
The complexity of translationally-invariant low-dimensional spin

lattices in 3D

Johannes Bausch∗

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK

Stephen Piddock†

School of Mathematics, University of Bristol, UK

Abstract

In this theoretical paper, we consider spin systems in three spatial dimensions, and consider the

computational complexity of estimating the ground state energy, known as the local Hamiltonian

problem, for translationally invariant Hamiltonians. We prove that the local Hamiltonian problem

for 3D lattices with face-centered cubic unit cells, 4-local translationally-invariant interactions

between spin-3/2 particles and open boundary conditions is QMAEXP-complete, where QMAEXP is

the class of problems which can be verified in exponential time on a quantum computer.

We go beyond a mere embedding of past hard 1D history state constructions, for which the

local spin dimension is enormous: even state of the art constructions have local dimension 42. We

avoid such a large local dimension by combining some different techniques in a novel way. For

the verifier circuit which we embed into the ground space of the local Hamiltonian, we utilize

a recently-developed computational model, called a quantum ring machine, which is especially

well-suited for translationally invariant history state constructions. This is encoded with a new and

particularly simple universal gate set, which consists of a single 2-qubit gate applied only to nearest

neighbour qubits. The Hamiltonian construction involves a classical Wang tiling problem as a binary

counter which translates one cube side length into a binary description for the encoded verifier

input, and a carefully engineered history state construction that implements the ring machine

on the cubic lattice faces. These novel techniques allow us to significantly lower the local spin

dimension, surpassing the best translationally-invariant result to date by two orders of magnitude

(in the number of degrees of freedom per coupling). This brings our models en par with the best

non-translationally-invariant construction.

∗ Corresponding author: jkrb2@cam.ac.uk
† stephen.piddock@bristol.ac.uk

1

mailto:jkrb2@cam.ac.uk
mailto:stephen.piddock@bristol.ac.uk

I. BACKGROUND AND MOTIVATION

Hamiltonian operators are used ubiquitously to describe physical properties of multi-body

quantum systems, and are of paramount interest for an array of disciplines ranging from

theoretical computer science, to experimental and condensed matter physics. While computer

scientists are interested in the computational power of different models (e.g. Hamiltonian

quantum computers), for physicists it is important to calculate the structure of the low-energy

spectrum of quantum systems. One of the most basic, yet fundamental such question is to

estimate the ground state energy of a many-body spin system with low-range interactions,

formally known as the local Hamiltonian problem.

Kitaev’s seminal paper proving quantum-NP-hardness of the local Hamiltonian problem

for the case that each interaction couples at most five spins [1] motivated significant progress

towards understanding the computational complexity that arises in different variants of

the local Hamiltonian problem [2–10]. These results are especially interesting from a

computational perspective, answering which families of Hamiltonians are “complicated

enough” to perform universal quantum computation [11, 12]. Analysing the energy levels of

the resulting hard instances often required the development of novel mathematical techniques,

which are of independent interest e.g. in the context of spectral analysis of stochastic

processes, or perturbation theory. Yet from the perspective of experimental physics and

material sciences, the resulting many-body quantum systems are too contrived to be of

relevance; either the local spin dimension is vast, the coupling strengths vary from site to

site, or the interaction graphs are not geometrically local.

Moreover, while 1D results are interesting and in a sense the most fundamental mod-

els to study (as any 1D hardness result directly implies hardness of the corresponding

higher-dimensional constructions), most condensed matter systems are in fact two- or three-

dimensional, and the comparison of local dimension between the best non-translationally

invariant results in 1D and 2D —8 [7], and 2 [3], respectively—indicates that moving beyond

1D allows a significant reduction of the lattice spins’ dimension. It is thus a natural question

to ask whether one can go beyond a simple reduction from previously-known 1D results, by

exploiting these extra dimensions in a non-trivial way (i.e. beyond a simple embedding), but

at the same time retaining nice physical properties such as a regular lattice structure and

translational symmetries. We can even go further: is there a family of Hamiltonians on a

2

physically realistic 3D crystal lattice with a QMA-hard ground state? This question is highly

relevant, since such crystal structures are found ubiquitously in nature (e.g. face-centered

cubic lattices for sodium chloride, or body-centered cubic cesium chloride crystals).

In this paper, we prove that the local Hamiltonian problem remains computationally

hard, even for a face-centered cubic lattice of spin-3/2 particles with geometrically 4-local

translationally-invariant interactions, and open boundary conditions.

It is clear that there is always a trade-off between local dimension and interaction range: a

Hermitian operator coupling k spins of dimension d each has d2k real degrees of freedom. In

1D and for 2-local interactions, the best-known construction to date is [7] with 8-dimensional

qudits and nearest-neighbour interactions; for each coupled pair of qudits, one Hermitian

operator thus has 82×82 = 16384 free real parameters. Enforcing translational invariance, we

can regard e.g. [8]—nearest-neighbour interactions between spins of dimension ≈ 50—which

would give roughly (502)2 ≈ 6× 106 parameters to choose from.

The construction we propose in this paper with at most 4-local interactions between spins

of dimension 4 yields 48 degrees of freedom, a roughly two orders-of-magnitude improvement

over a straightforward embedding of the best one-dimensional construction, and en par with

the best non-translationally-invariant result. It also shows that there is only about three

orders of magnitude left between this construction and spin systems that we encounter every

day (e.g. nearest-neighbour, spin 1).

II. MAIN RESULT

The family of spin systems we study are described by a Hamiltonian on a face-centered

cubic (cF) lattice as shown in fig. 1. More precisely, we start with a finite cubic lattice Λ,

where each vertex and each face carries a 4-dimensional spin Hloc = C4; the overall Hilbert

space H is then the tensor product of all spins. For a geometrically local Hamiltonian h

acting on k neighbouring spins (on vertices, faces, or both), we denote with h~x the k-local

operator h when offset by a lattice vector ~x ∈ Λ, and acting trivially everywhere else; in case

that h~x protrudes out of Λ, we set h~x ≡ 0. For a finite index set I, we consider Hamiltonians

of the form

H =
∑
i∈I

(
ci
∑
~x∈Λ

h~x
i

)
, (1)

3

where each h~x
i couples at most 4 spins, either within a single unit cell, or between neighbouring

unit cells. By construction, this Hamiltonian is translationally-invariant, and features open

boundary conditions since we do not place special interactions at faces, edges or corners of

the lattice cuboid.

The index set I does not depend on the size of the lattice, and neither do any of the

hi; we allow the ci = ci(|Λ|) to depend on the system size |Λ| = W ×H ×D, but require

any ci/cj ∈ [Ω(1/ poly |Λ|),O(poly |Λ|)]. This allows us to define a variant of the local

Hamiltonian problem where the input is given by a description of the local terms of a

Hamiltonian as in eq. (1) (i.e. the matrix entries of the local terms ci × hi, up to polynomial

precision), as well as the three side-lengths W,H and D of the lattice. Moreover, we are

given two parameters α < β satisfying β−α = Ω(1/ poly |Λ|), and a promise that the ground

state energy of H is either smaller than α, or larger than β. The local Hamiltonian problem

is then precisely the question of distinguishing between these two cases, and we prove the

following main theorem.

Theorem 1. The local Hamiltonian problem is QMAEXP-complete, even for translationally-

invariant 4-local interactions on a 3D face-centered cubic spin lattice (fig. 1) with local

dimension 4, and open boundary conditions.

QMAEXP is similar to QMA, the quantum analogue of NP, but with an exponential-time

verifier instead of polynomial-time—a necessary technicality for any translationally invariant

result [8, 13], since an n-qudit instance can only encode poly(log n) bits of information (in

this case the side lengths of the lattice, which encode the input in unary). In essence, while

a QMAEXP-hard problem can be verified in exponential time on a quantum computer, just as

in the P vs. NP case it is not expected to be solved as efficiently (see appendix A for details).

We give a rigorous proof of theorem 1 in section IV; in the following, we want to give a

high-level exposition of the ideas and proof techniques which we employ. As in past hardness

results, we present an explicit construction of a family of QMAEXP-hard instances of this

variant of the local Hamiltonian problem. We will make use of two types of local terms, tiling

and history state Hamiltonians, both of which have been studied extensively, but mostly

independently of each other. In our work, we will utilize each method to its strength: the

classical tiling terms will be used to encode the bootstrapping mechanism responsible for the

4

(a) face-centered cubic (cF) unit cell

(b) cF lattice

layer A

layer B

layer A

layer B

...

D

H

W

(c) layer A

(d) layer B

FIG. 1. Face-centered cubic crystal lattice. All vertices and faces carry spin-3/2 particles; the red

and green sublattice spins sit on the faces defined by the black lattice.

large local dimension in prior work, while the history state terms will be used as a means of

embedding the quantum computation part. First we will briefly recap these methods.

A. History State Construction

By definition, a promise problem Π is in QMAEXP if there exists a BQEXP quantum

circuit—called “verifier”—such that for any YES-instance l ∈ Π, there exists a poly-sized

quantum state—called “witness”—which the verifier accepts with probability ≥ 2/3; or if

l is a NO-instance, all poly-sized witnesses are rejected with high probability. The exact

constant used here is not important, as for any polynomial p, one can always amplify a

QMAEXP promise problem such that the distinction works with probability ≥ 1− 1/3p(|l|) for

an instance l ∈ Π with size |l| (see remark 12).

5

R

R

R

R

R

R

R

R

R

R

R

R
Cd

Cd

Cd

Cd

FIG. 2. Circuit diagram of a QRM with a ring of four dimension d qudits. The intuition behind

proving universality for QRMs is to encode a classical (reversible) Turing machine’s action into the

unitary R; depending on the internal state—which is stored on classical lanes of the circuit (double

lines)—a controlled unitary is applied to the pair of qubits stored on the quantum lanes (single

lines). Special flags also stored on the classical lanes indicate where the unitary R acts non-trivially

in its next round. In this way, the Turing machine can “write out” and apply a uniform family of

quantum circuits in one go. QRMs are thus quantum Turing complete for a uniform complexity

class, given that the ring scales sufficiently quickly with the input.

We further know that for any QMAEXP promise problem, we can alternatively obtain a

so-called quantum ring machine (QRM) as verifier (lemma 17). In brief, a QRM is a fixed

unitary R on (Cd)⊗2, which acts cyclicly on a ring of n dimension d qudits. Borrowing

terminology from Turing machines (TM)—which are used to prove universality of the QRM

model—we call the unitary R the head of the QRM, and the qudit ring is essentially a TM

tape with cyclic boundary conditions. Fig. 2 depicts such a QRM and its action in circuit

notation.

We take a specific 2-qubit quantum gate G and prove it to be universal, even when

only applied to adjacent qubits (lemma 2). Together with its inverse G†, we can thus use

Solovay-Kitaev to approximate the QRM head unitary R to within precision ε. Since we

require that the QRM first writes out an instance l ∈ Π on the ring, the resulting circuit

CR has size |CR| = O(poly |l| log4(1/ε)), see lemma 4. To match the QRM evolution, we

repeatedly apply CR in a cyclic fashion, as described in fig. 2.

Keeping with tradition, we encode the circuit CR as a so-called history state Hamiltonian.

In its simplest form, such a Hamiltonian encodes transitions for each gate Ui present in

CR = UT · · ·U1. More specifically, on the Hilbert space CT+1 ⊗ (Cd)⊗n and a basis {|j〉}j

6

on CT+1, we define

Hprop :=
T−1∑
t=0

∑
j

(|t〉 ⊗ |j〉 − |t+ 1〉 ⊗Ut |j〉)(h.c.), (2)

where the first component of the Hilbert space stores a clock index taking track of the current

step within the computation. One can verify that ker(Hprop) is spanned by states of the form

|Ψ〉 =
T∑
t=0

|t〉 ⊗ |ψt〉 :=
T∑
t=0

|t〉 ⊗Ut · · ·U1 |φ〉

for any initial states |φ〉 ∈ (Cd)⊗n. We say that the ground state is spanned by states

encoding the “history” of the computation, meaning that the state of the computation after

t steps—|ψt〉—is entangled with the “time” register |t〉 (we want to point out, however, that

this is a static problem, and the analogy with time steps is purely educational).

A large part of the overhead in terms of local dimension or interaction range present in

prior constructions is due to the fact that the terms in eq. (2) are not necessarily local. A

common approach to construct a local clock is to subdivide each computational step from

|ψt〉 7−→ Ut |ψt〉 = |ψt+1〉 into multiple intermediate steps

|ψt〉 7−→ |ψt,1〉 7−→ . . . 7−→ |ψt,st〉 7−→ |ψt+1〉 ,

where no quantum gate is applied, but where some internal reordering takes place which

allows each transition to act on neighbouring spins only. This allows each gate operation in

eq. (2) to be written as a local interaction. However, the problem remains that for each local

transition rule, in order to know which gate to apply next, one has to be able to identify

the current computational step locally and unambiguously (for an extensive discussion see

[8, introd.]). Knowing when to apply which transition rule thus requires a potentially large

local Hilbert space dimension, or long-range interactions.

Quantum ring machines circumnavigate part of this problem, as only a potentially much

smaller circuit CR has to be applied in a periodic fashion. However, we still need to locally

store the current step within the circuit CR. In the next section, we explain how we use

diagonal Hamiltonian terms to constrain the ground space of our Hamiltonian such that

the circuit description for CR is exposed at the front edge of the cuboid, in a periodically

repeating fashion (see fig. 3). More precisely, we define a diagonal Hamiltonian Hcl with

spectral gap 1, and a degenerate ground space for which any ground state of Hcl + Hprop

7

will then be in a product configuration |Φcl〉 ⊗ |Ψ〉. Here |Φcl〉 is a classical product state

that takes a configuration as in fig. 3: in particular a string describing CR is expressed,

periodically, on the front edge.

Local terms as in eq. (2) can then be used to access this circuit description without any

explicit knowledge of the current position within the circuit, which is implicitly given by the

location on the cube where the transition rule is applied.

B. Tiling Construction

A tiling Hamiltonian is a local Hamiltonian on a lattice, where each term is a projector

onto the complement of the allowed tiles at a specific lattice location (see e.g. [14]). As a

simple example, consider just the 2D layer B-type sublattice from fig. 1, and assume that

every spin is a qubit. We denote with white the state |0〉, and with red shading the state

|1〉. Assume the only tiles we want to allow are the four shown in fig. 3 (without rotated

variants).

By writing a local term for each tile (where we order the corresponding Hilbert space

(C2)⊗4 as a tensor product of the spin on the back, right, front, and left, respectively), we

can write a diagonal projector h = 1 −
∑4

i=1 hi on (C2)⊗4 such that the ground space is

spanned by quantum states corresponding to the valid tiles; as an example, for the fourth

tile, we write

h4 := |1〉〈1| ⊗ |1〉〈1| ⊗ |0〉〈0| ⊗ |1〉〈1| .

We can thus easily define a local Hamiltonian on the layer B-type sublattice which in its zero

energy ground state encodes valid tiling patterns, where adjacent edges match, if possible; if

not, the ground state energy of the Hamiltonian will be at least 1. More specifically, if P

indexes all squares with four adjacent spins, then we can write the Hamiltonian as

Htiling :=
∑
~p∈P

(
1~p −

4∑
i=1

h~p
i

)
⊗ 1 (3)

where h~p
i ⊗ 1 acts non-trivially only on the spins sitting on the edges of square ~p. For the

aforementioned tiles, the resulting pattern is a binary counter, which can be used to translate

the depth of a lattice, D, into a binary string representation of D at the front edge (see top

face in fig. 3).

8

execution terminatesexecution terminatesexecution terminatesexecution terminatesexecution terminatesexecution terminatesexecution terminatesexecution terminates

co
m

p
u

ta
ti

on
ed

ge
co

m
p

u
ta

ti
on

ed
ge

co
m

p
u

ta
ti

on
ed

ge
co

m
p

u
ta

ti
on

ed
ge

co
m

p
u

ta
ti

on
ed

ge
co

m
p

u
ta

ti
on

ed
ge

co
m

p
u

ta
ti

on
ed

ge
co

m
p

u
ta

ti
on

ed
ge

binary programbinary programbinary programbinary programbinary programbinary programbinary programbinary program
descriptiondescriptiondescriptiondescriptiondescriptiondescriptiondescriptiondescription

Valid tiling of planeValid tiling of planeValid tiling of planeValid tiling of planeValid tiling of planeValid tiling of planeValid tiling of planeValid tiling of plane
is a binary counteris a binary counteris a binary counteris a binary counteris a binary counteris a binary counteris a binary counteris a binary counter
from 0 to D.from 0 to D.from 0 to D.from 0 to D.from 0 to D.from 0 to D.from 0 to D.from 0 to D.

W

HHHHHHHH

D

FIG. 3. Structure of the ground state imposed by classical bonus and penalty terms. Shown

here is the lattice as in fig. 1; a cut through the top layer of the cuboid shows the layer B red

sublattice depicted in fig. 1 (d). Coloured triangles on the top layer denote a spin on the tile edge

in configuration |1〉, a white tile edge stands for configuration |0〉; the tiles used on the top layer

are the following four:

00000000
0000000000000000

00000000 00000000
1111111111111111

00000000 11111111
0000000011111111

00000000 11111111
1111111100000000

11111111

The same colour coding is used for the squares around the sides, which label the red cF spins on

the sides of the unit cells. The dashed green front edge denotes the computation edge, where gates

will be applied in the history state construction. Observe how the same binary pattern is repeated

periodically along the computation edge.

The same method can equivalently be used to enforce a more complicated tiling pattern

in three dimensions, especially when mixing penalty terms with different weights; for an

extensive proof that the corresponding Hamiltonian ground space is indeed spanned by the

best possible tiling we refer the reader to [14, appdx.].

9

C. Hard Instances for the Local Hamiltonian Problem

We will now explain how these two techniques—tiling and history state Hamiltonians—can

be combined in order to prove theorem 1. As a first step, we define a tiling pattern to

constrain all red layer B spins of the cube—apart from the top and side layers, but including

the bottom layer—to a specific symbol which is used nowhere else, and which we denote

with . All the following terms can then be conditioned on these red spins being either

in state , or not; this allows us to distinguish between the different faces of the cuboid

in a translationally-invariant way and with open boundary conditions. This technique is

commonly used in 1D (e.g. [13]), and we extend it to three dimensions.

As explained in the last section, we then define four tiles which self-assemble to a binary

counter; this allows us to translates the depth of the cube D to a string representation of

D on the top front edge. Using similar tiles on the sides of the lattice, we wind this binary

string down and around the cube in an anti-clockwise direction; like that, the string—which

is the binary program description of the QRM circuit CR—is expressed periodically on the

front edge of the lattice, which we label the computation edge, see fig. 3.

We further restrict the spins in the green layer A sublattice adjacent to this com-

putation edge to be in a state corresponding to successive pairs of program bits. For

example, if the binary program description is p1, p2, p3, p4, the green spins depend on

(0, p1), (p1, p2), (p2, p3), (p3, p4) and (p4, 0) respectively. A special encoding (see table III)

allows us to translate any such binary pair into an operation to perform on the computation

edge. All constraints up to this point are diagonal in the computational basis and at most

4-local; we collect all these static terms on the cF lattice in the Hamiltonian Hstat.

In order to execute the circuit encoded by the binary string, we will assume that we are

working in the ground space of Hstat; any other states necessarily have energy ≥ 1. On the

black layer A spins, we partition the Hilbert space Hloc into C2 ⊕ C2; each spin either stores

a qubit |q〉, or it indicates one of two “mover” symbols J and I.

We write transition rules for the two arrows, which move them around the cube according

to their direction, while staying on the same layer (see section III D 1). Any qubit in their

path is pushed down to the next layer and cycled one to the right if passed by I, or one to

the left if passed by J. Once an arrow arrives at the computation edge, a transition rule

conditioned on the program bit pairs (pi, pi+1) (accessible through the green spins) performs

10

the corresponding computational step on the two adjacent qubits. The arrow is then re-set

to the next lower level, and the whole procedure repeats. Once the arrow returns to the

computational edge and is at the bottom-most layer, there is no further forward transition;

the program terminates.

Symbolically, the operations we can perform with this basic set of instructions are the

following ones. We have a quantum state of N qubits |q1〉 |q2〉 · · · |qN〉. In one step, we can

either. . .

1. cycle the qubits clockwise, to |qN〉 |q1〉 · · · |qN−1〉,

2. cycle them anti-clockwise, to |q2〉 · · · |qN〉 |q1〉,

3. perform a universal two-qubit quantum gate G on the first two qubits,

4. or perform the inverse of this gate, i.e. G†.

We prove in lemma 2 that there exists such a gate G which is universal for quantum

computation, even if only applied to adjacent qubits. Analogously to before, we collect all

history state terms in the Hamiltonian Hhist.

For us, the lattice instances of interest are the ones where the binary string corresponds

to a circuit approximating the head of a QMAEXP verifier QRM, i.e. CR (the fact that most

program strings do not represent such a QRM is not important). In lemma 4 we perform a

careful analysis of the approximation errors, and show that one can indeed choose height,

width and depth of the lattice (depth corresponding to the encoded program, width to the

ring size, and height to the run time of the verifier) such that the history state corresponds

to a witness verification for any instance l ∈ Π, where Π can be any promise problem in

QMAEXP.

What remains to be done is to penalize invalid history state configurations, such as

multiple active symbols, or no active symbol; collect those terms in an operator P, which is

the only one which will make use of the scaling freedom given in eq. (2). Finally, an input

penalty Πin for the computation ensures that some ancillas are correctly initialized for the

computation, and the output penalty Πout raises the lowest energy for NO-instances.

Since our history state has branches (since not all transition rules we write down are

completely unambiguous), we have to show that Hprop defines a so-called unitary labeled

graph Laplacian and invoke a recently-proven variant of Kitaev’s geometrical lemma for this

11

case, lemma 20. With a rigorous proof in section IV, we can thus show that the overall

4-local translationally-invariant Hamiltonian

H := Hstat + Hprop + P + Πin + Πout

defined on the spin-3/2 cF lattice satisfies the promise gap λmin(H) ≤ −Ω(1/ poly |Λ|) if l is

a YES-instance, and λmin(H) ≥ 0 otherwise. This finishes the construction, and the claim of

theorem 1 follows.

III. PROOF TECHNIQUES

A. Single Gate Universality

In order to execute the QRM, we have to be able to cyclicly apply the QRM head unitary

on a pair of qudits. Since we will be working with qubits in our construction, we embed each

such qud it into a list of qubits, and approximate the 2-local qud it unitary using a special

2-local unitary gate G, which can act on any two neighbouring qubits. In order to apply

Solovay-Kitaev to the QRM head unitary and approximate it with a O(log(1/ε)) gate count

(as opposed to ∼ 1/ε), we have to be able to apply both G and its inverse, G†; however, in

Solovay-Kitaev, the requirement is that those two gates can be applied to any pair of qubits,

whereas in our construction—as will become clear later—we can only ever apply either gate

to neighbouring qubits.

It suffices to prove that G is universal when applied to adjacent qubits, which is what the

following lemma shows.

Lemma 2 (Ozols [15]). Define the 2-qubit unitary G := exp(iH) with

H := σx ⊗ 1+ 1⊗ σz + σx ⊗ σx + σz ⊗ σz =

2 0 1 1

0 −1 1 1

1 1 0 0

1 1 0 0

 .

Then the unitaries {Gk,k+1 mod l : k = 0, . . . , l − 1} generate a dense subset of SU(2l) for all

l ≥ 3, where the subscript denotes where the unitaries act.

12

1 2 3 4 5 6 7 8 9 10 11

2 3

3 4 5

4 6 7 8

5 9 10 11

6 12 13 14 15 16

7 17 18 19 20 21

8 22 23 24 25 26

9 27 28 29 30 31 32 33

10 34 35 36 37 38 39 40

11 41 42 43 44 45 46 47

12 48 49 50 51 52 53 54 55

13 56 57 58 59 60 61 62 63

TABLE I. A linearly independent set of generators for su(8) in terms of nested commutators of H1

and H2. For example, H42 := i[H11,H5].

Proof. Since 3-qubit unitaries generate a dense subset of U(2l) when applied to adjacent

qubits, it suffices to prove the claim for l = 3. The proof follows techniques in Lie algebra

[16]. Define H1 := H⊗12 and H2 := 1⊗H, and let L(H1,H2) be the Lie algebra generated

by these two elements. For j = 3, . . . , 63, we set Hj := i[Hrj ,Hcj], where rj and cj are

the row and column numbers of entry j in Table I. One can verify—using a computer

algebra system—that the matrices {H1, . . . ,H63} are linearly independent, and traceless by

construction. Since dim su(8) = 63, they furthermore span the entire algebra, and the claim

follows.

B. Circuit Encoding

We work with a face-centered cubic lattice of side lengths D ×H ×W , as shown in fig. 3.

At each vertex we place a 4-dimensional spin with local Hilbert space Hloc = C4, and we

want to define a 4-local Hamiltonian on the lattice which embeds the evolution of a QMAEXP

verifier. Our construction comprises the following three main steps.

13

1. Binary counter. We construct a 2D tileset which lives on the top face of the cuboid,

and translates the cuboid depth D into a binary description of D on the top front edge,

which is of size log2D. This binary string encodes a circuit C according to table III

and fig. 4.

2. Shuffling the program. Using another 2D tileset, we cyclicly shuffle this circuit program

around the sides of the cuboid and wind it down diagonally as shown in fig. 3. The

front edge—marked in red—is the computation edge and will periodically see the entire

binary description of the program.

3. Performing gates. On the sides of the cuboid, we superpose a layer of qubits. Labelling

the qubits around the top edge of the cube with |q1〉 |q2〉 · · · |qN〉, we define transition

rules which allow us to perform one of the following four operations:

(a) cycle the qubits clockwise, to |qN〉 |q1〉 · · · |qN−1〉,

(b) cycle them anti-clockwise, to |q2〉 · · · |qN〉 |q1〉,

(c) perform a universal two-qubit quantum gate G on the first two qubits,

(d) or perform the inverse of this gate, i.e. G†, on the first two qubits.

Once any gate operation is performed, all qubits are swapped with the ones on the

next-lower level while cycling them in the direction specified. On the next layer, the

same procedure repeats until the execution terminates after H steps (H being the

height of the cube). The history state construction for one operation above thus

requires 2× (D +W) steps.

The necessary transition rules are described in detail in section III D 2, and table III

describes how the binary program description on the computation edge is interpreted as one

of the four actions above at each level. Fig. 4 shows how any circuit can be encoded in this

way. Observe that due to the winding program description—which is exposed periodically at

the front edge—we necessarily apply the same circuit over and over again. In between each

appearance of the description of CR on the computation edge, the string of zeroes does not

implement any gates or move the tape in either direction. Naturally, this is precisely the

evolution of a Quantum Ring Machine.

14

S DGD D UIU S UIUDDDDGD U DGD U UIU UU UIDDDDDGD D UIU UU DGD S

|qi−1〉

|qi〉

|qi+1〉

|qi+2〉

G

G† G†

G

G
G†

G†

G

G†

G

stay (S)

0 0 0
I
J
I

down (D)

0 1 0 0
I
I
J
I

up (U)

0 0 1 0

I
J
J
I

gate (G)

0 0 1 1 0

I
J
J
J G

I

inv (I)

0 1 1 0 0
I
I

I
J

G†

I

FIG. 4. Execution order of an arbitrary circuit approximated using the universal gate G and

its inverse G†. Each elementary operation start and end in a configuration I, where the last

program bit is a 0—like this, each circuit can be constructed by a simple combination of these

elementary operations, with a constant overhead. Observe that both gate application and inverse

gate application do not end on the same line, which means that if we want to apply G at the

current position, we have to execute DGD, and similarly UIU for G†. The specific quantum gate G

that we use is proven to be universal in lemma 2.

For suitable circuits CR, this construction is thus a history state Hamiltonian which

encodes an arbitrary QRM.

Remark 3. If we want to encode a QRM which runs for t applications of the QRM head, we

necessarily need H ≥ 2t(D +W) for our cube. Furthermore, if the QRM head acts on two

15

qudits of dimension d, the circuit CR acts on m = dlog2 de qubits; we thus require D+W ≡ 0

(mod m).

For a fixed cube depth D encoding some BQEXP QRM, we need to ensure that we can

tune the remaining two free parameters W and H—width and height of the cuboid—to

provide enough space and time for the computation to run and terminate, while at the same

time keeping the error introduced by approximating the QRM head unitary within bounds.

This is captured in the following technical lemma.

Lemma 4. Take a BQEXP promise problem Π. For any precision δ > 0 and instance l ∈ Π,

there exist cube parameters W,H,D = O(exp poly(|l|, log 1/δ)) which allow a verifier ring

machine to be executed on the cube for instance l to within precision δ.

Proof. Let l ∈ Π. A BQEXP witness computation for this instance l of size |l| can be

performed with a QRM with head unitary R ∈ SU((Cd)⊗2) for some d. We require that

the QRM head R contains a description of instance l; this means that d—the size of each

of the two qudits that R acts on—depends on the size of the instance, i.e. d = O(poly |l|).

Denote with t the number of steps the ring machine needs to perform to run the entire

verifier computation.

1. In lemma 2 we show that there exists a specific 2-qubit gate G which is universal for

quantum computation, even when only applied to adjacent qubits.

2. Using S-K and a circuit encoding as described in fig. 4 using gates G and its inverse

G†, approximate the QRM head R with circuit CR to some error ε ≤ δ/t, where δ

is the overall precision which we require for the verifier. Each qudit Cd of the QRM

verifier is encoded in m = dlog2 de qubits. The circuit CR thus acts on (C2)⊗2m, i.e.

m qubits. By [17], approximating an n-qubit unitary to within precision ε requires

O(n24nlogc(n24n/ε)) gates (for some c ≤ 4), if using their gateset; for our purposes

it suffices to know that the number of gates required to approximate R to within

precision ε scales as O(poly(d)× logc(1/ε)).

3. The circuit description is thus of length |CR| = O(poly |l| × logc(1/ε)) and therefore

we have to require that the depth of the cube D = O(exp(|CR|)) = O(exp(poly |l| ×

logc(1/ε))).

16

4. The front sidelength W is increased...

• to make the ring r = W +D large enough for the computation, if it is not already,

and

• to make the ring size an integer multiple of m = dlog2 de.

5. Set H = 2t(W +D).

With ε ≤ δ/t and t = O(exp poly |l|), we further have logc 1/ε ≤ logc(t/δ) = O(poly(|l|, log 1/δ)),

and the claim of the lemma follows.

Remark 5. If we require cube parameters of O(exp poly |l|), we can demand a computation

accuracy of at most δ = Ω(1/ exp poly |l|).

Proof. If we demand the two scaling parameters in lemma 4 to be equal, we have

exp log4 (1/δ) = O(exp poly |l|)

⇔ log4 (1/δ) = O(poly |l|)

⇔ log (1/δ) = O(poly |l|)

⇔ δ = Ω(1/ exp poly |l|).

C. Static Lattice Constraints

1. Lattice Structure

We will work with a face-centered cubic lattice of 4-dimensional qudits. All interactions

will be at most 4-local and translationally-invariant. The system will have open boundary

conditions; in particular, we do not cut off interactions at the boundary or introduce boundary

constraints of any kind. For the sake of clarity, when writing out constraints in the following,

we will usually ignore parts of the sublattice, implicitly assuming that any interaction term is

extended trivially everywhere else. When refering to layer A and if not explicitly mentioned,

we mean the black sublattice, and layer B will be the red sublattice with side-centered

vertices.

Any “static” constraint—i.e. the terms in the following four subsections—will be translated

into local Hamiltonian terms diagonal in the computational basis; see section III C 6 for

details.

17

Position in lattice Alphabet

Layer A (black) 0, 1,I,J

Layer A (green) A,B,C,0

Layer B (red) 0, 1, !,

TABLE II. Alphabets used for different qubits in the lattice. Note that we also use to denote any

state in {0, 1, !}.

2. Constraining the Lattice Bulk

Denoting with a special symbol in the red sublattice, we want to constrain the lattice to

be in this state in the bulk, and in its complement on the topmost red face, as well as the

outermost side faces. We first give a bonus of 1 to spins in the B sublattice in configuration

All red layers but the top one will then be in state . We then give a bonus of 1 to all of the

following configurations:

This leaves the top layer unchanged. Summarizing the bonus terms so far, all other B layers,

as seen from the top, are then in the configuration

2

2

2

5

5

5

5

5

5

5

5

5

5

5

5

2

5

5

5

2

5

5

5

2

5

5

5

2

5

5

5

We then give a global 1-local penalty to with strength -3. The top B layer will thus be in

the complement of (which we denote with), while all the other B layers look like

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

18

3. Binary Counter

The top layer of type B will carry a binary counter tiling, which translates the side length

D into a binary representation on the top front edge. In order to achieve this, we need

to initialize the top back edge of the cube to all 0, and the top right edge to all 1. Since

we do not want to use distinct interactions on the outside layers, but have open boundary

conditions, we have to find a configuration in the pre-constrained cube which only occurs on

the top right and back edge, respectively. The following configuration is such an example:

top B layer
(4)

Since only the top and outer layers have red spins in configuration , this four-local

interaction allows us to pick out the top right boundary of the top layer, and to constrain it

to state 1. A similar interaction allows constraining the top back layer to 0. The top B layer

then looks like

11111111
11111111

11111111
00000000000000000000000000000000

Since this is the only B layer with spins in state , we can use the following tiles from [18] to

get the desired binary counting layer.

00000000
0000000000000000

00000000 11111111
1111111100000000

11111111

11111111
0000000011111111

00000000 00000000
1111111111111111

00000000

It is straightforward to verify that the general tile

aaaaaaaa
bbbbbbbbssssssss

cccccccc

obeys the rules c = carry of a+ b and sum s = a⊕2 b.

19

4. Winding Program Diagonally

We use an interaction similar to eq. (4) to shuffle the program around the cube in a cyclic

fashion, as depicted in fig. 3:

00000000

00000000

and 11111111

11111111

Observe that, by including the red qudit one layer in, this interaction does indeed only

apply to the front right face; similar interactions on the other three faces achieve the desired

program copying around the cube sides. Additionally, by conditioning on if this inner qudit

is either or , we can apply a different rule at the top layer. In particular at the top layer

of the front right face we want to flip the bit when copying down so that there are 1’s on the

top layer but 0’s on the layer below - see fig. 3.

On the corners, we use a similar shape of interaction, i.e.

pi+1pi+1pi+1pi+1pi+1pi+1pi+1pi+1 pipipipipipipipi
pi−1pi−1pi−1pi−1pi−1pi−1pi−1pi−1

pi+1pi+1pi+1pi+1pi+1pi+1pi+1pi+1

pi+2pi+2pi+2pi+2pi+2pi+2pi+2pi+2 pi+1pi+1pi+1pi+1pi+1pi+1pi+1pi+1
pipipipipipipipi

pi−1pi−1pi−1pi−1pi−1pi−1pi−1pi−1

and similarly for all other corners.

Note that in section III D 2, we will need to temporarily replace red program bits with

a special symbol ! indicating that the application of a gate is happening in the next step,

so we exclude this case from the constraints in this section (i.e. we allow either pi and pi,

or pi and ! to appear around the computational corner, and similarly for the diagonal face

constraints bordering the computation edge).

As none of the dynamic transition rules below ever changes the number of head symbols

(of which ! is one), we can rule out the cases where there is more than one ! or other head

symbol present at any one time—we analyse these branching cases in detail in section III E.

20

5. Constraining layer A qudits

We label the states of the green face-centred qubits of the layer A type with the alphabet

{A,B,C, 0}. For all such green lattice qubits we apply a bonus of strength 1/2 to configuration

0, so that this state is preferred.

In order to access two sequential program bits pi and pi+1 with a single three-local

interaction on the computation edge, we add a strength 1 interaction which constrains the

front column of the layer A green sublattice to a state Pi ∈ {A,B,C} depending on the two

neighbouring computation bits, i.e.

PiPiPiPiPiPiPiPi

pi+2pi+2pi+2pi+2pi+2pi+2pi+2pi+2 pi+1pi+1pi+1pi+1pi+1pi+1pi+1pi+1
pipipipipipipipi

pi−1pi−1pi−1pi−1pi−1pi−1pi−1pi−1

Note that this interaction will have no effect anywhere else in the lattice, as at least one of

the two red program bits will be .

The rule which governs what state Pi is constrained to will depend on the tuple pi and

pi+1, and is derived from table III. The idea is that Pi = f(pi, pi+1) will signify what is to

happen at the computation edge. Looking at table III, we see that at each stage we either:

A. Apply a gate (either G or its inverse G†, depending on where the arrow is coming

from),

B. go Backwards (i.e. change the direction of the arrow),

C. or Continue in the same direction.

Given the encoding of table III, we therefore take Pi = f(pi, pi+1) for a function f given by

f(pi, pi+1) =

B if pi+1 = 0,

C if pi = 0 and pi+1 = 1, and

A if pi = pi+1 = 1.

Due to the aforementioned 1/2 bonus which applies at all green spins, the remainder of layer

A is in configuration 0.

21

6. Summary of static constraints

As explained in the main text under “Tiling Construction”, we take all static constraints

listed so far and translate them to diagonal and local projectors hi. This allows us to write a

4-local, translationally-invariant classical Hamiltonian Hstat =
∑

~x

∑
hi

h~x
i (i.e. product and

diagonal in the computational basis of each spin) with a ground space spanned by states

with the following properties.

1. Any black vertex spin in layer A is unconstrained.

2. The red layer B spins will be in a state as depicted in fig. 3, i.e. on the top cuboid face,

they represent a binary counter translating the depth D of the cuboid into a binary

description of D on the top front edge. This binary string s = p1 . . . pT is wound down

diagonally around the cube, which expresses s periodically on the front computation

edge. Only the spins adjacent to this edge are also allowed in a configuration !. In the

bulk of the cube all the way to the bottom-most layer, the red spins are in state .

3. The green layer A is in configuration 0 everywhere but on the front edge; there, the

spins there are in a configuration depending on the two adjacent program bits pi and

pi+1, as outlined above.

This Hamiltonian Hstat is gapped with a size-independent constant gap, and we can rescale

the interactions so far and shift the overall energy to assume that this ground space as

detailed above has energy zero, and any other configuration has energy lower-bounded by 1.

In the next sections, we will explain the history state construction, which—within this

ground space of Hstat—will represent a valid QRM evolution for the circuit represented by

the binary string s.

D. Dynamic Lattice Constraints

The “dynamic” history state transition rules will be translated in a similar fashion to

terms as in eqs. (D1) and (D2). We always depict a transition rule as connected by a squiggly

arrow ; the notation is self-explanatory: the brighter blue shading indicates the original

state, whereas the dull blue shading indicates the target configuration. To give an example,

22

a transition

aaaaaaaa
bbbbbbbb

cccccccc
dddddddd

aaaaaaaa
b′b′b′b′b′b′b′b′

c′c′c′c′c′c′c′c′
dddddddd

would be translated into a two-local term h = |bc〉〈bc|+ |b′c′〉〈b′c′| − |b′c′〉〈bc| − |bc〉〈b′c′|, and

correspondingly with an extra quantum register if b or c were labelling vertices that carry a

qubit (i.e. the black layer A sublattice vertices).

1. Moving Qubits

The black sublattice (A layers) comprises the alphabet {0, 1,I,J}, where we treat the

0, 1-subspace as a qubit, i.e. C2. The right and left arrows are markers to indicate where to

move qubits to. As an example on the front face, we have a left moving sequence

aaaaaaaa
bbbbbbbb cccccccc JJJJJJJJ

xxxxxxxx yyyyyyyy
zzzzzzzz

aaaaaaaa
bbbbbbbb JJJJJJJJ yyyyyyyy

xxxxxxxx cccccccc zzzzzzzz

aaaaaaaa JJJJJJJJ xxxxxxxx yyyyyyyy

bbbbbbbb cccccccc zzzzzzzz

23

and analogously the right moving sequence

IIIIIIII aaaaaaaa
bbbbbbbb cccccccc

xxxxxxxx yyyyyyyy
zzzzzzzz

yyyyyyyy
IIIIIIII

bbbbbbbb cccccccc

xxxxxxxx aaaaaaaa zzzzzzzz
yyyyyyyy

zzzzzzzz IIIIIIII cccccccc

xxxxxxxx aaaaaaaa
bbbbbbbb

To move qubits around a corner, we use an interaction of the form

IIIIIIII aaaaaaaa
bbbbbbbb

cccccccc

xxxxxxxx

yyyyyyyy
zzzzzzzz

yyyyyyyy
I∗I∗I∗I∗I∗I∗I∗I∗

bbbbbbbb

cccccccc

xxxxxxxx
aaaaaaaa

zzzzzzzz

at the back, left and right corners (different rules as described in section III D 2 are used for

the front edge) and similarly for going around the corner in the opposite direction.

A few remarks: first note that all the transitions defined so far are unique, i.e. given

the cube bulk constrained to as done in section III C 2, and for every configuration with

only one arrow symbol (the other cases we will penalize as a last step), there exists precisely

one forward and one backwards transition. Another important point is how to modify the

arrows when going around the circumference of the cube once (marked with a I∗ in the last

transition rule); at the moment, if we left the arrow type unchanged for every corner, we

would not be able to shuffle around the qubits in a circle; on the back face, we would be

doing the opposite shuffling operation. Therefore, we change the arrow type according to the

24

incoming

tape head

program

xn−1xn

operation

on qubits

outgoing

tape head

I 00 1 J

I 01 1 I

I 10 1 J

I 11 G† I

J 00 1 I

J 01 1 J

J 10 1 I

J 11 G J

TABLE III. Program encoding. The arrow symbols I and J—i.e. the heads moving on the

tape—indicate in which direction the ring is moving. Relative to the tape, the current head is

thus moving in the opposite direction. With this encoding, any circuit can be executed with the

available operations, see fig. 4.

following scheme:

JJJJJJJJJJJJJJJJ
JJJJJJJJJJJJJJJJ
JJJJJJJJJJJJJJJJ
JJJJJJJJJJJJJJJJ
JJ

II
IIIIIIIIIIIIIIII
IIIIIIIIIIIIIIII
IIIIIIIIIIIIIIII
IIIIIIIIIIIIIIII

sta
rt

and

IIIIIIIIIIIIIIII
IIIIIIIIIIIIIIII
IIIIIIIIIIIIIIII
IIIIIIIIIIIIIIII
II

JJ
JJJJJJJJJJJJJJJJ
JJJJJJJJJJJJJJJJ
JJJJJJJJJJJJJJJJ
JJJJJJJJJJJJJJJJ

start

25

2. Computation

In order to execute any circuit as in fig. 4, we have eight elementary operations available,

all of which are listed in table III. It is easy to see that there exists a symmetry between the

right- and left-moving arrow; we will thus explain the right-moving arrows (including the

application of gate G) in detail and leave the reverse direction as an exercise to the reader.

a. 1. Consider p1p2 = 00 or 10, so that f(p1, p2) = B. The transition is conditioned

to only happen if the green qubit in the layer A sublattice is in the B state. Move ?’ up,

b to the right and flip the arrow. This corresponds to simply reverting the direction as in

table III.

BBBBBBBB
p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 00000000 00000000

pnpnpnpnpnpnpnpn
pn−1pn−1pn−1pn−1pn−1pn−1pn−1pn−1

p5p5p5p5p5p5p5p5 p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 00000000
00000000

pnpnpnpnpnpnpnpn

???????? ???????? IIIIIIII ????????
????????

????????
????????

yyyyyyyy zzzzzzzz aaaaaaaa bbbbbbbb
?’?’?’?’?’?’?’?’

cccccccc
????????

???????? ???????? ???????? ????????
????????

????????
????????

BBBBBBBB
p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 00000000 00000000

pnpnpnpnpnpnpnpn
pn−1pn−1pn−1pn−1pn−1pn−1pn−1pn−1

p5p5p5p5p5p5p5p5 p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 00000000
00000000

pnpnpnpnpnpnpnpn

???????? ???????? ?’?’?’?’?’?’?’?’ ????????
????????

????????
????????

yyyyyyyy zzzzzzzz aaaaaaaa JJJJJJJJ
bbbbbbbb

cccccccc
????????

???????? ???????? ???????? ????????
????????

????????
????????

b. 2. Consider p1p2 = 01 so that f(p1, p2) = C. We perform the same action as above,

but keep the arrow direction.

CCCCCCCC
p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 11111111 00000000

pnpnpnpnpnpnpnpn
pn−1pn−1pn−1pn−1pn−1pn−1pn−1pn−1

p5p5p5p5p5p5p5p5 p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 11111111
00000000

pnpnpnpnpnpnpnpn

???????? ???????? IIIIIIII ????????
????????

????????
????????

yyyyyyyy zzzzzzzz aaaaaaaa bbbbbbbb
?’?’?’?’?’?’?’?’

cccccccc
????????

???????? ???????? ???????? ????????
????????

????????
????????

CCCCCCCC
p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 11111111 00000000

pnpnpnpnpnpnpnpn
pn−1pn−1pn−1pn−1pn−1pn−1pn−1pn−1

p5p5p5p5p5p5p5p5 p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 11111111
00000000

pnpnpnpnpnpnpnpn

???????? ???????? ?’?’?’?’?’?’?’?’ ????????
????????

????????
????????

yyyyyyyy zzzzzzzz aaaaaaaa IIIIIIII
bbbbbbbb

cccccccc
????????

???????? ???????? ???????? ????????
????????

????????
????????

c. 3. Consider p1p2 = 11 so that f(p1, p2) = A. We want to execute a gate, which

requires one intermediate step. We place the computation marker on the right hand side of

26

the computation edge. This signals that the next step is to perform a gate G on a and b.

Here |a′〉 |b′〉 := G |a〉 |b〉. The program is restored and the arrow left in the right moving

configuration, as required by table III.

AAAAAAAA
p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 11111111 11111111

pnpnpnpnpnpnpnpn
pn−1pn−1pn−1pn−1pn−1pn−1pn−1pn−1

p5p5p5p5p5p5p5p5 p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 11111111
11111111

pnpnpnpnpnpnpnpn

???????? ???????? IIIIIIII ????????
????????

????????
????????

yyyyyyyy zzzzzzzz aaaaaaaa bbbbbbbb
?’?’?’?’?’?’?’?’

cccccccc
????????

???????? ???????? ???????? ????????
????????

????????
????????

AAAAAAAA
pn−1pn−1pn−1pn−1pn−1pn−1pn−1pn−1 pnpnpnpnpnpnpnpn 11111111 !!!!!!!!

p3p3p3p3p3p3p3p3

p4p4p4p4p4p4p4p4

pn−2pn−2pn−2pn−2pn−2pn−2pn−2pn−2 pn−1pn−1pn−1pn−1pn−1pn−1pn−1pn−1 pnpnpnpnpnpnpnpn 11111111
11111111

p3p3p3p3p3p3p3p3

???????? ???????? ?’?’?’?’?’?’?’?’ ????????
????????

????????
????????

yyyyyyyy zzzzzzzz aaaaaaaa bbbbbbbb
11111111

cccccccc
????????

???????? ???????? ???????? ????????
????????

????????
????????

AAAAAAAA
p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 11111111 11111111

pnpnpnpnpnpnpnpn
pn−1pn−1pn−1pn−1pn−1pn−1pn−1pn−1

p5p5p5p5p5p5p5p5 p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 11111111
11111111

pnpnpnpnpnpnpnpn

???????? ???????? ?’?’?’?’?’?’?’?’ ????????
????????

????????
????????

yyyyyyyy zzzzzzzz a’a’a’a’a’a’a’a’ IIIIIIII
b’b’b’b’b’b’b’b’

cccccccc
????????

???????? ???????? ???????? ????????
????????

????????
????????

We now move the arrow once around the tape and then arrive at the computational corner

from the other side. Observe—as mentioned—that the encoding in table III is mirror-

symmetric, so by reversing all the rules above one can implement the same rules—while

applying G−1 instead of G when Pi = A for an arrow incoming from the right.

3. Computational Input and Output Constraints

Since the instance is specified within the QRM head, it suffices to provide the computation

with a single ancilla |0〉 as input; in case we need more ancillas than available on the front

edge, we can augment our verifier as in [8, fig. 4]. Due to the configuration of the red layer

B sublattice, it is straightforward to find a local configuration which only ever appears on a

top right corner; more specifically, we utilize the constraint interaction

27

to enforce that the black symbol is either in an arrow configuration, or 0, respectively. The

rest of the tape is left unconstrained.

Since there is nothing special about the bottom-most layers A and B, we need to use a

pair of interactions to enforce the last black qubit to an accepting state. This can be readily

achieved using

constraining the black qubit to state |0〉, and

giving a bonus to the complement configuration. Everywhere but on the bottom-most layer,

the two penalties precisely cancel; however, on the last layer, only the projection onto |0〉

survives, which thus acts as output penalty once the computation is terminated.

4. Multiple Heads Penalty

Since we only want to allow precisely one head on the computational layer, we will penalize

any configuration where two heads are next to each other. This finishes our construction.

E. Analysis of History State Branching

In this section, we want to analyse all transition rules and show that the parts where

they are ambiguous do not break the evolution of the computation. First note that all

constraints in section III C are static, i.e. there are no possibilities for any ambiguities in

the configuration. We will call configurations that obey all those static constraints and have

precisely one head symbol on the computational layer—i.e. exactly one of I, J or !—valid

configurations.

28

We will go through each dynamic penalty in section III D separately.

1. In section III D 1, the transition rules for the faces are unambiguous, since they depend

on the red symbol to be in a configuration .

2. The rules for moving around a corner, however, can happen on a face: in this case,

the arrow symbol is moved one layer into the bulk. Observe though that none of the

movement transitions can apply to the arrow when it is inside of the bulk (apart from

moving it back out with a reverse transition), so the computation branches, but the

leg does not proceed: we obtain an evolution of the form

|ψ1〉

|ψ′1〉

|ψ2〉

|ψ′2〉

|ψ3〉

|ψ′3〉

|ψ4〉

|ψ′4〉

where all the primed states are redundant, but at most enlarge the overall evolution by

a factor of 2.

3. In section III D 2, the computation transitions are unambiguous; observe in particular

that there is no transition rule that simply copies the arrow around the computation

edge (by construction, see section III D 1).

4. Finally, the input and output constraints are static again.

This allows us to formulate the following two branching lemmas.

Lemma 6. Any valid history state for the given transition rules is of size O(poly(W,D,H)),

where W , D and H are the cuboid’s width, height and depth.

Proof. Follows by construction; the head can perform at most O(H × (W + D)) unique

transitions.

Lemma 7. In case there is more than one head symbol (i.e. !, I or J) present, the minimal

valid evolution splits up into poly-sized slices, each of which carries at least one penalty from

two directly adjacent heads.

Proof. The argument is the same as in [8]. One can keep all but one of the head symbols

fixed; the one left free to move is necessarily meeting another head symbol within poly many

steps.

29

IV. QMA-HARDNESS PROOF OF THEOREM 1

In this section, we provide a rigorous proof of theorem 1. Using statical constraints

and dynamic rules as in eqs. (D1) and (D2), we translate the transition rules defined in

section III B into a Hamiltonian Hprop, which is geometrically 4-local by construction.

We want to point out that the Hilbert space structure of this lattice Hamiltonian Hprop is

not a product space between clock and computation space Hclock⊗Hcomp, which would result

in a ground state of the standard history state form
∑

t |t〉 |ψt〉. The reason for this is that

depending on which sub-lattice a spin sits on, its local Hilbert space Hloc = C4 decomposes

differently. The red and green spins can be regarded as being completely in the clock space,

as all transition rules which act on them are completely classical, i.e. they never move any

of the red and green spins out of a computational basis state. The black spins, however,

decomposes into a direct sum Hclock ⊕ C2, the latter space carrying a qubit, and the clock

part being reserved for the two arrow symbols J and I, which are part of the clock.

In order to analyse the spectrum, we note that there exists an isometric transformation

between our Hamiltonian and Hilbert space, and one which respects the product space

structure, which in particular will allow us to regard the Hamiltonian as a ULG Laplacian

and apply lemma 20. Let us be precise at this point, and use the recently-developed Quantum

Thue System terminology defined in [8, sec. 6]. With this new machinery, we can state the

following lemma.

Lemma 8. The transition rules in section III B define a Quantum Thue System, and the

induced ULG is simple.

Proof. Verifying that the rules define a Quantum Thue System is straightforward by a simple

re-ordering of the spins. Simplicity of the corresponding unitary labelled graph follows from

lemma 6; we refer the interested reader to [8, def. 51, lem. 52 and 53].

Without further ado, we now proceed to the proof of theorem 1, which we re-state here in a

rigorous, but concise fashion.

Theorem 9. (4, 4)-TILH-3D is QMAEXP-complete.

Proof. Containment in QMAEXP is straightforward, cf. [8]. To show that the Hamiltonian

instances of the cube construction define a QMAEXP-hard family, we will employ techniques

proven there which should simplify the analysis.

30

Let Π = (ΠYES,ΠNO) be a QMAEXP promise problem, as in definition 13. By lemma 4, we

know that we can pick a constant error threshold δ > 0 such that for any instance l ∈ Π

there exists a cube which allows a verifier circuit for this instance to be executed on the

sides. Since we will require probability amplification later on in the proof (remark 12), we

set δ = f(|l|) for some function f to be specified later, and also assume that the original

verifier’s acceptance probability is εl ≤ f(|l|).

We translate all static and dynamic penalties into a Hamiltonian as explained in eq. (D1),

and denote the corresponding Hamiltonian operator with

H = P + Hprop = Pin + Pout + Pstatic + Pheads + Hprop,

where Pstatic comprises all static constraints for the cube (cube structure, binary counter

and winding of program), Pheads penalizes any two head symbols next to each other, and

such that Pin/out represent the input and output penalties, respectively. We further assume

Pstatic is shifted to be positive semi-definite, i.e. such that the ground states described in

section III C span the kernel of Pstatic. Note that this is always possible using 1-local terms,

since—as mentioned in the introduction, see eq. (1)—we do allow the local terms to depend

on the lattice size.

a. Soundness. We first regard the case when l ∈ ΠYES. Denote with |Ψl〉 the valid

history state, i.e. the unique uniform superposition ground state of Hprop started out in a

valid initial configuration with a single left-moving head in the top left row, and such that

no initial or static penalty is violated. Then

〈Ψl|H |Ψl〉 = 〈Ψl|Pin |Ψl〉 = 0 (i)

+ 〈Ψl|Pout |Ψl〉

+ 〈Ψl|Pstatic |Ψl〉 = 0 (ii)

+ 〈Ψl|Pheads |Ψl〉 = 0 (iii)

+ 〈Ψl|Hprop |Ψt〉 = 0 (iv).

Term (i) is zero because |Ψl〉 satisfies all input constraints, (ii) because |Ψl〉 is a valid history

state, (iii) because |Ψl〉 has precisely one active head symbol, and (iv) since |Ψl〉 is a ground

state of Hprop.

What remains to be analysed is the output penalty 〈Ψl|Pout |Ψl〉. If we write |Ψl〉 =

1√
T

∑
t∈T |t〉 |ψt〉 where T is the normalization constant for the history state (i.e. the number

31

of unique vertices in the ULG evolution represented by |Ψl〉), which we know by lemma 6

to be T = O(poly(W,D,H))—i.e. the number of computational steps taken, including

branching, cannot be larger than a polynomial in the cube width, depth and height. Then

〈Ψl|Pout |Ψl〉 =
1

T

(∑
t,t′∈T

〈t| 〈ψt| |T 〉〈T | ⊗ Πout |t′〉 |ψt′〉

)

=
1

T
〈ψT |Πout |ψT 〉

=
1

T
P(circuit rejects)

≤ 1

T
(εl + δ)

=
2f(|l|)
T

. (5)

b. Completeness. If l 6∈ ΠYES, we have to show that for any |ψ〉, 〈ψ|H |ψ〉 is bounded

away from the YES-case by a 1/ poly gap. If any static constraint is violated, we can

immediately bound H ≥ 1. So we can assume that the state |ψ〉 is in a valid configuration.

Note that the number of head symbols I, J or ! is always preserved for any transition

rule. This means that Hprop—and therefore also H—is block-diagonal in the static cube

configuration and the number of head symbols on the computational layer, we can regard

each case separately.

1. In case of multiple head symbols we first observe that each head necessarily sweeps

the entire surface of the cube. In particular, we know that if there are multiple head

symbols, moving any one of them for poly many steps along the surface will necessarily

place two heads next to each other, which is a configuration we can penalize; what

remains to be checked is that this induced penalty is large enough to lower-bound the

spectrum of H, i.e. of order Ω(1/ poly(W,H,D)).

More formally, the argument goes as follows. We first pick an arbitrary head symbol

on the surface. Now define H′prop to be Hprop with any transition terms for the other

heads removed. Since any transition rule as in eq. (D2) is itself positive semi-definite,

this necessarily means Hprop ≥ H′prop (spectrum wise, by which we mean Hprop−H′prop

is psd itself). Note that this new operator H′prop is certainly non-local: the removed

rules are global rules, as they depend on the entire state of the cube. As an example,

consider the case of two heads, where we arbitrarily picked the first head for this

32

argument. The rules we remove are the ones where the first head is on any position on

the cube, but the second one moves. This long-range condition cannot be expressed

as a geometrically local rule, as the two head symbols can be spaced very far apart.

However, since here we only need H′prop to lower-bound the spectrum of Hprop locality

does not matter for the sake of this argument.

The head symbol which we chose and for which there are transition rules present in

H′prop will then encounter another head in at most poly(W,H,D) many steps—it cannot

possibly take longer than visiting the entire surface of the cuboid, see lemma 7. At that

point, it will pick up a penalty. Utilizing our variant of Kitaev’s lemma (lemma 20),

we conclude

H = Pin/out + Pstatic + Pheads + Hprop

≥ Pheads + H′prop

≥ Ω(1/ poly(W,H,D)).

We thus need to set f in eq. (5) to a function which allows a polynomial separation (in

the system size) between YES and NO instance; by remark 5, this is always possible.

2. The same argument lets us bound

H ≥ Pin/out + Hprop = Ω(1/ poly(W,H,D))

in case of a single head valid history state since l is a NO-instance.

3. What remains to be analysed is the zero head case. There are two standard approaches:

we can either increase the number of symbols on the computational layer, such that on

one side of a head—i.e. behind it in direction of the computation—we take one kind of

symbols, and on the other side we take the other set; constructions like this can be

constrained by a regular expression (without repetition of symbols, cf. [13, lem. 5.2])

and thus penalized with local terms.

Since our benchmark tries to reduce the local dimension of the system, we instead add

a bonus term B to the Hamiltonian H, and such that B |ψ〉 = −g(|l|)× h |ψ〉 where

h is the number of head symbols for any basis state |ψ〉 of H, and g is a function

chosen such that there is again a 1/ poly separation between the zero head state and

33

the ground state for YES-instances, but such that multiple head configurations stay

bounded away from 0. It is clear that B can be implemented by a 1-local term of the

form −g(|l|) |head〉〈head|.

To be more precise and to determine how quickly g has to grow, assume that the

construction up to now satisfies λmin ≤ 1/A for the YES case, and λmin ≥ 1/B in the NO

case (excluding zero heads), where B = O(poly(W,H,D)), and A ≥ 4B ×W ×H ×D.

Choose g = 2/A; since there can be at most W ×H ×D heads on the cuboid’s faces,

we obtain the bounds

λmin ≤ 1/A− 2/A = −1/A

if l ∈ ΠYES, and otherwise, for at least one head,

λmin ≥ 1/B − 4(W ×H ×D)/A ≥ 1/B − 1/B ≥ 0.

Finally, the zero head case can be trivially lower-bounded by H ≥ 0.

We have thus shown a promise gap of 1/ poly in the system size: for l ∈ ΠYES, H ≤

−Ω(1/ poly(W,H,D)), and H ≥ 0 otherwise. The claim of theorem 1 follows.

V. CONCLUSION

The quest for ever-more physically realistic families of QMA hard local Hamiltonians has

arguably led us to increasingly contrived constructions. The increase in complexity necessary

when going from non-translationally-invariant constructions to translational invariance is

striking [13], and the same holds true for the effort to bring the local dimension back within

reasonable range [8]. On the other hand, almost always some fundamental new piece of

machinery had to be developed, advancing our knowledge about circuit Hamiltonians: such

as allowing branching to happen in the computational path, or using easier-to-implement

computational models (Quantum Ring Machines), of independent interest e.g. in the context

of adiabatic quantum computation ([19]).

In our case, we combine our construction with Wang tiles, which to our knowledge have

not ever been used for this purpose. This “outsourcing” of part of the computation to

a classical constraint satisfaction problem saves a significant amount of overhead for the

34

control machinery surrounding the actual quantum verification procedure. Furthermore, the

single universal quantum gate could be of independent interest in other applications, as it is

reasonable to imagine a physical set-up where gates can only be applied to adjacent qubits

in a circuit.

In fact, our 3D construction showcases that the embedded computation need not be highly

obscure, and can, in contrast, even be quite elegant, as is evident by the much lower required

local dimension and the therefore much smaller number of possible interactions necessary.

By moving beyond simple spatial lattices, we can show that such structures support the

emergence of more complex behaviour, despite the intrinsic symmetry of the crystal lattices

we employ. By making use of these novel features, we are able to reduce the local dimension

by two orders of magnitude as compared to the best result known to date.

We suggest three concrete open problems.

1. While our cube crystal structure is three-dimensional, we do not exploit its bulk

structure beyond making use of its different sides. But there are small universal

machines in higher dimensions (e.g. 2D or 3D Turing machines, Turmites, or cellular

automata) which might be of use for improving this result further. This also leaves

open the question of the required local dimension necessary for any 2D construction.

2. The history state construction we employ still relies on a single moving “head” state.

More recent results (cf. [20]) utilize a propagating wave-front-like clock construction in

2D. A more general open question is of course whether there is any other construction,

different from Feynman’s circuit-to-Hamiltonian one, which would allow one to prove

a QMA-hardness result for the local Hamiltonian problem (as studied e.g. in [21]).

Including classical computation parts with Wang tiles is one step, but are there other,

fundamentally different sets of local interactions even suitable to encode parts of a

quantum computation?

3. A bottom-up approach proving a lower bound on the local dimension (or locality)

of the interactions would be an alternative route to new insights into the local

Hamiltonian problem. We want to emphasize that there is not much space left

for any optimization: as mentioned in the introduction, our construction allows each

coupling to have ≈ 104 free parameters; by the same benchmark, physically realistic

spin lattices found in nature allow somewhere around (3× 3)2 ≈ 80 different couplings.

35

Recent results show that e.g. 1D gapped Hamiltonian ground states can be approximated

efficiently (i.e. in randomized poly-time, cf. [10]), but since history state constructions

have a spectral gap that closes inverse-polynomially with the runtime of the encoded

computation, a lower bound on the required local dimension remains open.

ACKNOWLEDGMENTS

We are very grateful for discussions with Māris Ozols, who contributed lemma 2. J. B.

acknowledges support from the German National Academic Foundation and the EPSRC

(grant no. 1600123). S. P. was supported by the EPSRC.

Appendix A: Quantum Complexity Classes

In order to rigorously define the complexity classes BQEXP and QMAEXP, we need to

understand the notion of a uniform circuit family. Following and referring the reader to

[22, 23] for terminology, we give the following definition.

Definition 10 (Uniform family of quantum circuits). Let f : N→ N be a function. A family

of quantum circuits (Cn)n∈N is called f -uniform if

i. each Cn acts on n qubits and has a distinct output qubit,

ii. each Cn requires at most f(n) additional ancillas |0〉,

iii. each Cn is composed of at most f(n) gates from some universal gate set and

iv. there exists a classical Turing Machine which, on input 1n produces a description of Cn

in fewer than f(n) steps.

A promise problem is a pair of disjoint sets (ΠYES,ΠNO), corresponding to input strings

for YES and NO instances of a set of problem instances Π = ΠYES ∪ ΠNO ⊆ {0, 1}∗. We are

interested in the quantum generalization of EXPTIME and NEXP—P and NP with exponential

runtime.

Definition 11 (BQEXP). A promise problem (ΠYES,ΠNO) is in the complexity class BQEXP,

bounded-error quantum exp-time, if there exists an exp-uniform family of quantum circuits

36

(Cn)n∈N such that

Pr(Cn(s) = YES) ≥ 2

3
for s ∈ ΠYES,

and

Pr(Cn(s) = YES) ≤ 1

3
for s ∈ ΠNO,

where Cn(s) denotes the distribution obtained from executing Cn on input s ∈ Π of size

n = |s| and measuring the output qubit.

Remark 12. It is a well-known fact—see [23, prop. 3]—that one can amplify the accept and

reject probability of 2/3 to any 1− 2−p(n) for any fixed polynomial p.

QMAEXP is then the class of promise problems, for which any YES or NO answer can be

verified with a BQEXP verifier.

Definition 13 (QMAEXP). A promise problem (ΠYES,ΠNO) is in QMAEXP, quantum Merlin-

Arthur, if there exists an exp-uniform family of quantum circuits, called verifier, each of

which with an exp-sized witness as input, such that for l ∈ ΠYES there exists a witness such

that the verifier accepts with probability at least 2/3, and for l ∈ ΠNO, the verifier accepts

with probability at most 1/3, for any witness.

The last two conditions on accepting YES and rejecting NO instances is also known as

completeness and soundness, respectively. Probability amplification can be directly translated

from their BQEXP counterparts, see remark 12.

Appendix B: The Local Hamiltonian Problem

We regard Hermitian operators acting on a multipartite Hilbert space H = (Cd)⊗n, i.e.

on n qudits, each of local dimension d. We label subsystems of H by an ordered tuple

A ⊆ {1, . . . , n}. For a k-qudit Hamiltonian h for some k ≤ n and some subset A, we

denote with hA the operator that acts as h on all qudits labelled by A, and as identity—1—

everywhere else.

Definition 14. A Hermitian operator H on Hilbert space H = (C2)⊗n is called k-local if

H =
∑

i hi, where we require that there exists a family of subsystems (Ai)i of H such that

|Ai| ≤ k ∀k, and hi = (h′i)Ai
∀i.

37

If the Hilbert space H is translationally-invariant—e.g. a lattice H⊗Λ—then we say that

a Hamiltonian on this space exhibits translational invariance if it follows the same symmetry,

i.e. that the interactions between equivalent lattice sides are identical. This allows us to

define the following variant of the local Hamiltonian problem, where we follow the naming

convention in [13], i.e. we abbreviate translationally invariant local Hamiltonian as TILH.

Definition 15 ((k, d)-TILH-3D). Let Λ(L,M,N) be a 3D lattice of side lengths L,M and

N , all ≤ n, with not necessarily trivial unit cell (e.g. cF, cI). Let H =
∑

i,j,k hi,j,k be a 3D

translationally-invariant and geometrically k-local Hamiltonian on the lattice qudits (Cd)Λ.

Input.: Specification of the lattice size L,M,N , and the matrix entries of h, up to O(poly n)

bits of precision.

Promise.: The operator norm of each local term is bounded, ‖h‖ ≤ poly n and either

λmin(H) ≤ α or λmin(H) ≥ β, where λmin(H) denotes the smallest eigenvalue of H and

β − α ≤ 1/p(n) for some polynomial p(n).

Output.: YES if λmin(H) ≤ α, otherwise NO.

Appendix C: Ring Machines

Instead of working with quantum circuits or Turing Machines directly, we will work with

a computational model known as Quantum Ring Machine.

Definition 16 (Quantum Ring Machine). A Quantum Ring Machine—QRM for short—is a

tuple (U, n |qi〉 ,Hf) of a unitary operator acting on a pair of qudits (Cd)⊗2, and some n ∈ N.

n ∈ N specifies the number of qudits on the ring H := (Cd)⊗n. Starting out from the initial

configuration |qi〉 ∈ H⊗n, we cyclicly apply the unitary U to two adjacent ring sites until the

reduced density matrix on one qudit is completely supported in a halting subspace Hf (Cd;

before that, the overlap of any qudit with Hf is zero.

QRMs have the distinct advantage of being simple to specify locally—like circuits, but

unlike Turing Machines—whilst maintaining a straightforward evolution—in contrast to

circuits, which can have a very complex global structure. The similarity between QRMs

and TMs is deliberate, as it allows to extend the notions of halting or runtime in a very

straightforward manner. A family of QRMs (U, n)n∈I—labelled by some index set I ⊂ N—is

38

called exp-time terminating if it halts on any possible input specified on the tape, and if the

number of rounds the unitary U makes on the tape is upper-bounded by some function f(n)

for all n ∈ I, where f(n) = O(expn). Similar to halting, we specify accepting and rejecting

configurations as special subspaces of H.

If we want to perform a verifier computation with the QRM, we simply leave part of the

tape unconstrained as a witness, however much is required by the verification. Central to

this work is the following lemma, see [8, cor. 34].

Lemma 17. Let (ΠYES,ΠNO) be a BQEXP promise problem. Then there exists an exp-time

terminating family of QRMs (Ms)s such that for l ∈ ΠYES, there exists a witness w, such

that the QRM M|l|(l, w) accepts with probability at least 2/3. Analogously, NO instances are

accepted with probability at most 1/3.

Appendix D: Kitaev’s History State Constructions with Branching

By embedding a BQEXP-complete QRM into a local Hamiltonian, which allows the

execution of a QMAEXP verifier circuit, we want to construct a family of QMAEXP-hard

(k, d)-TILH-3D instances. Using i as a multiindex to sum over all 3D lattice sides of Λ, the

Hermitian operators that we regard can be written in the form

H = P + T =
∑
i

pi +
∑
i

ti, (D1)

where the local terms in P are diagonal projectors in the computational basis—i.e. classical—

and the terms in T are so-called transition rules. Any transition rule always takes the

form

t =
∑
|e〉

(|a〉 ⊗ |e〉 − |b〉 ⊗U |e〉)(〈a| ⊗ 〈e| − 〈b| ⊗ 〈e|U†) (D2)

≡ (|a〉〈a|+ |b〉〈b|)⊗ 1− |a〉〈b| ⊗U− |b〉〈a| ⊗U†, (D3)

where |a〉 , |b〉 are basis vectors in some subspace Hc—which we call classical—and the |e〉

label a basis of some different—quantum—subspace Hq. U ∈ SU(Hq) is a unitary operator

on this quantum subspace. An operator T made up of such transition rules can be thought

of a generalized Laplacian for a simple graph with unitary edge labels, formally defined as

follows.

39

Definition 18. A unitary labeled graph (ULG) is an undirected graph G = (V,E), a Hilbert

space Hv for each graph vertex v ∈ V and a function g : E −→
⋃

v B(Hv), assigning a unitary

operator to each edge e ∈ E, where g(e) ∈ B(Ha) if e = (a, b).

In particular, the Hilbert spaces attached to two vertices are necessarily isomorphic if

the vertices are connected. The associated Hamiltonian is then simply defined as a sum of

transition rules of the form eq. (D2) for each edge of the graph. We refer the reader to [8,

ch. 5] for details and a simple example.

If the product of unitaries along any loop within the graph is the identity operator—where

we flip U to U† in case we march against an edge direction—we call the ULG simple. A

simple ULG has the following important property.

Lemma 19. The associated Hamiltonian of a simple and connected ULG is unitarily equiva-

lent to copies of the underlying graph’s Laplacian ∆, i.e. there exists a unitary W such that

WHW† = ∆⊗ 1n, where n = dimHq.

Proof. Cf. [8, lem. 41].

Note that this extends to non-connected ULGs in a straightforward manner, as the

associated Hamiltonian is block-diagonal in the connected graph components. With this,

we can formulate a variant of Kitaev’s geometrical lemma, which allows us to analyse the

spectra of the Hamiltonians we construct.

Lemma 20. Take a history state Hamiltonian of the form eq. (D1), where T is the associated

Hamiltonian of some simple connected ULG with Hilbert space Hq for all vertices v ∈ V.

We require that P =
∑

p∈P Πp ⊗ Πp,q, where Πp is a projector on some vertex p ∈ P ⊆ V,

and the Πp,q are projectors on subspaces of Hq. Then λmin(H) = µΩ(1/|V|3), where µ =

min{λmin(Πpi,qUijΠpj ,q) : pi, pj ∈ P} and Uij is the product of unitaries of a path connecting

vertices pi and pj.

Proof. Cf. [8, lem. 44].

[1] A. Y. Kitaev, A. Shen, and M. N. Vyalyi, in Quantum Information (Springer New York, New

York, NY, 2002) pp. 203–217.

40

http://dx.doi.org/10.1007/978-0-387-36944-0_13

[2] J. Kempe, A. Y. Kitaev, and O. Regev, SIAM Journal on Computing 35, 1070 (2006),

arXiv:0406180 [quant-ph].

[3] R. I. Oliveira and B. M. Terhal, Quantum Information & Computation , 1 (2005), arXiv:0504050

[quant-ph].

[4] D. Aharonov, D. Gottesman, S. Irani, and J. Kempe, Communications in Mathematical

Physics 287, 41 (2009), arXiv:0705.4077.

[5] S. Bravyi (2011) pp. 33–48, arXiv:0602108 [quant-ph].

[6] N. Schuch, (2011), arXiv:1105.2843.

[7] S. Hallgren, D. Nagaj, and S. Narayanaswami, Quantum Information and Computation 13,

28 (2013), arXiv:1312.1469.

[8] J. Bausch, T. Cubitt, and M. Ozols, arXiv:1605.01718 , 52 (2016), arXiv:1605.01718.

[9] T. Cubitt and A. Montanaro, , 51 (2013), arXiv:1311.3161.

[10] Z. Landau, U. Vazirani, and T. Vidick, Nature Physics 11, 566 (2015), arXiv:1307.5143.

[11] D. Nagaj and P. Wocjan, Physical Review A 78, 032311 (2008).

[12] J. Chen, X. Chen, R. Duan, Z. Ji, and B. Zeng, Physical Review A 83, 050301 (2011),

arXiv:1004.3787.

[13] D. Gottesman and S. Irani, Theory of Computing 9, 31 (2013), arXiv:0905.2419.

[14] J. Bausch, T. Cubitt, A. Lucia, D. Perez-Garcia, and M. M. Wolf, arXiv:1512.05687 , 10

(2016), arXiv:1512.05687.

[15] M. Ozols, Private communication.

[16] A. M. Childs, D. Leung, L. Mančinska, and M. Ozols, (2010), arXiv:1004.1645.

[17] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge

University Press, Cambridge, 2010) p. 676.

[18] M. J. Patitz, Natural Computing 13, 195 (2014).

[19] T.-C. Wei and J. C. Liang, Physical Review A 92, 062334 (2015), arXiv:1512.06775.

[20] N. P. Breuckmann and B. M. Terhal, (2013), 10.1088/1751-8113/47/19/195304,

arXiv:1311.6101.

[21] J. Bausch and E. Crosson, (2016), arXiv:1609.08571.

[22] E. Bernstein and U. Vazirani, SIAM Journal on Computing 26, 1411 (1997).

[23] J. Watrous, in Computational Complexity , edited by R. A. Meyers (Springer New York, New

York, NY, 2012) pp. 2361–2387, arXiv:0804.3401.

41

http://dx.doi.org/10.1137/S0097539704445226
http://arxiv.org/abs/0406180
http://dl.acm.org/citation.cfm?id=2016987 http://arxiv.org/abs/quant-ph/0504050
http://arxiv.org/abs/0504050
http://arxiv.org/abs/0504050
http://dx.doi.org/ 10.1007/s00220-008-0710-3
http://dx.doi.org/ 10.1007/s00220-008-0710-3
http://arxiv.org/abs/0705.4077
http://arxiv.org/abs/0602108
http://arxiv.org/abs/1105.2843
http://arxiv.org/abs/1105.2843
http://www.rintonpress.com/xxqic13/qic-13-910/0721-0750.pdf http://dl.acm.org/citation.cfm?id=2535681 http://arxiv.org/abs/1312.1469
http://www.rintonpress.com/xxqic13/qic-13-910/0721-0750.pdf http://dl.acm.org/citation.cfm?id=2535681 http://arxiv.org/abs/1312.1469
http://arxiv.org/abs/1312.1469
http://arxiv.org/abs/1605.01718
http://arxiv.org/abs/1605.01718
http://arxiv.org/abs/1311.3161
http://arxiv.org/abs/1311.3161
http://dx.doi.org/10.1038/nphys3345
http://arxiv.org/abs/1307.5143
http://dx.doi.org/10.1103/PhysRevA.78.032311
http://dx.doi.org/ 10.1103/PhysRevA.83.050301
http://arxiv.org/abs/1004.3787
http://dx.doi.org/10.4086/toc.2013.v009a002
http://arxiv.org/abs/0905.2419
http://arxiv.org/abs/1512.05687
http://arxiv.org/abs/1512.05687
http://arxiv.org/abs/1512.05687
http://arxiv.org/abs/1004.1645
http://arxiv.org/abs/1004.1645
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1007/s11047-013-9379-4
http://dx.doi.org/10.1103/PhysRevA.92.062334
http://arxiv.org/abs/1512.06775
http://dx.doi.org/10.1088/1751-8113/47/19/195304
http://arxiv.org/abs/1311.6101
http://arxiv.org/abs/1609.08571
http://arxiv.org/abs/1609.08571
http://dx.doi.org/10.1137/S0097539796300921
http://dx.doi.org/10.1007/978-1-4614-1800-9_147
http://arxiv.org/abs/0804.3401

	The complexity of translationally-invariant low-dimensional spin lattices in 3D
	Abstract
	Background and Motivation
	Main Result
	History State Construction
	Tiling Construction
	Hard Instances for the Local Hamiltonian Problem

	Proof Techniques
	Single Gate Universality
	Circuit Encoding
	Static Lattice Constraints
	Lattice Structure
	Constraining the Lattice Bulk
	Binary Counter
	Winding Program Diagonally
	Constraining layer A qudits
	Summary of static constraints

	Dynamic Lattice Constraints
	Moving Qubits
	Computation
	Computational Input and Output Constraints
	Multiple Heads Penalty

	Analysis of History State Branching

	QMA-Hardness Proof of Theorem 1
	Conclusion
	Acknowledgments
	Quantum Complexity Classes
	The Local Hamiltonian Problem
	Ring Machines
	Kitaev's History State Constructions with Branching
	References

