 (left plot) and the magnetic field B (right plot) as functions of r for vortex number N = 1 (dashed lines) and N = 2 (full 
lines) for solution (22)–(23).
were K0(r) ∼r→∞
√

π
2r e−r is the modified Bessel function of sec-

ond kind. The strength of the vortex can be read off from the 
coefficient before the Bessel function K0 and takes approximate 
values 2.23 and 4.19 for N = 1 and 2, respectively. For compari-
son, these values are approximately 1.80 and 1.45 for the models 
with q = 0 and q = 1/3, respectively, where only N = 1 vortex so-
lutions are allowed [4].

In Fig. 1 we plot the magnitude of the Higgs field square |φ|2
and the magnetic field B as functions of r associated to this solu-
tion for both vortex numbers. We notice, using equation (22), that 
the magnetic field blows up at the origin as B ∼ r−2N/3 and would 
not be integrable for N ≥ 3. This restricts N to be 1 or 2, as men-
tioned above, in order to obtain a finite magnetic flux. In fact, a 
direct calculation shows that 

∫
�

B = 2π N (cf. also equation (2)). It 
can be done by using equations (4) and (5) along with rotational 

symmetry to write B = − 1
2r

d

dr

(
r

dh

dr

)
, then

1

2π

∫
�

B = 1

2π

2π∫
0

∞∫
0

− 1

2r

d

dr

(
r

dh

dr

)
rdrdθ = −1

2

[
r

dh

dr

]∞

r=0
= N,

where we have performed an integration by parts in the second 
equality and used the asymptotic expressions (22) and (23) in the 
last one.

The magnetic field for the models corresponding to q = 0 and 
q = 1/3 present a similar behaviour. At the origin they diverge as 
B ∼ r−1 and B ∼ r−4/3, respectively, while they monotonically tend 
to zero at infinity. Both give the same magnetic flux 2π corre-
sponding to N = 1 vortex solutions.

5. Conclusion

The solutions presented here relied on the ansatz G(eh/2)2 =
e(q+1)h/2, which was inspired by particular cases of integrable 
Abelian-Higgs vortices on non-hyperbolic backgrounds [4]. Also, 
equation (5) suggests that these solitons can be interpreted as 
usual Abelian-Higgs vortices on the background �/G2 [4]. Under 
this framework, the ansatz for G is a natural generalisation of 
the metric one obtains by multiplying the conformal factor of the 
background metric by an integer power of the absolute value of 
the Higgs field in the non-linear superposition rule of vortices [2]. 
Nonetheless, it may be worth noticing that other choices of G that 
were not explored here would also lead to integrable vortices. For 
instance, choosing G(eh)2 = − 1−eh

h and � = 1 and imposing cylin-
drical symmetry would give rise to a modified Bessel equation, or 
we could find solutions in terms of hypergeometric functions by 
choosing G2 = 1 − eh and � = e−r . Clearly, these two cases would 
not arise from the Bogomolny argument we used as it requires 
G2 > 0 for any h.

It is interesting to notice that modifying the model may bring to 
light further integrable cases that could not be found otherwise by 
standard methods of integrability, even though these other cases 
might be isolated and not involving any moduli. Moreover, using 
results of [17] these vortices give rise to cylindrically symmetric 
instantons on a 4-dimensional background that is not (anti-)self-
dual [3].
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