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Abstract

The conjecture of Birch and Swinnerton-Dyer is unquestionably one of the most
important open problems in number theory today. Let E be an elliptic curve defined
over an imaginary quadratic field K contained in C, and suppose that E has complex
multiplication by the ring of integers of K. Let us assume the complex L-series
L(E/K, s) of E over K does not vanish at s = 1. K. Rubin showed, using Iwasawa
theory, that the p-part of Birch and Swinnerton-Dyer conjecture holds for E for all
prime numbers p which do not divide the order of the group of roots of unity in K. In
this thesis, we discuss extensions of this result.

In Chapter 2, we study infinite families of quadratic and cubic twists of the elliptic
curve A = X0(27), so that they have complex multiplication by the ring of integers of
Q(
√
−3). For the family of quadratic twists, we establish a lower bound for the 2-adic

valuation of the algebraic part of the complex L-series at s = 1, and, for the family of
cubic twists, we establish a lower bound for the 3-adic valuation of the algebraic part
of the same L-value. We show that our lower bounds are precisely those predicted by
Birch and Swinnerton-Dyer.

In the remaining chapters, we let K = Q(√−q), where q is any prime number
congruent to 7 modulo 8. Denote by H the Hilbert class field of K. B. Gross proved
the existence of an elliptic curve A(q) defined over H with complex multiplication
by the ring of integers of K and minimal discriminant −q3. We consider twists E
of A(q) by quadratic extensions of K. In the case q = 7, we have A(q) = X0(49),
and Gonzalez-Aviles and Rubin proved, again using Iwasawa theory, that if L(E/Q, 1)
is nonzero then the full Birch–Swinnerton-Dyer conjecture holds for E. Suppose p
is a prime number which splits in K, say p = pp∗, and E has good reduction at all
primes of H above p. Let H∞ = HK∞, where K∞ is the unique Zp-extension of K
unramified outside p. We establish in this thesis the main conjecture for the extension
H∞/H. Furthermore, we provide the necessary ingredients to state and prove the main
conjecture for E/H and p, and discuss its relation to the main conjecture for H∞/H

and the p-part of the Birch–Swinnerton-Dyer conjecture for E/H.
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Chapter 1

Introduction

Let E be an elliptic curve defined over Q, and let L(E, s) denote its complex L-series.
We assume that L(E, 1) ̸= 0. Then, by a well-known theorem of Kolyvagin and
Gross–Zagier [15, 12], both E(Q) and the Tate–Shafarevich group X(E) of E over Q
are finite. Define

L(alg) (E, 1) = L (E, 1)
c∞Ω ,

where c∞ denotes the number of connected real components of E(R), and Ω is the
least positive real period of the Néron differential of any global Weierstrass minimal
equation for E. It is well-known that L(alg) (E, 1) is a rational number. For a prime q
of bad reduction for E, define

cq = [E(Qq) : E0(Qq)],

where E0(Qq) denotes the subgroup of E(Qq) consisting of all points with non-singular
reduction modulo q. The Birch–Swinnerton-Dyer conjecture for E asserts that:

Conjecture 1.0.1.

L(alg) (E, 1) =
#(X(E)) ∏

q bad
cq

#(E(Q))2 . (1.0.1)

Since both sides of (1.0.1) are rational numbers, Conjecture 1.0.1 clearly implies
that:

Conjecture 1.0.2. For each prime number p, we have

ordp
(
L(alg) (E, 1)

)
= ordp

(
# (X(E)(p))
# (E(Q)(p))2

)
+ ordp

 ∏
q bad

cq

 . (1.0.2)



2 Introduction

When E has complex multiplication, Rubin establishes (1.0.2) in [17, Theorem 11.1]
for all primes p which do not divide the order w of the group of roots of unity in the
field of complex multiplication. However, these methods at present seem very difficult
to apply for primes p which divide w, except when E has potential ordinary reduction
at such a prime p. The most interesting case in which to make progress is when E

runs over the family of twists of some fixed curve A. In Chapters 3–7, we study infinite
families of quadratic twists of certain elliptic curves with complex multiplication which
are no longer defined over Q, using methods of Iwasawa theory.

Chapter 2 is independent of the rest of the chapters, but we prove results of a
similar nature using techniques which are more elementary. We study the quadratic
and cubic twists of the curve

E = X0(27) : Y 2 + Y = X3 − 7 (1.0.3)

which has conductor 27 and admits complex multiplication by the full ring of integers
OK = Z[ω], where ω = −1+

√
−3

2 , of the field K = Q(
√
−3). The associated classical

Weierstrass equation is
E : y2 = 4x3 − 33,

which we obtain by the change of variables

x = X

y = 2Y + 1.

Note that c∞ = 1 for E, so that L(alg) (E, 1) = L(E,1)
Ω . It is easily shown that

L(alg) (E, 1) = 1
3 . On the other hand, classical descent theory proves that E(Q) =

{O, (3,±32)} ∼= Z/3Z and X(E)(2) = X(E)(3) = 0. Combining this with [17,
Theorem 11.1], we conclude that Conjecture 1.0.1 is valid for E.

Given an integer λ > 1, let E(λ) denote the elliptic curve

E(λ) : y2 = 4x3 − 33λ.

First, we consider the case when λ = D3, for a square-free positive integer D, so
that E(D3) is the twist of E by the quadratic extension Q(

√
D)/Q. We define a

rational prime number p to be a special split prime for E if it splits completely in
the field K(x(E[4])), the field obtained by adjoining to K the x-coordinates of all
non-zero points in E[4], the group of 4-division points on E. In fact, we have that
K(x(E[4])) = K(µ4,

3
√

2). Moreover, the theory of complex multiplication provides the
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following alternative description of the set of special split primes. Let ψ denote the
Grössencharacter of E over K. Then a prime p is special split if and only if it splits in
K, and ψ(p) ≡ ±1 mod 4 for both of the primes p of K above p (see Lemma A.1 of
Appendix A). In Section 2.2, we prove:

Theorem 1.0.3. Let D > 1 be an integer which is a square-free product of special split
primes. Then

ord2
(
L(alg)

(
E(D3), 1

))
> 2k(D),

where k(D) is the number of prime factors of D.

This bound is sharp, as we will see in Remark 2.2.15. Some numerical examples
are listed in Appendix B. We show in Section 2.1, using Tate’s algorithm, that

ord2


∏

q bad
cq

#(E(D3)(Q))2

 = 2k(D).

Hence the 2-part of the Birch–Swinnerton-Dyer conjecture predicts that if L(E(D3), 1) ̸= 0,
then

ord2
(
L(alg)(E(D3), 1)

)
= 2k(D) + ord2

(
#X(E(D3))

)
.

In particular, it predicts that equality occurs in the lower bound of Theorem 2.2.14 if
and only if ord2 (#X (E(D3))) = 0.

Next consider the case when λ = D2 for a cube-free positive integer D, so that
E(D2) is a cubic twist of E. We say a prime number p is cubic-special if it splits
completely in the field K(E[27]), but does not split completely in the strictly larger
field K(E[27])((1− ω)1/9), where ω denotes a non-trivial cube root of unity. We then
prove in Section 2.3:-

Theorem 1.0.4. Let D > 1 be an integer which is a cube-free product of cubic-special
primes. Then

ord3
(
L(alg)

(
E(D2), 1

))
> k(D) + 1,

where k(D) is the number of distinct prime factors of D.

Numerical examples show that this lower bound is sometimes sharp. In fact, the
Birch–Swinnerton-Dyer conjecture predicts that the lower bound of this theorem holds
for all odd cube free positive integers D with D ≡ 1 mod 9 whose prime factors are
congruent to 1 modulo 3. Indeed, using Tate’s algorithm, it can be shown (see Section
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2.1) that, for all such D, we have

ord3


∏

q bad
cq

#(E(D2)(Q))2

 = k(D) + 1.

Hence the 3-part of the Birch–Swinnerton-Dyer conjecture predicts that if L(E(D2), 1) ̸= 0,
we have

ord3
(
L(alg)(E(D2), 1)

)
= k(D) + 1 + ord3

(
#X(E(D2))

)
.

In particular, it predicts that equality is attained in the theorem above if and only if
ord3 (#X (E(D2))) = 0. We will prove these theorems by first expressing the value of
the complex L-series as a sum of Eisenstein series, and then combining an averaging
argument over quadratic or cubic twists with an induction on the number of distinct
primes divisors. In the case of quadratic twists, this method is essentially due to Zhao
[24, 25] who established similar results for the congruent number curves with respect
to the prime p = 2. In Section 2.3, we will generalise his ideas in order to apply to the
cubic twists of E with respect to the prime p = 3.

In Chapters 3–7, we let K = Q(√−q), where q is a prime congruent to 7 modulo 8.
Then the discriminant of K is equal to −q, so the class number h of K is odd by genus
theory. We fix an embedding of K into C. Let O denote the ring of integers of K, and
let H = K(j(O)) be the Hilbert class of K where j(O) denotes the complex modular
invariant of the curve C/O. In fact, j(O) is a real number, so the field J = Q(j(O)) has
index 2 in H and is embedded in R. In [13], Gross proved the existence of an elliptic
curve A(q) defined over J with complex multiplication by O and minimal discriminant
−q3. In the case q = 7,

A(7) = X0(49) : y2 + xy = x3 − x2 − 2x− 1

is defined over Q because Q(
√
−7) has class number one. The following result was

proved by Gonzalez-Aviles and Rubin using Iwasawa theory.

Theorem 1.0.5. [Gonzalez-Aviles–Rubin] Let E be a quadratic twist of X0(49), so
that it has complex multiplication by the ring of integers of Q(

√
−7). If L(E, 1) ̸= 0,

then the full Birch–Swinnerton-Dyer conjecture is valid for E.

We discuss an extension of this theorem. Let E be any quadratic twist of A(q) by a
quadratic extension of the form H(

√
λ)/H of discriminant prime to 2q, λ ∈ K×. From

Chapter 3, p will denote a prime such that E has good reduction at all places of H
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above p, and p splits in K, say p = pp∗. In particular, p = 2 satisfies these conditions.
Let Fn = H(Epn), and F = F1 or F2, according as p > 2 or p = 2. Set

F∞ = H(Ep∞), H = Gal(F∞/H).

Let Op be the ring of integers of Kp = Qp. We have, via an argument which involves
relative Lubin–Tate groups, a canonical isomorphism χp : H→ O×

p given by the action
of H on Ep∞ , and

H = ∆× Γ,

where ∆ is cyclic of order p− 1 or 2 according as p > 2 or p = 2, and Γ is isomorphic
to Op.

In Chapter 3, we study the p∞-Selmer groups Selp∞(E/H) and Selp∞(E/F ) of E
over H and F respectively, and show how their orders are related to the order of
X(E/H)(p). We also introduce the Selmer group Sel(E/F∞) of E over F∞, which is
closely related to Iwasawa modules, as shown in more detail in Chapter 7. Then in
Chapter 4, we construct the p-adic L-functions attached to E/H, which will be needed
to formulate the main conjectures. Let ψE/H denote the Grössencharacter of E/H. We
show in Chapter 3 that

ψE/H = ϕK ◦ NH/K ,

where ϕK is a Grössencharacter of K of conductor g, say. Let I be the ring of integers
of the completion of the maximal unramified extension Kur

p of Kp. Then we show in
Section 4.1 that there exists a natural p-adic analogue Ωp(E/H) ∈ I × of the complex
period Ω∞(E/H), and

Theorem 1.0.6. There exists a unique I -valued measure µE on the Galois group G

of F∞ over K such that for all integers k > 1 with k ≡ 1 mod #(∆), we have

Ωp(E/H)−k
∫
G
χkpdµE = ((k − 1)!)h fkhΩ∞(E/H)−kL(ψkE/H , k)

∏
v|p

(
1−

ψkE/H(v)
Nv

)
,

where the product runs over the primes v of H which lie above p, and f is a fixed
generator of the principal ideal f = gh.

See Section 4.1 for a more detailed account of the notations used. The measure
µE will be used in Chapter 7 to state the main conjectures attached to E/H. In this
thesis, however, we shall concentrate on the proof the main conjecture for the extension
H∞/H, where H∞ = HK∞ and K∞ is the unique Zp-extension of K unramified outside
p.
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In order to state the main conjecture for H∞/H, let G = Gal(H∞/K) and assume
(p, h) = 1. Let Γ = Gal(K∞/K), G = Gal(H∞/K∞). We fix an identification

G = G× Γ

so that characters of G can naturally be considered as characters of G . Given a
I [[G ]]-module M and χ ∈ G∗ = Hom(G,C×

p ), write Mχ for the largest submodule of
M on which G acts via χ. Since p - [H : K] by assumption, we have

I [[G ]] = ⊕χeχI [[Γ]]

where eχ is the idempotent corresponding to χ, and any I [[G ]]-module breaks up into
the direct sum of its χ-components. Fix a topological generator of Γ, and identify
I [[Γ]] with the ring I [[T ]] of formal power series in the variable T with coefficients in
I via the map sending γ to 1 + T . We prove the following in Section 4.2.

Theorem 1.0.7. There exists a unique I -valued pseudo-measure νp on G such that
for all integers k > 1 with k ≡ 0 mod #(∆), we have

Ωp(E/H)−k
∫

G
χkpdνp = ((k − 1)!)h Ω∞(E/H)−kL(ψkE/H , k)

∏
v|p

(
1−

ψkE/H(v)
Nv

)
,

where the product runs over the primes v of H which lie above p. Furthermore, we have
νχp ∈ I [[T ]] if χ ∈ G∗ is non-trivial, and νχp ∈ I [[T ]]/T if χ is the trivial character.

Define ϕ = I(G )νp, where I(G ) denotes the augmentation ideal of I [[G ]], and let
ϕχ = (I(G )νp)χ ⊂ I [[T ]]. We will show in Lemma 4.4.2 that ϕ is independent of E.

If M is a finitely generated torsion I [[G ]]-module, we write char (M)χ for the
characteristic ideal of the I [[Γ]]-module Mχ given by the structure theory. Denote by
M(H∞) the maximal abelian p-extension of H∞ unramified outside the primes above
p, and write

X(H∞) = Gal(M(H∞)/H∞).

Then X(H∞) is a finitely generated torsion I [[G ]]-module, and

Theorem 1.0.8 (Main Conjecture for H∞/H). For every χ ∈ G∗, we have

char (X(H∞))χ = ϕχ

For every n > 0, define Hn = Fn ∩H∞. Write EHn for the group of global units
of Hn, and UHn for the group of semi-local units of Hn ⊗K Kp = ⊕P|pHn,P which are
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congruent to 1 modulo the primes above p. Let ĒHn be the closure of EHn ∩ UHn in
UHn in the p-adic topology, and define

ĒH∞ = lim←−ĒHn and UH∞ = lim←−UHn ,

where the inverse limits are taken with respect to the norm maps. Let A(Hn) denote
the p-primary part of the ideal class group of Hn, and write A(H∞) for the projective
limit of A(Hn) with respect to the norm maps. Let C̄H∞ be the group of elliptic
units defined in Section 4.3. Global class field theory provides an exact sequence of
Zp[[G ]]-modules

0→ ĒH∞/C̄H∞ → UH∞/C̄H∞ → X(H∞)→ A(H∞)→ 0. (1.0.4)

We prove in Chapter 4 that

char
(
UH∞/C̄H∞

)χ
= ϕχ

for every χ ∈ G∗. In Chapter 5, we construct an Euler system of the elliptic units
C̄H∞ , and use a variant of Čebotarev’s theorem and induction to establish a divisibility
relation between the characteristic ideal of

(
ĒH∞/C̄H∞

)χ
and that of A(H∞)χ in Zp[[Γ]].

Since the characteristic ideals of a Γ-module behave well under extension of scalars,
this implies the following divisibility relation in I [[Γ]]:

Theorem 1.0.9. For some integer k > 0,

char(X(H∞))χ | πkechar
(
UH∞/C̄H∞

)χ
where π is a uniformiser of I , and e = 0 or 1 according as p > 2 or p = 2.

In Chapter 6, we finish the proof of the main conjecture by showing that X(H∞)
and UH∞/C̄H∞ have the same Iwasawa invariants. We first follow the paper of Coates
and Wiles [6] to compute the Iwasawa invariants of X(H∞), and then compute the
Iwasawa invariants of UH∞/C̄H∞ using the analytic class number formula. In Chapter
7, we briefly discuss the main conjectures attached to E/H, how they relate to the
main conjecture for H∞/H and the p-part of the Birch–Swinnerton-Dyer conjecture.

Finally, all numerical examples in this paper are computed using the computer
package Magma.





Chapter 2

On the p-part of the
Birch–Swinnerton-Dyer conjecture
for elliptic curves with complex
multiplication by the ring of
integers of Q(

√
−3)

2.1 The p-part of the Birch–Swinnerton-Dyer Con-
jecture.

Let λ > 1 be an integer and define E(λ) : y2 = 4x3 − 33λ. Let us assume that
L (E(λ), 1) ̸= 0, so that E(λ)(Q) and X (E(λ)) are finite. Let ω = −1+

√
−3

2 , a cube
root of unity. In this short section, we will compute the Tamagawa factors cq for the
primes q of bad reduction for E(λ), and ordp(E(λ)(Q)) for p = 2 or 3 according as
E(λ) is a quadratic or cubic twist of E = X0(27).

First, we consider the case when λ = D3, for D > 1 a square-free integer, so that
E(D3) is a quadratic twist of E. The primes of bad reduction for E(D3) are 3 and the
primes dividing D, since the discriminant of E(D3) is −27D6.

Lemma 2.1.1. Let D > 1 be a square-free product of primes coprime to 6 which split
in Q(ω, 3

√
2). Then

ord2


∏
q bad

cq

#(E(D3)(Q))2

 = 2k(D),
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On the p-part of the Birch–Swinnerton-Dyer conjecture for elliptic curves with

complex multiplication by the ring of integers of Q(
√
−3)

where k(D) denotes the number of prime factors of D.

Proof. We will work with the form y2 = x3 − 2433D3 which is isomorphic to E(D3).
With the usual notation for Tate’s algorithm, we have a1 = a3 = a2 = a4 = 0,
a6 = −2433D3, b4 = b8 = 0 and b6 = −2633D3. For a bad prime q, we have q | a1, a2,
q2 | a3, a4 and q3 | a6. Let Pq be the polynomial

Pq(T ) = T 3 + a6

q3 .

Then for q = 3, we have P ′
3(T ) = 3T 2 ≡ 0 mod 3 so P3(T ) has a triple root in

Z/3Z. Therefore, c3 = 3 and ord2(c3) = 0. If q is a prime factor of D, then
(Pq(T ), P ′

q(T )) = (T 3 + a6
q3 , 3T 2) = 1 in Z/qZ[T ], since 3 - D. So Pq(T ) has 3 distinct

roots in Z/qZ. Hence, cq = 4 and ord2(cq) = 2.
Also, E(D3)[2∞](Q) = {O} since the equation 4x3 − 33D3 = 0 clearly has no

rational solution.

Thus (1.0.2) indeed predicts

ord2
(
L(alg)

(
E(D3), 1

))
= ord2

(
(X

(
E(D3)

)
[2∞]

)
+ 2k(D)

> 2k(D).

Next, we consider the case when λ = D2, for D > 1 a cube-free integer, so that
E(D2) is a cubic twist of E. We remark that E(D2) is isomorphic to the curve
x3 + y3 = D which is a cubic twist of the Fermat curve x3 + y3 = 1. The primes of
bad reduction for E(D2) are again 3 and the primes dividing D, since the discriminant
of E(D2) is −27D4.

Lemma 2.1.2. Let D > 1 be an odd, cube-free integer such that D ≡ 1 mod 9 and D
is a product of primes congruent to 1 modulo 3. Then

ord3


∏
q bad

cq

#(E(D2)(Q))2

 = k(D) + 1,

where k(D) is the number of distinct prime factors of D.

Proof. We will work with the form y2 = x3 − 2433D2 which is isomorphic to E(D2).
With the usual notation for Tate’s algorithm, we have a1 = a3 = a2 = a4 = 0,
a6 = −2433D2, b4 = b8 = 0 and b6 = −2633D2. Let q be a prime of bad reduction for
E. If q is a prime factor of D, then we have q | a1, a2, q2 | a3, a4 and q3 - a6 hence
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the type is IV (see [22, p. 49]) and cq = 3 or 1. However, the polynomial T 2 + 2433D2

q2

has roots in Z/qZ since
(

−3
q

)
= (−1)q−1

(
q
3

)
= 1 and so −2433D2

q2 is a square mod q. It
follows that cq = 3 and ord3(cq) = 1. Otherwise, q = 3 and we have 3 | a1, a2, 32 | a3, a4

and 33 - a6. Let P3 be the polynomial

P3(T ) = T 3 + a6

33 .

Then P ′
3(T ) = 3T 2 ≡ 0 mod 3 so P3(T ) has a triple root in Z/3Z. After the change of

variables x = X+3D the triple root is 0, and we have a1 = a3 = 0, a2 = 32D, a4 = 33D2,
a6 = 33D2(D − 24) ≡ 3 mod 9. So Y 2 − a6

34 = Y 2 − D2(D−24)
3 ≡ Y 2 − 1 ≡ 0 mod 3 has

distinct roots in Z/3Z. Hence the type is IV* (see [22, p. 51]) and c3 = 3, so that
ord3(c3) = 1.

Furthermore, by [20, Exercise 10.19], we have E(D2)(Q)tors = {O} for D > 1.

Thus (1.0.2) predicts

ord3
(
L(alg)

(
E(D2), 1

))
> ord3

(
(X

(
E(D2)

)
[3∞]

)
+ k(D) + 1

> k(D) + 1.

2.2 Quadratic Twists.

Let K = Q(
√
−3), and write µK for the group of roots of unity in K. We fix once and

for all an embedding of K into C. In general, if λ is a non-zero element of OK which
is prime to #(µK) = 6, we let ψλ := ψE(λ)/K be the Grössencharacter of E(λ) over
K with conductor f, and let g denote some integral multiple of f. Let S be the set of
primes of K dividing g. We consider the (usually) imprimitive Hecke L-series

LS(ψλ, s) =
∑

(a,g)=1

ψλ(a)
(Na)s

of ψλ (the complex conjugate of ψλ). It can be defined by the Euler product

LS(ψλ, s) =
∏

(v,g)=1

(
1− ψλ(v)

(Nv)s

)−1

,
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and if we replace g by f in the definition, we obtain the primitive Hecke L-function
L(ψλ, s). In particular, we have

L(E(λ), 1) = L(ψλ, 1).

Recall that for any complex lattice L and z, s ∈ C, we can define the Kronecker–
Eisenstein series

H1(z, s, L) :=
∑
w∈L

z + w

|z + w|2s
,

where the sum in taken over all w ∈ L, except −z if z ∈ L. This series converges
for Re(s) > 3

2 , and it has an analytic continuation to the whole complex s-plane [10,
Theorem 1.1]. The non-holomorphic Eisenstein series E∗

1 (z, L) is defined by

E∗
1 (z, L) := H1(z, 1, L).

Let Ωλ = Ω
6√
λ
∈ C×, where 6

√
λ denotes the real root and Ω is the least positive real

period of the Néron differential of any global Weierstrass minimal equation for E. We
write Lλ for the period lattice of the curve E(λ) over C, and write L for that of E.

Since g is a multiple of f, it follows from [7, Lemma 3] that K(E(λ)g), the extension
of K obtained by adjoining the coordinates of all g-division points of E(λ) to K, is
isomorphic to K(g), the ray class field of K modulo g. We fix, once and for all, a set
B of integral ideals of K prime to g such that

Gal(K(g)/K) = {σb : b ∈ B},

where the Artin symbol σb = (b, K(g)/K) of b runs over Gal (K(g)/K) precisely once
as b runs over B. Fix a generator g of g, so that g = gOK . The next result is due to
Goldstein and Schappacher [10, Proposition 5.5].

Lemma 2.2.1. For all non-zero λ ∈ OK, we have

LS(ψλ, s) = |Ωλ/g|2s

Ωλ/g

∑
b∈B

H1

(
ψλ(b)Ωλ

g
, s,Lλ

)
.

Proof. The Artin map gives an isomorphism

(OK/g)× /µ̃K
∼−→ Gal (K (E(λ)g) /K)
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where µ̃K denotes the image of the group µK under reduction modulo g. Moreover, it
is clear from the choice of λ that the map from µK to µ̃K is an isomorphism. Hence,
the principal ideal (ψλ(b) + a) runs over all integral ideals of K prime to g precisely
once as b runs over B and a runs over g. It follows that

LS(ψλ, s) =
∑
b∈B

∑
a∈g

ψλ((ψλ(b) + a))
|ψλ(b) + a|2s

.

Note that since a ∈ g, we can write

ψλ(b) + a = (ψλ(b))(1 + a/ψλ(b)) = b(1 + a/ψλ(b))

where ordv(a/ψλ(b)) > ordv(f) for each prime v | f, so that

ψλ(ψλ(b) + a) = ψλ(b)(1 + a/ψλ(b)) = ψλ(b) + a.

Hence
LS(ψλ, s) =

∑
b∈B

∑
a∈g

ψλ(b) + a

|ψλ(b) + a|2s
=
∑
b∈B

H (ψλ(b), s, g) .

We can renormalise the right hand side to obtain the result.

The following is a well-known fact from, for example, [10, Theorem 2.1].

Fact 2.2.2. For all b ∈ B, we have

E∗
1

(
Ωλ

g
,Lλ

)
∈ K(g)

and
E∗

1

(
Ωλ

g
,Lλ

)σb
= E∗

1

(
ψ(b)Ωλ

g
,Lλ

)
. (2.2.1)

Now, we concentrate on the case where E(λ) is a quadratic twist of E.

Definition 2.2.3. We say a rational prime p is a special split prime if p splits completely
in L = K(x(E[4])), the field obtained by adjoining toK the x-coordinates of all non-zero
points in E[4].

In addition, it can be shown that a rational prime p is a special split prime if and
only if it splits in K, and ψ(p) ≡ ±1 mod 4 for both of the primes p of K above p.
Moreover, L = K(µ4,

3
√

2) (see Lemma A.1 of Appendix A).
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For the remainder of this section, we assume that D ∈ OK is such that D ≡ 1 mod 3
and (D) = p1 · · · pn is a square-free product of prime ideals pj of K above special split
primes. In addition, we pick the sign πj of the generator of pj so that πj ≡ 1 mod 4,
and set D = π1 · · · πn and S = {π1, . . . , πn}. The sign will not matter since we are most
interested in the case when D is an integer. Given α = (α1, . . . αn) with αj ∈ {0, 1}
for all j = 1, . . . , n, let Dα ∈ K be of the form Dα = πα1

1 · · · παn
n . Note that for any

integers kj > 0 and Dα′ = πα1+2k1
1 · · · παn+2kn

n , we have

E(D3
α) ∼= E(D3

α′)

over K, hence we may consider α = (α1, . . . , αn) ∈ {0, 1}n as an element of (Z/2Z)n.
Given α ∈ (Z/2Z)n, let nα be the number of primes dividing Dα and define Sα = {πj :
πj | Dα}.

Let C(A/Q) be the conductor of an elliptic curve A over Q. Recall that if
EndQ(A)⊗Z Q = K, an imaginary quadratic field, we have

C(A/Q) = NK/QfA · dK , (2.2.2)

where fA is the conductor of ψA/K and dK is the absolute value of the discriminant
of K/Q. In particular, C(E/Q) = 27, and so the conductor of ψ is 3OK . It can be
verified using this result and Tate’s algorithm that the conductor of ψD3 is f = 3DOK .
It follows that K (E(D3)f) is isomorphic to K(f), the ray class field of K modulo f.
Hence the Artin map gives an isomorphism

(OK/3DOK)× /µ̃6
∼−→ Gal

(
K
(
E(D3)f

)
/K

)
where µ̃6 denotes the image of µK = µ6 under reduction modulo f. Note that since 3
and D are coprime and 3 ramifies in K, we have an exact sequence

0→ (OK/DOK)× → (OK/3DOK)× /µ̃6 → (OK/3OK)× /µ6 → 0,

so that (OK/3DOK)× /µ̃6
∼= (OK/DOK)× .

Setting s = 1 and g = 3D in Lemma 2.2.1 and applying (2.2.1) immediately yields:

Corollary 2.2.4. For any α ∈ (Z/2Z)n, we have

3D
ΩD3

α

LS(ψD3
α
, 1) = TrK(f)/K

(
E∗

1

(
ΩD3

α

3D ,LD3
α

))
.
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We wish to find ord2
(
L(alg)(ψD3 , 1)

)
. In order to do this, we consider the following

sum of imprimitive Hecke L-series.

Definition 2.2.5. Let
ΦD3 =

∑
α∈(Z/2Z)n

LS(ψD3
α
, 1)

Ω.

Using Corollary 2.2.4, we can write this sum in the following way.

Theorem 2.2.6. We have

ΦD3 = 2nTrK(f)/J

(
1

3DE
∗
1

(
Ω

3D,L
))

,

where J = Q
(√
−3,√π1, . . . ,

√
πn
)
.

Proof. We have for any α ∈ (Z/2Z)n,

LS(ψD3
α
, 1)

ΩD3
α

= 1
3D

∑
b∈B
E∗

1

(
ΩD3

α

3D ,LD3
α

)σb

and ΩD3
α

= 1
D

1/2
α

Ω, so

LS(ψD3
α
, 1)

Ω = 1
3D

∑
b∈B

(D3
α)

σb−1
6 E∗

1

(
Ω

3D,L
)σb

(2.2.3)

and
(D3

α)
σb−1

6 =
(
Dα

b

)
2
∈ {±1},

where
( )

2
denotes the quadratic residue symbol. Let ϵ2(·, b) : (Z/2Z)n → {±1} be

the 1-dimensional character defined by ϵ2(α, b) =
(
Dα

b

)
2
. Since any 1-dimensional

character is irreducible, considering its inner product with the trivial character gives

∑
α∈(Z/2Z)n

ϵ2(α, b) =

 2n if
(
Dα

b

)
2

= 1 for all α ∈ (Z/2Z)n

0 otherwise.

Note that
(
Dα

b

)
2

= 1 for all α ∈ (Z/2Z)n if and only if
(
πj

b

)
2

= 1 for all j = 1, . . . , n.
The result now follows by noting that

(
πj

b

)
2

= 1 for all j = 1, . . . , n if and only if
σb ∈ Gal(K(f)/J ) where J = Q

(√
−3,√π1, . . . ,

√
πn
)
.

We now make an explicit choice of B.



16
On the p-part of the Birch–Swinnerton-Dyer conjecture for elliptic curves with

complex multiplication by the ring of integers of Q(
√
−3)

Definition 2.2.7. Let C be a set of elements of OK such that c ∈ C implies −c ∈
C and c mod D runs over (OK/DOK)× precisely once. Note that this is possible
since (2, D) = 1 by hypothesis. Furthermore, since Gal(K(f)/K) is isomorphic to
(OK/DOK)×, the Artin symbol (c,K(f)/K) runs over Gal(K(f)/K) precisely once as
c varies in C. In addition, we define

B = {(3c+D) : c ∈ C}

so that 3c + D ≡ 1 mod 3OK for all c ∈ C since D ≡ 1 mod 3 by assumption. In
particular, if b = (3c + D) then we have ψ(b) = 3c + D since the conductor of ψ is
3OK . Finally, let

V = {c ∈ C :
(
πj
b

)
2

= 1 for all j = 1, . . . , n, where b = (3c+D)},

where
( )

2
denotes the quadratic residue symbol.

Note that if c ∈ V implies −c ∈ V since

(
πj
b

)
2

=
(

3c+D

πj

)
2

(since πj ≡ 1 mod 4)

=
(

3c
πj

)
2

=
(
−3c
πj

)
2

(since
(

−1
πj

)
2

= 1).

It is clear that we can also write Theorem 2.2.6 in the following way.

Corollary 2.2.8. We have

ΦD3 = 2n
∑
c∈V

1
3DE

∗
1

(
cΩ
D

+ Ω
3 ,L

)
.

Using the relation between the Eisenstein series and the Weierstrass ℘-function, we
can show:

Theorem 2.2.9. We have

∑
c∈V
E∗

1

(
cΩ
D

+ Ω
3 ,L

)
= 1

2

∑
c∈V

9
3− ℘

(
cΩ
D
,L
)
−#(V ).
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Proof. Let
s2(L) = lim

s→0
s>0

∑
w∈L\{0}

w−2|w|−2s.

Then by [10, Proposition 1.5], we have

E∗
1 (z,L) = ζ(z,L)− zs2(L)− zA(L)−1.

Here, ζ(z,L) is the Weierstrass zeta function of L and A(L) := uv−uv
2πi where (u, v) is a

base of L over Z satisfying Im(v/u) > 0. Thus we have A(L) = Ω2(ω−ω)
2πi =

√
3Ω2

2π , and
we can see that s2(L) = 0 on noting that ω ∈ L which gives ω−2s2(L) = s2(L). Hence

E∗
1 (z,L) = ζ(z,L)− 2πz√

3Ω2
.

Recall also that for z1, z2 ∈ C, we have an addition formula:

ζ(z1 + z2,L) = ζ(z1,L) + ζ(z2,L) + 1
2
℘′(z1,L)− ℘′(z2,L)
℘(z1,L)− ℘(z2,L) .

Applying this with z1 = Ω
3 , z2 = cΩ

D
, we get

∑
c∈V
E∗

1

(
cΩ
D

+ Ω
3 ,L

)
=
∑
c∈V

(
ζ

(
cΩ
D

+ Ω
3 ,L

)
−
(
cΩ
D

+ Ω
3

)
2π√
3Ω2

)

=
∑
c∈V

(
ζ

(
Ω
3 ,L

)
+ ζ

(
cΩ
D
,L
)

+ 1
2
℘′(Ω

3 ,L)− ℘′( cΩ
D
,L)

℘(Ω
3 ,L)− ℘( cΩ

D
,L)

−
(
cΩ
D

+ Ω
3

)
2π√
3Ω2

)
.

Next, we use the key property that, if c ∈ V , then also −c ∈ V . Since ζ(z,L) and
℘′(z,L) are odd functions, and ℘(z,L) is an even function, it follows that

∑
c∈V
E∗

1

(
cΩ
D

+ Ω
3 ,L

)
=
∑
c∈V

1
2

℘′
(

Ω
3 ,L

)
℘
(

Ω
3 ,L

)
− ℘

(
cΩ
D
,L
)
+ #(V )

(
ζ

(
Ω
3 ,L

)
− 2π

3
√

3Ω

)
.

By applying formulae (3.2) and (3.3) of [21, p. 126], we obtain

ζ(z + 1,OK) = ζ(z,OK) + 2π√
3
, ζ(z + ω,OK) = ζ(z,OK) + 2π√

3
ω. (2.2.4)

Letting z = −1
3 in (2.2.4) gives

ζ
(2

3 ,OK
)

+ ζ
(1

3 ,OK
)

= 2π√
3
.
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But we have ζ (Ωz,L) = 1
Ωζ (z,OK), so

ζ

(
2Ω
3 ,L

)
+ ζ

(
Ω
3 ,L

)
= 2π√

3Ω
. (2.2.5)

On the other hand, we have

ζ(2z,L) = 2ζ(z,L) + ℘′′(z,L)
2℘′(z,L) ,

and by differentiating the equation ℘′(z,L)2 = 4℘(z,L)3 − 33, we get ℘′′(z,L) =
6℘(z,L)2. Also, by computation we get

℘

(
Ω
3 ,L

)
= 3, ℘′

(
Ω
3 ,L

)
= 9,

thus

ζ

(
2Ω
3 ,L

)
− 2ζ

(
Ω
3 ,L

)
=

℘′′
(

Ω
3 ,L

)
2℘′

(
Ω
3 ,L

) =
6℘2

(
Ω
3 ,L

)
2℘′

(
Ω
3 ,L

) = 3. (2.2.6)

Now, solving (2.2.5) and (2.2.6) gives

ζ

(
Ω
3 ,L

)
= 2π

3
√

3Ω
− 1.

Hence ∑
c∈V
E∗

1

(
cΩ
D

+ Ω
3 ,L

)
=
∑
c∈V

1
2

℘′
(

Ω
3 ,L

)
℘
(

Ω
3 ,L

)
− ℘

(
cΩ
D
,L
)
−#(V ).

Substituting the values ℘
(

Ω
3 ,L

)
= 3 and ℘′

(
Ω
3 ,L

)
= 9 again gives the result.

Now we prove the following integrality result of the Eisenstein series.

Corollary 2.2.10. For n > 1, we have

ord2

(∑
c∈V
E∗

1

(
cΩ
D

+ Ω
3 ,L

))
> 0.

Proof. Given c ∈ V , let P be the point on E : y2 = 4x3 − 33 given by

x(P ) = ℘

(
cΩ
D
,L
)
, y(P ) = ℘′

(
cΩ
D
,L
)
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and define
M (c,D) = 9

3− x(P ) .

Recall that E has minimal Weierstrass form

E : Y 2 + Y = X3 − 7

which has discriminant 39, so E has good reduction at 2 over K. This means that
ord2(X(P )) > 0 since P is a torsion point on E of order prime to 2. Further, x = X

in the change of coordinates which gives the minimal Weierstrass form, and so we have

M (c,D) = 9
3−X(P ) .

We claim that ord2(3−X(P )) = 0. Suppose for a contradiction that ord2(3−X(P )) > 0.
Then let Q = (3, 4) be the point on E which we know is a 3-torsion, so that we
have ord2(X(Q) − X(P )) > 0. Hence, under reduction modulo 2, we would have
X(Q̃) = X(P̃ ) where ˜ denotes reduction modulo 2. Then we have P̃ = ±Q̃, so either
P − Q or P + Q is in the kernel of the reduction map, so it must correspond to an
element in the formal group of E at 2, and therefore its order must be a power of 2.
But this is not possible since P has order D and Q has order 3, both of which are
coprime to 2. Hence

ord2(M (c,D)) = ord2(9)− ord2(3−X(P ))
= 0.

But M (c,D) = M (−c,D) since ℘(z) is an even function and #(V ) is even, so

ord2(
∑
c∈V

M (c,D)) > 1.

It follows that

ord2

(∑
c∈V
E∗

1

(
cΩ
D

+ Ω
3 ,L

))
= min

(
ord2

(
1
2
∑
c∈V

M (c,D)
)
, ord2 (#(V ))

)

> 0

as required.
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Remark 2.2.11. For n = 0 (i.e. for E), a computation using Magma gives

L(alg)(ψ, 1) = 1
3 .

Thus we have proved:

Theorem 2.2.12. Let D ∈ OK be as above and let n be the number of primes in OK
dividing D. Then we have

ord2(ΦD3) > n.

Finally, we are ready to prove the first main result:

Theorem 2.2.13. Let D ∈ OK be as above and let n be the number of primes in OK
dividing D. Then

ord2
(
L(alg)(ψD3 , 1)

)
> n.

Proof. We prove this by induction on n. Write D = Dα, and given α, β ∈ (Z/2Z)n, we
write β < α if Dβ | Dα but Dβ ̸= Dα. If nα = 1, Sα = {π1} say, then

Φπ3
1

= LSα(ψ, 1)
Ω +

L(ψπ3
1
, 1)

Ω .

By Theorem 2.2.12, we know that ord2(Φπ3
1
) > 1. Now,

LSα(ψ, 1)
Ω =

(
1− ψ((π1))

π1π1

)
L(ψ, 1)

Ω

=
(
π1 ± 1
π1

) 1
3

since ψ((π1)) = ±π1 and by Remark 2.2.11 we have L(ψ,1)
Ω = 1

3 . But ord2
(
π1±1
π1

)
> 1,

hence

ord2

L(ψπ3
1
, 1)

Ω

 > 1 = nα.

Now suppose nα > 1 and our result holds for 0 < β < α. Again,

ΦD3
α

= LSα(ψ, 1)
Ω +

∑
0<β<α

LSα(ψD3
β
, 1)

Ω +
LSα(ψD3

α
, 1)

Ω ,
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where the last term is primitive. We know by Theorem 2.2.12 that ord2(ΦD3
α
) > nα.

Now

LSα(ψ, 1)
Ω =

∏
π∈Sα

(
1− ψ((π))

ππ

)
L(ψ, 1)

Ω

=
∏
π∈Sα

(
π ± 1
π

) 1
3

where ord2
(
π±1
π

)
> 1 for each π ∈ Sα. Hence

ord2

(
LSα(ψ, 1)

Ω

)
> #(Sα)

> nα.

Also for 0 < β < α,

LSα(ψD3
β
, 1)

Ω =
∏

π∈Sα\Sβ

1−
ψD3

β
((π))
ππ

 L(ψD3
β
, 1)

Ω .

We have ψD3
β
((π)) =

(
Dβ

π

)3

6
ψ((π)) = ±π. Hence

ord2

 ∏
π∈Sα\Sβ

1−
ψD3

β
((π))
ππ

 = ord2

 ∏
π∈Sα\Sβ

(
π ± 1
π

)
> #(Sα\Sβ)
= nα − nβ.

Furthermore, by the induction hypothesis, ord2

(
L(ψ

D3
β
,1)

Ω

)
> nβ. Thus

ord2

LSα(ψD3
β
, 1)

Ω

 > (nα − nβ) + nβ

= nα,

and so

ord2

 ∑
0<β<α

LSα(ψD3
β
, 1)

Ω

 > nα.
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It follows that
ord2

(
L(ψD3

α
, 1)

Ω

)
> nα

as required.

Recalling L(E(λ), 1) = L(ψλ, 1), the following is an immediate consequence.

Theorem 2.2.14. Let D > 1 be an integer which is a product of k(D) distinct special
split primes. Then

ord2
(
L(alg)(E(D3), 1)

)
> 2k(D).

Remark 2.2.15. The bound obtained in Theorem 2.2.14 is sharp. For example, let
π be the prime 13 + 12ω and let D = N(π) = 157, which is a rational prime. Then
L(alg)(E(D3), 1) = 12 so ord2

(
L(alg)(E(D3), 1)

)
= 2, as required. More numerical

examples can be found in Appendix B.

2.3 Cubic Twists.

Now we look at the cubic twists of E, i.e. the curves of the form

E(D2) : y2 = 4x3 − 33D2

for a cube-free integer D. This is isomorphic to the curve

Y 2 +DY = X3 − 7D2

via the change of variables X = x and Y = 2y+D. Let ψD2 denote the Grössencharacter
of E(D2)/K.

Definition 2.3.1. We say a prime π of K is cubic-special if it splits completely in the
field K(E[27]), but does not split completely in the strictly larger field K(E[27])((1−
ω)1/9).

The following characterisation of cubic-special primes will be useful, in particular
in proving Corollary A.5 of Appendix A.

Lemma 2.3.2. A prime π of K is cubic special if and only if π ≡ 1 mod 27 and
9 divides the order of 1 − ω in (OK/πOK)×. The set consisting of such primes has
density 2

3 in the set of primes of K congruent to 1 modulo 27. In particular, there are
infinitely many such primes.
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Proof. First, we note that K(E[27]) is equal to the ray class field K(27) of K modulo
27 by [7, Lemma 3]. Since Q(µ27) ⊂ K(27), it follows that K(27)

(
(1− ω) 1

9
)
/K(27)

is a Galois extension. Also K(27)
(
(1− ω) 1

9
)
/K is not an abelian extension, since its

subextension K
(
(1− ω) 1

9
)
/K is not Galois. In addition, K(27)

(
(1− ω) 1

9
)
/K(27) is

a degree 3 extension since we showed that
(

1−ω
π

)
3

= 1, i.e. (1 − ω) 1
3 ∈ K(27). Let

H denote the Galois group of this degree 3 extension. Furthermore, let G denote the
Galois group Gal

(
K(27)

(
(1− ω) 1

9
)
/K

)
, and let Frobπ ∈ G denote the Frobenius at

π. Then Frobπ|K(27) = id in H if and only if ψE(π2)/K ((π)) ≡ 1 mod 27. If we take a
prime π such that Frobπ ∈ H\{id}, then (1 − ω) is not a ninth power modulo π in
K(27)

(
(1− ω) 1

9
)
, and it follows that the order of 1− ω must be divisible by 9 since

27 divides N(π)− 1 = | (OK/πOK)× |. By the Čebotarev density theorem, the density
of such primes is 2

3 .

From now on, let us assume that each prime π of K dividing D is cubic-special.
Note that if p is a rational prime such that p ≡ 1 mod 3, then p always splits in K

since we can write p = a2 − ab+ b2 = (a+ bω)(a+ bω) for some integers a and b. In
addition, if p ≡ 1 mod 27, it can easily be shown that we can assume b ≡ 0 mod 27
and a ≡ 1 mod 27 using symmetry in a and b and change of sign of a. Hence we can
write p = ππ with π ∈ OK and π ≡ 1 mod 27.

Before we begin, it will be useful to find a model for our curve E : Y 2 +Y = X3− 7
where E has good reduction at 3. Let u =

√
α
β2 where α = 27+3

√
−3

2 , β = 3
√

1−3
√

−3
2 , and

let r = −3
2

3
√

−13−3
√

−3
2 . Then the change of variables x = u2X + r, y = 2u3Y , gives an

equation for E with good reduction at 3 (see Proposition A.2 of Appendix A).
Given α = (α1, . . . αn) with αj ∈ {0, 1, 2} for all j = 1, . . . , n, let Dα be an element

of K of the form Dα = πα1
1 · · · παn

n where πj are distinct cubic-special primes. Similarly
to the quadratic twist case, we may consider α = (α1, . . . , αn) ∈ {0, 1, 2}n as an element
of (Z/3Z)n. Given α ∈ (Z/3Z)n, let nα be the number of distinct primes of K dividing
Dα and define Sα = {πj : πj | Dα}. Pick α ∈ (Z/3Z)n such that nα = n, and set
D = Dα and S = {π1, . . . πn}. We will study the following sum of imprimitive Hecke
L-functions (see Definition 2.2.5).

Definition 2.3.3. Given D as above, let

ΦD2 =
∑

α∈(Z/3Z)n

LS(ψD2
α
, 1)

Ω .

Let f be the conductor of the Grössencharacter ψD2 . Then again, a computation
using Tate’s algorithm shows that f = 3DOK . Also, the Artin map gives an isomorphism
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between Gal(K(f)/K) and (OK/3DOK)× /µ̃6, which is isomorphic to (OK/DOK)×

since (3, D) = 1 and 3 ramifies in K. Now let C be a set of elements of OK such that
c ∈ C implies ωc, ω2c ∈ C and c mod D runs over (OK/DOK)× precisely once. This is
possible since 3 and D are coprime by assumption. Then let

B = {(3c+D) : c ∈ C}

so that 3c + D ≡ 1 mod 3OK , where 3OK is the conductor of ψ. In particular, if
b = (3c+D) ∈ B then we have ψ(b) = 3c+D.

Let m be such that µm ⊂ K. For a ∈ K∗ and b an ideal of K coprime to m and a,
we write

(
a
b

)
m

for the m-th power residue symbol defined by the equation

( m
√
a)σb =

(
a

b

)
m

m
√
a,

where σb = (b, K( m
√
a)/K) ∈ Gal (K( m

√
a)/K) denotes the Artin symbol of b. Also,

for any a, b ∈ K∗, we define (
a

b

)
m

=
∏
v

(
a

v

)v(b)

m
,

where v runs through all primes of K coprime to a. Recall also that for a prime π of
K and c ∈ (OK/πOK)×, we have Euler’s criterion

(
c

π

)
m
≡ c

N(π)−1
m mod π.

Definition 2.3.4. Let

V = {c ∈ C :
(
πj
b

)
3

= 1 for all j = 1, . . . , n, where b = (3c+D)}.

Recall that we have
(

1−ω
πj

)
3

=
(

1−ω2

πj

)
3

= ωm and
(
ω
πj

)
3

= ω−m−n where m,n ∈ Z
are such that πj = 1 + 3(m+ nω) (see [1, p. 354]). Hence for c ∈ V we have

(
πj
b

)
3

=
(

3c+D

πj

)
3

(since πj ≡ b ≡ 1 mod 3, see [1, p. 354])

=
(

3c
πj

)
3

=
(
c

πj

)
3

(since πj ≡ 1 mod 9, we have
(

1− ω
πj

)
3

=
(

1− ω2

πj

)
3

= 1).
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Furthermore, by assumption on πj, we have m + n ≡ 0 mod 3 so
(
ω
πj

)
3

= 1. Hence(
c
πj

)
3

=
(
ωc
πj

)
3

=
(
ω2c
πj

)
3
. So c ∈ V implies ωc, ω2c ∈ V .

It is also easy to check that

LD2 = Ω
3
√
D
OK .

Theorem 2.3.5. We have

ΦD2 = 3n
∑
c∈V

1
3DE

∗
1

(
cΩ
D

+ Ω
3 ,L

)
.

Proof. It is clear that Lemma 2.2.1, Fact 2.2.2 and Corollary 2.2.4 still apply. Thus,
for any α ∈ (Z/3Z)n,

LS(ψD2
α
, 1)

ΩD2
α

= 1
3D

∑
b∈B
E∗

1

(
ΩD2

α

3D ,LD2
α

)σb

and ΩD2
α

= 1
D

1/3
α

Ω, so

LS(ψD2
α
, 1)

Ω = 1
3D

∑
b∈B

(D2
α)

σb−1
6 E∗

1

(
Ω

3D,L
)σb

(2.3.1)

and
(D2

α)
σb−1

6 =
(
Dα

b

)
3
∈ µ3.

We have a character ϵ3(·, b) : (Z/3Z)n → µ3 defined by ϵ3(α, b) =
(
Dα

b

)
3
. This

is a 1-dimensional character, and since any 1-dimensional character is irreducible,
considering its inner product with the trivial character gives

∑
α∈(Z/3Z)n

ϵ3(α, b) =

 3n if
(
Dα

b

)
3

= 1 for all α ∈ (Z/3Z)n

0 otherwise.

Note that
(
Dα

b

)
3

= 1 for all α ∈ (Z/3Z)n if and only if
(
πj

b

)
3

= 1 for all j = 1, . . . , n.
It follows that

ΦD2
α

= 3n
∑
c∈V

1
3DE

∗
1

(
Ω

3D,L
)σb

,

where b = 3c+D. Again, applying equation (2.2.1) gives the result.

As in Theorem 2.2.9, we have
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Theorem 2.3.6.

∑
c∈V
E∗

1

(
cΩ
D

+ Ω
3 ,L

)
= 1

2

∑
c∈V

9− ℘′
(
cΩ
D
,L
)

3− ℘
(
cΩ
D
,L
)
−#(V ).

Proof. The proof is almost identical to the proof of Theorem 2.2.9, since the addition
formula for ζ(z,L) implies ζ

(
cΩ
D
,L
)

+ ζ
(
ωcΩ
D
,L
)

+ ζ
(
ω2cΩ
D
,L
)

= 0, and we have
c+ ωc+ ω2c = 0 for any c ∈ V .

This gives:

Corollary 2.3.7. For n > 1, we have

ord3

(∑
c∈V
E∗

1

(
cΩ
D

+ Ω
3 ,L

))
> 1.

Before we prove this, let us prove:

Proposition 2.3.8. ord3(#(V )) > 2.

Proof. Given αi ∈ {0, 1, 2} for i = 1, . . . , n, let

V(α1,...αn) =
{
c ∈ C :

(
c

πi

)
= ωαi for all i ∈ {1, . . . n}

}
,

so that now we have V = V(0,...,0). Given any (α1, . . . , αn), if we can find b ∈ C such
that

(
b
πi

)
= ωαi , then clearly we can write

V(α1,...αn) = bV

= {bc : c ∈ V }

and if there is no such b, then V(α1,...αn) = ∅. Also, we have

C =
⋃

(α1,...,αn)∈{0,1,2}n

V(α1,...,αn),

so

#(C) = k#(V )

for some positive integer k 6 3n, so that ord3(k) 6 n. On the other hand, ord3 (#(C)) =
ord3 ((N(π1)− 1) · · · (N(πn)− 1)) > 3n. Hence, ord3(#(V )) > 3n − n = 2n > 2 for
n > 1, so 9 | #(V ) as required.
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Now we are ready to prove Corollary 2.3.7.

Proof. (of Corollary 2.3.7) Let P be the point on E : y2 = 4x3 − 33 given by

x(P ) = ℘

(
cΩ
D
,L
)
, y(P ) = ℘′

(
cΩ
D
,L
)
,

and define
M (c,D) = 9− y(P )

3− x(P ) .

Now, write V as a union H ∪ ωH ∪ ω2H for some set H. Then

∑
c∈V

M (c,D) =
∑
c∈H

9− ℘′
(
cΩ
D
,L
)

3− ℘
(
cΩ
D
,L
) +

9− ℘′
(
ωcΩ
D
,L
)

3− ℘
(
ωcΩ
D
,L
) +

9− ℘′
(
ω2cΩ
D
,L
)

3− ℘
(
ω2cΩ
D
,L
) .

Recall that E has complex multiplication by ω via ω(x, y) = (ωx, y), so ℘′(ωicΩ
D
,L) =

℘′( cΩ
D
,L) for i = 0, 1, 2. Moreover, L = ωL so ℘

(
ωicΩ
D
,L
)

= ℘
(
ωicΩ
D
, ωiL

)
, and ℘ is

homogeneous of degree −2 so this simplifies to

∑
c∈V

M (c,D) =
∑
c∈H

35 − 33y(P )
33 − x(P )3 .

To determine ord3(x(P )) and ord3(y(P )), recall that the change of variables x =
u2X + r, y = 2u3Y where r = −3

2
3
√

−13−3
√

−3
2 gives us a model of E having good

reduction at 3 (see Proposition A.2 of Appendix A). In terms of X and Y , we have

∑
c∈V

M (c,D) =
∑
c∈H

35 − 2 · 33u3Y (P )
33 − r3 − u6X(P )3 − 3u4rX(P )2 − 3u2r2X(P ) .

Now, P is a torsion of point of E of order prime to 3 and E has good reduction at
3 so ord3(X(P )), ord3(Y (P )) > 0. If ord3(Y (P )) > 0, P reduces to a 2-torsion after
reduction modulo 3, but P is a D-torsion and reduction modulo 3 is injective, hence
we must have ord3(Y (P )) = 0. Now, ord3(33 − r3) = ord3(33(1− s3)), where r = 3s.
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Also,

1− s3 = 1 +
1

2
3

√
−13− 3

√
−3

2

3

= 3− 3
√
−3

16 ,

so ord3(1 − s3) = 1. In addition, we have ord3(u) = 3
4 and ord3(r) = 1. Therefore,

ord3 (u6X(P )3 + 3u4rX(P )2 + 3u2r2X(P )) > 4 = ord3(33 − r3). It follows that

ord3

(∑
c∈V

M (c,D)
)
> ord3(35)− ord3(33 − r3)

= 1.

On the other hand, by Proposition 2.3.8, we have 9 | #(V ). Hence,

ord3

(∑
c∈V
E∗

1

(
cΩ
D

+ Ω
3 ,L

))
= min

(
ord3

(
1
2
∑
c∈V

M (c,D)
)
, ord3(#(V ))

)

= 1

as required.

Recall from Remark 2.2.11 that L(ψ,1)
Ω = 1

3 . It follows from Theorem 2.3.5 and
Corollary 2.3.7 that

Theorem 2.3.9. Let be a cube-free product of cubic special primes, and let n be the
number of distinct prime factors of D in K. Then

ord3(ΦD2) > n.

We can generalise Definition 2.3.3 as follows.

Definition 2.3.10. Given a character χ : (Z/3Z)n → C×, define

Φ(χ)
D2 =

∑
α∈(Z/3Z)n

χ(α)
LSα(ψD2

α
, 1)

Ω .

Using essentially the same arguments that are used to prove Theorem 2.3.9, we can
show:
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Lemma 2.3.11. For any character χ : (Z/3Z)n → C×, we have

ord3(Φ(χ)
D2 ) > n.

Proof. By equation (2.3.1), we have

χ(α)
LS(ψD2

α
, 1)

Ω = 1
3D

∑
b∈B

χ(α)
(
Dα

b

)
3
E∗

1

(
Ω

3D,L
)σb

.

Also, by the law of cubic reciprocity, we have
(

Dα

3c+Dα

)
3

=
(3c+Dα

Dα

)
3

=
( 3c
Dα

)
3

=
(
c

Dα

)
3
.

Let n = nα. Then we have a 1-dimensional character ϵ(χ)
3 (·, c) : (Z/3Z)n → µ3 defined

by ϵ(χ)
3 (α, c) = χ(α)

(
c
Dα

)
3
. Now, considering its inner product with the trivial character

gives ∑
α∈(Z/3Z)n

ϵ
(χ)
3 (α, c) =

 3n if c ∈ V (χ)

0 otherwise,

where V (χ) = {c ∈ C :
(

c
Dα

)
3

= χ(α)2 for all α ∈ (Z/3Z)n}. Thus

Φ(χ)
D2 = 3n

∑
c∈V (χ)

1
3DE

∗
1

(
cΩ
D

+ Ω
3 ,L

)
.

Recall that for any prime πj dividing Dα, we have
(
ω
πj

)
3

= 1. Hence

(
c

Dα

)
3

=
(
ωc

Dα

)
3

=
(
ω2c

Dα

)
3
,

so c ∈ V (χ) implies wc, ω2c ∈ V (χ). Also, the proof of Proposition 2.3.8 shows that
V (χ) = V(α1,...,αn) where αi ∈ {0, 1, 2} is such that χ(ei) = ωαi , where ei ∈ (Z/3Z)n has
1 in the i-th entry and 0 elsewhere. Hence, #(V ) = #(V (χ)) or #(V (χ)) = 0, so in
either case we have 9 | #(V (χ)). So we can apply the proofs of Theorem 2.3.6 and
Corollary 2.3.7, and obtain

ord3

 ∑
c∈V (χ)

E∗
1

(
cΩ
D

+ Ω
3 ,L

) > 1,

so the result follows.
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Remark 2.3.12. We note that the assumption ord3(π − 1) > 2 for any prime factors
π of D is essential. If we take π = 55 + 33ω and S = {π}, then ord3(π − 1) = 3

2

and N(π) ≡ 1 mod 27. Then we have ord3

(
LS(ψ,1)

Ω

)
= 1

2 , but a computation shows
L(ψπ2 ,1) 3√π

Ω = 3 and L(ψπ4 ,1) 3√
π2

Ω = 289, so that ord3(Φπ2) = 0. Note also that we used
π ≡ 1 mod 9 when showing

(
3
π

)
3

= 1, which is not true when ord3(π − 1) = 3
2 .

Since we required that ord3(π − 1) > 3 and that 9 divides the order of 1 − ω in
(OK/πOK)× for any prime π of K dividing D, we can improve the bound in Lemma
2.3.11 slightly by a similar proof. This can be found in Corollary A.5, Appendix A, and
we will only use this in the case n = 1. We are ready to prove the second main result:

Theorem 2.3.13. We have

ord3

(
L(ψD2 , 1)

Ω

)
>

1
2(n+ 1).

Proof. We prove this by induction on n. First, write α = (α1, . . . , αn) for the element
in (Z/3Z)n with D = Dα. Given β, γ ∈ (Z/3Z)n, we write β < γ if Dβ | Dγ but
Dβ ̸= Dγ. Let nα = 1 and Sα = {π1}, say. Then we consider

Φπ2
1

= LSα(ψ, 1)
Ω +

LSα(ψπ2
1
, 1)

Ω +
LSα(ψπ4

1
, 1)

Ω ,

where the last two terms are primitive. Also,

LSα(ψ, 1)
Ω =

(
1− ψ((π1))

π1π1

)
L(ψ, 1)

Ω

=
(
π1 − 1
π1

) 1
3

and π1 ≡ 1 mod 9. Hence ord3
(
π1−1
π1

)
> 2, and

ord3

(
LSα(ψ, 1)

Ω

)
> 2− 1 = 1.

Now let χ1 : Z/3Z→ µ3 be the character defined by 1 7→ ω and let χ2 : Z/3Z→ µ3

be the character defined by 1 7→ ω2. Then we have

Φ(χi)
π2

1
= LSα(ψ, 1)

Ω + ωi
LSα(ψπ2

1
, 1)

Ω + ω2iLSα(ψπ4
1
, 1)

Ω ,
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for i = 1, 2. Hence we obtain

Φπ2
1
− ωΦ(χ1)

π2
1

= (1− ω)LSα(ψ, 1)
Ω + (1− ω2)

LSα(ψπ2
1
, 1)

Ω .

We know that ord3(Φπ2
1
− ωΦ(χ1)

π2
1

) > 5
4 (see Corollary A.5 of Appendix A), and we also

checked that ord3

(
LSα (ψ,1)

Ω

)
> 1, so ord3

(
(1− ω)

(
LSα (ψ,1)

Ω

))
> 3

2 . It follows that

ord3

(1− ω2)
LSα(ψπ2

1
, 1)

Ω

 >
5
4 ,

that is,

ord3

LSα(ψπ2
1
, 1)

Ω

 >
3
4 .

But
LSα (ψ

π2
1
,1) 3
√
π2

1

Ω ∈ K so ord3

(
LSα (ψ

π2
1
,1)

Ω

)
must be an integer multiple of 1

2 . Hence

ord3

LSα(ψπ2
1
, 1)

Ω

 > 1 = 1
2(nα + 1)

as required.
Now suppose the result holds for all nβ < nα, where β < α. We have

ΦD2
α

= LSα(ψ, 1)
Ω +

∑
nβ<nα

LSα(ψD2
β
, 1)

Ω +
∑

nγ=nα

LSα(ψD2
γ
, 1)

Ω

where the terms in the last summand are primitive.
We know that

LSα(ψ, 1)
Ω =

∏
π∈Sα

(
1− ψ((π))

ππ

)
L(ψ, 1)

Ω

=
∏
π∈Sα

(
π − 1
π

) 1
3

and π ≡ 1 mod 27, so ord3

(
LSα (ψ,1)

Ω

)
> 3nα − 1. Next, for nβ < nα, we have

LSα(ψD2
β
, 1)

Ω =
∏

π∈Sα\Sβ

1−
ψD2

β
((π))
ππ

 L(ψD2
β
, 1)

Ω
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and ψD2
β
((π)) =

(
Dβ

π

)
3
π = ωiπ, i ∈ {0, 1, 2}. Furthermore, by the induction hypothesis,

ord3

(
L(ψ

D2
β
,1)

Ω

)
> 1

2(nβ + 1). It follows that

ord3

 ∑
nβ<nα

LSα(ψD2
β
, 1)

Ω

 >
1
2(nα − nβ) + 1

2(nβ + 1)

= 1
2(nα + 1).

We also know by Lemma 2.3.11 that ord3(Φ(χ)
D2

α
) > nα for any character χ :

(Z/3Z)n → µ3.

To find ord3

(
L(ψ

D2
γ
,1)

Ω

)
for γ = (γ1, . . . , γn) ∈ (Z/3Z)n with nγ = nα, suppose first

that γ ̸= (2, . . . , 2), so there exists j ∈ {1, . . . n} with γj = 1. Without loss of generality,
we may assume j = 1. Let χ1 : (Z/3Z)n = ⟨g1, . . . , gn⟩ → µ3 be the character defined by
χ1(g1) = ω and χ1(gj) = 1 for j = 2, . . . , n, and let χ2 : (Z/3Z)n = ⟨g1, . . . , gn⟩ → µ3

be the character defined by χ2(g1) = ω2 and χ2(gj) = 1 for j = 2, . . . , n. Then, by

writing out ΦDα − ωΦ(χ1)
Dα

explicitly, we see that ord3

 ∑
nγ<nα

γj=1

L(ψ
D2

γ
,1)

Ω

 > 1
2(nα + 1) for

any j = 1, . . . , n, and similarly ord3

 ∑
nγ<nα

γj=2

L(ψ
D2

γ
,1)

Ω

 > 1
2(nα + 1) for any j = 1, . . . , n.

Now let χ2 be the character defined by g1 7→ ω, g2 7→ ω and gj 7→ 1 for j ̸= 1, 2,
and let χ3 be the character defined by g1 7→ ω2, g2 7→ ω and gj 7→ 1 for j ̸= 1, 2. Then
an easy calculation gives

(Φ(χ2)
Dα
− ωΦ(χ3)

Dα
)− (ΦDα − ωΦ(χ1)

Dα
) = 3ω

∑
nβ<nα

β1=0,β2=1

LSα(ψD2
β
, 1)

Ω − 3
∑

nβ<nα

β1=0,β2=2

LSα(ψD2
β
, 1)

Ω

− 3
∑

nβ<nα

β1=1,β2=0

LSα(ψD2
β
, 1)

Ω + 3ω2 ∑
nβ<nα

β1=1,β2=1

LSα(ψD2
β
, 1)

Ω

+ 3ω2 ∑
nγ=nα

γ1=1,γ2=1

L(ψD2
γ
, 1)

Ω .
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So we have

ord3

 ∑
nγ=nα

γ1=1,γ2=1

L(ψD2
γ
, 1)

Ω

 >
1
2(nα + 1).

Similarly, we can show

ord3

 ∑
nγ=nα

γi=ei,γj=ej

L(ψD2
γ
, 1)

Ω

 >
1
2(nα + 1)

for any ei, ej ∈ {1, 2} with i ̸= j. Now we claim the following:

Lemma 2.3.14. Let γ ∈ (Z/3Z)n be such that nγ = nα. Then for any J ⊂ {1, . . . , n}
and any ej ∈ {1, 2} for j ∈ J , we have

ord3

 ∑
γj=ej

j∈J

L(ψD2
γ
, 1)

Ω

 >M,

where M ∈ Q is such that ord3

 ∑
γ∈(Z/3Z)n

nγ=nα

L(ψ
D2

γ
,1)

Ω

 >M .

Proof. We prove this by induction on |J |. The cases |J | = 1, 2 were established above.
Given J ⊂ {1, . . . , n} and ej ∈ {1, 2} for j ∈ J , let XJ denote the sum

XJ :=
∑
γj=ej

j∈J

L(ψD2
γ
, 1)

Ω .

Now suppose the lemma is true for any J ⊂ {1, . . . , n} with |J | = k > 1. Then let
|J | = k + 1, and without loss of generality, we may assume J = {1, . . . , k + 1}. Pick
ej ∈ {1, 2} for j ∈ J . Then by the induction hypothesis, ord3(X{1,...,k}) > M and
ord3(X{2,...,k+1}) >M . Now,

X{1,...,k} −X{2,...k+1} =
∑

γj=ϵjj∈{2,...k}
γ1=e1,γk+1 ̸=ek+1

L(ψD2
γ
, 1)

Ω −
∑

γj=ϵjj∈{2,...k}
γ1 ̸=e1,γk+1=ek+1

L(ψD2
γ
, 1)

Ω

= A−B,
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complex multiplication by the ring of integers of Q(
√
−3)

say. Now, A + B + XJ = X{2,...,k} so ord3(A + B + XJ) > M . On the other hand,
X{1,...k} +X{2,...k+1} = A+B + 2XJ so ord3(A + B + 2XJ) > M . It follows that
ord3(XJ) >M as required.

Hence applying the above lemma with J = {1, . . . , n}, we see that for any γ ∈
(Z/3Z)n and nγ = nα, we have

ord3

L(ψD2
γ
, 1)

Ω

 >
1
2(nα + 1)

and the result follows.

The following is an immediate consequence of Theorem 2.3.13.

Theorem 2.3.15. Let D > 1 be an integer which is a cube-free product of cubic-special
primes. Then

ord3
(
L(alg)

(
E(D2), 1

))
> k(D) + 1,

where k(D) is the number of distinct rational prime factors of D.

Proof. The number of distinct primes in K dividing D is twice the number of distinct
rational primes dividing D, so by Theorem 2.3.13,

ord3
(
L(alg)

(
ψD2 , 1

))
>

1
2(2(k(D) + 1)) = k(D) + 1

2 .

But we know L(alg)
(
ψD2 , 1

)
∈ Q, so ord3

(
L(alg)

(
ψD2 , 1

))
> k(D) + 1 as required.

Remark 2.3.16. The bound in Theorem 2.3.15 is sharp. For example, let π = 28+27ω
and let D = N(π) = 757, which is a rational prime. Then we have L(alg)(E(D2), 1) = 9
so ord3

(
L(alg)(E(D2), 1)

)
= 2.

In fact, the numerical examples listed in Appendix B suggest that Theorem 2.3.15
is true whenever D > 1 is an odd integer congruent to 1 modulo 9 whose prime factors
are congruent to 1 modulo 3. Finally, we note that the condition D ≡ 1 mod 9 is not
sufficient. Indeed, for D = 55 we have L(alg)(E(D2), 1) = 3.



Chapter 3

Descent Theory

3.1 Introduction

Take q to be any prime number with q ≡ 7 mod 8. Let K = Q(√−q), and fix an
embedding K ↪→ C. Let E be an elliptic curve over C with EndC(E) = O, the ring of
integers of K. Since K has prime discriminant, the class number, which we denote by
h, is odd. In the case q = 7, we can take E to be any quadratic twist of the elliptic
curve A = X0(49) with equation

A : y2 + xy = x3 − x2 − 2x− 1.

In this case, we have the following result due to Gonzalez-Avilés and Rubin, using
Iwasawa theory.

Theorem 3.1.1. Let E be a quadratic twist of the elliptic curve A = X0(49). If
L(E/Q, 1) ̸= 0, then the full Birch–Swinnerton-Dyer conjecture holds for E.

The proof relies heavily on the fact that 2 is a potentially ordinary prime for E.
This is the only family of quadratic twists of elliptic curves with complex multiplication
defined over Q for which 2 is a potentially ordinary prime, since q = 7 is the only case in
which K has class number one. In general, the theory of complex multiplication tells us
that the modular invariant j(O) is a real number which satisfies an irreducible equation
of degree h over K, and the Hilbert class field H of K is given by H = K(j(O)). Given
a rational prime p, the theory of complex multiplication tells us that E has potentially
good ordinary reduction at all primes of H above p if and only if p splits in K.

Definition 3.1.2. We say a prime number p satisfies the good ordinary hypothesis for
E if E has good ordinary reduction at all primes of H above p, and p splits in K.
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From now on, let p be a prime number satisfying the good ordinary hypothesis for
E, and write pOK = pp∗. We also define

J = H ∩ R = Q(j(O)),

which satisfies [H : J ] = 2. Then for any prime number q with q ≡ 7 mod 8,
Gross showed that there exists an elliptic curve A(q) which is defined over J with
EndH(E) = O, such that in the simplest case q = 7 we have A(7) = X0(49). We define
A(q) by constructing a Grössencharacter ψq of H. Let a be an integral ideal of H.
Define ψq to be the unique Grössencharacter with conductor (√−q) such that, if a is
an integral ideal of H with (a, q) = 1, then

ψq(a) = α,

where α is the unique generator of the principal ideal NH/K(a) which is a square in
O/
√
−qO. In particular, we have

σ(ψq) = ψq for all σ ∈ Gal(H/Q).

This defines an isogeny class of elliptic curves defined over H with Grössencharacter
ψq, j-invariant equal to j(O) and complex multiplication by O. The following theorem
of Gross shows that we can pick out a special curve A(q) in this isogeny class.

Theorem 3.1.3. There exist a unique elliptic curve A(q) defined over J with Grössen-
character ψA(q)/H = ψq such that EndH(A(q)) = O, j(A(q)) = j(O) and the minimal
discriminant ideal is equal to (−q3).

We will see in Lemma 3.1.9 that A(q) is isogeneous to its conjugates A(q)σ with
σ ∈ Aut(H), hence it is a Q-curve.

In addition, Gross found an explicit equation for A(q) over J . Let us consider a
generalised Weierstrass equation of A(q) of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with ai ∈ H. Let ∆(A(q)) denote the discriminant for this equation. We will show
that we can have ai ∈ J with ∆(A(q)) = −q3. In order to do this, given an integral
ideal a of O, let σa denote the image of a via the Artin isomorphism from the ideal
class group of K to Gal(H/K), and let λ(a) denote the unique isogeny from A(q) to
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B = A(q)σa of degree Na defined over H, characterised by

λ(a)(u) = σa(u)

for any u ∈ A(q)[c] with (c, a) = 1. Let x′, y′ be the coordinates of any generalised
Weierstrass equation for B, and let ∆(B) be the discriminant of this equation. We
write

ωA(q) = dx

2y + a1x+ a3
, ωB = dx′

2y′ + a′
1x

′ + a′
3

for the Néron differentials. Then we see that the value Λ(a) ∈ H× defined by

λ(a)∗(ωB) = Λ(a)ωA(q)

is such that ∆(B)Λ(a)12 is independent of the choice of Weierstrass equation for
B. Further, it is shown in [3, Appendix, Theorem 8] that there exists a unique
cA(q)(a) ∈ H× such that cA(q)(a) gives a canonical 12th root in H of

∆(A(q))deg λ(a)

∆(B)Λ(a)12 = ∆(A(q))Na−1

Λ(a)12 .

Taking appropriate values for a, we see in particular that ∆(A(q)) has a 6th root in H.
Now, recall that

j(A) = c3
4

∆(A(q)) = 1728 + c2
6

∆(A(q)) ,

where c4, c6 ∈ H are the values defined in [13, §1]. This shows that j(A(q)) has a cube
root in H and j(A(q))− 1728 has a square root in H. Note that the only roots of unity
in H are ±1, so j(A(q)) in fact has a cube root in J . Now we have the following.

Theorem 3.1.4. The curve A(q) has a model over J

y2 = x3 + mq

24 · 3x−
nq2

25 · 33 where (3.1.1)

m3 = j(A(q)) and n2 = j(A(q))− 1728
−q

,

with discriminant equal to −q3. Here, we take the positive square root for n.

Proof. The arguments above show that m ∈ J , and n ∈ H since we also have
√
−q ∈ K ⊂ H. But j(A(q))− 1728 and −q are both negative, so n ∈ J as well. An

easy computation then shows that indeed the curve defined by equation (3.1.1) has
discriminant −q3 and j–invariant equal to j(A(q)). Now, [14, Proposition 3.5] shows
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that there is an isomorphism over J from this curve to A(q). This concludes the proof
of the theorem.

The coefficients of the (3.1.1) are integral in J , expect perhaps at 2 and 3. It is not
known in general how to write a global minimal equation for A(q) overJ explicitly for
q > 7, although Gross has shown that it exists over J (see [14, Proposition 3.2]).

A classical 2-descent shows that, for A(7) = X0(49), we have

A(7)(Q) = Z/2Z, A(7)(K) = Z/2Z× Z/2Z, X(A(7)/Q)(2) = 0.

Gross generalised this result to show that, for all q ≡ 7 mod 8, we have [13, Theorem
22.4.1]:

A(q)(J) = Z/2Z, A(q)(H) = Z/2Z× Z/2Z, X(A(q)/J)(2) = 0.

There is one additional property of the curves A(q) which is important in carrying
out arguments of Iwasawa theory for them. Let A(q)tor denote the torsion subgroup of
A(q)(J). It is clear from the theory of complex multiplication that H(A(q)tor) is an
abelian extension of H. We have the following stronger result:

Theorem 3.1.5. The field H(A(q)tor) is an abelian extension of K.

Proof. Let ϕA(q) be a Grössencharacter of K with conductor (√−q) such that, if b is
an integral ideal of K with (b, q) = 1,

ϕA(q)(b) = β

where βh = α is in K∗, (α) = bh and α is a square mod √−q. Then ϕA(q) satisfies

ψA(q)/H = ϕA(q) ◦ NH/K .

A theorem of Shimura [19, Theorem 7.44 ] states that the existence of such a Grössen-
character ϕA(q) is equivalent to H(A(q)tor) being an abelian extension of K.

In what follows, we want to consider the arithmetic of the Birch–Swinnerton-Dyer
conjecture for as large class as possible of quadratic twists of the curve A(q) defined over
J . In addition, it will be vital that such a quadratic twist E is such that H(Etor)/K
is an abelian extention. From now on, assume E is a quadratic twist of A(q) by a
quadratic extension of H of the form H(

√
λ), where λ is some non-zero element of K

and the discriminant of H(
√
λ)/H is prime to 2q. Thus, in particular, E has good
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ordinary reduction at the primes of H above 2. We will show that under this condition,
the extension H(Etor)/K is abelian.

Theorem 3.1.6. We have

ψE/H = ϕK ◦ NH/K ,

where ϕK is a Grössencharacter of K.

Proof. We have remarked that ψA(q)/H = ϕA(q) ◦NH/K . Now, E is a twist of A(q) by a
quadratic extension M of H which we assumed to be of the form HM where M is a
quadratic extension of K. Let χM (resp. χM) be the quadratic character of H (resp.
K) defining M (resp M). Then we have χM = χM ◦ NH/K by class field theory. Now,
since M/H has discriminant prime to p, we have ψE/H = ψA(q)/HχM. It follows that
we can take ϕK = ϕA(q)χM .

Applying [19, Theorem 7.44] to the above theorem, we immediately obtain:

Corollary 3.1.7. The field H(Etor) is abelian over K.

Write G for the Galois group of H over K and g for the conductor of ϕK .

Lemma 3.1.8. For all a ∈ K with (a, g) = 1, we have

ϕK(a) = ϕK(a).

Proof. Since E is defined over J , we have ψE/H = ρ◦ψE/H◦ρ−1, where ρ denotes complex
conjugation. This gives (ρ ◦ ϕK ◦ ρ−1) ◦NH/K = ϕK ◦NH/K , and ρ ◦ ϕK ◦ ρ−1 = ϕK · σ
for some σ ∈ G. Since σ(a) = σ(a) for any σ, we have ρ ◦ σ ◦ ρ−1 = σ, and thus
conjugating ϕK by ρ twice gives ϕK = ϕK · σ2. This gives σ2 = 1, and finally σ = 1
since [H : K] is odd by assumption.

Lemma 3.1.9. E is isogeneous over H to all of its conjugates under G.

Proof. Suppose σ ∈ G. Then the Grössencharacter of Eσ over H is ψE/H ◦ σ−1. But,
since ψE/H = ϕK ◦NH/K , we see that ψE/H = ψEσ/H . Hence, E and Eσ have isomorphic
Galois representations on their Tate modules, and so, they are isogenous over H by
Faltings’ theorem [9, Corollary 3].

In particular, this shows that A(q) is isogeneous to all of its conjugates under
Gal(H/Q), since it is defined over J , the fixed field of H under complex conjugation
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ρ ∈ Gal(H/Q). Given an ideal b of O prime to the conductor g of the Grössencharacter
ϕK , let σb prime to g, let σb be the Artin symbol of b in H/K. Then in view of Lemma
3.1.9, there exists a unique H-isogeny

λEσ(b) : Eσ → Eσσb

whose kernel is Eσ
b . This is obtained by restricting the Serre–Tate character of the

abelian variety B/K [18, Theorem 10], which is the restriction of scalars of E from H

to K. See [13] for more detailed account.

3.2 Descent theory over H

Recall that p is a prime satisfying the good ordinary hypothesis for E. We write
pO = pp∗, and write π for the element in O with ph = πO, where h = [H : K]. We
first discuss descent theory for E over H. We need the following notation. If α is
any non-zero element in O, we write Eα = ker

(
E(H) [α]−→ E(H)

)
for the kernel of the

multiplication-by-α map [α]. Similarly, if a is any non-zero ideal of O, we write

Ea =
⋂

α∈a\{0}
Eα.

As O-modules, we have Eα = O/αO and Ea = O/a. Let P denotes the set of primes
of H lying above p. If v is any place of H, we write Hv for the completion of H at v,
and write Ov for its ring of integers.

Before proceeding to study descent over various extensions of H, we make an
observation that in the case q = 7, we have H = K, so that for every place v of H
where E has good reduction, the formal group Ê of E at v is a Lubin–Tate group of E
over Hv. However, if q > 7, this is no longer true because ψE/H(v) will no longer be a
local parameter of Hv is general. We first briefly discuss how one handles with this
situation.

Let v be any place of H lying above a prime w of K such that E has good reduction
at v, and let σv ∈ G be the Frobenius at v. Let λE(v) denote the unique isogeny

λE(v) : E → Eσv ,

induced by the isogeny λE(w). We remark that the isogeny λE(v) is defined by the same
formulae which define the isogeny λ(v) : A→ Aσv . To see this, recall the notations in
the proof of Theorem 3.1.6 and let τ be the nontrivial element of Gal(M/H). Then
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E(H) is isomorphic to the −1 eigenspace for the action of Gal(M/H) on A(M), i.e.
the points on A(M) on which τ acts as −1. But we have λ(v)(−P ) = −λ(v)(P ) since
isogeny preserves the group law, and also we clearly have χM(τ) = −1. Hence λ(v) is
independent of twist by χM.

This induces a homomorphism

λ̂E(v) : Ê → Êσv ,

of formal groups of the curves E and Eσv at v, defined over the ring of integers Ov of
Hv. Thus, we can view λ̂E(v) as an element of Ov[[t]] satisfying

λ̂E(v)(t) ≡ Λ(v)t mod degree 2, λ̂E(v) ≡ tq mod v,

where Λ(v) is an element of Ov and q denotes the cardinality of the residue field of the
restriction w of v to K. Now, we can apply σiv for i = 1, . . . , fv, where fv denotes the
residue degree of v in H/K, to λE(v) and λ̂E(v). Then we see that

NHv/KwΛ(v) = ψE/H(v),

since ∏fv
i=1 σ

i
vλE(v) is the unique element of EndH(E) = O which reduces modulo v to

the Frobenius endomorphism at v. Thus Ê is not itself a Lubin–Tate group, but Ê
together with the homomorphism λ̂E(v) : Ê → Êσv is a relative Lubin–Tate group,
which was studied by de Shalit in [8, I §1]. The theory of Lubin–Tate groups generalises
to relative Lubin–Tate groups, and in particular, we have the following:

Theorem 3.2.1. Let v be any place of H where E has good reduction, and let w be its
restriction to K. Then for any n > 1, the extension Hv(Ewn)/Hv is totally ramified,
and its Galois group is isormphic to (O/wn)×.

Now, E has good ordinary reduction at the primes of H above p. We define
Fn = H(Epn), and F = F2 or F1, according as p = 2 or p > 2. Set

F∞ = H(Ep∞), H = Gal(F∞/H).

Then by Theorem 3.2.1, we have a character χp : H→ O×
p = Z×

p giving the action of H
on Ep∞ , which is an isomorphism. We write H = ∆×Γ, where ∆ = Gal (F/H), is cyclic
of order 2 or p− 1 according as p = 2 or p > 2 by Theorem 3.2.1 and Γ = Gal (F∞/F )
is isomorphic to Zp.

Theorem 3.2.2. E has good reduction everywhere over F .
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Proof. Let εE/H (resp. εE/F ) be the Serre–Tate homomorphisms attached to E over H
(resp. F ). Thus εE/F = εE/H ◦ NF/H , where NF/H : A×

F → A×
H is the norm map from

the idèle group of F to the idèle group of H. Now, E has good reduction at all places
of F above p by hypothesis. Let v be any place of F which does not lie above p, and
let Uv be the units of the ring of integers of the completion of F at v. Then by [18, §7,
Corollary 1] E will have good reduction at v if and only if εE/F (Uv) = 1. Let w be the
restriction of v to H. Then

εE/F (Uv) = εE/H(NFv/Hw Uv).

Let ξH : A×
H → Gal(Hab/H) denote Artin’s global recipricity map. Then, by class

field theory, ξH(NFv/Hw Uv) fixes F . Hence our lemma will follow from the following
lemma.

Lemma 3.2.3. If x is a unit in the ring of integers Uw of Hw and ξH(x) fixes F , then
εE/H(x) = 1.

Proof. By local class field theory, ξH(Uw) is the inertia subgroup of w in Gal(Hab/H).
Since E has potential good reduction at w, it follows that χp(ξH(x)) is a root of unity
in O×

p for all x in Uw by the criterion of Néron–Ogg–Shafarevich. On the other hand,
for all x in A×

H which fix F , we must have χp(ξH(x)) belongs to 1 + pi where i = 2 if
p = 2 and i = 1 otherwise. But 1 + pi contains no root of unity other than 1. Hence
we have χp(ξH(x)) = 1 when x lies in Uw. But εE/H(x) = χp(ξH(x)), completing the
proof.

For each n > 1, we introduce the following Selmer groups:

Selπn(E/H) = ker
(
H1(H,Eπn)→

∏
v

(H1(Hv, E))πn

)

Sel′πn(E/H) = ker
H1(H,Eπn)→

∏
v/∈P

(H1(Hv, E))πn

 .
We define

Selp∞(E/H) = lim
−→

Selπn(E/H)

Sel′p∞(E/H) = lim
−→

Sel′πn(E/H),

where the inductive limits are taken with respect to the inclusions Eπn → Eπn+1 .
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We also let T = P ∪B where B denotes the set of primes of H where E has bad
reduction, and similarly define

Sel(T )
πn (E/H) = ker

H1(H,Eπn)→
∏
v/∈T

(H1(Hv, E))πn


Sel(T )

p∞ (E/H) = lim
−→

Sel(T )
πn (E/H).

Lemma 3.2.4. If v ∈ T , then #(H1(Hv, E)(p)) = #(Ep∗∞(Hv)), and:

(i) If v ∈ B, #(H1(Hv, E)(p)) = 2 or 1, according as p = 2 or p > 2.

(ii) If v ∈ P , then #(H1(Hv, E)(p)) =
∣∣∣(1− ψE/H(v)

Nv

)∣∣∣−1

p
.

Proof. By Tate local duality, the dual of the discrete group H1(Hv, E) is E(Hv), and
this induces the duality between H1(Hv, E)πn and E(Hv)/π∗nE(Hv) for any positive
integer n. On the other hand, let l be the prime number below v. Then by [20, V.II
6.3], E(Hv) contains a subgroup of finite index isomorphic to (Ov,+). Hence we have
E(Hv) = E(Hv)tor ⊕ Z[Hv :Ql]

l , and v - π∗ so E(Hv)/π∗nE(Hv) ≃ Eπ∗n(Hv). Taking the
inductive limit proves the first statement.

Assume first that v ∈ B. Let m be such that Ep∞(Hv) = Epm . In particular,
Hv = Hv(Epm), so v splits completely in H(Epm)/H. But Theorem 3.2.2 tells us
that v ramifies in F/H, since the reduction type is stable under unramified field
extensions [20][§5, Proposition 5.4]. It follows that m 6 0 (resp. m 6 1) if p > 2
(resp. p = 2). Hence if p > 2, we have m = 0, and in the case p = 2, we also have
Ep = Ep(H) ⊂ Ep(Hv) so m > 1, proving m = 1 in this case.

Now assume v ∈ P . Then π∗n is an automorphism of the formal group of E at v,
and reduction modulo v induces an isomorphism

lim←−E(Hv)/π∗nE(Hv) ∼= Ẽ(kv)(p),

where Ẽ/kv denotes the reduction of E modulo v. Now, ψE/H(v) is the unique element
of O whose reduction modulo v is the Frobenius endomorphism of Ẽ. Hence

#(Ẽ(kv)) = (ψE/H(v)− 1)(ψE/H(v)− 1),

where ψE/H denotes the complex conjugate of ψE/H . But ψE/H − 1 is a unit at p since
(ψE/H(v)) = pfv , where fv = [kv : Fp]. Thus

ordp(#(Ẽ(kv))) = ordp(ψE/H(v)− 1).
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The result follows by dividing this through by ψE/H(v) and noting Nv = ψE/H(v)ψE/H(v).

We have an exact sequence

0→ Selp∞(E/H)→ Sel(T )
p∞ (E/H) ϕ−→

∏
v∈T

H1(Hv, E)(p). (3.2.1)

Thus we have shown the following.

Corollary 3.2.5. Selp∞(E/H) is finite if and only if Sel(T )
p∞ (E/H) is finite.

From now on, we make the following assumptions.

Assumption. L(E/H, 1) ̸= 0 and Sel′p∞(E/H) is finite.

The second assumtion will be guaranteed by the first when combined with the main
conjecture for E/H, which we will discuss in Chapter 7. Note also that the finiteness
of Sel′p∞(E/H) implies the finiteness of Selp∞(E/H).

Lemma 3.2.6. For any n > 1, we have

#(Selπn(E/H)) =

 #(Ep)#(X(E/H))πn if p = 2
#(X(E/H))πn if p > 2.

Proof. We show This follows immediately from the exact sequence

0→ E(H)/πnE(H)→ Selπn(E/H)→X(E/H)πn → 0 (3.2.2)

and the fact that Ep∞(H) = Ep if p = 2 and Ep∞(H) is trivial if p > 2 which follows
from the fact that ∆ has order 2 when p = 2 and ∆ = (O/p)× when p > 2.

Proposition 3.2.7.
Selp∞(E/H) = X(E/H)(p)

Proof. By passing (3.2.2) to the direct limit, we find the exact sequence

0→ E(H)⊗ (Kp/Op)→ Selp∞(E/H)→X(E/H)(p)→ 0,

where E(H)⊗ (Kp/Op) is equal to the direct sum of rank(E(H)) copies of Kp/Op. But
Selp∞(E/H) is assumed to be finite so E(H) is finite, so the direct sum is equal to
zero.
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Hence it follows from (3.2.1) that

#(Sel(T )
p∞ (E/H)) = #(X(E/H)(p))#(imϕ).

Now,
#(imϕ) = #(

∏
v∈T

H1(Hv, E)(p))/#(cokerϕ),

and we calculated #(H1(Hv, E)(p)) for v ∈ T in Lemma 3.2.4.

Lemma 3.2.8.
#(cokerϕ) = #(Ep∗∞(H)),

which is equal to 2 if p = 2 and 1 if p > 2.

Proof. By Corollary 3 on p.123 of [16], cokerϕ is isomorphic to the dual of Selπ∗∞(E/H),
which we denote by Sπ∗∞(E/H). Now, by passing (3.2.2) to the projective limit, we
find Sπ∗∞(E/H) fits in the exact sequece

0→ E(H)⊗Op∗ → Sπ∗∞(E/H)→ Tp∗(X(E/H))→ 0,

where Tp∗(X(E/H)) is the projective limit of X(E/H)π∗n . Since X(E/H) is assumed
to be finite, this is equal to zero. Also, E(H) ⊗ Op∗ is equal to the direct sum of
rank(E(H)) copies of Op∗ and the finite group Ep∗∞(H). But E(H) is assumed to be
finite, hence E(H)⊗Op∗ is equal to Ep∗∞(H). The rest is clear since Ep∗∞(H) = Ep∗

if p = 2 and trivial if p > 2.

Theorem 3.2.9. We have

(i) If p = 2, then

#(Sel(T )
p∞ (E/H)) = 2b−1 ·

∏
v∈P

∣∣∣∣∣
(

1− ψE/H(v)
Nv

)∣∣∣∣∣
−1

p

·#(X(E/H)(p)),

where b = #(B)

(ii) if p > 2, then

#(Sel(T )
p∞ (E/H)) =

∏
v∈P

∣∣∣∣∣
(

1− ψE/H(v)
Nv

)∣∣∣∣∣
−1

p

·#(X(E/H)(p)).



46 Descent Theory

Proof. By Lemma 3.2.4, we have

#(
∏
v∈T

H1(Hv, E)(p)) =


2b ·∏v∈P

∣∣∣(1− ψE/H(v)
Nv

)∣∣∣−1

p
if p = 2∏

v∈P

∣∣∣(1− ψE/H(v)
Nv

)∣∣∣−1

p
if p > 2.

In addition, by Lemma 3.2.8

#(Sel(T )
p∞ (E/H)) = #(X(E/H)(p)) ·#(

∏
v∈T

H1(Hv, E)(p))/#(Ep∗∞(H)),

and #(Ep∗) is equal to 2 if p = 2 and 1 if p > 2. Hence the result follows.

3.3 Descent theory over extensions of H

We set

F =

 H(Ep2) if p = 2
H(Ep) if p > 2.

Recall that F∞ = H(Ep∞) and

H = Gal(F∞/H).

Recall also that we have an isomorphism χp : H→ O×
p = Z×

p giving the action of H on
Ep∞ , and H = ∆× Γ, where ∆ = Gal (F/H), is cyclic of order 2 or p− 1 according as
p = 2 or p > 2, and Γ = Gal (F∞/F ) is isomorphic to Zp.

Write PF for the set of primes of F above p, and define

Sel′p∞(E/F ) = ker
H1(F,Ep∞)→

∏
v/∈PF

H1(Fv, E)
 .

Consider the exact sequence

0→ H1(∆, Ep∞(F )) inf−→ H1(H,Ep∞) res−→ H1(F,Ep∞)∆,

and also write res for the same map restricted to Sel(T )
p∞ (E/H) ⊂ H1(H,Ep∞).

Theorem 3.3.1. (i) If p > 2, we have Sel(T )
p∞ (E/H) = Sel′p∞(E/H), and the restric-

tion map gives an isomorphism

Sel(T )
p∞ (E/H) = Sel′p∞(E/F )∆.
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(ii) If p = 2, the restriction map satisfies res(Sel(T )
p∞ (E/H)) ⊂ Sel′p∞(E/F )∆, and we

have an exact sequence

0→ H1(∆, Ep∞(F ))→ Sel(T )
p∞ (E/H) res−→ Sel′p∞(E/F )∆ → 0.

Proof. The proof of Theorem 3.3.1 is easy for p > 2, hence we shall omit the details in
this case. Now assume that p = 2. Then the following lemma shows that res surjects
onto Sel′p∞(E/F )∆. Recall first that the action of ∆ on H1(Gal(F/F ), Ep∞) is given
by inner automorphisms, i.e., given τ ∈ ∆, ξ ∈ H1(Gal(F/F ), Ep∞), σ ∈ Gal(F/F )
and any cocycle f representing ξ, we have

τ · f(σ) = τf(τ−1 · σ) = τf(τ−1στ),

where τ is a lift of τ in Gal(F/F ). The next result a modification of [11, Lemma2.3.5],
which was left incomplete, because the fact that the cohomology class is invariant does
not mean that one can choose a cocycle which is invariant under the action of ∆. This
problem has been fixed in the following proof.

Lemma 3.3.2. Let p = 2. Then we have Sel′p∞(E/F )∆ ⊂ res(H1(H,Ep∞)).

Proof. Choose a prime q ∈ B, and fix a prime Q of F above q. Let Iq ⊂ Gal(F/H) be
the corresponding inertia subgroup. Let τ denote the unique element of H which acts
as multiplication by −1 on Ep∞ . Then τ has order 2 and its restriction to H generates
∆. Also q ramifies in F/H so τ generates the inertia group of q in F/H, hence we can
find a lifting τ of τ in Iq. Then τ 2 restricted to F is τ 2 = id, so τ 2 ∈ Gal(F/F ) ∩ Iq.
Furthermore, we know that every ξp ∈ Sel′p∞(E/F )∆ is unramified at q since q - p.
Hence ξp ∈ ker(H1(Gal(F/F ), Ep∞) → H1(Gal(F/F ) ∩ Iq, Ep∞)), i.e. g(τ 2) = 0 for
any 1-cocycle g representing ξp.

Given x ∈ Ep∞ , let d(x) denote the 1-coboundary on Gal(F/H) defined by d(x)(σ) =
(σ − 1)x. Then we have τ · d(x) = d(τ(x)) = d(−x) = −d(x) (for any σ ∈ Gal(F/H),
we have τ · d(x)(σ) = τ(τ−1στ − 1)x = (σ− 1)τ(x)). Let ξp ∈ H1(F,Ep∞)∆ and pick a
1-cocycle g representing ξp. Then since ξp is ∆-invariant, we have (1− τ) · g = d(x) for
some x ∈ Ep∞ . Now we take y ∈ Ep∞ such that 2y = x and define f = g − d(y), then

(1− τ) · f = (g − d(y))− τ · (g − d(y))
= g − d(y)− (g − d(x)) + τ · d(y)
= g − d(y)− (g − d(x))− d(y)
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since τ · d(y) = −d(y) from above, and (1 − τ) · g = d(x) implies τ · g = g − d(x).
Therefore, we have (1− τ) · f = d(x)− 2d(y) = 0, hence we can pick f as the cocycle
representing ξp and f is invariant under the action of ∆.

It is clear that every element of Gal(F/H) can be written in the form στ i with
σ ∈ Gal(F/F ) and i ∈ {0, 1}. We now define the map

h : Gal(F/H)→ Ep∞

by h(στ i) = f(σ), and claim that this is an element of H1(H,Ep∞) which maps to ξp
under res. This map is well-defined, since h(τ i) = 0 for all i > 0. Indeed, it is clear
that h(τ i) = f(id) = 0 for i ∈ {0, 1} since H is a 1-cocycle, hence it suffices to show
h(τ 2) = f(τ 2) = 0, which we proved earlier. To see that h is a 1-cocycle, take ρ1 = σ1τ

i1 ,
ρ2 = σ2τ

i2 ∈ Gal(F/H). We need to show h(ρ1ρ2) = h(ρ1) + ρ1h(ρ2). Since Gal(F/F )
is a normal subgroup of Gal(F/H), we can find an element σ′

2 ∈ Gal(F/F ) such that
τ i1σ2 = σ′

2τ
i1 . Then h(ρ1ρ2) = h(σ1σ

′
2τ

i1+i2) = f(σ1σ
′
2) = f(σ1) + σ1f(σ′

2), where
the last equality follows from the fact that f is a 1-cocycle. Also, h(ρ1) + ρ1h(ρ2) =
f(σ1) + σ1τ

i1f(σ2), and since f is ∆-invariant, we have τ · f = f , and ∆ acts by
inner-automorphism so τ · f(σ) = τf(τ−1σ) = τf(τ−1στ). Therefore, τ i1f(σ2) =
f(τ i1σ2τ

−i1) = f(σ′
2τ

i1τ−i1) = f(σ′
2). Hence f(σ1) + σ1τ

i1f(σ2) = f(σ1) + σ1f(σ′
2), as

required. Finally, res(h(στ i)) = h(σ) = f(σ), so indeed res(h) = f .

We now finish the proof of Theorem 3.3.1. Recall that for a group profinite group G
and a G-module A, Ĥ0(G, A) is the modified 0-th cohomology group defined to be equal
to AG/NGA where NG : A→ A, a 7→ ∑

σ∈G
σa denotes the norm map. In addition, if G

is cyclic and A is finite, then we have H1(G, A) = Ĥ0(G, A) since the Herbrand quotient
is equal to 1. Hence, in order to work out the order of H1(G, A), we will calculate the
order of AG/NGA instead. First, we have H1(∆, Ep∞(F )) = H1(∆, Ep2) = Ĥ0(∆, Ep2)
because ∆ = Gal(F/H) is cyclic of order 2 by Theorem 3.2.1 and F = H(Ep2). We
have E∆

p2 = Ep. Now ∆ = {1, δ} where δ acts as −1 on Ep2 , so we have N∆(P ) =
P + (−1)P = O for all P ∈ Ep2 . Hence |H1(∆, Ep2)| = |Ep| = 2.

The fact that H1(∆, Ep2) injects into Sel(T )
p∞ (E/H) follows from the fact that

H1(Gal(FQ/Hq), E) = 0 (3.3.1)

for any prime q /∈ B and any prime Q of F above q. This is because E has good
reduction at q and FQ/Hq is unramified, which implies that NFQ/Hq is surjective. Hence
it remains to show res(Sel(T )

p∞ (E/H)) = Sel′p∞(E/F )∆. Given any prime Q of F and
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prime q of H lying below Q, we have the commutative diagram

H1(H,Ep∞) λq−→ H1(Hq, E)p∞

↓ res ↓ resQ
H1(F,Ep∞)∆ λQ−→ H1(FQ, E)∆

p∞ .

To show Sel′p∞(E/F )∆ ⊂ res(Sel(T )
p∞ (E/H)), take any x ∈ Sel′p∞(E/F )∆. Then

since H1(H,Ep∞) res−→ Sel′p∞(E/F )∆ is surjective by Lemma 3.3.2, there exists a ∈
H1(H,Ep∞) with x = res(a). Then for any prime q /∈ B of H and a prime Q of F
above q, we have

resQ(λq(a)) = λQ(x) = 0,

since x ∈ Sel′p∞(E/F )∆ ⊂ kerλQ. But resQ is injective by (4.1.8), so λq(a) = 0. Hence
a ∈ Sel(T )

p∞ (E/H), and x ∈ res(Sel(T )
p∞ (E/H)) as required. To show the other inclusion,

it suffices to show that for any prime q - p of H and Q of F lying above q we have
res(Sel(T )

p∞ (E/H)) ⊂ kerλQ. First let Q be a prime of F lying above q ∈ B. Then
we have shown that H1(Fq, E)p∞ = Ep in Lemma 3.2.4, and furthermore, we have
H1(∆Q, E)p∞ ≃ H1(∆Q, Ep∞) since E(FQ) = E(FQ)p∞ ⊕ A for a p-divisible group A.
So H1(∆Q, E)p∞ = Ep since ∆Q = ∆ for such Q. Hence resQ is the zero map. But
given any a ∈ Sel(T )

p∞ (E/H), the above diagram commutes so

λQ(res(a)) = resQ(λq(a)) = 0, (3.3.2)

giving res(Sel(T )
p∞ (E/H)) ∈ kerλQ as required. Finally, let Q be a prime of F lying

above q /∈ B. Then Sel(T )
p∞ (E/H) ⊂ kerλq, so for a ∈ Sel(T )

p∞ (E/H) (4.2.2) holds again,
and so res(Sel(T )

p∞ (E/H)) ⊂ kerλQ. This completes the proof of Theorem 3.3.1.

The following is an immediate consequence of Theorem 3.3.1.

Corollary 3.3.3. Sel′p∞(E/F )∆ is finite if and only if Selp∞(E/H) is.

Assuming p satisfies the good ordinary hypothesis for E, we have

#(H1(∆, Ep∞(F ))) = 1 or 2,

depending as p > 2 or p = 2. Hence combining Theorem 3.2.9 and Theorem 3.3.1, we
obtain:

Theorem 3.3.4. Let p be a prime satisfying the good ordinary hypothesis for E. Then
Sel′p∞(E/F )∆ is finite if and only if Selp∞(E/H) is finite. Moreover, if we assume that
E(H) and X(E/H)(p) are finite, then we have:
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(i) If p > 2, then

#(Sel′p∞(E/F )∆) =
∏
v∈P

∣∣∣∣∣
(

1− ψE/H(v)
Nv

)∣∣∣∣∣
−1

p

·#(X(E/H)(p))

(ii) If p = 2, then

#(Sel′p∞(E/F )∆) = 2b−2 ∏
v∈P

∣∣∣∣∣
(

1− ψE/H(v)
Nv

)∣∣∣∣∣
−1

p

·#(X(E/H)(p)),

where b = #(B).

We define the p∞-Selmer group Selp∞(E/F∞) by

Selp∞(E/F∞) = ker
(
H1(F∞, Ep∞)→

∏
w

H1(F∞,w, E)
)
.

We also define modified Selmer group

Sel′p∞(E/F∞) = ker
H1(F∞, Ep∞)→

∏
w-p
H1(F∞,w, E)

 .
The next result is [2, Lemma 8].

Theorem 3.3.5. We have Selp∞(E/F∞) = Sel′p∞(E/F∞).

Proof. It suffices to show that H1(F∞,P, E)(p) is trivial any place P of F∞ above p.
Let Fn,Pn denote the completion of Fn at the prime Pn of Fn lying below P. Then we
have ∪n>0Fn,Pn = F∞,P, so H1(F∞,P, E) = lim−→H1(Fn,Pn , E) where the limit is taken
with respect to the restriction. Recall that π is an element of O satisfying (π) = ph.
Let n be of the form n′h with n′ > 0. By Tate’s local duality, the Pontryagin dual of
H1(Fn,Pn , E)(p) is equal to

E(Fn,Pn) = lim←−E(Fn,Pn)/π∗mE(Fn,Pn),

where the limit is taken with respect to the norm map. Note that Pn lies above
p and p ≠ p∗, so π∗m is an automorphism of the group E1(Fn,Pn) of Fn,Pn-rational
points in the kernel of reduction modulo Pn. Thus reduction modulo Pn induces an
isomorphism E(Fn,Pn)/π∗mE(Fn,Pn) ∼= Ẽ(F̃n,Pn)/π∗mẼ(F̃n,Pn), where F̃n,Pn denotes
the residue field of Fn,Pn at Pn. Thus we have E(Fn,Pn) ≃ Ẽ(F̃n,Pn)(p) ≃ Ep∗∞(Fn,Pn).
This is a finite group of bounded order, since P is totally ramified in F∞,P/Fn,Pn , so the
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residue field F̃n,Pn is finite. So there exists m and n0 such that Ẽ(F̃n,Pn) = Ep∗m for all
n > n0. Take (Pn) ∈ lim←−E(Fn,Pn). Then Pn0 = [π∗m]Pn0+m = O, so in fact (Pn) = 0.
Therefore lim←−E(Fn,Pn) is trivial, and it immediately follows that H1(F∞,P, E)(p) is
trivial.

WriteX(F∞) = Gal(M(F∞)/F∞), whereM(F∞) is the maximal abelian p-extension
of F∞ unramified outside the primes of F∞ above p. Note that, by maximality, M(F∞)
is Galois over H, and we can define an action of H = Gal(F∞/H) on X(F∞) by

g · x = g̃xg̃−1,

where g̃ denotes any lifting of g in H to an element of Gal(M(F∞)/H). Let

Λ(Γ) = lim←−Zp[Γ/U ]

be the Iwasawa algebra of Γ. The continuous action of Γ on X(F∞) extends to an
action of Λ(Γ). The following classical result is well-known granted that E has good
reduction everywhere over F∞, and is omitted (see Theorem 9, Theorem 12 and Lemma
13 of [2]).

Theorem 3.3.6. We have

Selp∞(E/F∞) = Hom(X(F∞), Ep∞).

Furthermore, X(F∞) is a finitely generated torsion Λ(Γ)-module, and the restriction
map gives an isomorphism

Sel′p∞(E/F ) ∼−→ Selp∞(E/F∞)Γ.

We wish to find a criterion for when Sel′p∞(E/F )∆ is finite, and to compute its
order when it is finite. We will study this in more detail in Chapter 7 in order to state
the main conjecture for E/H. Before we do this, we will construct in the next chapter
the p-adic L-functions which appear in the statement of the main conjectures.





Chapter 4

Construction of the p-adic
L-functions

4.1 Construction of the p-adic L-function for F∞/F

We now construct the p-adic L-functions attached to E/H, which we shall subsequently
need to formulate the main conjectures. We will follow the ideas in [4], however, we
will also deal with the case p = 2, which cannot be found in literature.

Fix once and for all an embedding of H into C. Write x, y for the coordinates of
E/H. We fix a generalised global minimal Weierstrass equation for E over H, which
exists by [14, Proposition 3.2], to be

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (4.1.1)

Recall that G denotes the Galois group of H over K. Then applying σ ∈ G to (4.1.1)
gives a generalised global minimal Weierstrass equation for Eσ/H. Let

ωσ = dx

2y + aσ1x+ aσ3

be the Néron differentials on Eσ, and note that the discriminant of this equation ∆(Eσ)
is equal to (∆(E))σ = ∆(E). Let g denote the conductor of ϕK , so that (g, 2p) = 1,
and let f = gh, so that f is principal. Let L (resp. Lσ) be the period lattice of the
Neron differential on our global minimal Weierstrass equation for E (resp. Eσ). Then
there exists Ω∞ ∈ C× such that L = Ω∞O. The uniformisation Φ : C/L ∼−→ E(C) is
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accomplished through

Φ(z, Lσ) =
(
℘(z, Lσ)− ((aσ1 )2 + 4aσ2 )

12 ,
1
2

(
℘′(z, Lσ)− aσ1

(
℘(z, Lσ)− ((aσ1 )2 + 4aσ2 )

12

)
− aσ3

))
.

Given a principal ideal a = (α) with α ∈ O and (a, 6f) = 1, define

Ra(P ) := cE(a)
∏
U

(x(P )− x(U))−1 ,

where U runs over any set of representatives of Ea\{O} modulo {±1}, and cE(a) is
an element of H whose 12-th power is equal to ∆(E)Na−1/Λ(a)12, where Λ(a) ∈ H×

satisfies
λE(a)∗(ωσa) = Λ(a)ω.

Thus Ra(P ) is a rational function on E with coefficients in H. Let us write P for the
generic point on Eσ with coordinates (x, y). Applying σ ∈ G to the coefficients of
Ra(P ), we obtain a rational function Rσ

a (P ) on the curve Eσ/H.

Proposition 4.1.1. Let b be an integral ideal of K with (b, a) = 1. Then we have

Rσσb
a (λEσ(b)(P )) =

∏
R∈Eσ

b

Rσ
a (P ⊕R).

Proof. Recall that the kernel of λEσ(b) is Eσ
b , and λEσ(b) is injective on Eσ

a since
(b, a) = 1. Hence, the left hand side and the right hand side of the above equation
have the same divisor, and

Rσσb
a (λEσ(b)(P ))∏

R∈Eσ
b

Rσ
a (P ⊕R)

is a non-zero element of H. It can be shown, thanks to the unique scaling factor cE(a)
in our definition of the rational functions, that this constant is equal to 1. See [3,
Appendix, Theorem 4] for details.

We fix a generator f of the ideal f, and define Q = Φ(Ω∞/f, L) so that Q is a
primitive f -division point on E. We then define

Ra(P ) =
∏

τ∈Gal(H(Ef)/H)
Ra(P ⊕Qτ ),
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where ⊕ denotes the addition on E. Thus Ra(P ) is also a rational function on E over
H. Similarly, we define

Rσ
a (P ) =

∏
τ∈Gal(H(Ef)/H)

Rσ
a (P ⊕ (Qσ)τ ),

a rational function on Eσ over H. Hence, defining

Ψσ
a (P ) = Rσ

a (P )Np/Rσσp
a (λEσ(p)(P )),

it follows that ∏
R∈Eσ

p

Ψσ
a (P ⊕R) = 1. (4.1.2)

Now, we fix an embedding iv : K → Kp, and we let v denote the prime of H above
p determined by iv. We write Ov for the ring of integers of Hv.

Recall that t = −x
y

is a parameter for this formal group.

Lemma 4.1.2. Let Bσ
a (t) denote the t-expansions of Rσ

a (P ). Then Bσ
a (t) is a unit in

Ov[[t]].

Proof. We claim that, if V denotes any of the points (Qσ)τ , then

x(P ⊕ V )− x(U),

where U is any non-zero element of Eσ
a , has a t-series expansion which is a unit in

OB[[t]], where B denotes any prime of H(U, V ) above v, and OB is the ring of integers
of the completion of H(U, V ) at this prime. Indeed, we have explicitly

x(P ⊕ V )− x(U) = D(P, V )2 + aσ1D(P, V )− aσ2 − x(P )− x(V )− x(U),

where
D(P, V ) = y(P )− y(V )

x(P )− x(V ) .

Note that x(V ), y(V ) are integral at B because (f, p) = 1 by assumption. Similarly,
the expansions of x(P ) and y(P ) as power series in t begin

x(P ) = 1
t2
− aσ1

t
− aσ2 + · · · , y(P ) = − 1

t3
+ aσ1
t2

+ aσ2
t

+ · · · ,

where the coefficients of all the higher order terms lie in OB. Note that x(U) is integral
at primes of H(U, V ) above B because (a, p) = 1. Thus we see that the coefficients of
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the t-series expansion of x(P ⊕V )−x(U) all belong to OB. Moreover, x(P ⊕V )−x(U)
is holomorphic at t = 0, and so there are no negative powers of t in its t-series expansion.
Moreover, we have

D(P, V ) = −1
t
− x(V )t+ · · · ,

so the constant term of the t-series expansion of is x(P ⊕ V )− x(U) is

x(V )− x(U).

We claim this must be a unit at B. If not, we would have x(Ṽ ) = x(Ũ), where ˜
denotes the reduction modulo B. But this would imply that Ṽ = ±Ũ , whence we
would have one of V ±U must lie on the formal group of Eσ at v. But this is impossible
because (pa, f) = 1. The assertion of the lemma now follows immediately, on noting
that cE(a) is a unit at v.

From this we obtain

Corollary 4.1.3. Let Aσa (t)denote the t-expansions of Ψσ
a (P ). Then Aσa (t) belongs to

1 + mv[[t]], where mv denotes the maximal ideal of Ov.

Proof. Write Bσ
a (t) =

∞∑
n=0

ant. Thus, by the previous lemma, an ∈ Op for all n > 0 and

a0 ∈ O×
p . Now, Aσa (t) = Bσ

a (t)p

Bσσv
a (λ̂E(v)(t)) and recall that

λ̂E(v)(t) ≡ tp mod v.

Hence, we see that

Bσσv
a

(
λ̂E(v)(t)

)
=

∞∑
n=0

aσv
n (λ̂E(v)(t))n ≡

∞∑
n=0

apnt
pn mod v.

On the other hand,
Bσ

a (t)p ≡
∞∑
n=0

apnt
pn ≡

∞∑
n=0

ant
pn mod v,

so Aσa (t) ≡ 1 mod v, as required.

Lemma 4.1.4. Define Cσ
a (t) by

Cσ
a (t) := 1

p
logAσa (t).
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Then Cσ
a (t) ∈ Op[[t]], and ∑

ω∈Dσ,p

Cσ
a (t[+]ω) = 0, (4.1.3)

where Dσ,p denotes the group of p-division points on the formal group Êσ at a place v
of H lying above p and [+] denotes the group law on Êσ. This group can be identified
with Eσ

p .

Proof. We have

Cσ
a (t) = 1

p

∑
n>1

(−1)n−1(Aσa (t)− 1)n
n

.

The first claim is now clear from the previous lemma as n > ordp(n) + 1 for n > 1.
The final equation then follows from (4.1.2).

Let I be the ring of integers of the completion of the maximal unramified extension
Kur

p of Kp. By [8, Proposition 1.6], we have an isomorphism

δσ,v : Ĝm
∼−→ Êσ

defined over I , where Ĝm denotes the formal multiplicative group and Êσ denotes
the formal group of Eσ at v. Define Jσa (W ) = Cσ

a ◦ δσ,v(W ) ∈ I [[W ]].

Definition 4.1.5. Let µa,σ be the I -valued measure on Zp determined by Jσa (W ), i.e.

Jσa (W ) =
∫
Zp

(1 +W )xdµa,σ(x). (4.1.4)

We claim that the measure µa,σ is supported on Z×
p . Indeed, let ΛI (Zp) (resp.

ΛI (Z×
p ) be the ring of I -valued measures on Zp (resp. Z×

p ). Then we have an inclusion
ι : ΛI (Z×

p ) ↪→ ΛI (Zp) given by extending the measures on Zp to Z×
p by zero. Let µ

be a measure in ΛI (Zp), and let fµ(W ) ∈ I [[W ]] be the corresponding power series
given by the isomorphism ΛI (Zp) ∼= I [[W ]]. Then it is well-known (see [8, I.3.3] for
more details) that µ belongs to ι

(
ΛI (Z×

p )
)

if and only if fµ satisfies the equation

∑
ζ∈µp

fµ(ζ(1 +W )− 1) = 0.

It follows from (4.1.3) that this is satisfied by Jσa .
We know that, writing also µa,σ for the corresponding measure in ΛI (H), we have

∫
H
χkpdµa,σ =

∫
Zp

xkdµa,σ = DkJσa (W )|W=0, (4.1.5)
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where D = (1 + W ) d
dW

. We have an isomorphism Ĝm
∼−→ Ĝa given by W 7→ ez − 1.

Hence we see immediately that D = d
dz

. Moreover, we have δσ,v(W ) = Ωσ,vW + · · · , so
for any integer k > 1, we have

DkJσa (W )|W=0 =
(
d

dz

)k
Jσa (ez − 1)|z=0 = 1

p
Ωk
σ,v

(
d

dz

)k
log (Ψσ

a (Φ(z, Lσ))) |z=0.

(4.1.6)

Lemma 4.1.6. We have Ωσ,v = Λ(s)Ωv, where Ωv ∈ I × is the coefficient of W in the
formal power series t = δv(W ), with δv : Ĝm

∼−→ Ê is an isomorphism defined over I .

Proof. We have λE(s)∗(ωσ) = Λ(s)ω by definition, so that λE(s) (Φ(z, L)) = Φ(Λ(s)z, Lσ).
Hence, writing exp(z, Lσ) for the formal power series in z obtained by express-
ing t = −x/y in terms of z using the isomorphism Φ(z, Lσ) for Eσ, we also have
λE(exp(z, L)) = exp(Λ(s)z, Lσ)). Now, regarding z as the parameter of the formal ad-
ditive group, exp(z, Lσ) is the exponential map of Êσ. It then follows by the uniqueness
of the exponential maps for the formal groups that

δσ,v(ez/Ωσ,v − 1) = exp(z, Lσ).

On the other hand, we have δσ,v = λ̂E(s) ◦ δv(W ), where λ̂E(s) : Ê → Êσ is the
isomorphism over Hv of formal groups induced by λE(s). Hence we have

δσ,v(ez − 1) = exp(Λ(s)Ωvz, Lσ).

The assertion follows by comparing the coefficients of z in the above equations.

Proposition 4.1.7. Let s be an integral ideal of K prime to f such that σs = σ. Then
for any integer k > 1, k ≡ 1 mod #(∆), we have

d

dz
logRσ

a (Φ(z, Lσ)) =
∞∑
k=1

(−1)k ϕ
k
K(s)fk

Λ(s)kΩk
∞

(
N a− ϕkK(a)

)
L(ϕkK , σ, k)zk−1.

In particular, we have
(
d

dz

)k
logRσ

a (Φ(z, Lσ))|z=0 = (−1)k(k − 1)! ϕ
k
K(s)fk

Λ(s)kΩk
∞

(
N a− ϕkK(a)

)
L(ϕkK , σ, k).

Proof. Let L be a complex lattice. We will modify the Weierstrass σ-function slightly,
and define

Θ(z,L) = exp
{
−s2(L)z

2

2

}
σ(z,L).
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Recall that for any integer k > 1, we can define the Kronecker–Eisenstein series

Hk(z, s,L) :=
∑
w∈L

(z + w)k
|z + w|2s

,

where the sum in taken over all w ∈ L, except −z if z ∈ L. This series converges for
Re(s) > k

2 + 1, and it has an analytic continuation to the whole complex s-plane. The
non-holomorphic Eisenstein series E∗

k (z,L) is defined by

E∗
k (z, L) := Hk(z, k,L).

Furthermore, it is well-known that (see [10, Corollary 1.7] for a proof and the definition
of A(L)) for any z0 ∈ C\L, we have

d

dz
log Θ(z + z0) = z0A(L)−1 +

∞∑
k=1

(−1)k−1E∗
k (z0,L)zk−1. (4.1.7)

By [10, Theorem 1.9], for any principal integral ideal a = (α) with (a, 6f) = 1, we
have

Θ2(z, Lσ)N a

Θ2(z, α−1Lσ) =
∏

w∈α−1Lσ/Lσ

w ̸=0

(℘(z, Lσ)− ℘(w,Lσ))−1,

so we can write
Rσ

a (Φ(z, Lσ))2 = cE(a)2 Θ2(z, Lσ)N a

Θ2(z, α−1Lσ) ,

since the product in the definition of Rσ
a was over the representatives of Ea\{O} modulo

{±1}, and x(⊖P ) = x(P ) for any P . Let ρ = Ω∞/f so that our choice of Qσ is given
by Φ(Λ(s)ρ, Lσ). Moreover, let B be a set of integral ideals of K prime to f such that

Gal(H(Ef)/K) = {(b, H(Ef)/K), b ∈ B} ,

where (b, H(Ef)/K) denotes the Artin symbol of b for H(Ef)/K. Hence, we have

Rσ
a (Φ(z, Lσ)) =

∏
b∈B

Rσ
a (Φ(z + ϕK(b)Λ(s)ρ, Lσ)) .

Noting that A(α−1Lσ) = Nα−1A(Lσ) and that E∗
k is homogeneous of degree −k, we

obtain
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d

dz
logRσ

a (Φ(z, Lσ)) =
∞∑
k=1

(−1)k
∑
b∈B

(
NaE∗

k (ϕK(b)Λ(s)ρ, Lσ)− αkE∗
k (ϕK(b)αΛ(s)ρ, Lσ)

)
zk−1.

By [10, Proposition 5.5], we have

ϕkK(s)
Nsk−s

(Λ(s)ρ)k
|Λ(s)ρ|2sL(ϕkK , σ, s) =

∑
b∈B

Hk(ϕK(b)Λ(s)ρ, 0, s, Lσ),

and similarly,

ϕkK(sa)
N(sa)k−s

(Λ(s)αρ)k
|Λ(s)αρ|2sL(ϕkK , σσa, s) =

∑
b∈B

Hk(ϕK(b)Λ(s)αρ, 0, s, Lσ).

Putting s = k, we obtain

d

dz
logRσ

a (Φ(z, Lσ)) =
∞∑
k=1

(−1)kϕkK(s)Λ(s)−kfkΩ−k
∞

(
NaL(ϕkK , σ, k)− ϕkK(a)L(ϕkK , σσa, k)

)
zk−1.

The result now follows on noting that σa = 1 because a = (α) is principal.

Let us remark that Proposition 4.1.7 is true for all integers k > 1. However,
the Hecke L-function will no longer be primitive when k is even, for example, if
k ≡ 0 mod #(∆), because in this case the conductor of ϕkK is (1). Thus we shall
first concentrate on the case k ≡ 1 mod #(∆) but the arguments extend readily to k
ranging over any fixed residue class modulo #(∆).

Lemma 4.1.8. For any positive integer k ≡ 1 mod #(∆), we have

Λ(s)−kΩ−k
v

∫
H
χkpdµa,σ = −(k−1)! ϕ

k
K(s)fk

Λ(s)kΩk
∞

(
N a− ϕkK(a)

)(
L(ϕkK , σ, k)− ϕkK(p)

Np
L(ϕkK , σσp, k)

)
.

Proof. We have λE(p)Φ(z, Lσ) = Φ(Λ(p)σz, Lσσp) and Λ(sp) = Λ(s)Λ(p)σ, so

(
d

dz

)k
logRσσp

a (λE(p)Φ(z, Lσ))|z=0 = −(k − 1)!ϕ
k
K(sp)fk

Λ(s)kΩk
∞

(
N a− ϕkK(a)

)
L(ϕkK , σσp, k)).

Therefore,
(
d

dz

)k
log Ψσ

a (Φ(z, Lσ))|z=0 = −ck(a)(k−1)!ϕ
k
K(s)fkNp

Λ(s)kΩk
∞

(
L(ϕkK , σ, k)− ϕkK(p)

Np
L(ϕkK , σσp, k)

)
,

(4.1.8)
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where ck(a) = Na − ϕkK(a). Combining (4.1.5), (4.1.6), (4.1.8) and the fact that
Ωσ,v = Λ(s)Ωv by Lemma 4.1.6, the proof of Proposition 4.1.8 is complete.

Let
Da,σ(k) = ϕK(s)−k

∫
H
χkpdµa,σ,

and define
G∗ = Hom(G,C×

p ),

where G = Gal(H/K) as before. Then for each χ ∈ G∗, define

Da(χ, k) =
∑
σ∈G

χ(σ)Da,σ(k).

It is easy to see that

Da(χ, k) = ck(a)(k − 1)!fk Λ(s)kΩk
v

Λ(s)kΩk
∞

∑
σ∈G

χ(σ)L(ϕkK , σ, k)
(

1− ϕkK(p)χ−1(σp)
Np

)
.

We let C denotes a set of integral ideals representing of the ideal class group of
K with (c, pf) = 1 for any c ∈ C, and set Ω∞(E/H) = ∏

c∈C Λ(c)Ω∞ and Ωp(E/H) =∏
c∈C Λ(c)Ωv. Recalling

L(ψkE/H , k) =
∏
χ∈G∗

∑
σ∈G

χ(σ)L(ϕkK , σ, k)

and the factorisation of primes of K in H given by class field theory, we immediately
obtain the following.

Lemma 4.1.9. For any positive integer k ≡ 1 mod #(∆), we have

∏
χ∈G∗

Da(χ, k) = ck(a)h ((k − 1)!)h fkhΩp(E/H)kΩ∞(E/H)−kL(ψkE/H , k)·
∏
w|p

(
1−

ψkE/H(w)
Nw

)
.

Define G = Gal(F∞/K). Write µa for the measure on G satisfying∫
G
χkpdµa :=

∏
χ∈G∗

∫
Gχ
χχkpd(µa)χ =

∏
χ∈G∗

∑
σ∈G

χ(σ)ϕK(s)−k
∫
H
χkpdµa,σ.

Thus
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Lemma 4.1.10. There exists a measure µa in ΛI (G) such that for all k > 1, k ≡
1 mod #(∆), we have

Ωp(E/H)−k
∫
G
χkpdµa = ck(a)h ((k − 1)!)h fkhΩ∞(E/H)−kL(ψkE/H , k) ·

∏
w|p

(
1−

ψkE/H(w)
Nw

)
.

Note that, on the right hand side the equation in Lemma 4.1.10, the only dependence
on a occurs in the factor ck(a)h. We remove this factor in the next theorem.

Theorem 4.1.11. There exists a unique measure µE ∈ ΛI (G) such that, for all
integers k > 1 with k ≡ 1 mod #(∆), we have

Ωp(E/H)−k
∫
G
χkpdµE = ((k − 1)!)h fkhΩ∞(E/H)−kL(ψkE/H , k) ·

∏
w|p

(
1−

ψkE/H(w)
Nw

)
.

Proof. Given an integral ideal a with (a, 6pf) = 1, let θa be the measure satisfying∫
G
χkpdθa = ck(a)h.

Then µE = µa/θa is independent of a. In order to show that this is an integral measure,
it suffices to show that for some a, ck(a)h is a unit in I . Pick a = (α) with (a, p) = 1
such that α ≡ 1 mod f and α ̸≡ 1 mod p∗. This is possible since we have p∗ - f by
hypothesis. Then ϕK(a) = α, σa = 1, and c1(a)h = αh(α∗ − 1)h is a unit in Op. This
shows that there is a unit in I [[G]] whose values at k with k ≡ 1 mod #(∆) is equal
to ck(a)h.

Theorem 4.1.11 asserts the existence of a good p-adic L-function. Now, let us
assume (p, h) = 1. Define Σ = Gal(F∞/K∞) where K∞ is the maximal Zp-extension
of K inside F∞, so that Σ ≃ ∆×G. Furthermore, identify Γ with Gal(K∞/K). Let
H∞ = HK∞ and K∞ is the unique Zp-extension of K unramified outside p, and define
G = Gal(H∞/K).
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F∞

F H∞

H K∞

K

Γ

∆

Σ

G

H

Γ

G

G

Given θ ∈ Σ∗, let ΛI (G)θ denote the largest submodule of ΛI (G) on which Σ acts
via θ. If p > 2, then #(Σ) is prime to p, so the idempotent eθ = 1

#(Σ)
∑
τ∈Σ θ

−1(τ)τ lie
inside ΛI (G). Thus we can decompose ΛI (G) = I [[G]] = I [Σ][[Γ]] in the form

ΛI (G) = ⊕θ∈Σ∗eθΛI (Γ).

Therefore, we can write any µ ∈ ΛI (G) as a sum of the form

µ = ⊕θ∈Σ∗eθµ
θ,

where µθ is an element of ΛI (Γ).
If p = 2, #(∆) = 2 is not coprime to p. In this case, let δ denote the non-trivial

element of ∆. We have ΛI (G) = I [∆][[G ]]. We claim (1 − δ)I [∆] = (1 − δ)I .
Indeed, let a1 + aδδ ∈ I [∆]. Then (1 − δ)(a1 + aδδ) = (1 − δ)(a1 − aδ) ∈ (1 − δ)I .
Hence (1 − δ)I [∆] ⊂ (1 − δ)I , and the other inclusion is clear. It follows that
(1−δ)ΛI (G) = (1−δ)ΛI (G ). Hence, given µ ∈ ΛI (G), there exists unique µ− ∈ ΛI (G )
satisfying (1− δ)µ = (1− δ)µ−. Similarly, we have (1 + δ)ΛI (G) = (1 + δ)ΛI (G ), so
given µ ∈ ΛI (G) there exists µ+ ∈ ΛI (G ) such that (1+δ)µ = (1+δ)µ+. Furthermore,
we have

µ = 1
2
(
(1− δ)µ− + (1 + δ)µ+

)
.
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Finally, since (p, h) = 1 by assumption, we can further decompose µ− and µ+ as
elements in ⊕χ∈G∗eχΛI (Γ).

For k ≡ 1 mod #(∆), we have χkp(1 + δ) = 0 and χkp(1− δ) = 2. Thus, we obtain

µE = 1
2(1− δ)µ−

E

interpolating the values of L(ψkE/H , k) for k ≡ 1 mod #(∆) from the above construction.
Finally, we remark that our methods readily give an analogue of Theorem 4.1.11

for the p-adic interpolation of L(ψkE/H , k) when k ranges over any fixed residue class
modulo #(∆). However, the Hecke L-function will no longer be primitive when k is
even, and in particular, when k ≡ 0 mod #(∆), because in this case the conductor of
ϕkK is (1). Let S denote the set of primes of H dividing f. Then Theorem 4.1.11 gives

the imprimitive Hecke L-function LS(ψkE/H , k) = L(ψkE/H , k) ·∏v∈S

(
1− ψ

k
E/H(v)
Nvk

)
on

the complex side.
The aim of the next section will be to obtain a p-adic L-function which interpolates

the values of the L(ψkE/H , k) for k even. This will give rise to the p-adic L-function for
H∞/H for all p, and as we shall see in Chapter 7, will be an essential ingredient for
the main conjecture for E/H for p = 2.

4.2 Construction of the p-adic L-function for H∞/H

Let us now look at the case when k is even, so that the conductor of ϕkK is (1). We
write P σ

n for a primitive pn-division point of Eσ. Note that Rσ
a (P ) has a zero of order

Na− 1 at P = O, and Rσ
a (P σ

n ) is not a unit. To get rid of this zero at P = O, define
the index set

I = {(ai, ni), i = 1, . . . , r, ai = (αi) ⊂ O, (ai, 6p) = 1, ni ∈ Z with
r∑
i=1

ni(Nai−1) = 0}.

Given D = (ai, ni) ∈ I, define

Rσ
D(P σ

n ) =
r∏
i=1

Rσ
ai

(P σ
n )ni .

Then Rσ
D(P ) has no zero at P = O, and Rσ

D(Pn) is a unit, as we will see in Corollary
4.3.7.
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Definition 4.2.1. Gk(L) = ∑
w∈L\{0}

1
wk for k > 3,

G2(L) = lim
s→0+

∑
w∈L\{0}

w−2|w|−2s,

and G1(L) = 0.

Proposition 4.2.2. Let s be an integral ideal of K prime to f such that σs = σ. Then
for any D = (ai, ni) ∈ I and k > 2 an even integer, we have

d

dz
logRσ

D(P ) =
r∑
i=1

∞∑
k=2
k even

−ni
ϕkK(s)

Λ(s)kΩk
∞

(
N ai − ϕkK(ai)

)
L(ϕkK , σ, k))zk−1.

In particular, we have
(
d

dz

)k
logRσ

D(P )|z=0 =
r∑
i=1
−ni(k − 1)! ϕkK(s)

Λ(s)kΩk
∞

(
N ai − ϕkK(ai)

)
L(ϕkK , σ, k)).

Proof. We modify the usual σ-function slightly, and define

Θ(z, L) = exp
{
−s2(L)z

2

2

}
σ(z, L).

Then for any integral ideal a = (α) with (a, 6f) = 1, we have

Θ2(z, Lσ)N a

Θ2(z, α−1Lσ) =
∏

w∈α−1Lσ/Lσ

w ̸=0

(℘(z, Lσ)− ℘(w,Lσ))−1,

so we can write
Rσ

a (Φ(z, Lσ))2 = cE(a)2 Θ2(z, Lσ)N a

Θ2(z, α−1Lσ) ,

since the product in the definition of Rσ
a was over the representatives of Ea\{O}

modulo {±1}, and x(⊖P ) = x(P ) for any P . Hence,

Rσ
D(Φ(z, Lσ))2 =

r∏
i=1

(
cE(ai)2 Θ2(z, Lσ)N ai

Θ2(z, α−1
i Lσ)

)ni

.

Now, (4.1.7) gives

d

dz
log Θ(z, Lσ) =

∞∑
k=1

(−1)k−1Gk(Lσ)zk−1
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and Gk(Lσ) = 0 for k odd. Therefore,

d

dz
logRσ

D(Φ(z, Lσ)) =
r∑
i=1

∑
k>2
k even

−ni(N aiGk(Lσ)−Gk(α−1
i Lσ))zk−1

=
r∑
i=1

∑
k>2
k even

−ni(N ai − αki )Gk(Lσ)zk−1

by the homogeneity of Gk.
Let b be an ideal of K. Setting k = s , g = (1) and ρ = Ω∞ in [10, Proposition

5.5], we obtain that the partial Hecke L-function L(ϕkK , σb, k) is identically equal to

Gk(Lσb) = ϕkK(b)
Λ(b)kΩk

∞
L(ϕkK , σb, k).

Hence, setting b = s, we obtain

(N ai − αki )Gk(Lσ) = N ai
ϕkK(s)

Λ(s)Ωk
∞
L(ϕkK , σ, k)− ϕkK(sai)

Λ(s)Ωk
∞
L(ϕkK , σ, k)

= ϕkK(s)
Λ(s)kΩk

∞

(
N ai − αki

)
L(ϕkK , σ, k).

This completes the proof of the proposition.

Define

Ψσ
D(P ) = Rσ

D(P )Np

R
σσp
D (λEσ(p)(P )) .

Then we have ∏
R∈Eσ

p

Ψσ
D(P ⊕R) = 1. (4.2.1)

Let AσD(t) be the development as a power series in t of the rational function Ψσ
D(P ).

Then as before, AσD(t) ∈ 1 + POP[[t]], and so Cσ
D(t) = 1

Np
logAσD(t) ∈ OP[[t]]. Let

JσD(W ) = Cσ
D ◦δσ,v(W ) ∈ I [[W ]]. Let µD,σ be the I -valued measure on Zp determined

by JσD(W ). Then µD,σ is supported on Z×
p , and writing also µD,σ for the corresponding

measure on ΛI (H), we have∫
H
χkpdµD,σ =

∫
Zp

xkdµD,σ = DkJσD(W )|W=0, (4.2.2)
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where D = (1 + W ) d
dW

. We have an isomorphism Ĝm
∼−→ Ĝa given by W 7→ ez − 1,

hence we see immediately that D = d
dz

. Moreover, we have δσ,v(W ) = Ωσ,vW + · · · , so

DkJσD(W )|W=0 =
(
d

dz

)k
(JσD(ez − 1))|z=0 = 1

Np
Ωk
σ,v

(
d

dz

)k
log Ψσ

D(Φ(z, Lσ))|z=0.

(4.2.3)

Lemma 4.2.3. For an even integer k > 2, we have

Λ(s)−kΩv
−k
∫
H
χkpdµD,σ =

r∑
i=1
−ni(k − 1)!ϕkK(s)Λ(s)−kΩ−k

∞ ck(ai)
(
L(ϕkK , σ, k)− ϕkK(p)

Np
L(ϕkK , σσp, k)

)
,

where we recall that ck(ai) = Nai − αki .

Proof. We have λE(p)Φ(z, Lσ) = Φ(Λ(p)σz, Lσσp) and Λ(sp) = Λ(s)Λ(p)σ, so

(
d

dz

)k
logRσσp

D (λE(p)Φ(z, Lσ))|z=0 =
r∑
i=1
−ni(k − 1)! ϕ

k
K(sp)

Λ(s)kΩk
∞
ck(ai)L(ϕkK , σσp, k).

Therefore,
(
d

dz

)k
log Ψσ

D(Φ(z, Lσ))|z=0 = (4.2.4)

r∑
i=1
−ni(k − 1)!ϕ

k
K(s)Np

Λ(s)kΩk
∞
ck(ai)

(
L(ϕkK , σ, k)− ϕkK(p)

Np
L(ϕkK , σσp, k)

)
.

Combining (4.2.2), (4.2.3) and (4.2.4), the proof of the proposition is complete.

Let
DD,σ(k) = ϕK(s)−k

∫
H
χkpdµD,σ,

and put for each χ ∈ G∗,

DD(χ, k) =
∑
σ∈G

χ(σ)DD,σ(k).

Defining

M(χ, k) =
∑
σ∈G

χ(σ)L(ϕkK , σ, k) Λ(s)kΩk
v

Λ(s)kΩk
∞
,
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we conclude immediately that

DD(χ, k) = ck(D)(k − 1)!M(χ, k)
(

1− ϕkK(p)χ−1(σp)
Np

)
,

where ck(D) = ∑r
i=1−nick(ai). Let C denotes a set of integral ideals representing of the

ideal class group of K with (c, pf) = 1 for any c ∈ C, and set Ω∞(E/H) = ∏
c∈C Λ(c)Ω∞

and Ωp(E/H) = ∏
c∈C Λ(c)Ωv. Taking the product over χ ∈ G∗, we obtain

Lemma 4.2.4. For any even integer k > 2, we have

∏
χ∈G∗

DD(χ, k) = ck(D)h ((k − 1)!)h Ωp(E/H)kΩ∞(E/H)−kL(ψkE/H , k)·
∏
w|p

(
1−

ψkE/H(w)
Nw

)
.

Lemma 4.2.5. There exists a measure νD in ΛI (G) such that for all k > 1, k ≡
0 mod #(∆), we have

Ωp(E/H)−k
∫
G
χkpdνD = ck(D)h ((k − 1)!)h Ω∞(E/H)−kL(ψkE/H , k)·

∏
w|p

(
1−

ψkE/H(w)
Nw

)
.

Note that, since k ≡ 0 mod #(∆), we have χkp(τ) = 1 for any τ ∈ ∆. Hence, we
can naturally consider νD as an element of ΛI (G ). Again, the only dependence of νD

on D occurs in the factor ck(D)h. We claim that we can remove this factor and obtain
a pseudo-measure which is independent of D.

Lemma 4.2.6. There exists D ∈ I and θD ∈ ΛI (G ) such that θD|Γ generates the
augmentation ideal of ΛI (Γ) ⊂ ΛI (G ) and∫

G
χkpdθD = ck(D)h.

for all k > 1.

Proof. Choose α ∈ OK so that α ≡ 1 mod pm+1, α ≡ 1 + pm mod p∗m+1 where m = 1
or 2 according as p > 2 or p = 2, and define a = (α). Take a1 = a, a2 = a, n1 = 1,
n2 = −1. Then ({a1, a2}, {n1, n2}) ∈ I. Write σa for the Artin symbol (a, H∞/K) of a
for the extension H∞/K. Note that (a, H/K) = 1 since a is principal, so that we can
consider σa as an element of Γ.
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We will show that the measure

θD = −(N a− σa − (N a− σa))
= σa − σa,

has the desired property. Indeed, we have χkp(θD) = ck(D)h, so it remains to show
that θD|Γ generates the augmentation ideal of I [[Γ]]. In order to do this, let us fix
a topological generator of γ of Γ, and write σa|Γ = γa, σa = γb where a, b ∈ Zp. It
suffices to show that θD|Γ = (1 − γ) · u for u ∈ Zp[[Γ]]×. Now, we have Γ ≃ Zp and

1
pm log : 1 + pmZp → Zp sending 1 + pmx 7→

∞∑
i=1

(−1)i−1
(
x
n

)i
is an isomorphism. Hence

pm+1 | α− 1 implies a ≡ 0 mod p, and α∗ generates 1 + pmOp so b ̸≡ 0 mod p. Now,

σa|Γ − σa|Γ = γa − γb

= γa(1− γb−a),

where clearly γa is a unit, and also b− a ̸≡ 0 mod p so 1− γb−a is a product of (1− γ)
and a unit, as required

We define
νp = νD/θD. (4.2.5)

This is a pseudo-measure, since (1− γ) · 1
θD

= (1− γ) · 1
(1−γ)u where u is a unit by

the proof of Lemma 4.2.6.
The following is an immediate consequence of Lemma 4.2.5 and Lemma 4.2.6.

Theorem 4.2.7. There exists a unique element νp belonging to the quotient field ΛI (G )
such that, for all integers k > 1 with k ≡ 0 mod #(∆), we have

Ωp(E/H)−k
∫

G
χkpdνp = ((k − 1)!)h Ω∞(E/H)−kL(ψkE/H , k)

∏
v∈P

(
1−

ψkE/H(v)
Nv

)
.

Furthermore, the denominator of νp is given by γ − 1, so that (γ − 1)νp ∈ ΛI (G ).

Recall from Section 4.1 that we can decompose νp as a sum of elements in eχΛI (Γ)
if we in addition assume that (p, h) = 1. Given χ ∈ G∗, let νχp ∈ ΛI (Γ) denote the
χ-part of νp in the decomposition. Then we have shown that νχp ∈ ΛI (Γ) for every
χ ̸= 1, and (γ − 1)νχp ∈ ΛI (Γ) for χ = 1. Thus, identifying ΛI (Γ) with I [[T ]] via the
map sending γ to 1 +T , we have νχp ∈ I [[T ]]/T when χ is trivial. The pseudo-measure
νp will be used for the main conjecture of H∞/H.
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Finally, we define the p-adic L-function attached to E/H. In Section 4.1 we showed
that the p-adic L-function µE ∈ ΛI (G) interpolates that values of L(ψkE/H , k) when k
is odd, and of LS(ψkE/H , k) when k is even, where S is the set of primes of H dividing
f. Furthermore, our methods readily give an analogue of Theorem 4.2.7 to obtain νp

which takes the value 0 at χkp for k odd and interpolates the values of L(ψkE/H , k) for k
even.

Define Ψp = µE + νp, where we consider νp as an element of ΛI (G). Explicitely,
for p = 2 we can write

Ψp = 1
2
(
(1− δ)µ−

E + (1 + δ)νp
)
∈ ΛI (G).

Then Ψp interpolates the values of L(ψkE/H , k) for k ranging over all the residue classes
modulo #(∆) in the following way.

Theorem 4.2.8. Given a positive integer k, we have

Ωp(E/H)−k
∫
G
χkpdΨp =


L(ψkE/H , k)

(
1 + fkh

∏
v∈S

(
1− ψ

k
E/H(v)
Nvk

))
A(k) if k is even

L(ψkE/H , k)fkhA(k) if k is odd,

where A(k) = ((k − 1)!)h Ω∞(E/H)−k∏
w|p

(
1− ψk

E/H
(w)

Nw

)
.

4.3 Elliptic Units

In this section, we will show that

Theorem 4.3.1. Suppose b is a non-trivial ideal of O such that (b, a) = 1, and let P
be a primitive b-division point of Eσ. Then Rσ

a (P ) ∈ K(b).

Proof. Recall that Rσ
a is defined over H, so that it belongs to the function field H(Eσ).

Let x be any element of O satisfying x ≡ 1 mod b. These Artin symbols τ = (x,Kab/K)
generate Gal(Kab/K(b)). Moreover, it satisfies

Rσ
a (P )τ = Rσσx

a (λEσ(x)P ) = Rσ
a (P ),

giving Rσ
a (P ) ∈ K(b), as required.

Proposition 4.3.2. Suppose m is an ideal of O prime to af, P ∈ Eσ
m is a primitive

m-division point of Eσ and r is a prime ideal of K dividing m , say m = m′r. Then
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NK(m)/K(m′)R
σ
a (P ) =

 Rσσr
a (λEσ(r)(P ))1−Frob−1

r if r - m′

Rσσr
a (λEσ(r)(P )) if r | m′.

where Frobr denotes the Frobenius of r in Gal(K(m′)/K), and NK(m)/K(m′) denotes the
norm map from K(m) to K(m′).

Proof. Since the reduction mod m map O× → (O/m)× is injective, the kernel of the
map

(O/m)×/O× → (O/m′)×/O×

is isomorphic to the multiplicative group 1 + m′(O/m). Thus, we have an isomorphism

τ : 1 + m′(O/m) ∼−→ Gal(K(m)/K(m′))

by class field theory. Note that Gal(K(m)/K(m′)) has size Nq− 1 or Nq according as
r - m′ or r | m′, and the conjugates of P over Gal(K(m)/K(m′)) are given by

{(P )τ : τ ∈ Gal(K(m)/K(m′))} =

 {P +Q : Q ∈ Eσ
q , P +Q /∈ Eσ

m′} if r - m′

{P +Q : Q ∈ Eσ
q } if r | m′.

Hence, if r | m′, we have

NK(m)/K(m′)R
σ
a (P ) =

∏
Q∈Eσ

r

(Rσ
a (P +Q))

and the right hand side is equal to Rσσπ
a (λEσ(r)(P )) by Proposition 4.1.1. On the

other hand, if r - m′, we have

Rσ
a (P +Q0)NK(m)/K(m′)R

σ
a (P ) =

∏
Q∈Eσ

r

(Rσ
a (P +Q)),

where Q0 ∈ Eσ
r satisfies P +Q0 ∈ Eσ

m′ . The rest follows on noting that

Rσ
a (P +Q)Frobr = Rσσr

a (λEσ(r)(P ) + λEσ(r)(Q)) = Rσσr
a (λEσ(r)(P )).

Definition 4.3.3. For n > 1, let P σ
n = Φ(ρ, Lσ) be a primitive pn-division point on

Eσ satisfying λEσ(p)P σ
n = P

σσp
n−1. Given an integral ideal b of K prime to a, the image

of P σ
n under the Artin symbol of b for H(Epn)/K is λEσ(b)(P σ

n ), so a choice of (P σ
n )σb
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for the Artin symbol of σb of b for H/K is given by

(P σ
n )σb = Φ(Λ(b)σρ, Lσσb),

which is a point on Eσσb .

Lemma 4.3.4. Suppose q is any prime with (q, a) = 1 and Qm is a primitive qm-
division point on Eσ. Let R ∈ Eσ

b for some b with (b, aq) = 1. For any integer
m > 2 + e, we have

NH(Epmb)/H(Epm−1b)R
σ
a (Qm ⊕R) = Rσσq

a (λEσ(q)(Qm)⊕Rσq),

where σq = (q, H/K) denotes the Artin symbol of q for the extension H/K.
In particular, in the case q = p, we have

NH(Epmb)/H(Epm−1b)R
σ
a (P σ

m ⊕R) = Rσσp
a (P σσp

m−1 ⊕Rσp),

where σp = (p, H/K) denotes the Artin symbol of p for the extension H/K.

Proof. Since m > 2 + e, the conjugates of Qm over H(Eqm−1) are Qm ⊕ S where S
runs over Eσ

q by Lubin–Tate theory. Now, we have H(Eqmb) = H(Eqm−1b)H(Eqm) and
H(Eqm−1b) ∩H(Eqm) = H(Eqm−1). Hence the conjugates of Qm ⊕ R over H(Eqm−1b)
are Qm ⊕R⊕ S where S runs over Eσ

q . Hence, we have

NH(Eqmb)/H(Eqm−1b)R
σ
a (P σ

m ⊕R) =
∏
S∈Eσ

q

Rσ
a (Qm ⊕R⊕ S)

= Rσσq
a (λEσ(q) (Qm)⊕ λEσ(q)(R))

by Proposition 4.1.1. Since λEσ(q)(R) = Rσq for R ∈ Eσ
b , the first statement is now

clear. The second statement follows since λEσ(p)(P σ
m) = P

σσq
m−1 by definition.

Corollary 4.3.5. For any integer m > 2, we have

NFm/Fm−1R
σ
a (P σ

m) = Rσσp
a (P σσp

m−1),

where σp = (p, H/K) denotes the Artin symbol of p for the extension H/K.

Proof. Write Φ(v, Lσ) = P σ
m. The conjugates Φ(v, Lσ)τ of Φ(v, Lσ) as τ runs over

Gal(Fmh/F(m−1)h) are Φ(v + u, Lσ) for Φ(u, Lσ) ∈ Eσ
p . Hence

Nm,nR
σ
a (Φ(v, Lσ)) =

∏
u∈p−1Lσ/Lσ

Rσ
a (Φ(v + u, Lσ)).
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But by Proposition 4.1.1, the right hand side is equal to Rσσp
a (λEσ(p)(Φ(v, Lσ))) =

R
σσp
a

(
Φ(Λ(p)σv, Lσσp))

)
, and Φ(Λ(p)σv, Lσσp)) is a primitive pm−1 torsion point of

Eσσp . Hence Φ(Λ(p)σv, Lσσp)) = P
σσp
m−1 by the choice of p-power torsion points specified

in Definition 4.3.3.

Let L be an arbitrary finite extension of K. We say that a ∈ L is a universal norm
from L(Ep∞) if it is a norm from L(Epn) for every n > 0. The following is well-known
(see [3, Lemma 5]).

Lemma 4.3.6. Let L be a finite extension of K, and a ∈ L× a universal norm from
L(Ep∞). Then every prime which divides a lies above p.

Corollary 4.3.7. Rσ
a (P σ

n ) and Rσ
D(P σ

n ) are global units.

Proof. It is clear from the definition of Rσ
a (P σ

n ) that it suffices to show Ra(Pn ⊕R)
is a unit for any primitive f -division point R on E. By Lemma 4.3.4, the sequence
Ra(Pm ⊕Q) (m = 1, 2, . . .) is norm compatible in the tower H(Ep∞f) over H(Epef). It
follows that Ra(Pn⊕R) is a universal norm from H(Ep∞f) = L(Ep∞), where L = H(Ef).
Thus by Lemma 4.3.6, every prime occurring in the factorisation of Ra(Pn ⊕ R) lies
above p. However, we can pick any prime q dividing f, then q ̸= p and we can apply
the same argument by writing Pn⊕Q as a sum of a q-power division point and a point
W ∈ Eb with (b, q) = 1. Thus Rσ

a (P σ
n ) is a unit.

Next, we note that if D = (ai, ni), then Rσ
ai

(P σ
n ) is a unit outside p again by Lemma

4.3.6 because Rσ
ai

(P σ
m) (m = 1, 2, . . .) is norm compatible in the tower F∞ over F by

Corollary 4.3.5. If P | p is a prime of Fn, we have ordP(x(P σ
n )) < 0 but ordP(x(U)) > 0

for any U ∈ Eσ
a \{O}, giving

ordP(x(P σ
n )− x(U)) = ordP(x(P σ

n )).

Recalling that ordP(cE(a)) = 0, we have

ordP(Rσ
ai

(P σ
n )) = 1

2(Nai − 1) ordP(x(P σ
n )),

because (Eσ
a \{O})/{±1} has order 1

2(Nai − 1). Hence

ordP(Rσ
D(P σ

n )) = 1
2 ordP(x(P σ

n ))
∑
i

ni(Nai − 1) = 0,

since ∑i ni(Nai − 1) = 0 by the definition of D. It follows that Rσ
D(P σ

n ) is a unit. This
completes the proof of Corollary 4.3.7.
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Definition 4.3.8. Let Hn = Fn ∩H∞. Let UHn denote the group of semi-local units
of Hn ⊗K Kp = ⊕P|pHn,P which are congruent to 1 modulo the primes above p. We
denote by UH∞ the projective limit of the groups UHn with respect to the norm maps.
We define the group of elliptic units CHn to be the group generated by Rσ

D(P σ
n ) for all

σ ∈ G, where P σ
n is a primitive pn-division point on Eσ, as D runs over the index set I.

Note also that the roots of unity in Hn are just {±1}. We let C̄Hn denote the closure
of CHn in UHn , and define

C̄H∞ = lim←−C̄Hn ⊂ UH∞

where the inverse limit is taken with respect to the norm maps.
Similarly, let UFn denote the group of semi-local units of Fn ⊗K Kp = ⊕P|pFn,P

which are congruent to 1 modulo the primes above p, and denote by UF∞ the projective
limit of the groups UFn with respect to the norm maps. Let CFn denote the group
generated by wn := Rσ

a (P σ
n ) for all σ ∈ G, C̄Fn the closure of CFn in UFn , and write

C̄F∞ = lim←−C̄Fn ⊂ UF∞ .

Proposition 4.3.9. For all positive integers m > n, we have

NHm/Hn C̄Hm = C̄Hn ,

where NHm/Hn denotes the norm map from Hm to Hn.

Proof. By Corollary 4.3.5, we have NHm/HnR
σ
D(P σ

m) = Rσσm−n
π

D (P σσm−n
π

n ). Hence we have

NHm/HnCHm = CHn

modulo roots of unity in Hn, which is just {±1}. But −1 is not a universal norm, so
this completes the proof of the proposition.

Given u = (un) ∈ UF∞ , let gu(W ) ∈ OH ⊗O Op[[W ]] denote the Coleman power
series of u (see [8, Theorem 2.2] for more details). We write

l̃og gu(W ) = log gu −
1
p

∑
ω∈Dσ,p

gu(W [+]ω),
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where we recall that Dσ,p = Êσ
p can be identified with Eσ

p . It is well-known [8, Lemma
I.3.3] that l̃og gu(W ) has integral coefficients. Define

i : UF∞ → ΛI (G)

by
u 7→ µu :=

∏
χ∈G∗

∑
σ∈G

χ(σ)ϕK(s)−kµu,σ,

where µu,σ is the measure satisfying

l̃og gu ◦ δσ,v(W ) =
∫
H
(1 +W )χp(τ)dµu,σ(τ). (4.3.1)

Let ua = (Rσ
a (P σ

n )) ∈ C̄F∞ . Then by construction, l̃og gua = Cσ
a where Cσ

a is defined
in Lemma 4.1.4, and thus i(ua) = µa = ∏

χ∈G∗
∑
σ∈G χ(σ)ϕK(s)−kµa,σ. Similarly, letting

uD = (Rσ
D(P σ

n )) ∈ C̄H∞ , we have i(uD) = νD.

Proposition 4.3.10. The homomorphism

i : UF∞ → ΛI (G).

is an injective pseudo-isomorphism.

Proof. Let P be any prime of F∞ above p, and let Φ∞ = ∪Φn where Φn denotes
the completion of Fn at P. Let K∞ denote the unique Zp-extension of K unramified
outside p, and let K∞,P denote its completion at P. We will show that |µp∞(Φ∞)| is
finite by class field theory. To see this, note that Kp = Qp since p splits in K. Then
the kernel of the local Artin map

(·, Kp(µp∞)/Kp) : (Kp)× → Gal(Kp(µp∞)/Kp)

is the free group ⟨p⟩ generated by p (see Prop 1.8 of [Neu]). Assume, on the contrary,
that all p-power roots of unity are contained in Φ∞. Then the kernel of the local Artin
map

(·,Φ∞/Kp) : (Kp)× → Gal(Φ∞/Kp)

is a subgroup of ⟨p⟩ of finite index. Denote by Kp∗ the completion of K at p∗ and let
K∞,P∗ be the completion K∞ at P∗. Let Φ′

∞ = ∪Φ′
n where Φ′

n denotes the completion
of Fn at P∗. Then K∞,P∗/Kp∗ is an infinite unramified extension isomorphic to Zp
which is topologically generated by (p,K∞,P∗/Kp∗). By the product formula. we have
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(p,K∞,P∗/Kp∗)|K∞ = (p−1, K∞,P/Kp)|K∞ , since K∞/K is unramified outside p. Hence
we have (pn,Φ∞/Kp) ̸= 1 for all nonzero integer n. This shows that (·,Φ∞/Kp) is
injective, which is absurd. Hence |µp∞(Φ∞)| is finite as claimed. Now it follows from
[8, §I, Theorem 3.7] that the cokernel of i is finite. Also i is injective because given
u ∈ UF∞ , u ̸= 1, the corresponding gu is non-constant and it satisfies (4.3.1). Hence i
is an injective pseudo-isomorphism.

Lemma 4.3.11. We have
i(C̄F∞) = J · µE,

where J is the annihilator of µp∞(F∞) in Zp[[G]].

Proof. Recall that i(ua) = µa = θa · µE, where µE, θa are defined after Theorem 4.1.11.
Hence we just need to show that J · ΛI (G) is generated by θa, (a, 6pf) = 1. For this,
it is enough to check that these elements generate a dense subset. Define a positive
integer N by µ(Fn) = µN , where we know µpn ⊂ µN by the Weil-pairing. Let

χcyc : Gal(K/K)→ (Z/NZ)×

denote the cyclotomic character, defined by σ(ζ) = ζχcyc(σ) for all σ ∈ Gal(K/K) and
ζ ∈ µN . Write Gn for the group Gal(Fn/K). Then the annihilator of µ(Fn) as a
Z/NZ[Gn]-module is generated by

σ|Gn − χcyc(σ)

where σ runs over Gal(K/K). To see this, note that every element of Z/NZ[Gn]
is a finite sum, and it is clear that σ|Gn − χcyc(σ) is in the annihilator for every
σ ∈ Gal(K/K), so we can take away appropriate multiples of elements of the form
σ|Gn − χcyc(σ) until we are left with a constant in Z/NZ, and that constant must be
zero since it annihilates µN . Now, we will show that the annihilator as a Z[Gn]-module
is generated by

NZ + ⟨σ −Nσ⟩σ∈Gn ,

where Nσ ∈ Z is such that χcyc(σ) ≡ Nσ mod N . To see this, given an element in the
annihilator, it is a finite sum so we can eliminate the terms involving the elements
of Gn by taking away the terms of the form σ − Nσ. Then we are left with an
integer, which should be divisible by N . We claim that we can get N as well. By
the Čebotarev density theorem, there exists an ideal a of O such that σ = σa ∈ Gn,
and then Nα = N a satisfies χcyc(σa) ≡ Na mod N . Hence, it is enough to show that
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hcf{Nq− 1 : q is a prime which splits in Fn} = N , because σq = 1 for a prime q if it
splits in Fn, so that we can get N as a combination of elements in ⟨σ−Nσ⟩σ∈Gn . Given
a prime q which splits in Fn, we have Nq− 1 = NM for some integer M . By Galois
theory, we have Gal(Fn(µNM)/Fn) = Gal(K(µNM)/K(µN)) ≃ (1 +NZ/1 +NMZ)×.
Thus by the Čebotarev density theorem, we can pick another prime q′ of Fn which is
mapped to 1 +N and fixes µM . This shows that we have hcf(Nq− 1,Nq′ − 1) = N , as
required. Hence the annihilator in Z[Gn] is generated by NZ + ⟨σa − Na⟩(a,6pf)=1. But
∪nZ[Gn] is dense in Zp[[G]] and ∩nNZ + ⟨σa − Na⟩(a,6pf)=1 = ⟨σa − Na⟩(a,6pf)=1, so the
result follows.

4.4 Statement of the Main Conjecture for H∞/H

From now on, we always assume that (p, h) = 1, where h denotes the class number of
K. Recall that K∞ denote the unique Zp-extension of K unramified outside p, and
H∞ denotes the composite field HK∞. Then H∞ is a subfield of F∞ such that H∞/H

is a Zp-extension, and it is clear that H∞ = F∆
∞. The fact that (p, h) = 1 implies

that H∞/H is totally ramified at all primes above p, since K∞/K is totally ramified
at all primes above p. Furthermore, for each n > 0, the classical theory of complex
multiplication shows that H(Epn) contains the field HK(pn) where K(pn) denotes the
ray class field of K modulo pn . Then if p = 2,

H∞ = HK(p∞) =
⋃
n

HK(pn)

is a Zp-extension of H, and write G = Gal(H∞/K). We identify Γ = Gal(F∞/F ) with
Gal(H∞/H). Let Γn = Γpn−1−e where e = 0 or 1 according as p > 2 or p = 2. Then
Hn = HΓn

∞ so that Gal(Fn/F ) = Gal(Hn/H) = Z/pn−1−eZ.
Denote by M(H∞) the maximal abelian p-extension of H∞ unramified outside the

primes above p, and write

X(H∞) = Gal(M(H∞)/H∞).

For every n > 0, let EHn be the group of global units of Hn, and let UHn be the
group of semi-local units of Hn ⊗K Kp = ⊕P|pHn,P which are congruent to 1 modulo
the primes above p. Let ĒHn be the closure of EHn ∩UHn in UHn in the p-adic topology.
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Then we define
ĒH∞ = lim←−ĒHn and UH∞ = lim←−UHn ,

where the inverse limits are taken with respect to the norm maps. A standard result from
global class field theory says that the Artin map induces a Gal(Hn/H)-isomorphism

UHn/ĒHn ≃ Gal(M(Hn)/L(Hn)),

where M(Hn) is the maximal abelian p-extension of Hn unramified outside of the
primes above p, and L(Hn) is the maximal unramified abelian p-extension of Hn.
Hence, writing X(Hn) = Gal(M(Hn)/Hn), we have an exact sequence

0→ UHn/ĒHn → X(Hn)→ Gal(L(Hn)/Hn)→ 0.

Taking the projective limit over n, we obtain an exact sequence

0→ UH∞/ĒH∞ → X(H∞)→ Gal(L(H∞)/H∞)→ 0, (4.4.1)

where L(H∞) = lim←−L(Hn) is the maximal unramified abelian p-extension of H∞.
Let A(Hn) denote the p-primary part of the ideal class group of Hn, and let A(Hn)′

be the quotient of A(Hn) by subgroup generated by the classes of the primes of Hn

above p which lie in A(Hn). So if we denote by Dn the subgroup of X(Hn) generated
by the decomposition group of the primes of Hn above p, we have an exact sequence

0→ Dn → X(Hn)→ A(Hn)′ → 0.

Furthermore, class field theory identifies A(H∞) with Gal(L(H∞)/H∞), where A(H∞)
denotes the inductive limit of A(Hn) taken with respect to the natural maps coming
from the inclusion of fields. Thus we obtain the fundamental exact sequence needed
for the proof of the main conjecture:

0→ ĒH∞/C̄H∞ → UH∞/C̄H∞ → X(H∞)→ A(H∞)→ 0. (4.4.2)

Recall that G = Gal(H∞/K). Then we have

G = G× Γ

so that characters of G are naturally be considered as characters of G . Given a
ΛI (G )-module M and χ ∈ G∗, write Mχ for the largest submodule of M on which G
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acts via χ. Since p - [H : K] by assumption, any ΛI (G ) module breaks up into the
direct sum of its χ-components.

Lemma 4.4.1. We have
i(C̄H∞) = II (G ) · νp,

where II (G ) denotes the augmentation ideal of ΛI (G ).

Proof. Recall that i(uD) = νD = θDνp (see (4.2.5) and the comments before Proposition
4.3.10). Hence we just need to show that II (G )ΛI (G ) is generated by θD, D ∈ I. In
Lemma 4.2.6, we have found D ∈ I such that θD|Γ generates II (Γ). It follows that for
every χ ∈ G∗, we have

i(C̄χH∞) = (II (G ) · νp)χ .

The result now follows since we have an isomorphism Zp[[G ]] ≃ Zp[[Γ]][G] and the
decomposition II (G ) = ⊕χ∈G∗II (G )χ, where II (G )χ = eχII (Γ) and II (Γ) is the
augmentation ideal of ΛI (Γ), which is generated by γ − 1. This concludes the proof of
Lemma 4.4.1.

Define ϕ = II (G )νp ⊂ I [[G ]].

Lemma 4.4.2. ϕ is independent of E.

Proof. Recall that ϕkK has conductor (1) for k even and positive integer. Thus, in view
of Theorem 4.2.7, the period pair class (Ω∞(E/H),Ωp(E/H)) ∈ (C× × C×

p )/Q× is
independent of f, although they individually depend on f and on the Weierstrass model
of E (see [8, Remark II.4.12 (iv)]). Let us pick another global minimal equation for
E/H, and let Ω̃∞(E/H) and Ω̃p(E/H) denote the corresponding elements satisfying
Theorem 4.2.7. It follows from the definition of Ωp(E/H) that Ωp(E/H) and Ω̃p(E/H)
are units in I , and since Ω̃∞(E/H) mod H× is independent of the specific Weierstrass
model, we have Ω̃∞(E/H) = uΩ∞(E/H) for a global unit u ∈ H×. But p does not
divide u, so uk for k even and positive is a unit in I [[G ]]. It follows that the ideal ϕ

in I [[G ]] is canonical.

The following is an immediate consequence of the last two results.

Theorem 4.4.3. We have an exact sequence of ΛI (G )-modules

0→ UH∞/C̄H∞ → ΛI (G )/ϕ→ D → 0,

where D is finite and II (G ) denotes the augmentation ideal of ΛI (G ).
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We briefly recall the structure theorem for finitely generated torsion ΛI (G )-modules.
Given a finitely generated torsion ΛI (G )-module M , the well-known structure theorem
for finitely generated torsion ΛI (G )χ ≃ I [[T ]]-modules easily implies that there exist
elements f1, . . . , fr of ΛI (G ) and pseudo-isomorphisms

⊕rj=1ΛI (G )/(fi)→M and M → ⊕rj=1ΛI (G )/(fi).

The ideal (∏r
i=1 fi)ΛI (G ) is an invariant of M called the characteristic ideal of M , and is

denoted by char(M). Furthermore, for every χ, we will denote by char (M)χ ⊂ ΛI (G )χ

the characteristic ideal of the ΛI (G )χ-module Mχ.

Corollary 4.4.4. For every χ ∈ G∗, we have

char
(
UH∞/C̄H∞

)χ
= ϕχ.

We are now ready to state the main conjecture for H∞/H, which will be proven in
Chapter 6.

Theorem 4.4.5. [Main Conjecture for H∞/H] For every χ ∈ G∗, we have

char (X(H∞))χ = ϕχ.

Before we move on, we will verify that Theorem 4.4.5 holds for p = 2 and E = X0(49),
which is equal to the case E = A(q) with q = 7. In this case, we have M(H∞) = H∞,
because the maximal abelian extension of K in M(H∞) coincides with the union
∪nK(pn) of ray class fields K modulo pn. Thus X(H∞) = 0, and it follows that
Theorem 4.4.5 holds if and only if ϕ is a unit. By Theorem 4.2.7, this holds if and
only if (χp(γ)2 − 1)L(ψ2

E/H , 2)/Ω∞(E/H)2 is a unit at p. This is true, because we
can compute with Magma that L(ψ2

E/H , 2)/Ω∞(E/H)2 = 1
8 , and the fact that γ is a

topological generator of Γ ≃ 1 + 4Op gives that ordp (χp(γ)2 − 1) = 3, as required.



Chapter 5

Euler systems

5.1 Euler Systems of the Elliptic Units

In this section, we will treat the Iwasawa modules occurring in the fundamental exact
sequence 4.4.2 as Λ(G ) = Zp[[G ]]-modules. They are finitely generated and torsion as
Zp[[G ]]-modules. Given a finitely generated torsion Zp[[G ]]-module M , write charΛ(M)
for the characteristic ideal of M given by the structure theorem for finitely generated
torsion Λ(G )χ ≃ Zp[[Γ]]-modules, and charΛ(M)χ for the characteristic ideal of Mχ

as a Λ(G )χ-module. The aim of this chapter is to define and study Euler systems of
the elliptic units C̄H∞ , defined in Chapter 4, for the tower H∞/H. The method of
Euler systems we follow is due to Rubin [17, Chapter 1]. When combined with an
application of Čebotarev density theorem, the results in this chapter enables us to
prove a divisibility relation analogous to [17, Theorem 8.3]:

charΛ(A(H∞)) divides pkcharΛ(ĒH∞/C̄H∞),

for an integer k > 0 (k = 0 when p > 2). This is proven in Chapter 6.
Let Gn = Gal(Hn/K). Let Λn = Zp[Gn] and define

Λ(G ) = Zp[[G ]] = lim←−Zp[Gn],

the Iwasawa algebra of G . Since #(G) is prime to p, the group Λn is semisimple, i.e.,

Λn = ⊕χ∈G∗Λχ
n,
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where each summand Λχ
n corresponding to χ is isomorphic to Zp[Gal(Hn/H)], and

Λ(G ) = ⊕χ∈G∗Λ(G )χ,

where each Λ(G )χ is isomorphic to Λ(Γ) = lim←−Zp[Gal(Hn/H)].

Lemma 5.1.1. Suppose λ ∈ Λn and m > 1. Then λΛn/λ
mΛn is finite.

Proof. We show that λΛχ
n/λ

mΛχ
n is finite for every χ ∈ G∗. Write Ĝ χ

n = {ρ : G χ
n →

µpn} for the character group of G χ
n . Every ρ ∈ Ĝ χ

n extends by linearity to a ring
homomorphism from Λχ

n to Zp[µpn ]. Given λ ∈ Λχ
n, we can define

Z(λ) = {ρ ∈ Ĝ χ
n : ρ(λ) = 0}.

Then clearly Z(λ) = Z(λm) and

rankZp (Λχ
n/λΛχ

n) = #Z(λ)

and so
rankZp (Λχ

n/λ
mΛχ

n) = #Z(λm) = #Z(λ),

giving
rankZp (λΛχ

n/λ
mΛχ

n) = 0,

as required.

Fix a positive integer l > 1. Let Iℓ be the set of squarefree ideals of OK which are
divisible only by primes q of K such that

(i) q splits completely in Hn/K, and

(ii) N q ≡ 1 mod pℓ+e, where e = 0 or 1 according as p is odd or even.

Recall that K(q) denotes the ray class field of K modulo q. In the following lemma,
we define the field Hn(q).

Lemma 5.1.2. Given a prime q ∈ Iℓ, we have a unique (cyclic) extension Hn(q)
of Hn of degree pℓ inside HnK(q). Furthermore, Hn(q)/Hn is totally ramified at the
primes above q, and unramified everywhere else.

Proof. Since q is unramified in Hn/K, we have K(q) ∩Hn = H ∩Hn = H. Hence, we
have

Gal(HnK(q)/Hn) = Gal(K(q)/H),
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which isomorphic to (O/qO)×/#(µ̃K) via the Artin map, where µ̃K denotes the image
of µK under reduction modulo q. Since (q, 2) = 1, the reduction modulo q map is
injective, and this is cyclic of order (Nq− 1)/(#(µK)) where #(µK) = 2. Hence it has
a unique subgroup of order pℓ since Nq ≡ 1 mod pℓ+e, where e = 0 or 1 according as
p > 2 or p = 2. Furthermore, HnK(q)/Hn is totally ramified at the primes above q

and unramified everywhere else, so the assertions of the lemma follow.

Lemma 5.1.3. Let

r : H×
n /(H×

n )pℓ → Hn(µpℓ+e)×/(Hn(µpℓ+e)×)pℓ

,

be the natural map, where e = 0 or 1 according as p > 2 or p = 2. Then r is injective
if p > 2, and 4 ker r = 0 if p = 2.

Proof. We have H×
n /(H×

n )pℓ ≃ H1(Hn/Hn,µpℓ) and Hn(µpℓ+e)×/(Hn(µpℓ+e)×)pℓ ≃
H1(Hn(µpℓ+e)/Hn(µpℓ+e),µpℓ) by Hilbert 90. Hence ker r = H1(Gal(Hn(µpℓ+e)/Hn),µpℓ).
Also, H∞ ∩ K(µp∞) = K because p and p∗ are totally ramified in K(µp∞)/K, but
H∞/K is unramified outside p. It follows that H∞ ∩Q(µp∞) = Q, and

Gal(Hn(µpℓ+e)/Hn) = (Z/pℓ+e)× ≃ ∆× Z/pℓ−1Z.

Here, ∆ = Gal(Hn(µp1+e)/Hn) is cyclic of order p − 1 or p according as p is odd or
even, and Gal(Hn(µpℓ+e)/Hn(µp1+e)) ≃ Z/pℓ−1Z. So if p > 2, Gal(Hn(µpℓ+e)/Hn) is
cyclic and we have ker r = 0, as required. If p = 2, taking the inflation-restriction
sequence gives

0→ H1(∆,µ4)→ ker r → H1(Gal(Hn(µ2ℓ+1)/Hn(µ4)) µ2ℓ),

and H1(∆,µ4) = H1(Gal(Hn(µ2ℓ+1)/Hn(µ4),µ2ℓ) = Z/2Z. Hence | ker r| | 4, and the
result follows.

For n > 1, recall that Γn = Γpn−1−e where e = 0 or e = 1 according as p > 2 or
p = 2. Define I(Hn) to be kernel of the restriction map Λ(G )→ Λn, i.e., the ideal of
Λ(G ) generated by {σ − 1 : σ ∈ Γn}. Given a Λ(G )-module Y , define

Y Γn = {y ∈ Y : σy = y for all σ ∈ Γn}.

Lemma 5.1.4. Given an exact sequence of Λ(G )-modules

0→ Y → Z → W → 0,
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we have an exact sequence

0→ Y Γn → ZΓn → W Γn → Y/I(Hn)Y → Z/I(Hn)Z → W/I(Hn)W → 0.

Proof. Pick a topological generator γ of Gal(H∞/Hn) and consider multiplication by
γ − 1 maps on Y , Z and W respectively. The lemma now follows easily by applying
the snake lemma.

Theorem 5.1.5. X(H∞) is a finitely generated torsion Λ(G )-module, and it has no
non-zero finite submodule. Furthermore, X(H∞)/I(Hn)X(H∞) is finite for any n.

Proof. The first statement follows from [2, Lemma 13, Lemma 14]. Iwasawa the-
ory shows that I(Hn)X(H∞) = Gal(M(H∞)/M(Hn)), because M(Hn) is the largest
abelian extension of Hn inside M(H∞). Hence we have an exact sequence

0→ X(H∞)/I(Hn)X(H∞)→ X(Hn)→ Gal(H∞/Hn)→ 0, (5.1.1)

where X(Hn) = Gal(M(Hn)/Hn). Clearly the Zp-rank of Gal(H∞/Hn) is 1. We will
show that the same is true for X(Hn). Let [F : Q] = r1 + 2r2 is a number field, where
r1 is the number of real embeddings of F and r2 is the number of pairs of complex
embeddings. The Z-rank of the global units EF of F is r1 + r2 − 1 by Dirichlet’s
unit theorem. Let UF = ∏

v|p Uv where v is a prime of F above p and Uv denotes the
groups of local units at v congruent to 1 modulo v. Then the Zp-submodule ĒF of
UF generated by the image of EF in UF has Zp-rank r1 + r2 − 1− vF for some integer
vF > 0. The p-adic analogue of Leopoldt’s conjecture says vF = 0, and this is known
to hold for abelian extensions of Q. In particular, this holds for F = Hn, and thus
rankZp(UHn/ĒHn) = 1. On the other hand, we have

rankZp(X(Hn)) = rankZp(UHn/ĒHn).

by class field theory, so rankZp(X(Hn)) = 1 as required.

Recall that A(Hn) denotes the p-primary part of the ideal class group of Hn, and
A(H∞) = lim−→A(Hn) where the inductive limit is taken with respect to the natural
maps coming from the inclusion of fields.

Theorem 5.1.6. charΛ(A(H∞)) is prime to I(Hn).

Proof. A(H∞) is a quotient of X(H∞), so A(H∞)/I(Hn)A(H∞) is a quotient of
X(H∞)/I(Hn)X(H∞). Since the latter is finite by Theorem 5.1.5, we also have
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that A(H∞)/I(Hn)A(H∞) is finite and so charΛ (A(H∞)/I(Hn)A(H∞)) = 0, as re-
quired.

Theorem 5.1.7. Let πU : UH∞/I(Hn)UH∞ → UHn denote the map induced by the
projection map. Then

I(Dp) ker πU = I(Dp) coker πU = 0,

where Dp = ∏
P|pDP denotes the group generated by the decomposition groups DP of

P in H∞/H.

Proof. See [17, Theorem 5.1].

Let

πE : ĒH∞/I(Hn)ĒH∞ → ĒHn and πC : C̄H∞/I(Hn)C̄H∞ → C̄Hn

denote the maps induced by projection maps.

Theorem 5.1.8. (i) I(Dp) kerπE = 0, where Dp = ∏
P|pDP and DP denotes the

decomposition group of P in H∞/H.

(ii) There exists an ideal B of finite index in Λ(G ) such that

I(Dp)B cokerπE = 0.

Proof. Recall that UH∞/ĒH∞ ⊂ X(H∞) by (4.4.1) and X(H∞)/I(Hn)X(H∞) is finite
by Theorem 5.1.5. Thus X(H∞)Γn is a finite submodule of X(H∞), and therefore
is equal to zero by Theorem 5.1.5. It follows that

(
UH∞/ĒH∞

)Γn = 0. For ease of
notation, given a Λ(G )-module Y , let Y (n) denote the quotient Y/I(Hn)Y and let πY
denote the map Y (n)→ Y Γn induced by the projection map. Consider the diagram
with exact rows:

0 ĒH∞(n) UH∞(n)
(
UH∞/ĒH∞

)
(n) 0

0 ĒHn UHn UHn/ĒHn 0.

πE πU πU/E (5.1.2)

Applying the snake lemma to (5.1.2) gives

0→ kerπE → kerπU → kerπU/E → cokerπE → cokerπU → cokerπU/E → 0, (5.1.3)
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and, in particular, an injection kerπE → kerπU , so assertion (i) follows from Theorem
5.1.7.

To prove assertion (ii), consider the diagram

0 A(H∞)Γn

(
UH∞/ĒH∞

)
(n)

(
UH∞/ĒH∞

)
(n)

0 UHn/ĒHn X(Hn),

πU/E πX
(5.1.4)

where we applied Lemma 6.2.1 to (4.4.1) and used the fact that X(H∞)Γn = 0 to obtain
the first row. We have kerπX = 0 by (5.1). Hence A(H∞)Γn ≃ kerπU/E . Note that
A(H∞)Γn is finite, since A(H∞)/I(Hn)A(H∞) is finite. It then follows from Theorem
5.1.7 and (5.1.3) that

I(Dp)B cokerπE = 0,

where B is the annihilator of the maximal finite submodule of A(H∞) in Λ(G ). This
completes the proof of Theorem 5.1.8.

Theorem 5.1.9. rankΛ(G )(C̄H∞) = 1 and coker(πC) = ker(πC) = 0.

Proof. By Lemma 4.4.1, there is a isomorphism of Λ(G )-modules

C̄H∞ ≃ I(G ),

where I(G ) is the augmentation ideal of Λ(G ), so the first statement follows on noting
that rankΛ(G )(Λ(G )/I(G )) = rankΛ(G )(Zp) = 0. By Proposition 4.3.9, the projection
map πC : C̄H∞/I(Hn)C̄H∞ → C̄Hn is surjective, so cokerπC = 0. Now, the first statement
of the theorem gives C̄H∞/I(Hn)C̄H∞ ≃ Λn. Furthermore, C̄Hn is isomorphic to a
submodule Y of finite index in Λn. Define a map f : Λn → Y so that it commutes with
the map πC. Then clearly kerπC ⊂ ker f and coker f is a quotient of cokerπC, which is
equal to zero. Thus ker f is finite, and hence equal to zero since Λn has no non-zero
finite submodules. The theorem now follows.

Corollary 5.1.10. charΛ(ĒH∞/C̄H∞) is prime to I(Hn).

Corollary 5.1.11. There exists an ideal B ⊂ Λ(G ) such that for every λ ∈ I(G )B,
there is a map θλ,n : ĒHn → Λn satisfying

λ2charΛ(ĒH∞/C̄H∞)Λn ⊂ θλ,n(C̄Hn).
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Proof. Fix a map θ : ĒH∞ → Λ(G ) such that θ(C̄H∞) ⊂ charΛ(ĒH∞/C̄H∞) and
charΛ(ĒH∞/C̄H∞)/θ(C̄H∞) is finite. Let B = A1A2 where A1 satisfies Theorem 5.1.8 (ii)
and A2 is the annihilator of charΛ(ĒH∞/C̄H∞)/θ(C̄H∞). In particular, since λ ∈ A2, we
have

λcharΛ(ĒH∞/C̄H∞) ⊂ θ(C̄H∞).

Write θn : ĒH∞/I(Hn)ĒH∞ → Λn denote the map induced by θ, so that we have

λcharΛ(ĒH∞/C̄H∞)Λn ⊂ θn(C̄H∞). (5.1.5)

Define θλ,n : ĒHn → Λn so that the following diagram commutes:

ĒH∞/I(Hn)ĒH∞ Λn

ĒHn Λn

θn

πE λ

θλ,n

This is well-defined since λ kerπE = λ cokerπE = 0 by Theorem 5.1.8. Then we have

λθn(C̄H∞) = θλ,nπE(C̄H∞) ⊂ θλ,n(C̄Hn) (5.1.6)

because πE(C̄H∞) ⊂ C̄Hn . Combining (5.1.5) and (5.1.6) gives the result.

Lemma 5.1.12. Let f1, . . . , fk ∈ Λ(G ) be such that we have an exact sequence

0→ ⊕ki=1
Λ(G )

Λ(G )fi
→ A(H∞)→ Q→ 0

with Q finite. Then there exists an ideal B of finite index in Λ(G ) such that, for every
n > 2, there exist classes c1, . . . ck ∈ A(Hn) satisfying BAi ⊂ fiΛn for every i, where
Ai ⊂ Λn is the annihilator of ci in A(Hn)/(c1Λn + · · ·+ Λnci−1).

Proof. See [17, Proposition 6.5].

If r = ∏l
i1 qi ∈ Iℓ, we write Hn(r) for the composite Hn(q1) · · ·Hn(ql), and we put

Hn(O) = Hn.

Definition 5.1.13. An Euler system is a collection of global units

α = {ασ(n, r) : n > 1, r ∈ Iℓ, σ ∈ Gal(H/K)}

satisfying
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(i) ασ(n, r) is a global unit of Hn(r),

(ii) If q is a prime such that rq ∈ Iℓ, then

NHn(rq)/Hn(r)(ασ(n, rq)) = ασ(n, r)1−Frob−1
q (5.1.7)

where Frobq is the Frobenius of q in Gal(Hn(rq)/K).

(iii)
NHn+1(r)/Hn(r)(ασ(n+ 1, r)) = ασσp(n, r), (5.1.8)

where σp = (p, H/K) ∈ Gal(H/K).

We now show how the elliptic units give rise to an Euler system.

Lemma 5.1.14. Let q ∈ Iℓ be a prime. Then

(i) K(qfpn) = Fn(Eqf).

(ii) [Hn(Eq) : Hn(q)] = (Nq− 1)/pℓ.

Proof. By [10, Lemma 4.7], we have

H(Eqfpn) = K(qfpn)

because the conductor g of ϕK divides f. But H(Eqfpn) = Fn(Eqf) since (p, qf) = 1
and Fn = H(Epn) by definition. This proves (i). For (ii), since q is a prime of good
reduction for E, q is totally ramified in Hn(Eq)/H and unramified in Hn/H. Thus,
by Theorem 3.2.1, Gal(Hn(Eq)/Hn) ≃ Gal(H(Eq)/H) ≃ (O/q)×. Assertion (ii) now
follows on noting that [Hn(q) : Hn] = pℓ.

Proposition 5.1.15. If u ∈ CHn, then there exists an Euler system {ασ(n, r) : n >

1, r ∈ Iℓ, σ ∈ Gal(H/K)} with ασ(n, 1) = u.

Proof. It suffices to consider the case u = Rσ
D(P σ

n ). Given r ∈ Iℓ, define ασn(r) =
Rσ

D (λEσ(r)−1(P σ
n )). Then clearly ασn(1) = u and ασn(r) is a global unit in Hn(r).

Furthermore, if q is a prime in Iℓ and rq ∈ Iℓ, then σq = 1, so by Proposition 4.3.2 we
have

NHn(rq)/Hn(r)(ασn(rq)) = NHn(rq)/Hn(r)(Rσ
D

(
λEσ(rq)−1(P σ

n )
)
)

= Rσ
D

(
λEσ(r)−1(P σ

n )
)1−Frob−1

q

= ασn(r)1−Frob−1
q ,
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and similarly

NHn+1(r)/Hn(r)(ασn+1(r)) = NHn+1(r)/Hn(r)(Rσ
D

(
λEσ(r)−1(P σ

n+1)
)
)

= R
σσp
D

(
λEσσp (r)−1(λEσ(p)(P σ

n+1)
)

= R
σσp
D

(
λEσσp (r)−1(P σσp

n )
)

= ασσpn (r).

Therefore, defining ασ(n, r) = ασn(r) gives the result.

For every prime q ∈ Iℓ, write Gq = Gal(Hn(q)/Hn). Then Gq is cyclic of order pℓ

so we fix a generator τq. Define

Dq =
pℓ−1∑
i=0

iτ iq ∈ Z[Gq]

and for any a ∈ Iℓ define
Da =

∏
q|a
Dq ∈ Z[Ga].

where Ga = Gal(Hn(a)/Hn) ≃ ∏q|aGq. Also, we define

Nq =
∑
σ∈Gq

σ ∈ Z[Gq]

for any prime q ∈ Iℓ and set

Na =
∏
q|a
Nq ∈ Z[Ga].

Proposition 5.1.16. Suppose α = {ασ(n, r) : n > 1, r ∈ Iℓ, σ ∈ Gal(H/K)} is an
Euler system. Given σ ∈ Gal(H/K), there exists a canonical map

κα : Iℓ → H×
n /(H×

n )pℓ

such that for every n > 1 and r ∈ Iℓ we have κα(r) = ασ(n, r)Da mod (Hn(r)×)pℓ.

Proof. In order to prove this, we will briefly introduce an alternative definition of
Euler systems. See [17, Proposition 2.2] for more details. For n > 1 and r ∈ Iℓ,
let Xn(r) be the quotient of the free Z[Gal(Hn(r)/K)]-module on the indeterminates
{xσn(s) : s | r, σ ∈ Gal(H/K)} by the following relations:

(1) xσn(s)ρ−1 for all ρ ∈ Gal(Hn(r)/Hn(s)),
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(2) xσn(qs)Nq = xσn(s)(1−Frob−1
q ) if qs | r and q is a prime in Iℓ,

(3) xσn+1(r)N
′ = xσσpn (r) where N ′ = ∑

τ∈Gal(Hn+1(r)/Hn(r)) τ ∈ Z[Gal(Hn+1(r)/Hn(r))]
and σp = (p, H/K) ∈ Gal(H/K).

Then we can define an Euler system to be a Galois equivariant map

α = {ασ(n, r) : n > 1, r ∈ Iℓ, σ ∈ Gal(H/K)} : lim−→
n,r

Xn(r)→ ∪n,rHn(r)×.

Using this map, we can define a 1-cocycle c : Gr → Hn(r)× by

c(ρ) = ασ (n, r)(ρ−1)Dr/pℓ

for ρ ∈ Gr. Since H1(Gr, Hn(r)×) = 0, there exists β ∈ Hn(r)× such that c(ρ) = βρ/β

for every ρ ∈ Gr. Then ασ(n, r)Dr/βp
ℓ ∈ H×

n and we can define

κα(r) = ασ(n, r)Dr/βp
ℓ ∈ H×

n /(H×
n )pℓ

.

5.2 An Application of the Čebotarev Density The-
orem

Write Gn = Gal(Hn/K). Fix n > 1 + e, and let

IHn = I = ⊕QZQ

denote the group of fractional ideals of Hn written additively, where the sum runs over
the prime ideals of Hn. For every prime q of K, let

Iq = ⊕Q|qZQ = Z[Gn]Q.

For y ∈ H×
n let (y)q, [y] and [y]q be the projection of the principal ideal (y) in Iq, I/pℓI

and Iq/p
ℓIq respectively. Note that [y] and [y]q are well-defined for y ∈ H×

n /(H×
n )pℓ .

Suppose now that Q is a prime of Hn lying above a prime q ∈ Iℓ. Then Hn(q)/Hn

is totally ramified at Q, and we let Q̃ be the prime of Hn(q) above Q. We have a
natural isomorphism OHn(q)/Q̃ ≃ OHn/Q, where OHn(q) denotes the ring of integers
of Hn(q). Suppose x ∈ Hn(q)× and ρ ∈ Gq. Then x1−ρ mod Q̃ ∈ (OHn(q)/Q̃)×, where
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OHn(q) denotes the ring of integers of Hn(q). We let x1−ρ mod Q denote the image
of x1−ρ mod Q̃ in (OHn/Q)×. Recall that τq is a fixed generator of the cyclic group
Gq, and let x1−τq denote the image of x1−τq mod Q inside (OHn/Q)×/((OHn/Q)×)pℓ .
Then we write (x1−τq)1/d for the unique d-th root of x1−τq in (OHn/Q)×/((OHn/Q)×)pℓ ,
where d = (Nq− 1)/pℓ. Then the map

Hn(q)→ (OHn/Q)×/((OHn/Q)×)pℓ

, x→ (x1−τq)1/d

is surjective, with kernel {x ∈ Hn(q)× : ord
Q̃

(x) ≡ 0 mod pℓ}. Let w be the image of x
under this map. Then setting

lQ : (OHn/Q)×/((OHn/Q)×)pℓ ∼−→ Z/pℓZ, w → ord
Q̃

(x) mod pℓ

gives an isomorphism.
Now define a map

ϕq : (OHn/qOHn)×/((OHn/qOHn)×)pℓ → Iq/p
ℓIq

by
ϕq(w) =

∑
Q|q

lQ(w)Q,

where we also write lQ for the map composed with the natural projection

(OHn/qOHn)×/((OHn/qOHn)×)pℓ → (OHn/Q)×/((OHn/Q)×)pℓ

.

Proposition 5.2.1. Suppose α is an Euler system, n > 1, r ∈ Iℓ and let q be a prime
of K. Then

(i) If q - r then [κα(r)]q = 0.

(ii) If q | r then [κα(r)]q = ϕq(r/q),

where κα is the map defined in Proposition 5.1.16.

Proof. This again follows from the alternative definition of Euler systems. See [17,
Proposition 2.4].

Theorem 5.2.2. Suppose χ ∈ G∗, v ∈
(
H×
n /(H×

n )pℓ
)χ

, V is a finite Λn-submodule
of (H×

n /(H×
n )pℓ)χ generated by v, and φ ∈ HomΛn(V,Λn/p

ℓΛn), φ ̸= 0. Let c ∈
peI(G )A(Hn)χ, where e = 1 if p = 2 and e = 0 otherwise. Then there is a prime q ∈ Iℓ
and a prime Q of Hn above q such that
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(i) the ideal class of Q in A(Hn)χ is equal to c,

(ii) [v]q = 0 and there exists u ∈ (Z/pℓZ)× such that ϕq(v) = p3euφ(v).

Proof. Write H ′
n = Hn(µpℓ+e), and Vr = V/V ∩ ker r, where r is the map in Lemma

5.1.3, so that Vr = V if p > 2. Fix a primitive pℓ-th root of unity ζ, and let

ι : Λn/p
ℓΛ→ µpℓ

be the map sending ∑ aσσ mod pℓ to ζa1 . We have an isomorphism

Gal(H ′
n(v1/pℓ)/H ′

n) ∼−→ Hom(Vr,µpℓ)

given by Kummer theory, and β := p3e(ι ◦ φ) ∈ pe Hom(Vr,µpℓ). Let b be the element
of pe Gal(H ′

n(v1/pℓ)/H ′
n) corresponding to β via the Kummer map so that

β(v) = b(v1/pℓ)
v1/pℓ .

Let Ln denote the unramified extension of Hn such that A(Hn)χ = Gal(Ln/Hn). Then
we see that there exists a submodule W of Vr such that

Gal(L′
n/Ln ∩H ′

n) = Gal(L′
nH

′
n/H

′
n) = Hom(W,µpℓ),

where L′
n = Ln ∩ H ′

n(v1/pℓ). On the other hand, Gal(H ′
n/Hn) acts trivially on

Gal(L′
nH

′
n/H

′
n) and µp∞(Hn) = µ2, so that

Hom(W,µpℓ) = Hom(W,µpℓ)Gal(H′
n/Hn) = Hom(W,µ2).

Therefore, pe Gal(L′
n/Ln ∩ H ′

n) = 0, and b restricted to L′
n is trivial. Furthermore,

I(G ) annihilates Gal(Ln ∩ H ′
n/Hn) since H ′

n is abelian over H, so we can consider
c as an element of pe Gal(Ln/L′

n). Hence we can choose ρ ∈ Gal(LnH ′
n(v1/pℓ)/Hn)

such that ρ|Ln = c and ρ|
H′

n(v1/pℓ ) = b. By the Čebotarev density theorem, there are
infinitely many prime ideals of Hn of degree one, unramified in H ′

n(v1/pℓ)/K whose
Frobenius in Gal(LnH ′

n(v1/pℓ)/Hn) is equal to ρ. Let Q be one such prime, lying above
a prime q of K. First, the fact that Q has degree one and ρ fixes L′

n means q splits
completely in H ′

n and thus q ∈ Iℓ. Then class field theory identifies [Q] ∈ A(Hn)χ with
FrobQ ∈ Gal(Ln/Hn), so (i) follows immediately. Now, [v]q = 0 because all primes
lying above q are unramified in H ′

n(v1/pℓ)/Hn, and v is a pℓ-th power in H ′
n(v1/pℓ).
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Also,

ordQ(p3eφ(v)Q) = 0⇔ p3e(ι ◦ φ(v)) = β(v) = 1⇔ b((v)1/pℓ)
(v)1/pℓ = 1

⇔ v is an pℓ-th power modulo Q.

On the other hand, we have

ordQ(ϕq(v)) = lQ(v) = 0⇔ v is an pℓ-th power modulo Q.

It follows that there exists u ∈ (Z/pℓZ)× with ordQ(ϕq(v)) = u ordQ(p3eφ(v)Q), and
the map sending

v 7→ ϕq(v)− p3euφ(v)Q

gives rise to a Gn-equivariant injective homomorphism from V to ⊕h∈Gn
h̸=1

(Z/pℓZ)Qh.
But the latter has no non-zero Gn-stable submodules, so

ϕq(v) = p3euφ(v)Q,

as required.

5.3 The Inductive Argument

For n > 1, recall that Λn = Zp[Gn], where Gn = Gal(Hn/K). If Q is a prime of Hn

lying above q ∈ Iℓ, then Iq is a free Z[Gn]-module of rank 1 generated by P, and we
define

vQ : H×
n → Λn by vQ(w)Q = (w)q,

v̄Q : H×
n /(H×

n )pℓ → Λn/p
ℓΛn by v̄Q(w)Q = [w]q

The following lemma is an important tool in the induction argument to follow.

Lemma 5.3.1. Suppose χ ∈ G∗, v ∈
(
H×
n /(H×

n )pℓ
)χ

, q ∈ Iℓ is a prime, Q is a prime
of Hn lying above q, S is a set of primes of K not containing q, and f, λ0, λ1, λ2 ∈ Λ(G ),
with λ0 = 2 if p = 2. Write Bn for the subgroup of A(Hn) generated by the primes
of Hn lying above the primes in S, c for the image of Q in A(Hn)χ and V for the
Λn-submodule of H×

n /(H×
n )pℓ generated by v. Suppose also that we have

(i) [v]r = 0 for a prime r of K not in S ∪ {q},

(ii) the annihilator Ann(c) ⊂ Λχ
n of c in A(Hn)χ/Bχ

n satisfies λ1Ann(c) ⊂ fΛχ
n,
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(iii) #(A(Hn)χ) | pℓ and v̄Q(v) divides (pℓ/#(A(Hn)χ))λ2 in Λχ
n/p

ℓΛχ
n, and

(iv) fΛ(G ) is prime to I(Hn).

Then there exists a Gn-equivariant map φ : V → Λn/p
ℓΛn satisfying

fφ(v) = λ0λ1λ2v̄Q(v).

Proof. This is a combination of [17, Lemma 8.2] and [11, Lemma 3.8.4].

Fix elements f1, . . . , fk ∈ Λ(G ) so that

0→ ⊕ki=1
Λ(G )

Λ(G )fi
→ A(H∞)→ Q→ 0

with Q finite. In particular,

charΛ(A(H∞)) =
(

k∏
i=1

fi

)
Λ(G ).

Theorem 5.3.2. (i) If p > 2, k is as above and χ ∈ G∗, we have

charΛ(A(H∞)χ) divides I(Dp)4k+4charΛ(ĒH∞/C̄H∞)χ,

where Dp = ∏
P|pDP denotes the group generated by the decomposition groups DP

of P in H∞/H.

(ii) If p = 2, k is as above and χ ∈ G∗, we have

charΛ(A(H∞)χ) divides 26k+6charΛ(ĒH∞/C̄H∞)χ.

Proof. We will prove this for p = 2. The case p > 2 is similar. Fix a generator β of
charΛ(ĒH∞/C̄H∞)χ. Let B be an ideal of finite index in Λ(G ) satisfying the conditions in
Theorem 5.1.8 (ii) and Lemma 5.1.12. Take λ ∈ 2I(G )B. By Lemma 5.1.1, λΛn/λ

2kΛn

is finite. Also, by Corollary 5.1.10, βΛ(G ) is prime to I(Hn), so Λn/βΛn is finite. It
follows that λΛn/λ

2kβΛn is finite. Thus, for some ℓ > 1, we have

2ℓλΛn ⊂ (2n+4k(#(A(Hn)χ))λ2kβ)Λn. (5.3.1)

Now, by Corollary 5.1.11, there exists θλ,n : ĒHn → Λn such that

λ2β ∈ θλ,n(C̄Hn).
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Thus, we may fix u ∈ C̄Hn with θλ,n(u) = λ2β, and also we fix u0 ∈ CHn with

u ≡ u0 mod (C̄Hn)pℓ

.

By Proposition 5.1.15, we have an Euler system α and σ ∈ Gal(H/K) with ασ(n, 1) =
u0. Let κα be the map defined in Proposition 5.1.16, and let c1, . . . , ck ∈ A(Hn) be
as given in Lemma 5.1.12. We will use induction to select primes Q1, . . . ,Qk+1 of Hn

lying above primes q1, . . . , qk+1 of K satisfying:

[Qi] = λcχi in A(Hn)χ, and qi ∈ Iℓ, (5.3.2)

v̄Q1(κα(q1)χ) = r124λ2β and fi−1v̄Qi
(κα(ai)χ) = ri24λ2v̄Qi−1(κα(ai−1)χ), (5.3.3)

where ai = q1 · · · qi and ri ∈ (Z/pℓZ)×.
For i = 1, we take c = λcχ1 ∈ 2I(G )A(Hn)χ, W =

(
ĒHn/ĒHn ∩ (H×

n )pℓ
)χ

, φ = 2θλ,n
and apply Theorem 5.2.2 and Proposition 5.2.1. Then we obtain a prime Q1 of Hn

such that [Q1] = λcχ1 in A(Hn)χ and a prime q1 ∈ Iℓ lying below Q1,

[(κα(q1)χ)]Q1 = ϕq1(κα(1)χ) = ϕq1(ασ(n, 1)χ)
= r123φ(u0)Q1 = r124θλ,n(u0)Q1 = r124λ2βQ1.

Thus, by the definition of [·]Q1 , we have

v̄Q1 (κα(q1)χ) = r124λ2β,

which proves the first equality of (5.3.3).
Now, let 1 < i < k and suppose we have selected primes Q1, . . .Qi satisfying

(5.3.2) and (5.3.3). We will define Qi+1. Recall ai = ∏
j6i qj.Let Vi be the Λn-

submodule of H×
n /(H×

n )pℓ generated by κα(ai)χ. We will apply Lemma 5.3.1 with
Q = Qi, v = κα(ai)χ, λ1 = λ2 = λ and S = {q1, . . . , qi−1}. This is possible because
conditions (i), (ii) and (iv) of Lemma 5.3.1 are satisfied thanks to Proposition 5.2.1,
Lemma 5.1.12 and Theorem 5.1.6, and (iii) is satisfied because by (5.3.3), v̄Qi

(κα(ai)χ)
divides 24iλ2iβ in Λχ

n/2ℓΛχ
n, so by the choice of ℓ made in (5.3.1), v̄Qi

(κα(ai)χ) divides(
pℓ/#(A(Hn)χ)

)
λ in Λn/2ℓΛn. Thus, we obtain a map φi : Vi → Λn/p

ℓΛn such that

fiφi(κα(ai)χ) = 2λ2v̄Qi
(κα(ai)χ). (5.3.4)
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Now, applying Theorem 5.2.2 by setting V = Vi, c = λcχi+1, φ = φi, we obtain a prime
qi+1 ∈ Iℓ and a prime Qi+1 of Hn lying above it. Then (i) and (ii) of Theorem 5.2.2
gives (5.3.2) for i+ 1. Furthermore, by Proposition 5.2.1 (ii) and Theorem 5.2.2 (iii),
for some ri+1 ∈ (Z/pℓZ)× we have

fi[κα(ai+1)]Qi+1 = fiϕqi+1(κα(ai)χ)
= ri+123fiφi(κα(ai)χ)Qi+1

= ri+124λ2v̄Qi
(κα(ai)χ)Qi+1,

where the last equation follows from (5.3.4). This proves (5.3.3) for i + 1. Finally,
combining (5.3.3) for 1 6 i 6 k + 1 gives

k∏
i=1

fiv̄Qk+1(κα(ak+1)χ) = r24k+4λ2k+2β

in Λn/p
ℓΛn for some u ∈ (Z/pℓZ)×. It follows that

charΛ(A(H∞)) =
k∏
i=1

fi divides 24k+4λ2k+2βΛ(G ) = 24k+4λ2k+2charΛ
(
ĒH∞/C̄H∞

)
.

This holds for every λ ∈ 2I(G )B, so in particular, holds for λ being the greatest common
divisor λ0 of all elements in 2I(G )B. It is easy to show that in this case we have
λ0Λ(G ) = 2I(G ). This concludes the proof of Theorem 5.3.2, because charΛ(A(H∞))
is prime to I(G ) by Theorem 5.1.6.

Corollary 5.3.3. Let p > 2. Then

charΛ(A(H∞)) divides charΛ(ĒH∞/C̄H∞).

Proof. We have shown in Theorem 5.1.6 that charΛ(A(H∞)) is prime to I(Dp), so by
Theorem 5.3.2, charΛ(A(H∞)) divides charΛ(ĒH∞/C̄H∞).

Recall that p - [H : K] by assumption.

Theorem 5.3.4. We have charΛ(X(H∞)) = charΛ
(
UH∞/C̄H∞

)
if and only if charΛ(A(H∞)) =

charΛ
(
ĒH∞/C̄H∞

)
, and

charΛ(X(H∞)) | 2e(6k+6)charΛ
(
UH∞/C̄H∞

)
.
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Proof. Recall from (4.4.2) that we have an exact sequence

0→ ĒH∞/C̄H∞ → UH∞/C̄H∞ → X(H∞)→ A(H∞)→ 0,

and therefore charΛ(A(H∞))charΛ
(
UH∞/C̄H∞

)
= charΛ(X(H∞))charΛ

(
ĒH∞/C̄H∞

)
.

The last assertion of the theorem follows from Theorem 5.3.2 and Corollary 5.3.3.





Chapter 6

Proof of the main conjecture for
H∞/H

6.1 The Iwasawa Invariants of X(H∞)
Recall that

G ≃ G× Γ,

where we identify G with Gal(H∞/K∞) and Γ with Gal(K∞/K). Recall that any
ΛI (G ) = I [[G ]]-module M can be decomposed into a direct sum M = ⊕χ∈G∗Mχ of its
χ-components. Thus, let us consider I [[Γ]] as a ΛI (G )-module via χ. Given a finitely
generated torsion ΛI (G )-module M , recall from Section 4.4 that char(M) ⊂ ΛI (G )
denotes the characteristic ideal of M . If X is a Λ(G )-module and χ ∈ G∗, we write
Xχ for (X⊗̂ZpI )χ. This is justified because we are only interested in char(X)χ, and
the characteristic ideals of a Γ-module behaves well under extension of scalars. This
comes from the fact that we can identify I [[Γ]] with I [[T ]].

Recall also that any f(T ) ∈ I [[T ]] can be written uniquely, by the p-adic Weierstrass
preparation theorem, in the form

f(T ) = πmP (T )U(T )

where π is a uniformiser of I , P (T ) is a distinguished polynomial, i.e., a monic
polynomial whose coefficients are divisible by π, and U(T ) is a unit in I [[T ]]. Let ϵ
be the absolute ramification index of I . The invariants

µ(f) = m

ϵ
and λ(f) = degP (T )
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are called the Iwasawa µ-invariant and λ-invariant of f , respectively. The Iwasawa
invariants of Λ(G )-modules are defined similarly, and if M = X⊗̂ZpI is obtained from
a Λ(G )-module X by extension of scalars to I , the invariants of M coincide with
those of X.

Define fχ = char (X(H∞))χ and let gχ = char
(
UH∞/C̄H∞

)χ
, and set f = ∏

fχ

and g = ∏
gχ. By Theorem 5.3.4, we have

Theorem 6.1.1. fχ | πekgχ for some integer k ≥ 0, e = 0 if p > 2 and e = 1 if p = 2.

Thus, in order to show fχ and gχ define the same ideal, it remains to show that
f and g the have the same Iwasawa invariants. We shall compute them separately,
and show that they are equal. First, we compute at the invariants of X(H∞) using
class field theory, and in Section 6.2 we compute the invariants of UH∞/C̄H∞ using the
analytic class number formula.

Recall from the proof of Theorem 5.1.5 that X(H∞)/I(Hn)X(H∞) is equal to
Gal(M(Hn)/H∞), where M(Hn) is the maximal abelian p-extension of Hn which is
unramified outside the primes above p. Thus the asymptotic formula of Iwasawa [23,
Theorem 13.13] gives:

Theorem 6.1.2. Let f be the characteristic power series for X(H∞) as a Zp[[Γ]]-
module. For sufficiently large n, we have

ordp (#(X(H∞)/I(Hn)X(H∞)) = µ(f)pn−1−e + λ(f)(n− 1− e) + c,

where µ(f) and λ(f) are the Iwasawa invariants of X(H∞) and c ∈ Z is independent
of n.

We will now compute p-adic valuation of the index [M(Hn) : H∞] using the methods
of Coates and Wiles [7], and use it to find ordp (#(X(H∞)/I(Hn)X(H∞)). We note
that p is assumed to be an odd prime number in [7], but it can easily be extended to
p = 2 in our case, because 2 splits in K and (p, h) = 1 by assumption.

Set [Hn : K] = d, which is equal to pn−1−eh where e = 0 or 1 according as p is odd
or even. Let ξ1, . . . ξd denote the distinct embeddings of Hn into Cp. Since Hn is totally
imaginary, rankZ (EHn/(EHn)tor) = d− 1. We pick a basis ϵ1, . . . , ϵd−1 for EHn/(EHn)tor,
and put ϵd = 1 + p or 1 + p2 according as p is odd or even.

Definition 6.1.3.

Rn = (d log ϵd)−1 det (log(ξi(ϵj)))16i,j6d .
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Let CHn denote the idele class group of Hn. For each n > 1, let

Yn = ∩m>nNHm/HnCHm

Let Φp = Hn ⊗K Kp.
Let P denote the set of primes of Hn lying above p. Let UHn,P

denote the group of
units in the completion of Hn at P which are congruent to 1 modulo P, and let t > 0
be such that p−tOP ⊂ logUHn,P

for each P ∈P.
The p-adic logarithm gives a homomorphism log : UHn,P

→ Hn,P whose kernel
has order wP = #µp∞(Hn,P). Write logUHn = ∏

P∈P logUHn,P
, so that we have

log : UHn → Φp with kernel wp = ∏
P∈P wP,

Lemma 6.1.4.

ordp

[
∏

P∈P

p−tOP : logUHn ]
 = ordp

wp

∏
P∈P

NP

+ td.

Proof. See [6, Lemma 7].

Let V n = 1 + pnOp denote the local units of Kp which are congruent to 1 modulo
pn, and define Dn = V 1+eĒHn ⊂ UHn , where e = 0 or 1 according as p > 2 or p = 2.
Furthermore, let ∆Hn/K denote the discriminant of Hn/K, and pick a generator ∆n of
the ideal ∆Hn/KOp.

Lemma 6.1.5.

ordp ([logUHn : logDn]) = ordp

 Rn√
∆n

wp

∏
P∈P

NP

−1
+ n+ 1.

Proof. Using methods analogous to [6, Lemma8], we can show that

ordp

[
∏

P∈P

p−tOP : logDn]
 = ordp

(
Rn√
∆n

)
+ td+ n− e+ ordp

(
log(1 + p1+e)

)
,

(6.1.1)
where e = 0 or 1 according as p > 2 or p = 2. We have ordp (log(1 + p1+e)) = 1 + e,
so the right hand side of (6.1.1) is equal to ordp

(
Rn√
∆n

)
+ td+ n+ 1. The result now

follows from Lemma 6.1.4.
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Corollary 6.1.6.

ordp ([UHn : Dn]) = ordp

 Rn

ωHn

√
∆n

 ∏
P∈P

NP

−1
+ n+ 1.

Proof. This is an immediate consequence of Lemma 6.1.5, obtained by applying the
snake lemma to the following commutative diagram

0 Dn UHn UHn/Dn 0

0 logDn logUHn logUHn/ logDn 0.

log log

with exact rows.

Lemma 6.1.7.

Yn ∩ UHn = ker
(
NΦp/Kp |UHn

)
ĒHn = ker

(
NΦp/Kp |Dn

)
.

Proof. See Lemma 5 and Lemma 6 of [6].

Lemma 6.1.8.

[Yn ∩ UHn : ĒHn ] = ordp

 Rn√
∆n

∏
P∈P

(1− (NP)−1)
+ n

Proof. By Lemma 6.1.7 and the definition of Dn, we have NΦp/Kp(Dn) = (V 1+e)d =
(V 1+e)n−e = V n+1. Hence, applying Lemma 6.1.7 again, we obtain a commutative
diagram with exact rows

0 ĒHn Dn V n+1 0

0 Yn ∩ UHn UHn V n 0.

NΦp/Kp

NΦp/Kp

Lemma 6.1.8 now follows from Lemma 6.1.7 on noting that ordp

(∏
P∈P(1− (NP)−1)

)
=

ordp
(∏

P∈P(NP)−1)
)

and [V n : V n+1] = p.



6.1 The Iwasawa Invariants of X(H∞) 103

Theorem 6.1.9. Let M(Hn) be the maximal abelian p-extension of Hn which is
unramified outside the primes in P. Then

ordp ([M(Hn) : H∞]) = ordp

hHnRn√
∆n

∏
P∈P

(1− (NP)−1)
+ n,

where hHn denotes the class number of Hn.

Proof. Let L(Hn) be the maximal unramified extension of Hn in M(Hn). Thus we
may identify Gal(L(Hn)/Hn) with A(Hn), the p-primary part of the ideal class group
of Hn. Class field theory gives an isomorphism

Yn ∩ UHn/ĒHn
∼= Gal(M(Hn)/L(Hn)H∞).

Noting that L(Hn) ∩H∞ = Hn because H∞/Hn is totally ramified at p, we obtain

0→ Yn ∩ UHn/ĒHn → Gal(M(Hn)/H∞)→ A(Hn)→ 0.

The theorem now follows from Lemma 6.1.8 and the fact that ordp (#(A(Hn))) =
ordp (hHn).

Corollary 6.1.10. Let f be the characteristic power series for X(H∞) as a Γ-module.
Then for sufficiently large n,

µ(f) · pn−1−e(p− 1) + λ(f) = 1 + ordp
(
hHn+1Rn+1√

∆n+1
/
hHnRn√

∆n

)
,

where µ(f) and λ(f) are the Iwasawa invariants of X(H∞).

Proof. By Theorem 6.1.9, it is clear that the right hand side of the above equation
is equal to ordp ([M(Hn+1) : H∞]/[M(Hn) : H∞]). Recalling that Gal(M(Hn)/H∞) =
X(H∞)/I(Hn)X(H∞), Theorem 6.1.2 gives ordp ([M(Hn+1) : H∞]/[M(Hn) : H∞]) is
equal to

(µ(f)pn−e+λ(f)(n−e)+c)−(µ(f)pn−1−e+λ(f)(n−1−e)+c) = µ(f)pn−1−e(p−1)+λ(f).

This completes the proof of the corollary.
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6.2 The Iwasawa Invariants of the p-adic L-function

In this section, we will compute the Iwasawa invariants of UH∞/C̄H∞ and show that
they coinsides with those of X(H∞) computed in Corollary 6.1.10. We will follow the
methods discussed in [8, Chapter III.2]. Again, the prime p is assumed to be odd in
Chapter III of [8], but the methods still holds for p = 2 thanks to our assumptions
that p splits in K and p - [H : K].

Fix a generator g ∈ I [[Γ]] of char
(
UH∞/C̄H∞

)
, and let µ(g) and λ(g) denote the

Iwasawa invariants.

Lemma 6.2.1. Recall that Γn = Γpn−1−e. For any character ρ of Γ of finite order,
write l(ρ) = n− 1− e if ρ(Γn) = 1 but ρ(Γn−1) ̸= 1. Then for n sufficiently large,

ordp

 ∏
l(ρ)=n−e

ρ(g)
 = µ(g) · pn−1−e(p− 1) + λ(g).

Proof. See [8, Lemma III.2.9].

Given a ramified character ε of G = G× Γ, write ε = χρ where χ is a character of
G and ρ is a character of Γ. Let fε denote the conductor of ε, fε = fε ∩ Z, and let Bn

be the collection of all ε with pn || fε. Then

Proposition 6.2.2. For n sufficiently large,

ordp

 ∏
l(ρ)=n−e

ρ(g)
 = 1 + ordp

(
hHn+1Rn+1√

∆n+1
/
hHnRn√

∆n

)
.

Proof. We follow the arguments in Proposition III.2.10 and 2.11 in [8]. Any ε ∈ Bn can
be written in the form ε = χρ where χ is a character of G and ρ is a character of Γ with
l(ρ) = n. Let H ′

∞ = HK(p∗∞) and S = {s ∈ Gal(H ′
∞Hn/K) : s|H′

∞ = (pn, H ′
∞/K)}.

For n > 0, fix primitive pn-th roots of unity ζn satisfying ζpn = ζn−1, and define G(ε) by

G(ε) = ρ(pn)
pn

∑
s∈S

χ(s)(ζsn)−1.

Let
Sp(ε) = − 1

122fεwfε

·
∑

c∈Cl(fε)
ε−1(c) log ϕfε(c),
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where Cl(fε) denotes the ray class group modulo fε and ϕfε(c) is Robert’s invariant
associated to the class c (see [8, II.2.6]). Then by [8, Theorem II.5.2], we have

ρ(gχ) =
∫

G χ
χρdνχp =

 G(ε)Sp(ε) if χ is non-trivial
(ρ(γ)− 1)G(ε)Sp(ε) if χ = 1,

where γ is a topological generator of Γ and νp satisfies Theorem 4.2.7. Hence∏
l(ρ)=n−e (ρ(γ)− 1) = ∏

ζ∈µpn−e
(ζ − 1). Noting that ordp

(∏
ζ∈µpn−e

(ζ − 1)
)
) = 1,

we obtain

ordp

 ∏
l(ρ)=n−e

ρ(g)
 = 1 + ordp

 ∏
ε∈Bn+1−e

G(ε)S(ε)
 . (6.2.1)

On the other hand, using the analytic class number formula for the fields Hn+1 and
Hn gives (see [8, III.2.11]):

ordp

 ∏
ε∈Bn+1−e

G(ε)Sp(ε)
 = ordp

(
hHn+1Rn+1√

∆n+1
/
hHnRn√

∆n

)
(6.2.2)

Combining (6.2.1) and (6.2.2) completes the proof of Proposition 6.2.2.

Comparing Corollary 6.1.10, Lemma 6.2.1 and Proposition 6.2.2, we conclude that
f and g have the same Iwasawa invariants. As discussed at the beginning of Section
6.1, this together with the divisibility relation obtained in Theorem 5.3.4 completes
the proof of the main conjecture for H∞/H.





Chapter 7

Some Remarks on the Main
Conjecture for E/H

7.1 Relation to the Main Conjecture for H∞/H

In this section, we briefly discuss the main conjecture for E/H and its relation to the
main conjecture for H∞/H which we proved in Chapter 6. Let M(F∞) be the maximal
abelian p-extension of F∞ which is unramified outside the primes above p, and put
X(F∞) = Gal(M(F∞)/F∞).

Let
Y∞ = Hom

(
Selp∞(E/F∞)∆, Kp/Op

)
,

the Pontryagin dual of Selp∞(E/F∞)∆. We first discuss its relation to the Selmer group
of E over H∞. We note that Theorem 3.3.1 holds with H with Hn and F with Fn for
all n. Thus we can take the inductive limit to obtain a surjection from Sel(T )

p∞ (E/H∞)
to Selp∞(E/F∞)∆ given by the restriction map, where T is the set of places of H∞

lying above p and the primes of bad reduction for E. This is an isomorphism if p > 2,
and the kernel of this map is the inductive limit of H1(∆, Ep2) if p = 2, which is a
cyclic group of order 2.

We can further describe Y∞ in terms of X(F∞) as follows. Recall that H =
Gal(F∞/H), which is isomorphic to ∆×Γ, and χp : H→ O×

p is the isomorphism giving
the action of H on Ep∞ . Let ρ = χp|∆, so ρ has order p− 1 or 2, according as p > 2 or
p = 2. If p > 2, the action of ∆ on any Zp[∆]-module A is semisimple, and we have
the decomposition

A = ⊕i mod p−1A
(ρi),
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where A(ρi) = {a ∈ A : σ · a = ρi(σ)a for all σ ∈ ∆}. If p = 2, no such decomposition
exists. In this case, we write δ for the non-trivial element of ∆, so that δ · z = −z for
all z ∈ Ep∞ .

Lemma 7.1.1. (i) If p > 2, Selp∞(E/F∞)∆ = Hom(X(F∞)ρ, Ep∞).

(ii) If p = 2, Selp∞(E/F∞)∆ = Hom(X(F∞)/(δ + 1)X(F∞), Ep∞).

Proof. Part (i) follows immediately from semisimplicity, and the fact that ∆ acts on
Ep∞ via the character ρ. For (ii), note that given f ∈ Hom(X(F∞), Ep∞), we have

(δf)(x) = δf(δ−1x) = −f(δ−1x) = −f(δx).

Hence, we have δf = f if and only if f((δ + 1)x) = 0 for all x ∈ X(F∞), and so (ii)
follows.

Let
Tρ(E)(−1) = HomOp(Ep∞ , Kp/Op),

a free Op-module of rank 1 on which H acts via χ−1
p . Given any Op-module V endowed

with an action of H, we define

V (−1) = V ⊗Op Tp(E)(−1),

endowed with the diagonal action of H, i.e. σ(v ⊗ t) = σ(v) ⊗ σ(t) for any σ ∈ γG,
v ∈ V and t ∈ Tp(E)(−1).

In view of the above lemma, we obtain

Proposition 7.1.2. The Pontryagin dual Y∞ of Selp∞(E/F∞)∆ is isomorphic as
Γ-module to X(F∞)(ρ)(−1) if p > 2, and to (X(F∞)/(δ + 1)X(F∞))(−1) if p = 2.

In particular, we have shown that Y∞ is a finitely generated torsion Λ(Γ)-module
because X(F∞) is, by the p-adic Leopoldt conjecture for abelian extensions of K, and

char(Y∞) =

char
(
X(F∞)(ρ)

)
if p > 2

char(X(F∞)/(δ + 1)X(F∞)) if p = 2.

Recall that G denotes the Galois group of F∞ over K, and G = Σ× Γ where we
identify Σ with Gal(F∞/K∞) and Γ with Gal(K∞/K). Let I ′ be the extension of I

generated by the values of all characters χ on Σ. We have I ′ = I if p > 2 because
p - #(Σ). If p > 2, given a finitely generated torsion Λ(G)-module M and χ ∈ Σ∗, we
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write M θ for eθ(M⊗̂ZpI ) where eθ is the idempotent corresponding to θ. That is, M θ

is the largest submodule of M on which Σ acts via θ. For any p, we let Mθ denote the
largest quotient of M⊗̂ZpI

′ on which Σ acts through θ. If the p-torsion submodule is
finite, then Mθ is pseudo-isomorphic to M θ [8, III.1.8]. In particular, we know that
this is true for p > 2, because the µ-invariant of X(F∞) is zero in this case, and thus
X(F∞) is a free Zp-module of finite rank (see [8, Corollary III.2.12]). Let Ψp ∈ ΛI (G)
denotes the p-adic L-function attached to E/H constructed at the end of Section 4.2.

Now, let Y (F∞) = Gal(M(F∞)/F∞M(H∞)). Furthermore, since M(H∞) ∩ F∞ =
H∞, we can identify X(H∞) with Gal(F∞M(H∞)/F∞), and we have an exact sequence

0→ Y (F∞)→ X(F∞)→ X(H∞)→ 0. (7.1.1)

We will see in Lemma 7.1.8 that char(Y (F∞)) = char(Y∞) for all p, assuming
X(F∞) has µ-invariant equal to 0 and both X(F∞) and X(H∞) contain no non-zero
finite Γ-submodules for p = 2 (automatic if p > 2).

Conjecture 7.1.3 (The Main Conjecture for Y (F∞)). For any character θ on Σ,

char ((Y (F∞))θ) = (µE)θ,

where µE is as defined in Theorem 4.1.11.

The techniques used in Chapters 5 and 6 extend to apply for Y (F∞) without any
difficulty if p > 2. They can also be applied to the case p = 2 if we assume in addition
that we can prove the µ-invariant of X(F∞) is zero.

Finally, the main conjecture for E/H says:

Conjecture 7.1.4 (The Main Conjecture for E/H). For any character θ on Σ,

char (X(F∞)θ) = (Ψp)θ,

where Ψp is defined at the end of section 4.2.

Clearly, we have char(X(F∞)) = char(X(H∞))char(Y (F∞)). If p > 2, the main
conjecture for X(F∞) easily follows from the main conjectures for X(H∞) and Y (F∞),
using the fact that (#(Σ), p) = 1. Hence, in the remainder of this section, we study
more closely the relation between char(X(F∞)) and char(X(H∞)) when p = 2.

Lemma 7.1.5. Let p = 2. Then X(F∞)∆ = Gal(L/F∞), where L is the maximal
abelian extension of H∞ contained in M(F∞).
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Proof. By definition, X(F∞)∆ = X(F∞)/(δ − 1)X(F∞) where δ is the non-trivial
element of ∆. Note first that M(F∞)/H∞ is a Galois extension. Indeed, δ(M(F∞))
is again an extension of F∞ since F∞ is Galois over H∞, and it is clearly an abelian
2-extension over F∞. Also the primes of M(F∞) lying above the primes of H where E
has bad reduction ramify completely in F∞/H∞, so δ(M(F∞))/F∞ is still unramified
outside the primes above p, hence δ(M(F∞)) = M(F∞) as required. Now, Gal(F∞/H∞)
is generated by δ so every element of Gal(M(F∞)/H∞) can be expressed in the form
γaδx for x ∈ X(F∞), γδ a lifting of δ in Gal(M(F∞)/H∞) and a ∈ {0, 1}. For any
x ∈ X(F∞), we have (δ − 1)x = γδxγ

−1
δ x−1 = [γδ, x], a commutator. We claim that

(δ − 1)X(F∞) is the full commutator subgroup of Gal(M(F∞)/H∞). Indeed, for any
two elements γa1

δ x1, γa2
δ x2 ∈ Gal(M(F∞)/H∞), a simple computation shows that we

have
[γa1
δ x1, γ

a2
δ x2] = δa2(δa1 − 1)x2 − δa1(δa2 − 1)x1,

which clearly lies inside (δ − 1)X(F∞) for any a1, a2 ∈ {0, 1} and x1, x2 ∈ X(F∞).
Hence if we let L be the maximal abelian extension of H∞ contained in M(F∞), we
have

Gal(M(F∞)/L) = (δ − 1)X(F∞),

and so
X(F∞)/(δ − 1)X(F∞) = Gal(L/F∞)

as claimed.

Proposition 7.1.6. Let p = 2. If X(H∞) is a finitely generated Z2-module, then so
is X(F∞)∆.

Proof. By Lemma 7.1.5,

X(F∞)/(δ − 1)X(F∞) = Gal(L/F∞),

where L denotes the maximal abelian extension of H∞ contained in M(F∞). Recall
that ∆ = Gal(F∞/H∞) has order 2 and we have an exact sequence

0→ Gal(L/F∞M(H∞))→ Gal(L/H∞)→ X(H∞)→ 0,

so it remains to show that Gal(L/F∞M(H∞)) is a finitely generated Z2-module. We
will do this by showing that Gal(L/M(H∞)) is finite, so that Gal(L/F∞M(H∞)) is
also. Since L is contained in M(F∞), the only primes which ramify in L/H∞ are
the primes of H∞ lying above p and the primes in B∞, where B∞ denotes the set of
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primes in H∞ lying above the primes of H where E has bad reduction. But M(H∞)
is the maximal abelian extension of H∞ unramified outside the primes above p, so
Gal(L/M(H∞)) is generated by the inertia subgroups Iv of the primes v in B∞ inside
Gal(L/H∞). Since L/F∞ is unramified outside p, Iv injects into the inertia subgroup
of v in Gal(F∞/H∞) for any v in B∞, which is clearly finite.

It then follows by Nakayama’s Lemma that X(F∞) is a finitely generated Z2-module.
Given any ∆-module A, let A+ denote the set of all a ∈ A such that δ · a = a, and
similarly let A− denote the set of all a ∈ A such that δ · a = −a.

Corollary 7.1.7. Let p = 2. Then

char
(
X(F∞)+

)
= char (X(H∞)) .

Proof. By Proposition 7.1.6, char (Gal(L/H∞)) = char (X(H∞)), so char (X(F∞)∆) =
char (X(H∞)). The result now follows on noting that we have an exact sequence

0→ X(F∞)+ → X(F∞) ×δ−1−−−→ X(F∞)→ X(F∞)/(δ − 1)X(F∞)→ 0,

where the middle map is multiplication by δ − 1.

Lemma 7.1.8. char(Y (F∞)) = char(Y∞) for all p, assuming for p = 2 that X(F∞)
has µ-invariant equal to 0 and both X(F∞) and X(H∞) contain no non-zero finite
Γ-submodules (this is automatic if p > 2).

Proof. We will prove this for p = 2, and the case p > 2 is similar. Since the µ-invariant
is zero, the 2-torsion X(H∞)2 of X(H∞) is zero, and X(H∞)/2X(H∞) is finite. Further,
(1 + δ)X(H∞) = 2X(H∞), thus it follows from the snake lemma and the fact that
(X(H∞))2 = 0 that

Y (F∞)− = X(F∞)−.

But X(F∞)/2X(F∞) and Y (F∞)/2Y (F∞) are also finite because the µ-invariant
of X(F∞) is zero, and (X(F∞))2 = (Y (F∞))2 = 0, so 2X(F∞) ⊂ X(F∞)+ ⊕
X(F∞)− and char(X(F∞)) = char(X(F∞)+)char(X(F∞)−). Similarly, char(Y (F∞)) =
char(Y (F∞)+)char(Y (F∞)−), and thus in view of the exact sequence (7.1.1), we obtain

char(X(F∞)+) = char(X(H∞))char(Y (F∞)+).
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It follows from Corollary 7.1.7 and the fact that X(F∞) has no non-zero finite submodule
that Y (F∞)+ = 0. Now, the snake lemma also gives an exact sequence

0→ Y (F∞)/(δ + 1)Y (F∞)→ X(F∞)/(δ + 1)X(F∞)→ X(H∞)/2X(H∞)→ 0.

But we have (1 + δ)Y (F∞) ⊂ Y (F∞)+ = 0 and X(H∞)/2X(H∞) is finite, so

char(Y (F∞)) = char(X(F∞)/(1 + δ)X(F∞)).

The lemma now follows from Proposition 7.1.2.

7.2 Relation to the p-part of the Birch–Swinnerton-
Dyer Conjecture

In this short section, let us assume that the main conjecture for Y (F∞) holds. Let fY (T )
denote a generator of the characteristic ideal of X(F∞)(ρ) or (X(F∞)/(δ + 1)X(F∞))
according as p > 2 or p = 2, as a Λ(Γ)-module. Then a generator of the characteristic
ideal of Y∞ is given by fY∞(χp(γ)(1+T )−1), where γ is the fixed topological generator
of Γ. We have the Euler characteristic formula ([5, A.2]):

Lemma 7.2.1. (Y∞)Γ is finite if and only if fY∞(χp(γ)−1) ̸= 0. If fY∞(χp(γ)−1) ̸= 0,
then Y Γ

∞ is also finite, and

|fY∞(χp(γ)− 1)|−1
p = # ((Y∞)Γ)

# (Y Γ
∞) .

Recalling that (Y∞)Γ is dual to Selp∞(E/F∞)H = Sel′p∞(E/F )∆, we conclude that
fY∞(χp(γ)− 1) ̸= 0 if and only if E(H) and X(E/H)(p) are finite.

Let us assume that Y∞ has no non-zero finite Γ-submodule. This is automatic
for p > 2, because Greenberg’s theorem gives that X(F∞) has no non-zero finite
Γ-submodule. If p = 2, X(F∞) still has no non-zero finite Γ-submodule, but it could
well be that X(F∞)/(δ+ 1)X(F∞) does. Finally, suppose L(ψkE/H , 1) ̸= 0. Under these
hypotheses, we have |fY∞(χp(γ)(1+T )−1)|−1

p = # ((Y∞)Γ) because Y Γ
∞ must be trivial.

When combined with Theorem 3.3.4 which relates Sel′p∞(E/F )∆ to #(X(E/H)(p)
and Theorem 4.1.11 which relates µE to L(ψkE/H , 1), we obtain the p-part of the
Birch–Swinnerton-Dyer conjecture for E/H.
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Here we prove some results from Chapter 2. We follow the notation in Chapter 2, so
that K = Q(

√
−3), E = X0(27) and ψ is the Grössencharacter of E over K.

Lemma A.1. A rational prime p is a special split prime if and only if it splits in K,
and ψ(p) ≡ ±1 mod 4 for both of the primes p of K above p. Moreover, L = K(µ4,

3
√

2).

Proof. Put F = K(E[4]), and let G denote the Galois group of F over K. Since E has
good reduction at 2, the action of G on E[4] defines an isomorphism

j : G ∼−→ AutOK
(E[4]) = (OK/4OK)× .

In particular, it follows that [F : K] = 12, since 2 is inert in K. Let τ denote the
unique element of G such that j(τ) = −1 mod 4OK . Then the field L = K(x(E[4]))
is the fixed field of τ , so that [L : K] = 6. Clearly, K(E[2]) = K( 3

√
2). Also by

Weil pairing, we have µ4 ⊂ F . We claim that L = K(µ4,
3
√

2). We know that
E[2] = {O, (

3√2·3
2 , 0), (

3√2·3
2 ω, 0), (

3√2·3
2 ω2, 0)}. Using the doubling formula, we get that

the x-coordinate of a point in E[4]\E[2] satisfies

x4 + 2 · 33x

4x3 − 33 =
3
√

2 · 3
2 .

Let x =
3√2·3

2 z, then the equation becomes

z4 − 4z3 + 8z + 4 = (z2 − 2z − 2)2 = 0,

which has roots z = 1 ±
√

3 each with multiplicity 2. Hence the x-coordinate of a
point in E[4]\E[2] is x =

3√2·3(1±
√

3)
2 ∈ K(µ4,

3
√

2), as required. Now let p be any
prime which splits in K, and let p be one of the prime ideals of K above p. Then the
Frobenius automorphism of K acts on E[4] by multiplication by ψ(p), thanks to the
main theorem of complex multiplication. It follows that p splits completely in F if and
only if ψ(p) ≡ 1 mod 4, and p splits completely in L if and only if ψ(p) ≡ ±1 mod 4.
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Proposition A.2. Over the field

F = K

 6

√
27 + 3

√
−3

2

 ,
there exists a change of variables x = u2X + r, y = 2u3Y with u, r ∈ F which gives the
following equation for E

Y 2 = X3 + (9 +
√
−3)

4 X2 + 13 + 3
√
−3

8 X + 2 +
√
−3

8

which has good reduction at 3. Here, u =
√
α
β2 where α = 27+3

√
−3

2 , β = 3
√

1−3
√

−3
2 and

r = −3
2

3
√

−13−3
√

−3
2 .

Proof. Note that for our curve, the smallest split prime is 7. So one should try to
find an explicit equation for the curve E over the field F = K(E[2 +

√
−3]) having

good reduction at 3 (see [7, Theorem 2]). The conductor of F over K is (3(2 +
√
−3)),

since the conductor of the Grössencharacter of E/K is 3OK . Furthermore, F/K is an
abelian extension of degree 6 and the group µ6 ⊂ K. Thus, by Kummer theory, we
must have F = K( 6

√
α), for some α ∈ K∗. The only primes of K which can ramify

in F are those dividing 7, 3 and w, so the Kummer generator α must be of the form
(2 +

√
−3)a · (ω − 1)b · (−ω)c where a, b, c ∈ {0, . . . , 5}. Recall from the theory of

complex multiplication that for a prime ideal p of K prime to 3, we have ψE/K(p) = π

where π is the unique generator of p which is 1 mod 3OK . Now, suppose in addition
that p is prime to 7. Then F/K is unramified at p so

Frobp = ψE/K(p).

If we pick a prime p = (π) such that π ≡ 1 mod 3OK and π ≡ 1 mod (2 +
√
−3)OK ,

then we have
(P )Frobp = ψE/K(p)(P ) = π(P ) = P

for P ∈ E[2 +
√
−3], since π ≡ 1 mod (2 +

√
−3)OK . So ψE/K(p) is the identity in the

extension K(E[2 +
√
−3])/K. On the other hand, K(E[2 +

√
−3]) = K( 6

√
α) and we

know that
( 6
√
α)Frobp ≡ ( 6

√
α)N(p) mod p,

so for Frobp to be the identity, it is necessary that

( 6
√
α)N(p) ≡ 6

√
α mod p.
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We eliminate the possibilities for (a, b, c) by trying out some examples.

Example A.3. Let π = 13 + 6
√
−3 and p = (π). Then π ≡ 1 mod 3OK , π ≡

1 mod (2 +
√
−3)OK and N(p) = 277. So ( 6

√
α)Frobp ≡ ( 6

√
α)277 ≡ ( 6

√
α)α46. Thus, for

Frobp to be the identity, we need

α46 ≡
(
2 +
√
−3
)46a

(
−3 +

√
−3

2

)46b (1−
√
−3

2

)46c

≡ 1 mod p.

But 13 + 6
√
−3 ≡ 0 mod p so we can replace

√
−3 with −13

6 and now that we have
rational numbers, we can replace mod p with mod N(p). Hence the equation becomes

(
2− 13

6

)46a (−3− 13
6

2

)46b (1 + 13
6

2

)46c

≡ 1 mod 277.

Also, 6−1 ≡ −46 mod 277 and 2−1 ≡ 139 mod 277, so

(2 + 46 · 13)46a (139(−3 + 46 · 13)46b (139(1− 46 · 13))46c ≡ 1 mod 277,

that is,
117a · 276b · 160c ≡ 1 mod 277. (A.1)

Example A.4. Let π = 1 + 1+
√

−3
2 · 3(2 +

√
−3) = 5+9

√
−3

2 . Then π ≡ 1 mod 3OK ,
π ≡ 1 mod (2 +

√
−3)OK and N(p) = 67. So ( 6

√
α)Frobp ≡ ( 6

√
α)67 ≡ ( 6

√
α)α11. Hence

for Frobp to be the identity, we need

α11 ≡
(
2 +
√
−3
)11a

(
−3 +

√
−3

2

)11b (1−
√
−3

2

)11c

≡ 1 mod p.

But we now have
√
−3 ≡ 5

9 mod p, 9−1 ≡ 15 mod 67 and 2−1 ≡ 34 mod 67 so the
equation becomes

(2 + 15 · 5)11a(34(−3 + 15 · 5))11b(34(1− 15 · 5))11c ≡ 1 mod 67

that is,
29a · 37b · 38c ≡ 1 mod 67. (A.2)

Comparing the solutions to (A.1) and (A.2) in Examples A.3 and A.4, we find
that the common solutions are (a, b, c) = (0, 0, 0), (1, 3, 2), (2, 0, 4), (3, 3, 0), (4, 0, 2) and
(5, 3, 4). However, we know that F/K is a degree 6 extension, so the only possibilities are
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(a, b, c) = (1, 3, 2) and (5, 3, 4). But (2+
√

−3)(ω−1)(−ω)
6
√

(2+
√

−3)5(ω−1)3(−ω)4
= 6
√

(2 +
√
−3)(ω − 1)3(−ω)2,

so the corresponding fields are the same. Hence

K(E[2 +
√
−3]) = K

(
6
√

(2 +
√
−3)(ω − 1)3(−ω)2

)

= K

 6

√
27 + 3

√
−3

2

 .
Let E : y2 = 4x3 − 33 and x = u2X + r, y = u3Y . Then in terms of X, Y , we have

u6Y 2 = 4u6X3 + 12u4rX2 + 12u2r2X + 4r3 − 33

and ord3

(
6
√

27+3
√

−3
2

)
= 1

4 , so ord3

(√
27+3

√
−3

2

)
= 3

4 . We also have 3
√
α = 3

√
2 +
√
−3 ·

−3+
√

−3
2 · 3

√(
1−

√
−3

2

)2
∈ F , so β = 3

√
(2 +

√
−3) ·

(
1−

√
−3

2

)2
= 3
√

1−3
√

−3
2 ∈ F , so let

u =
√
α
β2 . Then ord3(u) = 3

4 and ord7(u) = − 1
12 . If we divide the equation through by

u6, one can easily check that the discriminant of this curve is u−12disc(E), so it is a
3-adic unit and is integral at 7. To make sure the coefficients of

Y 2 = 4X3 + 12r
u2 X

2 + 12r2

u4 X + 4r3 − 33

u6

are integral at 3, it is sufficient that ord3(4r2 − 33) > ord3(u6) = 9
2 . So we need r = 3s

for some s ∈ F and ord(4r2 − 33) = ord3(33(4s3 − 1)) > 9
2 , so ord3(4s3 − 1) > 3

2 . Now,
let

s = −β
2

2 = −1
2

3

√√√√(2 +
√
−3)2

(
1−
√
−3

2

)4

= −1
2

3

√
−13− 3

√
−3

2 .

Then

4s3 − 1 = 13 + 3
√
−3

4 − 1 = 9 + 3
√
−3

4

so ord3(4s3 − 1) = 3
2 , as required. Now, r = 3s = −3β2

2 and u =
√
α
β2 , so

Y 2 = 4X3 − 18β6

α
X2 + 27β12

α2 − 27β12(β6 + 2)
2α3 .
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So substituting the values for α and β, we obtain an equation with coefficients in
K:

Y 2 = 4X3 + (9 +
√
−3)X2 + 13 + 3

√
−3

2 X + 2 +
√
−3

2 .

Corollary A.5. For any character χ : (Z/3Z)n → C×, we have

ord3(Φ(χ)
D2 ) > n+ 1

4 .

Proof. We will assume for simplicity that D is a prime power since we only use this
Corollary in the case n = 1. The proof for the case n > 1 is similar. Pick β ∈ OK
be such that (1 − ω)β ≡ 1 mod D. Let C be a set of elements of OK such that
c mod D runs over (OK/DOK)× precisely once and C can be written as a union of sets
C = ⋃

i∈{0,1,2}
ωiH ⋃

i∈{0,1,2}
ωi(1− ω)H ⋃

i∈{0,1,2}
ωiβH for some set H. This is possible since

3 and D are coprime and 9 divides the order of 1− ω in (OK/DOK)× by assumption.
We will follow the notation in the proof of Lemma 2.3.11. Given c ∈ V (χ), let P be the
point on E : y2 = 4x3 − 33 given by x(P ) = ℘

(
cΩ
D
,L
)
, y(P ) = ℘′

(
cΩ
D
,L
)
. Similarly let

Q and R be the points given by (x(Q), y(Q)) =
(
℘
(

(1−ω)cΩ
D

,L
)
, ℘′

(
(1−ω)cΩ

D
,L
))

and
(x(R), y(R)) =

(
℘
(
βcΩ
D
,L
)
, ℘′

(
βcΩ
D
,L
))

respectively, and define

M (c,D) = 9− y(P )
3− x(P ) .

We can write V (χ) as a union of sets

V (χ) =
⋃

i∈{0,1,2}
ωiH

⋃
i∈{0,1,2}

ωi(1− ω)H
⋃

i∈{0,1,2}
ωiβH

for some set H, since
(

1−ω
D

)
3

=
(
β
D

)
3

= 1. We wish to find ord3

( ∑
c∈V (χ)

M (c,D)
)

.

Recall that E has complex multiplication by ω via ω(x, y) = (ωx, y), so ℘′
(
ωicΩ
D
,L
)

=
℘′
(
cΩ
D
,L
)
. Moreover, L = ωL so ℘

(
ωicΩ
D
,L
)

= ℘
(
ωicΩ
D
, ωiΛ

)
for i = 0, 1, 2 and ℘ is
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homogeneous of degree −2 so

∑
i∈{0,1,2}

9− ℘′
(
wicΩ
D
,L
)

3− ℘
(
ωicΩ
D
,L
) =

9− ℘′
(
cΩ
D
,L
)

3− ℘
(
cΩ
D
,L
) +

9− ℘′
(
cΩ
D
,L
)

3− ω℘
(
cΩ
D
,L
) +

9− ℘′
(
cΩ
D
,L
)

3− ω2℘
(
cΩ
D
,L
)

= 35 − 33y(P )
27− x(P )3 .

Furthermore, using the addition formula

℘(z1 + z2,L) = −℘(z1,L)− ℘(z2,L) + 1
4

(
℘′(z1,L)− ℘′(z2,L)
℘(z1,L)− ℘(z2,L)

)2

,

and noting ℘(z,L) is even and ℘′(z,L) is odd, we get

℘

(
(1− ω)cΩ

D
,L
)

= −℘
(
cΩ
D
,L
)
− ℘

(
−ωcΩ
D

,L
)

+ 1
4

 ℘′( cΩ
D
,L)− ℘′(−ωcΩ

D
,L)

℘
(
cΩ
D
,L
)
− ℘

(
−ωcΩ
D

,L
)
2

= −(1 + ω)x(P ) +
(

y(P )
(1− ω)x(P )

)2

.

Also, β − ωβ ≡ 1 mod Da so

℘

(
cΩ
D
,L
)

= −℘
(
βcΩ
D

,L
)
− ℘

(
−ωβcΩ
D

,L
)

+ 1
4

(
℘′(βcΩ

D
,L)− ℘′(−ωβcΩ

D
,L)

℘(βcΩ
D
,L)− ℘(−ωβcΩ

D
,L)

)2

= −(1 + ω)x(R) +
(

y(R)
(1− ω)x(R)

)2

.

Therefore,

∑
c∈V (χ)

M (c,D) =
∑
c∈H

∑
i∈{0,1,2}

9− ℘′
(
wicΩ
D
,L
)

3− ℘
(
ωicΩ
D
,L
) +

9− ℘′
(
ωi(1−ω)cΩ

D
,L
)

3− ℘
(
ωi(1−ω)cΩ

D
,L
) +

9− ℘′
(
wiβcΩ
D

,L
)

3− ℘
(
ωiβcΩ
D

,L
) ,

and this is equal to

∑
c∈H

35 − 33y(P )
27− x(P )3 + 35 − 33y(Q)

27−
(
ω2x(P ) +

(
y(P )

(1−ω)x(P )

)2
)3 + 35 − 33y(R)

27−
(
ωx(P )− ω

(
y(R)

(1−ω)x(R)

)2
)3 .

(A.3)
To determine ord3

(
y(P )

(1−ω)x(P )

)
, recall from Proposition A.2 that the change of

variables x = u2X + r, y = 2u3Y where r = −3
2

3
√

−13−3
√

−3
2 gives us a model of E
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having good reduction at 3. In terms of X and Y , we have

y(P )
(1− ω)x(P ) = u3Y (P )

(1− ω)(u2X(P ) + r) .

Now, P is a torsion of point of E of order prime to 3 and E has good reduction at 3
so ord3(X(P )), ord3(Y (P )) > 0. Also ord3(u) = 3

4 , and ord3(r) = 1 so

ord3

(
y(P )

(1− ω)x(P )

)
= 3

4 + ord3(Y (P )).

If ord3(Y (P )) > 0, P reduces to a 2-torsion after reduction modulo 3, but P is a
D-torsion and reduction modulo 3 is injective, hence we must have ord3(Y (P )) = 0.
Similarly ord3

(
y(R)

(1−ω)x(R)

)
= 3

4 . We also showed in the proof of Corollary 2.3.7 that
ord3(27− x(P )3) = 4, so when we add the three terms in equation (A.3), the product
of the denominators has 3-adic valuation 12. The numerator is of the form
(
27− x(P )3

)2 (
36 − 33(y(P ) + y(Q) + y(R))

)
+
(

terms of 3-adic valuation >
27
2

)
,

and ord3(y(P )) = 9
4 , so

ord3

 ∑
c∈V (χ)

M (c,D)
 >

(
8 + 21

4

)
− 12 = 5

4 .

On the other hand, by the proof of Lemma 2.3.11, we have 9 | #(V (χ)). Thus,

ord3

 ∑
c∈V (χ)

E∗
1

(
cΩ
D

+ Ω
3 ,L

) > min
ord3

1
2
∑

c∈V (χ)

M (c,D)
 , ord3(#(V (χ)))


>

5
4

as required.
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B Numerical Examples
The following examples are computed using Magma.

Quadratic Twists

Let E(D3) : y2 = 4x3 − 33D3, ω = e
2πi

3 . In what follows, π denotes a prime of K
congruent to 1 modulo 12. In particular, D = Nπ is a special split prime defined in
Definition 2.2.3. We order π = a+ bω, a, b ∈ Z ,by |a| and then by |b|.

π = a+ bω D = Nπ L(alg)(E(D3), 1)
13 + 12ω 157 12 = 22 · 3
13 + 24ω 433 48 = 24 · 3
−23− 12ω 397 0
−23− 36ω 997 0
25 + 24ω 601 48 = 24 · 3
25 + 36ω 1021 12 = 22 · 3
37 + 60ω 2749 12 = 22 · 3
37 + 72ω 3889 0
37 + 12ω 1069 12 = 22 · 3
47 + 12ω 1789 12 = 22 · 3
47 + 24ω 1657 12 = 22 · 3
49 + 24ω 1801 12 = 22 · 3
49 + 36ω 1933 48 = 24 · 3
49 + 60ω 3061 12 = 22 · 3
49 + 72ω 4057 48 = 24 · 3
−59− 12ω 2917 0
−59− 48ω 2953 12 = 22 · 3
−59− 60ω 3541 12 = 22 · 3
−59− 84ω 5581 48 = 24 · 3
61 + 24ω 2833 108 = 22 · 33

61 + 72ω 4513 108 = 22 · 33

61 + 84ω 5653 12 = 22 · 3
−71− 132ω 13093 12 = 22 · 3
73 + 96ω 7537 108 = 22 · 33

73 + 108ω 9109 48 = 24 · 3
−83− 120ω 11329 59 = 24 · 3
85 + 156ω 18301 0
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π = a+ bω D = Nπ L(alg)(E(D3), 1)
85 + 168ω 21169 192 = 26 · 3
−95− 156ω 18541 0
−71− 72ω 5113 0
−71− 84ω 6133 108 = 22 · 33

73 + 12ω 4597 0
73 + 24ω 4153 12 = 22 · 3
73 + 48ω 4129 12 = 22 · 3
73 + 60ω 4549 48 = 24 · 3
83 + 12ω 6037 12 = 22 · 3
−83− 36ω 5197 48 = 24 · 3
−83− 48ω 5209 12 = 22 · 3
85 + 48ω 5449 192 = 26 · 3
−95− 24ω 7321 0
−95− 72ω 7369 0
−95− 84ω 8101 0
−95− 108ω 10429 12 = 22 · 3
97 + 36ω 7213 12 = 22 · 3
97 + 48ω 7057 108 = 22 · 33

97 + 84ω 8317 12 = 22 · 3
97 + 108ω 10597 12 = 22 · 3
97 + 132ω 14029 12 = 22 · 3
−107− 60ω 8629 48 = 24 · 3
−107− 72ω 8929 48 = 24 · 3
107 + 120ω 13009 48 = 24 · 3
109 + 60ω 8941 12 = 22 · 3
109 + 84ω 9781 48 = 24 · 3
109 + 144ω 16921 0
109 + 156ω 19213 108 = 22 · 33

−119− 96ω 11953 0
−119− 108ω 12973 48 = 24 · 3
−119− 120ω 14281 48 = 24 · 3
−119− 132ω 15877 108 = 22 · 33

−119− 144ω 17761 108 = 22 · 33

121 + 72ω 11113 12 = 22 · 3
121 + 96ω 12241 0
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π = a+ bω D = Nπ L(alg)(E(D3), 1)
121 + 156ω 20101 48 = 24 · 3
121 + 180ω 25261 108 = 22 · 33

−131− 132ω 17293 12 = 22 · 3
−131− 156ω 21061 12 = 22 · 3
−131− 180ω 25981 108 = 22 · 33

133 + 144ω 19273 48 = 24 · 3
133 + 156ω 21277 0
−143− 144ω 20593 48 = 24 · 3
−143− 180ω 27109 12 = 22 · 3
145 + 132ω 19309 108 = 22 · 33

145 + 156ω 22741 0
145 + 168ω 24889 48 = 24 · 3
−155− 144ω 22441 12 = 22 · 3
−155− 156ω 24181 108 = 22 · 33

−155− 168ω 26209 12 = 22 · 3
157 + 144ω 22777 300 = 22 · 3 · 5
157 + 168ω 26497 0
157 + 180ω 28789 12 = 22 · 3
−167− 168ω 28057 300 = 22 · 3 · 5

The following is a small sample of D divisible by two relatively small (due to
computational complexity) distinct special split primes.

D L(alg)(E(D3), 1)
157 · 601 0
601 · 1021 0
157 · 1021 192 = 26 · 3
157 · 1789 0
1021 · 1789 1200 = 24 · 3 · 52

Cubic Twists

Let E(D2) : y2 = 4x3 − 33D3, ω = e
2πi

2 . Let D be an odd, cube-free integer such that
D ≡ 1 mod 9 and D is a product of prime numbers congruent to 1 modulo 3. We first
list examples where D is a prime number, D = Nπ and π is a prime of K. We order π
by |a| and then by |b|.



124

π = a+ bω D = Nπ L(alg)(E(D2), 1)
1 + 9ω 73 9 = 32

1 + 18ω 307 9 = 32

1− 27ω 757 27 = 33

1 + 81ω 6481 27 = 33

4 + 15ω 181 9 = 32

7 + 12ω 109 9 = 32

7 + 30ω 739 36 = 22 · 32

7 + 39ω 1297 9 = 32

7 + 48ω 2017 9 = 32

13 + 6ω 127 0
13 + 15ω 199 9 = 32

13 + 24ω 433 0
16 + 39ω 1153 9 = 32

16 + 57ω 2593 36 = 22 · 32

19 + 27ω 577 9 = 32

19 + 54ω 2251 36 = 22 · 32

22 + 15ω 379 0
25 + 21ω 541 9 = 32

25 + 39ω 1171 0
28 + 9ω 613 9 = 32

28 + 45ω 1549 9 = 32

31 + 6ω 811 9 = 32

31 + 42ω 1423 9 = 32

34 + 3ω 1063 0
34 + 21ω 883 0
34 + 57ω 2467 36 = 22 · 32

37 + 9ω 1117 9 = 32

37 + 54ω 2287 9 = 32

40 + 51ω 2161 9 = 32

43 + 30ω 1459 0
43 + 39ω 1693 9 = 32

43 + 48ω 2089 0
43 + 57ω 2647 0
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π = a+ bω D = Nπ L(alg)(E(D2), 1)
46 + 9ω 1783 9 = 32

49 + 6ω 2143 9 = 32

49 + 24ω 1801 0
49 + 33ω 1873 36 = 22 · 32

49 + 51ω 2503 9 = 32

49 + 60ω 3061 9 = 32

52 + 21ω 2053 9 = 32

−53 + 27ω 4969 27 = 33

−53− 135ω 13879 9 = 32

55 + 27ω 2269 0
55 + 36ω 2341 36 = 22 · 32

55 + 54ω 2971 36 = 22 · 32

58 + 15ω 2719 9 = 32

58 + 33ω 2539 0
−80− 27ω 4969 27 = 33

−80− 81ω 6481 27 = 33

82− 81ω 19927 243 = 35

82 + 135ω 13879 9 = 32

−107 + 54ω 20143 27 = 33

−107 + 135ω 44119 27 = 33

109− 81ω 27271 27 = 33

136− 81ω 36073 27 = 33

We list some examples where D is divisible by at least two primes which are not
necessarily distinct. Again, D is an odd, cube-free integer such that D ≡ 1 mod 9 and
D is a product of prime numbers congruent to 1 modulo 3.

D L(alg)(E(D2), 1)
192 9 = 32

372 9 = 32

1632 9 = 32

6312 9 = 32

7 · 211 27 = 33

7 · 2551 108 = 22 · 33

7 · 1381 27 = 33
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D L(alg)(E(D2), 1)
7 · 3037 27 = 33

19 · 37 27 = 33

37 · 163 27 = 33

7 · 13 · 19 0
7 · 13 · 19 · 37 0
7 · 13 · 31 · 61 0
109 · 307 27 = 33

192 · 163 27 = 33

19 · 1632 27 = 33

19 · 37 · 163 0
192 · 37 · 163 81 = 34

192 · 372 · 163 0
19 · 37 · 1632 81 = 34

19 · 372 · 1632 0
192 · 37 · 1632 729 = 36

192 · 372 · 1632 2916 = 22 · 34

7 · 139 0
79 · 139 0
72 · 372 27 = 33

192 · 372 27 = 33

372 · 1632 108 = 22 · 33

72 · 132 · 192 81 = 34

72 · 132 · 192 · 372 972 = 22 · 35

1272 9 = 32

1572 0
2292 0
3072 36 = 22 · 32

3972 144 = 24 · 32

6912 0
1272 · 3072 432 = 24 · 33

127 · 3072 54864 = 24 · 33 · 127
1272 · 307 8289 = 33 · 307
127 · 307 0
1272 · 3972 27 = 33

3072 · 3972 2187 = 37
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