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Abstract

The conjecture of Birch and Swinnerton-Dyer is unquestionably one of the most
important open problems in number theory today. Let E be an elliptic curve defined
over an imaginary quadratic field K contained in C, and suppose that E has complex
multiplication by the ring of integers of K. Let us assume the complex L-series
L(E/K,s) of E over K does not vanish at s = 1. K. Rubin showed, using Iwasawa
theory, that the p-part of Birch and Swinnerton-Dyer conjecture holds for E for all
prime numbers p which do not divide the order of the group of roots of unity in K. In
this thesis, we discuss extensions of this result.

In Chapter 2, we study infinite families of quadratic and cubic twists of the elliptic
curve A = X(27), so that they have complex multiplication by the ring of integers of
Q(+/—3). For the family of quadratic twists, we establish a lower bound for the 2-adic
valuation of the algebraic part of the complex L-series at s = 1, and, for the family of
cubic twists, we establish a lower bound for the 3-adic valuation of the algebraic part
of the same L-value. We show that our lower bounds are precisely those predicted by
Birch and Swinnerton-Dyer.

In the remaining chapters, we let K = Q(y/—¢q), where ¢ is any prime number
congruent to 7 modulo 8. Denote by H the Hilbert class field of K. B. Gross proved
the existence of an elliptic curve A(q) defined over H with complex multiplication

by the ring of integers of K and minimal discriminant —g>.

We consider twists E
of A(q) by quadratic extensions of K. In the case ¢ = 7, we have A(q) = X(49),
and Gonzalez-Aviles and Rubin proved, again using Iwasawa theory, that if L(E/Q, 1)
is nonzero then the full Birch-Swinnerton-Dyer conjecture holds for E. Suppose p
is a prime number which splits in K, say p = pp*, and F has good reduction at all
primes of H above p. Let Hy, = HK, where K is the unique Z,-extension of K
unramified outside p. We establish in this thesis the main conjecture for the extension
H../H. Furthermore, we provide the necessary ingredients to state and prove the main
conjecture for F/H and p, and discuss its relation to the main conjecture for H.,/H

and the p-part of the Birch-Swinnerton-Dyer conjecture for £/H.
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Chapter 1

Introduction

Let E be an elliptic curve defined over Q, and let L(E, s) denote its complex L-series.
We assume that L(E,1) # 0. Then, by a well-known theorem of Kolyvagin and
Gross—Zagier [15, 12], both F(Q) and the Tate-Shafarevich group III(E) of E over Q

are finite. Define
L(E,1)

N O

where ¢, denotes the number of connected real components of F(R), and 2 is the

Lee) (B 1) =

least positive real period of the Néron differential of any global Weierstrass minimal
equation for E. It is well-known that L®®) (E 1) is a rational number. For a prime ¢
of bad reduction for F, define

cg = [E(Q) : EO(@q)]a

where E°(Q,) denotes the subgroup of E(Q,) consisting of all points with non-singular

reduction modulo ¢q. The Birch-Swinnerton-Dyer conjecture for E asserts that:

Conjecture 1.0.1.
#LL(E)) T1 ¢

q bad

#(E(Q))?

Since both sides of (1.0.1) are rational numbers, Conjecture 1.0.1 clearly implies
that:

L9 (B1) = (1.0.1)

Conjecture 1.0.2. For each prime number p, we have

ord,, (L(alg) (E, 1)) = ord, <m> + ord, (qlgdcq> . (1.0.2)



2 Introduction

When E has complex multiplication, Rubin establishes (1.0.2) in [17, Theorem 11.1]
for all primes p which do not divide the order w of the group of roots of unity in the
field of complex multiplication. However, these methods at present seem very difficult
to apply for primes p which divide w, except when E has potential ordinary reduction
at such a prime p. The most interesting case in which to make progress is when E
runs over the family of twists of some fixed curve A. In Chapters 37, we study infinite
families of quadratic twists of certain elliptic curves with complex multiplication which
are no longer defined over QQ, using methods of Iwasawa theory.

Chapter 2 is independent of the rest of the chapters, but we prove results of a
similar nature using techniques which are more elementary. We study the quadratic

and cubic twists of the curve
E=X27): Y?+Y =X3-7 (1.0.3)

which has conductor 27 and admits complex multiplication by the full ring of integers

Ok = Z|w], where w = _1%\/?3, of the field K = Q(v/—3). The associated classical

Weierstrass equation is
E:y* =42 - 3%

which we obtain by the change of variables

r=X
y=2Y +1.

Note that co, = 1 for E, so that L% (E 1) = L(g’l). It is easily shown that
L(alg) (E,1) = On the other hand, classical descent theory proves that E(Q) =
{0, (3,43%)} = Z/3Z and UI(F)(2) = II(E)(3) = 0. Combining this with [17,

Theorem 11.1], we conclude that Conjecture 1.0.1 is valid for E.

L=

Given an integer A > 1, let E(\) denote the elliptic curve
E(\) :y* =42 — 33\

First, we consider the case when A = D3, for a square-free positive integer D, so
that E(D?) is the twist of E by the quadratic extension Q(v/D)/Q. We define a
rational prime number p to be a special split prime for E if it splits completely in
the field K (z(E[4])), the field obtained by adjoining to K the z-coordinates of all
non-zero points in E[4], the group of 4-division points on E. In fact, we have that
K(z(E[4])) = K(py, ¥2). Moreover, the theory of complex multiplication provides the



following alternative description of the set of special split primes. Let 1 denote the
Grossencharacter of E over K. Then a prime p is special split if and only if it splits in
K, and 9(p) = £1 mod 4 for both of the primes p of K above p (see Lemma A.1 of
Appendix A). In Section 2.2, we prove:

Theorem 1.0.3. Let D > 1 be an integer which is a square-free product of special split
primes. Then
ordy (L9 (E(D*),1)) > 2k(D),

where k(D) is the number of prime factors of D.

This bound is sharp, as we will see in Remark 2.2.15. Some numerical examples
are listed in Appendix B. We show in Section 2.1, using Tate’s algorithm, that
IT ¢

q bad

#(E(D?)(Q))*

ords

= 2k(D).

Hence the 2-part of the Birch-Swinnerton-Dyer conjecture predicts that if L(E(D?3), 1) # 0,
then
ordy (L™ (E(D?), 1)) = 2k(D) + ord; (#1(E(D?))) .

In particular, it predicts that equality occurs in the lower bound of Theorem 2.2.14 if
and only if ordy (#III (E(D?))) = 0.

Next consider the case when A = D? for a cube-free positive integer D, so that
E(D?) is a cubic twist of E. We say a prime number p is cubic-special if it splits
completely in the field K (F[27]), but does not split completely in the strictly larger
field K (F[27])((1 — w)'/?), where w denotes a non-trivial cube root of unity. We then

prove in Section 2.3:-

Theorem 1.0.4. Let D > 1 be an integer which is a cube-free product of cubic-special
primes. Then
ords (L9 (E(D?),1)) = k(D) + 1,

where k(D) is the number of distinct prime factors of D.

Numerical examples show that this lower bound is sometimes sharp. In fact, the
Birch—Swinnerton-Dyer conjecture predicts that the lower bound of this theorem holds
for all odd cube free positive integers D with D = 1 mod 9 whose prime factors are

congruent to 1 modulo 3. Indeed, using Tate’s algorithm, it can be shown (see Section
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2.1) that, for all such D, we have

I1 ¢

q bad

#(E(D?)(Q))?

ords = k(D) + 1.

Hence the 3-part of the Birch-Swinnerton-Dyer conjecture predicts that if L(E(D?),1) # 0,
we have

ords (LW¥(E(D?), 1)) = k(D) + 1+ ords (#111(E(D?))) .

In particular, it predicts that equality is attained in the theorem above if and only if
ords (#1011 (E(D?))) = 0. We will prove these theorems by first expressing the value of
the complex L-series as a sum of Eisenstein series, and then combining an averaging
argument over quadratic or cubic twists with an induction on the number of distinct
primes divisors. In the case of quadratic twists, this method is essentially due to Zhao
[24, 25] who established similar results for the congruent number curves with respect
to the prime p = 2. In Section 2.3, we will generalise his ideas in order to apply to the
cubic twists of E' with respect to the prime p = 3.

In Chapters 3-7, we let K = Q(y/—¢), where ¢ is a prime congruent to 7 modulo 8.
Then the discriminant of K is equal to —¢, so the class number A of K is odd by genus
theory. We fix an embedding of K into C. Let O denote the ring of integers of K, and
let H = K(j(O)) be the Hilbert class of K where j(O) denotes the complex modular
invariant of the curve C/O. In fact, j(O) is a real number, so the field J = Q(j(O)) has
index 2 in H and is embedded in R. In [13], Gross proved the existence of an elliptic
curve A(q) defined over J with complex multiplication by O and minimal discriminant

—¢3. In the case ¢ = 7,
A(T) = Xo(49) :y* +ay =2 — 2 — 22 — 1

is defined over Q because Q(v/—7) has class number one. The following result was

proved by Gonzalez-Aviles and Rubin using Iwasawa theory.

Theorem 1.0.5. [Gonzalez-Aviles—Rubin] Let E be a quadratic twist of Xo(49), so
that it has complex multiplication by the ring of integers of Q(v/—7). If L(E,1) # 0,
then the full Birch—Swinnerton-Dyer conjecture is valid for E.

We discuss an extension of this theorem. Let E be any quadratic twist of A(q) by a
quadratic extension of the form H(v/A)/H of discriminant prime to 2¢, A\ € K*. From
Chapter 3, p will denote a prime such that E has good reduction at all places of H



above p, and p splits in K, say p = pp*. In particular, p = 2 satisfies these conditions.
Let F,, = H(Ey), and F = F} or Fy, according as p > 2 or p = 2. Set

Fo = H(Ey), $ = Gal(Fy/H).

Let O, be the ring of integers of K, = Q,. We have, via an argument which involves
relative Lubin-Tate groups, a canonical isomorphism yx, : $§ — O,° given by the action
of $ on Eye, and

H=AxT,

where A is cyclic of order p — 1 or 2 according as p > 2 or p = 2, and I' is isomorphic
to O.

In Chapter 3, we study the p>°-Selmer groups Sely(E/H) and Selye (E/F) of E
over H and F respectively, and show how their orders are related to the order of
II(E/H)(p). We also introduce the Selmer group Sel(E£/F,) of E over F,,, which is
closely related to Iwasawa modules, as shown in more detail in Chapter 7. Then in
Chapter 4, we construct the p-adic L-functions attached to F'/H, which will be needed
to formulate the main conjectures. Let ¢g,5 denote the Gréssencharacter of £/H. We
show in Chapter 3 that

Ye/n = ¢k © Ny,

where g is a Grossencharacter of K of conductor g, say. Let . be the ring of integers
of the completion of the maximal unramified extension K" of K,. Then we show in
Section 4.1 that there exists a natural p-adic analogue Q,(E/H) € #* of the complex
period Q. (E/H), and

Theorem 1.0.6. There exists a unique & -valued measure pg on the Galois group &
of Fy, over K such that for all integers k > 1 with k = 1 mod #(A), we have

QE/H)™ [ Xpdup = (k= D" "0 (B/H) L. W) T] (1 - W) ,
vlp

where the product runs over the primes v of H which lie above p, and f is a fized

generator of the principal ideal § = g".

See Section 4.1 for a more detailed account of the notations used. The measure
pp will be used in Chapter 7 to state the main conjectures attached to E/H. In this
thesis, however, we shall concentrate on the proof the main conjecture for the extension
H./H, where Hy, = HK, and K is the unique Z,-extension of K unramified outside

p.
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In order to state the main conjecture for Ho./H, let 4 = Gal(H/K) and assume
(p,h) =1. Let I' = Gal(K/K), G = Gal(Hy /K). We fix an identification

4 =GxT

so that characters of G can naturally be considered as characters of 4. Given a
J[[¥]]-module M and x € G* = Hom(G,C)), write MX for the largest submodule of
M on which G acts via x. Since p{ [H : K| by assumption, we have

I[¥]] = e 7[1]]

where e, is the idempotent corresponding to x, and any .#[[¢]]-module breaks up into
the direct sum of its y-components. Fix a topological generator of I', and identify
F[I']] with the ring #[[T]] of formal power series in the variable T" with coefficients in
& via the map sending v to 1 + 7. We prove the following in Section 4.2.

Theorem 1.0.7. There exists a unique & -valued pseudo-measure v, on 4 such that
for all integers k > 1 with k = 0 mod #(A), we have

Q(E/H)™ [ xpdvy = (k= 1)) Qe B/H) L k)1_|[ (1 - W) ,
f I1

where the product runs over the primes v of H which lie above p. Furthermore, we have
vy € T if x € G* is non-trivial, and vy € F[[T]|/T if x is the trivial character.

Define ¢ = 1(¥)v;,, where (%) denotes the augmentation ideal of .#[[¢4]], and let
X = (I(9),)* C A[T]]. We will show in Lemma 4.4.2 that ¢ is independent of E.
If M is a finitely generated torsion .#[[¢]]-module, we write char (M)* for the
characteristic ideal of the #[[I']]-module MX given by the structure theory. Denote by
M (H) the maximal abelian p-extension of H,, unramified outside the primes above

p, and write
X(Hy) = Gal(M(Hy)/Hy).

Then X (H,) is a finitely generated torsion .#[[¢]]-module, and

Theorem 1.0.8 (Main Conjecture for Hy,/H). For every x € G*, we have
char (X (Hy))* = X

For every n > 0, define H,, = F,, N H,,. Write £y, for the group of global units
of H,, and Uy, for the group of semi-local units of H, ®x K, = @yp)pHy g which are



congruent to 1 modulo the primes above p. Let &y, be the closure of &, N Uy, in

Uy, in the p-adic topology, and define
E_HOQ = 1'&15_}1” and UHoo = I'&HUHH,

where the inverse limits are taken with respect to the norm maps. Let A(H,) denote
the p-primary part of the ideal class group of H,,, and write A(H.,) for the projective
limit of A(H,) with respect to the norm maps. Let Cy_ be the group of elliptic
units defined in Section 4.3. Global class field theory provides an exact sequence of
Z,|[¥4]]-modules

0— En./Cu. = Un./Ch.. — X(Hw) = A(Hs) — 0. (1.0.4)
We prove in Chapter 4 that
char (UHOO/C_HOO)X = X

for every x € G*. In Chapter 5, we construct an Euler system of the elliptic units
Cr.., and use a variant of Cebotarev’s theorem and induction to establish a divisibility
relation between the characteristic ideal of (5 1. /C HOO)X and that of A(H)X in Z,|[[I]].
Since the characteristic ideals of a I'-module behave well under extension of scalars,

this implies the following divisibility relation in Z[[I']]:
Theorem 1.0.9. For some integer k > 0,

X

char (X (Hoo))* | wechar (Un.. /Ch., )

where m is a uniformiser of Z, and e =0 or 1 according as p > 2 or p = 2.

In Chapter 6, we finish the proof of the main conjecture by showing that X (H,)
and Up__ /Cp.. have the same Iwasawa invariants. We first follow the paper of Coates
and Wiles [6] to compute the Iwasawa invariants of X (H ), and then compute the
Iwasawa invariants of Up_ /Cp._ using the analytic class number formula. In Chapter
7, we briefly discuss the main conjectures attached to E/H, how they relate to the
main conjecture for H,,/H and the p-part of the Birch-Swinnerton-Dyer conjecture.

Finally, all numerical examples in this paper are computed using the computer

package Magma.






Chapter 2

On the p-part of the
Birch—Swinnerton-Dyer conjecture
for elliptic curves with complex

multiplication by the ring of
integers of Q(v/—3)

2.1 The p-part of the Birch—Swinnerton-Dyer Con-

jecture.

Let A > 1 be an integer and define F()\) : y* = 423 — 33\, Let us assume that
L(E(N),1) # 0, so that E(A\)(Q) and III (E(A)) are finite. Let w = _1%\/?3, a cube
root of unity. In this short section, we will compute the Tamagawa factors ¢, for the
primes ¢ of bad reduction for E()), and ord,(E(N)(Q)) for p = 2 or 3 according as
E()) is a quadratic or cubic twist of E = X(27).

First, we consider the case when A = D3, for D > 1 a square-free integer, so that
E(D?3) is a quadratic twist of E. The primes of bad reduction for E(D?) are 3 and the
primes dividing D, since the discriminant of E(D?) is —27D°.

Lemma 2.1.1. Let D > 1 be a square-free product of primes coprime to 6 which split

in Q(w, v/2). Then

IT ¢
ord: (#(E(DB)@»?) )
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where k(D) denotes the number of prime factors of D.

Proof. We will work with the form y* = 2® — 2133D3 which is isomorphic to F(D?).
With the usual notation for Tate’s algorithm, we have a1 = a3 = ay = a4 = 0,
ag = —2*33D3, by = by = 0 and bg = —2633D3. For a bad prime ¢, we have ¢ | ai, as,
¢* | as,ay and ¢* | ag. Let P, be the polynomial

Gg
Py(T)=T°+ .

q
Then for ¢ = 3, we have P§(T) = 37? = 0mod 3 so P3(T) has a triple root in
Z7)37Z. Therefore, c3 = 3 and ords(cs) = 0. If ¢ is a prime factor of D, then
(P(T),P/(T)) = (T° + %, 3T%) =1 in Z/qZ|T}], since 31 D. So P,(T) has 3 distinct
roots in Z/qZ. Hence, ¢, = 4 and ordy(c,) = 2.
Also, E(D?)[2*°](Q) = {O} since the equation 42® — 33D? = 0 clearly has no
rational solution. O

Thus (1.0.2) indeed predicts

ordy (L&) (E(D*), 1)) = ord, (111 (E(D?)) [2]) + 2k(D)
> 2k(D).

Next, we consider the case when A = D? for D > 1 a cube-free integer, so that
E(D?) is a cubic twist of E. We remark that F(D?) is isomorphic to the curve
23 + 1> = D which is a cubic twist of the Fermat curve 2® + y*> = 1. The primes of
bad reduction for F(D?) are again 3 and the primes dividing D, since the discriminant
of E(D?) is —27D*.

Lemma 2.1.2. Let D > 1 be an odd, cube-free integer such that D =1 mod 9 and D

s a product of primes congruent to 1 modulo 3. Then

Il ¢
q bad

HEO)QF |~ Pt

ords

where k(D) is the number of distinct prime factors of D.

Proof. We will work with the form y* = z* — 2433 D? which is isomorphic to F(D?).
With the usual notation for Tate’s algorithm, we have a1 = a3 = as = a4 = 0,
ag = —2*33D?, by = bg = 0 and bg = —2°32D?. Let ¢ be a prime of bad reduction for

E. If ¢ is a prime factor of D, then we have q | a1, as, ¢* | as,ay and ¢* 1 ag hence



2.2 Quadratic Twists. 11

the type is IV (see [22, p. 49]) and ¢, = 3 or 1. However, the polynomial 7?2 + 24:;#

has roots in Z/qZ since (’73) = (1) (%) =1 and so —242‘# is a square mod g¢. It
follows that ¢, = 3 and ords(c,) = 1. Otherwise, ¢ = 3 and we have 3 | ay, az, 3% | a3, a4

and 3% { ag. Let P3 be the polynomial

PyT) =T° + %

Then P4(T) = 3T? = 0 mod 3 so P3(T) has a triple root in Z/3Z. After the change of

variables = X +3D the triple root is 0, and we have a; = a3 = 0, ay = 32D, ay, = 3*D?,

ag =3*D*(D —2')=3mod9. So Y? - % =Y? - D2(2_24) =Y?—1=0mod 3 has

distinct roots in Z/37Z. Hence the type is IV* (see [22, p. 51]) and ¢3 = 3, so that
ords(cs) = 1.

Furthermore, by [20, Exercise 10.19], we have F(D?)(Q)iors = {O} for D > 1. O

Thus (1.0.2) predicts

2.2 Quadratic Twists.

Let K = Q(v/—=3), and write p for the group of roots of unity in K. We fix once and
for all an embedding of K into C. In general, if X is a non-zero element of Ok which
is prime to #(p) = 6, we let ¥ := gk be the Grossencharacter of E(A) over
K with conductor f, and let g denote some integral multiple of §. Let S be the set of

primes of K dividing g. We consider the (usually) imprimitive Hecke L-series

Px(a)
(Na)®

LS(EM 3) = Z

(a,9)=1

of ¥, (the complex conjugate of 1y). It can be defined by the Euler product

Ls(ys) = 1] (1—&%2)1,

(v,9)=1
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and if we replace g by § in the definition, we obtain the primitive Hecke L-function

L(1,, s). In particular, we have

Recall that for any complex lattice L and z,s € C, we can define the Kronecker—

Eisenstein series o
Z+w
|z + wl|?s’

Hi(z,s,L) = Z

weL
where the sum in taken over all w € L, except —z if z € L. This series converges
for Re(s) > 2, and it has an analytic continuation to the whole complex s-plane [10,

Theorem 1.1]. The non-holomorphic Eisenstein series £ (z, L) is defined by
E(z, L) == Hy(z,1,L).

Let 2, = (% e C*, where v\ denotes the real root and § is the least positive real
period of the Néron differential of any global Weierstrass minimal equation for £. We
write £, for the period lattice of the curve E()\) over C, and write £ for that of E.
Since g is a multiple of §, it follows from [7, Lemma 3| that K (E()),), the extension
of K obtained by adjoining the coordinates of all g-division points of E(A) to K, is
isomorphic to K(g), the ray class field of K modulo g. We fix, once and for all, a set

B of integral ideals of K prime to g such that
Gal(K(g)/K) ={os : b€ B},

where the Artin symbol o, = (b, K(g)/K) of b runs over Gal (K (g)/K) precisely once
as b runs over B. Fix a generator g of g, so that g = gOg. The next result is due to

Goldstein and Schappacher [10, Proposition 5.5].

Lemma 2.2.1. For all non-zero A € Ok, we have

2s
Ls(¥y, ) = |Q$A//g!1 > M (lﬁ,\(b)?,S,ﬁ,\) -
bl

Proof. The Artin map gives an isomorphism

(Ox/9)" /I = Gal (K (E(\),) /K)
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where fi, denotes the image of the group p; under reduction modulo g. Moreover, it
is clear from the choice of A that the map from p; to f1y is an isomorphism. Hence,
the principal ideal (¢,(b) 4+ a) runs over all integral ideals of K prime to g precisely

once as b runs over B and a runs over g. It follows that

V(¥ (b) +a))
w)\a ZZ ‘w/\ +a’2s :

beBacyg

Note that since a € g, we can write

Ua(b) +a = (¥a(0))(1 +a/1a(b)) = b(1 4 a/Yx(b))

where ord,(a/1x(b)) > ord,(f) for each prime v | §, so that

UA(Ya(b) +a) = Pa(b)(1 + a/Pa(b)) = ¥a(b) +a

Hence
¢Aa ZZ ZH Q/J/\ 7879)'
beB acg W’A beB
We can renormalise the right hand side to obtain the result. O]

The following is a well-known fact from, for example, [10, Theorem 2.1].

Fact 2.2.2. For all b € B, we have
0y )
E—. L g
(.0 € )

and

Q e )
& (;,£A> —& (‘Z’(g) *,£A>. (2.2.1)

Now, we concentrate on the case where F()\) is a quadratic twist of E.

Definition 2.2.3. We say a rational prime p is a special split prime if p splits completely
in L = K(x(E[4])), the field obtained by adjoining to K the z-coordinates of all non-zero
points in E[4].

In addition, it can be shown that a rational prime p is a special split prime if and
only if it splits in K, and ¢(p) = £1 mod 4 for both of the primes p of K above p.
Moreover, L = K(p,, v/2) (see Lemma A.1 of Appendix A).
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For the remainder of this section, we assume that D € Ok is such that D = 1 mod 3
and (D) = p; - - - p,, is a square-free product of prime ideals p; of K above special split
primes. In addition, we pick the sign 7; of the generator of p,; so that m; = 1 mod 4,
and set D =y ---m, and S = {m,...,m,}. The sign will not matter since we are most
interested in the case when D is an integer. Given a = (a,...q,) with a; € {0,1}
forall j =1,...,n,let D, € K be of the form D, = n{" ---7%". Note that for any

. 2
integers k; > 0 and Dy = 7rf“+ k. '71'7?:"+2k”, we have

E(D;) = E(D;)

over K, hence we may consider o = (a,...,a,) € {0,1}" as an element of (Z/27)".
Given o € (Z/2Z)", let n, be the number of primes dividing D, and define S, = {7; :
T ‘ Da}.

Let C(A/Q) be the conductor of an elliptic curve A over Q. Recall that if
Endg(A) ®z Q = K, an imaginary quadratic field, we have

C(A/Q) = Ngyofa - d, (2.2.2)

where f4 is the conductor of 14,5 and dk is the absolute value of the discriminant
of K/Q. In particular, C(E/Q) = 27, and so the conductor of ¢ is 3Ok. It can be
verified using this result and Tate’s algorithm that the conductor of ¥ps is f = 3DOk.
It follows that K (E(D?);) is isomorphic to K(f), the ray class field of K modulo f.

Hence the Artin map gives an isomorphism
(Ox/3DOK)" [is = Gal (K (E(D%;) /K)

where fi; denotes the image of p;, = pg under reduction modulo . Note that since 3

and D are coprime and 3 ramifies in K, we have an exact sequence
0= (Ox/DOk)" = (O /3DOk)™ /s — (O /30k)™ /g — 0,

so that (OK/SDOK)X /FI‘G = (OK/DOK)X .
Setting s = 1 and g = 3D in Lemma 2.2.1 and applying (2.2.1) immediately yields:

Corollary 2.2.4. For any o € (Z/27)", we have

3D (s
Oy Ls(¢ps, 1) = Trrg/x (51 (3?)&’ ED3>> :
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We wish to find ord, (L(alg) (Y ps, 1)) In order to do this, we consider the following

sum of imprimitive Hecke L-series.

Definition 2.2.5. Let o
L 5,1
ps= 3 S(%D?x )

o€ (Z)22)"

Using Corollary 2.2.4, we can write this sum in the following way.

Theorem 2.2.6. We have

n * Q
(I)DS =2 TI'K(f)/j< g <3D E))

wherej:(@(\/—_?),\/w_l,...,\/ﬂ_n).

Proof. We have for any « € (Z/2Z)",

LS(ED:% QDS oo
— E |l ==L
Qps 3D %; 3D s
and QD% = #Q, SO
LS(@[}S 5 1) ]_ Q e
— 5* L 2.2.3
o~ apxP DT 3p (2:23)

and

(D) = (52) e 21,

where (7)2 denotes the quadratic residue symbol. Let ey(-, b) : (Z/2Z)" — {£1} be

the 1-dimensional character defined by ex(a, b) = (%)2. Since any 1-dimensional

character is irreducible, considering its inner product with the trivial character gives

Z ea(a, b) :{ 2" i (%)2 =1 for all o € (Z/2Z)"

a€(Z/2Z)n 0  otherwise.

Note that (L) =1 for all @ € (Z/2Z)" if and only if (%), =1 forall j=1,...,n
The result now follows by noting that (%)2 =1 forall j =1,...,n if and only if

0y € Gal(K(§)/J) where J = Q (V=3, /71, ..., \/Tn). O

We now make an explicit choice of B.
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Definition 2.2.7. Let C be a set of elements of Ok such that ¢ € C implies —c €
C and cmod D runs over (O /DOf)” precisely once. Note that this is possible
since (2,D) = 1 by hypothesis. Furthermore, since Gal(K (f)/K) is isomorphic to
(O /DOg)™, the Artin symbol (¢, K (f)/K) runs over Gal(K (f)/K) precisely once as

¢ varies in C. In addition, we define
B={(3c+D) : ceC}

so that 3¢ + D = 1 mod 30k for all ¢ € C since D = 1 mod 3 by assumption. In
particular, if b = (3¢ + D) then we have ¢(b) = 3¢ + D since the conductor of ¥ is
30k. Finally, let

V={celC (7;]) =1 forall j=1,...,n, where b = (3c+ D)},
2

where (7)2 denotes the quadratic residue symbol.

Note that if ¢ € V implies —c € V since

<7Tj> — <3C Tt D) (since m; = 1 mod 4)
b 2 2

T

(%),
_ (‘é’cl (since (51), =1).

It is clear that we can also write Theorem 2.2.6 in the following way.

Corollary 2.2.8. We have

By = 2" Z—g* (CQ 2 E)

Using the relation between the Eisenstein series and the Weierstrass g-function, we

can show:

Theorem 2.2.9. We have

) Q N _1 9 _
s (5 3‘)‘2@3—@(@,@) 0
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K —2 —2s
s9(L) = l% > w w7
s>0 weL\{0}

Then by [10, Proposition 1.5], we have

EHz, L) =C(z,L) — zs9(L) —ZA(L) .

Here, ((z, L) is the Weierstrass zeta function of £ and A(L) := ¥4

= % where (u,v) is a
base of £ over Z satisfying Im(v/u) > 0. Thus we have A(L) = Plo-w) _ v30°
we can see that so(L£) = 0 on noting that w € £ which gives w™2s5(L) = so(L). Hence

o 5. > and

9%

Recall also that for z1, 29 € C, we have an addition formula:

= 1¢'(z1,L) — ¢ (22, L)
ot 22, £) = Coa £+ Clea £) + 50 ST 2
Applying this with z; = %7 2y = &

e (359 3c(5 "
ceV

ceV
12

=3 (C (25) +C<CQ,£> LG E
ceV 3

- (395

D 3 '
Next, we use the key property that, if ¢ € V, then also —¢ € V. Since ((z, £) and
¢'(z, L) are odd functions, and p(z, £) is an even function, it follows that

se(5e5e)- (Cezvép(gg(g’;ggc)) 400 (¢(50£) - 5725)

- 3v30
By applying formulae (3.2) and (3.3) of [21, p. 126], we obtain

+ 250 (et ,00) = (5, 0r) + L

. 224
Letting z = —% in (2.2.4) gives
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But we have ¢ (Qz, £) = §( (2, Ok), so
2Q Q 2w
—, L — L) =——. 2.2.5
4(3,)+<(3,) - (2.2.5)
On the other hand, we have
((22,L) = 2(=,0) + 2

and by differentiating the equation @'(z,£)? = 4p(z,L£)* — 33, we get ¢"(2,L) =
6¢(z, £)%. Also, by computation we get

Q NIVRAYE
p<37£> :37 § <37£> _97
thus (Q ) ) (Q )
20) Q )\ ¢(5L) 697 (5.£)
C<3,£> -2 <3,£> 0 (%75) o (%’Q = 3. (2.2.6)

Now, solving (2.2.5) and (2.2.6) gives

Q 2
€<3’£> “30

Hence (Q )
2 Q 1 o' (5, L
&y +,£> = = —#(V).
c%:/ 1<D 3 (§2@(§,£)—p(%’,ﬁ))
Substituting the values (%, E) =3 and ¢ (%, E) = 9 again gives the result. [

Now we prove the following integrality result of the Eisenstein series.
Corollary 2.2.10. Forn > 1, we have
2 Q
d El—=+=,L]]>0.
(34 (5 +59))

Proof. Given ¢ € V, let P be the point on E : y? = 423 — 33 given by

Py =o(Fk) ur) =o' (5]
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and define
9

3—xz(P)

Recall that £ has minimal Weierstrass form

M (c,D) =

E:Y’+Y=X>-7

which has discriminant 3%, so E has good reduction at 2 over K. This means that
ordy(X(P)) = 0 since P is a torsion point on E of order prime to 2. Further, x = X

in the change of coordinates which gives the minimal Weierstrass form, and so we have

M (c,D) = 3-X(P)
We claim that ords(3— X (P)) = 0. Suppose for a contradiction that ordy(3—X (P)) > 0.
Then let @ = (3,4) be the point on F which we know is a 3-torsion, so that we
have ords(X(Q) — X(P)) > 0. Hence, under reduction modulo 2, we would have
X(Q) = X(P) where ~ denotes reduction modulo 2. Then we have P = +Q), so either
P —Q or P+ (@ is in the kernel of the reduction map, so it must correspond to an
element in the formal group of F at 2, and therefore its order must be a power of 2.
But this is not possible since P has order D and () has order 3, both of which are

coprime to 2. Hence

ords( A (¢, D)) = ordy(9) — ordy(3 — X (P))
= 0.

But (¢, D) = . (—c, D) since p(z) is an even function and #(V') is even, so

ordy (Y (¢, D)) > 1.

ceV

It follows that

ord, <Z & (3? + g L‘)) — min <ord2 (; S e, D)) ord, (#(v>)>

ceV ceV
>0

as required. 0
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Remark 2.2.11. For n =0 (i.e. for E), a computation using Magma gives

— 1
L@ () 1) = 3

Thus we have proved:

Theorem 2.2.12. Let D € Ok be as above and let n be the number of primes in Ok
dividing D. Then we have
OI'dQ(CDDS) = n.

Finally, we are ready to prove the first main result:

Theorem 2.2.13. Let D € Ok be as above and let n be the number of primes in Ok
dividing D. Then
ords (L(“lg)(@Ds, 1)) > n.

Proof. We prove this by induction on n. Write D = D,,, and given «, 8 € (Z/27Z)", we
write 8 < a if Dg | D, but Dg # D,. If n, =1, S, = {m} say, then

LS (@, 1) L(%ﬁ% 1)
O, — S i
~} o T Q

By Theorem 2.2.12, we know that ords(®,s) > 1. Now,

Ls, (1. 1) e((m))\ L&, 1)
T - (1 B Wlfl ) Q

B <w1i1) 1
N 1 3

since ¥ ((m;)) = £m and by Remark 2.2.11 we have @ = 1. But ord, (Lﬂ) > 1,

hence

LY s, 1
ords ((@/JS)) >1=n,.

Now suppose n, > 1 and our result holds for 0 < § < a. Again,
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where the last term is primitive. We know by Theorem 2.2.12 that ordy(®ps) = nq.

Now

Q x€Sa T
B H <7T:|:1) 1
_WGSa T 3

where ords (“ﬂ) > 1 for each m € S,. Hence

ords (%‘””) > #(5.)

Also for 0 < 8 < a,

LSa(@D%l)
o = 1l

mES\Sp

3

We have @/JD:;;((W)) = (%) Y((m)) = 7. Hence

6

ords (WE;}\S (1 — wD%f:T)))) = ord, (WE;}\S (W ;t 1))

P #(Sa\sﬁ)

=Ng — Ng.

L(EDS al)
Q

Furthermore, by the induction hypothesis, ords ( > > ng. Thus

LSa <aDga 1) B
ordy —q > (ng —ng) +ng

and so
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It follows that o
L(v¥ps, 1
ordsy <(¢£D;’)> > ny,
as required. O

Recalling L(E()),1) = L(1y, 1), the following is an immediate consequence.

Theorem 2.2.14. Let D > 1 be an integer which is a product of k(D) distinct special
split primes. Then
ordy (L9 (E(D?),1)) > 2k(D).

Remark 2.2.15. The bound obtained in Theorem 2.2.14 is sharp. For example, let
7 be the prime 13 + 12w and let D = N(7) = 157, which is a rational prime. Then
L®8)(E(D?),1) = 12 so ords (L(alg)(E(DB), 1)) = 2, as required. More numerical

examples can be found in Appendix B.

2.3 Cubic Twists.

Now we look at the cubic twists of E, i.e. the curves of the form
E(D?):y* = 42° — 3°D?
for a cube-free integer D. This is isomorphic to the curve
Y? 4+ DY = X? —7D?

via the change of variables X = x and Y = 2y+D. Let 1)p2 denote the Grossencharacter
of E(D?)/K.

Definition 2.3.1. We say a prime 7 of K is cubic-special if it splits completely in the
field K(E[27]), but does not split completely in the strictly larger field K (E[27])((1 —
w)l/Q)'

The following characterisation of cubic-special primes will be useful, in particular

in proving Corollary A.5 of Appendix A.

Lemma 2.3.2. A prime w of K is cubic special if and only if # = 1 mod 27 and
9 divides the order of 1 —w in (O /7Ok)*. The set consisting of such primes has
density % in the set of primes of K congruent to 1 modulo 27. In particular, there are

infinitely many such primes.
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Proof. First, we note that K (FE[27]) is equal to the ray class field K(27) of K modulo
27 by [7, Lemma 3]. Since Q(py;) C K(27), it follows that K (27) ((1 - w)%) /K (27)
is a Galois extension. Also K (27) ((1 - w)é> /K is not an abelian extension, since its
subextension K ((1 - w)%) /K is not Galois. In addition, K (27) ((1 - w)%) /K (27) is
a degree 3 extension since we showed that (1’7“)3 =1, ie (1—w)s € K(27). Let
H denote the Galois group of this degree 3 extension. Furthermore, let G denote the
Galois group Gal (K(27) ((1 — w)é> /K), and let Frob, € G denote the Frobenius at
7. Then Frobr|g(27) = id in H if and only if ¥ g2k ((7)) = 1 mod 27. If we take a
prime 7 such that Frob, € H\{id}, then (1 —w) is not a ninth power modulo 7 in
K(27) ((1 - w)%), and it follows that the order of 1 —w must be divisible by 9 since
27 divides N(7) — 1 = | (O /7Ok)™ |. By the Cebotarev density theorem, the density

of such primes is % O

From now on, let us assume that each prime 7 of K dividing D is cubic-special.
Note that if p is a rational prime such that p = 1 mod 3, then p always splits in K
since we can write p = a® — ab+ b*> = (a + bw)(a + bw) for some integers a and b. In
addition, if p = 1 mod 27, it can easily be shown that we can assume b = 0 mod 27
and a = 1 mod 27 using symmetry in a and b and change of sign of a. Hence we can
write p = 77 with 7 € Og and 7 = 1 mod 27.

Before we begin, it will be useful to find a model for our curve E : Y24+Y = X3 -7
where E has good reduction at 3. Let u = % where a = %, B = %‘/j‘g, and

let r = —2/ % Then the change of variables v = u?X + r, y = 2u®Y’, gives an
equation for F with good reduction at 3 (see Proposition A.2 of Appendix A).

Given o = (o, ... a,) with a; € {0,1,2} for all j =1,...,n, let D, be an element
of K of the form D, = 7{" - - - 5™ where 7; are distinct cubic-special primes. Similarly
to the quadratic twist case, we may consider a = (o, ..., a,) € {0,1,2}" as an element
of (Z/3Z)". Given a € (Z/3Z)", let n, be the number of distinct primes of K dividing
D, and define S, = {m; : m; | Do}. Pick a € (Z/3Z)" such that n, = n, and set
D =D, and S = {my,...m,}. We will study the following sum of imprimitive Hecke
L-functions (see Definition 2.2.5).

Definition 2.3.3. Given D as above, let

O = Z LS<¢QD3¢’1)‘

ae(Z/3Z)"

Let § be the conductor of the Grossencharacter ¥p2. Then again, a computation

using Tate’s algorithm shows that f = 3DOk. Also, the Artin map gives an isomorphism
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between Gal(K (f)/K) and (Ok/3DOk)” /1, which is isomorphic to (O /DOk)*
since (3, D) = 1 and 3 ramifies in K. Now let C be a set of elements of O such that
c € C implies we, w?c € C and ¢ mod D runs over (O /DO )™ precisely once. This is

possible since 3 and D are coprime by assumption. Then let
B={(B3c+ D) : ceC}

so that 3¢ + D = 1 mod 30k, where 30Ok is the conductor of ¥. In particular, if
b= (3c+ D) € B then we have ¢)(b) = 3¢+ D.
Let m be such that u,, C K. For a € K* and b an ideal of K coprime to m and a,

we write (E) for the m-th power residue symbol defined by the equation

(Vare=(3) va

where o, = (b, K( ¥/a)/K) € Gal (K(%/a)/K) denotes the Artin symbol of b. Also,
for any a,b € K*, we define
a a v(b)
(), -1(),

where v runs through all primes of K coprime to a. Recall also that for a prime 7 of

K and ¢ € (O /mOk)™, we have Euler’s criterion

c N(r)—1
() =c¢ = modm.
m

T
Definition 2.3.4. Let

V={celC (7;]) =1 forall j=1,...,n, where b = (3c+ D)}.
3

Recall that we have (1_‘*’) = (1_“2)3 = w"™ and (7%) =w ™" where m,n € Z

Tj 5 i/ 3

3
are such that m; = 14 3(m + nw) (see [1, p. 354]). Hence for ¢ € V' we have

A D
(7;]) _ <3c+ ) (since m; = b = 1 mod 3, see [1, p. 354])
3 3

11— 1 — w?
= <C> (since m; = 1 mod 9, we have ( w) = ( ~ ) =1).
7Tj 3 7I'j 3 7Tj 3
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Furthermore, by assumption on 7;, we have m +n = 0 mod 3 so (%) = 1. Hence

(i)gz(ﬁ)?):(%) So ¢ € V implies we, w?c € V. 7

5 5

It is also easy to check that

Q
EDQ - \S/EOK
Theorem 2.3.5. We have
CQ Q
d _ qn T ox
I ;31?8 ( ‘ z)

Proof. 1t is clear that Lemma 2.2.1, Fact 2.2.2 and Corollary 2.2.4 still apply. Thus,
for any o € (Z/3Z)",

Ls(¥p2,1) 7
—_— - Fol Da L
Qpy 3D fé "
and (2p2 = ﬁQ, SO
LS(EDQ , 1) 1 op—1 0 o
—_—e - D? El=—.L 2.3.1
Q 3D beB( ) 6 1 3D7 ( )

and D
op—1
(D)7 = (7)€
3

We have a character e3(-,b) : (Z/3Z)" — p4 defined by ez(a, b) = (%)3. This

is a 1-dimensional character, and since any 1-dimensional character is irreducible,

considering its inner product with the trivial character gives

n : Dg o n
(o, b) = { 3v if (5’)‘3 =1 forall a € (Z/37Z)
a€(Z/37)" 0  otherwise.

Note that (%)3 =1 for all @ € (Z/3Z)™ if and only if (”—;)3 =1lforallj=1,...,n
It follows that

o =3 Y 5t (55£)

ceV

where b = 3¢ + D. Again, applying equation (2.2.1) gives the result. O

As in Theorem 2.2.9, we have
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Theorem 2.3.6.

c 9-¢' (5. L
se (5 5c) =§(Z p()) —#).

ceV eV 3 — p(%,ﬁ)

Proof. The proof is almost identical to the proof of Theorem 2.2.9, since the addition
formula for ((z,£) implies C(%,E) + ¢ (WCQ,E) + ¢ (“’209,£> = 0, and we have

D D
c+wet+w’c=0foranyce V. O

This gives:
Corollary 2.3.7. Forn > 1, we have
2 Q
ords (Z &l ( + ,L)) > 1.
ceV D 3
Before we prove this, let us prove:
Proposition 2.3.8. ord;(#(V)) > 2.

Proof. Given «; € {0,1,2} fori=1,...,n, let

Viar,an) = {c eC: (c> =w forallie{l,.. n}} ,

T

so that now we have V' = V(o o). Given any (a1,...,,), if we can find b € C such

-----

that (#) = w®, then clearly we can write

‘/(al,...an) =0V
={bc:ceV}

and if there is no such b, then V{4, .. q4,) = @. Also, we have

SO

#(C) = k#(V)

for some positive integer k < 3", so that ords(k) < n. On the other hand, ords (#(C)) =
ords ((N(my) — 1) -+ (N(m,) — 1)) = 3n. Hence, ords(#(V)) = 3n —n = 2n > 2 for
n>1,809 | #(V) as required. O
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Now we are ready to prove Corollary 2.3.7.

Proof. (of Corollary 2.3.7) Let P be the point on E : * = 423 — 33 given by
s 2
P =p(Z P =y

and define 9 (P)
9=y
M (c,D) = 3= a(P)

Now, write V as a union H UwH U w?H for some set H. Then

9_@/(%,»6) 9_pl(wlc)Q’£) 9_p/(w2597£)
M (c,D) = D7)
L= @) s o) s (R )

Recall that E has complex multiplication by w via w(z,y) = (wz,y), so ¢ (‘”BQ, L) =

p’(%,ﬁ) for i = 0,1,2. Moreover, L = wL so @ (‘“EQ,E) =p (“igg,wiﬁ), and @ is

homogeneous of degree —2 so this simplifies to

3° — 3%y(P)
38— 2(P)p

S (e, D)= ¥

ceV ceH

To determine ords(z(P)) and ords(y(P)), recall that the change of variables z =
WX + 7,y = 2u’Y where r = —3{/7133V=3 gives us a model of E having good

2
reduction at 3 (see Proposition A.2 of Appendix A). In terms of X and Y, we have

_ 35 —2- 3%V (P)
Z M (c, D) = Z 33— 3 —ubX(P)3 — 3utrX(P)? — 3u?r2X(P)

ceV ceH

Now, P is a torsion of point of F of order prime to 3 and E has good reduction at
3 s0 ordz(X(P)),ords(Y(P)) = 0. If ords(Y(P)) > 0, P reduces to a 2-torsion after
reduction modulo 3, but P is a D-torsion and reduction modulo 3 is injective, hence
we must have ordz(Y(P)) = 0. Now, ordz(3* — r?) = ord3(3*(1 — s*)), where r = 3s.
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Also,

2 2

3-3y-3
N 16

3
14/—13 —3y/—
1_33:1+(s333>

so ords(1 — s*) = 1. In addition, we have ords(u) = 2 and ords(r) = 1. Therefore,
ords (uSX (P)3 + 3utr X (P)? + 3u*2 X (P)) > 4 = ords(3% — r3). It follows that

ords (Z M (c, D)) > ords(3%) — ords(3* — r?)

ceV
=1.

On the other hand, by Proposition 2.3.8, we have 9 | #(V'). Hence,

ords (Z & (Cg + g c)) _ min <ord3 (; S e, D)) ,ordg(#(V))>

ceV ceV
=1

as required. 0

Recall from Remark 2.2.11 that @ = % It follows from Theorem 2.3.5 and
Corollary 2.3.7 that

Theorem 2.3.9. Let be a cube-free product of cubic special primes, and let n be the

number of distinct prime factors of D in K. Then
ords(®p2) = n.

We can generalise Definition 2.3.3 as follows.

Definition 2.3.10. Given a character x : (Z/3Z)" — C*, define

LSa (aD2 ’ 1)
CID%Q) = > )((04)7Q e
a€(Z/32)"

Using essentially the same arguments that are used to prove Theorem 2.3.9, we can

show:
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Lemma 2.3.11. For any character x : (Z/3Z)" — C*, we have
()
ords(®ps) = n.

Proof. By equation (2.3.1), we have
Ls(vpz, 1) D, Q A\
—_—e —) & L)
xe) =g b%;x ( >3 13D’

Also, by the law of cubic reciprocity, we have

(), )= (5),- ()
3C+Do¢ 3_ Da 3_ DOé 3_ DOé 3‘

Let n = n,. Then we have a 1-dimensional character 6§X)(-, ¢): (Z)3Z)" — ps defined

by E;())X) (o, ¢) = x() (L)?) Now, considering its inner product with the trivial character

Da
3" ifce V(X)
> a0 = e
aE(Z/3Z)" 0  otherwise,

gives

where VO = {c € C : (5), = x(a)? for all @ € (Z/3Z)"}. Thus

" : cQ Q

ceVX)

w

Recall that for any prime 7; dividing D,, we have (;)3 = 1. Hence

J

(c>._«w)_(ﬁﬂ

Da 3 Da 3 Da 3,

so ¢ € VO implies we, w?c € V. Also, the proof of Proposition 2.3.8 shows that
VO = V4, . an where a; € {0,1,2} is such that x(e;) = w®, where ¢; € (Z/3Z)" has

1 in the z—th entry and 0 elsewhere. Hence, #(V) = #(V)) or #(VX) = 0, so in
either case we have 9 | #(V®). So we can apply the proofs of Theorem 2.3.6 and

Corollary 2.3.7, and obtain

Q  Q
ordg( 3 & <C+ c)) 1,
D
ceV(X)

so the result follows.
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Remark 2.3.12. We note that the assumption ordz(m — 1) > 2 for any prime factors
7 of D is essential. If we take 7 = 55 4 33w and S = {r}, then ords(r — 1) = 2

and N(7) = 1 mod 27. Then we have ords <LS(QM> = 1, but a computation shows

— — 3
M = 3 and M = 289, so that ords(®,2) = 0. Note also that we used
3

7 =1 mod 9 when showing (%)3 = 1, which is not true when ordz(m — 1) = 3.

Since we required that ords(m — 1) > 3 and that 9 divides the order of 1 — w in
(O /mOk)™ for any prime 7 of K dividing D, we can improve the bound in Lemma
2.3.11 slightly by a similar proof. This can be found in Corollary A.5, Appendix A, and

we will only use this in the case n = 1. We are ready to prove the second main result:

Theorem 2.3.13. We have

ords (LWSQ’U) > ;(n +1).

Proof. We prove this by induction on n. First, write « = («ay, ..., «,) for the element
in (Z/3Z)" with D = D,. Given ,v € (Z/3Z)", we write § < v if Ds | D, but
Dy # D,,. Let n, =1 and S, = {m }, say. Then we consider

® 0 = LSD‘(@’ 1) + Lsa(wﬂf’ 1) + Ls, (1/}7#7 1)7
1 0 O 0

where the last two terms are primitive. Also,

Now let x; : Z/37Z — p4 be the character defined by 1 +— w and let x3 : Z/37Z — py
be the character defined by 1 + w?. Then we have
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for i = 1,2. Hence we obtain

Ls. (4,1
Brp —wdY) = (1 w)s‘*g}’) +(1-w?)

We know that ords(®r2 — wq)%l)) > 2 (see Corollary A.5 of Appendix A), and we also

checked that ords (W) > 1, so ords ((1 —w) (W)) > % It follows that

ords ((1 —w?) (W)) > i,
ord3< 50 (2 J)) .

o (V2
o

that is,

e~

Lo (¥, 2,1)
But > é \/_

€ K so ords (

L
ord3< S w

Q
> must be an integer multiple of 1 . Hence
) na +1)

as required.

Now suppose the result holds for all ng < n,, where 8 < . We have

LS (a 1) LSa(@DQa 1) LSE(@D?) 1)
Dpo = 221~ —_— _
D o tX g T2 g
B a y o
where the terms in the last summand are primitive.
We know that

Q res T Q
- 11 (” - 1> 1
_TI'GSa m 3

and 7 = 1 mod 27, so ords (LS“((;M)) > 3n, — 1. Next, for ng < n,, we have

5 _ B
Q H Q

TES\Sp T

Lg, (ED% 1) (1 B %Z’D?((W))) L(aDév 1)



On the p-part of the Birch—-Swinnerton-Dyer conjecture for elliptic curves with
32 complex multiplication by the ring of integers of Q(v/—3)

™

and ¢p2 (7)) = (D5)3 7 =w'r, i € {0,1,2}. Furthermore, by the induction hypothesis,

LY 2,1)
ords ( gﬁ ) > 2(ng +1). It follows that

Ls, (V2,1
Sa(@/)DB )) > ;(na—nﬁ)+;(n5+1)

ords ( Z Q

ng<ng

1
= 5(77/& + 1)

We also know by Lemma 2.3.11 that ordg(q)%g ) = n, for any character x :

(Z/32) > py.
L(wDQJ)

To find ords o for v = (y1,...,7) € (Z/3Z)" with n., = n,, suppose first

that v # (2,...,2), so there exists j € {1,...n} with 7; = 1. Without loss of generality,
we may assume j = 1. Let x1 : (Z/3Z)" = (g1, ..., 9n) — p3 be the character defined by
x1(g1) =w and x1(g;) =1 for j =2,...,n, and let x2 : (Z/3Z)" = (g1,...,Gn) — Hs
be the character defined by x2(g1) = w? and x2(g;) = 1 for j = 2,...,n. Then, by

L(ED?/ ’1)

writing out ®p,_ — w@%‘:) explicitly, we see that ords | > o > L(ng + 1) for
Ny <Ng
%:1
. . . L(EDQ 71) 1 .
any 7 =1,...,n, and similarly ords [ > o > 5(nq +1) forany j=1,...,n.
Ny <Ng
V=2

Now let x2 be the character defined by ¢; — w, g» — w and g; — 1 for j # 1,2,
and let x3 be the character defined by g; — w?, go — w and g; — 1 for j # 1,2. Then

an easy calculation gives

(@5 — wdR)) — (Pp, —wdh)) =3w 3 _3
ng<na Q ng<na Q
B81=0,p2=1 B1=0,82=2

L 72,1 La7271
ooy Ol o B

ng<na ng<na

B1=1,82=0 B1=1,82=1
L(Wps, 1
+3w® (g”).
N~y =N

Y1=1,72=1
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So we have
L(@ 2, 1) 1
ords > % > §(na +1).
Ny=Ngq
v1=1,72=1
Similarly, we can show
L(@D2 ) 1) 1
ords Z —— | > =(no+1)
Ny =Nq Q 2
Vi=€:i,7j;=€;

for any e;,e; € {1,2} with i # j. Now we claim the following:

Lemma 2.3.14. Let v € (Z/3Z)" be such that ny = n,. Then for any J C {1,...,n}
and any e; € {1,2} for j € J , we have

L@, 1
ords Z M > M,
V5 =€; Q
jed
. L(EDQ)l)
where M € Q is such that ords D o > M
~e(Z/3Z)™
Ny =N,

Proof. We prove this by induction on |J|. The cases |J| = 1,2 were established above.
Given J C {1,...,n} and e; € {1,2} for j € J, let X; denote the sum

L(ED%l)
X, = Y
V=€ Q
jeJ

Now suppose the lemma is true for any J C {1,...,n} with [J] = k > 1. Then let
|J| = k + 1, and without loss of generality, we may assume J = {1,...,k + 1}. Pick
e; € {1,2} for j € J. Then by the induction hypothesis, ords(Xy, xy) = M and

OI'dg(X{Q ..... k+1}) 2 M. I\IOVV7
L(@D% 1) L(aD% 1)
X1,k — X2, k41) = > T” - > TW
vi=¢€;5€{2,...k} vi=¢€;5€{2,...k}
Y1=€1,Vk+17€Ck+1 Y1F€1,Vk+1=€k+1

—A- B,



On the p-part of the Birch—-Swinnerton-Dyer conjecture for elliptic curves with
34 complex multiplication by the ring of integers of Q(v/—3)

-----

Xa,om + X 41y = A+ B+2X; so ords(A + B +2X;) > M. It follows that
ords(X ;) > M as required. O

Hence applying the above lemma with J = {1,...,n}, we see that for any v €
(Z/3Z)" and n., = n,, we have

ords (L(#}D%’l)) > —(ng+1)

1
QO 2

and the result follows. O
The following is an immediate consequence of Theorem 2.3.13.

Theorem 2.3.15. Let D > 1 be an integer which is a cube-free product of cubic-special
primes. Then
ords (L9 (E(D?),1)) > k(D) + 1,

where k(D) is the number of distinct rational prime factors of D.

Proof. The number of distinct primes in K dividing D is twice the number of distinct

rational primes dividing D, so by Theorem 2.3.13,
_ 1 1
(alg) - — _
ords (L™ (Pp2,1)) > 5 (2(k(D) + 1)) = k(D) + 5.

But we know L(®l8) (@DQ, 1) € Q, so ords (L(alg) (ﬂDg, 1)) > k(D) + 1 as required. [

Remark 2.3.16. The bound in Theorem 2.3.15 is sharp. For example, let 7 = 28+27w
and let D = N(7) = 757, which is a rational prime. Then we have L) (E(D?);1) =9
s0 ords (L®)(E(D?),1)) = 2.

In fact, the numerical examples listed in Appendix B suggest that Theorem 2.3.15
is true whenever D > 1 is an odd integer congruent to 1 modulo 9 whose prime factors

are congruent to 1 modulo 3. Finally, we note that the condition D =1 mod 9 is not
sufficient. Indeed, for D = 55 we have L®®)(E(D?),1) = 3.



Chapter 3

Descent Theory

3.1 Introduction

Take ¢ to be any prime number with ¢ = 7mod 8. Let K = Q(y/—¢), and fix an
embedding K < C. Let E be an elliptic curve over C with End¢(E) = O, the ring of
integers of K. Since K has prime discriminant, the class number, which we denote by
h, is odd. In the case ¢ = 7, we can take F to be any quadratic twist of the elliptic
curve A = X((49) with equation

Ay +aoy=a—2> -2 —1.

In this case, we have the following result due to Gonzalez-Avilés and Rubin, using

Iwasawa theory.

Theorem 3.1.1. Let E be a quadratic twist of the elliptic curve A = Xo(49). If
L(E/Q,1) # 0, then the full Birch-Swinnerton-Dyer conjecture holds for E.

The proof relies heavily on the fact that 2 is a potentially ordinary prime for F.
This is the only family of quadratic twists of elliptic curves with complex multiplication
defined over Q for which 2 is a potentially ordinary prime, since ¢ = 7 is the only case in
which K has class number one. In general, the theory of complex multiplication tells us
that the modular invariant j(O) is a real number which satisfies an irreducible equation
of degree h over K, and the Hilbert class field H of K is given by H = K(5(O)). Given
a rational prime p, the theory of complex multiplication tells us that F has potentially

good ordinary reduction at all primes of H above p if and only if p splits in K.

Definition 3.1.2. We say a prime number p satisfies the good ordinary hypothesis for
E if E has good ordinary reduction at all primes of H above p, and p splits in K.
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From now on, let p be a prime number satisfying the good ordinary hypothesis for
E, and write pOg = pp*. We also define

J=HNR=Q(((0)),

which satisfies [H : J] = 2. Then for any prime number ¢ with ¢ = 7 mod 8,
Gross showed that there exists an elliptic curve A(q) which is defined over J with
Endy(F) = O, such that in the simplest case ¢ = 7 we have A(7) = Xy(49). We define
A(q) by constructing a Grossencharacter v, of H. Let a be an integral ideal of H.
Define 1), to be the unique Grossencharacter with conductor (y/—¢) such that, if a is
an integral ideal of H with (a,q) = 1, then

¢q(a) =,

where o is the unique generator of the principal ideal Ny, (a) which is a square in
O/y/—qO. In particular, we have

o(1y) = ¢, for all o € Gal(H/Q).

This defines an isogeny class of elliptic curves defined over H with Grossencharacter
1y, j-invariant equal to j(O) and complex multiplication by O. The following theorem

of Gross shows that we can pick out a special curve A(g) in this isogeny class.

Theorem 3.1.3. There exist a unique elliptic curve A(q) defined over J with Gréssen-
character gm0 = Vg such that Endy(A(q)) = O, j(A(q)) = j(O) and the minimal

discriminant ideal is equal to (—q®).

We will see in Lemma 3.1.9 that A(q) is isogeneous to its conjugates A(q)? with
o € Aut(H), hence it is a Q-curve.
In addition, Gross found an explicit equation for A(q) over J. Let us consider a

generalised Weierstrass equation of A(q) of the form
y2 + a1xy + azy = 2%+ ayr® + agr + ag

with a; € H. Let A(A(q)) denote the discriminant for this equation. We will show
that we can have a; € J with A(A(q)) = —¢*. In order to do this, given an integral
ideal a of O, let o, denote the image of a via the Artin isomorphism from the ideal

class group of K to Gal(H/K), and let A(a) denote the unique isogeny from A(q) to
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B = A(q)? of degree Na defined over H, characterised by

for any u € A(q)[c] with (¢,a) = 1. Let 2/, ¥/ be the coordinates of any generalised
Weierstrass equation for B, and let A(B) be the discriminant of this equation. We

write

dx dx’'
=————— wp=
2y + a1x + as 2y + alx’ + ay
for the Néron differentials. Then we see that the value A(a) € H* defined by

WA(q)

Aa)*(wp) = Aa)wag

is such that A(B)A(a)'? is independent of the choice of Weierstrass equation for
B. Further, it is shown in [3, Appendix, Theorem 8| that there exists a unique

ca(g)(a) € H* such that cu(g(a) gives a canonical 12th root in H of

A(A(q))%5 MW A(A(g))N
A(B)A(0)2 @z

Taking appropriate values for a, we see in particular that A(A(q)) has a 6th root in H.
Now, recall that

I = Ray = T Aty

where ¢4, cg € H are the values defined in [13, §1]. This shows that j(A(g)) has a cube
root in H and j(A(q)) — 1728 has a square root in H. Note that the only roots of unity
in H are 1, so j(A(q)) in fact has a cube root in J. Now we have the following.

Theorem 3.1.4. The curve A(q) has a model over J

2

mq ngq
yr =23+ 5130 55 38 where (3.1.1)
J(Alg)) — 1728

—-q

m? = j(A(q)) and n®=

with discriminant equal to —q®. Here, we take the positive square root for n.

Proof. The arguments above show that m € J, and n € H since we also have
vV—q € K C H. But j(A(q)) — 1728 and —q are both negative, so n € J as well. An
easy computation then shows that indeed the curve defined by equation (3.1.1) has
discriminant —¢® and j-invariant equal to j(A(q)). Now, [14, Proposition 3.5] shows
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that there is an isomorphism over J from this curve to A(q). This concludes the proof
of the theorem. O

The coefficients of the (3.1.1) are integral in J, expect perhaps at 2 and 3. It is not
known in general how to write a global minimal equation for A(q) overJ explicitly for
q > 7, although Gross has shown that it exists over J (see [14, Proposition 3.2]).

A classical 2-descent shows that, for A(7) = X((49), we have

AMQ) = Z/2Z, A(T)(K) = Z)2Z x T)2Z, TI(A(7)/Q)(2) = 0.

Gross generalised this result to show that, for all ¢ = 7 mod 8, we have [13, Theorem
22.4.1]:

A(q)(J) = Z/22, Alg)(H) = Z/2Z x Z)2Z, TI(A(q)/J)(2) = 0.

There is one additional property of the curves A(g) which is important in carrying
out arguments of Iwasawa theory for them. Let A(q)r denote the torsion subgroup of

A(q)(J). It is clear from the theory of complex multiplication that H(A(q)ir) is an

abelian extension of H. We have the following stronger result:
Theorem 3.1.5. The field H(A(q)wr) is an abelian extension of K.

Proof. Let (4 be a Grossencharacter of K with conductor (1/—¢) such that, if b is
an integral ideal of K with (b,q) =1,

Pag)(b) =5

where 8" = a is in K*, (o) = b" and « is a square mod /—¢. Then P a(q) satisfies

Va(g)/H = PA@) © Nuykc.

A theorem of Shimura [19, Theorem 7.44 | states that the existence of such a Grossen-

character @4y is equivalent to H(A(q)ior) being an abelian extension of K. O

In what follows, we want to consider the arithmetic of the Birch-Swinnerton-Dyer
conjecture for as large class as possible of quadratic twists of the curve A(q) defined over
J. In addition, it will be vital that such a quadratic twist F is such that H(FE,)/K
is an abelian extention. From now on, assume FE is a quadratic twist of A(q) by a
quadratic extension of H of the form H(v/)\), where \ is some non-zero element of K
and the discriminant of H (\/X) /H is prime to 2¢q. Thus, in particular, E has good
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ordinary reduction at the primes of H above 2. We will show that under this condition,
the extension H(F}.)/K is abelian.

Theorem 3.1.6. We have

Ye/m = ¢Kx o Ny/k,
where g is a Grossencharacter of K.

Proof. We have remarked that ¢ )/n = ©a(q) © Nu/x. Now, E is a twist of A(q) by a
quadratic extension M of H which we assumed to be of the form HM where M is a
quadratic extension of K. Let ya¢ (resp. xa) be the quadratic character of H (resp.
K) defining M (resp M). Then we have x = xar © Ny/k by class field theory. Now,
since M/H has discriminant prime to p, we have g/ = Ya)uXMm. It follows that

we can take Y = Qaq)XM- O]
Applying [19, Theorem 7.44] to the above theorem, we immediately obtain:
Corollary 3.1.7. The field H(E,,,) is abelian over K.
Write G for the Galois group of H over K and g for the conductor of ¢g.

Lemma 3.1.8. For all a € K with (a,g) =1, we have

vK (@) = Pk(a).

Proof. Since E is defined over .J, we have ¢ g/ = potpp mop™t, where p denotes complex
conjugation. This gives (po g op ) oNy/x = px oNpy/k, and popgop™ =K -0
for some o € G. Since o(a) = 7(a) for any o, we have po oo p™t = o, and thus
conjugating g by p twice gives o = i - 0. This gives 02 = 1, and finally o = 1

since [H : K] is odd by assumption. O
Lemma 3.1.9. E is isogeneous over H to all of its conjugates under G.

Proof. Suppose 0 € GG. Then the Grossencharacter of £ over H is ¢y o o~ !. But,
since Yg/g = ¢k oNpy i, we see that Vg g = Y. g. Hence, E'and E° have isomorphic
Galois representations on their Tate modules, and so, they are isogenous over H by
Faltings’ theorem [9, Corollary 3]. O

In particular, this shows that A(q) is isogeneous to all of its conjugates under

Gal(H/Q), since it is defined over J, the fixed field of H under complex conjugation
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p € Gal(H/Q). Given an ideal b of O prime to the conductor g of the Gréossencharacter
VYK, let oy prime to g, let o be the Artin symbol of b in H/K. Then in view of Lemma

3.1.9, there exists a unique H-isogeny
Ago(b) : E7 — E7°°

whose kernel is E¢. This is obtained by restricting the Serre-Tate character of the
abelian variety B/K [18, Theorem 10], which is the restriction of scalars of E from H

to K. See [13] for more detailed account.

3.2 Descent theory over H

Recall that p is a prime satisfying the good ordinary hypothesis for £. We write
pO = pp*, and write 7 for the element in O with p" = 7O, where h = [H : K]. We
first discuss descent theory for E over H. We need the following notation. If « is

—_— [O{] R

any non-zero element in O, we write E, = ker <E (H) — E(H )) for the kernel of the

multiplication-by-o map [a]. Similarly, if a is any non-zero ideal of O, we write

E.= () E.a
aca\{0}
As O-modules, we have E, = O/aO and E, = O/a. Let P denotes the set of primes
of H lying above p. If v is any place of H, we write H, for the completion of H at v,
and write O, for its ring of integers.

Before proceeding to study descent over various extensions of H, we make an
observation that in the case ¢ = 7, we have H = K, so that for every place v of H
where E has good reduction, the formal group E of E at v is a Lubin-Tate group of K
over H,. However, if ¢ > 7, this is no longer true because 1, (v) will no longer be a
local parameter of H, is general. We first briefly discuss how one handles with this
situation.

Let v be any place of H lying above a prime w of K such that E has good reduction
at v, and let o, € G be the Frobenius at v. Let Ag(v) denote the unique isogeny

)\E(U> E— B,

induced by the isogeny Ag(w). We remark that the isogeny Ag(v) is defined by the same
formulae which define the isogeny A(v) : A — A%. To see this, recall the notations in
the proof of Theorem 3.1.6 and let 7 be the nontrivial element of Gal(M/H). Then
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E(H) is isomorphic to the —1 eigenspace for the action of Gal(M/H) on A(M), i.e.
the points on A(M) on which 7 acts as —1. But we have A\(v)(—P) = —A(v)(P) since
isogeny preserves the group law, and also we clearly have x (7)) = —1. Hence A(v) is
independent of twist by x .

This induces a homomorphism

o~

Ae(v) : E — E°,

of formal groups of the curves F and E?v at v, defined over the ring of integers O, of

H,. Thus, we can view Ag(v) as an element of O,[[t]] satisfying

~

Ap(v)(t) = A(v)t mod degree 2, Ap(v) = 7 mod v,

where A(v) is an element of O, and ¢ denotes the cardinality of the residue field of the
restriction w of v to K. Now, we can apply ¢! for i = 1,..., f,, where f, denotes the
residue degree of v in H/K, to Ag(v) and Ag(v). Then we see that

N, x,Av) = g/ (v),

since [[/*, 0 \g(v) is the unique element of Endy(E) = © which reduces modulo v to
the Frobenius endomorphism at v. Thus E is not itself a Lubin-Tate group, but E
together with the homomorphism XE(U) . E — E° is a relative Lubin-Tate group,
which was studied by de Shalit in [8, I §1]. The theory of Lubin-Tate groups generalises

to relative Lubin—Tate groups, and in particular, we have the following:

Theorem 3.2.1. Let v be any place of H where E& has good reduction, and let w be its
restriction to K. Then for any n > 1, the extension H,(En)/H, is totally ramified,

and its Galois group is isormphic to (O/w™)”.
Now, E has good ordinary reduction at the primes of H above p. We define
F,=H(Ew), and F = F, or F}, according as p =2 or p > 2. Set
Fo =H(Ey=), $=Gal(Fx/H).

Then by Theorem 3.2.1, we have a character x, : § — O, = Z; giving the action of §
on Eye, which is an isomorphism. We write $ = A xI', where A = Gal (F//H), is cyclic
of order 2 or p — 1 according as p = 2 or p > 2 by Theorem 3.2.1 and I' = Gal (F.,/F)

is isomorphic to Z,.

Theorem 3.2.2. E has good reduction everywhere over F.
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Proof. Let ep/p (resp. g / r) be the Serre-Tate homomorphisms attached to E over H
(resp. F). Thus eg/p = eg/u © Np/g, where Np/g : A — Aj is the norm map from
the idele group of F' to the idele group of H. Now, F has good reduction at all places
of F' above p by hypothesis. Let v be any place of F' which does not lie above p, and
let U, be the units of the ring of integers of the completion of F' at v. Then by [18, §7,
Corollary 1] E will have good reduction at v if and only if eg/p(U,) = 1. Let w be the

restriction of v to H. Then

5E/F(U’U) = 5E/H(NFU/Hw Uv)'

Let £ : A, — Gal(H*?/H) denote Artin’s global recipricity map. Then, by class
field theory, (N, u, Uy) fixes F. Hence our lemma will follow from the following

lemma. O]
Lemma 3.2.3. If z is a unit in the ring of integers Uy, of H,, and {y(x) fixes F', then

Proof. By local class field theory, £5(U,) is the inertia subgroup of w in Gal(H**/H).
Since E has potential good reduction at w, it follows that x,({x(2)) is a root of unity
in Oy for all x in U,, by the criterion of Néron-Ogg-Shafarevich. On the other hand,
for all  in A}, which fix F', we must have x,({g(x)) belongs to 1 + p* where i = 2 if
p =2 and i = 1 otherwise. But 1 + p’ contains no root of unity other than 1. Hence
we have x,(&m(x)) =1 when z lies in U,. But eg/u(z) = xp(&u(x)), completing the
proof. n

For each n > 1, we introduce the following Selmer groups:
Sel«(E/H) = ker (Hl(H, E.) = [[(H'(H,, E))WH>

Sel'.(E/H) = ket (Hl(H, Ep) — [[(H'(H,, E)),,n) .
vg¢ P

We define

Sely (E/H) = lim Sel (E/H)
Sely (E/H) = lim Sel... (E/H),

where the inductive limits are taken with respect to the inclusions F,n — En+1.
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We also let T'= P U B where B denotes the set of primes of H where F has bad

reduction, and similarly define

Sell”) (E/H) = ker (Hl(H, Em) — [[(H'(H,, E))Trn)

vgT

Sely”) (B/H) = lim Sel ! (E/H).
Lemma 3.2.4. Ifv € T, then #(H'(H,, E)(p)) = #(Ep~(H,)), and:

(i) If v e B, #(H'(H,, E)(p)) =2 or 1, according asp =2 orp > 2.
-1
(ii) If v € P, then #(H(H,, E)(p ‘( wE/H )‘p .

Proof. By Tate local duality, the dual of the discrete group H'(H,, E) is E(H,), and
this induces the duality between H'(H,, E)» and E(H,)/m*"FE(H,) for any positive
integer n. On the other hand, let [ be the prime number below v. Then by [20, V.II
6.3], E(H,) contains a subgroup of finite index isomorphic to (O,,+). Hence we have
E(H,) = E(H,)w ® Z™® and v{7* so E(H,)/m*"E(H,) ~ Ep(H,). Taking the
inductive limit proves the first statement.

Assume first that v € B. Let m be such that Ey~(H,) = Eym. In particular,
H, = H,(Eym), so v splits completely in H(Eym)/H. But Theorem 3.2.2 tells us
that v ramifies in F//H, since the reduction type is stable under unramified field
extensions [20][§5, Proposition 5.4]. It follows that m < 0 (resp. m < 1) if p > 2
(resp. p = 2). Hence if p > 2, we have m = 0, and in the case p = 2, we also have
E,=E,(H) C E,(H,) so m > 1, proving m = 1 in this case.

Now assume v € P. Then 7*" is an automorphism of the formal group of F at v,

and reduction modulo v induces an isomorphism

lim E(H,)/n"" E(H,) = E(k,)(p),

where E /k, denotes the reduction of £ modulo v. Now, g/ (v) is the unique element

of O whose reduction modulo v is the Frobenius endomorphism of E. Hence

#(E(ky)) = (p/u(v) = D) gm(v) — 1),

where /i denotes the complex conjugate of Y g . But ¢g/m — 1 is a unit at p since
(Yg/u(v)) = plv, where f, = [k, : F,]. Thus

ordy(#(E(ky))) = ordy (¢ g (v) — 1).
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The result follows by dividing this through by 155 (v) and noting Nv = ¢ (v) g (v).
O]

We have an exact sequence

0 — Sely (E/H) — Sell2(E/H) % T H'(H,, E)(p). (3.2.1)

veT

Thus we have shown the following.

Corollary 3.2.5. Sely,(E/H) is finite if and only if Selé@(E/H) is finite.
From now on, we make the following assumptions.

Assumption. L(E/H,1) # 0 and Sel .(E/H) is finite.

The second assumtion will be guaranteed by the first when combined with the main
conjecture for F'/H, which we will discuss in Chapter 7. Note also that the finiteness
of Sel, (E/H) implies the finiteness of Sely(E/H).

Lemma 3.2.6. For any n > 1, we have

#(Ep)#(UL(E/H )z if p=2

el (E1) = { SB[ ifp>2

Proof. We show This follows immediately from the exact sequence
0— E(H)/m"E(H) — Seln(E/H) — I(E/H)m — 0 (3.2.2)

and the fact that Ey~(H) = E, if p =2 and Ep(H) is trivial if p > 2 which follows
from the fact that A has order 2 when p = 2 and A = (O/p)* when p > 2. O

Proposition 3.2.7.
Sely< (E/H) = ILL(E/H)(p)

Proof. By passing (3.2.2) to the direct limit, we find the exact sequence
0— E(H)® (K,/Op) = Sely(E/H) — II(E/H)(p) — 0,

where E(H) ® (K,/Oy) is equal to the direct sum of rank(E(H)) copies of K,/O,. But
Sely< (E/H) is assumed to be finite so E(H) is finite, so the direct sum is equal to

Zero. O



3.2 Descent theory over H 45

Hence it follows from (3.2.1) that

#(SellX (E/H)) = #(ILL(E/H)(p))#(im o).

Now,

#(imp) = #(]] H'(H,, E)(p))/#(coker p),

veT

and we calculated #(H'(H,, E)(p)) for v € T in Lemma 3.2.4.

Lemma 3.2.8.
# (coker ) = Ff( By (H)),

which is equal to 2 if p=2 and 1 if p > 2.
Proof. By Corollary 3 on p.123 of [16], coker ¢ is isomorphic to the dual of Sel +«(E/H),

which we denote by &+« (FE/H). Now, by passing (3.2.2) to the projective limit, we
find &+~ (E/H) fits in the exact sequece

0— E(H)® Oy — Gpe(E/H) — T« (I(E/H)) — 0,

where T+ (III(E/H)) is the projective limit of III(£/H ). Since III(£/H) is assumed
to be finite, this is equal to zero. Also, E(H) ® O,« is equal to the direct sum of
rank(E(H)) copies of Op+ and the finite group Ep«o(H). But E(H) is assumed to be
finite, hence E(H) ® O, is equal to Ey«(H). The rest is clear since Eysoo(H) = Ejp-
if p= 2 and trivial if p > 2. m

Theorem 3.2.9. We have

(i) If p =2, then

#(sell(E/H)) =27 ] - #(IIL(E/H)(p)),

veEP

()|
[

p

where b = #(B)

(ii) if p > 2, then

#(Sely (B/H)) = T]

veP

- #(IL(E/H)(p)).

(1 B 1/1E1/\IZ(U)>

p
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Proof. By Lemma 3.2.4, we have

#(11 H'(H., E)(p)) =

veT

2 Toep |(1- 2520)| 7 itp=2
oep |(1- W/H”)jp_l if p> 2.

Nv

In addition, by Lemma 3.2.8

#(SeliR (B/H)) = #(IL(E/H)(p)) - #([[ H'(Hy, E)(p))/#(Epeee (H)),

veT

and #(E,+) is equal to 2 if p =2 and 1 if p > 2. Hence the result follows. [

3.3 Descent theory over extensions of H

We set
o H(Ep2) ifp =2
| H(E,) ifp>2.

Recall that F,, = H(Ey~) and
$ = Gal(F.o/H).

Recall also that we have an isomorphism x, :  — O, = Z giving the action of §) on
Epeo, and $ = A x I', where A = Gal (F'/H), is cyclic of order 2 or p — 1 according as
p=2orp>2 and I' = Gal (F/F) is isomorphic to Z,.

Write Pr for the set of primes of F' above p, and define

Sel o (E/F) = ket (Hl(F,E <) = I Hl(Fv,E)> .

vé Pp
Consider the exact sequence
0= HYA, By (F)) 2 HY(H, Eyee) 2 HY(F, By )™,
and also write res for the same map restricted to Selgo)(E/H) C H'(H, Ey).

Theorem 3.3.1. (i) If p > 2, we have Selgo)(E/H) = Sely (E/H), and the restric-

tion map gives an isomorphism

Seli (E/H) = Sell . (E/F)™.
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(ii) If p =2, the restriction map satisfies res(SelﬁQ(E/H)) C Selyee (E/F)?, and we

have an exact sequence
0 — HY(A, By (F)) — Seli? (E/H) ™ Sell (E/F)* — 0.

Proof. The proof of Theorem 3.3.1 is easy for p > 2, hence we shall omit the details in
this case. Now assume that p = 2. Then the following lemma shows that res surjects
onto Seli (E/F)*. Recall first that the action of A on H'(Gal(F/F), Eye) is given
by inner automorphisms, i.e., given 7 € A, £ € H(Gal(F/F), Ey=), 0 € Gal(F/F)

and any cocycle f representing &, we have

where 7 is a lift of 7 in Gal(F'/F). The next result a modification of [11, Lemma2.3.5],
which was left incomplete, because the fact that the cohomology class is invariant does
not mean that one can choose a cocycle which is invariant under the action of A. This

problem has been fixed in the following proof.

Lemma 3.3.2. Let p = 2. Then we have Selio (E/F)* C res(H(H, Ey)).

Proof. Choose a prime q € B, and fix a prime Q of F above q. Let I; C Gal(F/H) be
the corresponding inertia subgroup. Let 7 denote the unique element of $) which acts
as multiplication by —1 on Ejpe. Then 7 has order 2 and its restriction to H generates
A. Also q ramifies in F//H so T generates the inertia group of q in F//H, hence we can
find a lifting 7 of 7 in I,. Then 72 restricted to F is 72 = id, so 72 € Gal(F/F) N I,.
Furthermore, we know that every &, € Sell.(E/F)® is unramified at q since q { p.
Hence &, € ker(H'(Gal(F'/F), Ey~) — HY(Gal(F/F) N I, Ey=)), i.e. g(7%) = 0 for
any 1-cocycle g representing &,.

Given x € Ey, let d(x) denote the 1-coboundary on Gal(F/H) defined by d(z)(co) =
(0 —1)z. Then we have 7 - d(z) = d(7(z)) = d(—z) = —d(z) (for any o € Gal(F/H),
we have 7-d(x)(0) = 7(7 toT — 1)x = (0 — 1)7(x)). Let & € HY(F, Ey)® and pick a
1-cocycle g representing &,. Then since &, is A-invariant, we have (1 —7) - g = d(x) for
some € Ey. Now we take y € Eyee such that 2y = z and define f = g — d(y), then

(1=7)-f=(g—dy)—7-(g—dy))
=g—d(y) — (g —d(z)) +7-d(y)
=g—d(y) — (g —d(z)) —d(y)
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since 7 - d(y) = —d(y) from above, and (1 — 7) - ¢ = d(x) implies 7 - g = g — d(x).
Therefore, we have (1 —7) - f = d(x) — 2d(y) = 0, hence we can pick f as the cocycle
representing &, and f is invariant under the action of A.

It is clear that every element of Gal(F/H) can be written in the form o7° with
o € Gal(F/F) and i € {0,1}. We now define the map

h: Gal(F/H) — Epe

by h(o7?) = f(o), and claim that this is an element of H'(H, Ey) which maps to &,
under res. This map is well-defined, since h(7%) = 0 for all 7+ > 0. Indeed, it is clear
that h(7") = f(id) = 0 for ¢ € {0, 1} since H is a 1-cocycle, hence it suffices to show
h(7?) = f(7%) = 0, which we proved earlier. To see that & is a 1-cocycle, take p; = o7,
po = 0972 € Gal(F/H). We need to show h(pip2) = h(p1) + pih(p2). Since Gal(F/F)
is a normal subgroup of Gal(F'/H), we can find an element ¢} € Gal(F/F) such that
Thgy = oy, Then h(pip2) = h(o10571%2) = f(o10h) = f(o1) + o1f(0}), where
the last equality follows from the fact that f is a 1-cocycle. Also, h(p1) + p1h(p2) =
f(o1) + 017 f(03), and since f is A-invariant, we have 7 - f = f, and A acts by
inner-automorphism so 7 - f(0) = 7f(77'0) = 7f(7 'o7). Therefore, 7 f(03) =
f@ o) = f(oym771) = f(03). Hence f(01) + 017" f(02) = f(01) + 01f(0%), as
required. Finally, res(h(07?)) = h(o) = f(o), so indeed res(h) = f. O

We now finish the proof of Theorem 3.3.1. Recall that for a group profinite group ¢
and a G-module A, H 0(G, A) is the modified 0-th cohomology group defined to be equal

to A9/NgA where Ng : A — A, a+ Y oa denotes the norm map. In addition, if G
oceG

is cyclic and A is finite, then we have H'(G, A) = H(G, A) since the Herbrand quotient
is equal to 1. Hence, in order to work out the order of H'(G, A), we will calculate the
order of A9/NgA instead. First, we have H'(A, By (F)) = HY (A, Ey2) = HO(A, Ey2)
because A = Gal(F/H) is cyclic of order 2 by Theorem 3.2.1 and F = H(E,2). We
have EPAQ = E,. Now A = {1,0} where ¢ acts as —1 on Ey2, so we have Na(P) =
P+ (-1)P =0 for all P € Ey2. Hence |[H' (A, Ey2)| = |Ey| = 2.

The fact that H'(A, Ey2) injects into Sel,(,zo)(E /H) follows from the fact that

H'(Gal(Fq/H,),E) =0 (3.3.1)

for any prime ¢ ¢ B and any prime 9 of I’ above q. This is because E has good
reduction at ¢ and Fy/H, is unramified, which implies that N, g, is surjective. Hence
it remains to show res(Selgo)(E/H)) = Seli (E/F)*. Given any prime  of F and
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prime q of H lying below £, we have the commutative diagram

HYH, Eype) 2% HY(Hy, )y
J res 1 resq
H'(F, Ep)® 22 H'(Fy, E)A..

To show Sely(E/F)* C res(Selgo)(E/H)), take any x € Sel (E/F)®. Then
since H(H, Ey) = Selioo (E/F)* is surjective by Lemma 3.3.2, there exists a €
H'(H, Ey) with z = res(a). Then for any prime q ¢ B of H and a prime £ of F

above ¢, we have
resa(Aq(a)) = Aa(z) = 0,

since z € Selyo (E/F)® C ker Ag. But resg is injective by (4.1.8), so Aq(a) = 0. Hence
ac Sel(rfo)(E /H), and = € res(Selgo)(E /H)) as required. To show the other inclusion,
it suffices to show that for any prime q 1 p of H and Q of F' lying above q we have
res(Selgo)(E/H)) C ker A\y. First let Q be a prime of F lying above q € B. Then
we have shown that H'(F,, F)y~ = E, in Lemma 3.2.4, and furthermore, we have
HY(Aq, E)p~ ~ H'(Aq, Ey=) since E(Fq) = E(Fq)p~ @ A for a p-divisible group A.
So H'(Aq, E)y= = E, since Aq = A for such . Hence resg is the zero map. But

given any a € Sel,gz;)(E /H), the above diagram commutes so
Aa(res(a)) = resq(Aq(a)) = 0, (3.3.2)

giving res(Selé@(E /H)) € ker A\q as required. Finally, let Q be a prime of F' lying
above q ¢ B. Then Selgc)(E/H) C ker Ay, so for a € Selgo)(E/H) (4.2.2) holds again,
and so res(Selg}(E J/H)) C ker Aq. This completes the proof of Theorem 3.3.1. O
The following is an immediate consequence of Theorem 3.3.1.
Corollary 3.3.3. Sel . (E/F)2 is finite if and only if Sely(E/H) is.
Assuming p satisfies the good ordinary hypothesis for E, we have

H(H (A, By (F))) = 1 or 2,

depending as p > 2 or p = 2. Hence combining Theorem 3.2.9 and Theorem 3.3.1, we
obtain:

Theorem 3.3.4. Let p be a prime satisfying the good ordinary hypothesis for E. Then
Selioo (E/F)? is finite if and only if Sely<(E/H) is finite. Moreover, if we assume that
E(H) and II(E/H)(p) are finite, then we have:
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(i) If p > 2, then

St (B/7)) = T (1= 24| gance o)
veEP P
(ii) If p =2, then
#(Sely (B/F)?) =22 ] (1 —~ W{{; <“)> _ - #L(E/H)(p)),
veP p

where b = #(B).

We define the p>-Selmer group Sely~(E/F) by
Sely (B/Fx) = ker (Hl(Foo, Epe) = [[ H (Frou, E)) .

We also define modified Selmer group

Selgm(E/Foo) = ker (Hl(Foo,E x) — HHl(Foo,w, E)) .
wip

The next result is [2, Lemma 8].
Theorem 3.3.5. We have Sely~(E/Fy) = Selyo (E/Fy).

Proof. Tt suffices to show that H'(Fq, E)(p) is trivial any place P of F., above p.
Let F), s, denote the completion of F}, at the prime B,, of F}, lying below ‘B. Then we
have UpsoFnq, = Foog, 0 H (Foosp, E) = hAlHl(ann, FE) where the limit is taken
with respect to the restriction. Recall that 7 is an element of O satisfying (7) = p".
Let n be of the form n’h with n’ > 0. By Tate’s local duality, the Pontryagin dual of
H(F,s,, E)(p) is equal to

E(Foy,) =1m E(Foy,)/m"E(Fagp,),

where the limit is taken with respect to the norm map. Note that 3, lies above
p and p # p*, so 7™ is an automorphism of the group E(F,y,) of F, y,-rational
points in the kernel of reduction modulo J3,,. Thus reduction modulo ,, induces an
isomorphism E(F, g, )/m* " E(F,p,) = E(m)/ﬂ'*mE(%), where % denotes

the residue field of F, g, at 9B,. Thus we have E(F,,) ~ E(F,y,)(p) ~ Eyo(Foq,.)-
This is a finite group of bounded order, since B is totally ramified in Fi g/ F, sp,,, S0 the
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residue field F/’,L\;L is finite. So there exists m and ng such that E (% ) = Epem for all
n = ng. Take (P,) € mE(ann) Then P,, = [7*"]Pyy1m = O, so in fact (P,) = 0.
Therefore @E(ann) is trivial, and it immediately follows that H'(Fq, E)(p) is
trivial. O]

Write X (F) = Gal(M (F)/Fx), where M (F,) is the maximal abelian p-extension
of F, unramified outside the primes of Fl, above p. Note that, by maximality, M (F.,)
is Galois over H, and we can define an action of $ = Gal(F,/H) on X(F,) by

g-@=gag,
where g denotes any lifting of g in $ to an element of Gal(M(F)/H). Let
A(T) = im Z, [1/U]

be the Iwasawa algebra of I'. The continuous action of I' on X (F,,) extends to an
action of A(I"). The following classical result is well-known granted that £ has good

reduction everywhere over F,, and is omitted (see Theorem 9, Theorem 12 and Lemma
13 of [2]).

Theorem 3.3.6. We have
Selpoo(E/Foo) = Hom(X (F), Eye).

Furthermore, X(Fy) is a finitely generated torsion A(I')-module, and the restriction

map gives an isomorphism
Selyoe (E/F) = Sely (E/Fy ).

We wish to find a criterion for when Sel,.(E/F)* is finite, and to compute its
order when it is finite. We will study this in more detail in Chapter 7 in order to state
the main conjecture for E/H. Before we do this, we will construct in the next chapter

the p-adic L-functions which appear in the statement of the main conjectures.






Chapter 4

Construction of the p-adic

L-functions

4.1 Construction of the p-adic L-function for F,/F

We now construct the p-adic L-functions attached to E/H, which we shall subsequently
need to formulate the main conjectures. We will follow the ideas in [4], however, we
will also deal with the case p = 2, which cannot be found in literature.

Fix once and for all an embedding of H into C. Write z, y for the coordinates of
E/H. We fix a generalised global minimal Weierstrass equation for E over H, which

exists by [14, Proposition 3.2], to be
y:+ azy + asy = 3 + asx? + g + ag. (4.1.1)

Recall that G denotes the Galois group of H over K. Then applying o € G to (4.1.1)

gives a generalised global minimal Weierstrass equation for E7/H. Let

- dx
2y +afxr + a§

be the Néron differentials on E7, and note that the discriminant of this equation A(E?)
is equal to (A(E))? = A(FE). Let g denote the conductor of ¢k, so that (g,2p) = 1,
and let f = g”, so that f is principal. Let L (resp. L,) be the period lattice of the
Neron differential on our global minimal Weierstrass equation for £ (resp. E7). Then
there exists Qo € C* such that L = Q2,,0. The uniformisation ® : C/L = E(C) is
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accomplished through

o a? 2 al
(2, Ly) = (@(vaa) T 19 9 (p’(z,LU) —af (@(ZvLU) - ((1)"’_42)> - ag)) :

Given a principal ideal a = («) with a € O and (a, 6f) = 1, define

Ro(P) := cp(a) [] (2(P) —a(U)) ",
U
where U runs over any set of representatives of EF,\{O} modulo {1}, and cg(a) is
an element of H whose 12-th power is equal to A(E)N*"1/A(a)'?, where A(a) € H*
satisfies
Ap(a)" (W) = Ala)w.

Thus R,(P) is a rational function on E with coefficients in H. Let us write P for the
generic point on E? with coordinates (z,y). Applying o € G to the coefficients of
R,(P), we obtain a rational function RJ(P) on the curve E?/H.

Proposition 4.1.1. Let b be an integral ideal of K with (b,a) = 1. Then we have

R (Aee (0)(P)) =[] R{(P & R).

REE?

Proof. Recall that the kernel of Ag-(b) is EJ, and Ago(b) is injective on EY since
(b,a) = 1. Hence, the left hand side and the right hand side of the above equation

have the same divisor, and
R37(Ap- (b)(P))
[T RI(P&R)

REEY

is a non-zero element of H. It can be shown, thanks to the unique scaling factor cg(a)
in our definition of the rational functions, that this constant is equal to 1. See [3,

Appendix, Theorem 4] for details. [
We fix a generator f of the ideal f, and define Q@ = ®(Q/f, L) so that @ is a

primitive f-division point on £. We then define

Rq(P) = H R.(P®Q"),
T€Gal(H(E;)/H)
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where @ denotes the addition on E. Thus R,(P) is also a rational function on E over

H. Similarly, we define

RI(P) = II RrREe@)),

T€Gal(H(E;)/H)

a rational function on E? over H. Hence, defining
U7 (P) = R (P)™ /R77 (Ape (p)(P)),

it follows that
II Ys(PoR) =1 (4.1.2)

REEg

Now, we fix an embedding 4, : K — K, and we let v denote the prime of H above
p determined by ,. We write O, for the ring of integers of H,.

Recall that ¢ = —% is a parameter for this formal group.

Lemma 4.1.2. Let BJ(t) denote the t-expansions of R(P). Then BI(t) is a unit in
O,[[1]].

Proof. We claim that, if V' denotes any of the points (Q7)7, then

where U is any non-zero element of £7, has a t-series expansion which is a unit in
Og[[t]], where B denotes any prime of H(U, V') above v, and Oy is the ring of integers
of the completion of H(U, V') at this prime. Indeed, we have explicitly

2(POV)—2(U)=D(P, V) +a]D(P,V) — a5 — x(P) — 2(V) — z(U),

where y(P) — y(V)
o(P) (V)

Note that z(V'), y(V') are integral at B because (f,p) = 1 by assumption. Similarly,

D(P,V) =

the expansions of z(P) and y(P) as power series in ¢ begin

where the coefficients of all the higher order terms lie in Og. Note that z(U) is integral
at primes of H(U,V') above 8 because (a,p) = 1. Thus we see that the coefficients of
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the t-series expansion of (P @® V) —x(U) all belong to Og. Moreover, z(P & V) —z(U)
is holomorphic at t = 0, and so there are no negative powers of ¢ in its ¢-series expansion.

Moreover, we have

D(P,V)=—1—$(V)t+--w

so the constant term of the ¢-series expansion of is (P @& V) — z(U) is

x(V) —z(U).

We claim this must be a unit at 9. If not, we would have z(V) = x(U), where
denotes the reduction modulo 8. But this would imply that V = +U, whence we
would have one of V' +U must lie on the formal group of £’ at v. But this is impossible
because (pa,f) = 1. The assertion of the lemma now follows immediately, on noting
that cg(a) is a unit at v. O

From this we obtain

Corollary 4.1.3. Let A7(t)denote the t-expansions of WI(P). Then AJ(t) belongs to
1 4+ m,[[t]], where m, denotes the mazimal ideal of O,.

Proof. Write BJ(t) = % ant. Thus, by the previous lemma, a,, € O, for all n > 0 and
n=0

x o(4) — B3 ()P
ap € O, Now, A7 (t) = 527 (e (0)0) and recall that

~

Ae(v)(t) = P mod v.

Hence, we see that

B (:\E(v)(t)) = iaﬁ“(j\E(v)(t))” = iaﬁtm mod v.

On the other hand,
BI(t)> =Y dt*" => a,t” mod v,

so AZ(t) = 1 mod v, as required.

Lemma 4.1.4. Define C2(t) by

1
C(t) == p log A (t).
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Then CZ(t) € O,[[t]], and
> CL(t[+w) =0, (4.1.3)

w€Dy p

where D, ,, denotes the group of p-division points on the formal group E° ata place v
of H lying above p and [+]| denotes the group law on E°. This group can be identified
with Ey .

Proof. We have

n

L (~1) Az () — 1)

’B\P—‘

The first claim is now clear from the previous lemma as n > ord,(n) + 1 for n > 1.
The final equation then follows from (4.1.2). O

Let .# be the ring of integers of the completion of the maximal unramified extension

K" of K,. By [8, Proposition 1.6], we have an isomorphism
Opw: G = E°

defined over ., where G., denotes the formal multiplicative group and E° denotes
the formal group of E at v. Define J7(W) = C7 0§, ,(W) € F[[W]].

Definition 4.1.5. Let p,, be the .#-valued measure on Z, determined by J7 (W), i.e.

JO(W) = /Z (1 + W)*dpia (). (4.1.4)

We claim that the measure fi,, is supported on Zy. Indeed, let A 4(Z,) (resp.

A #(Z;) be the ring of .#-valued measures on Z, (resp. Z, ). Then we have an inclusion

L2 Ay (Z)) — Ay(Zp) given by extending the measures on Z, to Z) by zero. Let p

be a measure in A #(Z,), and let f,(W) € Z[[W]] be the corresponding power series

given by the isomorphism A »(Z,) = #[[W]]. Then it is well-known (see [8, 1.3.3] for
more details) that p belongs to ¢ (A(;(Z;)) if and only if f, satisfies the equation

o L+ W)—1)=0.

CEny

It follows from (4.1.3) that this is satisfied by J¢.

We know that, writing also p,, for the corresponding measure in A »($)), we have

/ﬁ Xedpia, = /Z 2 djay = D*J7(W)|w—o, (4.1.5)
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where D = (1 + W)-L. We have an isomorphism G = G, given by W — e* — 1.
Hence we see immediately that D = d%. Moreover, we have §,,(W) = Q, , W + -, s0

for any integer k > 1, we have

k yo d ; o z 1 k d : o
DYEW)lw=o = | | Ji(e —1)Iz=o=];Qg,u = | 108 (¥I(®(2, Ls))) |:=0-

(4.1.6)

Lemma 4.1.6. We have Q,, = A(s)Q,, where Q, € 7> is the coefficient of W in the
formal power series t = §,(W), with d, : Gm = E is an isomorphism defined over & .

Proof. We have Ag(s)*(w?) = A(s)w by definition, so that Ag(s) (®(z, L)) = ®(A(s)z, L, ).
Hence, writing exp(z, L,) for the formal power series in z obtained by express-
ing t = —z/y in terms of z using the isomorphism ®(z, L,) for E?, we also have
Ae(exp(z, L)) = exp(A(s)z, Ly)). Now, regarding z as the parameter of the formal ad-
ditive group, exp(z, L) is the exponential map of E°. 1t then follows by the uniqueness

of the exponential maps for the formal groups that
Op(e/%v — 1) = exp(z, Ly ).

On the other hand, we have 0y, = Ag(s) o 0,(W), where Ag(s) : E — E is the

isomorphism over H, of formal groups induced by Ag(s). Hence we have
don(€® — 1) = exp(A(s)Qy2, Ly).

The assertion follows by comparing the coefficients of z in the above equations. O]

Proposition 4.1.7. Let s be an integral ideal of K prime to { such that o, = 0. Then
for any integer k > 1, k = 1 mod #(A), we have

d o( < eh(s)f* ok —k k-1
dz logm Z )ka (N a @K(a)> L(SOKa g, k’)Z
k=1 oo

In particular, we have

(1) Tor @0, )lon = (0¥ - 1S (Na - (o) Lk 0

Proof. Let £ be a complex lattice. We will modify the Weierstrass o-function slightly,
and define

O(z, L) = exp {—32(2)222} o(z, £).
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Recall that for any integer k£ > 1, we can define the Kronecker—Eisenstein series

Hy(z,5,£) =) (+m)”

weL ‘Z + wPS’

where the sum in taken over all w € £, except —z if z € £. This series converges for
Re(s) > % + 1, and it has an analytic continuation to the whole complex s-plane. The

non-holomorphic Eisenstein series & (z, £) is defined by
Ei(z, L) == H(2,k, £).

Furthermore, it is well-known that (see [10, Corollary 1.7] for a proof and the definition
of A(L)) for any zy € C\ £, we have

d oo
7 log ©(z + 29) = ZpA(L Z VLER (20, £)2F 71 (4.1.7)
By [10, Theorem 1.9], for any principal integral ideal a = («) with (a,6f) = 1, we
have 62z, [, )Ne
z
a = 1 (e Lo) = p(w, Le)) ™
92(’2’0‘ 1L") €a 'Ly /Lo
w#0
SO we can write 02(x. L, )N
(P L 2 _ 2 %, Lig
Ra( <Z7 U)) CE(a) @2(27(1_1[/0)’

since the product in the definition of RJ was over the representatives of £,\{O} modulo
{£1}, and z(6P) = z(P) for any P. Let p = Q/f so that our choice of Q7 is given
by ®(A(s)p, Ly). Moreover, let B be a set of integral ideals of K prime to f such that

where (b, H(E;)/K) denotes the Artin symbol of b for H(E;)/K. Hence, we have

R (P = [ BY (®(z + ok (b)A(s)p, Ly)) -
beB

Noting that A(a™'L,) = Na'A(L,) and that &; is homogeneous of degree —k, we
obtain



60 Construction of the p-adic L-functions

d% log MG (®(2, L)) = > (=1)* 3 (Na&i (px (6)A(s)p, L) — 0" &} (prc(b)ah(s)p, L) ) 25
k=1 beB

By [10, Proposition 5.5], we have

¢ic(s) (A(s)p)* _
Ngk—s |A(§)p|25L(S0’;<’ g, S) - Z Hk‘(ng(b)A(s)pv 0, s, LU)a

beB

and similarly,

Pic(sa) (Als)ap)® B
N(sa)t—* [A(s)aps - (Ph 070 8) = 3 Hilprc(®)A(s)ap.0, 5, Lo).

beB
Putting s = k, we obtain
d , o ke ey _ _ _
T log R (B(=, L)) = Y- (~ 1)l (8)A(e) S (NaL(@he, 0, k) — ele(0) L@, 000, k)) 5.
k=1
The result now follows on noting that o, = 1 because a = («) is principal. O

Let us remark that Proposition 4.1.7 is true for all integers k& > 1. However,
the Hecke L-function will no longer be primitive when k is even, for example, if
k = 0 mod #(A), because in this case the conductor of ¥ is (1). Thus we shall
first concentrate on the case kK = 1 mod #(A) but the arguments extend readily to &

ranging over any fixed residue class modulo #(A).

Lemma 4.1.8. For any positive integer k = 1 mod #(A), we have

k k —k
A<5)7kQ;k /ﬁ X’;dﬂa,a = _(k_l)!m (Na - SOI;((a)) (L(Qollc(vav k) - wﬁip)L((p’;Oo-awk)) :

Proof. We have Ap(p)®(2, Ly) = ®(A(p)?2, Lss,) and A(sp) = A(s)A(p)?, so

. k k
(ci) log R (\e(p) ®(2, Lo)|s=0 = —(k - U’W (Na—ll@) L@k, o0, k).
Therefore,

—k

k k k
(CZ) log W7 (®(2, Ly ))|2=0 = —ck(a)(k—l)!w (L(golf{,a, k) — %L")L(w’;{,mp,k)) :

(4.1.8)
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where ¢, (a) = Na — % (a). Combining (4.1.5), (4.1.6), (4.1.8) and the fact that
Q5 = A(s)Q, by Lemma 4.1.6, the proof of Proposition 4.1.8 is complete. O

Let
Dao(k) = prc(s)™ /ﬁ Xedpia s,

and define
G* = Hom(G, C;),

where G = Gal(H/K) as before. Then for each xy € G*, define

= > x(o)D
ceqG
It is easy to see that
A(s)FQF k ~1(y
Du(x.) = ela)l = DB 3 o)Ll ) (1 - SRR,

We let C denotes a set of integral ideals representing of the ideal class group of
K with (¢, pf) =1 for any ¢ € C, and set Qo (E/H) = [Tiec AM(€)Q2s and Q,(E/H) =
[Teec A(€)$2,. Recalling

@Z)E/H’ H ZX SOKaO-J{:)

XEG* oG

and the factorisation of primes of K in H given by class field theory, we immediately

obtain the following.

Lemma 4.1.9. For any positive integer k = 1 mod #(A), we have

w%/}[(w)>

IT Dol k) = ca(@)* (k= DY 9 (B/ ) Quc(B/H) LBy, )] (1— 4

XEG* wlp

Define = Gal(F/K). Write 4 for the measure on & satisfying

/Xkdﬂa = 1] / Xxpd(pa) =TI X x(0) )’“/ﬁxﬁdua,o.

XEG* XEG* c€G

Thus
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Lemma 4.1.10. There exists a measure p, in Az (&) such that for all k > 1, k =
1 mod #(A), we have
1 wﬁ/H(w)
Nw '

Note that, on the right hand side the equation in Lemma 4.1.10, the only dependence

Q(E/H) ™ [ o = @) ((k = D) Qe (B/H) LTl 1. 8) - T
wlp

on a occurs in the factor ¢ (a)". We remove this factor in the next theorem.

Theorem 4.1.11. There ezists a unique measure ug € Ay (&) such that, for all
integers k > 1 with k = 1 mod #(A), we have

Qp(E/H)™" /Q5 Xedpp = (k= 1)) [ Q (E/H) ™ L(d 5. k) - ] <1 _ W) .

wip Nw
Proof. Given an integral ideal a with (a, 6pf) = 1, let 6, be the measure satisfying

/@Xl;dﬁa = c(a)".

Then pp = q/0, is independent of a. In order to show that this is an integral measure,
it suffices to show that for some a, cx(a)” is a unit in .#. Pick a = («) with (a,p) =1
such that @« = 1 mod f and o # 1 mod p*. This is possible since we have p* 1 § by
hypothesis. Then ¢x(a) = «, 0, =1, and ¢;(a)" = o”(a* — 1)" is a unit in O,. This
shows that there is a unit in .#[[&]] whose values at k with £ = 1 mod #(A) is equal
to cx(a)h.

O

Theorem 4.1.11 asserts the existence of a good p-adic L-function. Now, let us
assume (p,h) = 1. Define ¥ = Gal(F/K) where K is the maximal Z,-extension
of K inside Fi, so that ¥ ~ A x G. Furthermore, identify I' with Gal(K./K). Let
H,, = HK and K is the unique Z,-extension of K unramified outside p, and define
Y = Gal(Hw/K).
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Given 6 € X%, let A +(®)? denote the largest submodule of A ~(®) on which ¥ acts
via 0. If p > 2, then #(X) is prime to p, so the idempotent ey = ﬁ Srex 07HT)T lie
inside A #(®). Thus we can decompose A »(®) = Z[[&]] = Z[X][[I']] in the form

Ay (B) = Bpes-egA 4 (T).

Therefore, we can write any p € A #(®) as a sum of the form

B= @962*69M9a

where 1 is an element of A ,(T).

If p=2, #(A) = 2 is not coprime to p. In this case, let § denote the non-trivial
element of A. We have A, (&) = S[A][[¢]]. We claim (1 —§)7[A] = (1 —6).7.
Indeed, let a; + as0 € F[A]. Then (1 —§)(a; + asd) = (1 —0)(a; —as) € (1 —9).7.
Hence (1 — §).#[A] C (1 —6§).#, and the other inclusion is clear. It follows that
(1-0)A#(B) = (1-0)A +(¥). Hence, given u € A (&), there exists unique = € A #(¥)
satisfying (1 — 0)u = (1 — 0)p~. Similarly, we have (1 + J)A#(B) = (14 0)A,(¥), so
given p € A (&) there exists u* € A (%) such that (14+)u = (1+06)u™. Furthermore,

we have .
_ - +
u—§((1—5)u +(1+0)u").
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Finally, since (p,h) = 1 by assumption, we can further decompose ;= and p™* as
elements in B,eq-e, Ay (T).
For k =1 mod #(A), we have x;(146) = 0 and x}(1 — §) = 2. Thus, we obtain

1
pe =5 (1= 0)1g

interpolating the values of L(@l}; s> k) for k = 1 mod #(A) from the above construction.

Finally, we remark that our methods readily give an analogue of Theorem 4.1.11
for the p-adic interpolation of L(El; /i» k) when k ranges over any fixed residue class
modulo #(A). However, the Hecke L-function will no longer be primitive when & is
even, and in particular, when & = 0 mod #(A), because in this case the conductor of
©% is (1). Let S denote the set of primes of H dividing f. Then Theorem 4.1.11 gives

—k
the imprimitive Hecke L-function LS(JE/H, k) = L(@];/H, k) - Tlyes <1 - wE/Hm) on

Nok

the complex side.

The aim of the next section will be to obtain a p-adic L-function which interpolates
the values of the L(@I; s> k) for k even. This will give rise to the p-adic L-function for
H../H for all p, and as we shall see in Chapter 7, will be an essential ingredient for
the main conjecture for E/H for p = 2.

4.2 Construction of the p-adic L-function for H../H

Let us now look at the case when k is even, so that the conductor of ¢ is (1). We
write P? for a primitive p™-division point of £?. Note that RJ(P) has a zero of order
Na—1at P =0, and R](F7) is not a unit. To get rid of this zero at P = O, define
the index set

I = {(ai,ni), 1=1,...,r, a; = (Oéz) C O, (az,6p) =1,n; € 7. with an(Naz—l) = 0}
=1
Given D = (a;,n;) € I, define
Ry (P7) = 1T RE.(P7)™.
=1

Then R%(P) has no zero at P = O, and R%(P,) is a unit, as we will see in Corollary
4.3.7.
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Definition 4.2.1. Gy(L) = > % fork > 3,
weL\{0}

and G1(L) = 0.

Proposition 4.2.2. Let s be an integral ideal of K prime to | such that os = 0. Then

for any D = (a;,n;) € I and k > 2 an even integer, we have

d - Pl (s) k —k k—1
- 1 g - — Tl N i i L , 0, ]{] .
dz og RE,(P) ;:1: kk§=2: n A(s)*Qk ( a; — prc(a )) (Pk.0.k))z

In particular, we have

k
d o - i (s) k —k
(¢) 08 R5(P)lc0 = 3= =k = D P5{E (N (o) Lok 0.8
Proof. We modify the usual o-function slightly, and define
2

O(z, L) = exp {—32@)22} o(z,L).

Then for any integral ideal a = («) with (a,6f) = 1, we have

@2(2 LU)Na
: _ = H (@(Z, LU) - p<w7LU))717
62(2704 1LU) wEa 'Ly /Lo
w#0

SO we can write

) @2(2,’ LU)Na

RZ(‘M%LU))Z = cg(a) m,

since the product in the definition of R was over the representatives of E,\{O}
modulo {#+1}, and z(&P) = z(P) for any P. Hence,

2 @2(27 LU)Nui )nl

r

%@@%W=HGMM

=1

@2(2704;1[/0)

Now, (4.1.7) gives

i log©(z, L,) = z:(—1)"3_1Gk(L(,)zk_1
dz =
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and Gi(L,) = 0 for k odd. Therefore,

d r
df IOg R%((I)(Zv La)) = Z Z _nl(N ain(Lo) - Gk(a;lLU))Zkil
z i—1 kk>2

by the homogeneity of Gy.
Let b be an ideal of K. Setting k = s, g = (1) and p = Q in [10, Proposition
5.5], we obtain that the partial Hecke L-function L(%,cy, k) is identically equal to

Hence, setting b = s, we obtain

k k
ok N~ er(s) o _ er(sa)
(N a; O‘i )Gk(LU) - NazA(ﬁ)Q’;oL“OK’U, k) A(E)Q&L“OIOU’ k)

k
. SOK(E) k _k

This completes the proof of the proposition. n

Define

RE,(P)™

Yo(P) = B (e (0)(P))

Then we have
H UL (P @ R) = 1. (4.2.1)

ReEg
Let A%(t) be the development as a power series in ¢ of the rational function V% (P).
Then as before, A%(t) € 1+ POy[[t]], and so CH(t) = Niplog A% (t) € Ogllt]]. Let
JEW) = CFod, (W) € FZ[[W]]. Let up,, be the .#-valued measure on Z, determined
by JA(W). Then pp, is supported on Z), and writing also pp, for the corresponding

measure on A, (), we have

/ﬁ Xedpip,, = /Z 2 dpp,, = DFJG(W) w—o, (4.2.2)
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where D = (1 + W)%. We have an isomorphism G = G, given by W — e* — 1,

hence we see immediately that D = %. Moreover, we have 6,.,(W) = Q, ,W 4+ -, s0
a\" 1 d\"
DAV o = (1) U5(e" = leco = o (1) Tow U500 LMo
(4.2.3)

Lemma 4.2.3. For an even integer k > 2, we have

>l D@ 0o (Lo k) - TP Lk 000

k

i

where we recall that cx(a;) = Na; — «

Proof. We have Ap(p)®(2, Ls) = ®(A(p)72, Lss,) and A(sp) = A(s)A(p)?, so

(i) log R (Ap(p)®(2, Ly))| 20 = ;—ni(k: - 1)!mck(w)mp’;{, o0y, k).

Therefore,

d k
(d> log U (®(z. L,) .o = (12.4)

T k &
> —milk - 1)!mck(ai> (L(w'%, 0.k) - (pﬁip)ll(golf(, o0y, k)) |

Combining (4.2.2), (4.2.3) and (4.2.4), the proof of the proposition is complete. [

Let
Dp (k) = px(s) ™ /ﬁ N

and put for each y € G*,

Defining
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we conclude immediately that

k -1
Da(x. k) = ex (D)0 = i1 (x. ) (1 - PR,
where ¢(D) = >I_, —n;ci(a;). Let C denotes a set of integral ideals representing of the
ideal class group of K with (¢, pf) = 1 for any ¢ € C, and set Qoo (F/H) = [Tece A0)Qs
and Q,(E/H) = [Tiec A(c)€2,. Taking the product over x € G*, we obtain

Lemma 4.2.4. For any even integer k > 2, we have

[T Dolx. k) = e(D)" ((k = D) Qp(B/H) Qoo (B/H) ™ L&y, k)T <1 _ V()

XEG* wlp

Lemma 4.2.5. There exists a measure vp in Ay(®) such that for all k > 1, k =
0 mod #(A), we have

QP(E/H)*’“/Q&X];dI/D = (D) ((k — 1)!)’1900(E/H)’“L(w’2m,k)‘1|1 <1 - W) '
wlp

Note that, since k& = 0 mod #(A), we have xi(7) = 1 for any 7 € A. Hence, we
can naturally consider vp as an element of A »(¥). Again, the only dependence of vp
on D occurs in the factor c,(D)". We claim that we can remove this factor and obtain

a pseudo-measure which is independent of D.

Lemma 4.2.6. There exists D € I and 0p € Ay (¥) such that Op|r generates the
augmentation ideal of As(I') C Ay (¥4) and

fodﬁp = Ck(D)h.
forallk > 1.

Proof. Choose o € Ok so that & = 1 mod p™*, o = 1 + p™ mod p*™ ™! where m = 1
or 2 according as p > 2 or p = 2, and define a = («). Take a; = a, ay =@, ny = 1,
ney = —1. Then ({a1, a2}, {n1,ne}) € I. Write g, for the Artin symbol (a, Ho/K) of a
for the extension H., /K. Note that (a, H/K) = 1 since a is principal, so that we can

consider o, as an element of I'.
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We will show that the measure

0p=—Na—o0,— (Na—o3))

= 0q — Oq,

h

has the desired property. Indeed, we have xj(6p) = cx(D)", so it remains to show

that 0p|r generates the augmentation ideal of .Z[[I']]. In order to do this, let us fix
a topological generator of v of T, and write o4|r = 7, 05 = 7° where a,b € Z,. It
suffices to show that fp|r = (1 — ) - u for u € Z,[[I']]*. Now, we have I' ~ Z, and
pim log : 1+ p™Z, — Z, sending 1 + p"z E:I(—l)i_l (%)Z is an isomorphism. Hence

p™* | o — 1 implies a = 0 mod p, and o generates 1+ p™O, so b # 0 mod p. Now,

Ua|r - Ua\r =% — ’Yb

= ,ya(]' - ,yb_a)v

where clearly 4 is a unit, and also b — a Z 0 mod p so 1 —4*~% is a product of (1 —~)

and a unit, as required O]
We define

Vy = I/D/OD. (425)

This is a pseudo-measure, since (1 — =) - % =1-7)- ﬁ where u is a unit by

the proof of Lemma 4.2.6.

The following is an immediate consequence of Lemma 4.2.5 and Lemma 4.2.6.

Theorem 4.2.7. There exists a unique element v, belonging to the quotient field A 4 ()
such that, for all integers k > 1 with k = 0 mod #(A), we have

(1 tEult))

B/ [ xgdvy = (k= 1" Qu(B/H) Ly ) [ o

veP

Furthermore, the denominator of v, is given by v — 1, so that (y — 1)y, € A4(9).

Recall from Section 4.1 that we can decompose v, as a sum of elements in e, A #(I")
if we in addition assume that (p,h) = 1. Given x € G*, let v € A,(I") denote the
x-part of v, in the decomposition. Then we have shown that 1 € A 4(I') for every
X #1,and (7 — 1) € Ays(T) for x = 1. Thus, identifying A ,(T") with #[[T]] via the
map sending v to 1+ 7', we have v € #[[T]]/T when Y is trivial. The pseudo-measure

v, will be used for the main conjecture of Hy,/H.
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Finally, we define the p-adic L-function attached to E/H. In Section 4.1 we showed
that the p-adic L-function pug € A #(®) interpolates that values of L(@I; /i k) when k
is odd, and of LS(EZ JH k) when k is even, where S is the set of primes of H dividing
f. Furthermore, our methods readily give an analogue of Theorem 4.2.7 to obtain v,
which takes the value 0 at X];f for k£ odd and interpolates the values of L(@g i k) for k
even.

Define ¥, = up + v, where we consider v, as an element of A »(®). Explicitely,
for p = 2 we can write

Wy = (1= 0)up + (1+0)1,) € As(8).

N | —

Then ¥, interpolates the values of L(E];; /> k) for k ranging over all the residue classes

modulo #(A) in the following way.

Theorem 4.2.8. Given a positive integer k, we have

—k
L(@g/Hv k) (1 + fF es (1 - wEl\/]fk(v)>> A(k) if k is even

(/) [ xaw, =1
L(¢E/Ha k) f* A(k) if k is odd,

Nw

where A(K) = ((k — 1)) Quo(E/H) ¥ Ly, (1 _ %/H(w))

4.3 Elliptic Units

In this section, we will show that

Theorem 4.3.1. Suppose b is a non-trivial ideal of O such that (b,a) =1, and let P
be a primitive b-division point of E. Then RJ(P) € K(b).

Proof. Recall that RY is defined over H, so that it belongs to the function field H(E?).
Let o be any element of O satisfying = 1 mod b. These Artin symbols 7 = (z, K**/K)
generate Gal(K?*" /K (b)). Moreover, it satisfies

RI(P)" = R (Ag- () P) = R{(P),

giving R7(P) € K(b), as required. O

Proposition 4.3.2. Suppose m is an ideal of O prime to af, P € E7 is a primitive
m-division point of E° and v is a prime ideal of K dividing m , say m = w'v. Then
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(P))lfFrobt_1 Z'ft*m,

St = { o7 (v (1)) if e

where Frob, denotes the Frobenius of v in Gal(K(m')/K), and Ny (m)/kwm) denotes the
norm map from K(m) to K(m').

Proof. Since the reduction mod m map O* — (O/m)* is injective, the kernel of the
map

(O/m)*/O” = (O/w')* /O

is isomorphic to the multiplicative group 1 +m’(O/m). Thus, we have an isomorphism
7:1+m'(O/m) = Gal(K(m)/K(m'))

by class field theory. Note that Gal(K (m)/K(m’)) has size Nq — 1 or Nq according as
t{m or v | m’, and the conjugates of P over Gal(K (m)/K(m’)) are given by

{P+Q:QeE],P+Q¢E}} ifvim

{(P)": 7 € Gal(K(m)/K(m'))} = { (P+Q:Q e E) if ¢ | m'.

Hence, if r | m’, we have

Ngmy/xm)RI(P) = ] (RI(P+Q))
QeLy

and the right hand side is equal to R77" (Ag-(t)(P)) by Proposition 4.1.1. On the
other hand, if v m’, we have

R{(P + Qo)Nkmyxm)RI(P) = [[ (RI(P+Q)),
QeE?

where )y € EY satisfies P + Qo € EZ,. The rest follows on noting that
Ry(P+ Q)™ = Ry™ (Ape (v)(P) + Ape (v1)(Q)) = B (Ap= (v)(P)).

]

Definition 4.3.3. For n > 1, let P = ®(p, L,) be a primitive p"-division point on
E° satisfying Ago(p)P? = P;°%. Given an integral ideal b of K prime to a, the image
of P? under the Artin symbol of b for H(Ey)/K is Ag-(b)(P7), so a choice of (P7)%
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for the Artin symbol of oy of b for H/K is given by
(F7)7 = ®(A(b)7p, Looy,),

which is a point on E77.

Lemma 4.3.4. Suppose q is any prime with (q,a) = 1 and Q,, is a primitive q™ -
division point on E°. Let R € EJ for some b with (b,aq) = 1. For any integer

m > 2+ e, we have

Nt (Byme) /(B 1) e (Qm © R) = RZ7 (Ape (4)(Q) © R™),

where oy = (q, H/K) denotes the Artin symbol of q for the extension H/K.

In particular, in the case q = p, we have
Nt (Bym)/H(Byn1y) e (P ® R) = Ry (P @ R™),

where 0, = (p, H/K) denotes the Artin symbol of p for the extension H/K.

Proof. Since m > 2 + e, the conjugates of @, over H(Em-1) are @Q,, ® S where S
runs over E¢ by Lubin-Tate theory. Now, we have H(Eqmy) = H(Eqn-1)H(FEgn) and
H(Egm-1p) N H(Egm) = H(Eqm-1). Hence the conjugates of Q,,, ® R over H(Egm-1)

are Qm & R & S where S runs over E7. Hence, we have

NH(Eqmb)/H(Equlb)Rg<Pgl @ R) = H RZ(Qm @ R @ S)

SeEg

= R77(Ago(q) (Qm) © Apo(q)(R))

by Proposition 4.1.1. Since Ag-(q)(R) = R’ for R € EY, the first statement is now

clear. The second statement follows since Ago(p)(P%) = P.’% by definition. O

Corollary 4.3.5. For any integer m > 2, we have
Ne, /mn B (Pr) = BRI (Pr7h),

where o, = (p, H/K) denotes the Artin symbol of p for the extension H/K.

Proof. Write ®(v, L,) = P?. The conjugates ®(v, L,)” of ®(v, L,) as 7 runs over
Gal(Fyn/ Fim-1yn) are (v + u, L,) for ®(u, L,) € E7. Hence

NinnBg (®(v, Lo)) = H RI(@(v +u, Ly)).

UEpilLU/LU
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But by Proposition 4.1.1, the right hand side is equal to Rg"* (Age(p)(®(v, L,))) =

e’ ((I)(A(p)"v,pr))), and ®(A(p)7v, Leg,)) is a primitive p™! torsion point of
E°%. Hence ®(A(p)7v, Loy, )) = Py,*) by the choice of p-power torsion points specified
in Definition 4.3.3. O

Let L be an arbitrary finite extension of K. We say that a € L is a universal norm
from L(Eye) if it is a norm from L(Eyn) for every n > 0. The following is well-known
(see [3, Lemma 5]).

Lemma 4.3.6. Let L be a finite extension of K, and a € L™ a universal norm from

L(Ey~). Then every prime which divides a lies above p.
Corollary 4.3.7. R7(P7) and R%L(PJ) are global units.

Proof. 1t is clear from the definition of R (P7) that it suffices to show R.(P, ® R)
is a unit for any primitive f-division point R on F. By Lemma 4.3.4, the sequence
Ry(Pn ® Q) (m=1,2,...) is norm compatible in the tower H(Ey;) over H(Eye;). It
follows that R,(P, ® R) is a universal norm from H(Eyes) = L(Eye ), where L = H(E}).
Thus by Lemma 4.3.6, every prime occurring in the factorisation of R,(P, @ R) lies
above p. However, we can pick any prime q dividing §, then q # p and we can apply
the same argument by writing P, ® () as a sum of a g-power division point and a point
W € E, with (b,q) = 1. Thus R7(P7) is a unit.

Next, we note that if D = (a;,n;), then R (P7) is a unit outside p again by Lemma
4.3.6 because Ry (Py) (m =1,2,...) is norm compatible in the tower F, over F' by
Corollary 4.3.5. If B | p is a prime of F,,, we have ordyg(z(P7)) < 0 but ordy(z(U)) > 0
for any U € EI\{O}, giving

ordp(@(PY) — 2(U)) = orde((PY).
Recalling that ordg(cg(a)) = 0, we have
ordy(R (P)) = 5 (Na; — 1) ordy(x(FY)),
because (E7\{0})/{1} has order }(Na; — 1). Hence
ordy(RH(PY)) = 5 ord(a(FY)) SnNa— 1) =0,

since Y°; n;(Na; — 1) = 0 by the definition of D. It follows that R%(P7) is a unit. This
completes the proof of Corollary 4.3.7.
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]

Definition 4.3.8. Let H,, = F,, N Hy,. Let Uy, denote the group of semi-local units
of H, @k K, = @ypjpHyyp which are congruent to 1 modulo the primes above p. We
denote by Up_ the projective limit of the groups Uy, with respect to the norm maps.
We define the group of elliptic units Cy, to be the group generated by R%(P7) for all
o € G, where P? is a primitive p"-division point on E?, as D runs over the index set I.
Note also that the roots of unity in H, are just {£1}. We let Cj;, denote the closure
of Cy, in Upy,, and define
Ch.. = imCp, C Un,,

where the inverse limit is taken with respect to the norm maps.

Similarly, let Up, denote the group of semi-local units of F, ®x K, = Ogp)p Ly
which are congruent to 1 modulo the primes above p, and denote by Ug,_ the projective
limit of the groups Ug, with respect to the norm maps. Let Cr, denote the group

generated by w,, := RI(P7) for all 0 € G, Cr, the closure of Cp, in Up, , and write
Cr., = imCr, C Ur,.
Proposition 4.3.9. For all positive integers m = n, we have
Ng,./m.Cr,, = Ca,.,
where Ny, s, denotes the norm map from H,, to H,.
Proof. By Corollary 4.3.5, we have Ny, /i, RS(Pg) = RUDU;R_”(PX"’T_”). Hence we have
N#,./#.Cn,, = Cn,

modulo roots of unity in H,, which is just {£1}. But —1 is not a universal norm, so

this completes the proof of the proposition. n

Given u = (u,) € Up,, let g.(W) € Oy ®0 Oy[[W]] denote the Coleman power
series of u (see [8, Theorem 2.2] for more details). We write

lf(;égu(W) = 10g Gu — 1 Z gu(W[+]w)>

w€Dy,p
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where we recall that D, , = Eg can be identified with E7. It is well-known [8, Lemma
1.3.3] that log g,(W) has integral coefficients. Define

i:UFoo —)Ay(@)

by
= 1Y x(0) ek (8) F e,

XEG* c€G

where p,, is the measure satisfying
Igé Gu © 50,1;(W> = /(1 + W>Xp(T)d,Uzu,g(T). (431)
8y}

Let uy = (39(P7)) € C.. Then by construction, log g,, = C¢ where C¢ is defined
in Lemma 4.1.4, and thus i(us) = pta = [lyea Yoea X(0)@k () Fia,r. Similarly, letting
up = (RH(P?)) € Cy.,, we have i(up) = vp.

Proposition 4.3.10. The homomorphism
1 UFoo — Ay(@)

s an injective pseudo-isomorphism.

Proof. Let 3 be any prime of F,, above p, and let &, = U®,, where ¢, denotes
the completion of F), at B. Let K., denote the unique Z,-extension of K unramified
outside p, and let K, g denote its completion at 8. We will show that |y~ (Poo)] is
finite by class field theory. To see this, note that K, = Q, since p splits in K. Then
the kernel of the local Artin map

(s Ky (ppee ) [ Ky) = (Kp)™ = Gal(£y (ppee ) /1)

is the free group (p) generated by p (see Prop 1.8 of [Neu]). Assume, on the contrary,
that all p-power roots of unity are contained in ®.,. Then the kernel of the local Artin
map

(4 Poo/ Kp) 1 (Ky)™ — Gal(Poo/ Kp)

is a subgroup of (p) of finite index. Denote by K- the completion of K at p* and let
K+ be the completion K., at B*. Let &, = UP! where @/, denotes the completion
of F,, at P*. Then K q+/K,+ is an infinite unramified extension isomorphic to Z,

which is topologically generated by (p, Koo p+/Kp+). By the product formula. we have
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(P, Koo/ Ky )|k = (071 Koosp/ Kp) | ke » since Koo/ K is unramified outside p. Hence
we have (p", @ /K,) # 1 for all nonzero integer n. This shows that (-, ®o/K,) is

injective, which is absurd. Hence |y (P )| is finite as claimed. Now it follows from

[8, §1, Theorem 3.7] that the cokernel of i is finite. Also i is injective because given
u € Up,_, u# 1, the corresponding g, is non-constant and it satisfies (4.3.1). Hence i

is an injective pseudo-isomorphism. O]

Lemma 4.3.11. We have

where J is the annihilator of pye (Fuo) in Zy[[®]].

Proof. Recall that i(u,) = piq = 04 - g, where g, 0, are defined after Theorem 4.1.11.
Hence we just need to show that J - A, (®) is generated by 0,, (a,6pf) = 1. For this,
it is enough to check that these elements generate a dense subset. Define a positive

integer N by p(F,) = pun, where we know p,» C puy by the Weil-pairing. Let
Xeye : Gal(K/K) — (Z/NZ)™

denote the cyclotomic character, defined by o(¢) = (Xv<(?) for all ¢ € Gal(K/K) and
¢ € puy. Write &, for the group Gal(F,/K). Then the annihilator of u(F,) as a
Z/NZ|®,]-module is generated by

ole, — chC(J)

where ¢ runs over Gal(K/K). To see this, note that every element of Z/NZ[®,,]
is a finite sum, and it is clear that o|s, — Xcye(0) is in the annihilator for every
o € Gal(K/K), so we can take away appropriate multiples of elements of the form
0|e, — Xeye(0) until we are left with a constant in Z/NZ, and that constant must be
zero since it annihilates . Now, we will show that the annihilator as a Z[®,,]-module
is generated by

NZ+ (0 — Ny)oce,

where N, € Z is such that yy.(0) = N, mod N. To see this, given an element in the
annihilator, it is a finite sum so we can eliminate the terms involving the elements
of &, by taking away the terms of the form o — N,. Then we are left with an
integer, which should be divisible by N. We claim that we can get N as well. By
the Cebotarev density theorem, there exists an ideal a of @ such that 0 = o, € &,,,

and then N, = N a satisfies Xcyc(0q) = Na mod N. Hence, it is enough to show that
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hef{Nq — 1 : q is a prime which splits in F,,} = N, because o, = 1 for a prime q if it
splits in F,, so that we can get N as a combination of elements in (o — N,),ce,. Given
a prime q which splits in F),, we have Nq — 1 = NM for some integer M. By Galois
theory, we have Gal(F, (unar)/Fn) = Gal(K (unar)/ K (un)) =~ (1 + NZ/1+ NMZ)™.
Thus by the Cebotarev density theorem, we can pick another prime q’ of F, which is
mapped to 1 + N and fixes pp;. This shows that we have hef(Ng —1,Nq' — 1) = N, as
required. Hence the annihilator in Z[®,] is generated by NZ + (0, — Na)(q,6p5=1. But
U,Z[®,,] is dense in Z,[[®]] and N,NZ + (0a — Na) q6p5)=1 = (0a — Nat) (q6p5)=1, SO the
result follows.

m

4.4 Statement of the Main Conjecture for H./H

From now on, we always assume that (p, h) = 1, where h denotes the class number of
K. Recall that K, denote the unique Z,-extension of K unramified outside p, and
H, denotes the composite field H K. Then H,, is a subfield of F,, such that H,/H
is a Z,-extension, and it is clear that H,, = F2. The fact that (p,h) = 1 implies
that H./H is totally ramified at all primes above p, since K /K is totally ramified
at all primes above p. Furthermore, for each n > 0, the classical theory of complex
multiplication shows that H(Eyn) contains the field H K (p™) where K (p™) denotes the
ray class field of K modulo p" . Then if p = 2,

Hy =HK((p>)=JHK(p")

is a Z,-extension of H, and write ¥ = Gal(H/K). We identify I' = Gal(F/F') with
Gal(Hy/H). Let T, = T*"""° where e = 0 or 1 according as p > 2 or p = 2. Then
H, = H so that Gal(F,/F) = Gal(H,/H) = Z/p"'~°Z.

Denote by M (Hs) the maximal abelian p-extension of H,, unramified outside the

primes above p, and write
X(Hs) = Gal(M (Hoo )/ Hoo)-

For every n > 0, let £y, be the group of global units of H,, and let Uy, be the
group of semi-local units of H,, @ K, = Oq)pH,q which are congruent to 1 modulo

the primes above p. Let £y, be the closure of £, N Uy, in Uy, in the p-adic topology.
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Then we define
T 1'£15_Hn and Uy = @UHM

where the inverse limits are taken with respect to the norm maps. A standard result from
global class field theory says that the Artin map induces a Gal(H,,/H )-isomorphism

Un, /€n, =~ Gal(M(H,)/L(H,)),

where M(H,,) is the maximal abelian p-extension of H, unramified outside of the
primes above p, and L(H,) is the maximal unramified abelian p-extension of H,,.
Hence, writing X (H,,) = Gal(M(H,)/H,), we have an exact sequence

0 — Un,/Em, — X (H,) — Gal(L(H,)/H,) — 0.
Taking the projective limit over n, we obtain an exact sequence
0— Uy /En. — X(Hy) — Gal(L(Hy)/Hy) — 0, (4.4.1)

where L(Hy) = Jim L(H,) is the maximal unramified abelian p-extension of H..

Let A(H,) denote the p-primary part of the ideal class group of H,,, and let A(H,,)’
be the quotient of A(H,) by subgroup generated by the classes of the primes of H,
above p which lie in A(H,,). So if we denote by D,, the subgroup of X (H,,) generated

by the decomposition group of the primes of H,, above p, we have an exact sequence
0— D, — X(H,) — A(H,)" — 0.

Furthermore, class field theory identifies A(H,) with Gal(L(Hw)/Hs), where A(Hy)
denotes the inductive limit of A(H,,) taken with respect to the natural maps coming
from the inclusion of fields. Thus we obtain the fundamental exact sequence needed

for the proof of the main conjecture:
0= En./Ch. — Un./Cu. — X(Hy) — A(Hy) — 0. (4.4.2)
Recall that ¢4 = Gal(H/K). Then we have
G =GxT

so that characters of G are naturally be considered as characters of ¢4. Given a
Ay (9)-module M and y € G*, write MX for the largest submodule of M on which G
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acts via x. Since p { [H : K| by assumption, any A (%) module breaks up into the

direct sum of its y-components.

Lemma 4.4.1. We have
i(Chy) =1,(9) v,

where I 7(9) denotes the augmentation ideal of A4(9).

Proof. Recall that i(up) = vp = Opy, (see (4.2.5) and the comments before Proposition
4.3.10). Hence we just need to show that I,(¥4)A (¥) is generated by 0p, D € I. In
Lemma 4.2.6, we have found D € [ such that 0p|r generates I ,(I'). It follows that for

every x € G*, we have

i(Cl.) = Us(9) vp)*.
The result now follows since we have an isomorphism Z,[[¢]] ~ Z,[[I']]|G] and the
decomposition 1,(¥) = @yecLs(9)X, where I,(9)X = e, l,(I') and I,(I) is the
augmentation ideal of A 4(I"), which is generated by v — 1. This concludes the proof of
Lemma 4.4.1. [l

Define ¢ = 1,(¥4)v, C (¥
Lemma 4.4.2. ¢ is independent of E.

Proof. Recall that ¢} has conductor (1) for k even and positive integer. Thus, in view
of Theorem 4.2.7, the period pair class (Q2(E/H),Q(E/H)) € (C* x (C;)/@X is
independent of §, although they individually depend on f and on the Weierstrass model
of E (see [8, Remark I1.4.12 (iv)]). Let us pick another global minimal equation for
E/H, and let Q. (E/H) and QP(E /H) denote the corresponding elements satisfying
Theorem 4.2.7. Tt follows from the definition of Q,(E/H) that Q,(E/H) and Q,(E/H)
are units in .#, and since (NZOO(E /H) mod H* is independent of the specific Weierstrass
model, we have Qo (E/H) = uQso(E/H) for a global unit u € H*. But p does not
divide u, so u* for k even and positive is a unit in .Z[[¢]]. It follows that the ideal ¢
in #[|¥]] is canonical. O

The following is an immediate consequence of the last two results.

Theorem 4.4.3. We have an exact sequence of A #(9)-modules
0= Uy /Ch. = Ays(9))p— D =0,

where D is finite and 1 4(9) denotes the augmentation ideal of A 7(9).
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We briefly recall the structure theorem for finitely generated torsion A ,(%)-modules.
Given a finitely generated torsion A #(¥¢)-module M, the well-known structure theorem
for finitely generated torsion A »(¥)X ~ #|[T]|]-modules easily implies that there exist

elements fi, ..., f. of As(¥) and pseudo-isomorphisms
S A (D)) (fi) = M and M — ®j_As(F)/(f2)-

The ideal ([T}, fi)A#(¥) is an invariant of M called the characteristic ideal of M, and is
denoted by char(M). Furthermore, for every x, we will denote by char (M)* C A »(94)x
the characteristic ideal of the A »(%)X-module MX.

Corollary 4.4.4. For every x € G*, we have
char (UHOO/(?HOO)X = p*.

We are now ready to state the main conjecture for H.,/H, which will be proven in
Chapter 6.

Theorem 4.4.5. [Main Conjecture for Hy,/H] For every x € G*, we have
char (X (Hy))* = pX.

Before we move on, we will verify that Theorem 4.4.5 holds for p = 2 and E = X(49),
which is equal to the case £ = A(q) with ¢ = 7. In this case, we have M (H,) = Hy,
because the maximal abelian extension of K in M(H,,) coincides with the union
UK (p™) of ray class fields K modulo p”. Thus X(H) = 0, and it follows that
Theorem 4.4.5 holds if and only if ¢ is a unit. By Theorem 4.2.7, this holds if and
only if (x,(7)* — 1)L($2E/H,2)/QOO(E/H)2 is a unit at p. This is true, because we
can compute with Magma that L(@E/H, 2)/Qo(E/H)? = &, and the fact that v is a
topological generator of I' ~ 1 + 40, gives that ord, (x,(7)* — 1) = 3, as required.



Chapter 5

Euler systems

5.1 Euler Systems of the Elliptic Units

In this section, we will treat the Iwasawa modules occurring in the fundamental exact
sequence 4.4.2 as A(¥) = Z,[[¥]]-modules. They are finitely generated and torsion as
Z,|[¢4]]-modules. Given a finitely generated torsion Z,[[¥¢]]-module M, write chary (M)
for the characteristic ideal of M given by the structure theorem for finitely generated
torsion A(¥)X ~ Z,[[I']]-modules, and char, (M )X for the characteristic ideal of MX
as a A(¢)X-module. The aim of this chapter is to define and study Euler systems of
the elliptic units C_Hoo, defined in Chapter 4, for the tower H.,,/H. The method of
Euler systems we follow is due to Rubin [17, Chapter 1]. When combined with an
application of Cebotarev density theorem, the results in this chapter enables us to

prove a divisibility relation analogous to [17, Theorem 8.3]:
chary (A(H,)) divides pFchary(Ex.. /Cr..),

for an integer k > 0 (kK = 0 when p > 2). This is proven in Chapter 6.
Let 4, = Gal(H,,/K). Let A, = Z,|%,] and define

) = 2,9 = 7,4,
the Twasawa algebra of ¢. Since #(G) is prime to p, the group A,, is semisimple, i.e.,

An - @XGG* A%7
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where each summand AX corresponding to x is isomorphic to Z,[Gal(H,,/H)], and
M¥) = Oxea- ME)Y,

where each A(%)X is isomorphic to A(T") = @Zp[Gal(Hn/H)].
Lemma 5.1.1. Suppose A € A, and m > 1. Then A\, /A™A,, is finite.

Proof. We show that AAX/A™AX is finite for every x € G*. Write 9% = {p : 94X —
.} for the character group of 4X. Every p € f!”:i‘ extends by linearity to a ring

homomorphism from AX to Z,[p,.]. Given A € AX, we can define
ZN) ={peD):p(\) =0}
Then clearly Z(\) = Z(\™) and

rankz, (AX/AANYX) = #Z()\)

and so
rankz, (AX/A"AX) = #Z(\") = #2(N),
giving
rankz, (AAX/A"AX) =0,
as required. O

Fix a positive integer [ > 1. Let Z, be the set of squarefree ideals of Ok which are

divisible only by primes q of K such that
(i) q splits completely in H, /K, and
(ii) Ng =1 mod p**¢, where e = 0 or 1 according as p is odd or even.

Recall that K(q) denotes the ray class field of K modulo g. In the following lemma,
we define the field H,(q).

Lemma 5.1.2. Given a prime q € Z,, we have a unique (cyclic) extension H,(q)
of H,, of degree p* inside H,K(q). Furthermore, H,(q)/H, is totally ramified at the

primes above q, and unramified everywhere else.

Proof. Since q is unramified in H,, /K, we have K(q) N H, = H N H,, = H. Hence, we
have
Gal(H, K (q)/Hy) = Gal(K(q)/H),
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which isomorphic to (O/qO)* /#(fiy) via the Artin map, where fi, denotes the image
of py under reduction modulo g. Since (q,2) = 1, the reduction modulo q map is
injective, and this is cyclic of order (Nq — 1)/(#(px)) where #(p,) = 2. Hence it has
a unique subgroup of order p’ since Nq = 1 mod p**¢, where e = 0 or 1 according as
p > 2 or p = 2. Furthermore, H,K(q)/H, is totally ramified at the primes above g

and unramified everywhere else, so the assertions of the lemma follow. O]
Lemma 5.1.3. Let

4

o HYJ(HOP = Hy () (Ho(pyeee) )

be the natural map, where e =0 or 1 according as p > 2 or p = 2. Then r is injective
ifp>2, and 4kerr =0 if p = 2.

14

Proof. We have H* /(HX)? ~ H'(H,/Hy, pe) and Hy,(pyere) ) (Hp(ppere) )P =~
H'(Hy, (o) /Hn(pyeve ), pye) by Hilbert 90. Hence ker r = H' (Gal(H,, (ppere )/ Hy), ).
Also, Hoo N K(p,00) = K because p and p* are totally ramified in K (pu,)/K, but
Hy /K is unramified outside p. It follows that Ho, N Q(p,~) = Q, and

Gal(H, (ppere)/Hn) = (Z/p™)* =~ A X Z/p" ' Z.

Here, A = Gal(H,(p1+e)/H,) is cyclic of order p — 1 or p according as p is odd or
even, and Gal(H,(pyere)/Hn(ppire)) ~ Z/p*Z. So if p > 2, Gal(H,(ppere)/Hy) is
cyclic and we have kerr = 0, as required. If p = 2, taking the inflation-restriction

sequence gives
0— H' (A, py) — kerr — H'(Gal(H,(poeer)/ Hapre)) Bae)

and H'(A, py) = H (Gal(H, (pooe+1)/ Hp(py), thoe) = Z/27. Hence |kerr| | 4, and the

result follows. O

For n > 1, recall that I',, = I'""~1=¢ where ¢ = 0 or e = 1 according as p > 2 or
p = 2. Define I(H,,) to be kernel of the restriction map A(¥) — A,, i.e., the ideal of
A(¥) generated by {c —1:0 € I',}. Given a A(¢)-module Y, define

Yi"={yeY :oy=yforallocecl,}.
Lemma 5.1.4. Given an ezxact sequence of A(¥)-modules

0—=Y —>Z—->W =0,
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we have an exact sequence
0— Y™ = 2 - Wh - Y/I(H,)Y — Z/I(H,)Z — W/I(H,)W — 0.

Proof. Pick a topological generator v of Gal(H,,/H,) and consider multiplication by
v—1maps on Y, Z and W respectively. The lemma now follows easily by applying

the snake lemma. O

Theorem 5.1.5. X(H,) is a finitely generated torsion A(¥)-module, and it has no
non-zero finite submodule. Furthermore, X (Hs)/I(H,) X (Hy) is finite for any n.

Proof. The first statement follows from [2, Lemma 13, Lemma 14]. Iwasawa the-
ory shows that I(H,)X (Hy) = Gal(M(Hw)/M(H,)), because M (H,,) is the largest

abelian extension of H,, inside M(H,,). Hence we have an exact sequence
0— X(Hy)/I(H)X(Hs) — X(H,) = Gal(H/H,) — 0, (5.1.1)

where X (H,,) = Gal(M(H,)/H,). Clearly the Z,-rank of Gal(H/H,) is 1. We will
show that the same is true for X (H,). Let [F : Q] = r1 + 2ry is a number field, where
r1 is the number of real embeddings of F and ry is the number of pairs of complex
embeddings. The Z-rank of the global units £ of F is r; + ro — 1 by Dirichlet’s
unit theorem. Let Uz = [[,,

groups of local units at v congruent to 1 modulo v. Then the Z,-submodule Er of

U, where v is a prime of F above p and U, denotes the

Ur generated by the image of £ in Ur has Z,-rank r; + o — 1 — vr for some integer
vy = 0. The p-adic analogue of Leopoldt’s conjecture says v = 0, and this is known
to hold for abelian extensions of Q. In particular, this holds for 7 = H,,, and thus
rankz, (Upr, /Em,) = 1. On the other hand, we have

rankz, (X (H,)) = rankg, (Up, /Em,)-

by class field theory, so rankz (X (H,)) = 1 as required. O

Recall that A(H,) denotes the p-primary part of the ideal class group of H,,, and
A(Hy) = liﬂA(Hn) where the inductive limit is taken with respect to the natural

maps coming from the inclusion of fields.
Theorem 5.1.6. chary(A(H.)) is prime to I(H,).

Proof. A(Hs) is a quotient of X(Hy), so A(Hw)/I(H,)A(H) is a quotient of
X(Hw)/I(H,)X(Hy). Since the latter is finite by Theorem 5.1.5, we also have



5.1 Euler Systems of the Elliptic Units 85

that A(Hw)/I(H,)A(Hy) is finite and so chary (A(Hw)/I(H,)A(Hs)) = 0, as re-
quired. O

Theorem 5.1.7. Let my : Uy /I(H,)Up, — Uy, denote the map induced by the

projection map. Then
I(D,) ker my = I(D,) coker myy = 0,

where Dy =[]y, Dy denotes the group generated by the decomposition groups Dy of
B in Hy/H.
Proof. See [17, Theorem 5.1]. O

Let
e - gHOO/I(Hn)gHOO — an and C ZéHW/I(Hn)éHW — éHn

denote the maps induced by projection maps.

Theorem 5.1.8. (i) I(D,) kerme = 0, where D, = [y, Dy and Dy denotes the
decomposition group of B in H/H.

(ii) There exists an ideal B of finite index in A(¥) such that
I(Dy)B coker mg = 0.

Proof. Recall that Uy__ /Ep.. C X(Hy) by (4.4.1) and X (Hy)/I(H,)X (H,) is finite
by Theorem 5.1.5. Thus X (H. )™ is a finite submodule of X ( =), and therefore
is equal to zero by Theorem 5.1.5. It follows that (U b /Em. ) =

notation, given a A(%)-module Y, let Y (n) denote the quotient Y/I(H,)Y and let my
denote the map Y (n) — Y induced by the projection map. Consider the diagram

0. For ease of

with exact rows:

0 —— Eu(n) — Uy (n) — (UHoo/gHoc> (n) —— 0

l J’”f o J (5.1.2)

n

n

Applying the snake lemma to (5.1.2) gives

0 — ker mg — ker my — ker my e — coker mg — coker my — coker mye — 0, (5.1.3)
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and, in particular, an injection ker ¢ — ker my, so assertion (i) follows from Theorem
5.1.7.

To prove assertion (ii), consider the diagram

0 —— A(Hoo)™" —— (Unw/En.) (n) —— (Un/En,) (n)
[ . l (5.1.4)

0 ——— Uy, /En, ———— X(H,),

where we applied Lemma 6.2.1 to (4.4.1) and used the fact that X (H,, )™ = 0 to obtain
the first row. We have kermx = 0 by (5.1). Hence A(Hy)'™ ~ ker mye. Note that
A(Hy )t is finite, since A(Hy)/I(H,)A(Hy) is finite. It then follows from Theorem
5.1.7 and (5.1.3) that

I(D,)B coker g = 0,

where B is the annihilator of the maximal finite submodule of A(H) in A(¥). This
completes the proof of Theorem 5.1.8. O

Theorem 5.1.9. rank, ) (Cy..) = 1 and coker(rc) = ker(mc) = 0.

Proof. By Lemma 4.4.1, there is a isomorphism of A(%)-modules
C_Hoo >~ I(g),

where 1(¥) is the augmentation ideal of A(¥), so the first statement follows on noting
that ranksy)(A(¥4)/1(¥)) = rankp)(Z,) = 0. By Proposition 4.3.9, the projection
map 7¢ : Cp /I(H,)Cp.., — Cp, is surjective, so coker m¢ = 0. Now, the first statement
of the theorem gives Cy_/I(H,)Cx.. ~ A,. Furthermore, Cy, is isomorphic to a
submodule Y of finite index in A,,. Define a map f : A,, — Y so that it commutes with
the map 7. Then clearly ker e C ker f and coker f is a quotient of coker m¢, which is
equal to zero. Thus ker f is finite, and hence equal to zero since A,, has no non-zero

finite submodules. The theorem now follows. O
Corollary 5.1.10. chary(Ex. /Cr.) is prime to I(H,).

Corollary 5.1.11. There exists an ideal B C A(¥) such that for every \ € 1(¥)%A,
there is a map 0y, : En, — N\, satisfying

/\QChaIA(gHOO /C_HOO)AR C QA,n(C_Hn)
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Proof. Fix a map 0 : &y, — A(9) such that 6(Cy.) C chary(Ey, /Cr.) and
chary (€x.. /Ch..)/0(Ch.,) is finite. Let B = A; Ay where A, satisfies Theorem 5.1.8 (ii)
and A, is the annihilator of chars(Ep../Cr..)/0(Cr..). In particular, since A € Ay, we

have
)\CharA(gHoo/C_Hoo) C 9<C_Hoc>

Write 60, : Eg./I1(H,)Ex.. — A, denote the map induced by 6, so that we have
)\CharA(c‘:’Hoo/(fHoo)An - Gn(éHm) (515)
Define 0, ,, : En, — A, so that the following diagram commutes:

En JI(H)Em. —2 A,

| s

~ 9)\,71
5Hn ? An

This is well-defined since A ker mg = A coker m¢ = 0 by Theorem 5.1.8. Then we have
)\en(C_Hoo) = ek,nﬂg(é]{m) - GA,H(C_HH) (516)

because 7¢(Cp..) C Cpy,,. Combining (5.1.5) and (5.1.6) gives the result. O

Lemma 5.1.12. Let fi,..., fr € AM(¥) be such that we have an exact sequence

A@)
e NN

— A(Hx) > Q — 0

with Q finite. Then there exists an ideal B of finite index in A(¥) such that, for every
n > 2, there exist classes ¢1,...c, € A(H,,) satisfying BA; C fi\, for every i, where
A; C A, is the annihilator of ¢; in A(H,)/(c1 Ay + -+ + Apeiq).

Proof. See [17, Proposition 6.5]. O

If v = [T}, q; € Z,, we write H,(r) for the composite H,(q1) - - - H,(q;), and we put
H,(0)=H,.

Definition 5.1.13. An Euler system is a collection of global units
a={a’(n,t): n>1 veZ, oc Gal(H/K)}

satisfying
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(i) a(n,t) is a global unit of H,(t),

(ii) If q is a prime such that vq € Z,, then
Nt ea)/ a0 (@7 (0, 7)) = @7 (n, v) ¥ (5.1.7)

where Frob, is the Frobenius of q in Gal(H,(rq)/K).
(iii)
Nu, @)/ a0 (@7 (n+1,1t)) = a7 (n,v), (5.1.8)
where o, = (p, H/K) € Gal(H/K).
We now show how the elliptic units give rise to an Euler system.

Lemma 5.1.14. Let q € Z; be a prime. Then
(1) K(afp") = Fu(Eq).

(i) [Hy(Eq) - Ho(q)] = (Ng — 1)/p".

Proof. By [10, Lemma 4.7], we have

H(Egyn) = K(afp")

because the conductor g of ¢x divides f. But H(Eg ) = F,(Ey) since (p,qf) = 1
and F,, = H(Eyn) by definition. This proves (i). For (ii), since q is a prime of good
reduction for E, q is totally ramified in H, (E;)/H and unramified in H,,/H. Thus,
by Theorem 3.2.1, Gal(H,(E,)/H,) ~ Gal(H(E,)/H) ~ (O/q)*. Assertion (ii) now
follows on noting that [H,(q) : H,] = p". O

Proposition 5.1.15. If u € Cy,, then there exists an Euler system {a’(n,t) : n >
1, veIy, o€ Gal(H/K)} with a’(n,1) = u.

Proof. 1t suffices to consider the case u = R%(P?). Given t € Z;, define aZ(r) =
R% (Mg (v)71(P?)). Then clearly a9(1) = u and aZ(r) is a global unit in H,(r).
Furthermore, if q is a prime in Z, and vq € Z,, then o, = 1, so by Proposition 4.3.2 we

have

Nt ) /1105 (40)) = Nty 11,9/ (B (A (va) 7 (PF) )

1—Frob, !
= RE (Mee (1)1 (PY))

n

Z(t) 1—Frobq*l

« )
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and similarly

N, 1) /a0 (1 (V) = Ni 0/, 0) (BD ()\EU (t)_l(P;+1)))
= R} (/\Eoop (v) " (g (p)( n+1))
B (0 (52)

= a7 ().

Therefore, defining a”(n,t) = ag(r) gives the result. O

For every prime q € Z;, write G4 = Gal(H,(q)/H,). Then G, is cyclic of order p

so we fix a generator 7. Define

-1
D, = Z ity € Z[Gy]

=0

and for any a € Z, define
D, =[] Dy € Z|G).

gla

where G, = Gal(H,(a)/H,) ~ ]y Gq. Also, we define

Ny= > o€ Z|G

oe€Gy

for any prime q € Z, and set

N, =[] N, € Z|G,).

gla

Proposition 5.1.16. Suppose o = {a’(n,v): n>1, v €Iy, 0 € Gal(H/K)} is an

Euler system. Given o € Gal(H/K), there exists a canonical map

Ko : Lo — HJ(HX

such that for every n > 1 and v € T, we have kq(t) = a(n,v)P* mod (H,(t)*)?".

Proof. In order to prove this, we will briefly introduce an alternative definition of
Euler systems. See [17, Proposition 2.2] for more details. For n > 1 and v € Z,,
let X, () be the quotient of the free Z[Gal(H,(r)/K)]-module on the indeterminates
{z9(s) : s | v,0 € Gal(H/K)} by the following relations:

(1) x9(s)P~! for all p € Gal(H,(v)/H,(s)),
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(2) 29(qs)Ne = 27 (s)1=Froba ) if g5 | v and q is a prime in Zy,

(3) 27 (0N = 2770 (v) where N' = S caim, 1 (/) T € Z[Gal(Hop1 (v)/Ha(v))]
and o, = (p, H/K) € Gal(H/K).

Then we can define an Euler system to be a Galois equivariant map

a={a’(n,t): n=>1,ve€Zy, o€ Gal(H/K)}: lian(t) — Up o Hp(v) ™.

Using this map, we can define a 1-cocycle ¢ : Gy — H,(t)* by

e(p) = a (n,x)*" PN

for p € G,. Since H'(G., H,(t)*) = 0, there exists 5 € H,(t)* such that c(p) = 8°/5
for every p € G,. Then a(n,t)P /" € H* and we can define

Ka(t) = a(n,0)> /7 € HXJ(H).

]

5.2 An Application of the Cebotarev Density The-

orem

Write ¢, = Gal(H,,/K). Fix n > 1 + e, and let
Iy, = I = ®aZO

denote the group of fractional ideals of H,, written additively, where the sum runs over

the prime ideals of H,,. For every prime q of K, let
Iy = ®a42Q = Z[9,]Q.

For y € H) let (y),, [y] and [y]4 be the projection of the principal ideal (y) in I, I/p‘I
and I, /p'I, respectively. Note that [y] and [y], are well-defined for y € HX /(HX ).
Suppose now that Q is a prime of H,, lying above a prime q € Z,. Then H,(q)/H,
is totally ramified at 9, and we let 9 be the prime of H,(q) above . We have a
natural isomorphism O, (q)/ Q~ Omu,/Q, where Oy, (q) denotes the ring of integers
of H,(q). Suppose = € H,(q)* and p € G,. Then z'~? mod Q € ((’)Hn(q)/f))x, where



5.2 An Application of the Cebotarev Density Theorem 91

O, (q denotes the ring of integers of H,(q). We let 2! 7” mod Q denote the image
of '~ mod Q in (O, /Q)*. Recall that 7, is a fixed generator of the cyclic group
Gy, and let 1= denote the image of '~ mod Q inside (Op, /Q)*/((On, /Q)*)*".
Then we write (z1-7)Y/4 for the unique d-th root of z1-7 in (O, /Q)*/((On, /Q)* )",
where d = (Ng — 1)/p’. Then the map

H,(q) — ((’)HH/Q)X/(((’)J%/53)X)P‘Z7 T — (ﬁ)l/d

is surjective, with kernel {z € H,(q)* : ordz(z) = 0 mod p‘}. Let w be the image of z
under this map. Then setting

la: (O, /Q)"/(On, /Q) ) = Z2/p'7, w— ordg(r) mod P’

gives an isomorphism.

Now define a map

41 (On,/90m,)* (O, /90w, )" — I,/p'I,

by
pa(w) =D la(w)Q,

Qlq

where we also write [ for the map composed with the natural projection

(O1,/401,)* [ ((O1,/a08,) )" = (O, /) /(O Q) )"

Proposition 5.2.1. Suppose « is an Euler system, n > 1, v € Z, and let q be a prime
of K. Then

(1) If q 1t then [kq(t)]qy = 0.
(i1) If q | v then [ka(v)lq = pq(v/q),
where ko s the map defined in Proposition 5.1.16.

Proof. This again follows from the alternative definition of Euler systems. See [17,
Proposition 2.4]. O

Theorem 5.2.2. Suppose x € G*, v € (Hrf/(HnX)pg)X, V' is a finite A, -submodule
of (HX/(HX)*)X generated by v, and ¢ € Homp (V,A,/p'A,), ¢ # 0. Let ¢ €
p°I(9)A(H,)X, where e = 1 if p =2 and e = 0 otherwise. Then there is a prime q € Z,
and a prime Q of H,, above q such that
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(i) the ideal class of Q in A(H,)X is equal to ¢,
(ii) [v]q = 0 and there exists u € (Z/p'Z)* such that p4(v) = p**ug(v).

Proof. Write H], = H,(p,e+.), and V, = V/V Nkerr, where r is the map in Lemma
5.1.3, so that V, = V if p > 2. Fix a primitive p’-th root of unity ¢, and let

v A /pPA — e
be the map sending 3" a,0 mod p’ to (*. We have an isomorphism
Gal(H,,(v'/7")/H,,) = Hom(V,., )

given by Kummer theory, and 3 := p**(1 0 ¢) € p® Hom(V, p,e). Let b be the element
of p¢ Gal(H!,(v'/?")/H!) corresponding to f via the Kummer map so that

b(vi/P*
8w =

Let L,, denote the unramified extension of H,, such that A(H, )X = Gal(L,/H,). Then

we see that there exists a submodule W of V,. such that
Gal(L,,/L, N H,) = Gal(L, H,,/H),) = Hom(W, ),

where L/ = L, N H,(v"/*). On the other hand, Gal(H’/H,) acts trivially on
Gal(L,, H),/H,) and pt o (H,) = py, so that

Hom(W, ) = Hom (W, pa,,e) S/ H0) — Hom (W, p,).

Therefore, p® Gal(L!,/L, N H,) = 0, and b restricted to L/, is trivial. Furthermore,
I(¢) annihilates Gal(L,, N H] /H,,) since H] is abelian over H, so we can consider
¢ as an clement of p¢ Gal(L,/L.). Hence we can choose p € Gal(L,H' (v*/*")/H,)
such that p[z, = ¢ and p|H;L(,U1/p4) = b. By the Cebotarev density theorem, there are
infinitely many prime ideals of H, of degree one, unramified in H’,(v/?")/K whose
Frobenius in Gal(L, H',(v*/?")/H,) is equal to p. Let  be one such prime, lying above
a prime q of K. First, the fact that Q has degree one and p fixes L/, means q splits
completely in H/, and thus q € Z;. Then class field theory identifies [Q] € A(H,,)X with
Frobq € Gal(L,/H,), so (i) follows immediately. Now, [v]; = 0 because all primes

lying above q are unramified in H;L(vl/pz)/Hn, and v is a p’~th power in H;L(vl/pe).
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Also,

b((0)!/7)
()7

& v is an p’-th power modulo Q.

orda (p*¢(v)Q) = 0 & p* (10 p(v)) = B(v) =1 & =1

On the other hand, we have
ordg(pq(v)) = lg(v) = 0 < v is an p‘-th power modulo Q.

It follows that there exists u € (Z/p*Z)* with ordg(py(v)) = wordg(p**¢(v)Q), and

the map sending
v = (V) — P*ug(v)Q
gives rise to a ¥,-equivariant injective homomorphism from V' to @®neq, (Z/p"Z)Q".
h#1

But the latter has no non-zero ¥,-stable submodules, so

pa(v) = P*ud(v)Q,

as required. 0

5.3 The Inductive Argument

For n > 1, recall that A, = Z,[%,], where ¥,, = Gal(H,,/K). If Q is a prime of H,
lying above q € Zy, then I is a free Z[%,]-module of rank 1 generated by ‘B, and we
define

va: HY = A, by vq(w)Q = (w),,

o HYJ(HOP — A/p'A, by a(w)Q = [w],
The following lemma is an important tool in the induction argument to follow.

Lemma 5.3.1. Suppose x € G*, v € (Hi/(HnX )pz)x’ q € Z, is a prime, s a prime
of Hy, lying above q, S is a set of primes of K not containing q, and f, Ao, A1, A2 € A(¥),
with A\g = 2 if p = 2. Write B,, for the subgroup of A(H,) generated by the primes
of H, lying above the primes in S, ¢ for the image of Q in A(H,)X and V for the
A, -submodule of H)/(H) )pl generated by v. Suppose also that we have

(i) [v]e =0 for a prime v of K not in S'U{q},

(ii) the annihilator Ann(c) C AX of ¢ in A(H,)X/BX satisfies \yAnn(c) C fAX,
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(iii) #(A(H,)X) | p* and va(v) divides (p*/#(A(H,)¥)) Ao in AX/p*AY, and
(iv) fA(9) is prime to I1(H,,).
Then there exists a 9,-equivariant map ¢ : V — A, /p*A, satisfying

fo(v) = AoAiA20a(v).

Proof. This is a combination of [17, Lemma 8.2] and [11, Lemma 3.8.4]. O

Fix elements fi,..., fr € A(¥) so that

0 sk, AA(;’;}A — A(Ha) Q=0

with @) finite. In particular,

k
chary(A(Hy)) = (H f1> A(9).
i=1
Theorem 5.3.2. (i) If p > 2, k is as above and x € G*, we have
chary (A(Hy)X) divides I(D,)**chary(En /Ch.. )Y,

where Dy =[]y, Dyp denotes the group generated by the decomposition groups Dy
of B in Hy/H.

(i) If p=2, k is as above and x € G*, we have
chary (A(Hy)X) divides 2% Schary (€. /Cr.. )X

Proof. We will prove this for p = 2. The case p > 2 is similar. Fix a generator 3 of
chary (€. /Cr..)X. Let B be an ideal of finite index in A(%) satisfying the conditions in
Theorem 5.1.8 (ii) and Lemma 5.1.12. Take ) € 21(¥¢)B. By Lemma 5.1.1, AA,, /A% A,,
is finite. Also, by Corollary 5.1.10, SA(¥) is prime to I(H,), so A, /BA, is finite. It
follows that AA,, /A?*3A,, is finite. Thus, for some ¢ > 1, we have

2NN, C (2" (H(A(HL))N*B)A,,. (5.3.1)
Now, by Corollary 5.1.11, there exists 0, : an — A, such that

)\26 € 0/\7H(C_Hn)
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Thus, we may fix u € Cy, with 0, (u) = A28, and also we fix uy € Cy, with
u = ug mod (Cy, )"

By Proposition 5.1.15, we have an Euler system « and o € Gal(H/K) with a”(n,1) =
ug. Let ko be the map defined in Proposition 5.1.16, and let ¢q,..., ¢, € A(H,) be
as given in Lemma 5.1.12. We will use induction to select primes 9, ..., Q1 of H,

lying above primes q1, ..., qx1 of K satisfying:
[Qi] = A} in A(H,)X, and q; € Zy, (5.3.2)

U, (Ka (1)) = 12'A\°B and fi10q, (ka(a:)Y) = 1:2'N0g,_, (Ka(0;21)Y),  (5.3.3)

where a; = q1---q; and r; € (Z/p'Z)*.

For i = 1, we take ¢ = Ac} € 21(9)A(H,)X, W = (€, /En, 0 (H)')", 6 = 201,
and apply Theorem 5.2.2 and Proposition 5.2.1. Then we obtain a prime Q; of H,
such that [Q] = A¢f in A(H,)X and a prime q; € Z; lying below Qy,

[(K;a(ql)x)]ﬂl = Paq (ﬁa(l)x) = Pq1 (a(T(n? 1)X)
=r2%¢(up)Q; = 7“1240,\7n(u0)531 =r2°\269Q;.

Thus, by the definition of [-]q,, we have

Ua, (Ka(1)X) = r12°A%3,

which proves the first equality of (5.3.3).

Now, let 1 < ¢ < k and suppose we have selected primes £1,...£; satisfying
(5.3.2) and (5.3.3). We will define ;1. Recall a; = [[;¢;q;.Let V; be the A,-
submodule of H*/(H*)?* generated by rq(a;)X. We will apply Lemma 5.3.1 with
NQ=9;,v==~ra(a;), \1 =Xy =Xand S = {q1,...,q;_1}. This is possible because
conditions (i), (ii) and (iv) of Lemma 5.3.1 are satisfied thanks to Proposition 5.2.1,
Lemma 5.1.12 and Theorem 5.1.6, and (iii) is satisfied because by (5.3.3), vq,(Ka(a;)X)
divides 2423 in AX/2¢AX, so by the choice of £ made in (5.3.1), Ug,(ka(a;)¥) divides
(pe/#(A(Hn)XD A in A, /2°A,,. Thus, we obtain a map ¢; : V; — A, /p‘A,, such that

fii(Ka(a;)X) = 2X%0q, (ka(@;)X). (5.3.4)
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Now, applying Theorem 5.2.2 by setting V' =V}, ¢ = Ac},;, ¢ = ¢;, we obtain a prime
qi+1 € Zy and a prime 2, of H,, lying above it. Then (i) and (ii) of Theorem 5.2.2
gives (5.3.2) for i + 1. Furthermore, by Proposition 5.2.1 (ii) and Theorem 5.2.2 (iii),

for some 7,41 € (Z/p'Z)* we have

fi[’ia<ai+l)]ﬂi+l = fi()OQi+1 (Ka<ai>x>
= 7“z+123fi¢i(/<a(ai)x)ﬂi+1
= 11412' XN0g, (Ka (6:)) Qi1

where the last equation follows from (5.3.4). This proves (5.3.3) for i + 1. Finally,
combining (5.3.3) for 1 <i < k + 1 gives

k

H fiﬁﬂkﬂ(’fa(ak—&-l)x) = 7"24k+4)\2k+25

i=1
in A,,/p‘A,, for some u € (Z/p*Z)*. Tt follows that

k
chary(A(Hy)) = [[ f; divides 2%+HN*F28A(9) = 2 H4\* +2char, <5HOO/CHOO) :

i=1

This holds for every A € 21(¥)B, so in particular, holds for A being the greatest common
divisor A\g of all elements in 2/(¥)B. It is easy to show that in this case we have
MA(Y) = 21(%). This concludes the proof of Theorem 5.3.2, because chary(A(Hw))
is prime to 1(¥¢) by Theorem 5.1.6. O

Corollary 5.3.3. Let p > 2. Then
charp(A(Hy)) divides chary(Ex /Cr..).

Proof. We have shown in Theorem 5.1.6 that chary(A(Hx)) is prime to (D)), so by
Theorem 5.3.2, chary(A(Hy)) divides chary(Ep. /Cr.. ). O

Recall that p t [H : K] by assumption.
Theorem 5.3.4. We have chary (X (Hy)) = chary (UHoo /C_Hoo> if and only if chary (A(Hw)) =
chary (EHOQ/C_HOO>7 and

chary (X (Hx)) | 299 chary (Un, /Ch,) -
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Proof. Recall from (4.4.2) that we have an exact sequence
0= &n /Ch — Un. /Cli, — X(Hs) — A(Ho) — 0,

and therefore chary(A(Hy))chary (UHOO/C_HOO) = chary (X (Hy))chary (gHoo/C_Hoo)'
The last assertion of the theorem follows from Theorem 5.3.2 and Corollary 5.3.3. [J






Chapter 6

Proof of the main conjecture for
Ho/H

6.1 The Iwasawa Invariants of X(H.)

Recall that
¥ ~GxT,

where we identify G with Gal(Hw /K ) and I" with Gal(K./K). Recall that any
Ay (9) = F[[¥]]-module M can be decomposed into a direct sum M = @, e+ MX of its
x-components. Thus, let us consider Z[[I']] as a A »(%)-module via x. Given a finitely
generated torsion A ,(%)-module M, recall from Section 4.4 that char(M) C A,(9)
denotes the characteristic ideal of M. If X is a A(¢)-module and x € G*, we write
XX for (X®z,.#)X. This is justified because we are only interested in char(X)X, and
the characteristic ideals of a I'-module behaves well under extension of scalars. This
comes from the fact that we can identify Z[[I']] with Z[[T]].

Recall also that any f(T') € .#[[T]] can be written uniquely, by the p-adic Weierstrass

preparation theorem, in the form
f(T) =="P(T)U(T)

where 7r is a uniformiser of ., P(T) is a distinguished polynomial, i.e., a monic
polynomial whose coefficients are divisible by 7, and U(T) is a unit in S[[T]]. Let €

be the absolute ramification index of .#. The invariants

p(f)="" and A(f) = deg P(T)

€



100 Proof of the main conjecture for H.,/H

are called the Iwasawa p-invariant and A-invariant of f, respectively. The Iwasawa
invariants of A(¢)-modules are defined similarly, and if M = X®z, . is obtained from
a A(¥4)-module X by extension of scalars to .#, the invariants of M coincide with
those of X.

Define fX = char (X (Hy))* and let g¥ = char (UHOO/(?HOO)X , and set f =[] fX
and g = [] g¥. By Theorem 5.3.4, we have

Theorem 6.1.1. fX | w¥gX for some integer k >0, e=01ifp>2ande=11ifp=2.

Thus, in order to show fX and gX define the same ideal, it remains to show that
f and g the have the same Iwasawa invariants. We shall compute them separately,
and show that they are equal. First, we compute at the invariants of X (H,,) using
class field theory, and in Section 6.2 we compute the invariants of Up_ /Cp__ using the
analytic class number formula.

Recall from the proof of Theorem 5.1.5 that X (Hs)/I(H,)X(Hs) is equal to
Gal(M(H,)/Hs), where M(H,) is the maximal abelian p-extension of H,, which is
unramified outside the primes above p. Thus the asymptotic formula of Iwasawa [23,

Theorem 13.13] gives:

Theorem 6.1.2. Let f be the characteristic power series for X(Hy) as a Z,[[I']]-

module. For sufficiently large n, we have
ordy, (#(X (Hoo) /I(Hn) X (Hoo)) = (/)" + Mf)(n — 1 —¢) +¢,

where p(f) and A(f) are the Iwasawa invariants of X(Hs) and ¢ € Z is independent

of n.

We will now compute p-adic valuation of the index [M (H,,) : Hwo] using the methods
of Coates and Wiles [7], and use it to find ord, (#(X(Hw)/I(H,)X(Hx)). We note
that p is assumed to be an odd prime number in [7], but it can easily be extended to
p = 2 in our case, because 2 splits in K and (p,h) = 1 by assumption.

Set [H,, : K| = d, which is equal to p"~'~¢h where e = 0 or 1 according as p is odd
or even. Let &, ... &y denote the distinct embeddings of H,, into C,. Since H,, is totally
imaginary, ranky (g, /(En, )ior) = d — 1. We pick a basis €y, ..., €41 for g, /(En, )tor,

and put e = 1+ p or 1 + p? according as p is odd or even.

Definition 6.1.3.

R, = (dlogeq) ' det (log(&i(€1)))1<; j<a-
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Let Cpy, denote the idele class group of H,,. For each n > 1, let

Yn - mm}nNHm/Hn C'Hm

Let &, = H, ®x K,.

Let & denote the set of primes of H,, lying above p. Let Ug, ,, denote the group of
units in the completion of H,, at 8 which are congruent to 1 modulo B, and let ¢ > 0
be such that p~'Oy C log Uy, ,, for each P € .

The p-adic logarithm gives a homomorphism log : Uy, ,, — H, g whose kernel
has order wyp = #pyoo(Hpgp). Write logUp, = [lpes logUn, ,,, so that we have
log : Un,, — @, with kernel w, = [[ycp wp,

Lemma 6.1.4.

ord, ([ I pfOq : log UH”]) = ord, (wp 11 N‘B) + td.

Pes PP
Proof. See [6, Lemma 7]. O

Let V" =1+ p"O, denote the local units of K, which are congruent to 1 modulo
p”, and define D,, = V1*°&y C Upy,, where e = 0 or 1 according as p > 2 or p = 2.
Furthermore, let Ay, /i denote the discriminant of H, /K, and pick a generator A,, of
the ideal Ap, /xO,.

Lemma 6.1.5.

-1
ord, ([log Uy, :log D,]) = ord, ;;L (wp 1T N‘B) +n+1.
n Per

Proof. Using methods analogous to [6, Lemmag], we can show that

R
ord, | [ [] p"Ox : log D,)] | = ord <n> +td+n — e+ ord, (log(1+p'")),
P (mle_[f/" RY P \/A_n P ( )
(6.1.1)
where e = 0 or 1 according as p > 2 or p = 2. We have ord, (log(1 + p'*¢)) =1 + e,
so the right hand side of (6.1.1) is equal to ord, ( it ) +td+n+ 1. The result now

VA,
follows from Lemma 6.1.4. ]
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Corollary 6.1.6.

—1
R,
Ol"dp ([UHn . Dn]) = Ol"dp m ( H NCB) +n + 1
n n Per

Proof. This is an immediate consequence of Lemma 6.1.5, obtained by applying the

snake lemma to the following commutative diagram

0 D, Un

. Un, /D, — 0

"

0 —— log D,, —— logUy, — logUy, /log D,, —— 0.

with exact rows. O
Lemma 6.1.7.
Yn N UHn = ker (I\Iq;.p/Kp |UHn)
an = ker (Nq;.p/Kp |Dn> .
Proof. See Lemma 5 and Lemma 6 of [6]. O
Lemma 6.1.8.

- R
Y, N Uy, : En,| = ord, - 1—(Ng)~ ! n
Y. N ] (\/A—Wl;[y( (N3) )) +

Proof. By Lemma 6.1.7 and the definition of D,,, we have Ng,/x, (Dy) = (Viteyd =
(Viteyn=e = Y+l Hence, applying Lemma 6.1.7 again, we obtain a commutative
diagram with exact rows

N
Lp/ Ky Vn+1

0 — &y, —— D, — 0

| Lo ]

N
0 —— Y, NUy, — Uy, —25% ym 0.

Lemma 6.1.8 now follows from Lemma 6.1.7 on noting that ord, (Hqgegv(l - (N‘B)*l)) =
ord,, (Hmeg(N‘B)*l)) and [V : V" = p. O
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Theorem 6.1.9. Let M(H,) be the mazimal abelian p-extension of H, which is

unramified outside the primes in &. Then

hi, R,
ord, ([M(H,) : Hy]) = ord, (\/_wg?a—(w) ))

where hy, denotes the class number of Hy,.

Proof. Let L(H,) be the maximal unramified extension of H,, in M (H,). Thus we
may identify Gal(L(H,)/H,) with A(H,), the p-primary part of the ideal class group

of H,. Class field theory gives an isomorphism
Y, NUp, /Ex, = Gal(M(H,)/L(H,)H.).
Noting that L(H,) N Hy = H, because H.,/H, is totally ramified at p, we obtain
0—Y,NUy,/Ex, — Gal(M(H,)/Hy) — A(H,) — 0.

The theorem now follows from Lemma 6.1.8 and the fact that ord, (#(A(H,))) =
ord, (hg,). O

Corollary 6.1.10. Let f be the characteristic power series for X (Hy) as a T'-module.
Then for sufficiently large n,

,u(f) 'pnilie(p — 1) —+ )\(f) =14+ OI'dp <th+1Rn+1 thRn>

VAL VA,

where p(f) and A(f) are the Iwasawa invariants of X (Hy).

Proof. By Theorem 6.1.9, it is clear that the right hand side of the above equation
is equal to ord, ([M(Hp41) : H|/[M(H,,) : Hw]). Recalling that Gal(M (H,,)/Hx) =
X(Hw)/I(H,)X(Hs), Theorem 6.1.2 gives ord, ([M(H,+1) : Ho]/[M(H,) : Hy)) is

equal to

()P A (n—e)+c)—=(u(f)p" " +A(f)(n—1—e)+c) = p(f)p" '~ (p—1)+A(f).

This completes the proof of the corollary. O
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6.2 The Iwasawa Invariants of the p-adic L-function

In this section, we will compute the Iwasawa invariants of Uy_ /Cp.. and show that
they coinsides with those of X (H.,) computed in Corollary 6.1.10. We will follow the
methods discussed in [8, Chapter I11.2]. Again, the prime p is assumed to be odd in
Chapter III of [8], but the methods still holds for p = 2 thanks to our assumptions
that p splits in K and pt [H : K].

Fix a generator g € .#|[I']] of char (UHm/éHw), and let u(g) and A(g) denote the

Iwasawa invariants.

Lemma 6.2.1. Recall that T, = TP"""°. For any character p of T of finite order,
write l(p) =n—1—e if p(T'y) =1 but p(T',,_1) # 1. Then for n sufficiently large,

ord,, ( 11 p(g)) = u(g) - " (p— 1) + Ag).
U(p

)=n—e
Proof. See [8, Lemma I11.2.9]. O

Given a ramified character € of 4 = G x I, write € = xp where x is a character of
G and p is a character of I'. Let f. denote the conductor of €, f. = f. NZ, and let B,
be the collection of all € with p” || f.. Then

Proposition 6.2.2. For n sufficiently large,

R, Bov1  h, R
ord 11 p(g)) =1+ord ( i /—= > :
’ (l(P):TL—e ' \ A”+1 v An

Proof. We follow the arguments in Proposition 111.2.10 and 2.11 in [8]. Any € € B,, can

be written in the form € = yp where y is a character of G and p is a character of I with
l(p) =n. Let H, = HK(p*°) and S = {s € Gal(H, H,/K) : s|p_ = (p", H ./ K)}.
For n > 0, fix primitive p"-th roots of unity ¢, satisfying (¥ = (,,_1, and define G(¢) by

pn sesS
Let 1
Sple) = — - > e o) log . (c),
’ 12 fews. i)
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where CI(f.) denotes the ray class group modulo f. and ¢j_(¢) is Robert’s invariant
associated to the class ¢ (see [8, 11.2.6]). Then by [8, Theorem I1.5.2], we have

G(e)S,(e) if x is non-trivial

p(g*) = [ﬂ xpdvy = { (p(7) = 1) G(e)S,(e) if x =1,

where v is a topological generator of I" and v, satisfies Theorem 4.2.7. Hence
Hl(p):n—e (p(V) - 1) = Hceﬂpnfe (( - 1)' Noting that Ordp (ngupnfe (C - 1))) =1,

we obtain
ord, ( 11 p(g)) =1+ ord, ( 11 G(S)S(e)) . (6.2.1)
l(p)=n—e €€Bn+i—e

On the other hand, using the analytic class number formula for the fields H,,; and
H, gives (see [8, I11.2.11]):

ordp( I1 G(e)Sp(s)):ordp<h}i;%+l/hj’§n> (6.2.2)

6€Bn+175
Combining (6.2.1) and (6.2.2) completes the proof of Proposition 6.2.2. O

Comparing Corollary 6.1.10, Lemma 6.2.1 and Proposition 6.2.2, we conclude that
f and g have the same Iwasawa invariants. As discussed at the beginning of Section
6.1, this together with the divisibility relation obtained in Theorem 5.3.4 completes

the proof of the main conjecture for H../H.






Chapter 7

Some Remarks on the Main
Conjecture for F/H

7.1 Relation to the Main Conjecture for H,,/H

In this section, we briefly discuss the main conjecture for £/H and its relation to the
main conjecture for H,,/H which we proved in Chapter 6. Let M (F,,) be the maximal
abelian p-extension of F,, which is unramified outside the primes above p, and put
X(Fy) =Gal(M(Fy)/Fx)-
Let
Yoo = Hom (Sely (E/Fxo)®, K,/ Oy ) ,

the Pontryagin dual of Sely~(E/F,)>. We first discuss its relation to the Selmer group
of ¥ over H,,. We note that Theorem 3.3.1 holds with H with H, and F with F,, for
all n. Thus we can take the inductive limit to obtain a surjection from SelgoTo)(E /Hoo)
to Selyw (E/Fy)® given by the restriction map, where 7 is the set of places of Hy,
lying above p and the primes of bad reduction for E. This is an isomorphism if p > 2,
and the kernel of this map is the inductive limit of H'(A, Ey2) if p = 2, which is a
cyclic group of order 2.

We can further describe Y, in terms of X (F.) as follows. Recall that § =
Gal(Fu/H), which is isomorphic to A X T', and x, : $ — O, is the isomorphism giving
the action of $) on Ep~. Let p = xy|a, so p has order p — 1 or 2, according as p > 2 or
p=2. If p > 2, the action of A on any Z,[A]-module A is semisimple, and we have

the decomposition
A= @i mod pflA(pZ)a
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where A®) = {a € A:0-a=pi(c)aforall ¢ € A}. If p = 2, no such decomposition
exists. In this case, we write 0 for the non-trivial element of A, so that § - z = —z for
all z € Fye.

Lemma 7.1.1. (i) If p> 2, Sely=(E/Fy)® = Hom(X (F)?, Eps).
(i) If p =2, Sely (E/Fy)® = Hom(X (Fs) /(0 + 1) X (Fi), Eps ).

Proof. Part (i) follows immediately from semisimplicity, and the fact that A acts on
E,~ via the character p. For (ii), note that given f € Hom(X (F), Ep), we have

(0f)(x) = 0f (07 x) = —f(07"2) = —f(0z).

Hence, we have 0f = f if and only if f((d + 1)x) =0 for all z € X(F), and so (i)
follows. ]

Let
TP(‘E)(_l) = H0m0p<Ep°°a KP/OP)7

a free Op-module of rank 1 on which §) acts via x, . Given any O,-module V' endowed

with an action of £, we define
V(=1) =V &0, Ty(E)Y,

endowed with the diagonal action of §), i.e. o(v®t) = o(v) ® o(t) for any o € 7G,
veVandteT,(E)Y,

In view of the above lemma, we obtain

Proposition 7.1.2. The Pontryagin dual Ya, of Sely<(E/Fy)® is isomorphic as
D-module to X (Fs) P (=1) if p > 2, and to (X (Fs)/(6 + 1) X (Fx))(—1) if p = 2.

In particular, we have shown that Y, is a finitely generated torsion A(I")-module

because X (F,,) is, by the p-adic Leopoldt conjecture for abelian extensions of K, and

char (X(FOO)(”)) if p>2

char(¥oo) = {char(X(Foo)/((S FX(F) ifp=2.

Recall that & denotes the Galois group of F, over K, and & = 3 x I where we
identify ¥ with Gal(F/Ko) and I' with Gal(K ., /K). Let .#’ be the extension of .%
generated by the values of all characters x on ¥. We have ¢’ = .# if p > 2 because
p1#(X). If p > 2, given a finitely generated torsion A(®)-module M and x € ¥*, we
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write MY for eg(M®z,.#) where eg is the idempotent corresponding to 6. That is, M
is the largest submodule of M on which ¥ acts via 6. For any p, we let My denote the
largest quotient of M ®Zp #" on which ¥ acts through 6. If the p-torsion submodule is
finite, then My is pseudo-isomorphic to M? [8, I11.1.8]. In particular, we know that
this is true for p > 2, because the p-invariant of X (F,) is zero in this case, and thus
X (Fy) is a free Z,-module of finite rank (see [8, Corollary I11.2.12]). Let ¥, € A (&)
denotes the p-adic L-function attached to £/H constructed at the end of Section 4.2.

Now, let Y (F) = Gal(M (F)/FxxM(Hy)). Furthermore, since M (Hy) N Foo =
H, we can identify X (Hy,) with Gal(FooM (Hw)/Fw), and we have an exact sequence

0= Y(Fy) - X(Fy) = X(Hs) — 0. (7.1.1)

We will see in Lemma 7.1.8 that char(Y (F)) = char(Ys) for all p, assuming
X (F) has p-invariant equal to 0 and both X (F,,) and X (H) contain no non-zero
finite I'-submodules for p = 2 (automatic if p > 2).

Conjecture 7.1.3 (The Main Conjecture for Y (F)). For any character 0 on %,

char (Y (Fx))s) = (ugr)’,

where ug is as defined in Theorem 4.1.11.

The techniques used in Chapters 5 and 6 extend to apply for Y (F,,) without any
difficulty if p > 2. They can also be applied to the case p = 2 if we assume in addition
that we can prove the p-invariant of X (Fy,) is zero.

Finally, the main conjecture for £/H says:

Conjecture 7.1.4 (The Main Conjecture for E/H). For any character 6 on X,
char (X (Fio)o) = (¥,)",

where W, is defined at the end of section 4.2.

Clearly, we have char(X (F)) = char(X(Hs))char(Y(Fx)). If p > 2, the main
conjecture for X (F,) easily follows from the main conjectures for X (H,) and Y (F),
using the fact that (#(X),p) = 1. Hence, in the remainder of this section, we study
more closely the relation between char(X (F)) and char(X(Hs)) when p = 2.

Lemma 7.1.5. Let p = 2. Then X(Fx)a = Gal(L/Fy), where L is the maximal

abelian extension of Hy, contained in M(Fy).
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Proof. By definition, X (Fy)a = X(Fy)/(0 — 1)X(Fy) where § is the non-trivial
element of A. Note first that M (F)/Hw is a Galois extension. Indeed, 6(M (FL,))
is again an extension of F, since F, is Galois over H,, and it is clearly an abelian
2-extension over F,. Also the primes of M (F.) lying above the primes of H where £
has bad reduction ramify completely in F../H., so 6(M(Fy))/Fs is still unramified
M (F) as required. Now, Gal(F/H)

is generated by d so every element of Gal(M (F,)/Hs) can be expressed in the form
vix for © € X(Fy), s a lifting of § in Ga M(F.)/Hs) and a € {0,1}. For any
r € X(Fy), we have (6 — 1) = y527v; "o~ ! = [v5, 7], a commutator. We claim that
(0 — 1) X (F) is the full commutator subgroup of Gal(M(Fy)/Hs). Indeed, for any

two elements v5'xy, v§*xy € Gal(M(Fy)/Hy), a simple computation shows that we

outside the primes above p, hence 6(M (FL,)) =

have
Vst T, 95 we] = 072 (0" — 1)wg — 6™ (6" — 1)y,

which clearly lies inside (0 — 1)X(F,) for any ay,as € {0,1} and z1,29 € X(F,).

Hence if we let L be the maximal abelian extension of H,, contained in M (Fy,), we

have
Gal(M(Fy)/L) = (6 — 1) X (Fx),
and so
X(Fy)/(0 —1)X(Fy) = Gal(L/F,)
as claimed. =

Proposition 7.1.6. Let p =2. If X(Hy) is a finitely generated Zs-module, then so
18 X<Foo)A~

Proof. By Lemma 7.1.5,
X(Foo)/(0 = 1) X(Fx) = Gal(L/F),

where L denotes the maximal abelian extension of H,, contained in M (F,,). Recall

that A = Gal(F/Hx) has order 2 and we have an exact sequence
0 — Gal(L/FouM(Hy)) — Gal(L/Hy) — X(Hy) — 0,

so it remains to show that Gal(L/F, M (H)) is a finitely generated Zs-module. We
will do this by showing that Gal(L/M(H,)) is finite, so that Gal(L/FM (H)) is
also. Since L is contained in M (Fy), the only primes which ramify in L/H., are

the primes of H,, lying above p and the primes in By, where B,, denotes the set of
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primes in H,, lying above the primes of H where E has bad reduction. But M (H,)
is the maximal abelian extension of H.,, unramified outside the primes above p, so
Gal(L/M(Hs)) is generated by the inertia subgroups I, of the primes v in B, inside
Gal(L/H). Since L/F is unramified outside p, I, injects into the inertia subgroup
of v in Gal(F/Hs) for any v in B.,, which is clearly finite. O

[t then follows by Nakayama’s Lemma that X (Fl) is a finitely generated Zs-module.
Given any A-module A, let AT denote the set of all a € A such that ¢ - a = a, and
similarly let A~ denote the set of all a € A such that § - a = —a.

Corollary 7.1.7. Let p = 2. Then
char (X(Fooﬁ) = char (X (Hw)) -

Proof. By Proposition 7.1.6, char (Gal(L/H)) = char (X (Hx)), so char (X (Fx)a) =

char (X (H)). The result now follows on noting that we have an exact sequence
0= X(Foo)t = X(Fa) 255 X(Fiao) = X(Fa) /(6 — 1) X (Fao) — 0,

where the middle map is multiplication by § — 1. n

Lemma 7.1.8. char(Y(F)) = char(Yy) for all p, assuming for p = 2 that X (Fy)
has p-invariant equal to 0 and both X (F) and X (Hs) contain no non-zero finite

['-submodules (this is automatic if p > 2).

Proof. We will prove this for p = 2, and the case p > 2 is similar. Since the p-invariant
is zero, the 2-torsion X (Ho )2 of X (H) is zero, and X (Hy,)/2X (Hy,) is finite. Further,
(14+90)X(Hw) = 2X(Hw), thus it follows from the snake lemma and the fact that
(X(Hy))2 = 0 that

Y(Fo) = X(Fx) ™.

But X(Fy)/2X(Fy) and Y (Fy)/2Y (F) are also finite because the p-invariant
of X(Fy) is zero, and (X(Fx))s = (Y(Fx))2 = 0, so 2X(Fy) C X(Fo)t @
X (Fx)~ and char(X (Fy)) = char(X (Fy)")char(X (Fy)™). Similarly, char(Y (F)) =
char(Y (Fy)*1)char(Y(Fx) ™), and thus in view of the exact sequence (7.1.1), we obtain

char(X (F)") = char(X (Hy))char(Y (Fy)").
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It follows from Corollary 7.1.7 and the fact that X (F,) has no non-zero finite submodule

that Y (F, )" = 0. Now, the snake lemma also gives an exact sequence
0 =Y (Fx)/(0+1)Y(Fx) > X(Fx)/(0 + 1) X (Fs) = X(Hx)/2X(Hs) — 0.
But we have (1+0)Y (F) CY(F)®™ =0 and X(H)/2X (Hs) is finite, so
char(Y(Fy)) = char(X(F)/(1 + §) X (Fx))-

The lemma now follows from Proposition 7.1.2. O

7.2 Relation to the p-part of the Birch—Swinnerton-

Dyer Conjecture

In this short section, let us assume that the main conjecture for Y'(Fy,) holds. Let fy(T)
denote a generator of the characteristic ideal of X (Fl)® or (X(Fy)/(6 + 1) X (Fy))
according as p > 2 or p = 2, as a A(I')-module. Then a generator of the characteristic
ideal of Y, is given by fy.. (xp(7)(1+7) — 1), where ~ is the fixed topological generator
of I". We have the Euler characteristic formula ([5, A.2]):

Lemma 7.2.1. (Y, )r is finite if and only if fy. (xp(7)—1) # 0. If fyv.. (xp(7)—1) # 0,
then YL is also finite, and

# (Yoo)r)
#(Y%)

Recalling that (Yoo )r is dual to Sely (E/F.)® = Selio (E/F)*, we conclude that
oo (Xp(7) — 1) # 0 if and only if E(H) and III(E/H)(p) are finite.

Let us assume that Y., has no non-zero finite I'-submodule. This is automatic

| froe p(7) = D[t =

for p > 2, because Greenberg’s theorem gives that X (F,) has no non-zero finite
[-submodule. If p =2, X(F) still has no non-zero finite I-submodule, but it could
well be that X (F)/(0+1)X (F) does. Finally, suppose L(E];;/H, 1) # 0. Under these
hypotheses, we have | fy. (xp(7)(1+T) —1)[;" = # ((Yoo)r) because Y must be trivial.
When combined with Theorem 3.3.4 which relates Seli (E/F)* to #(IL(E/H)(p)
and Theorem 4.1.11 which relates ug to L(@I;/H, 1), we obtain the p-part of the

Birch-Swinnerton-Dyer conjecture for £/H.



A Some Proofs from Chapter 2

Here we prove some results from Chapter 2. We follow the notation in Chapter 2, so
that K = Q(v/—3), E = X,(27) and 1 is the Grossencharacter of E over K.

Lemma A.1. A rational prime p is a special split prime if and only if it splits in K,
and ¥(p) = 1 mod 4 for both of the primes p of K above p. Moreover, L = K (p,,/2).

Proof. Put F = K(FE[4]), and let G denote the Galois group of F' over K. Since F has

good reduction at 2, the action of G on E[4] defines an isomorphism
j: G Auto, (E[4]) = (O /40k)™ .

In particular, it follows that [F' : K] = 12, since 2 is inert in K. Let 7 denote the
unique element of G such that j(7) = —1 mod 40k. Then the field L = K(x(E[4]))
is the fixed field of 7, so that [L : K] = 6. Clearly, K(E[2]) = K(3/2). Also by
Weil pairing, we have pu, C F. We claim that L = K(u,,v2). We know that
E[2] = {0, (@, 0), (@w, 0), (@uﬂ, 0)}. Using the doubling formula, we get that
the z-coordinate of a point in E[4]\ E[2] satisfies

et +2-3% V2.3
43 =33 2

Let x = %z, then the equation becomes
24P 48+ 4= (2 —-22-2)2=0,

which has roots z = 1 + /3 each with multiplicity 2. Hence the z-coordinate of a
point in F[4]\E[2] is x = w € K(py,V/2), as required. Now let p be any
prime which splits in K, and let p be one of the prime ideals of K above p. Then the
Frobenius automorphism of K acts on F[4] by multiplication by (p), thanks to the
main theorem of complex multiplication. It follows that p splits completely in I if and

only if ¢)(p) = 1 mod 4, and p splits completely in L if and only if ¢o(p) = +1 mod 4. [
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Proposition A.2. Over the field

—_— ( 27+3\/—3)
. SV

there exists a change of variables ¥ = u?>X +r, y = 2uY with u,r € F which gives the
following equation for E
— 1 — 9 —
9+ 3)X2+ 343V 3X+ +v-=3

Y2IX3
Ty g 3

. . _ Ja _ 2743V/=3 _ 3/1-3y/=3
which has good reduction at 3. Here, u = Y& where o = %ﬁ, B =y —3— and

132
;— _33/-13-3/=3
-2 2 :

Proof. Note that for our curve, the smallest split prime is 7. So one should try to
find an explicit equation for the curve E over the field F' = K(E[2 + v/—3]) having
good reduction at 3 (see [7, Theorem 2]). The conductor of F over K is (3(2+ v/=3)),
since the conductor of the Grossencharacter of E/K is 30g. Furthermore, F'/K is an
abelian extension of degree 6 and the group pug C K. Thus, by Kummer theory, we
must have F' = K(¥a), for some o € K*. The only primes of K which can ramify
in F' are those dividing 7, 3 and w, so the Kummer generator o must be of the form
(24 v=3)% (w—1)" (—w)¢ where a,b,c € {0,...,5}. Recall from the theory of
complex multiplication that for a prime ideal p of K prime to 3, we have Vg x(p) = 7
where 7 is the unique generator of p which is 1 mod 30g. Now, suppose in addition
that p is prime to 7. Then F/K is unramified at p so

Frob, = Y5k (p).

If we pick a prime p = (7) such that 7 = 1 mod 30k and 7 = 1 mod (2 + /—3)Ok,
then we have
(P)% = 4 (p)(P) = n(P) = P

for P € E[24 /3], since 7 = 1 mod (2+ +/—3)Ok. So g /k(p) is the identity in the
extension K (E[2 + +/—3])/K. On the other hand, K(E[2 + /—3]) = K(¥/a) and we
know that

(Vo)™ = (V)" ® mod p,

so for Frob, to be the identity, it is necessary that

(Ya)® = Ya mod p.
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We eliminate the possibilities for (a, b, ¢) by trying out some examples.

Example A.3. Let 7 = 13+ 6y/—3 and p = (7). Then 7 = 1 mod 30k, 7 =
1 mod (2 + v/=3)Ok and N(p) = 277. So (Ja)'" = ({/a)¥" = ({a)a’®. Thus, for
Frob, to be the identity, we need

—=\ 46b —=\ 46¢
o (2 + v —3)46a <_3+2_3> (1_2_3> = 1 mod p.

But 13 + 64/—3 = 0 mod p so we can replace v/—3 with %3 and now that we have

rational numbers, we can replace mod p with mod N(p). Hence the equation becomes

(2 — 13) 6 R = 1 mod 277.
6 2 2

Also, 671 = —46 mod 277 and 27! = 139 mod 277, so

(2446 - 13)" (139(—3 + 46 - 13)"% (139(1 — 46 - 13))**° = 1 mod 277,

that is,
117% - 276" - 160° = 1 mod 277. (A1)

Example A.4. Let 7 = 1+ L\F 32+ V-3) = %. Then 7 = 1 mod 30k,

7 =1mod (2 + v/—3)Ok and N(p) = 67. So (V)P = (J/a)" = (Ja)a'l. Hence
for Frob, to be the identity, we need

—= 110 —=\ 1le
atl = (2 + —3)11& <_3+2_3> (1_2_3> =1 mod p.

But we now have /=3 = 3 mod p, 97! = 15 mod 67 and 27! = 34 mod 67 so the
equation becomes

(2+15-5)"1(34(—3 + 15 -5))"(34(1 — 15 - 5))'** = 1 mod 67
that is,
29 - 37" - 38° = 1 mod 67. (A.2)

Comparing the solutions to (A.1) and (A.2) in Examples A.3 and A.4, we find
that the common solutions are (a, b, c) = (0,0,0), (1, 3,2),(2,0,4), (3,3,0), (4,0, 2) and

(5, 3,4). However, we know that F'/ K is a degree 6 extension, so the only possibilities are
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(a,b,¢) = (1,3,2) and (5,3,4). But wfiﬁ )><°(Jw 115;(“:)@4 = Y2+ V3)(w — 13 (~w)?,
so the corresponding fields are the same. Hence

K(E2+v=3) = K ({/(2 -V B)(w— 1)3(—@2)

({7

Let E:y? =423 — 3% and x = v?>X +r, y = v®Y. Then in terms of X,Y, we have
uSY? = 45 X3 + 120" r X2 + 1202 X + 4% — 33

and ords (\6/27—%3\/—73) = i, so ords <\/ 27+3 > = % We also have J/a = /2 + /-3
—34y/3 <1 F) € F,s0 8= \/(2—1—\/—_3) ‘ <717\2/j3)2 = (135 € F so let

u= % Then ords(u) = 3 and ord;(u) = —55. If we divide the equation through by

u%, one can easily check that the discriminant of this curve is u~'2disc(E), so it is a

3-adic unit and is integral at 7. To make sure the coefficients of

12 1202 43— 33
VP =Xt X X
u u u

are integral at 3, it is sufficient that ords(4r% — 3%) > ords(u®) = 2. So we need r = 3s
for some s € F and ord(4r? — 3%) = ord;(3%(4s® — 1)) > 9, so ords(4s* — 1) > 2. Now,
let

s—-2_ —1j 2+ V/=3) (H—_3>4

2
C14/-13-3V=3
= o

Then
, 13+ 3y/=3 9+3v=3
43— 1= 2TV TE g T VTS
4 4
so ords(4s® — 1) = %, as required. Now, r = 3s = 32 and u = \g;, SO

186° 276" 2752(5° +2)

V?=4X® -
« o? 203
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So substituting the values for o and 3, we obtain an equation with coefficients in

K:
134+43/=3_, 2++/-3
V2 =4X+(9+V-3)X*+ 3+; S x + +2 5

Corollary A.5. For any character x : (Z/3Z)" — C*, we have
1
ordg(q)gg) >n+ 2

Proof. We will assume for simplicity that D is a prime power since we only use this
Corollary in the case n = 1. The proof for the case n > 1 is similar. Pick 5 € Ok
be such that (1 —w)f = 1 mod D. Let C be a set of elements of Ok such that
c mod D runs over (O /DOg)™ precisely once and C can be written as a union of sets

C= U wH U w(l-wH U w'BH for some set H. This is possible since

i€{0,1,2} ie{0,1,2} i€{0,1,2}
3 and D are coprime and 9 divides the order of 1 —w in (Ox/DOk)™ by assumption.
We will follow the notation in the proof of Lemma 2.3.11. Given ¢ € VX, let P be the
point on E : y? = 423 — 33 given by z(P) = ¢ (%, E) y(P) = ¢ (%, L). Similarly let
Q and R be the points given by (z(Q),y(Q)) = (p ((1_;)09, E) e (%,E)) and
(z(R),y(R)) = (p (%,L’) e (%, E)) respectively, and define

(e, D) = g

We can write VX as a union of sets

v = | WH | «(-wH |J «BH

i€{0,1,2} i€{0,1,2} i€{0,1,2}

for some set H, since (%)3 = (%)3 = 1. We wish to find ords < > M c, D))
ceV )

Recall that E has complex multiplication by w via w(z,y) = (wz,y), so ¢’ (“EQ, E) =

o4 (CQ E). Moreover, L = wL so ¢ (“lCQ,E) =p (wiCQ wiA) for i =0,1,2 and g is

D> D D
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homogeneous of degree —2 so

-y (5.0) 0=y (5.0) 9= ($.0) 9-0(§.0
fita =0 (.8) "= (8.0) Tmen(82) 50 (8.0
_3 3%y(P)
27 — z(P)?

Furthermore, using the addition formula

o0 =t £ e £+ (L2 8 =P 1)

and noting p(z, £) is even and ¢'(z, £) is odd, we get
(1 —w)cf2 cQ —wcf) 1 (2 L)— ¢ (72 1) ’
(19 ) o[ (0w
b 2 R A L vl e ey
2
_ y(P)
(14 w)x(P) + ((1—w)x(P)> :

Also, f —wf =1 mod D, so
_ B py g (=wB N2
p(C(Z’L):_p(ﬂCQ £> ( WBCQ7£>+1<§)(5?7 ) p(inDCQv ))
D D 4 p(??‘C)_p( D 7£>

= —(14+w)z(R) + (O—Z/c(u])%a):(R)> ‘

Therefore,
9_— p/ (wZDcQ7£) 9_ p/ (Wi(IBW)CQ,£> 9_ p/ (wigcg’ﬁ)
. 7D ' i i )
ce%;w ‘ cezf:ue{ozw} 3-9 (5% L) e (=452, ) T3, (<5, c)

and this is equal to

5 3 —3%(P) 3’ —3%y(Q) N 3° — 3%y(R)
et 27— x(P)? ) \?)’ w2\
et 27 — (wa(P) + (28 5) ) 27 — (W(P) —w (2%%) )
(A.3)
To determine ords (%), recall from Proposition A.2 that the change of

variables = u?X + r, y = 2u®Y where r = —%{7% gives us a model of
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having good reduction at 3. In terms of X and Y, we have

yP) _ wY(P)

(1—w)z(P) (1—w)(u*X(P)+r)

Now, P is a torsion of point of E of order prime to 3 and E has good reduction at 3
so ordz(X (P)),ords(Y(P)) = 0. Also ords(u) = 3, and ords(r) =1 so

_uh) ) 3,
ord3<<1_w)$(P)> = 1 Hords(Y(P)).

If ords3(Y(P)) > 0, P reduces to a 2-torsion after reduction modulo 3, but P is a
D-torsion and reduction modulo 3 is injective, hence we must have ords(Y (P)) = 0.
Similarly ords (%) = %. We also showed in the proof of Corollary 2.3.7 that
ordz(27 — x(P)3) = 4, so when we add the three terms in equation (A.3), the product

of the denominators has 3-adic valuation 12. The numerator is of the form
3\2 (26 3 ) . 27
(27 —z(P) ) (3 -3 (y(P)+y(Q) + y(R))) + ( terms of 3-adic valuation > 5 )

and ords(y(P)) = ¥, so

21 )
ords | > . (c,D) ><8+>—12:.
ceVXx) 4 4

On the other hand, by the proof of Lemma 2.3.11, we have 9 | #(V()). Thus,

ords ( Z b (Cg + g,ﬁ)) > min (ord3 (; Z M (c, D)) ,ordg(#(V(X))))

ceVXx) ceV )

=

=] Ot

as required. O
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B Numerical Examples

The following examples are computed using Magma.

Quadratic Twists

Let E(D?) : y? = 423 — 33D3, w = ¢’3'. In what follows, = denotes a prime of K
congruent to 1 modulo 12. In particular, D = N7 is a special split prime defined in

Definition 2.2.3. We order 7 = a + bw, a,b € Z ,by |a| and then by |b|.

T=a+bw D=Nrg LEB(E(D?)) 1)

13 + 12w 157 12=2%.3
13 + 24w 433 48 =24.3
—23 — 12w 397 0

—23 — 36w 997 0

25 + 24w 601 48 =2%.3
25 + 36w 1021 12=2%2.3
37 + 60w 2749 12=2%2.3
37 + 72w 3889 0

37 + 12w 1069 12=2%2.3
47 4+ 12w 1789 12=2%2.3
47 + 24w 1657 12=2%.3
49 + 24w 1801 12=2%2.3
49 + 36w 1933 48 =24.3
49 + 60w 3061 12=2%.3
49 + 72w 4057 48 =24.3
—59 — 12w 2917 0

—59 — 48w 2953 12=2%2.3

—59 — 60w 3541 12=2%.3
—59 — 84w 5581 48 =21.3
61 + 24w 2833 108 =22 - 33
61 + 72w 4513 108 =22 - 33
61 + 84w 2653 12=2%.3
—71 — 132w 13093 12=22.3
73 + 96w 7537 108 =22 - 33
734 108w 9109 48 =243
—83 — 120w 11329 59 =2*.3
85+ 156w 18301 0




122

T=a+bw D=Nr LE®(E(D?), 1)

85 + 168w 21169 192 =126.3
—95 — 156w 18541 0

—71 —T2w 5113 0

—71 — 84w 6133 108 = 22 - 33
73 4+ 12w 4597 0

73 4 24w 4153 12 =2%.
73 + 48w 4129 12=22.
73 + 60w 4549 48 = 24.
83 + 12w 6037 12 =2%.
—83 — 36w 2197 48 = 24 .
—83 — 48w 5209 12=22.
85 + 48w 0449 192 =126.3
—95 — 24w 7321 0

—95 — T2w 7369 0

—95 — 84w 8101 0

—95 — 108w 10429 12=2%.3
97 + 36w 7213 12=2%.3
97 + 48w 7057 108 =22 - 33
97 + 84w 8317 12 =2%.
97 + 108w 10597 12=22.
97 4+ 132w 14029 12 =2%.
—107 — 60w 8629 48 =21 .
—107 — 72w 8929 48 = 2% .
107 4+ 120w 13009 48 = 24
109 + 60w 8941 12 =2%.
109 + 84w 9781 48 =21 .
109 + 144w 16921 0

109 4+ 156w 19213 108 = 2%. 33
—119 — 96w 11953 0

—119 — 108w 12973 48 =243
—119 — 120w 14281 48 =21.3
—119 — 132w 15877 108 =22 . 33
—119 — 144w 17761 108 = 2%. 33
121 + 72w 11113 12=2%.3
121 + 96w 12241 0

W W W W w w

W W W W W wWw w w
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T=a+bw D=Nr LE®(E(D?)) 1)
121 + 156w 20101 48 =2*.3
121 +180w 25261 108 =22.3°
—131 — 132w 17293 12=22.3
—131 — 156w 21061  12=22.3
—131 — 180w 25981 108 =22.33
133 + 144w 19273 48 =2*.3
133 + 156w 21277 0
—143 — 144w 20593 48 =2*.3
—143 — 180w 27109 12=22-3
145+ 132w 19309 108 =22 .33
145 + 156w 22741 0

145 4+ 168w 24889 48 =2%.3
—155 — 144w 22441  12=22.3
—155 — 156w 24181 108 =22.33
—155 — 168w 26209  12=22-3
157 + 144w 22777  300=22-3-.5
157 + 168w 26497 0

157 + 180w 28789  12=22.3
—167 — 168w 28057 300=2%2-3-5

The following is a small sample of D divisible by two relatively small (due to

computational complexity) distinct special split primes.

Cubic Twists

Let E(D?) 1y =423 - 3D3 w=¢

D L#8)(E(D3),1)
157-601 0

601-1021 0

157-1021 192 =2%.3
1571789 0

1021 - 1789 1200 = 2*- 3 - 52

2w
2

*. Let D be an odd, cube-free integer such that

D =1mod9 and D is a product of prime numbers congruent to 1 modulo 3. We first

list examples where D is a prime number, D = N7 and 7 is a prime of K. We order 7

by |a| and then by |b|.
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T=a+bw D=Nr LE®(E(D?),1)

1+ 9w
1+ 18w
1—27w
1+ 8lw
4+ 15w
7+ 12w
7+ 30w
7+ 39w
7+ 48w
13 + 6w
13 + 15w
13 + 24w
16 + 39w
16 + 57w
19 + 27w
19 + 54w
22 + 1w
25+ 21w
25 + 39w
28 4+ 9w
28 + 45w
31 + 6w
31 + 42w
34 + 3w
34+ 21w
34 4 57w
374+ 9w
37 + 4w
40 + 51w
43 + 30w
43 + 39w
43 + 48w
43 + 57w

73
307
757
6481
181
109
739
1297
2017
127
199
433
1153
2593
S77
2251
379
041
1171
613
1549
811
1423
1063
883
2467
1117
2287
2161
1459
1693
2089
2647

9=32

9 = 32

27 =3
27 =33
9=32

9 = 32

36 = 22 . 32
9=32
9=32

0

9 =32

0

9=32

36 = 2% . 32
9 =32

36 = 2% . 32
0

9=32

0

9 =32
9=32
9=32
9=32

0

0

36 = 2% . 32
9=32

9 =32

9 =32

0

9=32

0

0
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T =a -+ bw

D =Nr LE®(E(D?),1)

46 + 9w

49 + 6w

49 + 24w
49 4 33w
49 + 5lw
49 + 60w
92 4+ 21w
—53 + 27w
—53 — 135w
25 + 27w
95 + 36w
55 + Hdw
o8 + 1dw
98 + 33w
—80 — 27w
—80 — 8lw
82 — 8lw
82 + 135w
—107 + H4dw
—107 + 135w
109 — 81w
136 — 81w

1783
2143
1801
1873
2503
3061
2053
4969
13879
2269
2341
2971
2719
2539
4969
6481
19927
13879
20143
44119
27271
36073

9=32

9 =32

0

36 = 2% 32
9=32

9 = 32

9 =32

27 =3
9=32

0

36 = 22 . 32
36 = 2% 32
9=32

0

27 =33
27 =3
243 = 3°
9=32

27 =33
27 =33
27 =3
27 =33

We list some examples where D is divisible by at least two primes which are not

necessarily distinct. Again, D is an odd, cube-free integer such that D = 1 mod 9 and

D is a product of prime numbers congruent to 1 modulo 3.

D LE8)(E(D?),1)
192 9 = 32

37? 9 = 32

1632 9=3?

6312 9=32

7-211 27=33
7-2551 108 =22.33
7-1381 27 =33
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D L&) (E(D?),1)
7-3037 27 = 33

19 - 37 27 = 3°
37-163 27 = 33
7-13-19 0
7-13-19-37 0
7-13-31-61 0

109 - 307 27 = 33

192 - 163 27 = 33

19 - 1632 27 = 33
19-37-163 0
19%-37-163 81 =34

192 - 372 - 163 0

19 - 37 - 1632 81 =34

19 - 372 - 1632 0

192 - 37 - 1632 729 = 3¢
1923721632 2916 =22.34
7-139 0

79 - 139 0

72 . 372 27 = 33
19%.372 27 = 33

372 - 1632 108 =22 . 33
72.13%.192 81 =34
72.13%2.192.37% 972 =22.3°
1272 9 =32

1572 0

2292 0

3072 36 = 2% . 32
3972 144 = 24 . 32
6912 0

1272 - 3072 432 = 2% . 33
127 - 3072 54864 = 2133 . 127
1272 - 307 8289 = 3 - 307
127 - 307 0

1272 - 3972 27 = 33

3072 - 3972 2187 = 37
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