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Abstract 

Traumatic spinal cord injury (SCI) has devastating consequences for patients’ physical, social, 

and vocational wellbeing. The demographic of SCIs is shifting such that an increasing proportion 

of older individuals are being affected. Pathophysiologically, the initial mechanical trauma (the 

primary injury) permeabilizes neurons and glia and initiates a secondary injury cascade that 

leads to progressive cell death and spinal cord damage over the subsequent weeks. Over time, 

the lesion remodels and is composed of cystic cavitations and a glial scar, both of which 

potently inhibit regeneration. Several animal models and complementary behavioural tests of 

SCI have been developed to mimic this pathological process and form the basis for 

development of preclinical and translational neuroprotective and neuroregenerative strategies. 

Diagnosis requires a thorough patient history, standardized neurological physical examination 

and radiographic imaging of the spinal cord. Following diagnosis, several interventions need to 

be rapidly applied, including haemodynamic monitoring in the intensive care unit, early surgical 

decompression, blood pressure augmentation and, potentially, the administration of 

methylprednisolone. Managing the complications of SCI, such as bowel and bladder 

dysfunction, the formation of pressure sores and infections, is key to address all facets of the 

patient’s injury experience.  



[H1] Introduction  

Spinal cord injury (SCI) is defined as damage to the spinal cord (Figure 1) that temporarily or 

permanently causes changes in its function. SCI is divided into traumatic and non-traumatic 

aetiologies.1 Traumatic SCI occurs when an external physical impact (for example, motor vehicle 

injuries (MVI) , fall, sports-related injury and violence) acutely damages the spinal cord, 

whereas non-traumatic SCI occurs when an acute or chronic disease process, most commonly 

tumours, but also infection or degenerative disc disease, generates the primary injury.  

In traumatic SCI, the primary insult damages cells and initiates a complex secondary injury 

cascade, which cyclically produces the death of neurons and glial cells, ischaemia and 

inflammation. This cascade is followed by changes in the organisation and structural 

architecture of the spinal cord, including the formation of a glial scar and cystic cavities. The 

glial scar and cystic cavities, in combination with poor endogenous remyelination and axonal 

regrowth mean the spinal cord has a poor intrinsic recovery potential, such that SCI causes 

permanent neurological deficits. 

SCIs have devastating physical, social and vocational consequences for patients and their 

families and a loss of independence and persistently elevated lifelong mortality rates are the 

hallmarks of SCI. Furthermore, the direct costs for the care of patients with SCI are staggering at 

US $1.1-4.6 million per patient over their lifetime, which underscores the role of prevention as 

the most important intervention we can deliver. For SCI that cannot be prevented, the 

development of effective treatments becomes critically important2.  

The past three decades have marked an exciting time for the field, as numerous 

neuroprotective and neuroregenerative therapies have been translated from preclinical studies 
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into clinical trials. Although undoubtedly impressive, further progress will require a concerted 

effort to better understand the pathophysiological cascade of SCI, limitations in translating data 

obtained from animal models and how to apply combinatorial treatments to this complex, 

multifaceted disease process. 

This Primer provides new researchers with a succinct, up-to-date foundation on SCI. 

Discussed herein are key aspects of epidemiology, pathophysiology and patient presentation, 

relevant to both translational researchers and basic scientists. The Primer also provides an 

overview of important in-practice and upcoming therapeutic strategies including medical, 

surgical and cell-based treatments and concludes with the current outlook for patients and 

future directions of the field. 

[H1] Epidemiology 

[H2] Incidence and prevalence   

Epidemiological data on SCI are often divided into traumatic and non-traumatic aetiologies, 

suggesting important epidemiological distinctions.1 However, data are most often reported by 

individual national or provincial databases making generalizations between countries difficult. 

In addition, data are often retrospective and based on treatment codes or surgical procedures, 

which fail to capture the true incidence and prevalence of SCI.  

 The incidence of SCI varies worldwide (Figure 2).3 Among developed regions, the incidence 

of traumatic SCI is higher in North America (39 cases per million individuals) than in Australia 

(16 cases per million individuals) or Western Europe (15 cases per million individuals), due to 

higher rates of violent crime and self-harm.4 By comparison, the prevalence of non-traumatic 



SCI has been estimated as 1,227 cases per million individuals in Canada and 364 cases per 

million individuals in Australia; reliable data from other countries are not available.5,6 

Traumatic SCI occurs more commonly in males (79.8 %) than females (20.2 %)7. The age 

profile of individuals with a traumatic SCI has a bimodal distribution; one peak is between 15–

29 years of age and the second, smaller but growing peak, is in those >50 years of age.8,9 In the 

USA, the proportion of patients with traumatic SCI >60 years of age increased from 4.6% in 

1970 to 13.2% in 2008.10,11 This trend is continuing in parallel with the aging population of the 

world7.  

Traffic accidents are the primary cause of all traumatic SCIs in North America, and 

accounted for 38% of injuries between 2010–2014, although this number is gradually 

declining7. Falls are typically the second most common cause of traumatic SCIs, and accounted 

for 31% of injuries between 2010–2014, followed by sports-related injuries, which account for 

10-17% of traumatic SCIs.9,11 High-energy impacts, such as traffic accidents and sport-related 

injuries are more common in younger persons, whereas low-energy impacts, such as falls, 

disproportionately occur in persons >60 years of age, in whom underlying spinal degenerative 

changes, such as degenerative cervical myelopathy, are common.9,11 Indeed, the incidence of 

cervical SCI for the general population (0.13 per thousand-years)12 is much lower than for 

patients with degenerative cervical myelopathy is (12.33 per thousand-years)13. Overall in the 

general population, traumatic SCI occurs most frequently at the level of the cervical spine 

(~60%), followed by thoracic (32%) and lumbosacral (9%)7.  

 

 [H2] Mortality  
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Although the survival of patients with traumatic SCI has improved over time, patients 

continue to have mortality rates that exceed those of age-matched controls 14. Estimates for 

acute in-hospital mortality range from 4-17%, then after hospital discharge, annual mortality 

rates remain persistently high, with 3.8% of patients dying in the first year after injury, 1.6% in 

the second year and then 1.2% for every year thereafter. The risk of mortality increases with 

more severe injuries, higher injury levels (that is, cervical SCIs are associated with higher 

mortality than lumbar SCIs), increasing patient age, the presence of multi-system trauma and 

higher energy injury mechanisms. Despite modern medical care, patients with traumatic SCI 

have a significantly reduced lifespan. For example, a 40 year old’s life expectancy after SCI is 

lowered to 23 years after C5-8 injury, 20 years after C1-4 injury and 8.5 years if they are 

ventilator-dependent2.  

  

[H1] Mechanisms/pathophysiology  

 [H2] Acute injury phase 

Traumatic SCI is pathophysiologically divided into primary and secondary injuries and can be 

temporally divided into the acute (<48 hours), subacute (48hours – 14 days), intermediate (14 

days – 6 months) and chronic (>6 months) phases (Figure 3). The initial traumatic event (that is, 

the primary injury) produces immediate mechanical disruption and dislocation of the vertebral 

column, which causes compression or transection of the spinal cord. This focal region of 

damage injures neurons and oligodendrocytes (that is, the myelinating cell type of the CNS), 

disrupts the vasculature, and compromises the blood-spinal cord barrier. Together, these 



events immediately initiate a sustained secondary injury cascade, which leads to further 

damage to the spinal cord and neurological dysfunction. This damage can often be in excess to 

that caused by the primary injury.  

 Secondary cellular changes during the acute phase of injury, such as cell dysfunction and 

death are caused by cell permeabilization, pro-apoptotic signalling and ischaemic injury due to 

the destruction of the microvascular supply of the spinal cord within minutes of injury.15,16 In 

addition, blood vessel injury can cause severe haemorrhages, which can expose the cord to an 

influx of inflammatory cells, cytokines and vasoactive peptides. Indeed, elevations in 

proinflammatory cytokines, such as tumour necrosis factor (TNF-α) and IL-1β, are evident in the 

spinal cord within minutes of injury 17. This parallels the arrival of inflammatory cells (such as 

macrophages, neutrophils and lymphocytes) into the spinal cord, which remain in the cord well 

beyond the subacute phase. The subsequent overwhelming inflammatory response in the acute 

and subacute phases of injury, combined with the disrupted blood-spinal cord barrier, 

progressively add to spinal cord swelling. Swelling can lead to further mechanical compression 

of the cord, which can extend for multiple spinal segments and worsen the injury.  

 

[H2] Subacute injury phase 

In the acute to subacute period, ischaemia and excitotoxicity contribute to a loss of 

intra- and extra-cellular ionic homeostasis occurs due to ischaemia and excitotoxicity, with a 

key mediator of cell death being intracellular calcium dysregulation in both neurons and glia. 

Data from animal models suggests that high intracellular calcium concentration activate 

calpains, which can cause mitochondrial dysfunction and cell death18,19. Furthermore, ongoing 
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necrosis of neurons and glia due to ischemia, inflammation, and excitotoxicity releases ATP, 

DNA and potassium, which can activate microglial cells. Activated microglia, in addition to other 

inflammatory cells such as activated macrophages, polymorphonuclear cells and lymphocytes, 

infiltrate the injury site, where they propagate the inflammatory response and contribute to 

ongoing apoptosis of neurons and oligodendrocytes. Phagocytic inflammatory cells can clear 

myelin debris at the injury site, but can also induce further damage to the spinal cord through 

the release of cytotoxic by-products, including free radicals (for example, O2-, hydrogen 

peroxide and peroxynitrite). These reactive oxygen species cause lipid peroxidation, DNA 

oxidative damage and protein oxidation, which causes additional necrotic and delayed 

apoptotic cell death, contributing to the harsh post-injury microenvironment20,21.  

High levels of the neurotransmitter glutamate are released from dying neurons and 

astrocytes and are poorly reabsorbed by surviving astrocytes22,23. This causes methyl-D-

aspartate (NMDA), AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid), and 

kainate receptor overactivation, which, combined with loss of ATP-dependent ion pump 

functions and subsequent resultant sodium dysregulation, can lead to excitotoxic cell death24,25. 

Neuron death due to excitotoxicity, as well as the other insults discussed above, cyclically 

propagates the secondary injury cascade19. 

 The impaired autoregulatory capacity of the injured cord vasculature, in addition to the 

systemic effects of SCI (such as hypotension and respiratory failure; see later), can contribute to 

ongoing ischaemia that persists for days to weeks after injury. Prolonged ischaemia contributes 

to further neuronal and glial (predominantly oligodendrocyte) cell death and the propagation of 

the injury. The multiple causes of cell death that occur during the acute and subacute phases of 



SCI can produce greater damage than the original primary injury and form the basis for the 

neuroprotective interventions (see below). 

  

[H2] Intermediate-chronic phase  

As the acute inflammatory response subsides, the spinal cord lesion evolves through 

dynamic intermediate through chronic phases that are marked by attempts at remyelination, 

vascular reorganization, alterations in the composition of the extracellular matrix (ECM) and 

remodelling of neural circuits 19.  

 

[H3] Cystic cavitations. In humans, the overwhelming cell death and degeneration in the acute 

phase of injury promotes the ex vacuo (i.e. loss of tissue volume) formation of cystic, which 

contain extracellular fluid, thin bands of connective tissue and macrophages26. The cystic 

cavities coalesce to become a formidable barrier to directed axonal regrowth and are a poor 

substrate for cell migration27,28.  

 

[H3] Glial scar. Studies using animal models have shown a perilesional zone around the cystic 

cavities, in which reactive astrocytes proliferate and tightly interweave their processes, creating 

an inhibitory mesh-like array. In the acute phase, signalling from activated microglia, astrocytes 

and macrophages causes the secretion of ECM proteins that are inhibitory to axonal growth, 

such as chondroitin sulfate proteoglycans (CSPGs), tenascin and NG2 proteoglycan, which 

condense with astrocytes to form the glial scar. The glial scar potently restricts axon 
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regeneration (that is, the repair or regrowth of existing neural pathways, or the development of 

de novo pathways) and anatomical plasticity by inhibiting neurite outgrowth 29,30. 

Oligodendrocyte progenitor cells that express NG2 proteoglycan migrate to the lesion 

site and associate with dystrophic axons (that is, swollen, injured axons that can be found in the 

damaged CNS). Pericytes also proliferate after SCI, giving rise to stromal cells that might deposit 

numerous ECM proteins 31. Furthermore, fibroblasts can infiltrate the perilesional region, 

particularly after breaks in the glial layer that separates neural tissue from the meninges26, to 

replace the ECM with fibrous connective tissue and dense collagen deposits. Together, these 

ECM and cellular changes represent a significant physical and biochemical barrier to 

regeneration. However, not all aspects of the scar pose an inhibitory barrier32; complete 

attenuation of astrocytes in the glial scar results in impaired regeneration, as astrogliosis in the 

acute-subacute phases is responsible for isolating the injury site, to reduce the spread of 

cytotoxic molecules and inflammatory cells into adjacent, uninjured parenchyma33,34. 

Furthermore, perilesional astrocytes might provide local trophic support and promote 

neovascularization 35. This dual role of the glial scar continues to be investigated. 

 

 [H3] Adult CNS myelin. Even if regenerative efforts are able to overcome spinal cord lesions, 

properties of the adult mammalian CNS can still limit neurite regrowth. For example, molecules 

present in myelin are potent inhibitors of axon regeneration and several molecules released by 

degenerating oligodendrocytes can contribute to the failure of regeneration. These molecules 

include neurite outgrowth inhibitor A (Nogo-A), oligodendrocyte-myelin glycoprotein (OMgp) 

and myelin-associated glycoprotein (MAG), which can all bind to the Nogo receptor and p75 



neurotrophin receptor (p75NTR) to activate RhoA and Rho-associate protein kinase (ROCK), 

which causes growth cone collapse, neurite retraction and increases the risk of apoptosis36. 

CSPGs in the glial scar can also activate the Nogo receptor, in addition to the membrane-bound 

protein tyrosine phosphatase θ (PTPθ) to trigger growth cone collapse via the Rho-ROCK 

pathway37. Interestingly, individual knockout of Nogo, MAG and OMgp showed limited effects 

on axon regeneration in vivo, potentially due to synergistic inhibitory activity of myelin-

associated proteins and CSPGs on axonal regeneration 38,39. This continues to be an area of 

active investigation. 

 

 [H3] Attempts at remyelination. Although severe SCI can destroy substantial portions of the 

spinal cord white matter, a surviving subpial rim of demyelinated axons can persist in a rodent 

model of injury40. These neurons are susceptible to subsequent injury and progressive 

Wallerian degeneration (that is, an ordered process of axonal death)41,42. In theory, 

Oligodendrocyte precursor cells can differentiate into mature oligodendrocytes and 

remyelinate these axons. However, remyelination requires a coordinated inflammatory 

response by macrophages, lymphocytes and astrocytes, and is inhibited by the presence of 

EphrinB3 in myelin debris43,44, as well as molecules within the glial scar 36,45,46. This could lead to 

poor remyelination post-injury, which in turn impairs functional recovery47. 

  

 

[H2] Endogenous attempts at repair 
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Contrary to historical dogma, endogenous mechanisms exist for at least partial regeneration of 

the injured spinal cord. CNS neurons exhibit both anatomical and synaptic plasticity, which 

might contribute to ongoing functional recovery for years after injury48,49. Furthermore, neural 

precursor cell pools, which are mostly found in the ependymal layers of the central canal, as 

well as widely-distributed oligodendrocyte precursor cells, can generate neurons, 

oligodendrocytes and astrocytes (including reactive astrocytes)50,51. These cells might have both 

helpful and detrimental roles throughout the post-injury regenerative process. Exploiting these 

endogenous mechanisms by increasing the recruitment of pro-regenerative cells52, producing a 

microenvironment more conducive to cell migration and neurite outgrowth53, and/or shifting 

the balance towards pro-regenerative cell phenotypes54 are some of the exciting areas of 

ongoing research. These and other mechanisms can be supplemented by the neuroprotective 

and neuroregenerative strategies discussed later, but barriers to regeneration still exist, 

meaning additional therapies to remove or overcome these barriers are necessary. 

 

[H2] Animal models  

 Animal models have contributed to our understanding of the pathophysiology of SCI and 

have been useful for the preclinical testing of new therapies. The ideal animal model should 

anatomically and pathophysiologically resemble human SCI, require minimal training, be 

inexpensive and produce consistent results. Rat models are the most commonly used for SCI 

research and are well-established, inexpensive and the injury response is similar to that 

observed in humans (including the production of cystic cavities, glial scar formation and 

changes in the ECM) (Box 1). However, differences in size, molecular signalling, anatomy and 



the recovery potential following SCI have made direct translation challenging55. Numerous 

therapies in SCI and other CNS fields (such as stroke) have, unfortunately, been ineffective 

when translated to humans from small animals, due to their inherent biological differences. 

Large animal models, such as nonhuman primates, overcome some of these barriers but 

substantial differences in cost and unique housing requirements makes their use less common 

and even they are unable to exactly mimic human SCI56. However, larger animal models can 

form an important intermediary model to confirm results from rodents by providing relevant 

safety, bio-distribution, and technical feasibility data57,58. Furthermore, testing novel therapies 

in multiple species is important approach to bolster preclinical evidence prior to commencing 

clinical trials, as is now recommended for stroke therapies59.  

 

[H1] Diagnosis, screening and prevention  

[H2] Clinical manifestations  

Fractures of the spinal column are often described by their vertebral level, but the neurological 

injury is described by the spinal cord level at which the nerve roots emerge. The discrepancy 

between the two becomes increasingly apparent in the mid-low regions of the thoracic spinal 

cord, where a fracture at thoracic level 8 (T8) might cause a neurological SCI at T12 and a 

fracture at T12 might cause a SCI at sacral level 1 (S1).  

The clinical manifestations of SCI depend on the level of neurological injury and the 

amount of preserved spinal cord tissue. SCI can result in the partial or complete loss of 

sensorimotor function below the level of the injury. Depending on the level of the injury, this 

can lead to compromised respiratory function (including hypercapnia, hypoxemia and poor 
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secretion clearance60,61); for example, injuries above C5 cause disrupted innervation of the 

diaphragm, injuries above T11 disrupt innervation to the intercostal chest muscles and injuries 

above L1 can disrupt innervation to the abdominal muscles (Figure 1C).  

In addition to disruption of sensorimotor function, SCI can affect the sympathetic 

nervous system, as preganglionic sympathetic neurons originate in the spinal cord, between T1 

and L2. SCI can reduce sympathetic outflow from the spinal cord, resulting in a loss of basal 

vascular tone below the level of injury (Figure 4). In addition, high thoracic or cervical injuries 

can lead to severe hypotension and bradycardia (that is, neurogenic shock, see below) 62,63. The 

loss of innervation to secondary lymphatic organs (such as the spleen) can induce secondary 

immunodeficiency (also known as immune paralysis), which can increase the susceptibility to 

infections (for example, urinary tract infections and pneumonia)64. These systemic 

manifestations of CNS injury are the leading causes of early mortality in patients with SCI. 

 

[H3] Spinal shock. Spinal shock is defined as a temporary clinical state of flaccid paralysis post 

SCI, including the loss of motor, sensory, autonomic, and reflex function at or below the level of 

injury. Spinal shock is commonly confused with neurogenic shock (which is a hypotensive state 

caused by loss of sympathetic outflow). Spinal shock can affect the performance of an accurate 

neurological examination, which is used to define the severity of SCI. However, understanding 

when a patient no longer has spinal shock is problematic and has been the subject of 

controversy65. However, the theory to which most individuals subscribe describes spinal shock 

as a four phase progression, from an initial stage of areflexia or hyporeflexia, to the later stage 

of the return of deep tendon reflexes and hyperreflexia.  



 

[H3] Neurogenic shock. Hypotension post SCI has several causes, including hypovolaemia 

secondary to blood loss, the distributive pooling of venous blood within paralysed atonic 

musculature and bradycardia. Hypotension can also be caused by vasodilatation secondary to 

loss of sympathetic tone66,67, which produces neurogenic shock and is also typified by 

hypotension, bradycardia, wide pulse pressure and warm pink extremities. Neurogenic shock is 

most clinically relevant with a neurological level of injury above T6, as these injuries prevent 

central impulses reaching the mid-thoracic spinal cord, which is where the sympathetic 

splanchnic nerves (that provide an important role in maintaining vascular tone) arise. 

Importantly, in injuries above T6 the sympathetic outflow to the cardiac pacemaker can also be 

affected. Neurogenic shock is estimated to occur in up to 20% of patients with cervical level 

injuries and bradycardia occurs in nearly all patients with severe cervical injuries during the 

acute phase67,68. 

 

[H2] Diagnosis 

After any traumatic injury, first-responders rapidly assess patients in the field and attempt 

resuscitation, en route to the hospital. During this period, the advanced trauma life support 

(ATLS) protocols dictate initial care, which includes airway, breathing, and circulation support, 

along with the immobilization of the potentially injured and unstable spinal column using a rigid 

cervical collar and backboard. Although individual hospital approaches vary, most patients with 

trauma will undergo a gross neurological examination (which includes a voluntary motor and 

sensory exam of each limb and a rectal exam) and spinal imaging (using, for example, X-ray or 
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CT imaging) if a SCI is suspected. Concerns on clinical examination or early radiographic imaging 

are followed by advanced imaging and detail neurological examinations (see below). 

 

[H3] Imaging.  Plain X-Ray, CT and MRI are the most commonly used radiological tools when 

investigating damage to the spine and SCI. Anterior-posterior (AP) and lateral cervical spine X 

ray, AP Chest and AP Pelvis X-rays are performed in the trauma room. Although not particularly 

sensitive for identification of subtle fractures involving the cervical spine, X-rays are useful to 

detect gross fracture dislocation injuries that are often associated with SCI. It is essential to 

ensure the adequacy of any X-rays with visualization of the rostral half of the T1 vertebrae. 

 CT has largely supplanted X-ray for diagnosis of bone injuries in patients with 

trauma69,70. With respect to the spine, some authors (namely, M.G.F.) currently perform, and 

recommends, a high resolution fine cut CT of the cervical to lumbar. CT angiography can also be 

performed to evaluate the bilateral vertebral arteries in certain cervical injuries. AOSpine has 

also developed subaxial cervical71 (C3-7) and thoracolumbar72 (T1-L5) classification systems to 

standardize nomenclature of bony and ligamentous spinal injuries. These systems convey key 

information on the fracture pattern (e.g. compression injury, translational injury, etc.) including 

adjacent structure involvement (e.g. facets, ligaments, vertebral artery, etc.) with modifiers for 

neurological status (e.g. incomplete SCI, complete SCI, etc.) 

 Although extremely sensitive for diagnosing a fracture or dislocation of the spine, CT is 

less effective at evaluating the integrity of soft tissue structures such intervertebral discs, 

ligaments, the spinal cord and nerve roots, but MRI is well suited for assessing these 



structures73. Specifically, when evaluating for ligament or vertebral disc injury, the T2-weighted 

Short-Tau Inversion Recovery (STIR) sequence enables the identification of injury related 

oedema and tissue disruption. MRI can identify spinal cord transection and can evaluate for the 

presence of oedema and/or haemorrhage74.  

 The timing of MRI can be critical with respect to the treatment of patients with SCI and 

cervical facet dislocation. MRI before closed reduction (that is, correcting the dislocation with 

the use of traction) enables the detection of disc herniation, which, if present, can lead to a 

deterioration in neurological status, although this has been disputed75,76. However, MRI can, 

depending on the institution, substantially delay time to decompression of the spinal cord and, 

involves the additional transfer of a patient with a highly unstable spine. Based on the existing 

evidence, the most recent iteration of the American Association of Neurological Surgeons and 

Congress of Neurological Surgeons (AANS/CNS) guidelines for the management of cervical SCI 

recommends MRI before performance of open reduction (that is, realignment of the broken 

bones following surgery to exposure the bones) or closed reduction in an unconscious or 

uncooperative patient; if a disc herniation is identified, the guidelines recommend an anterior 

approach to remove the disc prior to reduction77.  

 The role of MRI is rapidly evolving and advanced microstructural techniques that can 

quantify physiological changes at a cellular level and assess axon integrity (for example, 

diffusion tensor imaging), myelination (for example, myelin water transfer) and the presence of 

key metabolites related to ischaemia, cell loss, or gliosis (for example, MR spectroscopy)30,78 are 

likely to see increased integration in the care of patients with SCI. 
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[H3] Electrophysiology. A number of electrophysiological studies have been evaluated for 

predicting outcome and for tracking and monitoring recovery over time after traumatic SCI. 

Electrophysiology is an attractive tool as it does not require the patient to be conscious or 

communicative. Several parameters have been studied (Box 2), which can be used to derive 

measures of physiological and anatomical function, such as conduction time to motor neurons, 

cortical and spinal inhibition, spinal cord excitability (such as the H-reflex), sensory impairment , 

among others. Although interesting as a research tool, electrophysiological measurements have 

not consistently demonstrated added value in predicting outcome in awake and alert patients 

with SCI79. However, electrophysiological measurements might provide insight into the 

mechanisms underlying a patient’s functional recovery (for example regeneration, plasticity or 

adaptation), which could be of benefit as the field develops, such as for patient selection for 

clinical trials80. 

 

[H3] Classification of spinal cord injury. Perhaps the most significant advancement related to 

our ability to diagnose and classify SCI over the last few decades has been the development of 

the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI)81. The 

ISNCSCI has been uniformly adopted by SCI clinical communities82 and serves as the main 

measure of neurological outcome in clinical trials.  

The ISNCSCI consists of three central neurological summary scores: American Spinal 

Injury Association (ASIA) motor score (which grades muscle power from each myotome (that is, 

a group of muscles innervated by one spinal nerve root), ASIA Sensory Score (which assesses 



light touch and pinprick sensation in 28 dermatomes (that is, an area of skin innervated by one 

spinal nerve root) from cervical level 2-sacral levels 4/5) and ASIA Impairment Scale grade 

(which is used to determine the grade of SCI and encompasses the extent of remaining 

sensorimotor function; Box 3) 81. We recommended that ISNCSCI examination is performed at 

the time of acute hospital admission as soon as reasonably possible to serve as a baseline for 

comparison throughout follow-up.  

  The ISNCSCI has substantial evidence of both intra- and inter-rater reliability83,84 and 

correlates with other clinical, radiological and electrophysiological proxies for injury severity. 

Going forward, work is needed to better define the clinical relevance of sensorimotor changes 

on the ISNCSCI to establish how many points of gain are to be considered ‘clinically important’. 

 

 [H2] Spinal cord injury syndromes 

 SCI patterns can broadly be defined as either complete or incomplete. A third category, 

discomplete, describes those with clinically complete injuries but persistent evidence of 

subclinical (for example, electrophysiological) brain-muscle connectivity85. For incomplete 

injuries, several patterns of neurological deficit are associated with SCI syndromes, including 

central cord syndrome, Brown-Séquard syndrome, anterior cord syndrome and posterior cord 

syndrome (Figure 5). 

Central cord syndrome (CCS) is the most common incomplete SCI syndrome and accounts for 

15-25% of traumatic SCIs 86. Most commonly, central cord syndrome is diagnosed in elderly 

patients with pre-existing cervical spondylosis and stenosis who present after a fall resulting in 

cervical hyperextension87. Central cord syndrome is characterized by a disproportionate motor 
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impairment of the upper limbs, than the lower limbs, in addition to bladder dysfunction and 

varying degrees of sensory loss86. 

 

Brown-Séquard, or hemi-cord syndrome, is most commonly observed in penetrating traumatic 

SCI, secondary to gunshot and knife wounds. Deficits in patients with Brown-Séquard syndrome 

include loss of motor function, light touch, proprioception and vibration sensation ipsilateral to 

the injury, and loss of pain and temperature sensation contralateral to the injury88.  

Anterior and posterior cord syndromes are rarely observed in isolation in the context of 

traumatic SCI, but are more frequent in patients with non-traumatic SCI of vascular aetiology88.  

[H2] Prognosis  

[H3] Neurological recovery.  Neurological recovery in patients with SCI is typically observed 

within the first 6 months after injury, but continued improvements can be seen up to 5 years 

later89,90. The prognosis for neurological recovery is variable and depends primarily on the initial 

severity of neurological injury; a more severe degree of initial injury portends a worsened 

prognosis at 1 year91,92. The neurological level of injury can also determine neurological 

recovery; in general, thoracic injuries (particularly complete injuries), are associated with 

reduced potential for motor recovery than injuries in the cervical or lumbar spinal cord. This is 

thought to exist because neurological recovery is more difficult to clinically detect in the 

thoracic region 93,94.  

Functional outcomes, in particular the ability to walk is of interest to patients. In 

general, patients with ASIA Impairment Scale grade A injuries are generally predicted to have 



<5% chance of walking 1 year post-injury, regardless of the neurological level of injury95. 

Ambulatory rates are substantially higher for patients with incomplete injuries, but are variable 

and depend on the initial level of neurological injury95.  

 

[H3] Predicting neurological recovery. Several tools have been developed to predict 

neurological recovery in patients with SCI. One rule by Van Middendorp et al., relies primarily 

on acute clinical examination features, and can accurately predict long-term walking potential 

96. Other tools, such as that developed by Wilson et al. 97 use age, neurological examination and 

MRI features, can accurately predict the likelihood of long-term functional independence and 

Pavese et al. 98 have generated two simple models to predict urinary continence and complete 

bladder emptying at 1 year after injury using motor, sensory and spinal cord independent 

measures (SCIM) subscale scores. Each of these might serve as useful tools in the future to help 

clinicians estimate long-term prognosis in the acute setting. 

 

 [H1] Management 

‘Time is spine’ has emerged as a central concept in the management of any patient with 

SCI. Similar to other acute CNS insults, functional neural tissue is progressively lost during the 

hours after SCI, making it critically important to rapidly diagnose patients and implement 

neuroprotective interventions during the acute injury phase. These treatments have the 

potential to substantially alter the long-term functional recovery of patients and provide 

meaningful improvements in quality of life (QOL). The management of patients with SCI is 

complex and involves multiple stages of care, often continuing for years after the initial injury.  
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[H2] Prehospital transport and hospital care setting 

For any patient with suspected spinal trauma and/or traumatic SCI, complete 

immobilization of the cranio-spinal axis should be maintained. In the prehospital setting this 

should involve transport with the use of a rigid spine board and application of a cervical collar. 

After rapid transport to hospital, precautions, including flat bedrest with a cervical collar, 

should be maintained until confirmation or restitution of spinal stability. 

Current AANS/CNS SCI guidelines state that management of acute patients with SCI, 

particularly those with complete cervical injuries, should be performed in an intensive care unit 

(ICU) with continuous cardiac, haemodynamic and respiratory monitoring77. Indeed, the 

existing low quality (that is, from non-randomized, retrospective observational studies) clinical 

evidence suggests that admission to an ICU, with the early identification and management of 

systemic complications of SCI (including hypoxia, hypotension, pulmonary dysfunction and 

cardiovascular instability) has a role in reducing secondary injury and facilitating improved 

recovery30,41. Care in the ICU is more important when considering concomitant injuries that can 

accompany SCI including traumatic brain injury, intra-abdominal injury, thoracic injuries, 

pelvic/long bone fractures and facial trauma. In all cases, transfers of care should be expedited 

to reduce diagnosis and intervention times and the transfer of patients to a specialized SCI care 

centre is recommended by AANS/CNS guidelines77.  

 



[H2] Medical management 

[H3] Haemodynamics. In the ICU, one of the most essential components of acute SCI 

management is the maintenance of adequate spinal cord perfusion, through the avoidance of 

systemic hypotension and support of mean arterial pressure (MAP). Hypotension is common 

post SCI; based on findings from predominately retrospective clinical studies, the 2013 

AANS/CNS SCI guidelines, recommend avoiding systemic hypotension (keeping systolic blood 

pressure <90mmHg) and maintaining MAP between 85-90mmHg for the first 7 days post injury 

77,99. In addition, oxygen saturation should be maintained at ≥90% and prophylaxis to prevent 

deep venous thrombosis should be administered as soon as possible. 

[H3] Methylprednisolone sodium succinate. Historically, the most contentious issue 

surrounding the medical management of SCI is the suitability of the administration of high-dose 

intravenous methylprednisolone sodium succinate (MPSS) in the acute phase of injury. In 

preclinical evaluations, MPSS showed substantial promise as a neuroprotective agent100-102. 

Subsequent clinical evaluation of MPSS led to the completion of three large randomized clinical 

trials (that is, the National Acute Spinal Cord Injury Studies (NASCIS)). The second NASCIS study 

likely had the largest impact on clinical practice103-105, and compared a high-dose 24-hour 

infusion of MPSS to placebo, or to naloxone. In the primary analysis, no significant difference in 

neurological recovery was observed between patients treated with MPSS or those that received 

placebo. However, in a secondary analysis (involving patients treated ≤  8 hours post SCI), MPSS 

administration resulted in a 5 point increase in ASIA motor scores  at 6 months follow-up, 

compared with placebo administration104. In a 2012 Cochrane review, data from two other 
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confirmatory randomized studies using the same dose of MPSS dose were collated with the 

data from the second NASCIS ; overall, administration of a high-dose 24 hour infusion of MPSS 

results in a 4 point increase in ASIA motor scores at long-term follow-up, compared with no 

treatment or placebo106. Regarding adverse effects, weak trends towards an increased 

incidence of gastrointestinal haemorrhage and wound infection were noted with MPSS, but this 

did not achieve significance. In line with these findings, a large proportion of the spine surgery 

community began the routine administration of high-dose MPPS for patients with SCI arriving 

to hospital within 8 hours of injury107. However, numerous criticisms of this practice, and of the 

supporting body of literature, have emerged over the years108. Namely, critics have pointed to 

the potential for increased complications, the use of subgroup analyses in the second NASCIS to 

prove effect, small positive effect sizes and methodological limitations in the two NASCIS II 

confirmatory trials, as arguments against the routine use of MPSS within 8 hours.  

Balancing the available perspectives and evidence, the latest AANS/CNS SCI guidelines (that is, 

the 2013 guidelines) recommend against the use of MPSS for SCI, arguing that the evidence of 

harm is more consistent that the evidence of potential benefit77,109. However, the stance 

adopted by the authors of this guideline has been somewhat controversial given that, in spite 

of any new evidence on the topic in the interval, the 2002 version of the AANS/CNS SCI 

guidelines recommended a 24 hour administration of MPSS, started within the first 8 hours 

after injury, as a treatment option110. As noted in recent written commentary, as well as in 

debate presentations at recent international neurosurgery meetings, this change in 

recommendation has placed the clinician in somewhat of precarious position111,112. An 



upcoming 2017 AOSpine guideline in the Global Spine Journal will suggest a 24-hour infusion of 

MPSS be offered to patients within 8 hours of acute SCI as a treatment option. Ultimately, the 

authors of this review feel that decisions surrounding MPSS therapy should remain left to the 

physician involved, balancing the potential for benefit with the potential for complications, 

given the characteristics of the presenting patient. 

 [H3] Decompressive surgery. Surgical intervention is an essential cornerstone of the acute 

treatment for patients with spinal trauma and acute SCI (Figure 6). Overall, surgery aims to re-

align the spinal column, re-establish spinal stability and decompression (that is, relief of bony or 

ligamentous compression) of the spinal cord. Surgery typically involves open reduction and 

decompression paired with an instrumented fusion (for example, using implanted metal 

hardware) to stabilize the spinal column in an anatomic position. The extent of surgery is 

tailored to the anatomical site as well as the severity and extent of injury. 

From a biological perspective, ongoing compression of the spinal cord is thought to 

exacerbate local spinal cord ischaemia, thereby potentiating secondary injury 113,114. Thus, 

decompressing the spinal cord early after SCI should help to limit the zone of injury and 

improve clinical outcomes. Indeed, evidence from a systematic review and a meta-analysis of 

preclinical studies showed that a longer duration of spinal cord compression was typically 

associated with worsened outcomes (including neurobehavioral recovery, blood flow 

disturbances and zone of injury)115. However, clinical, class I randomized evidence supporting 

the efficacy of early surgical decompression remains lacking. That being said, several 

prospective non-randomized studies have supported the safety and efficacy of surgical 

decompression, including one study noting an increased odds of a ≥2 grade improvement in 
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ASIA Impairment Scale grade with early (within 24 hours) decompression compared with late 

(>24 hours) decompressive surgery in patients with cervical SCIs. In addition, data from this 

study showed a trend towards a reduced incidence of acute in-hospital complications in the 

early surgery group, but imbalances between the treatment groups might have influenced 

outcomes. Other studies have shown an association between early decompressive surgery and 

significantly greater improvements in ASIA motor scale recovery116; specifically, in patients with 

ASIA Impairment Scale grade A injuries (Box 3), reduced length of hospital stay, complication 

rates and health care costs117. In another study very early decompression (≤8 hours) was 

associated with significant improvement in 1 year SCIM scores and ASIA Impairment Scale 

grades118. No international clinical guideline regarding the timing of decompressive surgery 

exists119. However, one guideline supported by AOSpine has recently been completed and will 

be published in the Global Spine Journal in early 2017.  

 

[H2] Local complications  

[H3] Syringomyelia. Post-traumatic syringomyelia occurs in ~3% of patients with SCI and is 

characterized as a longitudinal fluid-filled cavity that can span many segments of the cord and 

can lead to progressive myelopathy occurring months–years after SCI (Figure 7). Syringomyelia 

is distinct from the more common post-injury cystic cavitations, which are smaller and localized 

to the injury site. The pathophysiology of post-traumatic syringomyelia is not known but might 

involve a one-way valve that gradually leads to intraparenchymal cerebrospinal fluid and/or 

interstitial fluid accumulation120. Treatment depends on the clinical presentation and 



progression of symptoms121; asymptomatic patients are monitored with serial clinical and MRI 

examinations but progressively symptomatic patients might undergo surgical decompression by 

connecting the fluid cavity to the intrathecal space. 

[H3] Neuropathic arthropathy. Neuropathic or Charcot joint arthropathy (that is, the slow 

progressive destruction of a joint) can lead to deformity, overlying skin ulceration and 

potentially fatal infections. The loss of sensation that is common after SCI allows repeated 

microtraumas to go unnoticed, which promotes bone resorption122. Furthermore, autonomic 

dysregulation can cause hyperaemia of denervated joints, which promotes further bone 

resorption. This arthropathy can occur in any joint including the hips, knees, ankles, shoulders, 

elbows, spine and small joints. 

Charcot arthropathy of the spine is often diagnosed 10-15 years after SCI and presents 

as deformity, paradoxical pain (below the sensory level of injury), a deterioration in 

neurological function and/or audible sounds with movement. Treatment might be conservative, 

such as clinical and radiographic follow-up, symptomatic (for example, treatment with 

analgesics or bracing), or surgical (such as vertebral fusion)123.  

 

[H3] Spasticity. Spasticity is the velocity-dependent increase in muscle tone with 

exaggerated deep tendon reflexes that results from injury to upper motor neurons. Spasticity 

affects 65-78% of individuals with chronic SCI (>1 year post-injury) and can substantially impact 

mobilization, activities of daily living and sleep. Furthermore, spasticity can contribute to other 

local and systemic complications of SCI including the development of pressure ulcers, 

contractures, fractures, and cardiorespiratory deconditioning124. Treatment of spasticity may 
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include physical therapy, systemic pharmacologic treatments (for example, clonidine or 

GABAergic drugs such as diazepam and baclofen), intrathecal pharmacologic treatments (for 

example, intrathecal baclofen pump), local botulinum toxin injections, or surgery (for example, 

tendon release surgery)124. 

 

 [H2] Systemic complications 

 Several of chronic, systemic complications can substantially affect patients’ QOL and 

functional independence.  

 [H3] Cardiovascular. Analogous to changes observed during the acute period of injury, chronic 

cervical or thoracic SCI compromises sympathetic outflow from the CNS, which can lead to 

hypotension 125 (Figure 4). As a result, ~60% of patients experience symptomatic orthostatic (or, 

postural) hypotension (for example, dizziness, weakness and syncope) 126. These symptoms 

occur consistently initially but gradually resolve over weeks–months, although they can persist 

for longer in some patients126. Treatment includes the use of lower extremity compression 

stockings, abdominal binding or medical management, including volume augmentation (such 

as, use of hydration, salt tablets or fludrocortisone) and/or peripheral vasoconstriction (for 

example, with midodrine, ephedrine or droxidopa)127.  

 

[H3] Autonomic dysreflexia. Autonomic dysreflexia is an urgent condition that most commonly 

occurs in patients with injuries at or above T6 (particularly, in those with complete injuries). 

Autonomic dysreflexia is caused by the presence of a noxious stimulus below the level of injury 



(such as bladder distension, bowel impaction or pressure sores), which causes a reflex 

overstimulation of spinal sympathetic neurons, leading to vasoconstriction and dangerous 

acute hypertension128. As a response, parasympathetic outflow increases above the injury level 

and sympathetic outflow can be inhibited, depending on the injury level, which leads to 

vasodilation, headache, sweating and sinus congestion. Prompt treatment requires upright 

positioning of the patient, removal of the triggering stimulus and pharmacological anti-

hypertensives for refractory cases129. Episodes of life-threatening autonomic dysreflexia can 

occur in both the acute and chronic stages of injury, making long-term prevention key by 

avoiding noxious stimuli (for example, by frequent bowel and bladder care and repositioning to 

avoid pressure sores). 

[H3] Respiratory. Paralysis of the phrenic nerve, intercostal muscles and/or abdominal muscles 

leads to reduced lung capacity, ineffective cough and accelerated fatigue with respiratory 

demand130. As a result, patients experience recurrent pneumonia, atelectasis (that is, alveolar 

collapse) and pleural effusion (fluids around the lungs) and are more likely to have sleep apnea 

and respiratory failure131. While long-term rehabilitation which promotes cardiorespiratory 

conditioning may be beneficial, the respiratory defects themselves restrict rehabilitation 

capacity and long-term independence. As a result, respiratory complications are the leading 

cause of mortality in patients with chronic SCI. In individuals with high cervical injuries, or those 

with poor respiratory reserve, lifelong ventilator dependency can also result132,133.  

 

[H3] Secondary immunodeficiency. As previously mentioned, the disruption of CNS input to 

immune organs can result in the systemic dysfunction of macrophages, T-cells, B-cells and 
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natural killer cells in a process termed immune paralysis. The clinical manifestation of this is an 

increased susceptibility to infections, such as pneumonia, urinary tract infections and wound 

infections134,135. Although the cause of immune paralysis continues to be investigated, cervical 

or high-thoracic injuries have been shown to cause interruption of the sympathetic innervation 

of lymphatic organs and are associated with rapid splenic atrophy136. There is no accepted 

management for secondary immunodeficiency.  

[H3] Genitourinary and gastrointestinal. Dysfunction of the genitourinary and gastrointestinal 

systems increases care requirements, risk of infection and can be a source of significant social 

and psychological stress in patients with SCI. Injuries at or above L1–L2 interrupts innervation of 

the detrusor, or the bladder muscle, and urinary sphincters, which can causes an inability to 

empty the bladder, acontractile bladder, urinary incontinence and recurrent infections137,138. 

Management includes urethral catheterization every few hours, the surgical creation of a 

urinary stoma, injections of Botulinum toxin and pharmacological therapies (such as 

anticholinergics or alpha-blockers)125. 

The neurological level of injury can also substantially affect sexual function. For 

example, injuries above T11 can affect psychogenic arousal (that is, erection or vaginal 

lubrication as a result of arousal in the brain) with preservation of reflexive arousal (that is, 

erection or vaginal lubrication as a result of genital stimulation) and the ability to orgasm. 

Conus injuries (that is, injuries in the sacral segment) can interfere with reflexive arousal but 

preserve psychogenic arousal. T12-L2 injuries with sacral segment sparing can preserve all 

sexual functions 139. 



 39% of patients with SCI report that bowel dysfunction significantly reduces their 

QOL125. SCI can interrupt the voluntary control the anal sphincter (causing faecal retention) 

and/or the parasympathetic innervation of the bowel (in patients with lumbosacral injury). Both 

cases lead to constipation, increased risk of infection and stress for patients. Treatments can 

range from dietary fibre intake, digital rectal stimulation or disimpaction and use of 

suppositories, to implantation of an electrical stimulator or colostomy140,141. 

[H3] Pressure sores. Pressure sores cause pain, increased care requirements and can be life-

threatening if not promptly treated. Sores most commonly occur on the buttocks (31%), lateral 

thighs (26%), sacrum (18%), feet (7%) and ankles (4%)125. Prevention of pressure sores requires 

daily inspection and cleaning of the skin, but also a relief of the pressure on each region every 

few hours. Once a sore develops, diligent aseptic technique, debridement, dressing and 

nutritional support are vital to halt progression to life- and limb-threatening infections142. 

[H3] Neurogenic heterotopic ossification. 10-53% of patients with chronic SCI form ectopic 

bone in the connective tissue around joints, in a process called neurogenic heterotopic 

ossification. This ossification occurs most commonly in the large joints (for example the hips, 

knees, elbows or shoulders), tends to develop within months of SCI and presents with localized 

pain, redness, low-grade fever and increased spasticity143. The exact cause of neurogenic 

heterotopic ossification is not known but it might involve a combination of local, humoral and 

neuro-immunological factors. Management can include physical therapy, pharmacological 
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therapy (such as bisphosphonates and/or non-steroidal anti-inflammatories), radiation therapy, 

or surgical resection of the ossification144. 

[H3] Neuropathic pain. Neuropathic pain is experienced by up to 40% of patients with chronic 

SCI, has a mean onset of 1.2 years after injury and can have a substantial effect on patients’ 

psychological wellbeing and QOL. The mechanism underlying injury-level pain is thought to be 

sprouting of spinal cord fibres around damaged nerve roots, leading to inappropriate activation 

of primary afferent fibres and the initiation of pain by normally non-noxious stimuli (that is, 

allodynia). Below-injury-level pain is hypothesized to occur due to a loss of spinal and 

supraspinal inhibitory signalling combined with potentiation of brain pain-responsive areas. 

Neuropathic pain can be treated pharmacologically (for example, using antidepressants, 

anticonvulsants and/or opioids), surgically (such as implanted spinal cord stimulators, deep 

brain stimulators, dorsal root entry zone lesioning), or through non-allopathic treatments (such 

as acupuncture, massage, cognitive behavioural therapy)145.  

[H2] Rehabilitation 

 Rehabilitation requires an interdisciplinary approach involving nurses, physicians, 

dieticians, psychologists, physiotherapists, social workers, recreation therapists, speech 

therapists, orthotists and child life specialists. Rehabilitation can have significant effects on 

long-term health by helping patients recover as much function as possible, prevent secondary 

complications, understand the extent of their injuries, cope with loss of independence, and 

address other practical challenges such as vocational and financial concerns.  



  Physical rehabilitation is focused on regaining function, enhancing any remaining 

function and preventing complications. Key components of rehabilitation are strength training, 

cardiovascular-focused exercise, respiratory conditioning, transfer/mobility training and 

stretching to prevent muscle contractures (that is, the permanent shortening of muscle). The 

patient’s progress helps to dictate the level of ongoing care needed in the community and the 

use of assistive devices for daily living. Further high-quality (that is, level 1-2) trials of physical 

rehabilitation are required to validate the intuitive efficacy and compare specific treatment 

modalities146. Interestingly, physical rehabilitation can induce significant changes in cellular 

signalling and growth factor expression147. Early mobilization increases endogenous growth 

factor levels (such as insulin-like growth factor 1) and axon regeneration in animal models147. 

However, in clinical practice, ventilator dependence, poor vascular tone, neuropathic and 

somatic pain, psychosocial challenges, and resource limitations in acute care institutions can 

make early mobilization challenging.30 These important clinical barriers are often overlooked 

but represent formidable overarching challenges to recovery. 

Weight-supported locomotor training (WSLT) uses assists devices (such as, Hocoma’s 

Lokomat, HealthSouth’s AutoAmbulator) and therapists to dynamically support the patient’s 

weight while they attempt locomotion on a treadmill or open ground. The therapy looks to 

enhance the remaining connectivity between regions above the SCI and the locomotor central 

pattern generator (that is, a region of neurons that when activated, can initiate locomotion in 

the absence of sensory input, or input from the brain) with the spinal cord. WSLT has been 

shown to improve assisted mobility, cardiorespiratory status and to prevent pressure sores and 

joint-related complications of SCI. A randomized, single-blind trial (n=146) comparing 12 weeks 
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of WSLT versus similar intensity physical rehabilitation found no significant difference in 

outcomes, but both groups had improvements in locomotion at 6 months, highlighting the 

importance of intensive rehabilitation148. 

 Occupational therapy focuses on integrating adaptive devices into people’s daily lives to 

maximize functional independence at home and at work. Devices might include wheelchairs, 

lifts, braces, orthoses, environmental control units (such as lights, television or phones), 

bathroom equipment (such as showering or toileting), vehicle modifications for driving and 

others149. The US Department of Health and Human Services maintains a database 

(AbleData.com) of accessibility devices to help inform patients150. 

 

[H2] Functional electrical stimulation 

 Functional electrical stimulation (FES) utilizes small pulses of currents to activate 

muscles and has been successfully used in the upper extremities for eating, gripping and 

writing. In the lower extremities, FES has been connected to a wheeled walker for ambulation 

(for example, the Parastep by Sigmedics Inc.) and to stationary bicycles (for example, ERGYS 3 

by Therapeutic Alliances Inc. and RT300 by Restorative Therapies) FES can also be surgically 

implanted with electrodes on the anterior sacral nerve roots to provide patients with 

controllable bowel or bladder function. Typically the implanted sacral nerve stimulator, such as 

the Vocare Bladder System (Finetech Medical), requires surgical lesioning of dorsal sensory 

roots to improve continence, but an open-label pilot study is underway to assess the system in 

patients with SCI without nerve sacrifice with results expected by 2018 (NCT02978638). 



Importantly, FES can also enhance neuroplasticity and decrease the systemic complications of 

chronic SCI in patients151. In addition, FES-based exercises can double oxygen uptake, triple the 

ventilation rate, and improve the overall muscle to fat ratio in the body152,153. FES is an actively 

researched field with the next generation of devices integrating more advanced closed loop 

feedback systems, greater MRI compatibility, and novel stimulation programs to reduce 

adverse effects and improve efficacy154. 

[H1] Quality of life  

QOL in patients with SCI is most often defined by the ability of patients to be 

independent of assisted-care and hold meaningful employment.155 The most frequently used 

subjective measure of QOL is the Satisfaction with Life Scale (SWLS) and the most commonly 

used objective measure is the Short-form 36 (SF-36).156 A new scale to assess QOL in patients 

with SCI is the SCI-QOL, a patient-reported outcome measure consisting of 18 domains, 

including metrics for physical, emotional and social aspects157. 

 

[H2] Factors associated with QOL  

Patients with SCI have been shown to have a lower QOL than the general population in a meta 

analysis158. Out of functional impairment (loss or abnormality of anatomic function), disability 

(functional limitation for specific activities), and handicap (disadvantage in acting in a certain 

role) handicap is most strongly associated with QOL in patients with SCI. Other studies have 

indicated that the severity and level of injury is significantly associated with QOL (that is, 

individuals with higher-level and more severe injuries showed significantly lower QOL).159,160 

However, conflicting results have been reported in other studies.161,162 Other factors associated 
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with QOL include advanced age and lower QOL,163,164 and for both functional and psychological 

outcome, lengthier duration of SCI is associated with a more positive assessment of QOL.163,165  

 

Social support, as indicated by marriage or cohabitation, and employment have a positive effect 

on QOL after SCI. 166,167 A higher level of education168 and the ability to walk without 

assistance164 were associated with higher QOL scores. SCI-related morbidities, including 

neuropathic pain, spasticity and bladder, bowel and sexual dysfunction were all associated with 

a lower QOL.169 In general, carefully designed studies are required to give us a better 

understanding of how we can better prognosticate and inform long-term strategies to improve 

QOL for those living with SCI. 

 [H2] Economic impact  

 The financial burden of SCI on patients, families, and society is substantial. Direct health 

care costs and living expenses vary substantially based on the geographic region and the age, 

survival and injury severity of individual patients. For example, in the United States, the lifetime 

cost for providing care to a 25 year-old patient with an ASIA Impairment Scale A injury is ~$2.3 

million for thoracic injuries, ~$3.5 million for C5-8 injuries, and ~$4.7 million for C1-4 injuries 

over the course of the patient’s life. Additionally, indirect costs (including lost wages and 

benefits) are estimated at ~$72,000 per year2. Even small improvements in function, such as 

mobility and manual dexterity, can substantially reduce these costs highlighting the economic 

importance of the ‘time is spine’ concept.  

 



[H1] Outlook  

[H2] Improving translation  

 Although numerous treatments have generated positive results in preclinical models of 

SCI, translation to patients has been challenging. Typically, preclinical studies use animal 

models with highly standardized injuries, treatment paradigms, and assessment techniques in 

animals that are genotypically and phenotypically similar, which is in contrast to the 

heterogeneity of patients. As a result, an effective therapeutic approach from a single animal 

model might only be translatable to a subset of individuals within a clinical trial that often 

assesses a wide-array of patients. This requires higher recruitment to sufficiently power the 

study and often necessitates controversial subgroup analyses170. To overcome this, one strategy 

is to embark on clinical trials only after a treatment has demonstrated efficacy in multiple 

animal models and species. Although this decreases the number of potentially translatable 

therapies, it might identify the highest yield treatments. Another strategy is to narrow the 

inclusion criteria of studies based not only on clinical factors and biomarkers, which can provide 

insight into the underlying pathophysiology171. Together, these approaches might decrease 

variability in clinical trials (and recruitment requirements) while increasing the statistical power 

of the trial.  

[H2] Common data elements 

The SCI field needs high-quality large-scale datasets to better understand the 

heterogeneity between patients, as this affects their response to treatment and our ability to 

predict outcomes. Generating these datasets can be logistically challenging as patients present 

emergently and require complex care172, but several registries have been developed including 
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the North American Clinical Trials Network SCI Registry173, International Spinal Cord Society SCI 

Data Sets174 and National Spinal Cord Injury Statistical Center database175, among others. Large 

clinical trials have also contributed patient records, but data elements need to be standardized 

to harmonize datasets and draw meaningful conclusions. Towards this goal, The National 

Institute of Neurological Disorders and Stroke (NINDS) within the NIH has developed a set of 

common data elements for SCI. The 2014 common data elements are classified along a 

spectrum according to their use and validation in SCI and are grouped by field including 

demographics, care, electrodiagnostics, functional, imaging, neurological, pain, QOL and 

psychological. Upcoming studies and registries should apply these elements to their data 

collection for the ultimate benefit of all patients. 

[H2] Current clinical studies  

The last several decades have seen a flurry of preclinical SCI research that has given rise 

to a host of promising therapeutic advances, each of which are in various stage of clinical 

development61,176. Pharmacological agents currently being investigated can broadly be 

classified as either neuroprotective or neuroregenerative (Table 1). 

[H3] Neuroprotective treatments. Minocycline (a structural analogue of the antibiotic 

tetracycline) can induce neuroprotection in animal models of SCI, presumably through reducing 

oligodendrogcyte apoptosis and by reducing local inflammation177,178. A phase 2 placebo 

controlled randomized study showed an improvement of 6 points at the ASIA motor score in 1 

year after delivery of minocycline for 7 days, compared with placebo and only one adverse 



event - a transient elevation in hepatic enzymes. A larger multicentre efficacy trial is currently 

planned (NCT01828203). 

 Riluzole (a sodium channel blocker) has improved neurobehavioral and pathological 

outcomes in animal models of SCI and is thought to prevent continuous activation of neuronal 

voltage gated sodium channels, preventing cellular swelling and death, in addition, to reducing 

excitotoxicity. 179 Data from a phase 1 trial showed an improvement in ASIA motor scores in 

patients with cervical level injuries, 90 days after riluzole treatment, compared with non-

treated patients matched from an historical registry cohort180. Three patients had temporary 

borderline severe elevations in liver enzymes, but no serious adverse events were attributed to 

the drug. Currently, a phase 2/3 multicentre randomized trial, the Riluzole in Spinal Cord Injury 

Study (RISCIS is enrolling patients and is supported by AOSpine (NCT01597518). 

Basic fibroblast growth factor (bFGF) is an important mediator of angiogenesis, plays a 

key role as a morphogen in embryological development, and is used in vitro to maintain 

pluripotency of many cells types including neural stem cells181. In animal models, bFGF can 

promote neuroprotection against excitotoxicity and can reduce free radical-mediated 

injury182,183. A structural analogue to bFGF (SUN13837) has been assessed in a phase 1/2 

randomized trial with results pending.  

Finally, the use of systemic hypothermia as a potential neuroprotective strategy is under 

clinical investigation in a phase 2/3 study: the Acute Rapid Cooling for Traumatic Injuries of the 

Cord (ARCTIC) trial. Hypothermia can decrease the basal metabolic rate of the CNS after injury 

and provides an anti-inflammatory effect184. Systemic intravascular cooling to 33.0 °C after 
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acute hospital admission in patients with complete SCI, is safe and associated with increased 

rates of ASIA Impairment Scale grade conversion as compared to historical controls185.  

[H3] Neuroregenerative treatments. The RhoA pathway can negatively affect axonal and 

neurite growth and molecules that activate this pathway are upregulated following SCI 186. A 

specific bacterial-derived toxin, known as VX-210 can inhibit RhoA-mediated inhibition of 

axonal growth leading to enhanced regeneration and improved behavioural outcomes in rodent 

models187. Cethrin, a recombinant version of VX-210, showed promise in preclinical studies and 

no were no serious drug related adverse events were noted in a phase 1/2a dose escalation 

study in patients with ASIA Impairment Scale grade A cervical and thoracic injuries 188. Although 

this study was uncontrolled, ASIA motor score recovery at 12 months, was superior to historical 

recovery rates188. A phase 2b/3 study is underway.  

As previously mentioned, Nogo-A is found in CNS myelin and presumably has a role in 

preventing the formation of new functional connections post SCI. Nogo-A antibodies have 

shown promise in promoting axonal regeneration in preclinical SCI studies189 and a phase I 

study has been completed, with a phase 2 placebo controlled European trial underway190. 

 Biomaterials are under intense investigation as they can be engineered to mimic the 

architecture of lost ECM in the spinal cord and can structurally support cell migration and 

axonal regrowth. A phase 3 trial in thoracic SCI, entitled INSPIRE is underway in the United 

States, with a biodegradable Neuro-Spinal Scaffold to assess the safety and improvements in 

ASIA Impairment Scale grade, motor scores and sensory scores (NCT02138110).  



[H3] Cellular transplantation. Transplantation of various cell types to repair the injured spinal 

cord is an exciting therapeutic concept191 and addresses the extensive loss of tissue caused by 

SCI that cannot be replaced by endogenous repair processes. In addition, transplanted cells can 

replace lost cells, modulate the injury environment and stimulate synergistic regenerative 

programmes176. Any specific cell type might have one or more of these actions, which remains 

an area of active investigation 192. 

The various cell types that have been assessed in preclinical studies include neural stem 

or precursor cells, oligodendrocyte precursor cells, olfactory ensheathing cells, Schwann cells, 

umbilical cord mesenchymal stem cells, amongst others176,193. Cell transplantation into the 

transected cord has been shown to promote the recovery of motor function, including 

coordinated walking194, paw use and climbing195, in addition to improved bladder function196 

and phrenic nerve activity197 in animal models. Importantly, neural precursor cells and adult 

olfactory tissue is also effective when transplanted 1 month after SCI in rats, a time point that is 

considered to model stable, chronic SCI in humans.  

Mechanistically, transplanted cells can improve regeneration by promoting axonal 

growth (observed with olfactory ensheathing cells (OECs)), remyelinating denuded axons 

themselves (observed with Schwann cells and oligodendrocytes, among others) and supporting 

remyelination by endogenous oligodendrocytes198,199 Also, factors secreted by transplanted 

cells can beneficially modulate the environment and promote axon regeneration200,201.  

 Several trials have tested the safety and preliminary efficacy of cell transplantation in 

patients with SCI. The first human trial confirmed the safety of transplantation of purified OECs 

into the spinal cord. 202 Subsequently studies transplanted mucosal tissue, as opposed to 
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purified OECs, with conflicting results203 204 Other trials have investigated other transplanted 

cells, including OECs and olfactory nerve fibroblasts, Schwann cells and a combination of OECs 

and Schwann cells205,206. A systematic review of the use of OECs in SCI echoed the positive 

findings found in other trials 207. More recently, data from a phase 1 trial reported motor and 

sensory improvements and no serious adverse events 1 year post transplantation of autologous 

mucosal OECs and olfactory nerve fibroblasts into the spinal cords of patients with AIS 

impairment grade A injuries (n=6) 205. However, large sample sizes and long follow-up periods 

will be required to confirm safety and efficacy203.  

Further efforts at cell transplantation include the transplantation of human embryonic 

stem cell-derived oligodendrocyte progenitors (such as the Geron trial), but this was 

discontinued for financial reasons. Fortunately, renewed funding has allowed Asterias 

Biotherapeutics Inc. to restart the study of these cells as a phase 1/2a dose escalation study in 

which their product, AST-OPC1, is transplanted into the subacutely injured cervical spinal cord 

(NCT02302157) . Other cell types under clinical investigation include human Schwann cells and 

umbilical cord blood mononuclear cells, among others. One phase 1/2 trial involving umbilical 

cord blood mononuclear cells found that the addition of intensive locomotor training to cell-

based therapy can significantly enhance functional recovery in patients with chronic injuries.  

Biotech-led trials include the recently terminated testing of a human fetal neural stem 

cell product (HuCNS-SCs, StemCells Inc.) and Neuralstem’s ongoing trial of transplanted NSI-

566, stem cells derived from the human fetal spinal cord . Other possible therapies include 

adult autologous stem cells (RhinoCyte Inc.), although this is still at preclinical stages and 

human glial-restricted progenitor product (Q-cells, Q Therapeutics). A number of novel 



conventional drugs, such as Anti-NogoA-antibodies are also currently being evaluated in clinical 

trials (Table 1).  

 

[H3] Neuromodulation, robotics and future directions. Several neuromodulatory approaches, 

involving the focused delivery of electrical current to the CNS, are under study for the 

treatment of SCI. Specifically, spinal cord stimulation using surgically implanted electrodes in 

the epidural space over the conus medullaris, has improved functional and locomotion related 

outcomes in patients with chronic SCI 208. This trial is no longer active. In addition, although not 

under investigation in the clinic, preclinical studies have shown that stimulation of deep brain 

centres in the region of the mesencephalic locomotor region, resulted in substantial 

improvement in functional deficit in rodent SCI models209. Finally, neuroprosthetic brain-

computer interfaces have successfully restored upper limb function in a paralyzed patient; in 

this case, the device was implanted into the motor cortex of a patient with a complete cervical 

injury and stimulated specific hand and wrist muscles groups allowing functional control of 

motor output without transmission through the spinal cord210. The next steps are to reduce the 

movement retraining process and make this technology feasible for everyday use. 

 The use of robotics is also beginning to comprise a more substantive role in granting SCI 

patients the ability regain functionality. In 2014 the US FDA approved the first robotic 

exoskeleton (ReWalk; ReWalk Robotics Inc.) for use in paraplegic patients which fits around 

patients’ legs and back to facilitate sitting, standing and walking 211,212 . Other devices include 

the Indego (Parker Hannifin Corp), Ekso (Ekso Bionics), REX (Rex Bionics), and Hybrid Assistive 

Limb (HAL; Cyberdyne Inc.)212 As technology improves, that robotics will be used in conjunction 
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with the discussed biological treatments to help optimize outcomes in the long-term is 

anticipated. 

 

  



Box 1. Animal models of SCI 
 
The type and location of injury is a key factor in the development of a clinically-relevant and 
translatable animal model. The anatomical and pathophysiological differences between the 
cervical and thoracic spinal regions are substantial and should be considered. Furthermore, the 
choice of species and type of model might be useful to answer different questions. 58,213-215  
 
 
[H1] Models of traumatic SCI 

 Contusion models: inflict transient, acute injuries through weight-drop or 
electromagnetic/pneumatic impactors 

 Compression models: inflict prolonged, acute injuries through calibrated clip-
compression and forceps, among others  

 Transection models involving unilateral (partial) or bilateral (complete) lesions  

 

The ideal behavioural outcome is rapidly assessable, inexpensive, requires minimal training, has 
good intra- and inter-rater reliability and causes minimal distress in the animal. Several 
established behavioural outcomes exist for mice and rats.  

 

[H1] Locomotor function 

 Open field locomotor assessment: used to assess sequential locomotor recovery of the 
hindlimb when used in combination with a locomotor recovery scale, such as the Basso, 
Beattie, and Bresnahan (BBB) scale  

 Digital systems: used to quantify cadence, walk time, stride length and stride width 
similar to the clinical GaitRite analysis system (CIR Systems Inc.) 

 Ladder, rope or wire grid test: used to assess coordinated locomotion 

 Staircase test: used to measure forelimb reaching and grasping  
 

[H1] Limb strength 

 

 Inclined plane test: used to indirectly assess trunk stability, proprioception/sensation 
and unilateral limb strength 

 Forelimb grip strength: used to provide quantitative readouts of the peak force of the 
forelimb. 

 [H1] Sensory deficits 

 Tail flick test: used to assess nociception in response to temperature  
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 Von Frey filaments (thin nylon strands of varying diameter): used to assess sensory 
preservation and allodynia (pain sensation for normally non-painful stimuli) in response 
to mechanical stimuli 

 The Hargreaves assay: used to assess sensory preservation and allodynia in response to 
temperature 



Box 2. Electrophysiological recordings  

Electrophysiological recordings have examined several parameters, including, motor evoked 

potentials (MEPs), somatosensory evoked potentials (SSEPs), dermatomal SSEPs (dSSEPs), 

electromyography (EMG), nerve conduction studies (NCS) and sympathetic skin response (SSR). 

MEPs assess the integrity of descending motor tracts, through a central impulse (usually 

through transcranial magnetic motor cortex stimulation), which is then detected by electrodes 

in peripheral muscle. The amplitude of the MEP signal, but not the signal latency, correlates 

with improved motor function post injury80. EMGs can examine subtle changes in voluntary 

muscle contraction to track recovery 216. NCSs provide detailed conduction velocities of nerves 

to better distinguish between ventral horn/anterior root injuries and pyramidal tract injuries217. 

SSEPs assess the integrity of ascending sensory tracts, usually in the dorsal columns, through 

the temporal summation of electroencephalogram (EEG) signal, after the stimulation of a 

peripheral sensory nerve. SSEPs performed in the acute phase post injury can predict long-term 

neurological and functional outcomes, such as future ambulation218. However, SSEPs were no 

better than acute clinical examination in predicting ambulation218. In another study, in the sub-

acute phase of injury the combination of lower extremity motor scores and tibial SSEPs 

provided the most accurate prediction of ambulation, compared with use of either variable 

alone. Finally, the integrity of the sympathetic system can be tested by measurement of the 

electrical potential generated between skin sweat glands (SSRs)219. 
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Box 3. ASIA impairment scale  
 
The ASIA Impairment Scale grade is global measure of injury severity and is based largely on the 
concept of sacral sparing (that is, some degree of maintained perineal sensation, voluntary anal 
contraction, and/or great toe flexion indicating an incomplete lesion). The scale is used to 
determine the grade of SCI, which ranges from ASIA Impairment Scale grade A (the most severe 
injury, with complete sensorimotor loss) to ASIA Impairment Scale grade E (the least severe 
injury with no neurological deficit).  
 
[H1] Grade A  
Sensory or motor function below the neurological level (that is, the lowest segment where 
sensorimotor function is normal on both sides) of injury including absent sacral function (that 
is, no voluntary anal contraction, no great toe flexion, no perineal, genital, anal pinprick or light 
touch sensation)  
 
[H1] Grade B  
Sensory, but not motor function is preserved below the neurological level of injury, including 
the distal sacral segments (S4-5). No motor function is present more than three levels below 
the neurological level, on either side of the body 
 
[H1] Grade C  
Motor function below the neurological level of injury (including the distal sacral segments) is 
preserved with more than half of the key muscles (that is, elbow flexors and extensors, wrist 
extensors, finger flexors and abductors, hip flexors, knee extensors, anxle dorsiflexors, long toe 
extensors and ankle plantar flexors) having a grade of less than 3 on the ASIA Motor score 
(against gravity without additional resistance) 
 
[H1] Grade D 
Motor function below the neurological level of injury (including the distal sacral segments) is 
preserved with more than half of the key muscles having a grade of 3 (antigravity) or greater 
 
[H1]Grade E  
Neurologically intact patients (that is, sensorimotor function is normal in all segments) who 
previously had deficits secondary to a suspected SCI. 
 



Figure 1. Anatomy of the spinal column.  

A| The vertebral column encircles the spinal cord in protective bone and ligament, which, in 
humans, is segmented into 7 cervical, 12 thoracic, 5 lumbar and 5 sacral vertebrae. Spinal nerve 
roots enter the spinal cord and either convey sensory information into the spinal cord (through 
the sensory or dorsal root) or convey motor information to the periphery (through the motor or 
ventral root). Blood is supplied to the spinal cord by the spinal arteries, which are located 
anteriorly and posteriorly and branch to perfuse the spinal cord parenchyma. The spinal cord is 
also surrounded by a protective layer of cerebrospinal fluid (CSF) contained within the 
pachymeninges. B| The spinal cord itself is organized into grey matter (which contains neuronal 
cell bodies) and white matter (which contains myelinated axons). The white matter can be 
further subdivided into several ascending or descending tracts, which are composed of bundles 
of axons that originate from and project to specific regions in the brain and periphery. These 
tracts convey specific information, such as sensory information (for example, temperature or 
itch) or motor information. C| Each segmental region of the spinal cord innervates a specific 
muscle and/or organ group. Damage to the spinal cord can result in partial or complete loss of 
function below the level of the injury.  
 
Figure 2. Annual incidence of spinal cord injury across reported countries, states/provinces, 
and regions. The annual incidence of SCIs varies depending on geographical region. Reprinted 
with permission from Singh A, et al. Clin Epidemiol. 2014;6:309-331.3  
 
 
Figure 3. Pathophysiology of traumatic spinal cord injury. 
The initial mechanical trauma to the spinal cord initiates a secondary injury cascade that is 
characterized in the acute phase (that is, 0-48 hours after injury) by oedema, haemmorhage, 
ischaemia, inflammatory cell infiltration, release of cytotoxic products and cell death. This 
secondary injury leads to necrosis and/or apoptosis of neurons and glial cells, such as 
oligodendrocytes, which can lead to demyelination and the loss of neural circuits. In the 
subacute phase (2-4 days after injury), further ischaemia occurs due to ongoing oedema, vessel 
thrombosis and vasospasm. Persistent inflammatory cell infiltration causes further cell death 
and cystic microcavities form as cells and the extracellular architecture of the cord are 
damaged. In addition, astrocytes proliferate and deposit extracellular matrix molecules into the 
perilesional area. In the intermediate and chronic phases (that is, 2 weeks to 6 months), axons 
continue to degenerate and the astroglial scar matures to become a potent inhibitor of 
regeneration. Cystic cavities coalesce to further restrict axon regrowth and cell migration. 
Modified from Ahuja C, Fehlings MG. Bridging the gap: novel neuroprotective and 
neuroregenerative therapies for spinal cord injury. Stem Cells Translational Medicine. 
2016;5(7):914-24220.  
 
 
Figure 4. Cervical and high thoracic spinal cord injuries disrupt the outflow of the sympathetic 
nervous system. Injuries in the cervical-high thoracic cord can disrupt the sympathetic outflow 
(green) to the heart and the peripheral vascular system, while preserving baroreceptor inputs 
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(orange) and parasympathetic output (blue). As a result, parasympathetic innervation to the 
heart dominates in patients with high injuries, which causes bradycardia and decreased cardiac 
output. This is further compounded by the loss of peripheral muscular and vascular tone, which 
promotes a redistribution of blood to the periphery with reduced venous return. Consequently, 
patients often experience hypotensive symptoms, particularly with exertion or upright 
positioning. The parasympathetic-sympathetic imbalance can also allow unchecked reflex spinal 
sympathetic stimulation as a consequence of noxious triggers (such as bladder distension or 
pressure sores), which leads to sudden peripheral vasoconstriction and acute hypertension. As 
a response, parasympathetic outflow above the injury level increases, leading to vasodilation, 
headaches, sweating and sinus congestion. This dangerous acute syndrome is known as 
autonomic dysreflexia. HR – heart rate; CO – cardiac output. 
 
Figure 5. Spinal cord injury syndromes .  
A | The major descending motor tracts are in yellow and the major ascending sensory tracts are 
in blue, as also depicted in Figure 1a. The patterns of sensorimotor loss exhibited in patients 
with spinal cord injury (SCI) syndromes can be explained by damage to specific spinal cord 
tracts with sparing of other tracts. For example, the disproportionate motor impairment of the 
upper limbs than the lower limbs in patients with central cord syndrome (panel b) might be 
explained by the complete, non-selective injury to the corticospinal tract (which is thought to 
transmit impulses related to fine hand and finger movements), but the preservation of the 
extra-pyramidal tracts (which are thought to control gross leg and proximal arm movements). In 
addition, the different levels of sensorimotor, pain and temperature loss in patients with 
Brown-Séquard syndrome (that is, the contralateral pain and temperature loss is detected 
several levels below that of the ipsilateral sensorimotor loss) can be explained by the 
decussation of the lateral spinothalamic tract over several spinal segments (panel c). Anterior 
cord syndrome (panel d) results in complete motor paralysis due to damage to the corticospinal 
tract, loss of pain and temperature sensation secondary to damage of the spinothalamic tract, 
but preservation of light touch sensation and proprioception (as the dorsal columns are 
generally preserved by this injury). Posterior cord syndrome (panel e) results in the reverse with 
loss of light touch and proprioception but preservation of motor function and 
pain/temperature sensation.  
 
Figure 6. Surgical decompression and realignment of the injured spinal cord. A| Arrows mark 
the C5-6 level where the injury is centered. Pre-operative CT imaging demonstrates a severe 
C5-6 fracture-dislocation (arrow), with compromise of the central spinal canal. B|Pre-operative 
MRI shows on-going compression of the spinal cord (arrow) and bright T2-weighted signal in 
the surrounding ligaments suggesting disruption. C| Following surgery including cervical 
traction, surgical decompression and instrumented fusion anterior and posterior metal 
hardware can be seen on the CT, and the restoration of appropriate spinal alignment. D| 
Successful decompression of the spinal cord can be seen on the post-operative MRI. 
 
Figure 7. Post-spinal cord injury syrinx. 



T2-weighted MRI of the cervical (A) and thoracic (B) spine in sagittal (left panels) and axial (right 
panels) planes illustrates a post-traumatic syrinx within the spinal cord parenchyma (white 
arrows) and kyphosis (that is, forward bending) of the thoracic spine at the initial site of SCI 
(black arrows). The syrinx extends well beyond the mid-thoracic site of SCI into the high cervical 
spinal cord, likely causing upper limb pain. 
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Table 1. Selected therapies planned or currently under study in patients with SCI  
 

Treatment Stage  Ref 

Pharmacological 

Minocycline & Phase III NCT01828203 

Riluzole & Phase IIb/III NCT01597518 

Granulocyte-colony Stimulating Factor & Phase I/II  221,222 

Cethrin # Phase II/III  223 

Anti-Nogo Antibody #  Phase II  NCT00406016  

Procedural 

Systemic Hypothermia Phase II/III  224,225 

CSF Drainage Phase II NCT02495545 

Blood pressure augmentation Phase II NCT02495545 

Neuromodulation 

Spinal Cord Stimulation Phase I NCT02592668 

Deep Brain Stimulation Phase I NCT02006433 

Cell-based Strategies 

Oligodendroglial precursor cells Phase I/II NCT02302157 

Schwann cells Phase I NCT01739023 

Umbilical cord-derived stem cells Phase III NCT02481440 

Bone-marrow derived mesenchymal stem 

cells 

Phase II NCT02570932 

Bioengineering 

Robotic exoskeletons  Phase I NCT02322125 

Functional peripheral electrical stimulation Phase I/II  NCT01479777 

Implantable bioengineered 

scaffolds/matrices 

Phase III NCT02138110 

*Planned for 2017; &denotes neuroprotective studies; # denotes neuroregenerative studies   
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