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We develop a framework for the analysis of large-scale Ad-auctions where adverts are assigned over a con-

tinuum of search types. For this pay-per-click market, we provide an efficient mechanism that maximizes

social welfare. In particular, we show that the social welfare optimization can be solved in separate opti-

mizations conducted on the time-scales relevant to the search platform and advertisers. Here, on each search

occurrence, the platform solves an assignment problem and, on a slower time-scale, each advertiser submits

a bid which matches its demand for click-throughs with supply. Importantly, knowledge of global param-

eters, such as the distribution of search terms, is not required when separating the problem in this way.

Exploiting the information asymmetry between the platform and advertiser, we describe a simple mechanism

which incentivizes truthful bidding and has a unique Nash equilibrium that is socially optimal, and thus

implements our decomposition. Further, we consider models where advertisers adapt their bids smoothly

over time, and prove convergence to the solution that maximizes social welfare. Finally, we describe several

extensions which illustrate the flexibility and tractability of our framework.
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1. Introduction

Ad-auctions lie at the heart of search markets and generate billions of dollars in revenue for

platforms such as Bing and Google. Sponsored search auctions provide a distributed mechanism

where advertisers compete for their adverts to be shown to users of the search platform, by bidding

on search terms associated with queries.
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The earliest search auction1 required that advertisers bid a separate price to place an advert

in each position on the search page. This design was soon abandoned for one where an advertiser

simply bid an amount per click: this amount was converted to adjusted bids for each position by

multiplication by the platform’s estimate of click-through probabilities; the highest adjusted bid

won the first position, the second-highest the second position, and so on, with payments only made

when an advert was clicked. The shift from an advertiser making a separate bid for each position to

the advertiser making a single bid and being charged per click is an example of conflation (Milgrom

(2010)): advertisers are required to make the same bid per click whatever the position of the advert.

The design used to assign adverts to positions on the page and the rules used to determine

payments have changed several times, with platforms such as BingAds or Google AdWords using

variants of the generalised second-price auction (GSP) to determine the price per click: under GSP

the amount an advertiser pays when its advert is actually clicked is the smallest price per click

that, if bid, would have won the same advert position (Varian (2007), Edelman et al. (2007)).

In current auctions a fundamental information asymmetry between the platform and advertisers

has emerged, in that the platform typically knows more than an advertiser about the search being

conducted. For example, information on the user conducting the search may comprise location,

previous search history, or personal information provided by the user on sign-in to a platform, any

of which may affect click-through probabilities. The keyword and additional query information all

vary randomly with a distribution that is, in principle, unknown to the platform and advertis-

ers. However, the platform can choose prices and an allocation of adverts to positions using the

platform’s additional information. In contrast to the platform, the advertiser has to rely on more

coarse-grained information, perhaps just the keywords of a query together with a crude categoriza-

tion of the user. At best an advertiser sees censored information conditional on her advert being

shown and clicked: the advertiser has no information about auctions where her advert was either

not shown (a losing auction for her) or not clicked, unless the platform chooses to reveal such

information.

Variability in the platform’s additional information creates additional variability in the obser-

vations available to the advertiser. It is difficult for the advertiser to view consecutive allocations

by the platform as repeated instances of the same auction since, even if the keyword and range

of competitors stay the same, the platform’s additional information varies from search to search.

For example, two different searchers for the same keyword may have very different preferences for

adverts, giving different click-through probabilities and thus different auctions. These auctions are

conflated, with the same bid from an advertiser used in each of them, and this conflation is addi-

tional to the conflation over positions. The observations available to the advertiser are inherently

1 initiated in 1998 by GoTo.com, which later became Overture and then part of Yahoo!
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stochastic, with the probability of a click-through fluctuating from search to search, and need to be

filtered in order to estimate click-through rates. Thus the information asymmetry between platform

and advertisers induces a temporal asymmetry: the platform observes each search as it happens,

whereas the advertiser has to rely on delayed and aggregated feedback. At the time of writing,

platforms typically provide delayed feedback to the advertiser on quantities such as number of

impressions (i.e., appearances), average position, average cost per click and so on, averaged over

some interval of time.

In this paper we develop a framework to address the information and temporal asymmetries

directly. The framework is described in Section 2 and operates as follows. Each advertiser submits a

real-valued bid. Using the advertisers’ bids and the platform’s estimated click-through probabilities,

the platform assigns adverts to maximize the (expected) bid of an advert receiving a click. This

is a classical assignment problem and is solved with low computational overhead on each search

instance. We price adverts with a form of parametrized VCG-payment: if an advert receives a click-

through, then the pricing of that advert requires one further solution to the assignment problem. We

model advertiser i as a utility maximizer, who wants to maximize her payoff ui(yi) =Ui(yi)−πiyi,

where Ui is her private, concave, utility function and where πi and yi are, respectively, the (average)

price she pays per click and the click-through rate she achieves. Under a monotonicity condition

which will be satisfied if the platform’s additional information is sufficiently fine-grained, we prove

that the Nash equilibrium achieved by advertisers maximizes the social welfare of the advertisers.

The framework is extended, in Section 7, to allow an advertiser to make different bids for different

keywords or categories of user.

Optimization frameworks of this form are well-established in the communication network commu-

nity, where users, the network and its components must be separated. There the phrase “Network

Utility Maximization” has been coined, but this framework has only recently found its way into

Mechanism Design (see Maheswaran and Basar (2004), Yang and Hajek (2007) and Johari and

Tsitsiklis (2009)). By contrast, much of the existing literature on sponsored search has needed to

restrict attention to an isolated instance of an auction (a single query, repeated without variation)

to make progress. We focus upon the stream of search queries: their randomness and the resulting

information asymmetry is an intrinsic aspect of our framework.

Implementation of a Nash equilibrium in the economics literature is typically based on the

assumption of complete information. In the context of sponsored search, where an advertiser is

bidding in a conflated set of auctions with little information on users or competitors (see Pin and

Key (2011)), the complete information assumption is not compelling. As Yang and Hajek (2006)

discuss in the context of communication networks, an alternative justification for equilibrium is

needed and is available. In Section 5 we consider dynamics and convergence under adaptive bid
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updates by advertisers, and show that under smooth updating of bids, bid trajectories converge to

the unique Nash equilibrium.

The mechanism established by our analysis is simple, flexible and implementable. It reduces to

the preferred equilibrium of the generalized second price auction (GSP) described in Varian (2007),

Edelman et al. (2007) in the special case considered there. But GSP requires an ordered layout of

interchangeable adverts, and does not readily adapt to more complex page layouts, such as text rich

adverts, adverts of variable size or adverts incorporating images – each of which are of current and

increasing demand for modern online advertisement platforms. However, the flexibility to compare

and price complex assignments is inherent in VCG mechanisms, and through this, we determine

efficient pricing implementations for general page layouts.

It is well known in the economic literature that market clearing prices that equate to marginal

utility will maximize social welfare. However, this does not guarantee that such prices can be

implemented on the relevant time-scales, where adverts are assigned per impression and charged

per click, and search-engine-wide optimization is a highly non-trivial task. Our results show that

social welfare can be optimized by a low complexity mechanism which assigns and prices adverts

on the time-scales required for sponsored search.

1.1. Outline

In Section 2, we introduce a model of sponsored search where the platform distributes advertis-

ers’ bids over an infinitely large collection of keyword auctions. We define an auction mechanism

where an assignment problem is solved for each search occurrence (Section 2.1). We introduce a

monotonicity property, requiring click-through rates to continuously increase with bids. The mech-

anism’s pricing scheme is defined in Section 2.2. We discuss three per-click price implementations,

two are deterministic and one is randomized.

In Section 3, we discuss the objective of platform-wide efficiency for a collection advertisers with

concave utility functions. We apply a decomposition argument to a social welfare optimization taken

over the uncountably infinite set of constraints in our model of sponsored search. The argument

is based on techniques from convex optimization and duality; proofs, complicated by the infinite

setting, are mostly relegated to the appendix. These preliminaries establish that if advertisers

equate bids with their marginal utility and the platform solves a maximum weighted matching

assignment problem for each search instance then social welfare will be maximized. Crucially, the

time-scale and information asymmetry in this decomposition are those relevant to sponsored search.

The advertisers are optimizing over a slower time-scale than the platform, and the platform uses

the submitted bids to solve on-line a form of generalized first price auction.
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After these preliminaries, in Section 4 we make the connection with mechanism design and

strategic advertisers. In particular, we find the form of a rebate which incentivizes advertisers to

truthfully declare bids that equate to their marginal utilities. This produces a unique Nash equi-

librium which implements our decomposition, and this is our main result (Theorem 1). By the

separability of our optimization, the rebate can be computed by a simple mechanism requiring a sin-

gle additional computation, namely the solution of an assignment problem, for each click-through.

Hence assignment and pricing occur per search query and involve straightforward polynomial-time

computations. The platform solves a (primal) assignment problem on a per-search time-scale; and

advertisers maximize their payoffs by solving a dual optimization problem over a longer time-scale

(Proposition 4). Finally we prove the theorem, which essentially follows from strong duality.

Section 5 contains our discussion of dynamics and of convergence to the Nash equilibrium under

adaptive bid updates by advertisers. In Section 6 we allow more complex page layouts and control

of the number of positions displayed (for instance, through reserve prices), and in Section 7 we allow

advertisers to make different bids for different keywords or categories of user. Section 8 discusses

the relationship between our results and earlier work, and Section 9 concludes.

2. The Assignment and Pricing Model

We begin with notation that reflects a sponsored search setting, where a limited set of adverts are

shown in response to users submitting search queries. We let i∈ I index the finite set of advertisers.

Each has an advert which they wish to be shown on the pages of search results. An advert, when

shown, is placed in a slot l ∈ L. The set of slots is ordered, with the first (lowest ordered) slot

representing the top slot. Let τ ∈ T index the type of a search conducted by a user. The set T

is an infinitely large set. The type τ may incorporate information such as the keywords, location,

previous search history, and any other information the platform has on the search or searcher. As

τ varies, features – such as the keyword – are allowed to change. Let pτil be the probability of a

click-through on advert i if is shown in slot l: this probability is estimated by the platform and will

depend on the type τ .

Over time, a large number of searches from the set T are made. We assume these occur with

distribution Pτ . Thus we view the click-through probability pil : T → [0,1] as a random variable

defined on the type space T and with distribution Pτ . For example, the random variables p= (pil :

i ∈ I, l ∈ L) might admit a joint probability density function f(p). So, for z = (zil : i ∈ I, l ∈ L) ∈

[0,1]I×L,

Pτ (p≤ z) =

∫
[0,1]I×L

I[p≤ z]f(p)dp.

Here I is the indicator function and vector inequalities, e.g., p ≤ z, are taken componentwise,

pil ≤ zil ∀i∈ I, l ∈L.
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We exploit the inherent randomness in pil for the optimal placement of adverts. We assume that

the platform has access to the information about the query captured in τ , and so can successfully

predict the click-through probability pτil, whilst the advertiser does not have access to such fine-

grained search information. Later, in Sections 4 and 5, we shall see that the platform can use this

information asymmetry to guide the auction system towards an optimal outcome.

2.1. Assignment Model

Next we describe a mechanism by which the platform assigns adverts. Suppose advertiser i submits

a bid bi, which reflects what the advertiser is willing to pay for a click-through. The bid bi is a

non-negative real number. Later, in Section 7, we shall allow an advertiser to submit different bids

for different categories of search type, for example for different keywords.

Let b = (bi, i ∈ I). Given the information (τ, b), the following optimization maximizes the

expected sum of bids on click-throughs from a single search.

ASSIGNMENT(τ, b)

Maximize
∑
i∈I

bi
∑
l∈L

pτilx
τ
il (1a)

subject to
∑
i∈I

xτil ≤ 1, l ∈L, (1b)∑
l∈L

xτil ≤ 1, i∈ I, (1c)

over xτil ≥ 0, i∈ I, l ∈L. (1d)

The above optimization is an assignment problem, where the constraint (1b) prevents a slot

containing more than one advert, and the constraint (1c) prevents any single advert being shown

more than once on a search page. The assignment problem is highly appealing from a computational

perspective, firstly, because an integral solution can be found efficiently (see Kuhn (1955), Bertsekas

(1988)) and, secondly, because there is no need to pre-compute the assignment. The assignment

problem can be solved on each occurrence of a search of type τ ∈ T , and an integral solution forms

a maximum weighted matching of advertisers I with slots L.

We apply the convention that if bi = 0 then xτil = 0 for l ∈L, so that a zero bid does not receive

clicks. Let

yτi =
∑
l∈L

pτilx
τ
il, yi =Eτyτi . (2)

The solution xτ to the assignment problem (1) may not be unique: however the solution will be

unique with probability one if, for example, the distribution of click-through probabilities p admits

a density. We make the milder assumption that (yτi , i∈ I) is unique with probability one.
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Note that yτi is the click-through rate for advertiser i from a given search page, and yi is the

click-through rate averaged over T . (We shall not use yi for the random variable yτi .) In our model

the information asymmetry between the platform and advertiser is captured by the search type

τ which is known to the platform but not to the advertiser: thus we assume that yτi is known to

the platform, from its solution to the assignment problem, while only the average yi is reported

to, or accessible for estimation by, advertiser i. For an optimal solution to the above assignment

problem, write yτi = yτi (b) to emphasize the dependence of yτi on the vector of bids b and, similarly,

write yi = yi(b). Let (b′i, b−i) be the vector obtained from b by replacing the ith component by b′i.

We shall assume the following monotonicity property of solutions of ASSIGNMENT(τ, b). We

assume that yi(bi, b−i) takes the value 0 when bi = 0, and is strictly increasing in bi and continuous

in (bi, b−i) whenever any component of b−i is positive. Without the monotonicity property yi(b)

will be increasing in bi but may not be strictly increasing or continuous. A similar assumption has

been made by Nekipelov et al. (2015), who argue that the assumption is natural and satisfied by

the sponsored search data they analyze.

The monotonicity property will generally follow from sufficient variability of click-through rates.

For instance, a sufficient condition is that the random variables p admit a continuous density f(p)

on the set of click-through probabilities P̃ = {p ∈ [0,1]|I|×|L| : pil ≥ pik, l < k} which is positive

on a neighborhood containing the origin. Observe that on P̃ the click-through probability for a

given advert increases as the slot it is shown in decreases. The following result establishes the

monotonicity property under the above sufficient condition.

Proposition 1. If the distribution Pτ admits a continuous probability density function on P̃ which

is positive on a neighborhood containing the origin then the mapping bi 7→ yi(bi, b−i) satisfies the

monotonicity property.

The proof of Proposition 1 is given in Appendix EC.1. The sufficient condition of Proposition 1 is

far from necessary, as we shall illustrate later in Example 1. Our earlier assumption that (yτi , i∈ I)

is unique with probability one is implied by the monotonicity property.

2.2. Pricing Model

Once adverts are allocated, prices must be determined for any resulting click-throughs. We consider

a mechanism where the expected rate of payment by advertiser i is

πi(b)yi(b) =

∫ bi

0

(
yi(b)− yi(b′i, b−i)

)
db′i. (3)
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Here, as before, b = (bi : i ∈ I) is the vector of advertisers’ bids and yi(b) is the resulting click-

through rate for advertiser i. We discuss later the rationale for this formula in the proper context

of mechanism design, in Section 4. For now we note that the rate of payment (3) can be readily

implemented by the platform at a low computational cost. We give three examples of implementa-

tions: the first uses randomization to estimate the integral (3); the second is a form of VCG price;

and the third uses the solution of a linear program due to Leonard (1983). The first two require

the solution of just one additional instance of the assignment problem per click-through.

A randomized price. Suppose the platform solves ASSIGNMENT(τ, b), and observes a click-

through on (i, l) — that is the solution has xτil = 1, and the user clicks on the advert in position l,

which is for advertiser i. To price this advert, the platform chooses b′i uniformly and randomly on

the interval (0, bi) and additionally solves ASSIGNMENT(τ, (b′i, b−i)). Let yτi (b′i, b−i) =
∑

l∈L p
τ
ilx

τ
il

under a solution to this problem. The platform then charges advertiser i an amount

bi

(
1− y

τ
i (b′i, b−i)

yτi (b)

)
(4)

for the click-through. This charge does not depend on the distribution Pτ , and will lie between 0

and bi. Taking expectations over τ and b′i shows that the expected rate of payment by advertiser i

is

Eτ,b′i

[∑
l∈L

pτilx
τ
ilbi

(
1− y

τ
i (b′i, b−i)

yτi (b)

)]
= bi

(
yi(b)−Eb′i [yi(b

′
i, b−i)]

)
=

∫ bi

0

(
yi(b)− yi(b′i, b−i)

)
db′i,

recovering expression (3).

Observe that the additional instance of the assignment problem does not determine the assign-

ment, and thus will not slow down the page impression: rather, it is used to calculate the charge (4)

for a click-through. Indeed, one could imagine a charge bi on the click-through, followed by a later

rebate of a proportion yτi (b′i, b−i)/y
τ
i (b) of the charge. The rebate depends on the uniform random

variable b′i as well as the random variable τ : next we shall see that we can remove the dependence

on b′i.

A parametrized VCG price. Note that∫ bi

0

yi(b
′
i, b−i)db

′
i =
∑
j

bjyj(b)−
∑
j 6=i

bjyj(0, b−i),

since both expressions share the same derivative with respect to bi (see Proposition EC.2 of

Appendix EC.1) and both expressions take the value 0 when bi = 0. Thus the rate of payment (3)

can be implemented by a charge bi on a click-through followed by a later rebate

1

yτi (b)

(∑
j

bjy
τ
j (b)−

∑
j 6=i

bjy
τ
j (0, b−i)

)
. (5)
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The rebate calculation again requires the solution of one additional instance of the assignment

problem, this time omitting advertiser i. This calculation is familiar as the VCG mechanism when

the utility function for advertiser j, j ∈ I, is replaced by the surrogate linear utility bjyj. The

charge minus the rebate has the usual VCG interpretation as the externality caused by advertiser

i, but under these surrogate utilities.

Computing all prices simultaneously. Leonard (1983) has shown that VCG prices in

assignment games are a minimal solution to a dual assignment problem, and this allows prices for

all potential click-throughs to be calculated from the solution to just one optimization problem.

Let Aτ be the maximal value achieved by the objective function (1a) in the assignment prob-

lem (1). Then per-impression VCG prices are given by the solution vτ , sτ to the following opti-

mization problem.

Minimize
∑
l∈L

vl

subject to
∑
i∈I

si +
∑
l∈L

vl =Aτ ,

si + vl ≥ bipτil, i∈ I, l ∈L,

over si ≥ 0, vl ≥ 0, i∈ I, l ∈L.

An initial feasible solution to this dual assignment program is given by the dual variables corre-

sponding to an optimum of the assignment problem (1) and techniques for its solution are reviewed

in Bikhchandani et al. (2002).

This formulation allows for either pay-per-click or pay-per-impression pricing of adverts. After

solving the problem for vτ , sτ , advertiser i can either be charged the price vτl for an impression of

her advert in slot l or be charged the price vτl /p
τ
il = bi− sτi /pτil on a click-through: in the latter case

the result of Leonard (1983) implies that the rebate sτi /p
τ
il will equal expression (5). Observe that

the dual assignment problem to be solved is identical whichever advert is clicked on.

We end this section with a setting where particularly simple closed forms are available for prices.

Example 1. If there is a single slot then the slot will be assigned to the bidder i with the highest

value of bip
τ
i1, and if this results in a click-through then the charge will be maxj 6=i bjp

τ
j1 / p

τ
i1, a

second price auction on the products bjp
τ
j1.

Suppose next there are L slots with I advertisers bidding and further suppose that the click-

through probabilities take the form pτil = qτi pl where p1 > p2 > . . . > pL. Here pl is a slot effect, and qτi

is an advertiser effect which may depend on the search query (for example, it may depend on some

measure of distance between the searcher and the advertiser). Define the search-adjusted bid bτi =
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biq
τ
i and, given τ , order the advertisers so that bτ1 > b

τ
2 > . . . > b

τ
I . Then advertisers 1,2, . . . ,min{L, I}

are allocated slots 1,2, . . . ,min{L, I} respectively. If necessary ties can be broken randomly.

In this example it is straightforward to calculate the expected value of expression (4) over b′i

explicitly. Set pL+1 = 0 and bi = bτi = 0 for i > I. Upon a click-through on slot l advertiser l is

charged the amount πτl where

πτl q
τ
l = bτl+1−

1

pl

L∑
m=l+1

pm(bτm− bτm+1), l= 1,2, . . . ,L.

Expressed as a recursion this implies

πτl =
qτl+1

qτl

(
bl+1−

pl+1

pl
(bl+1−πτl+1)

)
, l= 1,2, . . . ,L (6)

recovering an equilibrium of the generalized second price auction, Edelman et al. (2007). Note,

however, that the charges (6), and indeed the slots allocated, fluctuate with the search type τ . The

expected revenue, given τ , is

L∑
m=1

πτmq
τ
mpm =

L∑
m=1

(pm− pm+1)bm+1q
τ
m+1. (7)

In the model considered by Edelman et al. (2007) and Varian (2007) the random variables (qτi , i∈

I) are all in fact constants, and in this case there may be multiple Nash equilibria. For example,

suppose L = I = 2: then for either one of the advertisers to bid very high and the other to bid

very low is a Nash equilibrium. We shall see in following sections that provided our monotonicity

condition is satisfied there is a unique Nash equilibrium.

The restriction that click-through probabilities have the product-form pτil = qτi pl implies they lie

in a linear subspace of P̃: thus they do not have a density over P̃, and so we cannot appeal to

Proposition 1 to justify the monotonicity property, in particular that yi(b) is a strictly increasing

and continuous function of bi. But if the advertiser effects (qτi , i∈ I) have a continuous probability

density positive on a neighbourhood of the origin in {q ∈ [0,1]|I|} then the monotonicity property

will follow. Essentially the variability of the advertiser effect qτi smooths out the impact of the bid

bi sufficiently that the rate yi(bi, b−i) is continuous in bi.

3. Optimization Preliminaries

In this section we present an optimization problem which we use to develop various decomposi-

tion and duality results. In particular, we find that if advertisers equate bids with their marginal

utility and the platform solves a maximum weighted matching assignment problem for each search

instance, then social welfare will be maximized.
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We suppose each advertiser i has a utility function, yi 7→ Ui(yi), where Ui(·) is non-negative,

increasing, strictly concave and continuously differentiable. Our objective is to place adverts so as

to maximize the sum of these utilities, in other words to maximize social welfare. To simplify the

statement of results we shall assume further that U ′i(yi)→∞ as yi ↓ 0 and U ′i(yi)→ 0 as yi ↑ ∞.

The maximization of social welfare by the auction system is the following problem.

SYSTEM(U , I, Pτ )

Maximize
∑
i∈I

Ui(yi) (8a)

subject to yi =Eτ
[∑
l∈L

pτilx
τ
il

]
, i∈ I, (8b)∑

i∈I

xτil ≤ 1, l ∈L, τ ∈ T , (8c)∑
l∈L

xτil ≤ 1, i∈ I, τ ∈ T , (8d)

over xτil ≥ 0, yi ≥ 0 i∈ I, l ∈L. (8e)

Inequalities (8c) and (8d) are just the scheduling constraints (1b) and (1c), that each slot can show

at most one advert and that each advertiser can show at most one advert, while equality (8b)

recaps the definition (2) of yi, the expected click-through rate. Over these constraints we maximize

social welfare, i.e., the aggregate sum of the utilities.

To solve the above optimization, one could imagine that there is a centralized designer who knows

everything about the entire system: the advertisers’ utilities Ui(·), i∈ I, click-through probabilities

pτil, i∈ I, l ∈L, τ ∈ T , and the distribution Pτ over these probabilities. This designer then attempts

to assign adverts in a way so that yi, i∈ I, the click-through rates received by advertisers, maximize

social welfare. The solution of such an optimization by centralized means is not possible — for

example, the utilities will not be known — but the form of the solution will help us develop an

appropriate decomposition, respecting the time-scales relevant to the platform and advertisers. In

the next section, on mechanism design, we consider the game theoretic aspects that arise when,

instead of a single system optimizer, the platform and advertisers have differing information and

incentives.

Incorporating the constraint (8b) into the objective function (8a) gives the Lagrangian

Lsys(x, y; b) =
∑
i∈I

Ui(yi) +
∑
i∈I

biEτ

[∑
l∈L

pτilx
τ
il− yi

]
,

where bi, i ∈ I are the Lagrange multipliers associated with the constraints (8b), with bi ≥ 0.

Notice, we intentionally omit the scheduling constraints from our Lagrangian. Thus we seek to
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maximize the Lagrangian subject to the constraints (8c-8d) as well as (8e). Let S be the set of

variables xτ = (xτil : i ∈ I, l ∈ L) satisfying the assignment constraints (1b-1d), and let A be the

set of variables x= (xτ ∈ S : τ ∈ T ) satisfying the assignment constraints (8c-8e). We see that our

Lagrangian problem is separable in the following sense

max
x∈A,y≥0

Lsys(x, y; b) =
∑
i∈I

max
yi≥0
{Ui(yi)− biyi} (9a)

+Eτ

[
max
xτ∈S

∑
i∈I

∑
l∈L

bip
τ
ilx

τ
il

]
. (9b)

Define

U∗i (bi) = max
yi≥0
{Ui(yi)− biyi} . (10)

The optimization over yi contained in the definition (10) would arise if advertiser i were presented

with a fixed price per click-through of bi: if allowed to choose freely her click-through rate, she

would then choose yi such that U ′i(yi) = bi. By our assumptions on Ui(·), this equation has a unique

solution for all bi ∈ (0,∞). Call Di(ξ) = {U ′i}−1(ξ) the demand of advertiser i at price ξ. It follows

that U∗i (bi) can be written in the form

U∗i (bi) =

∫ ∞
bi

Di(ξ)dξ; (11)

call this advertiser i’s consumer surplus at the price bi. From this expression we can deduce that

U∗i (bi) is positive, decreasing, strictly convex and continuously differentiable.

Observe that the maximization inside the expectation (9b) is simply the problem

ASSIGNMENT(τ, b), and thus we can write

max
x∈A,y≥0

Lsys(x, y; b) =
∑
i∈I

U∗i (bi) +
∑
i∈I

biyi(b).

The Lagrangian dual of the SYSTEM problem (8) can thus be written as follows.

DUAL(U∗,y, I)

Minimize
∑
i∈I

(U∗i (bi) + biyi(b)) (12a)

over bi ≥ 0, i∈ I. (12b)

Owing to the size of the type space T , the optimization (8) has a potentially uncountable number

of constraints. This presents certain technical difficulties, for instance those associated with proving

strong duality. These issues are dealt with in the appendix, where the proofs of the following two

propositions are presented.

We first observe that the SYSTEM problem decomposes into optimizations relevant to the

advertisers and to the platform.



Kelly, Key and Walton: Efficient Advert Assignment
Article submitted to Operations Research; manuscript no. OPRE-2014-09-535 13

Proposition 2 (Decomposition). Variables ỹ, x̃τ , τ ∈ T , satisfying the feasibility condi-

tions (8b-8e) are optimal for SYSTEM(U ,I,Pτ) if and only if there exist b̃i, i∈ I, such that

A. b̃i minimizes U∗i (bi) + biỹi over bi ≥ 0, for each i∈ I,

B. x̃τ solves ASSIGNMENT(τ, b̃) with probability one under the distribution Pτ over τ ∈ T .

In this proposition, the optimization in Condition A does not naturally correspond to the bid-

ding behavior of strategic advertisers, at least in its present form. Hence we need to examine the

implications of Condition A for the construction of prices (3) that do give strategic advertisers

the incentive to solve the SYSTEM problem. We do this in the next section, Section 4. There

we shall also see that the per-click pricing implementations (4) and (5) are made possible by the

decomposition into per-impression assignments, Condition B.

The optimal bids b̃ can be further understood through the following dual characterization.

Proposition 3 (Dual Optimality).

a) The objective of the dual problem (12) is continuously differentiable for b > 0 and is minimized

uniquely by the positive vector b̃= (b̃i : i∈ I) satisfying, for each i∈ I,

dU∗i
dbi

(b̃i) + yi(b̃) = 0. (13)

b) If b̃ is an optimal solution to the DUAL problem (12) then xτ (b̃), y(b̃) are optimal for the

SYSTEM problem (8).

The dual provides a finite parameter optimization from which the SYSTEM problem can be solved.

Moreover, (13) provides conditions on advertiser demands which, to solve the SYSTEM problem,

must be effected by the auction system in strategic form.

4. Mechanism Design

We now prove that our mechanism implements our system optimization. In the last section we

demonstrated how this global problem can be decomposed into two types of sub-problem: one,

where the platform finds an optimal assignment given click-through probabilities; and the other,

where the dual variables b are each set to solve a certain single parameter dual problem. In this

section we suppose the advertisers act strategically, anticipating the result of the platform’s assign-

ment and attempting to maximize their payoff.

Henceforth bi is the bid submitted by advertiser i and, as a function of these bids, we formulate

prices that incentivize the advertisers to choose bids that result in an assignment that solves the

SYSTEM problem (8).
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Consider a mechanism where, given the vector of bids b= (bi : i∈ I), each advertiser, i, receives

a click-through rate yi(b), and from this derives a benefit Ui(yi(b)) and is charged an expected price

πi(b) per click. The payoff to advertiser i arising from a vector of bids b= (bi : i∈ I) is then

ui(b) =Ui(yi(b))−πi(b)yi(b). (14)

A Nash equilibrium is a vector of bids b∗ = (b∗i : i∈ I) such that, for i∈ I and all bi

ui(b
∗)≥ ui(bi, b∗−i). (15)

Here (bi, b
∗
−i) is obtained from the vector b∗ by replacing the ith component by bi.

The main result of this section is the following.

Theorem 1. If prices are charged so that the expected rate of payment by advertiser i, for i∈ I, is

given by expression (3) then there exists a unique Nash equilibrium, and it is given by the vector of

optimal prices identified in Proposition 3. Thus the assignments achieved at the Nash equilibrium,

xτ (b∗), y(b∗), form a solution to the SYSTEM problem (8).

The result states that, given adverts are assigned according to the assignment problem (1), the

game theoretic equilibrium reached by advertisers attempting to maximize their respective payoffs

ui solves the problem SYSTEM(U ,I,Pτ ). Since yi(b
′
i, b−i) is a strictly increasing function of the bid

b′i, it follows from (3) that the price πi(b) must be strictly lower than the bid bi. Setting a price

lower than the submitted bid is a prevalent feature of online auctions used by search engines, and,

as we emphasized in Section 2, the prices (3) can be practically implemented in a sponsored search

setting.

We note that, in this section, each advertiser expresses their preferences through a single bid.

This framework extends naturally to the case where advertisers place multiple bids over multiple

different keywords (or search categories). This extension is given in Section 7.

4.1. Proof of Theorem 1

To establish Theorem 1 we will require an additional result, Proposition 4, which indicates how

maximal payoffs achieved by each advertiser relate to the solution of the dual problem, given by

Proposition 3 from the previous section.

Proposition 4 (Mechanism Dual). For each positive choice of b−i = (bj : j 6= i, j ∈ I), the fol-

lowing equality holds

max
bi≥0

ui(b) = min
bi≥0

{
U∗i (bi) +

∫ bi

0

yi(b
′
i, b−i)db

′
i

}
. (16)

Moreover, the optimizing bi for both expressions is the same, is unique and finite, and satisfies

d

dbi
U∗i (bi) + yi(b) = 0. (17)
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Proof We calculate the conjugate dual of the payoff function (14). Let Pi(yi) be the function

whose Legendre-Fenchel transform is

P ∗i (bi) =

∫ bi

0

yi(b
′
i, b−i)db

′
i.

The above function is increasing and convex, and we know from Fenchel’s Duality Theorem (Bor-

wein and Lewis 2006, Theorem 3.3.5) that

max
yi≥0
{Ui(yi)−Pi(yi)}= min

bi≥0
{U∗i (bi) +P ∗i (bi)} . (18)

Next we calculate the function Pi from the dual of the function P ∗i above. By the Fenchel–Moreau

Theorem, Borwein and Lewis (2006), we know this to be

Pi(yi) = min
bi≥0

{
biyi−

∫ bi

0

yi(b
′
i, b−i)db

′
i

}
.

The optimum in this expression occurs when yi(b) = yi. Substituting this back, since bi 7→ yi(b) is

strictly increasing, we have that

Pi(yi) =

∫ ∞
0

(yi− yi(b′i, b−i)) I[yi(b
′
i, b−i)≤ yi]db′i. (19)

In other words, as expected with the Legendre-Fenchel transform, the area under the curve

yi(bi, b−i) is converted to the area to the left of the curve yi(bi, b−i). Further, notice, if yi >

maxbi yi(bi, b−i) then Pi(yi) =∞, and thus the finite range of the function yi 7→ Pi(yi) is exactly the

same as that of bi 7→ Pi(yi(b)). Noting (19) and this last observation, the equality (18) now reads

min
bi≥0

{
U∗i (bi) +

∫ bi

0

y(b′i, b−i)db
′
i

}
=max

yi≥0
{Ui(yi)−Pi(yi)}

=max
bi≥0
{Ui(yi(b))−Pi(yi(b))}

=max
bi≥0
{Ui(yi(b))−πi(b)yi(b)} .

In the final equality we note from the definition (3) that Pi(yi(b)) = πi(b)yi(b). This gives the

equality (16).

We now show that both expressions (16) are determined at the same unique value of bi. The

function U∗i (bi)−P ∗i (b) is a strictly convex differentiable function of bi, whose unique minimum is

given by the required expression (17). Further, bi 7→ yi(bi, b−i) is strictly increasing and bi achieves

the range of the strictly concave function Ui(yi)−Pi(yi) under yi = yi(bi, b−i). Thus Ui(yi)−Pi(yi)
is maximized uniquely by yi = yi(bi, b−i) (and thus uniquely by bi) satisfying

d

dyi
Ui(yi(b))− bi = 0. (20)

Since d
dbi
U∗i is the inverse of the strictly increasing function d

dyi
Ui, it is clear that (17) and (20) are

equivalent and satisfied by the same unique bi. This completes the proof. �
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The proof of Theorem 1 follows by observing the optimality conditions of Propositions 3 and 4.

Proof of Theorem 1 Before proceeding with the main argument, we note that a Nash equilib-

rium must be achieved by positive values of bi. By applying the mean value theorem, for some ỹ

satisfying 0 = yi(0, b−i)≤ ỹ≤ yi(bi, b−i), we have

ui(bi, b−i)≥Ui(0) +U ′i(ỹ)(yi(bi, b−i)− yi(0, b−i))−
∫ bi

0

(yi(bi, b−i)− yi(0, b−i))db′i

= ui(0, b−i) + (U ′i(ỹ)− bi)(yi(bi, b−i)− yi(0, b−i)) (21)

>ui(0, b−i).

The second term in (21) is positive for bi sufficiently small, since U ′i(ỹ)− bi↗∞ as bi↘ 0 and

from our monotonicity property yi(bi, b−i)> yi(0, b−i). From this we see that a Nash equilibrium

can only be achieved with bi > 0 for each i∈ I.

By Proposition 4, b= (bi : i∈ I)> 0 is a Nash equilibrium if and only if condition (17) is satisfied

for each i∈ I. But by Proposition 3b), these conditions hold if and only if b is the unique solution to

the dual to the SYSTEM problem. So, the set of Nash equilibria are the optimal prices defined for

the decomposition, Proposition 2. By Proposition 3b), the assignment achieved by Nash equilibrium

bids maximizes the utilitarian objective SYSTEM(U , I, Pτ ). Finally, by Strong Duality (Theorem

EC.1 of Appendix EC.3), there exists b∗ which optimizes the dual problem (12), and thus there

must be a Nash equilibrium. �

Remark 1. The optimality condition (13) or (17) states that each advertiser’s demand, Di(bi),

and supply, yi(b), should equate, and is a consequence of the Envelope Theorem. A more familiar

context for this form of result is Vickrey pricing (Vickrey (1961)) and Myerson’s Lemma (or the

Revenue Equivalence Theorem), see Myerson (1981) and (Milgrom 2004, Theorem 3.3), which are

also consequences of the Envelope Theorem. But observe that we are using general utilities, which

despite the single input parameter bi, takes us out of a single parameter type space to which

Myerson’s Lemma generally applies.

We have assumed throughout the monotonicity property, ensuring that the mapping bi 7→

yi(bi, b−i) is strictly increasing and continuous. A natural question concerns whether the mono-

tonicity property can be relaxed.

Example 2. If the mapping is discontinuous, there may be inefficient Nash equilibria, and the

L= I = 2 case discussed in Example 1, with two advertisers and two slots, provides an illustration.

The same difficulty can arise even if the mapping is continuous but not strictly increasing, as we

now show. Amend the illustration, by supposing that the advertiser effects qτ1 , q
τ
2 are independent

random variables with continuous probability density functions each supported on the interval
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(q− ε, q+ ε) for q >> ε > 0. The mapping bi 7→ yi(bi, b−i) is now continuous, although not strictly

increasing. The inefficient Nash equilibria remain, where one of the advertisers bids very high and

the other very low. If we assume the densities of qτ1 , q
τ
2 are positive in a neighbourhood of the origin,

then the mapping is necessarily strictly increasing, because a small increase in an advertiser’s

bid will have a small but positive probability of improving the slot allocated to the advertiser:

competition exists between the advertisers, whatever their bids, for at least some search types τ ,

and this ensures the uniqueness and efficiency of the Nash equilibrium.

5. Dynamics and Convergence

We have seen in Section 2 that our assignment model involves the rapid solution of a computation-

ally straightforward problem for each individual search. The challenge facing an advertiser is of a

different form: she has to rely on noisy and possibly delayed feedback averaged over some period

of time in order to learn the mean click-through rate yi that has been achieved by her bid bi, and

she then has to decide whether to vary her bid. We shall formulate the advertiser’s problem in

continuous time, and the natural question is whether multiple advertisers smoothly varying their

bids bi(t) as a consequence of their current click-through rates yi(t) will converge to the Nash

equilibrium.

Convergence may not be possible when the search space is discrete, e.g., for an auction on a

single search type. Essentially, the search engine does not have enough additional information from

the search type τ to fine tune its discrimination between advertisers. However, in sponsored search,

there is inherent variability in the search type τ which will influence the click-through probabilities

of the advertiser. This is the motivation for our assumption of the monotonicity property, that the

distribution Pτ over T is such that the click-through rate yi(b) is a continuous, strictly increasing

function of bi. We shall see that, under models of advertiser response, we are then able to deduce

convergence towards a system optimum.

Recall the objective function for the dual of the system problem as derived in Proposition 3,

V(b) =
∑
i∈I

U∗i (bi) +
∑
i∈I

biyi(b). (22)

This expression is the sum of the consumer surpluses and the revenue achieved by the platform at

prices b and, when b is optimal, it is equal to the maximal total welfare as defined by the SYSTEM

problem (8). Further, V(b) is continuously differentiable for b > 0 with

∂V
∂bi

=−Di(bi) + yi(b).
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We next model advertisers’ responses to their observation of click-through rates. We suppose

advertiser i changes her bid bi(t) smoothly (i.e., continuously and differentiably) as a consequence

of her observation of her current click-through rate yi(t) so that

d

dt
bi(t)≷ 0 according as bi(t)≶U

′
i(yi(b(t))). (23)

This is a natural dynamical system representation of advertiser i varying bi smoothly in order to

improve her payoff ui(b), given by expression (14), under prices (3), since under the monotonicity

condition a small positive change in bi will cause a small positive change in yi(b) and the impact

on ui(b) will be positive or negative as in relation (23) - see Lemma EC.3 in Appendix EC.4. Note

that from the definition of the demand function Di(·),

yi ≶Di(bi) according as bi ≶U
′
i(yi). (24)

The payoff ui(b) is maximized over bi when bi and U ′i(yi(b)) equate, or equivalently, when yi(b) and

Di(bi) equate.

Theorem 2 (Convergence of Dynamics). Starting from any point b(0) in the interior of the

positive orthant, the trajectory (b(t) : t≥ 0) of the above dynamical system converges to a solution

of the DUAL problem (12). Thus y(b(t)), the assignment achieved by the prices b(t), converges to

a solution of the SYSTEM problem (8).

Proof We prove that the objective of the dual problem V(b), defined above, is a Lyapunov

function for the dynamical system. Note that V(b) is continuously differentiable for b > 0. Since

yi(b) ↓ 0 as bi ↓ 0 and U ′(0)> 0 it follows from (23) that there exists δ > 0, possibly depending on

b−i(t), such that d
dt
bi(t)> 0 if bi(t)≤ δ. We deduce that the paths of our dynamical system (b(t) :

t ≥ 0) are strictly positive and V(b(t)) is continuously differentiable along these paths. Further,

the level sets {b : V(b) ≤ κ} are compact: this is an immediate consequence of the facts that the

functions U∗i (bi) are positive and decreasing, and, as proven in Lemma EC.2, that

lim
||b||→∞

∑
i∈I

biyi(b) =∞.

Differentiating V(b(t)) yields

d

dt
V(b(t)) =

∑
i∈I

∂V
∂bi

d

dt
bi(t) =−

∑
i∈I

(Di(bi(t))− yi(b(t)))
d

dt
bi(t)≤ 0,

where the inequality follows from relations (23) and (24), and is strict unless Di(bi(t)) = yi(b(t)) for

i ∈ I. By Lyapunov’s Stability Theorem, see (Khalil 2002, Theorem 4.1), the process (b(t) : t≥ 0)

converges to the set of points b∗ satisfying, for i ∈ I, Di(bi) = yi(b). Recall that
dU∗i
dbi

= −Di(bi)

and thus, by Proposition 3(a), the price process b(t) converges to an optimal solution to the dual

problem (12). By the monotonicity property y(b) is continuous, and thus by Proposition 3(b) the

click-through rates y(b(t)) converge to an optimal solution for the system problem. �
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In the above discussion we model advertisers that smoothly change their bids over time. How-

ever, we remark that other convergence mechanisms could be considered. For instance, since our

dual optimization problem is convex and continuously differentiable, we can minimize the dual

through a coordinate descent algorithm, where each component bi is sequentially minimized. Such

an algorithm could correspond to a game played sequentially with advertisers iteratively maximiz-

ing over bi their payoff ui(bi, b−i). Previous work on global convergence to a Nash equilibrium using

an assumption of local rather than complete information is described by Yang and Hajek (2006).

The dynamical system of this section allows advertisers’ bids to adapt to a non-stationary

environment, for example if the set of participating advertisers changes. Note that we have left

unexplored the statistical aspects of estimating the click-through rates yi, although some insights

are available from the network utility maximization framework for communication networks (Kelly

(2003)). In particular, if the period of time over which the click-through rates yi are estimated is

longer then this will improve the statistical accuracy of the estimation, but will also slow down

the rate of adaptation to a changing environment; and even in a stationary environment there is

necessarily a trade-off between the speed of convergence to, and the stochastic variability around,

the system optimum.

Remark 2. We have assumed Ui(·) is non-negative, increasing and strictly concave, and is contin-

uously differentiable with boundary conditions U ′i(yi)→∞ as yi ↓ 0 and U ′i(yi)→ 0 as yi ↑∞. The

boundary conditions have simplified the statement of results, but are not critical. If we assume only

that Ui(·) is increasing, strictly concave, and continuously differentiable with U ′i(0)<U ′i(∞) then

the Lyapunov function (22) remains strictly convex on the domain {b :U ′i(∞)< bi <U ′i(0), i ∈ I},

has an interior minimum, and starting from any point b(0) in this domain the trajectory (b(t) : t≥ 0)

converges to the point b achieving this minimum, which is the unique Nash equilibrium.

6. General Assignments

In this section we consider how the assignment problem (1) can be generalized within our frame-

work. Some extensions are immediate and straightforward. For example, we could allow the number

of slots L= L(τ) to depend on the search type τ ; the pricing implementations of Section 2.2 do

not require L(τ) to be constant over τ . In this Section we consider two further generalizations of

practical importance.

6.1. More complex page layouts

Suppose the platform allows adverts of different sizes: for example, an advertiser may wish to offer

an advert that occupies two adjacent slots. More generally adverts may vary in size, position, and

include images and other media. So the platform may have a more complex set of possible page
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layouts than simply an ordered list of slots 1,2, . . . ,L. Let l ∈ L describe a possible layout of the

adverts for advertisers i ∈ I. Let pτil be the probability of a click-through to advertiser i under

layout l. Then the generalization of the assignment problem (1) becomes

Maximize
∑
i∈I

bip
τ
il

over l ∈L.

Indeed, this formulation allows the click-through probabilities for an advert to depend not just on

the advertiser and the position within the page, but also on which other adverts are shown on the

page, provided only the probabilities pτil can be estimated.

The complexity of this optimization problem depends on the design of the page layout through

the structure of the set L and may depend on any structural information on the probabilities pτil,

but for a variety of cases it will remain an assignment problem with an efficient solution. If yi(b)

is again defined as the expected click-through rate for advertiser i from a bid vector b, and if it

satisfies the monotonicity property, then Theorems 1 and 2 hold with identical proofs.

Example 3. In an image-text auction, the platform may place on a page either an ordered set of

text adverts (as described in Section 2) or a single image advert. As before advertiser i bids bi,

the marginal utility to advertiser i of an additional click-through; and now we suppose advertisers

i∈ Itext make available text adverts and advertisers i∈ Iimage make available image adverts, where

I = Itext ∪ Iimage and an advertiser i ∈ Itext ∩ Iimage makes available both a text and an image

advert. Let the click-through probability on image advert i be pτi for i∈ Iimage, with click-through

probabilities on text adverts as in Section 2.

For this example the assignment problem is straightforward: the platform solves the earlier

assignment problem (1) over advertisers i∈ Itext, and shows text adverts if the optimum achieved

exceeds maxi∈Iimage bip
τ
i and otherwise shows an image achieving this latter maximum. Similarly

the calculation of the rebate is straightforward, with one further assignment problem to be solved

for each click-through.

It is of course possible to construct assignment problems that are not as straightforward. For

example, suppose that adverts are of different sizes, and the platform has a bound on the sum of the

advert sizes shown. The assignment problem then includes as a special case the knapsack problem.

In general the problem is NP-hard but it becomes computationally feasible if, for example, there

are a limited number of possible advert sizes, as in the image-text auction above.
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6.2. Controlling the number of slots

The platform may wish to limit the number of slots filled, if it judges the available adverts as

not sufficiently interesting to searchers. Ultimately showing the wrong or poor quality adverts can

cause searchers to move platform and so hurt long-term platform revenue.

Suppose the platform judges there is a benefit (positive or negative) qτil to a searcher for an

impression of the advert from advertiser i in slot l for a search of type τ , regardless of whether or

not the searcher clicks on the advert. The system objective function (8a) then becomes

∑
i∈I

Ui(yi) +Eτ

[∑
i∈I

∑
l∈L

qτilx
τ
il

]
,

the assignment objective function (1a) becomes∑
i∈I

∑
l∈L

(bip
τ
il + qτil)x

τ
il,

and our results hold with minor amendments. In particular, equation (3) for the price function and

equation (22) for the Lyapunov function are unaltered, although of course the functions yi(b) will

now be defined in terms of solutions to the new assignment problem.

An important special case occurs when qτil ≡−R, where R is a reserve price, but in this case we

need to slightly perturb the set-up to ensure that Proposition 1 remains sufficient for the mono-

tonicity property. Suppose that qτil = qτ for all i ∈ I, l ∈ L where qτ = 0 or −R with probabilities

ε and 1− ε respectively. (Formally, augment the space T to carry a random variable qτ that is

independent of the click-through probabilities pτil.) Then with probability 1− ε an advert will be

shown in a slot only if its contribution to the objective function of the assignment problem, bip
τ
il,

is at least R. With probability ε a reserve is not applied: we add the possibility to ensure yi(b) is

increasing even for small bi.

Of course a reserve R may also have a favourable effect on the revenue received by the platform,

Ostrovsky and Schwarz (2011), Bachrach et al. (2014). As an illustration, consider the generalized

second price auction of Example 1. A reserve of R will reduce the number of slots filled if R> bLp
τ
L

and may increase the revenue, which can be calculated from expression (7). Nevertheless our

framework is one of utility maximization: we assume the platform is trying to assure its long-term

revenue by producing as much benefit as possible for its users, its advertisers and itself. There

are, of course, several ways in which the platform could increase its own revenue within the utility

maximization framework: in the absence of competition from other platforms it could for example

charge an advertiser a fixed fee, less than the advertiser’s consumer surplus, to participate.

As yet a further example of the flexibility of the framework, instead of a fixed reserve price we

could allow an organic search result k to compete for a slot, with a positive benefit qτkl, but with
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bk = 0. Recent work has analyzed the trade-off in objectives between the platform and advertiser

in sponsored search: Roberts et al. (2013) focus on ranking algorithms, trading off revenue against

welfare, while Bachrach et al. (2014) also include the user as an additional stakeholder. Our frame-

work aims to maximize the aggregate social welfare of the auction system, but it is noteworthy

that this simple model of the benefit to a user of organic search results can be subsumed within

our framework.

7. Platform-wide optimization

An advertiser may judge some types of click-through as more valuable than others. In this section

we suppose that the platform allows an advertiser to express such preferences, by making distinct

bids on different categories of search query. The challenge for the advertiser is to balance her bids

across the range of categories offered to her by the platform.

Suppose the platform allows advertiser i to partition the type space T into categories (Tik : k ∈

Ki). The categories may be defined in terms of the keywords used in a search or any other feature

of the search type, such as geographical area or broad classification of the user, that the platform

is prepared to share with advertiser i. We assume the platform allows advertiser i to know the

category of the search type τ , namely that τ ∈ Tik, but the platform knows more, namely τ . We

suppose the platform may vary aspects of the auction, such as the number of advertising slots on

the page or more generally the layout of the page, depending on the search type τ . For example,

the platform may use the current screen size of the user to determine the page layout.

Let bik be the bid of advertiser i for click-throughs from category k, and let bi = (bik : k ∈Ki) and

b= (bik : i ∈ I, k ∈ Ki). Let yik be the click-through rate to advertiser i from searches in category

k ∈ Ki, and assume that the expected rate of payment by advertiser i for click-throughs from

category k ∈Ki is

πik(b)yik(b) =

∫ bik

0

(
yik(b)− yik(b′ik, b)

)
db′ik, i∈ I, k ∈Ki,

where (b′ik, b) is the vector obtained from the vector b by replacing the component bik by b′ik. This

rate of payment can be achieved by either of the first two pricing implementations of Section 2.2:

these implementations use the function yτi (b) to determine the charge for a click-through, and so

no difficulty is caused by the form of the auction depending upon the search type τ .

Let yi = (yik : k ∈Ki). If advertiser i’s utility Ui(yi) is simply a sum of utilities Uik(yik) over the

categories k ∈Ki then this model is subsumed in the model treated in earlier sections: advertiser i

can be represented by a collection of sub-advertisers, one for each category k ∈Ki, and the platform

can set click-through probabilities to zero for sub-advertiser k ∈Ki if τ /∈ Tik. But for more general

utility functions we would expect that the bids bik, k ∈Ki, cannot be determined independently.
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Suppose, then, that advertiser i’s utility Ui(·) is an increasing, strictly concave, continuously

differentiable function of the vector yi = (yik : k ∈Ki). Assume that the partial derivative ∂Ui/∂yik

decreases from ∞ to 0 as yik increases from 0 to ∞, and that bik 7→ yik(bik; b) satisfies the mono-

tonicity property.

Let

U∗i (bi) = max
yi≥0

(
Ui(yi)−

∑
k∈Ki

bikyik

)
,

the Legendre-Fenchel transform of Ui(yi), interpretable as the consumer surplus of advertiser i

at prices bi. Our conditions on Ui and its partial derivatives ensure there is a unique maximum,

interior to the positive orthant, for any price vector bi in the positive orthant. Let (Dik(bi) : k ∈Ki)
be the argument yi that attains this maximum: it is the demand vector of advertiser i at prices bi,

and
∂

∂bik
U∗i (bi) =−Dik(bi). (25)

Then the question for advertiser i is how to balance her bids (bik : k ∈Ki) over the categories Ki
that are of interest to her. The payoff to advertiser i arising from a vector of bids b= (bi : i∈ I) =

(bik : i∈ I, k ∈Ki) is then

ui(b) =Ui(yi(b))−
∑
k∈Ki

πik(b)yik(b),

and the condition for a Nash equilibrium is again (15) where now bi is a vector. Paralleling the

development of Section 4, the maximum of the payoff function bi 7→ ui(bi, b−i) is attained when

∂

∂bik
U∗i (bi) + yik(b) = 0, k ∈Ki,

or equivalently Dik(bi) = yik(b) for k ∈Ki, there is a unique Nash equilibrium, and these conditions

also identify the unique system optimum.

Next suppose that for each k ∈Ki advertiser i changes her bid bik(t) smoothly (i.e., continuously

and differentiably) as a consequence of her observation of her current click-through rate yik(b(t))

so that
d

dt
bik(t)≷ 0 according as yik(b(t))≶Dik(bi(t)). (26)

This is a dynamical system representation of advertiser i varying bik smoothly in order to increase

or decrease her bid for keyword k according to whether the currently observed click-through rate

yik(t) is lower or higher than her demand at her current bid prices. Then trajectories converge to

the solution of the system problem, by essentially the same Lyapunov argument as used to prove

Theorem 2, as we now sketch.

Let

V(b) =
∑
i∈I

U∗i (bi) +
∑
i∈I

∑
k∈Ki

bikyik(b).
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Differentiating V(b(t)) yields, from (25), Lemma EC.2 and (26),

d

dt
V(b(t)) =

∑
i∈I

∑
k∈Ki

∂V
∂bik

d

dt
bik(t) =−

∑
i∈I

∑
k∈Ki

(Dik(bi(t))− yik(b(t)))
d

dt
bik(t)≤ 0

where the inequality is strict unless Dik(bi(t)) = yik(b(t)) for i ∈ I, k ∈ Ki. But this holds if and

only if y solves the system problem.

Remark 3. Our approach to auction design separates the computational burden into a task that

can be completed quickly for each page impression by the platform, and tasks that can be performed

more slowly by individual advertisers or perhaps agents working on their behalf. The task for an

advertiser is to assess the value to her of different forms of click-through. This may not be an easy

task, but it is a task naturally assigned to the advertiser and is made simpler by requiring only

local information in the region of the currently achieved click-through rates.

Remark 4. How finely should a search platform allow categories to be defined, and how finely

should it divide its stream of queries across distinct auctions? Finer classifications will allow adver-

tisers to communicate more precisely their valuations but excessive targeting may lead to thinner

markets and to various forms of adverse selection. These trade-offs are discussed by Levin and

Milgrom (2010), who argue that the degree of differentiation allowed, or conflation imposed, is an

important aspect of the organization of well-functioning markets.

In the current context, observe that advertiser i is forced to conflate her bid bik across multiple

auctions, and in each of these the set of competing advertisers is likely to be different. Thus the

design of the categories (Tik : k ∈ Ki, i ∈ I) provides ample opportunity to balance the degree of

differentiation allowed to, or conflation imposed upon, advertisers by the platform.

We end this section with two examples which indicate the connections between our work and

earlier important approaches in the traffic engineering and resource allocation literature.

Example 4. Consider a platform with advertisers who prefer click-throughs that come from one

geographical area rather than another, or from one set of keywords rather than another, simply

because such click-throughs are more likely to convert into sales. Then advertiser i’s utility will be

a univariate function

Ui

(∑
k∈Ki

wikyik

)
(27)

where we assume Ui(·) satisfies our earlier assumptions from Section 3 and where wi = (wik : k ∈Ki)

account for the weight applied to each category by advertiser i.

Given that advertiser i declares a bid b̃i and weights w̃i = (w̃ik : k ∈ Ki) (strategically and not

necessarily equal to wi), the platform may use the information contained in w̃ as well as b̃ and τ
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to solve the revised assignment problem, ASSIGNMENT(τ, b̃, w̃), defined as problem (1) with the

revised objective:

Maximize
∑
i∈I

b̃i
∑
l∈L

w̃τi p
τ
ilx

τ
il,

where w̃τi = w̃ik for τ ∈ Tik and k ∈Ki. Write bik = b̃iw̃ik and b= (bik : k ∈Ki, i∈ I). then the model

formally reduces to that of this section. Essentially there are number of parallel auctions taking

place with the search type τ determining the bids of advertisers: if τ ∈ Tik then the bid of advertiser

i is bik.

The reduction replaces the vector function Ui(yik : k ∈Ki) by the special case (27), a univariate

function of a weighted sum. The utility (27) is concave but not strictly concave, and this introduces

some minor technicalities and some simplifications. When strategic advertisers maximize over (bik :

k ∈Ki) their respective payoff functions

ui(b) :=Ui

(∑
k∈Ki

wikyik(b)
)
−
∑
k∈Ki

πik(b)yik(b)

the resulting Nash equilibrium is achieved under the necessary conditions

wikU
′
i

(∑
k∈Ki

wikyik(b)
)

= bik, if yik(b)> 0, (28a)

wikU
′
i

(∑
k∈Ki

wikyik(b)
)
≤ bik, if yik(b) = 0, (28b)

for k ∈ Ki and i ∈ I. In particular, (28a) implies that if yik(b) > 0 then wik/bik does not depend

on k ∈ Ki: hence the weights intrinsic to advertiser i, (wik : k ∈ Ki), and the weights declared

strategically by advertiser i to the platform, (w̃ik = bik/bi : k ∈ Ki), are in proportion wherever a

positive click-through rate is received (this is the simplification achieved by the form (27)). So

the auction mechanism achieves incentive compatibility: advertisers are encouraged to truthfully

declare their intrinsic weights for categories for which they are competing.

We can interpret the system optimization as an infinitely large bipartite congestion game, an

interpretation that parallels one of Vickrey’s early motivations in transport pricing; in particular

the conditions (28) parallel the conditions for a traffic equilibrium in a network, Wardrop (1952),

Beckmann et al. (1956).

Example 5. An advertiser may have a budget constraint on what she can spend across different

types of search, for example, in an advertising campaign. In this example we note a simple approach

which captures a budget constraint within the framework of this section.

Suppose

Ui(yi) =
Bi
q

log
∑
k∈Ki

(wikyik)
q
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for 0< q < 1. Then
∂Ui
∂yik

=
Biw

q
ikyik

q−1∑
j∈Ki

(wijyij)q

and so at the unique Nash equilibrium described earlier in this section, where ∂Ui/∂yik = bik, the

budget constraint ∑
k∈Ki

bikyik =Bi

is automatically satisfied; note that the constraint is on the rate of bidding rather than expenditure,

i.e., not taking into account rebates.

We require q < 1 to ensure the strict concavity of Ui(·). As q→ 1, maximizing Ui(yi) subject

to the budget constraint approaches the problem of maximizing
∑

k∈Ki
wikyik subject to the same

budget constraint. In the special case where all advertisers are budget constrained we recover an

important early model for the equilibrium price of goods for buyers with linear utilities, Fisher

(1892), Eisenberg and Gale (1959).

Advertiser i will receive a stream of rebates, which may be delayed and will be noisy. Rebates

will cause the total spent in a period to be less than the budget Bi, and a natural control response

would be to spread the total rebate received in one time period over the budgets available for

later time periods. Borgs et al. (2007) explore a natural bidding heuristic for a budget-constrained

advertiser which readily extends to include delayed rebates.

8. Related Work

In this paper we have considered a problem where the social welfare of an auction system is

optimized subject to the capacity constraints of that system. Social welfare optimization has long

been an objective in the design of effective market mechanisms, Vickrey (1961). However, only

in the recent literature have computationally efficient methods been considered for market and

auction design, see Birnbaum et al. (2010), Jain and Vazirani (2007), Vazirani (2010). In the

context of electronic commerce and specifically sponsored search auctions, these computational

considerations are of critical importance given the increased diversity and competition associated

with online advertising.

We have applied a decomposition approach to the task of optimizing advert allocation over the

vast range of searches that can be conducted, and separated the task into sub-problems which can

be implemented by each advertiser and on each search. The decompositions of interest are familiar

and have been important in the context of communication network design, Srikant (2004), Kelly and

Yudovina (2014). Tan and Srikant (2012) is a distinct approach using optimization decomposition

ideas, but based instead on a queueing model of an on-line advert campaign and using connections

to scheduling in wireless networks.
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Strategic formulations of these optimization decompositions have been developed: in a simple

model Johari and Tsitsiklis (2004) show a price of anarchy of 75% at a Nash equilibrium. Notably,

a single parameter VCG mechanism to yield efficient allocation was considered by Maheswaran

and Basar (2004) and subsequently generalized by Yang and Hajek (2007) and Johari and Tsit-

siklis (2009). Here a parametrized surrogate utility is employed in the VCG mechanism, where

the parameter is selected strategically. The message passed from the player to the mechanism

is thus chosen from a reduced space. One part of our decomposition can be viewed as deriving

a single parameter VCG mechanism with linear utilities; that is, despite allowing more general

utility functions, the derived mechanism is as if each player had a linear utility function. Prior

works have used strictly concave surrogate functions while in our approach linearisation is possible

owing to the large search/constraint space employed. A linear VCG allocation is computationally

straightforward (Leonard (1983), Bikhchandani et al. (2002)), but the crucial advantage of our lin-

ear framework is that – in addition to decomposing the objectives of advertisers and the platform

– further decomposition over the search space is possible, leading to a practical mechanism. In

particular, the mechanism can be implemented on each search instance: allocation and pricing both

involve standard polynomial time algorithms per-search and per-click, respectively. In essence, we

find a simple implementable auction mechanism that yields an efficient allocation of adverts across

the entire search space.

Parametrized VCG mechanisms are examples of simplified mechanisms, where the set of messages

available to report preferences is restricted. Milgrom (2010) has shown that the equilibria of a

simplified mechanism are also equilibria of the unrestricted mechanism when a certain outcome

closure property is satisfied. The closure property states that a bidder can make an optimal best

response within the set of restricted bids whenever other bidders’ choices lie within the restricted

set. As an example, the closure property can be applied to concave utility functions under the

restriction of linearity, with the restricted bid communicating a tangent plane rather than the

entire utility function.

A very common simplification applied in sponsored search auctions is conflation. For example

advertisers may be required to make the same bid per click whatever the position of an advert on the

page. If advertisers differentiate between positions beyond each position’s observed click-through

rate (for example, if click-throughs from lower positions are less or more valuable to the advertiser),

then there may be a loss of social welfare from the restriction that a bidder must communicate

a single parameter to a mechanism which is unaware of these positional effects. The question of

whether VCG or GSP mechanisms with this restriction are sufficiently expressive to communicate

the bidders’ true values for positions is discussed in detail in Milgrom (2010) and Dütting et al.

(2011). Aggarwal et al. (2007) discuss mechanisms which maintain an efficient equilibrium by
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allowing bidders to specify a minimum slot, in addition to their bid. Further recent discussions of

simplified mechanisms for sponsored search auctions are Chawla and Hartline (2013), Hoy et al.

(2013), Dütting et al. (2014).

The context in these papers is, in our terms, an auction for a single type of search. This context

serves to illustrate an important theoretical question concerning simplified mechanisms. The diverse

stochastic variability found in the sponsored search market (see Pin and Key (2011)) makes the

assumption of a single type of search unrealistic. The framework we adopt is rather different: we

presume, as described in Section 2, that the search platform knows more than the advertiser about

the type of search being conducted, for example about the searcher, and that this information affects

click-through probabilities. For the advertiser there is therefore a considerable further conflation:

the same bid for a click-through is used over an entire category of search query as well as over

different positions. The information asymmetry between the platform and the advertisers allows

the platform to assign and price adverts using a per-search level of granularity on the search type,

while the advertisers experience only average click-through rates over a diverse set of search types.

Our framework is designed to model advertisers who differentiate the value of a click-through

according to search categories, defined in terms of keywords and user characteristics, rather than

advert position: see Section 7.

Borgs et al. (2007) gave an important early treatment of the dynamics of bid optimization, and

emphasised the importance of equalizing the “return-on-investment” across keywords for budget-

limited advertisers. These authors also used a continuous time formulation, noted the importance

of random perturbations, proved convergence to a market equilibrium in the case of first price

auctions and observed experimentally convergence in the case of second price auctions. Auctions

were all single slot, and bids were assumed truthful. The additional contribution of Section 5 to

this early work on dynamics is that we have established convergence for a wide class of continuous

time dynamics representing advertisers’ best response under our pricing mechanism.

More recent work on learning and bid optimization is reviewed by Tran-Thanh et al. (2014),

who use the framework of a multi-armed bandit to devise policies that maximize the expected

number of click-throughs in a given number of searches within a given budget. This stream of

research typically uses no-regret learning, expressing convergence in terms of sub-linear temporal

convergence. Iyer et al. (2011) use a mean field approach to treat agents who need the learn the

value to them of a click-through. These are challenging problems, even for the sequence of single

slot second price auctions treated in these papers. By comparison our approach uses a dynamical

systems framework where fluid averages are controlled. We are also able to show convergence to

a Nash equilibrium, rather than a correlated equilibrium. Our approach deliberately simplifies the

modelling of the stochastic streams of click-throughs, which it represents with just their means, but
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is able to deal with multi-slot auctions and with streams of click-throughs arising from different

keywords and categories of searcher. Nekipelov et al. (2015) review work on learning, focusing on

a model of sponsored search auctions: their analysis of data from BingAds indicates that typical

advertisers bid a significantly shaded version of their value, as would be expected in a generalized

second price auction rather than a VCG auction.

As noted by Milgrom (2010), the most devastating objections to Vickrey pricing (Ausubel and

Milgrom (2006)) apply only when bidders can buy multiple items, and have no force in sponsored

search auctions where each bidder can acquire at most one position. Varian and Harris (2014)

have recently argued that VCG mechanisms are of practical interest because they are flexible

and extensible. For this reason, Facebook implements VCG2 rather than the generalized second

price auction currently used by Bing and Google. These considerations are particularly relevant

for contextual advertisement, unordered page layouts, image-text adverts and image-video adverts.

Such extensions are important and are of growing interest to online advertisement platforms; see

Goel and Khani (2014) for a recent discussion.

9. Concluding Remarks

We describe a framework to capture the system architecture of Ad-auctions. The assignment prob-

lem must be solved rapidly, for each search, while an advertiser is primarily interested in aggregates

over longer periods of time. The platform knows more about the type of a search query and thus

more about click-through probabilities, while an advertiser knows more about the value to her of

additional click-throughs and is incentivized to communicate this information via her bids. Thus

we model in detail each random instance of the assignment problem, while we describe an adver-

tiser’s strategic behaviour in terms of averages evolving in time. On a slow time-scale the platform

may decide which search types to pool in distinct auctions, across which the advertisers will have

different preferences they are able to communicate.

We have used sponsored search auctions as the motivation, and our model reflects current practice

in sponsored search, where platforms such as BingAds or Google Adwords use a variant of the

second price auction to solve the assignment and pricing problem for every search query, while

advertisers alter bids on timescales measured in hours or days. The setting, allowing for a large,

continuous range of search types and varying competition, greatly extends the scope of prior models

which are typically limited to the auction of a single keyword amongst a static pool of advertisers.

We address the task of achieving efficiency over all a platform’s searches under a pay-per-click

pricing model. Under the assumption of strategic advertisers, we showed that, with appropriate

2 https://developers.facebook.com/docs/marketing-api/pacing - downloaded on 20 August 2015.
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pricing, a Nash equilibrium exists for the advertisers which achieves welfare maximizing assign-

ments. We gave an appealingly simple way to implement these prices: namely, by giving advertisers

a rebate, constructed by solving a second assignment problem. The first assignment is implemented

with low computation cost and the solution to the second assignment problem is not used for the

allocation but only for pricing. Further this mechanism is found to be flexible and extends in a

straightforward manner to various different page-layouts. Hence under the pay-per-click model,

this mechanism shows potential to be adapted for use in current Ad-auctions.
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Appendix

EC.1. Proof of Propositions 1 and Lemma EC.2

This section gives proofs of Proposition 1 and Lemma EC.2 concerning properties of the functions

yi(b) =Eτ
∑
l

pτilx
τ
il(b),

∑
i

biyi(b).

Proposition 1 requires the further technical lemma, Lemma EC.1, which give the Lipschitz continu-

ity of a random point belonging to a polytope as we smoothly change the description of its facets.

Lemma EC.2 employs the Envelope Theorem (Milgrom 2004, Chap. 3), as is commonly applied in

auction theory.

Lemma EC.1. 1) If U is a random vector uniformly distributed inside the unit sphere, Sn = {u∈

Rn : ||u|| ≤ 1}, then there exist a constant K1 such that for any two non-zero vectors b, b̃∈Rn\{0}

P(bTU ≥ 0> b̃TU)≤ K1

||b|| ∧ ||b̃||
||b− b̃||.

2) If X is a random variable with density fX continuous on its support P, a polytope P ⊂ [−1,1]n,

then the function P(µT
1X ≥ 0, ..., µT

kX ≥ 0) is Lipschitz continuous as a function of µ1, ..., µk provided

||µ1||, ..., ||µk|| are bounded away from zero.

Proof 1) We give a geometric proof of the result. We assume, wlog, that ||b|| ≥ ||b̃||, and we

let Vn be the volume of S. For every u satisfying bTu≥ 0> b̃Tu, there exists a θ ∈ [0,1] such that

bTu+θ(b̃T−bT)u= 0. Let bθ be the unit vector proportional to b+θ(b̃−b). So, bT
θ̃
u= 0. Or, in other

words, if bTu+ θ(b̃T − bT)u= 0 then u belongs to a cross section of the sphere {u′ ∈ S : bθu
′ = 0}

for some bθ proportional to b+ θ(b̃− b). Thus the volume of {u : bTu≥ 0> b̃Tu} is overestimated by

the area of the sets {u′ ∈ S : bθu
′ = 0} multiplied by the change in the normal vector bθ.

With this in mind we note three facts: 1) Each cross section {u ∈ S : bTθu = 0} has the same

volume Vn−1 in its n− 1 dimensional subspace; 2) The path P = {bθ : θ ∈ [0,1]} is a circular path

starting at b/||b|| and ending at b̃/||b̃||, and thus has length bounded above by the terms

2π

∣∣∣∣∣∣∣∣ b||b|| − b̃

||b̃||

∣∣∣∣∣∣∣∣≤ 2π

||b̃||
∣∣∣∣b− b̃∣∣∣∣;

and, 3) {u ∈ S : bTu ≥ 0 > b̃Tu} = {u ∈ S : bTθu = 0, θ ∈ [0,1]}. Thus, we see we can bound the

probability P(bTU ≥ 0 > b̃TU) by the length of the path P times the volume of cross sections

{u∈ S : bTθu= 0}. In other words,

P(bTU ≥ 0> b̃TU)≤ 2πVn−1

||b̃||
||b− b̃||,
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as required.

2) A function which is componentwise Lipschitz continuous is Lipschitz continuous. So, without loss

of generality, we prove that the first component of our function is Lipschitz continuous. Observe∣∣∣∣∣∣P (µT
1X ≥ 0, µT

2X ≥ 0, ..., µT
kX ≥ 0

)
−P

(
µ̃T
1X ≥ 0, µT

2X ≥ 0, ..., µT
kX ≥ 0

) ∣∣∣∣∣∣
=
∣∣∣∣∣∣P (µT

1X ≥ 0> µ̃TX,µT
2X ≥ 0, ..., µT

kX ≥ 0
)
−P

(
µ̃T
1X ≥ 0>µTX,µT

2X ≥ 0, ..., µT
kX ≥ 0

) ∣∣∣∣∣∣
≤P
(
µTX ≥ 0> µ̃TX

)
+P

(
µ̃TX ≥ 0>µTX

)
. (EC.1)

Also since f is a continuous density on click-through probabilities P̃, it is bounded by a constant.

So, we can bound the above probabilities with uniform random variables:

P
(
µTX ≥ 0> µ̃TX

)
≤K2P

(
µTU ≥ 0> µ̃TU

)
for a constant K2 and for U a uniform random variable on the unit sphere in Rn. Now applying

part 1) of this Lemma

P
(
µTX ≥ 0> µ̃TX

)
≤ K1K2

||µ|| ∧ ||µ̃||
||µ− µ̃|| ≤ K1K2

K3

||µ− µ̃||.

where K3 is the constant by which µ and µ̃ are bounded away from zero. Thus, applying this

inequality to (EC.1), we have that P (µT
1X ≥ 0, µT

2X ≥ 0, ..., µT
kX ≥ 0) is Lipschitz continuous in its

first component and thus is Lipschitz continuous. �

The previous lemmas suggest that provided there is a certain amount of variability in pτij then

we can expect the average performance of an advertiser to be a continuous function of the declared

prices b.

Proof of Proposition 1 First we argue the continuity of bi 7→ yi(bi, b−i) and then argue that it

is strictly increasing and positive. We let S index the assignments that can be scheduled from I

to L. Notice, provide there is a unique maximal assignment,

xτil(b) =
∑

π∈S:π(i)=l

I

[∑
k

bkp
τ
kπ(k) ≥

∑
k

bkp
τ
kπ̃(k), ∀π̃ 6= π

]

=
∑

π∈S:π(i)=l

∏
π̃ 6=π

I

[∑
k

bkp
τ
kπ(k) ≥

∑
k

bkp
τ
kπ̃(k)

]
. (EC.2)

Here I is the indicator function. Notice, since Pτ admits a density, f(pτ ), then with probability

one there is a unique maximizer to the problem ASSIGNMENT(τ, b). So the equality (EC.2) holds

almost surely for all b > 0.

For two assignments π and π̃, we define the vector

µππ̃ := (biI[π(i) = l]− biI[π̃(i) = l] : i∈ I, l ∈L) .
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Notice for any two distinct permutations, the non-zero components of I[π̃(i) = l] are distinct. So

the vectors µππ̃ are distinct and non-zero over π̃ 6= π. Since the maximal assignment is almost surely

unique, we have

xil(b) =
∑

π∈S:π(i)=l

E

[∏
π̃ 6=π

I

[∑
k

bkp
τ
kπ(k) ≥

∑
k

bkp
τ
kπ̃(k)

]]
=

∑
π∈S:π(i)=l

P
(
µT
ππ̃p≥ 0, ∀π̃ 6= π

)
. (EC.3)

Thus if the function P (µT
ππ̃p≥ 0, ∀π̃ 6= π) is Lipschitz continuous then we have same properties

for functions xjl(b). The Lipschitz continuity of P (µT
ππ̃p≥ 0, ∀π̃ 6= π) is proven in Lemma EC.1.

This implies the Lipschitz property for xil(b) with b > 0 and since yi is a finite sum of these terms

the same continuity holds for bi 7→ yi(bi, b−i), with b = (bi, b−i) > 0. Further, continuity at bi = 0

is also ensured by bounded convergence: there are greater than |L| positive bids occur in b−i the

assignment of these must eventually outweighs the assignment of i as bi↘ 0. In other words, (EC.2)

goes to zero point-wise as bi ↘ 0. Thus bounded convergence applies to (EC.3) and, also, yi(b)

which implies yi(bi, b−i)→ 0 as bi↘ 0.

We now prove that the function bi 7→ yi(bi, b−i) is strictly increasing for b−i 6= 0. First we show

that it is increasing. Since yi(b) = Eτyτi (b) (2), if we can prove yτi (b) is increasing then so is yi(b).

Further note ∑
i∈I

biy
τ
i (b) =

∑
i∈I,l∈L

bip
τ
ilx

τ
il(b)

which is the optimal objective for the assignment problem (1).

Define b′ with b′i < bi and b′j = bj for each j 6= i. We now proceed by contradiction. Suppose that

yi(b
′)> y(b), then the following equalities and inequalities hold∑

j∈I

bjy
τ
j (b) = (bi− b′i)yτi (b) +

∑
j∈J

b′jy
τ
j (b)

≤ (bi− b′i)yτi (b) +
∑
j∈J

b′jy
τ
j (b′)

< (bi− b′i)yτi (b′) +
∑
j∈J

b′jy
τ
j (b′) =

∑
j∈J

bjy
τ
j (b′).

Here the first equality holds by the optimality of yτ (b′) and the second holds by assumption. But

notice the resulting equality above contradicts the optimality of yτ (b). Thus by contradiction, yτi (b)

is increasing in bi and, after taking expectations, so is yi(b).

We now prove that bi 7→ yi(b) is strictly increasing. Let b′ be such that b′i > bi and b′j = bi for all

j 6= i. The result proceeds by showing that

P(yτi (b′)> yτi (b)|E)> 0

where we condition on an event E with non-zero probability. Notice, after taking expectations, this

implies that yi(b
′)> yi(b).
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Now since f(p) is positive on a region containing the origin, f(p) stochastically dominates a

uniform random variable on the set of increasing click-through rates, P̃ ∩ [0, ε]I×L, for some ε.

Thus it is sufficient to prove the result for u= (uil : i ∈ I, l ∈L) uniform on P̃ ∩ [0, ε]I×L. Now, for

instance, there is positive probability that advertiser i and j, with bj > 0, compete exclusively over

the top two slots, l= 1,2. This occurs, for instance, when i and j have click-through rate over ε/2

and all other advertisers have expected revenue that is half of the lower bound revenue of i and j,

namely, the event

E :=

{
min
k=i,j
l∈L

ukl ≥
ε

2
, 2max

k 6=i,j
l∈L

{bkukl} ≤
ε

2
min{bi, bj}

}
.

This event has positive probability and then only i and j can appear on the top two slots on this

event.

Given this event, advertiser i achieves the top position with bid b′i and the second position with

bid bi on the condition

b′i(ui1−ui2)> bj(uj1−uj2)> bi(ui1−ui2).

Since, after conditioning on E, ui1, ui2, uj1, uj2 remain independent and uniformly distributed (on

the set P̃ ∩ {ui1, ui2, uj1, uj2 ≥ ε/2}), it is a straightforward calculation that

P
(
b′i(ui1−ui2)> bj(uj1−uj2)> bi(ui1−ui2)

∣∣E)> 0.

Since ui1, the value of yτi achieved by b′i on E, is strictly bigger than ui2, the value of yτi achieved

by bi on E, the above inequality implies

P(yτi (b′)> yτi (b)|E)> 0,

and thus yi(b)< yi(b
′), as required. Further, note that this argument implies the required property

that yi(bi, b−i)> 0 for bi > 0. �

Lemma EC.2. The function b 7→
∑

i∈I biyi(b) is convex and continuously differentiable for b 6= 0;

further,

d

dbi

{∑
i′∈I

bi′yi′(b)

}
= yi(b).

and

lim
||b||→∞

∑
i∈I

biyi(b) =∞. (EC.4)

Proof The optimal value of the assignment problem (1) is convex as a function of b, since it is

the supremum of a set of linear functions. Thus the function b 7→
∑

i∈I biyi(b), a linear combination

of convex functions, is also convex. Further
∑

i∈I biyi(b̃) is a supporting hyperplane at the point b̃.
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Differentiability can be shown to follow from the continuity of y(b̃) as a function of b̃, and we next

give a detailed proof following the Envelope Theorem (Milgrom 2004, Chap. 3).

Since by definition, xτ (b) is optimal for the assignment problem, we have that

∑
i∈I

biyi(b) =E

[∑
i∈I

∑
l∈L

bip
τ
ilx

τ
il(b)

]
=E

[
max
xτ∈S

∑
i∈I

∑
l∈L

bip
τ
ilx

τ
il

]
,

Letting bh = b+ eih, where ei is the ith unit vector in RI and h> 0 (a symmetric argument holds

for h< 0). We see that the partial derivative with respect to bi is lower-bounded

∑
i′∈I

bhi′yi′(b
h)− bi′yi′(b)
h

≥1

h

{
E

[∑
i′∈I

∑
l∈L

bhi′p
τ
i′lx

τ
i′l(b)

]
−E

[∑
i′∈I

∑
l∈L

bi′p
τ
i′lx

τ
i′l(b)

]}
(EC.5)

=E

[∑
l∈L

pτilx
τ
il(b)

]
= yi(b).

The inequality above holds because xτ (b) is suboptimal for the parameter choice bh. By the same

argument, applied to biyi(b) instead of bi′yi′(b) in (EC.5), we also have that

∑
i′∈I

bhi′yi′(b
h)− bi′yi′(b)
h

≤ yi(bh).

ny the continuity of yi(b), letting h→ 0 gives that

d

dbi

∑
i′∈I

bi′yi′(b) = yi(b),

as required.

Since yi(bi, b−i) is non-zero for bi > 0 it follows that

min
||b||=1

∑
i∈I

biyi(b)> 0,

and consequently, letting ||b|| →∞, we see that (EC.4) holds. �

EC.2. Proof of Propositions 2 and 3

Proof of Proposition 2 A Lagrangian of the system problem (8a), (8b) can be written as follows

Lsys(x, y; b) =
∑
i∈I

Ui(yi) +
∑
i∈I

biEτ

[∑
l∈L

pτilx
τ
il− yi

]
. (EC.6)

Note that we intentionally omit the scheduling constraints from our Lagrangian, and therefore we

must maximize subject to these constraints, (8c-8d), when optimizing our Lagrangian.
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Let A be the set of variables x= (xτ ∈ S : τ ∈ T ) satisfying the assignment constraints (8c-8e).

We see that our Lagrangian problem is separable in the following sense

max
x∈A

y,z∈RI+;

Lsys(x, y; b) =
∑
i∈I

max
yi≥0
{Ui(yi)− biyi} (EC.7a)

+Eτ

[
max
xτ∈S

∑
i∈I

∑
l∈L

bip
τ
ilx

τ
il

]
(EC.7b)

Here S denotes the set of x′ ∈RI×L+ such that for each i∈ I and l ∈L∑
l′∈L

x′il′ ≤ 1, and
∑
i′∈I

x′i′l ≤ 1.

We now show that solutions x̃, ỹ and b̃ satisfying the Conditions A and B of our Proposition are

optimal for the Lagrangian (EC.7a) and (EC.7b) when b= b̃.

Firstly, suppose Conditions A and B are satisfied. Assuming Condition A, the following is a

straightforward application of Fenchel duality. If b̃i a solution to the optimization

minimize U∗i (bi) + biỹi over bi ≥ 0,

then, under our expression (11) for U∗, the solution is achieved when Di(b̃i) = ỹi or equivalently

when U ′i(ỹi) = b̃i. Thus it is clear that ỹi solves the optimization

max
yi≥0
{Ui(yi)− b̃iyi}.

Hence if Condition A is satisfied, then ỹi optimizes (EC.7a) when we choose bi = b̃i.

Secondly, if x̃τ solves ASSIGNMENT(τ ,b̃) for each τ , because each maximization inside the

expectation (EC.7b) is an assignment problem, then (EC.7b) is maximized by x̃ when we take

b= b̃.

These two conditions, Condition A and B, show that the Lagrangian (EC.6) is maximized by x̃

and ỹ with Lagrange multipliers b̃. In addition, x̃ and ỹ are feasible for the system optimization (8)

and hence we have a feasible optimal solution for this Lagrangian problem. But as we demonstrate

in Proposition EC.1 below, Lagrangian sufficiency still holds for the system problem (8) – despite

the infinite number of constraints. Therefore we have shown a solution to Conditions A and B is

optimal for the system problem.

Conversely, we know that strong duality holds for the system optimization (8) – even with the

infinite number of constraints for this optimization (see Theorem EC.1 in the Appendix for a

proof). Hence there exists a vector b̃ such that an optimal solution to the system problem is also

an optimal solution to the Lagrangian problem when we chose Lagrange multipliers b̃. Thus, an

optimal solution to the SYSTEM(U,I,Pτ ) must optimize (EC.7a) and (EC.7b), and as discussed

these solutions correspond to Conditions A and B. In other words, an optimal solution to the

system problem satisfies Conditions A and B with this choice of b̃. �
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Proof of Proposition 3 a) From Theorem 2, the Lagrangian of the system problem can be writ-

ten as follows

Lsys(x, y; b) =
∑
i∈I

Ui(yi) +
∑
i∈I

biEτ

[∑
l∈L

pτilx
τ
il− yi

]
. (EC.8)

Recall from (EC.7), this Lagrangian is separable and is maximized as

max
x∈A

y,z∈RI+;

Lsys(x, y; b) =
∑
i∈I

max
yi≥0
{Ui(yi)− biyi}+Eτ

[
max
xτ∈S

∑
i∈I

∑
l∈L

bip
τ
ilx

τ
il

]

=
∑
i∈I

U∗i (bi) +Eτ

[∑
i∈I

bi
∑
l∈L

pτilx
τ
il(b)

]
=
∑
i∈I

(U∗i (bi) + biyi(b)).

In the second equality above, we rearrange the assignment optimization in terms of the click-

through rate of each advertiser, yi(b).

Thus the dual of this optimization problem is as required:

Minimize
∑
i∈I

[U∗i (bi) + biyi(b)] over bi ≥ 0, i∈ I.

We analyze this dual problem. We first show that optimization (12) is minimized when 0< bi <∞

for each i∈ I. We consider the function ∑
i∈I

biyi(b).

With the technical lemma, Lemma EC.2, we see that this function is continuous and, for b−i 6= 0,

differentiable with ith partial derivative given by the continuous function yi(b). Further it satis-

fies (EC.4). Thus since U∗i (bi) is a positive function, we see that the dual minimization (12) must

be achieved by a finite solution b∗. In addition, by definition Di(b) =−(U∗i )′(b) = (U ′i)
−1(b), and so

the objective of the dual is continuously differentiable for b > 0. Since Di(0) =∞, the minimum of

the dual problem (12) must be achieved by b∗i > 0 for each i ∈ I. Now, as the objective of (12) is

continuously differentiable for b strictly positive, it is minimized iff for each i∈ I

dU∗i
dbi

(b∗i ) + yi(b
∗) = 0.

Finally, since each function U∗i is strictly convex, dual objective is strictly convex and so the above

minimizer is unique.

b) For the Lagrangian for the system problem, (EC.8), Strong Duality holds by Theorem EC.1.

So, there exist Lagrange multipliers b∗, such that∑
i∈I

[
U∗i (b∗i ) + b∗i yi(b

∗)
]

= max
x∈A
y∈RI+;

Lsys(x, y; b∗) = max
x∈A
y∈RI+;

∑
i∈I

Ui(yi)



ec8 e-companion to Kelly, Key and Walton: Efficient Advert Assignment

where there are feasible vectors x∗, y∗ achieving the optimum of both maximizations above. By weak

duality it is clear that b∗ must be optimal for the dual problem (12). Further, since x∗ optimizes

the Lagrangian Lsys with Lagrange multipliers b∗, it solves the assignment problem, x∗τ = xτ (b∗).

�

EC.3. Lagrangian Optimization

In this paper, we consider optimization problems that have a potentially infinite number of con-

straints, in particular, for the system-wide optimization (8). Thus it is not immediately clear that

the Lagrangian approach – ordinarily applied with a finite number of constraints – immediately

applies to our setting. We demonstrate that certain principle results, namely weak duality, the

Lagrangian Sufficiency and strong duality, apply to our setting. These technical lemmas supplement

proofs in Propositions 2 and 3.

We consider an optimization of the form

Maximize g(y) (EC.9a)

subject to yi ≤Eµ[xi], i= 1, ..., n, (EC.9b)

fj(x(τ))≤ cj, τ ∈ T , j = 1, ...,m, (EC.9c)

over y ∈Rn, x∈B(T ,Rn). (EC.9d)

In the above optimization, we consider probability space (T ,Pµ) and measurable random variable

x : T →Rn. We let B(T ,Rn) index the set of Borel measurable functions from T to Rn. We assume

that g :Rn→R is a concave function and that fj :Rn→R is a convex function, for each j = 1, ...,m.

We assume the solution to this optimization is bounded above.

Although there are an infinite number of constraints in this optimization, we can define a

Lagrangian for this optimization as follows

L(x, y, z; b) = g(y) +
n∑
i=1

biEµ[xi− yi− zi] .

Here the Lagrange multipliers bi, i= 1, ...n, can be assumed to be positive, slack variables zi are

added for each constraint (EC.9b) and the optimization of the Lagrangian is taken over yi real,

zi positive and real, and xi a Borel measurable random variable for i ∈ I. We let F be the set of

(x, y) feasible for the optimization (EC.9).

Weak duality and Lagrangian Sufficiency both hold for this Lagrangian problem.

Proposition EC.1 (Weak Duality).

a) [Weak Duality] For g∗ the optimal value of the optimization (EC.9),

sup
y∈Rn,

x∈B(T ,Rn)

L(x, y, z; b)≥ g∗.
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b) [Lagrangian Sufficiency] If, given some b, there exists x∗ ∈ B(T ,Rn) and y∗, z∗ ∈ Rn that are

feasible for the optimization (EC.9) and maximize the Lagrangian L(x, y, z; b) with z∗i := y∗i −Eµx∗i
then x∗, y∗, z∗ is optimal for (EC.9).

Proof a) Because F is a subset of B(T ,Rn)×Rn, we have

sup
y∈Rn, z∈Rn+,
x∈B(T ,Rn)

L(x, y, z; b)≥ sup
(x,y)∈F
z∈Rn+

L(x, y, z; b) = g∗.

This proves weak duality.

b) Now applying this inequality, if a feasible solution optimizes the Lagrangian, then

g(y∗) =L(x∗, y∗, z∗; b) = sup
y∈Rn, z∈Rn+,
x∈B(T ,Rn)

L(x, y, z; b)≥ g∗.

Thus, (x∗, y∗) is optimal for (EC.9). �

For z ∈ RI , we use F(z) to denote the set of (x, y) satisfying constraints (EC.9c-EC.9d) and

satisfying constraints

zi + yi ≤Eµ[xi], i= 1, ..., n.

Note, F = F(0). We now show that there exists a Lagrange multiplier b∗ where the optimized

Lagrangian function also optimizes (EC.9).

Theorem EC.1 (Strong Duality). There exists a b∗ ∈Rn+ such that

max
(x,y)∈F

g(y) = max
y∈Rn

x∈B(T ,Rn)

g(y) +
∑
i∈I

b∗iE [xi− yi] . (EC.10)

In particular, if there exist (x∗, y∗)∈F maximizing (EC.9) then it maximizes (EC.10).

Proof Firstly, since F ⊂B(T ,Rn)×Rn, we proved the weak duality expression

max
(x,y)∈F

g(y) = max
(x,y)∈F

g(y) +
∑
i∈I

b∗iE [xi− yi]≤ max
y∈RI

x∈B(T ,Rn)

g(y) +
∑
i∈I

b∗iE [xi− yi] . (EC.11)

So it remains to show the reverse inequality. We consider the following set

C = {(z, γ)∈RI ×R : there exists (x, y)∈F(z) with g(y)≥ γ}.

We claim that C is convex. Take (z0, γ0), (z1, γ1) ∈ C and take (x0, y0) ∈ F(z0), (x1, y1) ∈ F(z1)

respectively achieving bounds g(y0)≥ γ0 and g(y1)≥ γ1. For each term u= x, y, z, γ just defined,

we correspondingly define uq = (1− q)u0 + qu1, for q ∈ [0,1].
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By concavity of g, convexity of fj, j = 1, ...,m, and linearity, we have

g(yq)≥ (1− q)g(y0) + qg(y1)≥ γq,

fj(x
q(τ))≤ (1− q)fj(x0(τ)) + qfj(x

1(τ))≤ cj,

Eµ[xqi − y
q
i ] = (1− q)z0i + qz1i = zqi ,

for τ ∈ T , j = 1, ...,m and i= 1, ..., n. These above inequalities show that (zq, γq) ∈ C and thus our

claim is holds: C is convex.

Let γ∗ = max(x,y)∈F g(y). Here we are optimizing over F(z) with z = 0. So, it is clear that (0, γ∗)

does not belong to the interior of C. Thus by the Supporting Hyperplane Theorem Rockafellar

(1997), there exists a hyperplane through (0, γ∗) supporting C. In other words, there exists a non-

zero vector (b,φ)∈RI ×R such that

φγ∗ ≥ φγ+ bTz,

for all (z, γ)∈ C. Firstly, it is clear that φ≥ 0, otherwise γ∗ is not maximal for (x, y)∈F .

We now claim φ 6= 0. We proceed by contradiction. If φ= 0, then 0≥ bTz for all (z, γ) ∈ C. But

notice, for any x∈B(T ,Rn+), we can choose yi ∈R such that yi−Eµ[xi] = bi, thus for this choice of

(x, y) we have z = b. Thus, bTz = bTb > 0, and so we have a contradiction. It must be that φ> 0.

As φ > 0, we can define b∗ = (bi/φ : i ∈ I). Since for each (x, y) ∈ B(T ,Rn) × RI , if we set

zi =Eµ [xi− yi] and γ = g(y) then we have (z, γ)∈ C. With this we have

max
(x′,y′)∈F

g(y′) = γ∗ ≥ γ+ b∗Tz = g(y) +
∑
i∈I

b∗iE [xi− yi]

Thus, maximizing over x∈B(T ,Rn) and y ∈RI , we have

max
(x,y)∈F

g(y)≥ max
y∈Rn

x∈B(T ,Rn)

g(y) +
∑
i∈I

b∗iE [xi− yi] . (EC.12)

Together (EC.11) and (EC.12) give the required equality (EC.10). In addition, given (EC.9) has a

finite optimum, inequality (EC.12) can only hold when b∗ ≥ 0.

Finally, if (x∗, y∗)∈F are optimal for (EC.9) then equality (EC.10) implies

g(y∗)≥ g(y∗) +
∑
i∈I

b∗iE [x∗i − y∗i ] .

However, the feasibility of (x∗, y∗) and positivity of b∗ implies∑
i∈I

b∗iE [x∗i − y∗i ]≥ 0.

So we see these two inequalities imply complementary slackness b∗iE [x∗i − y∗i ] = 0 and that (x∗, y∗)∈

F maximizing (EC.9) also maximizes the right-hand side of (EC.10). �
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EC.4. Dynamics

We finally note a result used in the proof of Theorem 2.

Lemma EC.3. If bi <U
′
i(yi) then there exists δ > 0 such that ui(b)<ui(bi+ ε, b−i) for all ε∈ (0, δ).

Similarly if bi >U
′
i(yi) then there exists δ > 0 such that ui(b)>ui(bi + ε, b−i) for all ε∈ (0, δ).

Proof From the definitions (3) and (14), and from an application of the mean value theorem

for some b̃ satisfying yi(b)< b̃ < yi(bi + ε, b−i), we have that

ui(bi + ε, b−i)−ui(b)

=Ui(yi(bi + ε, b−i))−Ui(yi(b))−
∫ bi+ε

0

[yi(bi + ε, b−i)− yi(b′, b−i)]db′i +

∫ bi

0

[yi(b)− yi(b′, b−i)]db′i

=
(
U ′i(yi(b̃))− bi

)
[yi(bi + ε, b−i)− yi(b)]−

∫ bi+ε

bi

[yi(bi + ε, b−i)− yi(b′, b−i)]db′i.

But

0<

∫ bi+ε

bi

[yi(bi + ε, b−i)− yi(b′, b−i)]db′i < ε[yi(bi + ε, b−i)− yi(b)]

and thus the result follows for δ sufficiently small. �
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