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ABSTRACT: We provide the first combined experimental and theoretical evaluation of how differences in ligand structure and 

framework topology affect the relative stabilities of isocompositional (i.e. true polymorph) metal-organic frameworks (MOFs). We 

used solution calorimetry and periodic DFT calculations to analyze thermodynamics of two families of topologically-distinct poly-

morphs of zinc zeolitic imidazolate frameworks (ZIFs) based on 2-methyl- and 2-ethylimidazolate linkers, demonstrating a correlation 

between measured thermodynamic stability and density, and a pronounced effect of the ligand substituent on their stability. The 

results show that mechanochemical syntheses and transformations of ZIFs are consistent with Ostwald's rule of stages and proceed 

toward thermodynamically increasingly stable, more dense phases. 

Introduction 

Microporous materials, such as zeolites1–5 and metal-organic 

frameworks (MOFs)6–12 are of high technological importance in 

catalysis,13–16 gas storage17,18 and separation,19–23 and other ap-

plications.24 Whereas the uses of zeolites are well established, 

the first commercial applications of MOFs have just been an-

nounced.25 Zeolitic imidazolate frameworks (ZIFs, a family of 

metal azolate frameworks),26,27 composed of tetrahedrally-coor-

dinated metal (Zn, Cd, Co)28–30 centers interconnected by imid-

azolate linkers are a class of MOFs that inherit their structural 

and physicochemical features from both MOFs and zeolites,31–

33 and have been targeted for use in gas storage and separation, 

such as CO2 sequestration.34 As for zeolites, the basic design of 

ZIF structures allows for complex free energy landscapes and 

extensive polymorphism,35,36 with computational studies of ZIF 

energetics indicating that many new materials might in princi-

ple be accessible.37,38 For example, density functional theory 

(DFT) total energy calculations suggest a rich landscape of pol-

ymorphs for the zinc(2-methylimidazolate)2 Zn(MeIm)2 frame-

work.39 However, most synthetic studies give only the structure 

with open sodalite (SOD) topology, ZIF-8 (also known as 

MAF-4).31,40,41 This is surprising, as our earlier studies of heats 

of formation of MOFs suggest there should be little thermody-

namic penalty for synthesizing diverse MOF true polymorphs, 

i.e. materials of the same chemical composition but different 

structure. The absence of a variety of such structures indicates 

kinetic or mechanistic limitations of conventional solution-

based syntheses,42–44 encouraging the exploration of alternative 

techniques, such as mechanochemistry45-47 or thermochemis-

try.47,48 Mechanochemistry was recently used to selectively ac-

cess topologically different ZIFs, including previously un-

known phases.28,49,50 Real-time in situ synchrotron X-ray dif-

fraction studies revealed that such reactions proceed via multi-

step mechanisms, in which initially formed open frameworks 

convert into increasingly dense, isocompositional phases, i.e. 

true polymorphs.49,50  

 

Figure 1. (a) 2-methylimidazole (HMeIm) and 2-ethylimidazole (HEtIm); 

(b) Formation reaction for studied thermodynamic changes. Crystal struc-

tures of polymorphs of: (c) Zn(EtIm)2 and (d) Zn(MeIm)2.  

For example, it has been reported28,49 that ZnO and 2-ethylim-

idazole (HEtIm) (Figure 1a,b) under liquid-assisted grinding 

react to produce, sequentially, ZIFs with zeolite  (RHO),51 

analcime (ANA, also known as ZIF-14), and β-quartz (qtz, well 

known in inorganic systems, e.g. SiO2, GeO2, Al0.5P0.5O2) topol-

ogies (Figure 1c). The reaction of 2-methylimidazole (HMeIm, 

Figure 1a,b) was shown50 to first yield ZIF-8, followed by 

katsenite (kat) and diamondoid (dia) topology frameworks 

(Figure 1d). It remains unclear if these mechanisms reflect Ost-

wald’s rule of stages, i.e. formation of the thermodynamically 

preferred product via a series of increasingly stable phases.52 



 

Nevertheless, mechanochemistry offers an excellent oppor-

tunity to access true polymorphs required to build a firm, ra-

tional understanding of structure-stability relationships in ZIFs. 

   We have now constructed quantitative experimental en-

thalpy profiles for two families of isocompositional ZIFs, based 

on HEtIm and HMeIm.53 By combining these results with 

modelling, we provide a unique experimental and theoretical 

study of structure-stability relationships of ZIF polymorphs, 

and explain the course of their mechanochemical transfor-

mations. Specifically, we used solution enthalpies in aqueous 

acid and a properly designed thermodynamic cycle (see Supple-

mentary Materials) to calculate the enthalpies of transformation 

of ZIF polymorphs and enthalpy of their formation from ZnO 

and a corresponding ligand (Figure 1b). We show that the meas-

ured enthalpies of formation of a given ZIF are not affected by 

choice of solvothermal, mechanochemical or accelerated aging 

synthesis, and that the sequence of phases produced during ball 

milling indeed reflects a downhill progression through a dense 

energy landscape. 

Experimental Section 

All syntheses were performed following previously pub-

lished mechanochemical or accelerated aging proce-

dures.28,50,54,55 Mechanochemical syntheses were conducted in a 

stainless steel jar of 10 mL volume, using two 7 mm diameter 

(1.33 g each) stainless steel balls, and a Retsch MM400 mill op-

erating at 30 Hz. Accelerated aging was conducted in a Secador 

controlled humidity chamber at 100% RH, situated in an incu-

bator set at 45°C. MOF samples were washed with methanol 

and dried under vacuum. 

Solution calorimetry 

Enthalpies of solution of samples were measured with a CSC 

4400 isothermal Microcalorimeter operating at 25 oC. A pellet 

(3 - 5 mg) of each chemical used in the thermodynamic cycle 

(Table S1) to determine enthalpies of formation of ZIF was pre-

pared in an Ar filled glovebox, weighed using a Mettler micro-

balance, and dropped into 25.0 g of isothermally equilibrated 5 

M HCl aqueous solution inside a 50 mL Teflon cell in the calo-

rimeter. After each experiment the cell was reassembled with 

fresh solvent. Mechanical stirring at approximately 1/2 Hz was 

applied to all experiments.  The methodology is similar to that 

used earlier for other metal-organic frameworks.42 All reported 

errors are at the 95% confidence interval. 

Computational methods 

Crystal structures for the calculations were acquired from the 

Cambridge Structural Database (CSD). The following struc-

tures were used: dia-Zn(MeIm)2 (OFERUN01), kat-

Zn(MeIm)2 (OFERUN08), SOD-Zn(MeIm)2 (ZIF-8, 

OFERUN03), qtz-Zn(EtIm)2 (EHETER), ANA-(EtIm)2 

(MECWIB) and RHO-Zn(EtIm)2 (MECWOH). Any guest 

molecules present in the pores were deleted. The hypothetical 

qtz-, ANA- and RHO-Zn(EtIm)2 structures were constructed 

from corresponding Zn(EtIm)2 structures by replacing the ter-

minal -CH3 group of the ethyl substituent in the 2-position of 

each imidazolate ligand with a hydrogen atom. 

Periodic DFT calculations were performed with plane-wave 

DFT code CASTEP 16.1.155 The plane-wave cutoff was set to 

750 eV and norm-conserving pseudopotentials were used. The 

Brillouin zone was sampled with a 0.015 Å-1 k-point spacing. 

Dispersion interactions were modelled with the aid of Grimme 

DFT-D257 dispersion correction. The optimization procedure 

involved full relaxation of unit cell parameters and atomic co-

ordinates. The calculated lattice enthalpies were compared with 

the experimental results of the calorimetric measurements.  

Crystal structures were optimized subject to the symmetry con-

straints of their space groups. The I-centered cubic structures 

(for SOD-, ANA- and RHO-topologies) were transformed to 

corresponding primitive structures in order to reduce cell vol-

ume and, hence, computational cost. This transformation pre-

served all the symmetry operations of the original structures. 

For ANA-Zn(EtIm)2, symmetry of the structure had to be bro-

ken in order to adequately describe the disorder of ethyl groups. 

This structure was then optimized in the P1 space group, with 

ethyl groups oriented so as to prevent any unrealistically short 

contacts arising from disorder.  

Results and Discussion 

The results (Table 1) show that the enthalpies of ZIF for-

mation from ZnO and two imidazole equivalents (∆Hrxn) range 

from -20 to -42 kJ∙(mol Zn)-1 for all systems studied, confirming 

that the milling reaction is an exothermic process overall. A sig-

nificant fraction of this exothermic character is due to changing 

the zinc coordination environment from an oxygen- to a nitro-

gen-based one, with the concomitant release of water, previ-

ously evaluated as -46.7 ± 1.0 kJ∙(mol)-1.42 Subtracting this ef-

fect gives a new set of energies (∆Htrans) for the transition from 

reactant phases to ZIFs. By excluding the enthalpic effects of 

water formation and changes in coordination environments, 

∆Htrans serve as a measure of enthalpic contributions associated 

only with changes in supramolecular interactions and pore for-

mation. The ∆Htrans values are all positive (Table 1), meaning 

that change in metal coordination from oxygen to nitrogen is 

the principal thermodynamic driving force for ZIF formation 

from ZnO. As previous studies50,58 of mechanochemically pre-

pared MOFs, including some of the herein studied ones, re-

vealed that the particles are relatively large (in the range 100-

200 nm) nanoscale effects59 on herein measured energetics 

should be minimal. 

The mechanochemical reaction of ZnO and HEtIm was re-

ported28,49 to yield the sequence of topologies 

RHO→ANA→qtz. The ∆Htrans values (Table 1) show that the 

RHO→ANA transformation involves an enthalpy change of ca. 

-8 kJ∙(mol Zn)-1 and is therefore (assuming that any TS terms 

are small, especially at room temperature) thermodynamically 

driven (Figure 2). On further milling, ANA-Zn(Etlm)2 trans-

forms into the final product, the dense qtz- Zn(Etlm)2 (CCDC 

EHETER).28,49 This transformation is again thermodynamically 

driven, with an enthalpy change of -9.6 kJ∙(mol Zn)-1 (Figure 2, 

Table 1). 

Mechanochemical reaction of ZnO and HMeIm was reported 

to proceed via a series of structural transformations (Figure 2), 

including amorphization, ultimately leading to a dense-packed 

structure with dia-topology. The first phase in the reaction is 

ZIF-8, characterized by MV=240.99 cm3∙(mol)-1 (CCDC 

OFERUN03) and herein measured ∆Htrans of 26.3 ± 1.4 kJ∙(mol 

Zn)-1. Importantly, this ∆Htrans is similar to that previously meas-

ured for ZIF-8 made solvothermally (27.1 ± 1.9 kJ∙(mol Zn)-

1).42 We also conducted a calorimetric study on ZIF-8 prepared 

by the recently described accelerated aging technique,54,55 giv-

ing a Htrans of 22.2 ± 1.1 kJ∙(mol Zn)-1. Overall, the Htrans val-

ues measured for ZIF-8 prepared solvothermally, mechano-

chemically and by accelerated aging are the same within exper-

imental error (Table 1).



 

Table 1. Physical Properties and Thermodynamic Data Used in and Derived from Solution Calorimetry. 

Compound 
FDa,b 

(T/nm3) 

MVb 

(cm3∙(mol Zn)-1) 

Voidc volume / 

formula unit 

∆Hs 

(kJ∙(mol)-1) 

∆Hrxn 

(kJ∙(mol M)-1) 

∆Htrans 

(kJ∙(mol M)-1) 

ZnO - - - - 72.29 ± 0.17   

HMeIm - - - - 43.08 ± 0.21   

HEtIm - - - - 45.68 ± 0.08   

H2O - - - - 0.5h   

SOD-Zn(MeIm)2
d,f 2.5 240.99 201.9 - 137.50 ± 0.83 -20.45 ± 0.94 26.25 ± 1.38 

SOD-Zn(MeIm)2
e,f 2.5 240.99 201.9 - 133.50 ± 0.20 -24.45 ± 0.50 22.24 ± 1.12 

a-Zn(MeIm)2
g - - - - 130.63 ± 0.48 -27.32 ± 0.66 19.38 ± 1.20 

kat-Zn(MeIm)2 3.9 155.83 17.5 - 129.20 ± 0.42 -28.75 ± 0.62 17.95 ± 1.18 

dia-Zn(MeIm)2 4.4 136.12 0 - 127.86 ± 1.08 -31.09 ± 1.17 15.61 ± 1.54 

RHO-Zn(EtIm)2 1.9 313.67 289.8 - 139.51 ± 0.82 -23.64 ± 0.85 23.06 ± 1.31 

ANA-Zn(EtIm)2 2.6 230.28 133.7 - 131.52 ± 1.24 -31.63 ± 1.26 15.07 ± 1.61 

qtz-Zn(EtIm)2 3.9 154.63 0 - 121.90 ± 0.24 -41.25 ± 0.33 5.45 ± 1.05 

a framework density (FD) is defined as the number of tetrahedral nodes (T) per unit volume; bmolar volume (MV) and FD are calculated based on 

published crystal structures following DFT optimization; c void volume is calculated using a 1.2 Å radius probe; dSOD-Zn(MeIm)2 prepared mechano-

chemically; eSOD-Zn(MeIm)2 prepared by accelerated aging; fvalue for solvothermally-prepared SOD-Zn(MeIm)2 is -138.36±0.57 kJ mol-1;21 
gamorphous Zn(MeIm)2; 

hcalculated enthalpy of dilution of water in 5 M HCl; ΔHs, enthalpy of solution in 5 M HCl at 298 K; ΔHrxn, enthalpy of 
formation from ZnO and organic components (Figure 1); ΔHtrans, coordination-corrected enthalpy of formation reaction (see text). 

Further milling of ZIF-8 leads to amorphous a-Zn(MeIm)2, 

followed by the sequential appearance of kat- and dia-topology 

phases (respective CCDC codes OFERUN08 and OFERUN01). 

Calorimetric evaluation of thermodynamic stability of the 

amorphous a-Zn(MeIm)2  gave Htrans=19.4 ± 1.2 kJ∙(mol Zn)-

1, showing that amorphization of ZIF-8 is thermodynamically 

favored. Both kat-Zn(MeIm)2 and dia-Zn(MeIm)2 were found 

to be thermodynamically favored to  ZIF-8 and its amorphous 

counterpart, with Htrans values of 18.0 ± 1.2 and 15.6 ± 1.5 

kJ∙(mol Zn)-1, respectively. These results, together with our ear-

lier evaluation of stability of structures based on unsubstituted 

imidazole,60 show that low density ZIFs are less stable than cor-

responding amorphous phases. A similar trend has also been 

observed in silica zeolites.43, 61 

The measured stability trends offer an explanation for differ-

ences in behavior of open Zn(MeIm)2 and Zn(EtIm)2 frame-

works. The most commonly encountered Zn(MeIm)2 form in 

the literature is ZIF-8, with reports of dia-62 and kat-phases ap-

pearing in 2011 and 2015, respectively.50 In contrast to persis-

tence of ZIF-8, the open RHO-Zn(EtIm)2 readily collapses into 

the close-packed qtz-phase upon heating, milling or in moist 

air.55 This difference in stability cannot be explained by Htrans 

values of SOD-Zn(MeIm)2 and RHO-Zn(EtIm)2, as these are 

very similar (Table 1). This in itself is remarkable, as the molar 

volume for RHO-Zn(EtIm)2 is significantly higher than that for 

SOD-Zn(MeIm)2, indicating that the ethyl substituent is more 

efficient in stabilizing an open structure. An explanation for the 

difference in stabilities of ZIF-8 and RHO-Zn(EtIm)2 might be 

in the stability of corresponding densest phases: whereas the 

Htrans for qtz-Zn(EtIm)2 is 5.45 ± 1.05 kJ∙(mol Zn)-1, for dia-

Zn(MeIm)2 it is 15.6 ± 1.5 kJ∙(mol Zn)-1. Consequently, the 

measured driving forces for the collapse of ZIF-8 and RHO-

Zn(EtIm)2 are 10.6 kJ∙(mol Zn)-1 and 17.6 kJ∙(mol Zn)-1, re-

spectively. In other words, the driving force for the collapse of 

RHO-Zn(EtIm)2 is ca. 70 % higher compared to that of ZIF-8 

due to high stability of qtz-Zn(EtIm)2.  

Comparing the differences in Htrans to differences in molar 

volumes between qtz-Zn(EtIm)2 and dia-Zn(MeIm)2 (154.6 

and 136.1 cm3∙(mol Zn)-1, respectively) again reveals a stabiliz-

ing effect of the ethyl group. This stabilizing effect is also evi-

dent in comparing Htrans of SOD-Zn(MeIm)2 and ANA-

Zn(EtIm)2: despite similarity in molar volumes (240.99 

cm3∙(mol Zn)-1 vs. 230.28 cm3∙(mol Zn)-1, respectively),  

 

Figure 2. The sequence of previously observed8,25,26 mechanochemical pol-

ymorph transformations versus measured enthalpy of each phase, relative 

to the densest polymorph for: (a) Zn(EtIm)2 and (b) Zn(MeIm)2. In each 

case the transformation proceeds toward the more stable phase. 



 

ANA-Zn(EtIm)2 is ca. 11 kJ∙(mol Zn)-1 more stable. The im-

provement in thermodynamic stability observed in 2-ethylimid-

azole-based ZIFs is also evident from a plot of measured ΔHtrans 

values vs. the framework density for HMeIm- and HEtIm-

based materials (see Supplementary Material). 

Thus, by comparing the energy differences between true ZIF 

polymorphs versus ZIFs with different substituents, we can now 

begin separating the energetic effects of framework density and 

of substituents on the overall thermodynamic stability of ZIFs. 

It is interesting to note that the observed energy differences be-

tween ZIF polymorphs significantly exceed those between pol-

ymorphs of organic molecules, where lattice energy differences 

lie within 7.2 kJ mol-1 in 95% of cases.63 

In order to better understand materials structural features re-

sponsible for observed energetic trends,64 we accompanied the 

calorimetric studies with CASTEP56 periodic DFT calculations 

(Table 2). In these calculations, the geometries of observed 

structures were fully optimized (atom coordinates and cell pa-

rameters) to yield total electronic energies. It is known that 

commonly used DFT functionals underestimate the energies of 

van der Waals interactions,65 potentially causing errors in cal-

culated lattice energies and geometrical parameters of MOFs.50, 

66-69 Correct description of dispersion forces was found to be 

crucial for modelling guest absorption in MOFs70-75 and for de-

riving their mechanical properties.76,77 While functionals tai-

lored to reproduce van der Waals forces have been devel-

oped78,79 and applied to ZIF systems,80 a more widely adopted 

approach for modelling them remains the semi-empirical dis-

persion correction (SEDC) in combination with one of the avail-

able general gradient approximation (GGA) or hybrid function-

als.65, 81 Dispersion-corrected DFT has been applied to ZIFs 

based on both non-substituted79 and substituted83, 84 imidazoles, 

showing improved energy rankings compared to uncorrected 

DFT calculations.39 Nonetheless, polymorphic structures of 

Zn(MeIm)2 and Zn(EtIm)2 have not yet been comprehensively 

analyzed with dispersion-corrected DFT.  

We used the PBE85 functional together with the Grimme D2 

dispersion correction.57 Comparison of the calculated energies 

with measured enthalpies showed qualitative agreement and 

similar trends (Table 2). The agreement between calculated and 

experimentally measured energies of ZIF structures was as-

sessed by means of weighted least squares (Figure 3). It is evi-

dent that calculations generally agree with measurements 

within experimental error. In quantitative terms, periodic DFT 

calculations appear to overestimate the relative energy gap be-

tween close-packed (dia and qtz) and open topologies, while the 

energy differences between pairs of open topologies (SOD and 

kat; RHO and ANA) were reproduced well. Importantly, the en-

ergy difference calculated here between SOD- and dia-

Zn(MeIm)2 is more realistic than that previously calculated (ca. 

1 kJ/mol) without dispersion correction.39 Theoretical model-

ling also confirmed the importance of the ethyl group for the 

stabilization of RHO-, ANA- and qtz-topologies. For this pur-

pose, we generated hypothetical Zn(MeIm)2 structures with 

RHO-, ANA- and qtz-topology from corresponding Zn(EtIm)2 

structures by replacing the ethyl with a methyl group, followed 

by energy minimization. Calculations show that hypothetical 

ANA- and RHO-Zn(MeIm)2 would be significantly higher in 

energy than any of the currently known Zn(MeIm)2 phases, and 

most likely are not observable (Table 2), further confirming the 

experimentally indicated efficiency of the ethyl substituent in 

stabilizing open structures. 

Table 2. Calculated and measured crystal energies (Erel) for 

real and hypothetical Zn(EtIm)2 and Zn(MeIm)2 structures, 

in kJ∙(mol)-1. All energies are given relative to the lowest en-

ergy polymorph for which Erel is set to zero. 

Framework 
Erel (kJ∙(mol)-1) 

(measured) 

Erel (kJ∙(mol)-1) 

(calculated) 

Zn(MeIm)2 

dia 0.0 0.0 

kat 2.3 7.1 

qtza - 13.6 

SOD 10.6 15.2 

ANAa - 25.8 

RHOa - 32.8 

Zn(EtIm)2 

qtz 0.0 0.0 

ANA 9.6 19.6 

RHO 17.6 27.5 
ahypothetical structures derived from RHO- (CCDC MECWOH), ANA- 

(CCDC MECWIB) and qtz-Zn(EtIm)2 (CCDC EHETER). 

 

Figure 3. Comparison of the calculated and experimentally measured ener-

gies for real structures of Zn(EtIm)2 and Zn(MeIm)2. Calculated energies 
are given relative to the lowest energy polymorph for which energy is set to 

zero. Errors of the experimentally measured transition enthalpies, ∆Htrans, 

are shown by the error bars. The correlation between theoretical and exper-
imental energies was assessed using weighted least squares method. 

Conclusions 

In conclusion, we provided the first combined calorimetric and 

theoretical modelling study of true polymorphs of MOFs. While 

providing an experimental evaluation of how the stability of ZIF 

polymorphs is affected by topological differences, this also led 

to the first experimental evidence that dispersion correction 

leads to a more realistic evaluation of their thermodynamic sta-

bility. Evaluating the thermodynamic stability of ZIF poly-

morphs led us to rationalize their previously observed mecha-

nochemical transformations, showing that these follow Ost-

wald's rule of stages. Comparison of thermodynamic stabilities 

of ZIFs to their molecular volumes revealed the ability of ethyl 

groups to stabilize the frameworks more effectively than methyl 



 

substituents. By providing an experimental evaluation of theo-

retical modelling, and by demonstrating the ability to discern 

substituent effects on framework stability, this study advances 

the development of strategies to control and improve MOF sta-

bility. We are now continuing our work on other sets of MOF 

polymorphs. 
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