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Abstract

This thesis is divided into two parts. The first part concerns the study of the ambitwistor

string and the scattering equations, while the second concerns the interplay of the sym-

metries of the asymptotic null boundary of Minkowski space, called I , and scattering

amplitudes.

The first part begins with a review of the CHY formulas for scattering amplitudes, the

scattering equations and the ambitwistor string including its pure spinor version. Next are

the results of this thesis concerning these topics, they are: generalizing the ambitwistor

model to higher genus surfaces; calculating the one-loop NS-NS scattering amplitudes

and studying their modular and factorization properties; deriving the one-loop scattering

equations and analyzing their factorization; showing that, in the case of the four graviton

amplitude, the ambitwistor amplitude gives the expected kinematical prefactor; matching

this amplitude to the field theory expectation in a particular kinematical regime; solving

the one loop scattering equations in this kinematical regime; a conjecture for the IR

behaviour of the one-loop ambitwistor integrand; computing the four graviton, two-loop

amplitude using pure spinors; showing that this two-loop amplitude has the correct

kinematical prefactor and factorizes as expected for a field theory amplitude; generalizing

the ambitwistor string to curved backgrounds; obtaining the field equations for type

II supergravity as anomaly cancellation on the worldsheet; generalizing the scattering

equations for curved backgrounds.

The second part begins with a review of the definition of the null asymptotic boundary

of four dimensional Minkowski space, its symmetry algebra, and their relation to soft

particles in the S-matrix. Next are the results of this thesis concerning these topics, they

are: constructing two models consisting of maps from a worldsheet to I , one containing

the spectrum of N = 8 supergravity, and the other the spectrum of N = 4 super Yang-

Mills; showing how certain correlators in these theories calculate the tree-level S-matrix

of N = 8 sugra and N = 4 sYM respectively; defining worldsheet charges which encode

the action of the appropriate asymptotic symmetry algebra and showing that their Ward-

identities recover the soft graviton, and soft gluon factors; defining worldsheet charges for



x

proposed extensions of these symmetry algebras and showing that their Ward-identities

give the subleading soft graviton and subleading soft gluon factors.
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Chapter 1

Introduction

The framework of quantum field theory (QFT) started, as the name indicates, by applying

the principles of the then new quantum mechanics to fields, notably the electromagnetic

field. At first particles were seen as distinct entities from fields, but after a few years it

became clear that they were better described by quantized fields, thus fields came to

describe both matter and interactions. As the decades of the last century passed we

learned more and more about QFT’s; the infinities that initially plagued the calculations

were tamed by the idea of renormalization, observables were calculated to astonishing

precision, QFTs found use beyond its initial application to high energy physics, etc. Among

these, the concepts of renormalization group flow and effective field theory stand out

as critical to our modern understanding of QFTs and why they are ubiquitous at low

energy. But progress was not always smooth, describing the strong interaction using

QFTs proved to be a challenge at first, and the approach almost fell out of favour until the

advent of Yang-Mills theory and asymptotic freedom. Through many transformations and

revolutions QFTs have shown to be immensely useful and natural to describe most diverse

physical phenomena, be in the area of particle physics, cosmology or condensed matter.

Even in mathematics QFTs have recently found beautiful applications, specially in certain

areas of topology and geometry.

It is fair to say that QFTs are one of the most successful frameworks in the history of

physics, and given its age it might be expected that by know we know pretty well what

QFTs are, and front a certain point of view this is indeed true. Given a Lagrangian we can

set up a perturbation theory around some classical vacuum and calculate observables

order by order, any textbook on QFT will tell you how to do it. But consider that a quick

glance at QFTs textbooks shows that there’s not much agreement even on how these basics

should should be taught. Canonical quantization first then path-integrals, or perhaps

start directly with path-integrals. Do all free fields first then introduce interactions, or go
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through each helicity in detail first. Do all the maths of classical field theory and functional

calculus or go straight into cross sections. Or even start with Feynman diagrams and fill in

all the details later. This shows that although we have pretty good operational knowledge

of the subject there’s no agreed upon streamlined derivation of the framework from basic

principles. This is a sign that we’re missing some deep principles or idea on QFTs, and the

way we are used to approach them might not be the best suited one to understand these

issues.

Case in point, the central role that Lagrangians play on QFT. The usual story goes that

a Lagrangian defines a QFT through some quantization procedure, and all one needs

to know is the Lagrangian. But consider the cases when a QFT has several equivalent

Lagrangian descriptions, so there is no uniqueness linking a classical theory to a QFT.

Or even more extreme are the cases where no Lagrangian description is available, such

as the mysterious six dimensional (0,2) superconformal theory. The existence of these

cases signals that the usual spacetime Lagrangian formulation does not capture the full

richness of QFTs. But even when a unique Lagrangian is available it doesn’t mean that’s the

better approach to study the QFT. For example, there are cases when a QFT can be solved

exactly (through integrability or otherwise) and in these cases the Lagrangian description

is not really useful or needed in the final answer. Lastly take the striking duality between a

certain class of QFTs with conformal symmetry in d dimensions, and quantum gravity in

asymptotically Anti-de-Sitter (AdS) spacetimes. Here, calculations in a non gravitational

strongly coupled field theory which would be inaccessible through usual techniques

can be carried out in the AdS side using usual perturbative expansion in semiclassical

supergravity.

Another strong evidence that there’s more to QFTs than what we presently know is the

recent progress in the area of scattering amplitudes. Though these observables have been

studied since the beginnings of the subject, it is only recently that we started to uncover

an enormous amount of structure encoded in them 1. These properties of scattering

amplitudes are not accessible from the usual spacetime Lagrangian formulation of QFT.

To see them we have to think about QFTs from a different angle, using a mixture of tools

and ideas borrowed from S-matrix theory, string theory and even pure maths.

One particularly useful tool came from twistor theory. Originally used to study classical

gravitation, twistors have been crucial in unravelling the structure of scattering ampli-

tudes, most notably in the context of N = 4 supersymmetric Yang-Mills (sYM) theory.

Of particular interest for this thesis (and the origin of the use of twistors in scattering

amplitudes) is the work of Witten and Berkovits on the twistor string [2–4].The idea of

1A comprehensive though not exhaustive review is [1]



3

these works was to construct a string theory whose target space was not spacetime but an

associated space called twistor space, which has a non-local relationship to spacetime.

Heuristically, a line in twistor space corresponds to a point in spacetime while a point

in twistor space corresponds to a null ray in spacetime2. This mild non-locality brought

forth the simplicity of scattering amplitudes of N = 4 sYM, which could be written very

compactly as an integral over the moduli space of maps to twistor space. Very interestingly

this integral was completely fixed by delta-functions insertions which impose a set of

equations now know as the scattering equations. The scattering equations seem to be the

backbone of massless scattering in QFTs, as they are a crucial part of the original twistor

string, and other twistor string like models describing massless field in spacetime. Their

study is and generalization is one of the main parts of this thesis and much more about

them will be discussed in the next chapters. While the original twistor string is not a com-

plete description of N =4 sYM it nevertheless led to many new techniques and insights

into the study of scattering amplitudes. And perhaps more importantly its existence gave

more evidence that, even at the perturbative level, there might be better ways to think

about QFTs.

This thesis is then a humble step in the program to push forwards our understanding

of these new structures and formulations of QFT. Specifically, I focus on using worldsheet

methods originating from the twistor string to study effectively new perturbative formu-

lations of QFTs. In this regard this thesis accomplishes a few small but significant goals,

in particular: QFT loop amplitudes are described using a worldsheet theory without the

need to take any low energy limit; non-linear equations of motion for the target space QFT

are obtained from worldsheet consistency conditions; and holographic descriptions of

tree-level scattering are given by means of a worldsheet theory.

The above results form the bulk of this thesis which is structured in two parts: The

first part, consisting of chapters 2, 3 and 4, deals with a worldsheet theory called the

ambitwistor string. Chapter 2 is a review of the relevant material for the next two chap-

ters, that includes the Cachazo-He-Yuan formulas for massless scattering, the scattering

equations and the RNS and pure spinor formulations of the ambitwistor string. The def-

inition of the ambitwistor string at loop level is given on chapter 3, where one and two

loop amplitudes are discussed as well as the generalization of the scattering equations.

Chapter 4 deals with the definition of the ambitwistor string for curved target spaces.

The second part of the thesis is comprised of the last chapter 5 which introduces two

worldsheet models, one for supergravity and the other for super Yang-Mills. What is

notable about these models is that their target space is the null boundary of Minkowski

2More precisely to an α-plane in complexified Minkwoski spacetime.
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spacetime. Correlation functions of these models reproduce the tree-level S-matrices of

N = 4 sYM and N = 8 supergravity, and thus gives an effective holographic descriptions

of these theories in a certain parameter space. The beginning of every chapter starts with

a brief introduction and review of the relevant literature, and more details can be found in

the original papers [5–10].



Chapter 2

Review

2.1 CHY formulas

The Cachazo-He-Yuan (CHY) formulas, introduced in a series of papers [11–13], present

tree-level scattering amplitudes for massless particles in a very interesting form. Am-

plitudes are given by evaluating a rational function on solutions to a set of equations,

called the scattering equations, and summing over all the solutions. That is, an n-particle

amplitude can be written as

A (0)
n = ∑

sols

In(k,ϵ)

J(k)
(2.1)

where In(k,ϵ) is a function of the external momenta and polarization vectors, and J(k) is

the Jacobian obtained from solving the scattering equations. This formula can be recast in

a form that is easier to manipulate by writing it as an integral over the moduli space of a

n-punctured sphere. Let zi label the position of these punctures, then the amplitude can

be written as

A (0)
n =

∫ ∏n
i=1 dzi

Vol SL(2|C)

∏
i

′δ̄(ki ·P (zi ))In(k,ϵ, z). (2.2)

Here the measure is written in a permutation invariant way by dividing by Vol Sl(2|C),

fixing this redundancy introduces a Jacobian. For example fixing {z1, z2, z3} to some

arbitrary values gives

1

Vol Sl(2|C)
→ z12z23z31

dz1dz2dz3
. (2.3)
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The scattering equations are imposed by

∏
i

′δ̄(ki ·P (zi )) = z12z23z31

dz1dz2dz3

n∏
i=4

δ̄(ki ·P (zi )) (2.4)

where the holomorphic delta functions are to be interpreted as

δ̄(z) = ∂̄1

z
= dz̄

∂

∂z̄

1

z
. (2.5)

The scattering equations themselves are the set of equations

ki ·P (zi ) = ∑
j ̸=i

ki ·k j

zi − z j
= 0 i ∈ {1, · · · ,n}. (2.6)

They are invariant under SL(2|C) transformation so only n −3 of them are independent.

This is the same as the (complex) dimension of moduli space of a n-punctured sphere.

Thus, for generic external kinematics, the SL(2|C) invariant combination of delta functions

(2.4) is enough to completely localize the integral (2.2).

The above prescription is generic, what differs from one set of massless amplitudes

from another is the integrand In . This is in general a function of external momenta,

polarization vectors and the location of the punctures. Originally, CHY found integrands

for three classes of tree-level amplitudes: Einstein gravity coupled to a dilaton and B-field;

Yang-Mills; and massless coloured cubic scalar. But the CHY formulas are not limited

to describing just these three cases, in fact the number of theories whose amplitudes

can be expressed in this form is quite large, for and extensive list see [14–16]. These

include theories with very complicated Lagrangian description such as Einstein-Yang-

Mills, Dirac-Born-Infeld and non-linear sigma models. The existence of CHY formulas for

such theories is compelling evidence that not only the CHY formula is in a sense universal

for tree-level massless scattering, but also that there should be a better description of

these theories, at least at the perturbative level.

It is quite remarkable that the integrands for the three original theories can be con-

structed from two building blocks. One of them are Parke-Taylor colour factors

Ci1,12,...,in = ∑
w∈Sn /Zn

Tr(T Iw(i1) T Iw(i2) . . .T Iw(in ) )

zw(i1),w(i2)zw(i2),w(i3) . . . zw(in ),w(i1)
(2.7)
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which encode all the possible tree level colour orderings of pure YM. And the other is the

Pfaffian of a 2n ×2n antisymmetric matrix defined as

Ψ=
(

A −C T

C B

)
. (2.8)

Its building blocks are the matrices A,B and C defined as

Ai j =


ki ·k j

zi − z j
if i ̸= j

0 if i = j

Bi j =


ϵi ·ϵ j

zi − z j
if i ̸= j

0 if i = j
(2.9)

and

Ci j =


ϵi ·k j

zi − z j
if i ̸= j

−∑
l ̸=i

ϵi ·kl

zi − zl
if i = j

(2.10)

The matrixΨ has two zero modes, so in order to get a non-zero result two lines and two

columns must be removed from it before calculating the Pfaffian. Denoting the matrix

with columns and lines {i , j } removed asΨi j , the pseudo-Pfaffian is defined as

Pf′Ψ= (−1)i+ j

zi − z j
PfΨi j . (2.11)

For example, a gravitational amplitude in the CHY form is written as

A (0)
n =

∫ ∏n
i=1 dzi

Vol SL(2|C)

∏
i

′δ̄(ki ·P (zi ))Pf′ΨPf′ Ψ̃ (2.12)

where Ψ̃ is define analogously toΨ but with tilded polarization vectors. While a colour-

ordered Yang-Mills amplitude is written as

A (0)
n =

∫ ∏n
i=1 dzi

Vol SL(2|C)

∏
i

′δ̄(ki ·P (zi ))Pf′Ψ
1

z12 . . . zn1
. (2.13)

It can be shown that these formulas don’t depend on which columns and rows have been

removed, nor in how one fixes the SL(2|C) redundancy. Consistency checks on these

formulas were done in the original works and a proof was given not much later by Dolan

and Goddard in [17]. Comparing (2.12) and (2.13) the only difference is the replacement
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of the Parke-Taylor factor by a Pfaffian

1

z12 . . . zn1
→ Pf′Ψ. (2.14)

This is reminiscent of colour-kinematics duality and this connection was studied in the

original CHY papers [12, 13]. Colour-kinematic duality is a fascinating subject but it is not

the subject of this thesis, the interested reader is referred to the comprehensive review [1].

2.2 Scattering equations

The backbone of the CHY formulas are the scattering equations:

ki ·P (zi ) =
n∑

j ̸=i

ki ·k j

zi − z j
= 0. (2.15)

Invariance under SL(2,C) transformations require conservation of external momenta, and

implies that only n −3 of the scattering equations are linearly independent. For generic

external kinematics the number of solutions to the scattering equations is (n −3)!. At low

points explicit solutions are known, and numerical solutions can be found to higher points

but it quickly becomes too time consuming and other methods have to be used[18–23].

One way of thinking about the scattering equations is as vanishing conditions on the

square of a map P : Σn →Cn , from a n-punctured Riemann surface to the space of null

external momenta:

Pµ(z) =
n∑

i=1

kiµ

z − zi
. (2.16)

It’ll become clear later when the ambitwistor string is reviewed that P is better thought

as a meromorphic section of the worldsheet canonical bundle. An external momenta

is associated to each marked point through the residues of P . The field P 2 is then a

meromorphic quadratic differential, with possible double and simple poles. For on-shell

external momenta the coefficient of the double poles vanish and the residue of its simple

poles are

Reszi P 2(z) = Reszi

∑
l ̸= j

∑
j
= kl ·k j

(z − zl )(z − z j )
= ∑

j ̸=i

ki ·k j

zi − z j
. (2.17)

These are the same as the scattering equations, setting n −3 of them to zero kills n −3

of the poles of P 2. Since a meromorphic quadratic differential on a sphere must have at
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least four poles (Counted with multiplicity), these are enough conditions to set P 2 = 0

everywhere.

One of the most important features of the scattering equations is how they relate

boundaries of the moduli space of Riemann surfaces to vanishing of kinematic invariants

[11]. The moduli space of Riemann surfaces of genus g and with n marked points, denoted

by Mg ,n , admits a compactification M g ,n , which is the Deligne-Mumford moduli space of

marked curves. Heuristically, the Deligne-Mumford compactification adds to Mg ,n nodal

curves at infinity when either marked points collide, or the surface develops a long thin

neck. At genus zero there is only one kind of degeneration, when one or more marked

points approach each other. In this case the the boundary looks like the product of two

genus zero Riemann surfaces connected by a nodal point; the colliding marked points

are spread out in one of the surfaces, while the remaining points stay in the other sphere1.

Given a subset I of the external momenta there is an obvious kinematic invariant

(
∑
i∈I

kiµ)2 (2.18)

which is uniquely defined up to momentum conservation. At tree level, a kinematic invari-

ant vanishing means that an internal propagator is going on-shell, that is, a factorization

channel of the amplitude is being approached. Consider a subset of external momenta

I = {1,2, · · · ,m}, and do a change of coordinates on the sphere:

zi = zn +qwi i ∈ {m +1, · · · ,n −1}. (2.19)

The parameter q controls the degeneration of the surface when the points {m +1, · · · ,n}

collide, at the point q = 0 the original sphere pinches into two spheres joined at a nodal

point [25]. Multiplying the i -th equation by zi n and summing them up gives, after some

manipulations:

(k1 +·· ·km)2 = q(
wm+1

z1m+1
k1 ·km+1 +·· ·+ wn−1

zmn−1
km ·kn−1). (2.20)

This explicitly links the boundary of the moduli space approached when q → 0 to the

factorization channel when the sum of external momenta (
∑

i∈I ki )2 becomes null. In this

limit the scattering equations also factorize into two sets, one for each sphere with and

added extra point (the nodal point) carrying null momenta kI =∑
i∈I ki . This factorization

is most easily seen from the CFT perspective given by the ambitwistor. In latter sections

1In the context of superstring theory and superRiemann surfaces this is reviewed in[24].
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I’ll show that these factorization properties carry over to higher genus surfaces with a few

caveats.

Interestingly the same set of equations had already appeared in the study of dual

models in the work of Farlie and Roberts [26–28] where the idea of localization to the

solution of the scattering equations was already present. They also appeared later in the

works of Gross and Mende on the high energy limit of string scattering [29, 30] and in a

different guise in the Berkovits-Witten twistor-string [2, 3, 31].

2.3 Ambitwistor string

The ambitwistor string was introduced by Mason and Skinner in [32] and its geometry was

further studied in [33]. The ambitwistor string is a 2D CFT whose correlation functions

reproduce the CHY formulas, and effectively explains their origin. A pleasant feature of

the ambitwistor string is its similarity with the conventional RNS string, this allows for

worldsheet string theoretic techniques to be easily adapted to the study of the ambitwistor

string. The model discussed here is the type II version of the ambitwistor string, so

called because it has two real fermions on the worldsheet and reproduces the scattering

amplitudes of type II supergravity. Given a Riemann surface Σ the matter action of the

model in conformal gauge is:

Sm = 1

2π

∫
Σ

Pµ∂̄X µ+ 1

2
ψµ∂̄ψ

µ+ 1

2
ψ̃µ∂̄ψ̃

µ− 1

2
eP 2 −χψµPµ− χ̃ψ̃µPµ. (2.21)

The fields X µ have zero conformal weight and represent coordinates on complexified

Minkowski space M. Their conjugated fields Pµ have conformal weight (1,0) and both

fermions have conformal weight ( 1
2 ,0)2. This is a chiral action, all the fields are left-moving

and the kinetic terms are given only in terms of ∂̄. The Lagrange multiplier field e has

conformal weight (−1,1) and imposes the mass-shell constraint P 2 = 0, while the both

"gravitino" fields χ, χ̃ have conformal weight (−1
2 ,1) and impose the supersymmetric

partners of the mass-shell constrainψ·P = ψ̃·P = 0. This action is invariant under a gauge

symmetry

δX µ =αPµ δPµ = 0 δe = ∂̄α (2.22)

2As usual, I say that fields taking values on the line bundle K h ⊗ K̄ h̄ have conformal weight (h, h̄), where
(K̄ ) K is the (anti)-canonical bundle of Σ.



2.3 Ambitwistor string 11

as well as supersymmetries

δX µ = ϵψµ δψµ = ϵPµ δPµ = 0

δχ= ∂ϵ δe = ϵχ (2.23)

and their tilded version. The matter currents that generate the symmetries (2.22) and

(2.23) are easy to obtain using the Noether procedure:

Tm =−Pµ∂X µ− 1

2
ψµ∂ψ

µ− 1

2
ψ̃µ∂ψ̃

µ (2.24)

Hm =−1

2
P 2

Gm =−ψµPµ

G̃m =−ψ̃µPµ.

Alternatively, the fields (P, X ) can be considered as coordinates on the complexified

cotangent bundle of Minkowski space, T ∗M, the gauge symmetry (2.22) corresponds to

translations along complex null geodesics on target space. The simplectic reduction of

T ∗M by the constraint P 2 = 0 is the space of complex null geodesicsA= T ∗M//{P 2 = 0},

also called ambitwistor space. Although the action above lives on a two-dimensional space

its form resembles that of the worldline action of a massless particle. Heuristically, the time

derivatives ∂τ are replaced by antiholomorphic ones ∂̄ and the worldline is complexified,

conformal weights are assigned in such a way that the action has conformal symmetry.

From this perspective it might be expected that the ambitwistor strings describes field

theory and not string theory, even though the calculational techniques are lifted from

2D CFTs. Notice also that there is no dimensional parameter in action, so there is no

analogue of an α′ expansion. This is consistent with the fact that there is no X X OPE,

the worldsheet is rigid and only the massless modes are present. The ambitwistor string

seems to implement the α′ → 0 limit of the string from the very beginning.

Gauge-fixing by the usual BRST procedure we find that it is necessary to add contribu-

tions to the currents coming from the ghosts:

Tg h = c∂b −2b∂c + c̃∂b̃ −2b̃∂c̃ − 3

2
β∂γ− 1

2
γ∂β− 3

2
β̃∂γ̃− 1

2
γ̃∂β̃ (2.25)

Hg h = c∂b̃ −2b̃∂c

Gg h = c∂β+ 3

2
β∂c −2b̃γ

G̃g h = c∂β̃+ 3

2
β̃∂c −2b̃γ̃
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These are defined so that the action of the BSRT operator

Q =
∮

c(Tm + 1

2
Tg h)+ c̃(Hm + 1

2
Hg h)+γ(Gm + 1

2
Gg h)+ γ̃(G̃m + 1

2
G̃g h) (2.26)

− b̃γ2 − b̃γ̃2.

on the antighost fields is the usual one:

Q ·b = Tm +Tg h = T Q · b̃ = Hm +Hg h = H

Q ·β=Gm +Gg h =G Q · β̃= G̃m +G̃g h = G̃
(2.27)

Then the gauge fixed ghost action is chiral and free:

Sg = 1

2π

∫
Σ

b∂̄c + b̃∂̄c̃ +γ∂̄β+ γ̃∂̄β̃ (2.28)

(2.29)

and ghost fields have the analogous conformal weight as in the RNS string. That is the

fermionic ghosts c, c̃ have conformal weight (−1,0) and b, b̃ have conformal weight (2,0),

while the bosonic ghosts γ, γ̃ have conformal weight (−1
2 ,0) and β, β̃ have conformal

weight ( 3
2 ,0). Note that both sets of bosonic ghosts are left-moving which is expected given

the chiral nature of the model, but is distinct from the type II superstring where one set

is left-moving and the other right-moving. In practical calculations the ghost currents

Hg h ,Gg h ,G̃g h can be ignored as long as only standard vertex operators are used, that is

operators that don’t contain derivatives of the ghost fields. In particular the algebra of

constraints

Gm(z)Gm(w) ∼−2
Hm

z −w
G̃m(z)G̃m(w) ∼−2

Hm

z −w
Gm(z)G̃m(w) ∼ 0 (2.30)

also holds for the currents H ,G ,G̃ . Nilpotency of the BRST operator Q The central charge

of this theory is c = 3(d − 10), where d is the complex dimension of spacetime. The

ambitwistor is critical and Q2 = 0 when d = 10 like in the superstring.

Standard vertex operators in the NS-NS sector of the theory are of the form:

V = cc̃δ(γ)δ(γ̃)V (2.31)
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where V has conformal weight (1,0) and depends only on the matter fields (P, X ,ψ,ψ̃).

Imposing a Z2 ×Z2 symmetry3 on the fermions

ψ→±ψ ψ̃→±ψ̃ (2.32)

restrict the possible contents of V to

V = ϵµϵ̃νψµψ̃νe ik·X (2.33)

where ϵµ and ϵ̃µ are polarization tensors and kµ is the external momentum. The form of

this vertex operator is thus practically identical to that of fixed NS vertex operators in type

II string theory; the only difference is that all the fields in the ambitwistor string are chiral

and have only holomorphic conformal weight. It is easily checked that Q ·V = 0 requires

that ϵ ·k = ϵ̃ ·k = 0 and k2 = 0; this last condition comes from the OPE with the constraint

H . Since the action is first order the exponential e ik·X does not carry conformal weight,

so there are no vertex operators that could correspond to the tower of massive states of

string theory. Considering the form of (2.33) there are only three states in the spectrum in

this sector, a symmetric traceless tensor, an antisymmetric tensor, and a trace part. These

will correspond to the graviton, B-field and dilaton of type II supergravity. The fact that

on-shellness of the vertex operators are imposed by the constraint H will be important

later on when the ambitwistor string will be defined for curved target spaces. The operator

(2.31) will be referred as the fixed vertex operator; from it the integrated form of the vertex

operator can be derived using the usual descent procedure [24, 34]:

U =
∫
δ̄(k ·P )U =

∫
δ̄(k ·P )(ϵ ·P +k ·ψϵ ·ψ)(ϵ̃ ·P +k · ψ̃ϵ̃ · ψ̃)e ik·X . (2.34)

This operator also resembles the integrated vertex operator of the RNS string except for

the appearance of the δ-function. While its presence might seem odd at first sight it

comes naturally from the descent procedure as will be shown in the next chapter. It is

also quite natural from the target space perspective; using the ambitwistor version of the

Penrose transform [35, 36] it can be shown that the vertex operators (2.33)-(2.34) represent

the NS-NS sector of supergravity in ten dimensions [32]. Note that the argument of the

δ-function are the scattering equations (2.15), here they appear from the proper gauge

fixing of the worldsheet symmetries in the presence of vertex operators.

3This symmetry is analogous to the GSO projection of the usual RNS superstring.
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At tree-level the ghosts c, c̃ have three zero modes and the ghosts γ, γ̃ have two zero

modes each. A well defined correlation function is therefore given by:

A (0)
n = 〈V1V2c3c̃3U3

n∏
i=4

Ui 〉 . (2.35)

Evaluating this correlator is straightforward, the exponentials are absorbed in the action∫
Σ

Pµ∂̄X µ+
n∑

i=1
kiµX µδ̄(z − zi ) (2.36)

and the integration over the non-zero modes of X fixes the field P to obey

∂̄Pµ(z) =
n∑

i=1
kiµδ̄(z − zi ). (2.37)

On the sphere the solution to this equation is

Pµ(z) =
n∑

i=1

kiµ

z − zi
. (2.38)

Since P has no zero modes on the sphere its path integral is completely constrained, so the

solution (2.38) can be substituted in the correlator (2.35). The only path-integral left to do

is over the real fermions ψ,ψ̃; since the action is free each gives a Pfaffian of a matrix with

columns and rows 1,2 removed. This is a consequence of the two γ, γ̃ zero modes which

need to be fixed through the insertion of V1 and V2. From the worldsheet perspective it is

obvious that the pseudo-Pfaffian won’t depend on which rows and columns have been

removed. The contribution from the P part of the vertex operators can be neatly encoded

into these Pfaffians as was shown in [32] and the correlation function (2.35) reproduces

the CHY formula (2.12) for gravitons.

Although the type II ambitwistor string will be the focus of most of this thesis, it should

be mentioned that there is a heterotic version of the ambitwistor string. This is nearly

identical to the type II model described above, except that the Ψ̃ system is exchanged for

a worldsheet current algebra for some gauge group. At genus zero and leading trace the

heterotic model reproduces the tree-level amplitudes of Yang-Mills in the CHY form [32].

Multi-trace contributions are mediated by poorly understood gravitational degrees of

freedom which don’t correspond to Einstein gravity. There is also a bosonic version of the

ambitwistor string [32] which also contains some kind of gravitational degrees of freedom

which don’t correspond to Einstein gravity. Thus the most interesting model to study is

the type II ambitwistor string which does describe the interactions of usual type II A/B
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supergravity. There are modifications of the 10 dimensional ambitwistor string [37] which

reproduces the other CHY formulas though the quantum consistency of these models is

not as well understood as the type II.

There is also a four dimensional version of the ambitwistor string [38–41], which makes

use of spinor helicity variables to present compact formulas for tree-level scattering in

four dimensions. In spinor helicity variables the scattering equations have different guises

depending on how parity is manifest, or not, in the amplitude formulas. This gives a

variety of ways of writing down field theory amplitudes [31, 38, 42–45].

2.4 ∞-tension limit of the pure spinor

Although it is possible to describe target space fermions using the ambitwistor string [5],

it involves bosonizing the worldsheet fermions and the bosonic ghosts, as is done in the

RNS string [46, 47]. This introduces non-polynomial vertex operators for states in the

R sector and computations of their correlation functions quickly become cumbersome.

For the usual superstring this issue is overcome by working with a model with manifest

target space supersymmetry, that is, either the Green-Schwarz or the pure spinor super-

string. Of these two only the pure spinor superstring has a covariant quantization [48]

which makes Lorentz symmetry manifest. Not longer after the ambitwistor string was

introduced Berkovits described a pure spinor version of it [49] which has all the usual

advantages of this formalism, like manifest spacetime supersymmetry and absence of

worldsheet fermions. This is the model reviewed in this chapter which is known as the

minimal version. Later a non-minimal version will be introduced to calculate higher-loop

amplitudes. More about the pure spinor superstring can be found in the reviews [50, 51]

When discussing the pure spinor I’ll adopt different conventions from the previous

sections for spacetime indices, following the conventions in the pure spinor literature. In

this section, m,n, . . . = 0, . . . ,9 denote ten-dimensional space-time indices, while α,β, . . . =
1, . . . ,16 are spinor indices. The action of the model is chiral and first order, like in the

ambitwistor string. As in that case, it can also be viewed as a chiral complexification of the

pure spinor superparticle action [52]:

S = 1

2π

∫
Σ

Pm ∂̄X m +pα ∂̄θ
α+ p̃α̃ ∂̄θ̃

α̃+wα ∂̄λ
α+ w̃α̃ ∂̄λ̃

α̃ (2.39)

where X m and θα, θ̃α̃ are the conformal weight zero coordinates on target superspace.

The fields Pm and pα, p̃α̃ are their conjugate momenta and have conformal weight (1,0).
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The fields λα, λ̃α̃ are bosonic spinors which satisfy the pure spinor constraint:

λαγm
αβλ

β = 0 = λ̃α̃γm
α̃β̃
λ̃β̃ ,

The fields wα, w̃α̃ are their conjugate momenta with weight (1,0). Due to the pure spinor

constraint not all the components of λ, λ̃ are independent. Using a parametrization which

breaks the manifest SO(10) symmetry down to U(5) the pure spinor constraints can be

solved explicitly and the number of independent components of λ, λ̃ is seen to be eleven.

This constraint also generates a gauge transformation of their conjugates fields w, w̃ .

These can only ever appear in gauge-invariant combinations

N nm = 1

2
(wγnmλ) , J =λ ·w , Tλ =−wα∂λ

α

The OPEs between the matter variables are free

X m(z)Pn(w) ∼ δm
n

z −w
, θα(z) pβ(w) ∼

δα
β

z −w
, (2.40)

and likewise for the tilded variables. The OPEs of the operators built out of the pure

spinor variables and their conjugate can be computed in the same way as the pure spinor

superstring by using a U(5)-covariant parametrization of the space of pure spinors [48].

These are collected in the appendix for reference.

The BRST operator is a holomorphic generalization of the BRST operator in the type II

pure spinor superparticle. The Green-Schwarz constraint is

dα = pα− 1

2
Pmγ

m
αβθ

β , (2.41)

and the BRST charge is defined to be

Q =
∮
λαdα+ λ̃α̃ d̃α̃ . (2.42)

Nilpotency of Q is straightforward to see using the OPEs (2.40) and the pure spinor con-

straints. Vertex operators are given by non-trivial cohomology classes with respect to the

BRST operator. The fixed vertex operator is:

V =λα λ̃α̃Aα(θ) Ãα̃(θ̃)ei k·X , (2.43)

where Aα, Ãα̃ are the standard N = 1 superfields, which can be expanded in terms of vec-

tor and spinor polarizations. Q-closedness of the vertex operators impose the linearised
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equations of motion

k2 = 0, (γmnpqr )αβDαAβ = 0 = (γmnpqr )α̃β̃D̃α̃ Ãβ̃ ,

where the supersymmetric derivative is

Dα = ∂

∂θα
+ 1

2
km(γmθ)α .

Integrated vertex operators resemble those of the type II pure spinor superstring, but

terms proportional to ∂θ and ∂θ̃ are absent and the chirality of the model leads to the

presence of holomorphic delta functions to balance the conformal weight:

∫
Σ
δ̄(k ·P )U

=
∫
Σ
δ̄(k ·P )

(
A ·P +dαW α+ 1

2
NmnF mn

)(
Ã ·P + d̃α̃W̃ α̃+ 1

2
ÑmnF̃ mn

)
ei k·X , (2.44)

where {Am ,W α,F mn , . . .} are the standard superfields of N = 1 super-Yang-Mills in ten

dimensions [53, 54]. The integrated vertex operator is Q-closed, [Q,U ] = 0, on the support

of the delta function.

The vertex operators (2.43), (2.44) give the full spectrum of type II supergravity in

ten dimensions. Individual fields can be picked out by expanding the various super-

fields in powers of θ (or θ̃), and isolating those components proportional to the desired

polarizations.

The genus zero worldsheet correlation function prescription given in [49] mimics the

prescription for the superstring:

M (0)
n =

〈
3∏

i=1
V (zi )

n∏
j=4

∫
Σ
δ̄(ki ·P (zi ))U (zi )

〉
, (2.45)

with the usual zero-mode normalization for θ, θ̃,λ, λ̃ inherited from the superstring (i.e.,

〈λ3θ5〉 = 1) [48]. By restricting the vertex operators to the NS-NS sector, it is straightforward

to see that this prescription reproduces the worldsheet correlators of the RNS-like model

in [32]. These in turn are equal to the scattering equation representations for the tree-level

S-matrix of gravitons, B-fields, and dilatons given by Cachazo, He, and Yuan [12].

In the case of generic external states, performing explicit amplitude calculations for an

arbitrary number of external particles is difficult. However, by utilizing genus zero results

from the pure spinor superstring [55–57] and KLT orthogonality, it can nevertheless be

shown that the prescription (2.45) does reproduce the full tree-level S-matrix of type II
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supergravity, in a representation that is supported on the scattering equations [58]. The

distinction between type IIA and IIB supergravity is built into the identification of the

tilded spinor indices: for IIA tilded indices denote spinors of the opposite chirality as

untilded-tilded indices, while for IIB they denote spinors of the same chirality.



Chapter 3

Ambitwistor string at loop level

The main objective of this chapter, which comprises the majority of this thesis, is the

study of the ambitwistor string at loop level. A first objection to such generalization might

be that the ambitwistor string describes type II supergravities in ten dimensions which,

without a regularization scheme, have divergent loop amplitudes. In later sections I’ll

show that the origin of these possible divergences is well understood and they can be

factored out easily, leaving finite integrands. From the worldsheet perspective there is no

obstruction to extend the ambitwistor string to higher genus surfaces, its defining CFT

has zero central charge in d = 10. Therefore the main objects of study in this chapter are

the integrands given by the ambitwistor string.

Most of this chapter deals with the one loop generalization of the ambitwistor string.

First, in section 3.1, I present the generalization of the scattering equations one loop,

where evidence for their validity is given by studying their degenerations at the boundary

of the moduli space. In section 3.2 the modular properties of the partition functions for

the type II A/B ambitwistor string are analysed. The one loop scattering amplitudes for

external NS-NS states are given in section 3.3, where they shown to be modular invariant.

Factorization properties of these amplitudes on the boundaries of the moduli space is

given in section 3.4 where manifestly permutation invariant formulas for the amplitudes

are also given.

Next I move to the study of the one loop integrand and its comparison to the expected

integrand from the field theory. This is done in section 3.5 where several results are

obtained: the ambitwistor integrand is shown to have the correct IR behaviour expected

for a field theory amplitude; analytic solutions for the one loop scattering equations are

found at four points near the boundary of the moduli space; the ambitwistor integrand is

evaluated on top of the solutions and shown to match the field theory integrand; and a

conjecture to the behaviour of these integrands at n points is given.
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The last section 3.6 extends the formalism to two loops by introducing the non-

minimal version of the ∞-tension limit of the pure spinor. This formalism is used since it

makes the calculation of loop amplitudes more straightforward, much like in the super-

string case. In that section the non-minimal version of Berkovits model [49] is constructed,

one and two loop four point amplitudes are computed and shown to have the correct

kinematical factor, and the two loop amplitude is shown to have the correct factorization

properties for a field theory amplitude.

3.1 The scattering equations at genus one

The ambitwistor string gives a natural derivation of the scattering equations for higher

genus surfaces. They arise from the usual BRST quantization of the constrained action

(2.21), so it is worthwhile here to go over this procedure more carefully. Consider the

matter action (2.21).The chiral worldsheet gravity and gravitinos of this theory are gauge-

fixed by the usual BRST procedure, that is introducing a bc-ghost system and two copies

of the superconformal ghost system denoted as βγ and β̃γ̃. But the ambitwistor string has

an additional gauge symmetry compared to the string (2.22) which needs to be fixed. To

do this, introduce in the action the gauge-fixing term:{
Q,

∫
Σ

b̃ F (e)

}
, (3.1)

where b̃ has conformal weight (2,0) and F (e) is a gauge-fixing functional. The natural

choice for F is to set e = 0; but there might be obstructions to achieving this gauge

globally, these make up part of the moduli of the problem. In particular, in a punctured

Riemann surface the gauge parameter is required to vanish at the marked points, so

naively the gauge e = 0 can’t be achieved when punctures are present. More generally,

the BRST transformations of the gauge fields only allow e to be varied within a fixed

Dolbeault cohomology class. If Σ is a genus g Riemann surface with n marked points {zi }

the field e can be fixed up to elements of H 0,1(Σ,TΣ(−z1 −·· ·− zn)) which is non-trivial.

For r = 1, . . . ,3g −3+n let {µr } be a basis of H 0,1(Σ,TΣ(−z1 − ·· ·− zn)), the gauge-fixing

functional is chosen to be:

F (e) = e −
3g−3+n∑

r=1
sr µr , (3.2)

where sr ∈C are coefficients of the basis.
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The action of the BRST operator Q on the various fields in the gauge-fixing term is

δb̃ = m, δe = ∂̄c̃, δsr = qr , δm = 0, δqr = 0,

so after integrating out the Nakanishi-Lautrup m, the relevant part of the action (2.21)

becomes
1

2π

∫
Σ

b̃ ∂̄c̃ −∑
r

sr

∫
Σ
µr P 2 −

3g−3+n∑
r=1

qr

∫
Σ

b̃µr . (3.3)

Integrating out the bosonic and fermionic parameters sr and qr leaves us with an insertion

of
3g−3+n∏

r=1
δ̄

(∫
Σ
µr P 2

) ∫
Σ

b̃µr (3.4)

inside the path integral. At genus zero choose a basis of n−3 Beltrami differentials so that∫
b̃µr simply extracts the residue of b̃ at the location of the r th vertex operator [59]. This

then strips off the c̃ ghost associated with a fixed vertex operator insertion. Similarly, the

integral
∫
µr P 2 in (3.4) extracts the residue of the quadratic differential P 2 at the location

of the vertex operator, leaving a δ-function that forces this residue to vanish. At genus zero,

a quadratic differential must have at least four poles (counted with multiplicity). Since P 2

has at most simple poles, enforcing the vanishing of all but three of its residues ensures

that in fact P 2 = 0 globally over the genus zero Riemann surface. This is exactly the content

of the scattering equations; as mentioned before, they emerge as a natural consequence of

the gauge redundancy enforcing that the target space is ambitwistor space in the presence

of vertex operator.

A n-punctured genus one Riemann surface has n moduli. These are the position of

n −1 punctures1 and the complex structure parameter τ. Just like at genus zero, choose a

basis of Beltrami differentials so that n −1 of the fixed vertex operators become integrated

vertex operators. The remaining δ-function should be seen as providing part of the

measure on the moduli space:∫
Σ

b̃µ × δ̄

(∫
Σ

P 2µ

)
= b̃0 δ̄(P 2(z0|τ)) , (3.5)

where µ is the Beltrami differential associated to changes in the complex structure of the

torus. The insertion of b̃0 serves to absorb the single zero mode of b̃ at genus 1, and its

insertion point is arbitrary. The remaining δ-function is part of the genus 1 scattering

1Tori have a translation symmetry which can be used to fix the position of one of the punctures.
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equations. It should be interpreted as

δ̄(P 2(z0|τ)) = dτ̄
δ

δτ̄

(
1

P 2(z0|τ)

)
, (3.6)

so it fixes the integral over the modular parameter τ. There are now two kinds of scattering

equations; Resi P 2(z) = 0 which fixes the moduli corresponding to the position of the

punctures on the curve, and P 2(z0) = 0 for some arbitrary point z0 which fixes the value of

the modular parameters determining the shape of the curve. Note that the geometrical

content of these equations is the same as at tree-level. At genus one the only dependence

on X is on the exponentials in the vertex operators, these can be absorbed in the action

(2.36) and integrated out, constraining P to obey

∂̄Pµ(z) =
n∑

i=1
kµi δ̄(z − zi )dz (3.7)

which sets P (z) to to be a meromorphic differential on the torus with residue kµi at the

simple pole located at zi . Being a section of the canonical bundle P has one zero mode at

genus one, so the solution to (3.7) is given by

Pµ(z) = pµdz +
n∑

i=1
kiµS̃(z, zi |τ), (3.8)

where dz is the global holomorphic differential on the torus and S̃(z, zi |τ) is the P X

propagator defined by

S̃(z, zi |τ) = dz
∂

∂z
G(z, zi |τ) (3.9)

where

G(z, zi |τ) =− ln |E(z, zi |τ)|2 +2π
(Im(z − zi ))2

Im(τ)
(3.10)

is the usual genus one propagator for a non-chiral scalar, written in terms of the prime

form E(z, w |τ). Just like at tree level, the field P 2 is a quadratic differential with n simple

poles, higher order poles have zero coefficients when the external momenta are on-shell.

Imposing that n −1 residues of P 2 vanish automatically kills the last pole, since there

are no elliptic functions with a single pole. Thus, P 2 must be globally holomorphic over

Σ. The role of the "new" scattering equation P 2(z0) = 0 is to kill this last holomorphic

piece, which on top of the "old" scattering equations enforces that P 2 = 0 everywhere on
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Σ. Explicitly, the one loop scattering equations are:

Reszi P 2(z) = ki ·p + ∑
j ̸=i

ki ·k j S̃1(zi , z j |τ) = 0 (3.11)

at all but one of the marked points, and:

P 2(z0) =p2(dz)2 + (dz)
n∑

i=1
p ·ki S̃1(z0, zi |τ)

+ ∑
i ̸= j

ki ·k j S̃1(z0, zi |τ)S̃1(z0, z j |τ) = 0,
(3.12)

where the second sum runs over both i and j .

The n scattering equations completely fix the integral over the n-dimensional moduli

space M1,n of n-pointed genus 1 curves in terms of the external momentum ki and the

zero mode coefficients p. These coefficients are unconstrained and must be integrated

over to recover the full amplitude, so it is natural to interpret them as the loop momentum.

The integral over M1,n give a loop integrand, to recover the amplitude the integral over

the p’s must be performed. In general there’s no canonical way to define a loop integrand

starting from Feynman diagrams, the ambitwistor string seems to give one such prescrip-

tion. In section 3.5 I’ll match the ambitwistor integrand to the corresponding Feynman

graphs in a specific kinematical regime, and give a conjecture to what is meant by loop

integrand in the ambitwistor string.

At genus g the expected number of scattering equations is n+3g−3, of those (for g ≥ 2)

n would be of the type ki ·P (zi ) = 0 which are the constraints on the residues of P 2(z), while

3g −3 would be of the type P 2(zr ) = 0 constraining the contributions of the holomorphic

quadratic differentials to P 2 to vanish at 3g − 3 points. Since h0(Σ,K 2(z1 + ·· · + zn)) =
n +3g −3 these scattering equations suffice to impose P 2(z) = 0 globally over the marked

Riemann surface, ensuring as in [32] that the true target space of the string is ambitwistor

space PA. At genus g there are g holomorphic Abelian differentials ωa (with a = 1, . . . , g )

which contribute to the zero modes of P . Higher genus amplitudes will involve an integral

over these zero modes
∏

a d10pa of P (z), which should to the loop momenta at g loops in

field theory.

3.1.1 Factorization on boundaries of M 1,n

The one loop scattering equations, like their tree-level counterpart, also have the property

of tying up the boundaries of M 1,n and factorization channels. Since the loop momentum

appears explicitly in the one loop scattering equations the factorization properties here are
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those of the loop integrand. Tori can degenerate in two distinct ways: either by pinching a

non-trivial cycle, reducing the torus to a Riemann sphere, or by pinching a trivial cycle

which factors the worldsheet into a sphere and another torus. These are referred to as

non-separating or separating degenerations, respectively, and both can be understood as

contributions from the boundary in the moduli space of curves M 1,n .

Recall that Pµ is constrained by the equation:

∂̄Pµ(z) = 2πidz ∧dz̄
n∑

i=1
ki mu δ

2(z − zi ).

Which holds regardless of the form of the surface. At genus one the solution is

Pµ(z) = pµdz +
n∑

i=1
kiµS̃1(z, zi |τ).

To understand how the scattering equations behave under degenerations it is enough to

study how the field Pµ(z) behaves. The behaviour of the abelian differentials pµdz and

the Szëgo kernels S̃1(zi , z j |τ) under degenerations of the torus is well known [25]. The

non-separating degeneration is approached when the modular parameter q = e2iπτ→ 0,

this corresponds to the a-cycle pinching. At q = 0 the resulting surface is a sphere with

two extra marked points identified. In this case the abelian differential dz develops poles

at these two new marked points with residues 1 and −1. That is, denoting coordinates on

the nodal sphere by x’s, the abelian differential behave as

pµdz → pµdx
xa −xb

(x −xa)(x −xb)
(3.13)

where xa and xb are the positions of the nodes. The behaviour of the Szëgo kernels is also

straightforward, it simply goes over to the Szëgo kernel on the sphere

S̃1(z, z j |τ) → dx

x −x j
. (3.14)

At the degeneration point the scattering equations (3.11) become

ki ·P (zi ) → ki ·k

xi −xa
− ki ·k

xi −xb
+ ∑

j ̸=i

ki ·k j

xi −x j
. (3.15)

The interpretation is that two new particles were created at points xa , xb with equal and

opposite momentum k. Taking this factorization limit corresponds to a (n + 2)-point

tree amplitude which should come with n −1 scattering equations. This is precisely the
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number of equations given for each choice of i in (3.15)2. On the support of (3.15) the

remaining scattering equation becomes

P 2(z0|q = 0) = p2dz2
0 → k2dx2

0

(
xa −xb

(x0 −xa)(x0 −xb)

)2

= 0, (3.16)

which forces the momentum at the nodal points (which is the momentum running

through the cut) to be on-shell. The points {x0, xa , xb} are fixed by the SL(2,C) freedom on

the degenerated worldsheet.

I should note that for generic values of the modular parameter τ, δ̄(P 2) does not

constrain pµ to be null. If this were true, then the loop momentum would always be con-

strained to be on-shell. For a generic value of τ, the remaining n −1 scattering equations

and momentum conservation can be used to write (3.12) as

P 2(z1) = p2 dz2 + ∑
j ̸=i

k j ·ki f (zi , z j ,τ) dz2 , (3.17)

where the function f (zi , z j ,τ) is smooth and has no singularity when zi → z j . Furthermore,

when q = 0, f approaches a constant independent of the worldsheet coordinates. By

momentum conservation, this means that P 2(z) → p2 as we pinch the non-separating

cycle. Hence, the degeneration parameter q is directly related to the off-shellness of the

internal loop momentum, this behaviour will be studied more explicitly in section 3.5.

This implies that in general the scattering equation (3.12) can be seen as fixing the

integration over τ, leaving a loop integral over the non-compact space of P zero modes.

Integrating over this space might introduce divergences which are absent from string

theory amplitudes but are expected from a theory which gives field theory amplitudes.

Alternatively this equation can be interpreted as reducing the integral over the P zero

modes to some hypersurface parametrized by τ. The moduli of the Riemann surface then

can be seen as an off-shellness parameter for the loop momentum and we retain the

interpretation that the target space is ambitwistor space.

The other boundaries are approached when two or more marked points collide. This

case is fairly similar to factorization at tree-level [11]. The degenerate surface has two

components, a torus ΣR and a sphere ΣL , connected through a nodal point. The colliding

points are distributed on the sphere while the other points remain on the torus. In this

case the abelian differential is simply zero on the sphere component, while its component

on the torus remains the same. The behaviour of the Szëgo kernels depend on which

2The usual CFT interpretation is that at the factorization limit c and c̃ operators were inserted which
create the punctures. The states inserted at these points are fixed; hence there are no scattering equations
for the particles inserted at za , zb .
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components its two points are;

S̃1(zi j |τ) →


S̃1(zi j |τ) if zi , z j ∈ΣR ,

1

zi − z j
if zi , z j z ∈ΣL ,

S̃1(zi , za |τ)+ 1

zb − z j
if zi ∈ΣR and z j ∈ΣL ,

where za , zb are the coordinates for the nodal points on ΣR and ΣL respectively. Thus the

field P in each component is:

Pµ(z)|ΣL →− kR µ

z −w
dz +∑

i∈L

ki µ

z − zi
dz, (3.18)

Pµ(z)|ΣR → pµdz +kR µS̃1(z, y |τ)+ ∑
j∈R

k j µS̃1(z, z j |τ). (3.19)

As at tree level, the scattering equations separate into two sets; one corresponding to the

sphere component, and the other corresponding to the torus component. The remaining

scattering equation enforces that the momentum flowing through the cut is on-shell. Later

on, when discussing factorization properties of the one-loop amplitude this computation

will be done explicitly.

3.1.2 Relation to Gross and Mende’s equations

Before moving on to the next section I wish to discuss the relation of one loop scattering

equations presented here, (3.11) and (3.12), to the equations found in the high energy

scattering of strings by Gross and Mende [29, 30]. First, a rewriting of the field P makes

the comparison more transparent3. The field P (z) can also be written as

Pµ(z) = ℓµdz +
n∑

i=1
kiµS1(z, zi |τ) (3.20)

where S1 is the Szëgo kernel in the odd spin structure,

S1(z|τ) = ∂θ1(z|τ)

θ1(z|τ)
. (3.21)

3A more compelling argument for using this parametrization of P will be given later when the IR behaviour
of the scattering equations and loop integrand is discussed.
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Fig. 3.1 Gross and Mende equilibrium; the charges should be placed at half-periods of the
lattice.

which is related to the full propagator by

∂G =−S1(z|τ)−2iπ
Imz

Imτ
. (3.22)

This is one of several ways of defining P , depending on how the representation of the

bosonic propagator is chosen and on how to divide it into zero and nonzero modes. What

constrains the possible representations is that the field P (z) has to obey the differential

equation (3.7), which (3.20) does. This manifestly holomorphic representation of the prop-

agator obscures the modular properties of the scattering equations. So when discussing

the modular transformations of partition functions and amplitudes I’ll use (3.8) while

(3.20) is more useful when studying the IR behaviour of the scattering amplitudes and

their solutions. The relation between these two representation is simple, just redefine the

loop momentum

ℓµ→ ℓµ+2iπ
n∑

i=1
kµi

Im(z−zi)

Im(τ)
. (3.23)

to go between them. Gross and Mende studied the high energy limit of closed string

amplitudes. The type II 4-graviton string theory amplitude in 10 dimensions is:

∫
F

d2τ

Imτ2

∫ 4∏
i=2

d2zi

Imτ

∣∣∣e2α′∑
i , j ki ·k j G(zi j |τ)

∣∣∣2
. (3.24)

To study the high energy behaviour of this integral Gross and Mende used a saddle point

approximation around the extremals of the energy functional E =α′∑
i , j ki ·k j Gi j with

respect to variations of the moduli zi and τ. The leading contribution is claimed to come

from the saddle corresponding to the most symmetric way to arrange four charges on

the torus; this is achieved when the charges sit at half-periods of the lattice, such that

{z1, z2, z3, z4} = {1/2,τ/2,(τ+1)/2,0}, (up to permutations), as pictured in fig.3.1.
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With this choice the ∂zE scattering equation vanish and every single term in the sum

is actually zero. The last saddle point equation, ∂τE is solved by the condition:

θ2(0,τ)4

θ3(0,τ)4
=−u

s
. (3.25)

To connect this saddle point to the one-loop scattering equations one crucial ingre-

dient is missing; there is no loop momentum. This can be cured by reverse engineering

a string amplitude with explicit loop momentum, this is done when proving the chiral

splitting of the superstring integrand at higher genus [59]. Starting from (3.24), one has to

undo the ∂X zero mode integral, the amplitude is

∫
d10ℓ

(2π)10

∫
F

d2τ

(Imτ)2−5

∫ 4∏
i=2

d2zi

Imτ

∣∣∣e iπτℓ2+2iπ
∑4

i=1ℓ·ki zi

∣∣∣2 ∣∣∣e2α′∑
i , j ki ·k j Si j

∣∣∣2
, (3.26)

where the −5 in the exponent of Imτ comes from the reintroduction of the loop mo-

mentum Gaussian integral. It is easily checked that integrating out the loop momentum

provides the expected non-holomorphic part of the propagator.

This introduces an explicit loop momentum dependence in the argument of the

exponential, this alters the "energy" functional that has to be extremized Ẽ (ℓ). In doing

the saddle point analysis this amplitude there are two options; either extremize with

relation to the ℓ directions, that is, add the ∂ℓẼ (ℓ) = 0 equation, or leave unfixed the

integration over the loop momentum and solve the saddle point for each value of ℓµ. The

former gives

ℓ
µ
∗ =

n∑
i=1

kµi
Imzi

Imτ
, (3.27)

which, once inserted in the ∂z/τẼ (ℓ) = 0 saddle conditions, gives back the Gross and

Mende saddle point equations. The latter option gives the one loop scattering equations

(3.11) and (3.12).

Interestingly, the Gross and Mende saddle point gives a preferred value at a threshold

for the loop momentum;

ℓ
µ
∗ = kµ2 +kµ3 , (3.28)

while the ambitwistor string doesn’t fix ℓ to a particular value, but requires that the scat-

tering equations be solved for any value of ℓ. Modular transformations act by permuting

which scattered particles sit on the half periods, changing the loop momentum (3.28) to a

different threshold.
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3.2 Modular invariance and the partition function

On surfaces of higher genus the path integrals over the non-zero modes of the fields are

non-trivial, even in the absence of any vertex operator. Genus one surfaces have one

complex moduli τ and the functional determinants obtained from the path-integral are

functions4 of this modular parameter. Furthermore, there is a choice of spin structure for

the fermions, that is a choice of the which square root of the canonical bundle the fermions

take values in. At genus one there are four choices of spin structures; three even which

have no zero modes and one odd which has a zero mode. For the odd spin structure, the

fields ψµ and ψ̃µ each have zero modes that, in the absence of vertex operator insertions,

kill the contribution of the odd spin structure to the partition function, while for an even

spin structure, neither the fermionic fields Ψ, Ψ̃ nor the associated βγ and β̃γ̃ ghost

systems have any zero modes. Therefore the partition function is

Zα(τ)Z̃β(τ) = det′(∂̄TΣ)
2

det′(∂̄O )
10

Pf(∂̄K 1/2
Σ

(α))
10

det(∂̄T 1/2
Σ

(α))

Pf(∂̄K 1/2
Σ

(β))
10

det(∂̄T 1/2
Σ

(β))
= 1

η(τ)16

θα(0|τ)4

η(τ)4

θβ(0|τ)4

η(τ)4
, (3.29)

Primes mean that the zero modes are removed prior to evaluating the determinant of

Pfaffian. The labelsα and β refer to the spin structures associated to {ψ,γ,β} and {ψ̃, γ̃, β̃}

respectively, and η(τ) is the Dedekind eta function.

By themselves these partition functions are not modular invariant. In general, the

spin structures are swapped by modular transformations so it is possible to combine the

partition functions for different spin structures into objects with better modular properties.

In the usual superstring these combinations are given by the GSO projection, in the case

of the ambitwistor string these correspond to the partition functions

ZIIA(τ) =
(

Z1 +
∑

α=2,3,4
(−1)αZα

)(
Z̃1 −

∑
α=2,3,4

(−1)αZ̃α

)
(3.30)

ZIIB(τ) =
(

Z1 +
∑

α=2,3,4
(−1)αZα

)(
Z̃1 +

∑
α=2,3,4

(−1)αZ̃α

)
, (3.31)

for type IIA and type IIB ambitwistor strings 5. Here Z1 and Z̃1 are the (vanishing) partition

functions of theΨ and Ψ̃ systems in the odd spin structure. As usual, both these partition

4In general the determinants take values on line bundles over the moduli space. These line bundles are
usually non-trivial, but combinations of them might be and thus can be identified with functions over the
moduli space and integrated.

5There is also a type 0 ambitwistor string by requiring the Ψ and Ψ̃ systems to have the same spin
structures. This choice breaks spacetime supersymmetry. However, unlike the real partition function
∝|θ2(τ)|N +|θ3(τ)|N +|θ4(τ)|N of non–chiral Type 0 strings which is modular for any value of N , the chiral
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functions vanish as a consequence of the Jacobi ‘abstruse identity’ θ2(τ)4−θ3(τ)4+θ4(τ)4 =
0 which is a consequence of spacetime supersymmetry and imposes the one-loop vanish-

ing of the spacetime cosmological constant.

These partition functions, (3.31), have modular weight −8. The full ambitwistor string

partition function includes the integral over the zero modes of xµ of the fields X µ and pµ
of Pµ, together with the zero modes of the bc and b̃c̃ ghost systems, and the measure on

the moduli space. The full genus one partition function of the type II string is formally

ZIIA/B =
∫

d10x d10p

(volC∗)2
δ̄
(
p2(dz)2) ZIIA/B(τ)dτ , (3.32)

where Pµ(z) = pµdz in the absence of any vertex operators. The zero mode pµ is the

coefficient of the abelian differential dz which under the modular transformation τ→
−1/τ behaves as dz → dz/τ. To keep the field invariant the zero mode coefficient should

transform as

pµ→ τpµ (3.33)

With this definition, the loop integral measure d10p acquires a factor of τ10 under this mod-

ular transformation. This compensates the weight of the modular function ZIIA/B(τ)dτ so

that (3.32) is invariant.

The factor of 1/(volC∗)2 arises from fixing the zero modes of the c and c̃ ghosts. The

c ghost zero mode may be used to fix the insertion point of δ̄(p2(dz)2) to any point

on the torus. Recall that the c̃ ghost is associated to the transformation δX µ = c̃Pµ

which translates X along the null geodesic in the P direction. So the remaining volC∗

can be used to fix one of the x integrals, picking a representative point on each null

geodesic. Combining this with the constraint p2 = 0 the integral over zero modes of X and

P becomes an integral over the target space PA. This once again emphasizes the fact that

the target space of this chiral model is best thought of as ambitwistor space, rather than

spacetime.

partition function ∝ θ2(τ)8 +θ3(τ)8 +θ4(τ)8 of the type 0 ambitwistor string can be modular only in 8k +2
space-time dimensions.
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3.3 NS-NS scattering amplitudes at genus one

At genus one, both ghosts c and c̃ have one zero mode corresponding to translations

around the torus and along spacetime null geodesics respectively. These are taken care of

by inserting a fixed vertex operator, all other vertex operators are integrated. The picture

number of these vertex operators depends on the spin structure of the fermions, and

therefore of the ghosts. So even and odd spin structure contributions to the amplitudes

are considered separately. Only vertex operators in the NS-NS sector will be considered,

in principle there’s no obstruction to using vertex operators in the R sector, but as at

tree-level their correlation functions quickly become cumbersome.

3.3.1 Even spin structure

In any of the even spin structures, neither the worldsheet fermionsΨµ, Ψ̃µ nor the ghosts

γ, γ̃ have zero modes, so no insertions of δ(γ) or δ(γ̃) are necessary. Only vertex operators

U descended in the fermionic directions are necessary. The relevant correlator is:

M 1;even
n =

〈
b0b̃0 δ̄(P 2)cc̃U1(z1)

n∏
i=2

∫
δ̄(ki ·P (zi ))Ui (zi )

〉
, (3.34)

where the factor of δ̄(P 2) in the measure was explained in section 3.1.

Since none of the vertex operators involve δ(γ) or δ(γ̃), the correlator of the ψ fields

and of the ψ̃ fields each lead to Pfaffians of 2n ×2n matrices M ′
α and M̃ ′

β
. In other words,

unlike at genus zero [12, 13, 32], no rows or columns need to be removed from these

matrices. The matrix M ′
α has elements

M ′
α =

(
A −C ′T

C ′ B

)
(3.35)

where

Ai j = ki ·k j Sα(zi j |τ) Bi j = ϵi ·ϵ j Sα(zi j |τ) C ′
i j = ϵi ·k j Sα(zi j |τ) (3.36)

and Ai i = Bi i =C ′
i i = 0. In this matrix,

Sα(zi j ,τ) = θ′1(0|τ)

θ1(zi j |τ)

θα(zi j |τ)

θα(0|τ)

√
dzi

√
dz j (3.37)
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is the g = 1 free fermion propagator, or Szëgo kernel, in the even spin structureα. This is

defined to be a half-form in both zi and z j (like ψ(zi )ψ(z j )) so that its modular properties

are simple. Under a modular transformation the Szëgo kernel simply changes to a Szëgo

kernel in a different even spin structure, that is, it does not acquire any factors of
p
τ.

The elements of M ′
α come from a calculation similar to the tree-level one. The ψ

insertions at distinct points zi and z j on the worldsheet contract with each other to form a

Pfaffian. As at genus zero [32], the contributions from the ϵi ·P (zi ) in the vertex operators

are incorporated by modifying the matrix C ′ →C , by adding to its diagonal the terms

Ci i = ϵi ·p dzi +
∑
j ̸=i

ϵi ·k j S̃1(zi , z j |τ) , (3.38)

which are independent of the spin structure of the fermions. So the contribution from the

vertex operators in the spin structuresα,β are Pfaffians Pf(Mα)Pf(M̃β), where

Mα =
(

A −C T

C B

)
(3.39)

and M̃β is similar but with tilded polarization tensors and a possible different spin struc-

ture δ̄β. On the support of the scattering equations, these Pfaffians are invariant under

gauge transformations ϵi → ϵi +ki , as follows from BRST invariance.

The result of the correlator is given by combining all the ingredients above. Adding the

Pfaffians from the vertex operators, the partition functions and the GSO projection gives

M 1;even
n = δ10

(
n∑

i=1
ki

)∫
d10p ∧dτ δ̄

(
P 2(z1|τ)

) n∏
j=2

δ̄(k j ·P (z j ))

× ∑
α;β

(−1)α+βZα;β(τ) Pf(Mα)Pf(M̃β)
(3.40)

as the contribution to 1-loop scattering amplitudes from even spin structures. Note

that the integrand in (3.40) is a (top,top) form on Mn,1; the product of the two Pfaffians

transforms as a quadratic differential at each marked point zi for i ∈ {1, . . . ,n}, while the

constraints
∏n

j=2 δ̄(k j ·P (z j )) provide holomorphic conformal weight −1 at all the marked

points except z1, whereas the constraint δ̄
(
P 2(z1|τ)

)
provides holomorphic weight −2 at

z1.

As mentioned above, the one loop scattering equations fix the positions {zi } of the

vertex operators and the complex structure moduli τ in terms of the external and loop

momenta {ki } and p. The integral over the loop momentum p must be treated as a
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contour integral and is expected to diverge on the physical contour R9,1 ⊂C10. The loop

momentum appears in the Pfaffians, through the diagonal elements (3.38) of C , as well

as in the scattering equations. Modular invariance of the right hand side of (3.40) follows

trivially from the modular invariance of the partition function; indeed, the form weights

in the elements of Mδ̄α and M̃δ̄β were included to ensure that their Pfaffians are invariant

under modular transformations, up to a change in spin structure.

3.3.2 Odd spin structure

At genus one, there is a single odd spin structure corresponding to periodic boundary

conditions around each of the two non-trivial cycles on the torus. In this spin structure

the the ghosts and antighost have one, constant zero mode each. The zero modes of

the antighosts correspond to fermionic moduli, which as in the RNS string are fixed by

inserting two picture changing operators

Υ0 = δ(β)(P ·ψ+ b̃γ) Υ̃0 = δ(β̃)(P · ψ̃+ b̃γ̃) . (3.41)

At least at genus one, there are no spurious singularities and BRST invariance ensures the

amplitude is independent of the choice of insertion point of these operators.

Each component of the fermionic fields ψµ and ψ̃µ also has a zero mode. So, am-

plitudes involving fewer than 5 particles don’t receive any contribution from this spin

structure. For n ≥ 5 the amplitude receives a contribution from the correlator

M 1; odd
n =

〈
b0b̃0 δ̄(P 2(z0))Υ0Υ̃0 c1c̃1δ(γ1)δ(γ̃1)V (z1)

n∏
i=2

∫
δ̄(ki ·P (zi ))U (zi )

〉
. (3.42)

The correlator gives again Pfaffians of 2n ×2n matrices. The ψ system gives the matrix

M =
(

A −C T

C B

)
, (3.43)

where the entries now depend on the ψ zero modes ψ0. For i ̸= j and i ̸= 1 these entries

are

Ai j = ki ·k j S̃F
1 (zi j |τ)+ki ·ψ0 k j ·ψ0 i , j ̸= 1 (3.44)

Bi j = ϵi ·ϵ j S̃F
1 (zi j |τ)+ϵi ·ψ0 ϵ j ·ψ0 (3.45)

Ci j = ϵi ·k j S̃F
1 (zi j |τ)+ϵi ·ψ0 k j ·ψ0 . (3.46)
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The diagonal entries of C , when i ̸= 1, are

Ci i =−ϵi ·P (z0)dzi −
n∑

j ̸=i
ϵi ·k j S̃F

1 (zi j |τ) . (3.47)

while the diagonals of A and B are zero. When i = 1, the entries of A and C are modified to

A1 j = P (z0)·k j S̃F
1 (z0 j )+P (z0)·ψ0 k j ·ψ0 (3.48)

C11 = ϵi ·P (z0) S̃F
1 (z10)+ϵi ·ψ0 P (z0)·ψ0 , (3.49)

since they come from contractions involving the picture changing operators. In these

expressions, S̃F
1 (zi j |τ) is the free fermion propagator in the odd spin structure

S̃F
1 (zi j |τ) :=

(
θ′1(zi − z j |τ)

θ1(zi − z j |τ)
+4π

Im(zi − z j )

Im(τ)

) √
dzi

√
dz j . (3.50)

Note that it is a half-form in each of zi and z j
6, which makes it invariant under modular

transformations. Here the zero mode ψµ
0 =ψµ

0z

p
dz, where ψµ

0z are anticommuting con-

stants. Keeping the coefficients and the form degree of the zero modes together makes it

easier to examine these expressions under the worldsheet degenerations.

After performing all contractions to obtain the Pfaffian of M (and similarly a Pfaffian

of a matrix M̃ from the other fermion), there are still contributions from the worldsheet

partition functions to the path-integral. These end up cancelling among themselves

det′(∂̄TΣ)
2

det′(∂̄O )
10

Pf(∂̄K 1/2
Σ

)10

det(∂̄T 1/2
Σ

)

Pf(∂̄K 1/2
Σ

)10

det(∂̄T 1/2
Σ

)
= 1, (3.51)

due to the isomorphisms K 1/2
Σ ≃ T 1/2

Σ ≃O for the odd spin structure at genus one.

Leaving explicit the integration over zero modes, the contribution of the odd spin

structure to the n ≥ 5 particle amplitudes is

M 1; odd
n = δ10 (∑

ki
)∫

d10p d10ψ0 d10ψ̃0 dτδ̄(P 2(z1))
n∏

i=2
δ̄(ki ·P (zi ))

×Pf(M) Pf(M̃)
dz1

(dz0)3
, (3.52)

6The fermionic propagator looks almost the same as the bosonic propagator S̃1(i j ), but notice that the
latter is a one-form on its first entry and a zero form on its second entry.
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where d10ψ0 and d10ψ̃0 are the integrals over the ψ and ψ̃ zero modes, while the ratio

dz1/(dz0)3 comes from the zero modes of the ghost and antighosts in the picture changing

operators. It is easy to see that (3.52) is invariant under τ → τ+ 1. Under τ → −1/τ,

invariance of pdz again implies that d10p → τ10 d10p. Likewise, invariance of ψ0
p

dz

implies that the fermionic measure changes as d10ψ0 → τ−5 d10ψ0, and similarly for the ψ̃

zero modes. Therefore, under τ→−1/τ,

d10p d10ψ0 d10ψ̃0 dτ→ 1

τ2
d10p d10ψ0 d10ψ̃0 dτ . (3.53)

Since the Pfaffians and δ-functions are modular invariant, the only remaining factor

comes from the ghost zero mode contribution dz1/(dz0)3. This produces the missing τ2

and renders the result modular invariant.
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3.4 Factorization at genus one

Recall from section 3.1.1 that at genus one, there are two distinct factorization limits.

These correspond to the two ways in which the torus can degenerate: either by pinching

a non-trivial cycle which reduces the torus to a Riemann sphere, or by pinching a trivial

cycle which factors the worldsheet into a sphere and another torus. These were called

non-separating and separating degeneration, respectively, and both can be understood as

contributions from the boundary in the moduli space of curves M 1,n .

In the non-separating case, the boundary divisor being approach is denoted by Dns.

This looks like the moduli space of genus zero Riemann surfaces with two additional

punctures:

Dns ∼=M 0,n+2.

The separating degeneration corresponds to a divisor Dsep where the worldsheet pinches

off a genus zero component ΣL
∼=CP1. The n marked points corresponding to the vertex

operators distribute themselves between the two factors, with nL on ΣL and nR on ΣR

such that nL +nR = n. This boundary divisor looks like the product

Dsep ∼=M 0,nL+1 ×M 1,nR+1.

The behaviour near the boundaries of the moduli space can be studied from the world-

sheet perspective using CFT methods just like in the superstring [24, 60], or twistor-string

theory [61]. However, it is instructive to check that the calculated formula, obtained after

evaluating all the correlators, has the correct behaviour near the factorization channels.

In both of these factorization limits, the expression for the genus one scattering am-

plitude develops a simple pole in the modulus transverse to the boundary divisor. This

confirms that the IR behaviour of the amplitude is in accordance with unitarity: the

amplitude develops simple poles in the internal momenta as the boundary divisor is

approached. In the non-separating case, the residue of this pole is a surprisingly simple

expression living on the resulting genus zero worldsheet, which cannot be identified with a

CHY formula due to Ramond sector vertex operators which now contribute to the external

states. In the separating case, a tree-level amplitude in CHY form factors off from the

one-loop result when the residue is extracted.

3.4.1 Pinching a non–separating cycle

Pinching a non-separating cycle corresponds to approaching the non-separating bound-

ary divisorDns ⊂M 1,n , which is described by a degenerate limit of the complex structure τ
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of the torus, the relevant limit being Imτ→∞. It is convenient to work with the alternative

parametrization q = e2πiτ, where the boundary divisor sits at q → 0.

As this boundary is approached, it is necessary to know how the various ingredients

appearing in the amplitude behave. Some were already discussed in section 3.1.1 where

the factorization properties of the scattering equations were studied. The others are the

Dedekin eta function and theta constants:

η(τ) ∼ q1/24, θ3(0|τ), θ4(0|τ) ∼ 1, θ2(0|τ) ∼ q1/8, (3.54)

to leading order in the limit q → 0. The factorization properties of the Szëgo kernels for

the different spin structures can obtained from (A.4) or can be rigorously derived using

the sewing formalism for Riemann surfaces [62, 63]:

Sα(zi j ,τ) ∼


p
dzi

p
dz j

zi−z j
if α= 2

κ×
√

dzi

√
dz j otherwise

, (3.55)

where κ is some constant. And as already noted before

S̃1(zi , z j |τ) ∼ dzi

zi − z j
, (3.56)

as q → 0.

At the degeneration point the contribution to the amplitude coming from the odd spin

structure vanishes since there are no odd spin structures on the sphere. So in this limit

only the contribution coming from the even spin structures needs to be considered. Start

with the behaviour of the Pfaffians Pf(Mα), Pf(M̃β) in (3.40). Using (3.55) and (3.56), it is

clear that whenα= 2, the block entries of Mα become:

Ai j = ki ·k j

√
dzi

√
dz j

zi − z j
, Bi j = ϵi ·ϵ j

√
dzi

√
dz j

zi − z j
, Ci j = ϵi ·k j

√
dzi

√
dz j

zi − z j
,

which are the expected entries at genus zero [12, 32]. The only subtlety is in the diagonal

entries of the C -block:

Ci i |q→0 =−∑
j ̸=i

ϵi ·k j

zi − z j
dzi +ϵi ·p|q→0 dzi ,

where pµdzi is the zero mode of Pµ(zi ) on the torus. As seen above, on the boundary

divisor Dns, a holomorphic differential degenerates into a meromorphic differential on
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the sphere with simple poles at the two new marked points, with equal and opposite

residues at those points. Calling this residue kµ, and denoting the two new marked points

as za , zb ∈CP1, the diagonal entries in C become:

Ci i |q→0 =
(
−∑

j ̸=i

ϵi ·k j

zi − z j
+ ϵi ·k

zi − za
− ϵi ·k

zi − zb

)
dzi =C n+2

i i .

This is the diagonal entry for the C -block with n+2 particles, two of which have equal and

opposite momentum. The same calculation holds for the matrix M̃α.

Hence:

Pf(M2), Pf(M̃2)
q→0−−−→ Pf(M ab

ab ), Pf(M̃ ab
ab ), (3.57)

where M ab
ab is the matrix whose entries are the same as in the genus zero case for n +

2 particles, with rows and columns corresponding to the new external states at za , zb

removed. Note that unlike boson scattering amplitudes at genus zero, the rank of the

Pfaffian is uncharged-changed. For the other two even spin structures, the matrices Mα,

M̃α do not approach recognizable structures, however, their contributions cancel due to

the GSO projection.

Now the only factors in M 1;even
n which encode the spin structure and potential q-

dependence are

dτ
∑
α;β

(−1)α+βZα;β(τ)Pf(Mα)Pf(M̃β)

= 1

2πi

dq

q

∑
α;β

(−1)α+β
θα(0|τ)4 θβ(0|τ)4

η(τ)24
Pf(Mα)Pf(M̃β). (3.58)

Using the leading behaviour given by (3.54), this sum looks like

dq

q2

∑
β

(−1)βθβ(0|τ)4 Pf(M̃β)
[
q1/2Pf(M2)−Pf(M3)+Pf(M4)

]
, (3.59)

as q → 0, which appears to have a tachyonic double pole in q . But in this limit, Pf(M3) =
Pf(M4), so the last two terms in (3.59) cancel with each other due to the GSO projection.

The same argument holds for the sum over β, leading to the single power of q in the

numerator from the only surviving terms whereα=β= 2. Hence, close to the boundary
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divisor Dns the contribution to the measure from (3.58) is given by:

dτ
∑
α;β

(−1)α+βZα;β(τ)Pf(Mα)Pf(M̃β) ∼ dq

q
Pf(M ab

ab ) Pf(M̃ ab
ab ). (3.60)

This is in direct analogy with the role of the GSO projection in superstring theory: a generic

term in M 1;even
n has a tachyonic double pole in the modulus q as the boundary divisor

is approached, but the sum over spin structures, with appropriate signs, cancels these

double poles and leaves only the simple pole consistent with unitarity.

To summarize; when a non-separating cycle is pinched a pole of order one appears

and the amplitude factorizes in terms of an expression on a genus zero worldsheet with

two additional particles of equal and opposite null momenta. This null momentum is

being integrated over the phase space of the on-shell loop momentum, and there is an

implicit sum over all possible intermediate states flowing through the node. In this limit,

the integrand depends only on algebraic functions of kinematic invariants, as in the tree-

level case. It is expected that a rational function of the external kinematics is recovered

after summing over all the solutions to the scattering equations. Note that because of

the scattering equations the various elliptic functions only contribute to the simple pole

rather than adding higher mode dependence as in ordinary superstring theory, so there is

no tower of massive modes.

In this factorized amplitude, the intermediate states could be any state in the N = 2

sugra massless multiplet. While there is a compact expression for n-graviton scattering

that could be used to check the above formula, there is no similarly simple expression for 2-

gravitino and (n−2)-graviton scattering written in terms of Pfaffians as above. Nevertheless

the result of this factorization limit seems to imply that a simple expression for such

amplitudes might exist.

3.4.2 Pinching a separating cycle

Pinching a separating cycle on the genus one worldsheet factors off a Riemann sphere

ΣL
∼=CP1 as the boundary divisor Dsep is approached. In this case, the degeneration of

the worldsheet is not controlled by the modular parameter τ; instead, it corresponds to a

set of nL of the marked points coming very close to each other. A conformally equivalent

statement is that these nL points lie on a sphere ΣL which is connected to the torus ΣR by

a long tube.
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A local model for this degeneration can be given near the divisor. In this case the

worldsheet is modelled by

(zL −w)(zR − y) = s, (3.61)

where zL is a local coordinate on ΣL and zR is a local coordinate on ΣR
7. The parameter s

acts as a modulus for the length of the tube connecting the two branches, and as s → 0 the

worldsheet separates into ΣL ∪ΣR , joined at the points zL = w and zR = y . The modulus s

is actually the natural transverse modulus to the boundary divisor Dsep ⊂M 1,n .

Unfortunately, the expression for the g = 1 amplitude computed in 3.3 is not optimal

for studying the separating degeneration. This is because the amplitude was calculated

in a picture with no insertions of δ(γ) or δ(γ̃); this is a natural because there are no zero

modes of the superconformal ghosts which need to be fixed at genus one. However,

upon pinching the separating cycle, the branch ΣL is a sphere on which γ and γ̃ have

two zero modes each. In other words, the two worldsheets produced by the separating

degeneration have different numbers of fermionic moduli. The new states that appear

at the nodes of w ∈ ΣL and y ∈ ΣR should be represented by fixed vertex operators with

picture number −1, which is unnatural-natural from the perspective of the picture used in

section 3.3. In other words, the use of integrated vertex operators corresponds to a choice

of gauge which makes studying this boundary behaviour difficult.

This issue is familiar from the conventional RNS superstring: at arbitrary genus, am-

plitudes are easiest to compute using a mixture of fixed and integrated vertex operators

appropriate to the number of zero modes in the superconformal ghost system. At the level

of the moduli space integrand, this expression minimizes the number of picture changing

operator insertions and behaves appropriately under all non-separating factorizations and

all separating factorizations for which the resulting worldsheets have the same number of

fermionic zero modes.8 However, this choice of picture is unnatural-natural for generic

worldsheet degenerations where new states will appear in the fixed picture, making it

cumbersome to isolate the boundary behaviour of the amplitude.

One solution to this issue is to represent all external states by fixed vertex operators at

the expense of introducing an appropriate number of picture changing operators. The

resulting amplitude appears to be different from an expression obtained with integrated

vertex operators, but it will be independent of the PCO insertions and equal to the alterna-

tive expression. The amplitude in this all-fixed picture is naturally suited to studying the

7The choice of a coordinate system on ΣL or ΣR is left implicit from now on.
8For example, at genus two the expression factorizes correctly for a non-separating degeneration as well

as the separating degeneration that results in two tori, see [64].
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behaviour near any boundary divisors in the moduli space since all external states are on

the same footing as internal states appearing in the factorization channel. Another way

of seeing this is by considering the worldsheet perspective on factorization, where it is

essential to work in the all-fixed picture [24, 61].

At genus one, in an even spin structure, this means that the NS-NS sector scattering

amplitude should be computed from the worldsheet correlation function:

M 1; even
n =

〈
n∏

i=1
Vi

n∏
a=1

ΥaΥ̃a

n−1∏
r=1

(br |µr ) (b̃r |µr )δ̄

(∫
Σ
µr P 2

)〉
, (3.62)

where

(br |µr ) =
∫
Σ

br ∧µr ,

is used as a shorthand for the measure on the moduli space.

The resulting amplitude can be computed in much the same way as the previous

expression. In an even spin structure the amplitude is:

M 1; even
n = δ10

(∑
i

ki

)∫
d10p ∧dτ∧ δ̄(

P 2(z1)
) n∏

i=2
δ̄(ki ·P (zi ))

× ∑
α;β

(−1)α+βZα;β(τ)
Pf(Mα)

|Rα|
Pf(M̃β)

|R̃β|
, (3.63)

where the partition function Zα;β(τ) is as in (3.29). The skew-symmetric 2n ×2n matrix

Mα arises from the matter systems, and is analogous to the matrix Mα appearing in (3.40).

It can be written in a block decomposition

Mα =
(
A −CT

C B

)
.

Entries of the A-block are indexed by the locations of the PCOs, which are denoted by

xa , xb ∈Σ, for a,b = 1, . . . ,n:

Aab = Sα(xab |τ)

(
n∑

i , j=1
ki ·k j S̃1(xa , zi |τ) S̃1(xb , z j |τ)+

n∑
i=1

ki ·p dxb S̃1(xa , zi |τ)

+
n∑

j=1
p ·k j dxa S̃1(xb , z j |τ)+p2 dxa dxb

)
, (3.64)
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with Aaa = 0. The entries of the B-block are indexed by the vertex operator locations, and

are identical to those in (3.36):

Bi j = ϵi ·ϵ j Sα(zi j |τ), Bi i = 0. (3.65)

Finally, the rows of the C-block are indexed by the vertex operators, while its columns are

indexed by the PCOs:

Ci a = Sα(xa − zi |τ)

(
n∑

j=1
ϵi ·k j S̃1(xa , z j |τ)+ϵi ·p dxa

)
. (3.66)

A determinant of the n×n matrix Rα arises in the denominator due to the correlator of

the βγ-system. This is the bosonic ‘Slater determinant’ [24] whose entries are composed

of the propagators between the γ insertions for vertex operators and the β insertions for

the PCOs:

Ri a = Sα(zi −xa |τ)
dxa

dzi
. (3.67)

The entries of M̃β and R̃β are exactly the same, except for the spin structure and polariza-

tion vectors.

At first, it may appear that (3.63) cannot be equivalent to the earlier expression (3.40):

not only are the various Pfaffians different, but there are also Slater determinants as well

with apparent dependence on the locations of the PCOs. By usual BRST arguments this

expression must be independent of the PCOs locations xa , but there appear to be various

poles in Mα and M̃β when these points coincide with the locations of the vertex operators

zi . However, by carefully considering the limit where xi → zi , it can be shown that all

these apparent singularities vanish, and the resulting expression is in fact equal to (3.40).

By Liouville’s theorem, this means that (3.63) and (3.40) are equivalent representations of

the even spin structure contribution to the amplitude. A similar story holds for the odd

spin structure, although this will not be present explicitly here.

With the expression (3.63) for the amplitude it is now easy to study the behaviour of

the amplitude near the non-separating degeneration using the local model (3.61). All the

ingredients in the amplitude which are associated uniquely with the torus simply remain

on the ΣR factor without contributing any dependence on the parameter s. In particular,

the integrals over d10p and dτ, as well as Zα;β simply move onto ΣR as s → 0. The odd spin

structure also contributes nothing to the ΣL branch since there is no odd spin structure

on the sphere.
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As the separating cycle is pinched, nL of the vertex operators move onto ΣL , while the

remaining nR = n −nL remain on ΣR . The PCOs locations also divide themselves between

the two factors; in order for the result to be non-vanishing, there must be nL −1 of the

xa on ΣL and nR +1 on ΣR . Near the boundary divisor, there is a natural identification of

three of the moduli in play: the modulus s, and the locations of the two new fixed points

w, y . These will contribute to the overall measure as [24]

dw dy
ds

s2
, (3.68)

by the scaling properties of (3.61). The form degrees in w, y will be absorbed by the various

Pfaffians and scattering equations.

Turning to the behaviour of the Pfaffians as s → 0, every entry in Mα falls into one

of two classes: either both of its indices are on the same side of the separating cycle, or

they are on different sides. If z, z ′ ∈ΣL , then as s → 0 the Szëgo kernel Sα(z − z ′|τ) simply

reduces to the Szëgo kernel on ΣL , and similarly for z, z ′ ∈ΣR .

On the other hand, when z ∈ΣL and z ′ ∈ΣR , homogeneity and conformal invariance

dictate that the Szëgo kernel behaves like

Sα(z − z ′|τ) =
p

sp
dw

√
dy

p
dz

p
dw

z −w
Sα(y − z ′|τ)+O(s3/2), (3.69)

as s → 0. Similar reasoning dictates that the propagator S̃1 behaves as

S̃1(z, z ′|τ) = s

dy

dz

z −w
S̃1(y, z ′|τ)+O(s2), (3.70)

in this situation.

This gives the behaviour of the entries in Mα in the s → 0 limit. For instance, if

xa , xb ∈ΣL then

Aab =
√

dxa
√

dxb

xa −xb

∑
i , j∈L∪{w}

ki ·k j
dxa dxb

(xa − zi )(xb − z j )
+O(s). (3.71)

Using (3.18)–(3.19) in conjunction with (3.69)–(3.70) it is easy to see that for a general

entry in Mα:

(Mα)iL jL → (ML)iL jL , (Mα)iR jR → (MR
α)iR jR , (3.72)
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where ML is the matrix for the genus zero amplitude on ΣL with external particles in L∪{a}

and MR
α is the matrix for the genus one amplitude on ΣR with external particles in R ∪ {b}.

There are also entries in Mα which tie together locations on opposite sides of the

separating cycle. A simple calculation reveals that for xa ∈ΣL , xb ∈ΣR ,

Aab =
p

sp
dw

√
dy

√
dxa

p
dw

xa −w
Sα(y −xb |τ)

×
( ∑

i∈L∪{w}

∑
j∈R∪{y}

ki ·k j
dxa

xa − zi
S̃1(xb , z j |τ)+ ∑

i∈L∪{w}
ki ·p dxb

dxa

xa − zi

)
+O(s3/2) (3.73)

as s → 0. Likewise, for xa ∈ΣL and zi ∈ΣR ,

Ci a =
p

sp
dw

√
dy

√
dxa

p
dw

xa −w
Sα(y − zi |τ)

∑
j∈L∪{w}

ϵi ·k j
dxa

xa − z j
+O(s3/2), (3.74)

and for zi ∈ΣL , z j ∈ΣR ,

Bi j =
p

sp
dw

√
dy

√
dzi

p
dw

zi −w
Sα(y − zi |τ) ϵi ·ϵ j +O(s3/2). (3.75)

In each of these entries, there is a product ei ·e j , where eµ is either a momentum or

polarization vector. Using the completeness relation these contractions can be written in

terms of polarization vectors:

ei ·e j = eµi eνj

(∑
ϵI

ϵa µϵb ν−
kR µkR ν

k2
R

)
,

where the sum runs over the possible polarizations of the internal particle. The second

term in this expression is actually just a gauge transformation so it can be neglected. Upon

inspecting (3.73)-(3.75), the completeness relation actually generates all the entries in the

(2w)th row and column of ML as well as the (2y)th row and column of MR
α, up to an overall

factor proportional to
p

s.

Using the basic properties of Pfaffians the behaviour of Pf(Mα) as the separating cycle

is pinched is:

Pf(Mα) →
p

sp
dw

√
dy

Pf(ML) Pf(MR
α), (3.76)
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where ML is the 2nL ×2nL matrix at genus zero and MR
α is the 2(nR +1)×2(nR +1) matrix

at genus one. The final ingredient is given by the factorization of the determinant |Rα|,
which is guaranteed by the properties of the βγ-system.9 In particular:

|Rα|→ 1p
s
|RL| |RR

α|, (3.77)

for the appropriate (nL + 1)× (nL + 1) Slater determinant on ΣL and (nR + 1)× (nR + 1)

determinant on ΣR . The factor of s−1/2 ensures the appropriate homogeneity, since there

is now a row corresponding to w in RL and a row corresponding to y in RR
α.

Pulling all the pieces together, the genus one amplitude near the separating boundary

divisor looks like:

∫
z12z2w zw1

dz1 dz2dw

∏
i∈L\{1,2}

δ̄ (ki ·P (zi ))
Pf(ML)

|RL|
Pf(M̃L)

|R̃L|
ds

s
δ̄

(
sF +k2

R

)
d10p dτ δ̄

(
P 2(y)

) ∏
j∈R

δ̄
(
k j ·P (z j )

) ∑
α;β

(−1)α+βZα;β(τ)
Pf(MR

α)

|RR
α|

Pf(M̃R
β

)

|R̃R
β
|

. (3.78)

As expected, there is only a simple pole in the degeneration modulus s; taking the residue

of this pole sets the momentum flowing across the cut to be null (k2
R = 0), and it is easy

to show that the resulting on-shell amplitudes for ΣL and ΣR are equivalent to the genus

zero NS-NS formula and (3.63) respectively.

Hence, the genus one amplitude of the ambitwistor string factorizes correctly in the

separating channel. Note that in this case the resulting amplitudes were identified as the

tree-level and one-loop with bosonic external states. This is because the Ramond sector

cannot contribute to the separating degeneration, since the resulting amplitudes would

have only one external fermion and therefore vanish.

9This behaviour is universal for the superconformal ghost system, or for any general Slater determinant,
in superstring as well as the ambitwistor string.
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3.5 The IR behaviour of the one-loop amplitude

It is far from obvious that the prescription given by the ambitwistor string reproduces the

one-loop amplitudes of type II sugra. The fact that the amplitude is presented in terms of

elliptic functions and as an integral over the moduli space of a marked torus makes it look

much more like a string theory amplitude than a field theory one. Compelling evidence

was given at the end of the last section where the ambitwistor string amplitude was shown

to factorize as expected from a field theory, not as a string theory. In particular no tower of

massive modes is observed running in the loop. Still it would be better to have a proof of

the equivalence between the ambitwistor prescription and usual field theory. Even at low

points this is not a trivial task, it entails finding all solutions to the one-loop scattering

equations, evaluating the integrand on top of them and summing over the whole set of

solutions. The integrand itself is not very friendly, depending on rational functions of

elliptic functions summed over the different spin structures on the torus.

The aim of this chapter is to provide more evidence that (3.40) and (3.42) indeed

reproduces the amplitudes of type II sugra. In order to do so I’ll study the simplest

amplitude with four external NS-NS states in a particular kinematical regime, the deep

IR. In this region the scattering equations simplify enough so that, with the help of some

numerics, explicit solutions can be found. Since the sugra loop amplitudes are in general

divergent in 10 dimensions I stripping out the integration over the zero modes of P ,

which gives the ambitwistor integrand. This integrand is evaluated on the solutions of

the scattering equations, summed over them, and matched explicitly with the integrand

obtained from field theory, including non-trivial kinematic dependence. I’ll also give

some conjectures about the contribution of the scattering equations to the integrand for

any number of external particles.

In this section the loop momenta will be denoted by ℓ, the reason for this change

of notation will become clear later. The usual Mandelstam variables will be denoted by

s = (k1 +k2)2, t = (k1 +k4)2, u = (k1 +k3)2. The holomorphic derivative of the propagators

with respect to the worldsheet coordinate is denoted by a prime, that is ∂
∂z S(z|τ) = S′(z|τ).

Finally S(zi j ) = Si j without any explicit label for spin structure will stand for the propaga-

tor in the odd spin structure.

3.5.1 Boundary behaviour of the ambitwistor amplitude

The factorisation of the amplitude on the boundaries of the moduli space was already

studied in section 3.4. Here I’ll start by describing a subtlety of this limit when q is small

but finite. Consider the kinematic regime where the loop momenta ℓ2 → 0. In this region
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a factor of the ambitwistor integrand should produce a factor of 1/ℓ2. This behaviour is

insensitive to the number of external particles so it should come from an universal feature

of the amplitudes. Indeed, it is the Jacobian coming from solving the scattering equations

that produces this term. This Jacobian has to contain all the information about the scalar

propagators of the amplitude, as it does in the CHY formulas at tree level. The difference

is that at one-loop there is an extra loop momentum which is not localised. The structure

of the Jacobian is:

J =
(

Ai j Bi

C j D

)
(3.79)

where

Ai j =
ki ·k j S′

i j , if i ̸= j ,∑
l kl ·ki S′

i l , if i = j ,
(3.80)

with

Bi = ℓ ·ki S′
0i +

∑
j

ki ·k j S j 0S′
i 0 , (3.81)

Ci =
∑

j
ki ·k j∂τSi j , (3.82)

D =∑
i
ℓ ·ki∂τSi 0 +

∑
j ̸=i

ki ·k j Si 0∂τS j 0 . (3.83)

After solving the scattering equations, the integrand for the amplitudes is computed

by evaluating the Pfaffians and the Jacobian on these solutions and summing over all of

them10. Schematically:

∑
solutions

Pf(M)Pf(M̃)

J
= “generalized integrand", (3.84)

where the right hand side stands for the result of bringing under the same integral sign

the field theory integrands corresponding to the the various Feynman graphs.

In section 3.1.1 it was shown that when ℓ→ 0, the parameter q can be consistently

considered to vanish as well for certain solutions of the scattering equations. The converse

is not necessarily true; in principle, there could be solutions for which ℓ2 → 0 but q

stays finite and the following analysis won’t be sensitive to those solutions. By general

worldsheet factorisation arguments even is such solutions exist they shouldn’t contribute

to IR divergences.

10Here a sum over the spin structures has been omitted for clarity.
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At q = 0 and ℓ2 = 0, the n scattering equations reduce n −1 independent ones

P ·ki (zi ) = ℓ ·ki +
∑
j ̸=i

πki ·k j

tan(πzi j )
= 0. (3.85)

where only leading terms in the expansion of the propagator11 were kept. The last equation

(3.12), that is P 2 = 0, is automatically satisfied at q = 0; the finite piece cancels due to a

trigonometric identity, somewhat analogous to a partial fraction decomposition

1

tan(πzi j ) tan(πz j k )
+ 1

tan(πz j k ) tan(πzki )
+ 1

tan(πzki ) tan(πzi j )
=−1, (3.86)

valid for any set of three complex numbers zi , z j , zk .

At this stage, the choice of which propagator to use is immaterial since q = 0 is equiv-

alent to 1/Imτ= 0, so that both propagators coincide. But at finite q there is a possible

difference and using the full propagator obscures the correct 1/ℓ2 behaviour, thereby

motivating the choice of a holomorphic representation in this section.

Consider the case of a large but not infinite Imτ, or small but nonzero q . Working with

the full propagator (3.9), that is, the one with the non-holomorphic term, the ϵ= 1/Imτ

correction is much bigger than corrections of order q . So it makes sense to consider

corrections of order ϵ, such that zi = z0
i +ϵzϵi is a new solution to the scattering equations.

The first P (zi ) ·ki , i = 1, · · ·n −1 equations are still satisfied at order zero while the

O(ϵ) terms give a system of linear equations for the zϵi . Once plugged back in the last

equation P 2(z0) = 0, the zeroth order cancels again but the O(ϵ) seems to undergo no

further obvious cancellations, indicating that ϵ is of the order of the zero mode part ℓ2.

This,a priori, is a possibility. Knowing that the expected leading infrared behaviour of

the integrand is 1/ℓ2, it means that the Jacobian should be of order 1/ϵ, that is, Imτ. As

the analysis below will demonstrate, the presence of τ derivatives in the Jacobian always

produces order O(ϵ2) terms due to the fact that ∂τ(1/Imτ) = (2i)−1(Imτ)−2. This second

order contributions to the Jacobian in turn seems to give an incorrect IR behaviour, of the

form
dℓ

ϵ2
∼ dℓ

ℓ4
instead of the expected 1/ℓ2.

On the other hand, dropping the non-holomorphic part of the propagator, the first

small correction to be turned on is of order q . The same analysis as above holds, but with

ϵ= q ∼ ℓ2. This is easily seen to produce the correct qualitative IR behaviour since the τ

derivatives do not change anymore the overall degree of ϵ; ∂τq = 2iπq . This motivates the

choice to adopt the purely holomorphic propagators from now on.

11See appendix A for one loop formulas and identities
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+l -l

Fig. 3.2 4-point pinched torus creates a 6-point sphere with two back-to-back momenta.

Now, back to studying the behaviour of the Jacobian (3.79) on the support of solutions

for which ℓ2 → 0 implies q → 0. The propagators themselves reduce to 1/tan trigonomet-

ric functions, as in (3.85). The derivatives of the propagator with respect to the coordinates

zi are finite

S′
i j →− π2

sin2(πzi j )
+O(q) , (3.87)

but the τ derivatives are of order q

∂τSi j = 8iπ2q sin(2πzi j )+O(q2) . (3.88)

Therefore, the last line of the Jacobian (3.79) is proportional to q , which means that

|J | → q|M | where M has no other dependence on q at leading order. Since ℓ2 ∝ q for

small q this explains how the Jacobian produces the scalar propagator that is going on

shell. Schematically;
1

Jacobian
∝ 1

ℓ2
. (3.89)

Before moving on it is good to recall once again the geometry of pinching a non-trivial

cycle in the torus. The factorisation properties of the ambitwistor string in the q → 0 limit

are very reminiscent of the traditional picture in string theory. In particular, the fact that

the torus pinches in the limit is completely compatible with factorisation of the amplitude

in the ℓ2 = 0 channel. The resulting geometry can be interpreted as the forward limit of

an (n +2)-point tree-level amplitude, where the two new punctures have back to back

momentum ℓµ and −ℓµ, see figure 3.2. Since the external kinematics are not generic the

number of independent solutions is smaller in this limit.

Numerically (using the simple NSolve routine of Mathematica), there are at 6,7 and 8

points, 2,12 and 72 solutions respectively. A reasonable conjecture for the generic pattern

of the number of solutions is (n −3)!−2(n −4)!;

N forward−tree
sols = (n −3)!−2(n −4)! . (3.90)

This is just a conjecture, so far there is no satisfactory proof of this. Table 3.1 displays the

known number of solutions for generic kinematics, the number of solutions in the forward
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ℓ+ki

ℓ
ℓ−k j

i j
Fig. 3.3 Typical IR divergences in theories of gravity.

limit at low number of points and the number of trivalent diagrams at n points. This

emphasises that the number of solutions is much smaller than the number of diagrams at

tree level.

n N tree
sols N forward−tree

sols Number of cubic graphs

4 1 ; 3
5 2 ; 15
6 6 2 105
7 24 12 945
8 120 72 10395

Table 3.1 Number of solutions to the tree-level scattering equations (known to be (n −3)!),
number of solutions in the forward kinematics, number of cubic graphs; (2n −5)!!.

Since the geometry is similar to tree-level, it is expected that the number of boundary

solutions to the one-loop scattering equations is equal to the number of solutions in the

tree level forward kinematics, making it equal to (n −3)!−2(n −4)!. Numerical agreement

with this claim was observed at 4 and 5 points, at 5 points the one-loop system was solved

for vanishing q . If there exists additional solutions which are not sent to the boundary of

the moduli space in this limit, then the analysis done so far is insensitive to it. Therefore

the total number of solutions is bounded by the number of conjectured tree-level forward

solutions;

N 1−loop
sols ≥ (n −3)!−2(n −4)! . (3.91)

3.5.2 Three propagators on-shell

The kinematic regime in which analytic results will be obtained is characterised by the

fact that three adjacent propagators are going on shell, ℓ2, (ℓ+ki )2, (ℓ−k j )2 → 0. From

the point of view of the pinched worldsheet described before, this can be seen as a sort

of a double collinear limit, where the loop momentum ℓµ is tuned to be collinear with

two external particles kµi and kµj . The leading infrared divergence originates from the

configuration where the legs i and j are adjacent, as pictured in 3.3,
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which gives the following behaviour

leading IR ∼ 1

(ℓ ·ki )ℓ2(ℓ ·k j )
(3.92)

up to an overall product of propagators corresponding to the ordering of the graph. In

gauge theory, these would be dressed with appropriate colour factors selecting possible

divergences. In gravity or QED [65] this is not the case, since all orderings contribute

equally. Therefore these divergent terms can be grouped under the same integration sign.

As will be shown later, the explicit solutions of the scattering equations in this IR regime

modify the scaling of q to

q ∝ ℓ2(ℓ ·ki )(ℓ ·k j ) . (3.93)

From this the qualitative IR behaviour of the ambitwistor Jacobian can be obtained.

It follows from the fact that the Jacobian is of order q in this limit and the leftover deter-

minant is finite and nonzero, as in (3.89). At four points, this can be made very precise.

Consider taking ℓ2 → 0 as well as taking the loop momenta to be collinear with particles 2

and 3. The boxes which contribute to the the leading IR divergence are given in figure 3.4.

ℓ−k2

ℓ

ℓ+k3

1

2 3

4

ℓ

4

2 3

1

ℓ

1

3 2

4

ℓ

4

3 2

1
a) b) c) d)

Fig. 3.4 The four boxes that contribute to the IR divergence

Their contribution is

boxa = 1

2ℓ ·k4 + s
boxb = 1

−2ℓ ·k4 +u

boxc = 1

2ℓ ·k4 +u
boxd = 1

−2ℓ ·k4 + s

(3.94)

up to a global divergent factor
−1

4(ℓ ·k2)ℓ2(ℓ ·k3)
. (3.95)

Bringing all these divergent integrands under the same integral sign, gives the leading IR

divergence
−1

2(ℓ ·k2)ℓ2(ℓ ·k3)

( −stu + t (2ℓ ·k4)2

(s2 − (4ℓ ·k4)2)(u2 − (4ℓ ·k4)2)

)
. (3.96)
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It is this non-trivial factor, including its functional dependence on the last propagator

ℓ ·k4, that will be matched against the ambitwistor integrand in the following sections.

3.5.3 Numerator structure

The Pfaffians entering (3.40) may seem to be extremely complicated objects, as they

depend on various theta functions and derivatives thereof. It is far from obvious that these

objects not only give rational functions of the kinematic invariants but also reproduce the

very simple integrands of maximal supergravity. However, these type of spin structure

sums are well known in RNS string amplitudes, for which simplifications arise due to

Riemann’s theta-function identities (see for example [66]). The identity needed here is

∑
α=1,2,3,4

(−1)α−1
4∏

i=1
θα(vi ) =−2

4∏
i=1

θ1(v ′
i ) , (3.97)

with v ′
1 = 1

2 (−v1 + v2 + v3 + v4), v ′
2 = 1

2 (v1 − v2 + v3 + v4), v ′
3 = 1

2 (v1 + v2 − v3 + v4), v ′
4 =

1
2 (v1 + v2 + v3 − v4).

This identity gives rise to four vanishing identities

∑
α=2,3,4

(−1)α−1θα(0|τ)4

η(τ)12
(τ) = 0,

∑
α=2,3,4

(−1)α−1θα(0|τ)4

η(τ)12

n∏
r=1

Sα(zr ) = 0,

(3.98)

for n = 1,2,3, where the zr ’s are arbitrary. The first non-vanishing identity is

∑
α=2,3,4

(−1)α−1θα(0|τ)4

η(τ)12

4∏
i=1

Sα(zi |τ) =−(2π)4 , (3.99)

for z1 +·· ·+ z4 = 0. In order to write (3.99), the identity

∂zθ1(0|τ) =πθ2(0|τ)θ3(0|τ)θ4(0|τ) = 2πη3(τ) (3.100)

was used. The Dedekind η functions was introduced in order to have the partition func-

tions Zα defined in (3.29) explicit in the left hand side of (3.98), and (3.99). These identities

imply, as in string theory, that the 0, 1, 2 and 3-point amplitudes vanish due to target

space supersymmetry. This is a statement about the numerator of the integrand, the

scattering equations should still be valid for n ≤ 4. The 4-point amplitude simplifies con-

siderably and the whole ambitwistor numerator boils down to a single kinematical term,
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the t8F 4t8F̃ 4 = t8t8R4 tensor. This is the only kinematic invariant at four points allowed

by maximal supersymmetry of the form R4.12 In In the ends the four point amplitude is

simplifies to

I4 = t8t8R4
∫

dτdz2dz3dz4δ̄(P 2(z0))δ̄(k2 ·P (z2))δ̄(k3 ·P (z3))δ̄(k4 ·P (z4)) . (3.101)

The leftover physics of the integrand is captured solely by the Jacobian. Its evaluation on

top of the solutions of the scattering equations should reproduce the the one-loop four-

graviton integrand, which is a simple sum of scalar box integrands [68]. This also gives a

tempting interpretation of integrals of the type of I4 for generic n as a representation of

scalar n-gons integrals.

3.5.4 IR solution to the four-point one-loop scattering equations

The manifestly holomorphic scattering equations are 13

ℓ ·ki +
∑
j ̸=i

ki ·k j Si j = 0, i = 2, . . . ,n −1 (3.102a)

ℓ2 +2
n∑

i=1
ℓ ·ki S0i +

n∑
i ̸= j

ki ·k j S0i S0 j = 0. (3.102b)

The last equation may be rewritten as

0 = ℓ2 −2
∑

1≤i< j≤4
ki ·k j

(
S0i Si j +S j 0S0i +Si j S j 0

)
. (3.103)

on the support of the other equations. It is now easy to check that this equation has no

poles in z0 and since it is a holomorphic elliptic function on z0 without any poles, by

Liouville’s theorem it has to be a constant.

The kinematical regime to be studied is given by ℓ ·k1 and ℓ ·k4 and sending ℓ ·k2 → 0

and ℓ ·k3 → 0, with ℓ ·k2 < ℓ ·k3. In this regime, the equations that need to be solved are

similar to the 6-point tree-level equations, which are easy to solve numerically. The first

12The field strength Fµν is the linearized field strength defined by Fµν = εµkν − kµεν and Rµνρσ =
FµνFρσ. The t8 tensor is defined in [67, Appendix 9.A], where it is given by t8F 4 = 4Tr(F (1)F (2)F (3)F (4))−
Tr(F (1)F (2))Tr(F (3)F (4)) + perms(2,3,4), traces are taken over the Lorentz indices. In the spinor-
helicity formalism one has 2t8F 4 = 〈12〉2[34]2 and 4t8t8R4 = 〈12〉4[34]4. Note also that 〈12〉2[34]2 =
ist Atr ee (1−,2−,3+,4+) where Atr ee is the tree level four graviton amplitude.

13Note that the (n+1)-th equation ℓ ·k1 +∑
j ̸=1 k1 ·k j S1 j = 0 holds automatically by momentum conserva-

tion
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outcome of the numerics is that for q = 0 and ℓ2 = 0 there are only two solutions, complex

conjugate to one another. This still holds after turning on a small but finite q .

The second one is that the leading part of the positions of the vertex operators scale

as;
iπz2 = log(

√
ℓ ·k2c2)

iπz3 =− log(
√
ℓ ·k3c3)

(3.104)

where c2 and c3 are complex constants of mass dimension (−2), to be determined. Finally,

it should be noted that the signs are obtained for a given kinematic configuration, that is

ℓ ·k2 < ℓ ·k3. For consistency, in other kinematical configurations the signs might change.

Now, declare that (3.104) an ansatz, in which c2, c3 and z4, or rather

c4 := exp(−2iπz4) , (3.105)

are unknowns to be determined to first order in q,ℓ·k2,ℓ·k3. In this manner, the scattering

equations can be simplified by Taylor expanding the propagators

icot(πz21) = 1+2ℓ ·k2c2

icot(πz23) = 1+2ℓ ·k2ℓ ·k3c2c3

icot(πz24) = 1+2ℓ · c2c4

−icot(πz31) = 1+2ℓ ·k3c3

−icot(πz34) = 1+2ℓ ·k3c3/c4

(3.106)

where O(q) terms on the right hand side were omitted for clarity. It is easy to derive similar

rules for any trigonometric function of the same arguments that is required to explicit

evaluate the Jacobian. With these, the k4 ·P (z4) scattering equation simplifies drastically

πcot(πz4) = ℓ ·k4

k1 ·k4
+ iπ

s −u

t
(3.107)

from which c4 can be extracted. The scattering equations k2 ·P (z2) and k3 ·P (z3) can be

rewritten, at leading order,

2ℓ ·k2 − is(1+2ℓ ·k2c2)− it (1+2ℓ ·k2ℓ ·k3c2c3)− iu(1+2ℓ ·k2c2c4) = 0,

2ℓ ·k3 + iu(1+2ℓ ·k3c3)+ it (1+2ℓ ·k2ℓ ·k3c2c3)+ is(1+2ℓ ·k3c3/c4) = 0.
(3.108)
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After using momentum conservation, these reduce to a degenerate system of quadratic

equations with unique solution given by

c2 = iℓ ·k4 −πu

πtℓ ·k4
,

c3 =− iℓ ·k4 +πs

πtℓ ·k4
,

c4 =− πs + iℓ ·k4

πu − iℓ ·k4
.

(3.109)

The last scattering equation, P 2(z0), can now be used to determine q to first order,

considering the new scaling (3.104) in this limit. The Fourier-Jacobi expansion includes

sine functions as coefficients of q . These produce divergent terms when its arguments

involve momenta becoming collinear to ℓµ. In particular, it is not hard to see in (3.103)

that the most divergent term will come from sin(2πz23), so that

0 = ℓ2 +4π2qk2 ·k3 (S23S30 +S32S20)
∣∣
(q) , (3.110)

at leading order. To extract the exact value of this term, use the independence of P 2(z0)

with respect to z0 and set z0 = 1/2. In this case, the cot(πz20) and cot(πz30) terms become

tan’s which are readily evaluated to ±i , as in (3.106) (recall that z1 = 0). Finally the modular

parameter is fixed to:

q =− c2c3

8π2k2 ·k3
ℓ2(ℓ ·k2)(ℓ ·k3) . (3.111)

This equation indicates that the scaling of q is not only dictated by the ℓ2 → 0 but also by

the collinear ℓ ·k2 → 0 and ℓ ·k3 → 0 and other kinematic invariants, as claimed in section

3.5.2.

The final part of the computation is the determination of the Jacobian. This will verify

that there are no further divergences that could change this IR behaviour, and will match

the ambitwistor prescription to the field theory result (3.96).

3.5.5 Computation of the Jacobian

First, observe that since q was stripped off from the Jacobian, no more factors of ℓ ·k2 or

ℓ ·k3 can contribute at first order.14 Thus, this stripped determinant depends only on c4,

s, t ,u and ℓ ·k4.

14There are possible divergences inside the Jacobian. It is not hard to see that they multiply terms of order
ℓ ·k2ℓ ·k3 inside the Jacobian, thus rendering them finite. This pattern extends to higher points.
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Analytically evaluating it gives a remarkable simplification of the determinant, which

reduces to a single term:

J =−64qiπ7t 2(ℓ ·k4)2 . (3.112)

Replacing q (3.111) as well as c2 and c3, gives:

J =−16iπ3ℓ
2(ℓ ·k2)(ℓ ·k3)

t
(πu − iℓ ·k4)(πs + iℓ ·k4) . (3.113)

At this point, there is already an interesting combination appearing on the right side of

the last expression. This is highly reminiscent of a combination of two IR boxes in fig. 3.4,

up to a rescaling of ℓ→ 2iπℓ.

The last step of the prescription is to sum over the solutions of the scattering equa-

tions. At four-point two solutions contribute to this IR limit, the one just described and its

complex conjugate. Before performing this sum a last subtlety must be addressed; the Ja-

cobian contains a ∂τ derivative, which is not a holomorphic operation on q . Therefore, the

evaluation of the Jacobian for the second solution, denoted J̃ , is obtained by exchanging

the zi ’s and q for their complex conjugate, while not complex conjugating the i coming

from ∂τ = 2iπq∂q . The final result is:

1

J
+ 1

J̃
= −1

(16iπ3)ℓ2(ℓ ·k2)(ℓ ·k3)

2π2stu +2(ℓ ·k4)2

((πu)2 + (ℓ ·k4)2)((πs)2 + (ℓ ·k4)2)
, (3.114)

which is exactly the sum of symmetrized boxes (3.96), after rescaling ℓ→ 2iπℓ.

Note that nowhere in this computation the spacetime dimension was used explicitly.

This is evidence that the result is actually independent of the spacetime dimension, and

that the integral eq. (3.101) is well defined in any dimension.

3.5.6 Extension to n points

Remarkably, the solution presented above extends straightforwardly to n points, at least

qualitatively. Going again to the limit where three adjacent propagators go on shell, use the

ansatz of eq. (3.104). The qualitative behaviour follows from the fact that the arguments

given for factoring q out of the Jacobian still hold, and so does the scaling obtained in

eq. (3.111). Therefore, it is immediate that the Jacobian possess terms with the qualitative

IR behaviour expected from scalar n-gons. This strengthens the interpretation of the scalar

integrals of the type of (3.101) as scalar n-gons, which can be defined in any dimension.

It is even possible to actually extract information on the behaviour of z2 and z3 in this

limit. The scattering equations for z2 and z3 are solved exactly in the same manner as
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above in (3.108), these are:

2ℓ ·k2 − ik1 ·k2(1+2ℓ ·k2c2)−ik2 ·k3(1+2ℓ ·k2ℓ ·k3c2c3)

−i
n∑

j=4
k2 ·k j (1+2ℓ ·k2c2c j ) = 0,

(3.115)

and
2ℓ ·k3 − ik1 ·k3(1+2ℓ ·k3c3)+ik2 ·k3(1+2ℓ ·k2ℓ ·k3c2c3)

+i
n∑

j=4
k3 ·k j (1+2ℓ ·k3c3c j ) = 0,

(3.116)

where the c j for j ≥ 4 are defined similarly to c4 in (3.105).

These equations can be solved as in (3.109), using momentum conservation and

replacing k2/3 ·k4c4 by the sum
∑

j=1 k2/3 ·k j c j . The unknowns c2 and c3 can be expressed

in terms of c4 as:

c2 = 1

iπ(k1 ·k2 +k2 ·k4c4)
, c3 = −c4

iπ(k1 ·k2 +k2 ·k4c4)
. (3.117)

It is now straightforward to replace c4 by its n-point value. A more precise statement would

require solving for the remaining c j , which quickly becomes difficult for large values of n.
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3.6 Non-minimal ∞-tension limit of the pure spinor

In the context of superstring theory, the pure spinor formalism gives a manifestly super-

Poincaré-invariant quantization which avoids the difficulties of dealing with space-time

supersymmetry or light-cone gauge in the RNS and Green-Schwarz formalisms, respec-

tively [48, 50, 51]. By now the pure spinor formalism has been used extensively in the

study of perturbative scattering amplitudes, enabling explicit calculations at higher-genus

which have so far been beyond the reach of other methods, see for example the three loop

calculation in [69].

A pure spinor version of the chiral, ‘infinite tension’ worldsheet model has also been

proposed [49], and shown to give the correct tree-level S-matrix of fully supersymmetric

type II supergravity [58]. Given the efficacy of the pure spinor approach to superstring am-

plitudes at higher genus, it seems natural to ask if there is a prescription for the calculation

of loop integrands in supergravity using this formalism.

In the superstring context, higher genus prescriptions can be made using the ‘minimal’

worldsheet variables; unfortunately, it entails the use of complicated picture changing

operators to define the functional integrals [70]. Furthermore, the prescription for inte-

grating over the worldsheet modular parameters requires an effective b-antighost which

is not manifestly covariant, its the definition depends on the choice of a patch of pure

spinor space [71]. While explicit calculations at genus one [70, 72] and two [73, 74] can

be made with this formalism, the picture changing operators complicate the functional

integration and break manifest Lorentz covariance at intermediate stages, although the

final amplitudes are covariant [75].

A more elegant prescription is provided by adding non-minimal worldsheet variables

to the model and modifying the BRST charge [76, 77]. This eliminates the need for picture

changing operators and allows one to define a covariant effective b-ghost to perform

moduli integrals. In this section definitions of non-minimal versions of the supergrav-

ity worldsheet model worldsheet action, BRST charge, effective b-ghost, and regulator

prescriptions will be given. In many aspects, these objects closely resemble (or are even

identical to) their string theoretic counterparts, while also inheriting much of the structure

of pure spinor worldline formalisms for supergravity [52, 78].

Following the non-minimal pure spinor superstring, define the non-minimal version

of the model (2.39) by adding two sets of worldsheet fields: bosonic spinors λ̄α, ˜̄λα̃ and

fermionic spinors rα, r̃α̃, along with their respective conjugate fields w̄α, ˜̄wα̃ and sα, s̃α̃.

These variables obey the constraints

λ̄αγ
αβ
m λ̄β = 0 = ˜̄λα̃γ

α̃β̃
m

˜̄λβ̃ , λ̄αγ
αβ
m rβ = 0 = ˜̄λα̃γ

α̃β̃
m r̃β̃ . (3.118)
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This means that λ̄, ˜̄λ are pure spinors of opposite chirality to λ, λ̃; if the space-time sig-

nature is taken to be Euclidean, then they can be interpreted as complex conjugates of

the original variables. The constraints also restrict the fermions r, r̃ to having eleven

independent components.

The modified action is

S = 1

2π

∫
Σ

Pm ∂̄X m +pα ∂̄θ
α+wα ∂̄λ

α+ w̄α ∂̄λ̄α+ sα ∂̄rα + tilded. (3.119)

The constraints ensure that the w̄ λ̄-system contributes +22 units of central charge, which

is balanced by the −22 contributions from the r s-system. Hence, the condition for the

conformal anomaly cancellation, is unchanged, that is, this non-minimal worldsheet

model has critical dimension d = 10, just like the minimal version. The action for the

non-minimal fields is free, but the various constraints require a careful treatment of their

OPEs. In particular, the variables of conformal weight (1,0) can only appear in currents

that are invariant under the gauge transformations induced by the pure spinor constraints.

These are precisely the same as those used in the superstring [76]:

N̄mn = 1

2

(
w̄γmnλ̄+ sγmnr

)
, J̄ = w̄ · λ̄+ s · r , Tλ̄,r =−w̄α∂λ̄α− sα∂rα ,

Smn = 1

2
(sγmnλ̄) , S = s · λ̄ . (3.120)

The currents for the tilded variables are identical, and have the same conformal weight as

the untilded-tilded currents. The various OPEs between these currents are collected in

appendix B for reference.

Define the non-minimal BRST operator to be

Q =
∮
λαdα+ λ̃α̃d̃α̃+ w̄αrα+ ˜̄w α̃r̃α̃ , (3.121)

which is nilpotent due to the pure spinor constraint. Since the ‘quartet’ of non-minimal

variables do not affect Q2 = 0, standard arguments [79, 80] ensure that they have no impact

on the BRST cohomology. In particular, external supergravity states can be represented in

the non-minimal worldsheet model by the same fixed (2.43) and integrated (2.44) vertex

operators used in the minimal model.

Note that just as the minimal model and BRST charge (2.39), (2.42) resemble a holo-

morphic complexification of the pure spinor superparticle, the non-minimal action and

BRST charge (3.119), (3.121) are a holomorphic complexification of the non-minimal
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superparticle developed in [78]. This worldline formalism has been used to check the

UV divergence structure of maximally supersymmetric supergravity loop amplitudes [81],

suggesting that the worldsheet model should be related to field theory beyond tree-level.

3.6.1 Effective b-ghost

In the RNS formalism for superstring theory, the prescription for integrating over world-

sheet moduli at arbitrary genus is provided by the functional integral over the conformal

bc-ghost system. In the RNS-like worldsheet formulation of supergravity, there are two

conformal ghost systems: one corresponds to gauging the worldsheet stress tensor as

in string theory, while the other corresponds to gauging the Hamiltonian constraint

P 2 = 0 [32]. This latter constraint ensures that the resulting worldsheet correlation func-

tions are supported on the scattering equations – indeed, in the presence of vertex operator

insertions, P 2 = 0 is equivalent to the scattering equations at any genus [5].

Of course, there is no bc-ghost system in either the pure spinor superstring or the

worldsheet model discussed here. In the superstring, a prescription for integrating over

moduli is nonetheless available by defining a composite operator b ∈ΠΩ0(Σ,K 2
Σ), called

an effective b-ghost, which obeys {Q,b} = T . In the worldsheet model, it is also possible to

construct an effective b-ghost, but instead of being related to the stress tensor, this com-

posite operator obeys {Q,b} = P 2. The effective b-ghost of the pure spinor superparticle is

also related to the Hamiltonian constraint (albeit a real function on the worldline rather

than a quadratic differential on the worldsheet), and ensures the gauge invariance of the

propagator [78]. Viewing the worldsheet model as a complexification of the worldline

theory, this choice of ghost will likewise ensure gauge invariance, as well as modular

invariance and the appropriate scattering equations at arbitrary genus.

While the lack of an explicit relationship with the stress tensor is slightly mysterious,

it seems to be related to the fact that both the Virasoro and Hamiltonian constraints are

implied by a single twistor-like constraint in conjunction with a λα constraint15. In the

superstring, the twistor-like constraint implies the Virasoro constraint only [82, 83]. Of

course, the ultimate test of this choice will be the resulting amplitude prescription.

The construction of the effective b-ghost proceeds in direct analogy to the superstring

calculation [76, 84]). So, what is needed is an operator Gα ∈ ΠΩ0(Σ,K 2
Σ) which obeys

{Q,Gα} = λαP 2. Using the various OPEs between currents and fields in the worldsheet

model, it is easy to see that

Gα =−Pm (γmd)α , (3.122)

15See the appendix of [6].
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has the desired property. Now, since

{Q,λαGβ} =λαλβP 2 , (3.123)

the operator (λαGβ−λ((αGβ))) is BRST-closed, where ((· · · )) denotes the symmetric, gamma-

matrix-traceless part. As the Q-cohomology at ghost number one with non-zero conformal

weight is trivial, there must exist some Hαβ of conformal weight (2,0) such that[
Q, Hαβ−H ((αβ))

]
=λαGβ−λ((αGβ)) . (3.124)

A calculation identical to the analogous step in the superstring reveals that

Hαβ = (γmnp )αβ

96

[
(dγmnp d)+24NmnPp

]
. (3.125)

Cohomological arguments allow for the continued construction of a chain of operators,

each related to the previous operator in the chain by the action of Q, until the chain

terminates by virtue of the pure spinor constraint. These operators can then be arranged

into a single composite operator by making use of the non-minimal pure spinor variables:

b =− (λ̄γmd)Pm

λ̄ ·λ − (λ̄γmnp r )

96(λ̄ ·λ)2

[
(dγmnp d)+24NmnPp

]
+ (rγmnp r )(λ̄γmd)

8(λ̄ ·λ)3
N np − (rγmnp r )(λ̄γpqr r )

64(λ̄ ·λ)4
N mn Nqr , (3.126)

which obeys {Q,b} = P 2. The effective b-ghost for the tilded worldsheet fields takes an

identical form. This composite operator is identical to the holomorphic complexification

of the b-ghost appearing in the non-minimal pure spinor superparticle [78, 81], up to an

overall constant factor.

3.6.2 Zero modes measure

In any path integral calculation, regardless of the details of the amplitude prescription,

zero modes of the various worldsheet fields must be integrated over. Remarkably, the

only variable in the model (3.119) which does not appear in the pure spinor superstring is

Pm ∈Ω0(Σ,KΣ); all other worldsheet fields appear as left-movers in the superstring. Hence,

the subtleties associated with their functional integrations can be dealt with in exactly the

same manner as they are handled in the superstring context. Crucially, the tilded sector of

the worldsheet model is just a second (left-moving) copy of the untilded-tilded sector.
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The conformal weight zero matter fields θα, θ̃α̃ have the usual zero mode integration

measures, which will be denoted by d16θ, d16θ̃ at arbitrary worldsheet genus. Likewise,

at any genus the bosonic and fermionic pure spinor variables λα, λ̄α, rα and their tilded

counterparts have eleven zero modes. Since these are identical to the pure spinor variables

of the superstring, we can use the same integration measures that were developed in that

context for both the tilded and untilded-tilded variables. The precise definition of the zero

mode measures can be found in [70, 76, 85]; here they will simply be denoted as [dλ], [dλ̄],

[dr ], etc.

All of the conjugate fields in this model are left-moving, with conformal weight (1,0).

So on a genus g worldsheet, they acquire g zero modes which must be integrated over.

Let f be any such worldsheet field; at genus g it can be expanded as

f → f̂ +
g∑

I=1
f I

z.m.ωI , (3.127)

where f̂ is the quantum (non-zero mode) field, {ωI } form a basis of H 0(Σ,KΣ), and f I
z.m.

are the functions (bosonic or fermionic) which parametrize the zero modes. Choosing a

canonical basis {A1, . . . , Ag ,B1 . . . ,Bg } for H1(Σ,Z) ∼=Z2g and the {ωI } such that∫
AI

ωJ = δI J ,
∫

BI

ωJ =ΩI J , (3.128)

whereΩI J is the period matrix of Σ, the zero mode of a field can be extracted unambigu-

ously as

f I
z.m. =

∫
AI

f .

The various conformal weight one fields which have zero mode structure of this form are

pα, wα, w̄α, sα and their tilded counterparts (the field Pm will be treated later). Once again,

their zero mode integrals can be performed in an identical manner to the left-movers of

the superstring. Hence, the integral over p I
z.m.α is exchanged for an integral over d I

z.m.α,

and the various integral measures are denoted by

[dd ] =
g∏

I=1
[d16d I

z.m.] , [dw] =
g∏

I=1
[d11w I

z.m.] , . . . (3.129)

The technical definitions of these measures can be found throughout the literature on the

pure spinor formalism [70, 76, 85].

Just as in the pure spinor superstring, there are two important subtleties associated

with these zero mode integrations. Firstly, there are non-compact integrals which can
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introduce potential divergences. If the non-minimal formalism is to be equivalent to the

minimal prescription at genus zero, it cannot have new divergences, so these integrals

require regularization. But since the pure spinor variables of the worldsheet model are

identical to the left-moving pure spinor variables of the superstring, the same regulator

can be used. In particular, taking N = exp({Q,χ}) will not affect worldsheet correlation

functions of BRST-closed vertex operators, so on a genus g worldsheet set [76]

χ=−λ̄ ·θ−
g∑

I=1

(
N I

z.m.mn Smn I
z.m. + J I

z.m. S I
z.m.

)
. (3.130)

The exponential suppression then provides a regulator for the large λ, λ̄ region.

The second subtlety arises from the zero mode integration near the tip of the pure

spinor cone, where λ̄ ·λ→ 0. It can be shown that the zero mode measures are convergent

in this region [76, 85]:

[dλ] [dλ̄] [dr ] ∼λ8λ̄11 .

However, the effective b-ghost (3.126) contains a term which diverges like (λ̄·λ)−3 near the

tip of the pure spinor cone. There are 3g −3 insertions of such b-ghosts for any correlator

on a genus g ≥ 2 worldsheet, so potential divergences can arise for g > 2.

Once more, the pure spinor superstring provides a resolution for this problem. There

a solution has be proposed in the form of a BRST-invariant regularization of the effective

b-ghost. While the functional form of (3.126) differs slightly from the effective b-ghost of

the superstring, its dependence on the pure spinor variables is the same, so the same the

pure spinor regularization for the b-ghost given by Berkovits and Nekrasov [77] can be

adopted for the worldsheet model. The precise details of this regularization will not be

needed for the calculations below.

The regularized b-ghost will be denoted by bϵ; accounts of its use in several calcula-

tions can be found in [77, 86, 87]. This prescription has yet to be used in a full, non-trivial

superstring amplitude computation (the divergences do not arise for the four-point func-

tion until g = 5 due to fermionic zero mode saturation). However, any potential issues

which could arise from practical computations in the superstring will be identical in the

worldsheet model.

3.6.3 Amplitude prescription

Given the similarities between the model (3.119) and the superstring, the higher genus

amplitude prescription follows closely [76]. In particular, on a genus g ≥ 2 worldsheet the
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n-point amplitude is defined by the worldsheet correlation function:

M
(g )
n = lim

ϵ→0

∫ 3g−3∏
a=1

dτa

〈
N Ñ

3g−3∏
j=1

δ̄
(
P 2(z j )

)
(bϵ|µ) j (b̃ϵ|µ̃) j

n∏
i=1

∫
Σ
δ̄ (ki ·P (zi )) U (zi )

〉
.

(3.131)

The complex parameters {τa} are the complex structure moduli of the genus g Riemann

surface Σ integrated over the fundamental domain of the modular group16; N ,Ñ are

the regulators defined by (3.130); b, b̃ are the effective b-ghosts of (3.126); ϵ is the regu-

lation parameter of [77]; and U (z) is the integrated vertex operator (2.44). The Beltrami

differentials µ j form a basis of H 0,1(Σ,TΣ), with

(b|µ) := 1

2π

∫
Σ
µ⌟b , (3.132)

and likewise for the tilded variables. The brackets 〈· · ·〉 indicate the correlator in the

worldsheet CFT; that is, integrating over zero modes and eliminating non-zero modes via

worldsheet OPEs. Note that for g = 2, the regulator ϵ can be dropped from this prescription.

As usual, the amplitude prescription for a genus one worldsheet should include a

single fixed vertex operator in accordance with the ghost number anomaly. Thus, the g = 1

amplitudes are defined by

M (1)
n =

∫
dτ

〈
N Ñ δ̄

(
P 2(z1)

)
(b|µ)(b̃|µ̃)V (z1)

n∏
i=2

∫
Σ
δ̄ (ki ·P (zi )) U (zi )

〉
. (3.133)

On the Riemann sphere, we have three fixed vertex operators in accordance with SL(2,C)

invariance, leading to

M (0)
n =

〈
N Ñ

3∏
i=1

V (zi )
n∏

j=4

∫
Σ
δ̄(ki ·P (zi ))U (zi )

〉
. (3.134)

Despite the apparent complexity of the general amplitude prescription, there are

nevertheless some important universal properties which can be easily observed. Note

that with the momentum eigenstates of (2.43), (2.44), the worldsheet field X m enters the

correlator only via the plane wave exponentials ei k·X . Following the strategy adopted

for the RNS-like model [32], the X path integral can be performed explicitly, enforcing

16This is consistent with modular invariance. Modular invariance at the level of the correlation function is
obscured due to the regulator, it only becomes manifest in the final amplitude.
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ten-dimensional momentum conservation and the equation of motion

∂̄Pm(z) = 2πi dz ∧dz̄
n∑

i=1
ki mδ

2(z − zi ) . (3.135)

This indicates that Pm is a meromorphic differential on Σ, with singularities only at the

vertex operator insertions {zi } ⊂Σ.

On a genus g Riemann surface, the kernel of ∂̄ : O → KΣ, denoted by S̃g (z, w |Ω), serves

as the propagator for the P X -system. This is a (1,0)-form with respect to z and a scalar

with respect to w , and can be defined as

S̃g (z, w |Ω) = ∂z Gg (z, w |Ω) , (3.136)

Gg (z, w |Ω) =− ln |Eg (z, w)|2 +2π
g∑

I ,J=1
(ImΩ)−1

I J

(
Im

∫ w

z
ωI

)(
Im

∫ w

z
ωJ

)
, (3.137)

where Eg (z, w) is the prime form [25, 59]. In the limit where z → w , this propagator has

the expected simple pole

lim
z→w

S̃g (z, w |Ω) ∼ dz

z −w
, (3.138)

in appropriately chosen inhomogeneous coordinates on Σ.

The equation (3.135) can be integrated using (3.137), this gives

Pm(z) =
g∑

I=1
ℓI

mωI (z)+
n∑

i=1
ki m S̃g (z, zi |Ω) . (3.139)

Combined with the on-shellness of the {ki }, this indicates that P 2 is a meromorphic

quadratic differential with only simple poles at the vertex operator insertion points:

P 2(z) =
g∑

I ,J=1
ℓI ·ℓJωI (z)ωJ (z)+2

g∑
I=1

n∑
i=1

ℓI ·ki ωI (z)S̃g (z, zi |Ω)

+ ∑
i ̸= j

ki ·k j S̃g (z, zi |Ω)S̃g (z, z j |Ω) . (3.140)

The vectors {ℓI
m} are the zero modes of Pm , associated with homogeneous solutions of

(3.135), whereas the residue of P 2 at zi is easily seen to be

Resz=zi P 2(z) =
g∑

I=1
ki ·ℓI ωI (zi )+ ∑

j ̸=i
ki ·k j S̃g (zi , z j |Ω) . (3.141)
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In light of (3.140), the delta functions appearing in the correlators (3.131), (5.45),

(3.134) have a natural interpretation: they enforce the condition that P 2 = 0 globally on

the worldsheet Σ. As noted in [5], this is the geometric content of the scattering equations

at generic genus. Indeed the amplitude prescription ensures that there are 3g −3+n delta

function constraints for g ≥ 2: n of them to set the residues (3.141) to zero, and 3g −3 to

kill the remaining globally-defined moduli. At g = 0,1 this counting is modified in the

obvious way in accordance with h0(Σ,K 2
Σ(z1 +·· ·+ zn)).

Hence, it is clear that the amplitude prescription will give the expected scattering

equations at a given genus, along with a non-compact zero-mode integral over the {ℓI
m}.

These scattering equations completely fix all the moduli integrals (over {τa} and {zi }) in

terms of the kinematics (the external and loop momenta {ki ,ℓI }). Therefore a general

amplitude takes the form:

M
(g )
n = δ10

(
n∑

i=1
km

i

)∫ g∏
I=1

d10ℓI
3g−3∏
a=1

dτaδ̄
(
P 2(za)

) n∏
j=1

δ̄
(
k j ·P (z j )

)〈
N Ñ · · ·

〉
:= δ10

(
n∑

i=1
km

i

)∫ g∏
I=1

d10ℓI M
(g )
n , (3.142)

where the integrand M
(g )
n represents the full correlator, localized on the support of the

scattering equations with all OPEs and zero mode integrations performed, except for the

loop integrals d10ℓ.

The quantity M(g )
n is conjectured to be equal to the g -loop integrand of type II super-

gravity, before any loop integrals have been performed. What is meant by the ‘integrand’

is a sum over the complete symmetrization of all g -loop Feynman diagrams in the field

theory without performing the loop integrations. Although type II supergravity is UV diver-

gent in ten-dimensions, these divergences are expected to emerge only after performing

the d10ℓ integrals, so the integrand M
(g )
n itself is a well-defined object.

It is far from obvious that the worldsheet correlators will have even the most rudimen-

tary properties of field theory amplitudes, such as being rational functions of the kinematic

data, producing the correct kinematic prefactors, or factorizing correctly. However, it

will be shown that in the special case of the four-point amplitudes, the correlators do

indeed pass several non-trivial tests in favour of the conjecture. In particular, the correct

kinematic prefactor are recovered and the IR behaviour is consistent with supergravity

amplitudes. These tests are enabled by a combination of similar results for the higher-

genus amplitudes of the RNS-like formalism [5, 7], as well as the similarities between this

worldsheet theory and the non-minimal formalism of the pure spinor superstring, where

extensive calculations have been performed explicitly.



3.6 Non-minimal ∞-tension limit of the pure spinor 67

At genus zero, there are no zero modes of Pm to integrate over and the conjecture

reduces to the claim that M (0)
n gives the full tree-level S-matrix of type II supergravity. On

the genus zero worldsheet, the regulator is simply

N = e−λ·λ̄−r ·θ , (3.143)

since none of the conformal weight (1,0)-fields have any zero modes. Performing the X

path integral fixes Pm via (3.139) to be

Pm(z) = dz
n∑

i=1

ki m

z − zi
, (3.144)

so all the remaining fields in the correlator (3.134) are the same as left-moving variables of

the superstring. After contracting all the conformal weight (1,0) fields via their OPEs, the

same strategy as the superstring [76] reveals that after integrating out the non-minimal

variables,

M (0)
n =

∫
[dλ][dλ̃]d16θd16θ̃

n∏
i=4

δ̄ (ki ·P (zi ))λαλβλγλ̃α̃λ̃β̃λ̃γ̃ fαα̃ββ̃γγ̃(θ, θ̃) , (3.145)

where f is a function of the kinematic data, the insertion points, and takes values in

⊗n
i=4K 2

Σ i .

It is easy to see that this is equivalent to the minimal prescription (2.45) given by

Berkovits [49], and in turn proven to give the full tree-level S-matrix of supergravity [58]. So

at genus zero, the non-minimal formalism reduces to the minimal formalism in exactly the

same way as for superstring theory, and gives the desired classical scattering amplitudes

of type II supergravity.17

3.6.4 Four-point function: Genus one

On a genus one surface the fields of conformal weight (1,0) acquire zero modes. In

particular the fermionic fields sα and s̃α̃ have 11 zero modes each, which must be soaked

up by operator insertions in the path-integral to give a non-vanishing result. The only

operators which can provide these zero modes are the regulators N and Ñ , given at

17In principle, one could define a higher genus prescription for the minimal model analogous to the
superstring. While avoiding this for the reasons mentioned above, it is expected that an abstract equivalence
between the two formalisms holds beyond tree-level, again in analogy with superstring theory [88].
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genus one by [76]

N = exp
(−λ · λ̄− r ·θ−wz.m. · w̄z.m. + sz.m. ·dz.m.

)
, (3.146)

where fz.m. denotes the zero mode of the conformal weight (1,0) field f . The 11 zero

modes of sα are thus accompanied by 11 zero modes of the dα field, the latter of which

has 16 unconstrained components. So there are 5 remaining zero modes of dα left to be

soaked up by contributions coming either from vertex operators or the b-ghost insertion

in (5.45).

Fixed vertex operators cannot contribute d zero modes, so they must come either from

integrated vertex operators, which can contribute at most one d zero mode each, or from

the effective b-ghost, which can contribute at most 2 zero modes. The counting is exactly

the same for the tilded variables. Using this zero mode counting, it is clear that the first

non-vanishing amplitude at genus one is the four-point amplitude; M (1)
n<4 = 0 since the

fermionic zero mode integrals cannot be saturated. This vanishing is a consequence of

spacetime supersymmetry, which is manifest in the pure spinor approach.

At four points there is only one way to pick terms from the vertex operators and b-ghost

in order to saturate the d zero mode path integral, just as in superstring theory [70, 72, 89].

Each of the three integrated vertex operators (2.44) contributes a zero mode from the term

dαW α and the b-ghost (3.126) contributes

(b|µ) ∝ (λ̄γmnp r )(dz.m.γ
mnp dz.m.)

(λ̄ ·λ)2
. (3.147)

After performing the d zero mode integral the expression becomes

∫
d16θ

∫
[dλ][dλ̄][dr ]

(λ̄γmnp D)

(λ̄ ·λ)2
(λ · A1)(λγmW2)(λγnW3)(λγpW4)e−λ·λ̄−r ·θ . (3.148)

This has been shown [75, 89] to be proportional to the pure spinor superspace expression

K = 〈
(λ · A1)(λγmW2)(λγnW3)F mn

4

〉
, (3.149)

where these angle brackets stand for the pure spinor and theta zero mode integrations.

The calculation in the tilded variables is identical. Thus, the amplitude can be written as

M (1)
4 ∝ K K̃

∫
d10ℓ

∫
dτ (dz0)2 δ̄

(
P 2(z0)

) 4∏
i=2

δ̄(ki ·P (zi )) (dzi )2 , (3.150)
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omitting the overall momentum conserving delta function.

The integrand of the amplitude (3.150) is equal to the integrand given by the am-

bitwistor string formalism after summing over spin structures as shown in section 3.5.3.

The prefactor K K̃ is the correct supersymmetric prefactor for supergravity, which reduces

to the t8t8R4 tensor when all external states are gravitons. As expected, the integral over

the moduli space of a four-punctured torus is completely localized by the scattering

equations. The integrand is seen to be modular invariant by adopting the prescription of

section 3.2 for the transformation of the zero modes of Pm .

3.6.5 Four-point function: Genus two

By now it should be clear that computations involving only zero mode counting in this

model will be almost the same as in the usual pure spinor superstring. In particular, the

computation of the genus two four-point amplitude can be carried out in much the same

way as in the pure spinor superstring. In this case there are now 22 zero modes of the field

s; these, again, can only come from the regulators and thus are accompanied by 22 zero

modes of the d field. At genus two the field d has 32 zero modes, so 10 other zero modes

must be provided by the integrated vertex operators and b-ghosts. Each integrated vertex

operator can contribute at most one zero mode, so each b-ghost contributes two zero

modes.

This completely fixes the contributions from each operator, which are the same as in

the one-loop case. After doing the path integral over the zero modes of d , s, w, and w̄ , the

remaining superspace expression can be written as [73, 75, 89, 90]∫
d16θ

∫
[dλ][dλ̄][dr ]

(λγmnpqrλ)

(λ̄ ·λ)3
F mnF pqF r s(λγsW )e−λ·λ̄−r ·θ , (3.151)

where the various numerical factors and the distribution of particle labels on the super-

fields are suppressed. Upon summing over permutations of particle labels, this superspace

expression vanishes unless it is dressed with holomorphic differentials arising from a com-

bination of the moduli integrals and the b-ghost insertions. The result can be identified

with the kinematic prefactor of supergravity [73, 74] by comparison with the computation

in the RNS formalism [91, 92], or via BRST cohomology arguments [93]. The counting and

calculation for the tilded variables follows identically.
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Fig. 3.5 The genus two worldsheet at the boundary of the moduli space.

The BRST cohomology techniques of [93] relate the two-loop kinematic prefactor to the

one-loop prefactor (3.149), see also [90]. Applying this relationship gives the expression

M (2)
4 ∝ K K̃

∫
d10ℓ1 d10ℓ2

∫
d3ΩY 2

3∏
j=1

δ̄
(
P 2(x j )

)
(dx j )2

4∏
i=1

δ̄ (ki ·P (zi )) , (3.152)

where d3Ω stands for the integrals over the complex structure moduli of the genus two

Riemann surface and Y is the quadri-holomorphic form [92]

Y = (t −u)∆(1,2)∆(3,4)+ (s − t )∆(1,3)∆(4,2)+ (u − s)∆(1,4)∆(2,3) . (3.153)

Here, {s, t ,u} are the standard Mandelstam parameters (e.g., s = 2k1 ·k2) and

∆(z, w) =ω1(z)ω2(w)−ω1(w)ω2(z)

for ωI the Abelian differentials on the genus two worldsheet.

The conjecture is that the integrand of (3.152) is a representation for the two-loop

integrand of type IIA/B supergravity. In particular, the massive modes that usually run

through the loops of string theoretic amplitudes at genus two should be absent. There

is an easy test that can be done in this amplitude to show that no massive modes are

propagating by looking at the boundary of the moduli space where the genus two surface

degenerates into two tori glued at a nodal point, see Figure 3.5. In the superstring the

only poles at this boundary come from the propagation of massive modes through the

node [94]. In terms of the field theory integrand, this boundary corresponds to a non-

existent cut of a double box. Therefore if (3.152) represents a field theory amplitude, it

must vanish at this separating boundary.

Using the period matrix

Ω=
(
τ11 τ12

τ12 τ22

)
to parametrize the genus two surface, the separating boundary divisor of the moduli

space sits at τ12 → 0; τ11,τ22 are the modular parameters of the two resulting tori. Near
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this boundary the external states {1,2} move to one of the tori, call it Σ1 with modular

parameter τ11, while states {3,4} move to the other torus, call itΣ2 with modular parameter

τ22. With this choice, the quadri-holomorphic form (3.153) becomes simply [94]

Y
τ12→0−−−−→−s =−2k1 ·k2 , (3.154)

with no pole arising from the measure factors. At this stage it is not obvious why this

should be zero. The crucial fact is that the scattering equations in (3.152) enforce the

momentum flowing through the node to be on-shell (i.e., s = 0), so the amplitude vanishes.

To see this it is convenient to make use of an explicit parametrization of the moduli

space near this boundary, which has been deployed often in the study of factorization

in string theory (the so-called ‘plumbing fixture’ [25, 59, 60, 95]). On the two tori Σ1,Σ2

pick local coordinates zI around one point on each surface p I ∈ΣI such that p I = {zI = 0}.

Remove an open neighbourhood around these points UI = {|zI | < |t |1/2} where t is a

coordinate on the unit disk D = {t ∈C| |t | < 1} (not to be confused with the Mandelstam

variable). Now glue them together using the annulus At = {w ∈C| |t |1/2 < |w | < |t |−1/2} via

w =


t 1/2

z1
if |t |1/2 < |w | < 1

t−1/2 z2 if 1 < |w | < |t |1/2
. (3.155)

This gives a family of genus two Riemann surfaces fibered over the unit disk which can

be seen as the union of three distinct components, (Σ1 \U1)∪ At ∪ (Σ2 \U2). The singular

fiber over t = 0 corresponds to the boundary of interest, and one can show that t ∝ τ12.

We now distribute the scattering equations among these components. The four scattering

equations of the form ki ·P (zi ) accompany the punctures, so the i = 1,2 equations go

to Σ1 \U1, while i = 3,4 go to Σ2 \U2. There are also three P 2(x) scattering equations,

corresponding to each of the three moduli of the genus two surface. The natural choice

is to place one of these equations on each component of the family of surfaces (see

Figure 3.6).

The form of these equations as the boundary is approached is dictated by the field

Pm(z), whose behaviour under the degeneration depends on which component it is being

evaluated at. Using standard degeneration formulas for the Abelian differentials and

propagators, it is easy to see what happens to P . The Abelian differentials behave as [25]

ωI (z) =
ϖI (z)+O(t ) if z ∈ΣI

O(t ) otherwise
, I = 1,2, (3.156)
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Σ1
At Σ2

Fig. 3.6 The degenerating worldsheet modelled on two tori Σ1,Σ2 connected by the annulus At . Solid
dots denote scattering equations of the form k ·P, while crosses denote scattering equations of the
form P 2.

where ϖI are the global holomorphic differentials on the respective tori. The behaviour of

the propagator S̃2(z, w |Ω) can be deduced from that of the prime form

E2(z, w |Ω) =


−E1(z, p1|τ11)w t−1/4 if z ∈Σ1, w ∈ At

E1(z, p2|τ22)t−1/4 if z ∈Σ2, w ∈ At

E1(z, p1|τ11)E1(p2, w |τ22)t−1/2 if z ∈Σ1, w ∈Σ2

. (3.157)

Using (3.156)–(3.157) with (3.139) it is straightforward to see that as t → 0, the scatter-

ing equations on each component ΣI \UI go to the one-loop scattering equations with an

extra puncture at p I of momentum ±(k1 +k2). This is a consequence of

lim
t→0

Pm(z)|Σ1 = ℓ1 mϖ1(z)+ ∑
i=1,2

ki m S̃1(z, zi |τ11)− (k1 +k2)m S̃1(z, p1|τ11) ,

lim
t→0

Pm(z)|Σ2 = ℓ2 mϖ2(z)+ ∑
i=3,4

ki m S̃1(z, zi |τ22)+ (k1 +k2)m S̃1(z, p2|τ22) .

The remaining scattering equation on the annulus enforces the momentum flowing

through the node to be on-shell, since

Pm(w) = (k1 +k2)m
dw

w
+O(t ) if w ∈ At , (3.158)

where dw
w is the holomorphic differential on the annulus.

Therefore P 2(w) ∝ s +O(t) = 0, enforcing k1 · k2 = 0 in the t → 0 limit. Since the

amplitude in this limit is multiplied by a factor of s from (3.154), it vanishes on top of the

scattering equations. This gives further evidence that the model describes only field theory

amplitudes in type IIA/B supergravity. For more general external kinematics, it should also

be possible to extract scalar integrals from (3.152) by probing the deep IR behaviour of the

integrand (i.e., considering multiple adjacent propagators going on-shell) and using the
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techniques of section 3.5. The squared Mandelstam invariants, which accompany each

planar or non-planar double box in four-point two-loop supergravity amplitudes [96], are

supplied by Y 2.

Note that the factorization arguments for the scattering equations generalize in the

obvious way to n-points and arbitrary genus. Combined with the non-separating de-

generations (i.e., pinching a cycle of the worldsheet non-homologous to zero) and the

separating degenerations that pinch off a sphere from the worldsheet, both of which

were studied in section 3.4, this encompasses all possible degenerations of the scattering

equations near a boundary of the moduli space for any genus and any number of external

states.





Chapter 4

Ambitwistor string on curved

backgrounds

It is a highly non-trivial (if well-known) fact that General Relativity emerges as the low

energy limit of closed string theory. This equivalence was first observed via the tree-level

S-matrices of the two theories: theα′ → 0 limit of a sphere amplitude in string theory gives

the corresponding tree-level scattering amplitude of gravity [97–99]. The relationship can

also be captured at the non-linear level by considering the worldsheet sigma model on an

arbitrary curved background, composed of a metric g , B-field, and dilatonΦ. Maintaining

worldsheet conformal invariance requires the vanishing of the worldsheet β-functionals,

which imply the target space fields obey certain equations of motion that at low energies

are the Einstein equation together with equations of motion for B andΦ [100–103].

The two ways of obtaining target space field equations are of course different aspects

of the same thing. Perturbatively, vertex operators in the worldsheet CFT are infinitesimal

deformations of the worldsheet action, and correspond to infinitesimal fluctuations of the

background geometry (at least for massless states). In order for a vertex operator to be ad-

missible, the fluctuation it describes must obey the target space field equations, linearised

around the background. The linearised field equations arise from the requirement that

the vertex operators have the correct anomalous conformal weight, reflecting the fact that

the non-linear field equations are the condition for vanishing worldsheet Weyl anomaly.

In either approach, for a generic target space it is prohibitively difficult to write down

the exact string equations of motion. Rather, one typically works perturbatively in the

string length
p
α′, which governs a derivative expansion in the target space geometry,

or equivalently a loop expansion parameter in the worldsheet non-linear sigma model.

Higher curvature corrections were first seen from the point of view of the α′ expansion of

amplitudes in [104], and emerge from the four-loop β-function of the superstring [105,
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106]. This infinite series of higher-order corrections play an important role in guaranteeing

the excellent high energy behaviour of strings.

The theory ambitwistor string describes maps into flat space-time and computes

amplitudes perturbatively around flat space. It is natural to ask if there is a formulation

describing maps into curved space-time. Since the theory produces pure supergravity

amplitudes when linearised around flat space, the supergravity field equations — with

no α′ corrections — should be the exact conditions for quantum consistency of such a

model.

The aim of this chapter is to provide such a description. Section 4.1 presents, at the

classical level, a generalization of the ambitwistor string describing maps into a curved

target space. The key is to generalize the worldsheet current algebra that in the flat space

model was responsible for localization on the scattering equations. The appropriate gen-

eralization is closely related to the Hamiltonian framework of worldline supersymmetry in

supersymmetric quantum mechanics (for example [107, 108]). These currents are gauged

and, as in flat space, at genus zero it is possible to choose a gauge in which the gauge

fields vanish so that the currents disappear from the action. The remaining action is free,

opening the possibility of making exact statements about its quantum behaviour. In fact,

the action of the model is a type of supersymmetric curvedβγ-system. The quantum prop-

erties of curved βγ-systems have been extensively investigated [109–118], and are rather

subtle. In section 4.2 the behaviour of the currents under diffeomorphisms of both the

target space and worldsheet is studied. The classical curved space currents of section 4.1

receive quantum corrections in order to remain covariant under diffeomorphisms at the

quantum level. Finally, in section 4.3 the algebra generated by the quantum-corrected

currents is shown to be anomaly free if and only if the target space satisfies the nonlinear

supergravity equations of motion, with no higher curvature corrections.
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4.1 Curved target space: classical aspects

This section deals with the generalization of the ambitwistor string to curved target space

at the classical level. Modifications due to quantum effects will be studied in the next

section. Let (MR, gR) be a pseudo-Riemannian space-time and (M , g ) its complexification

with holomorphic metric g . That is, g : Sym2 TM →Cwhere TM is the holomorphic tangent

bundle of M . Temporarily ignoring the gauge fields (χ, χ̄,e), the natural generalization of

the matter action for the case of a curved (M , g ) is

Scl =
1

2π

∫
Σ

Pµ∂̄X µ+ ψ̄µD̄ψµ , (4.1)

where the fermions ψ and ψ̄ are now understood to take values in the pullbacks X ∗TM

and X ∗T ∗
M , respectively, while D̄ψµ = ∂̄ψµ+Γµνρψν∂̄X ρ is the (0,1)-part of the pullback to

Σ of the Levi-Civita connection on M . Notice that, unlike the standard string, here it is not

possible to include a four-fermion interaction in Scl, since all the fermions are left-moving.

Here the real fermions from the previous chapters are grouped into one complex fermion,

that is, in this chapter ψ denotes a complex fermion and ψ̄ its complex conjugate. This

definition is quite natural from the curved space perspective.

The action may be further simplified by introducing the fieldΠ as

Πµ := Pµ+Γλµν ψ̄λψ
ν , (4.2)

whereupon the matter portion of the worldsheet action becomes

Scl =
1

2π

∫
Σ
Πµ∂̄X µ+ ψ̄µ∂̄ψ

µ , (4.3)

and does not depend on the choice of target metric g . The presence of the Levi-Civita

connection in the definition ofΠ is reflected by its non-tensorial transformation

Πµ 7→ Π̃µ = ∂X ν

∂X̃ µ
Πν+ ∂2X λ

∂X̃ µ∂X̃ ν

∂X̃ ν

∂X σ
ψ̄λψ

σ (4.4)

under the diffeomorphism X µ 7→ X̃ µ(X ) of M , so that classically (4.3) remains invariant.

The target space metric does play a role in the curved space generalization of the

currents G 0, Ḡ 0 and H 0. The action (4.3) is invariant under the supersymmetry transfor-
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mations
δX µ =−ϵ̄ψµ−ϵgµνψ̄ν

δψµ = ϵgµν(Πν−Γκνλψ̄κψ
λ)+ϵgκνΓµνλψ̄κψ

λ

δψ̄µ = ϵ̄Πµ−ϵgκνΓλµνψ̄κψ̄λ

δΠµ = ϵgρσΓνρµ
(
ψ̄σΠν+ ψ̄νΠσ

)− ϵ

2
ψ̄νψ̄ρψ

σRνρ
µσ

(4.5)

with parameters ϵ, ϵ̄ ∈ ΠΩ0(Σ,T 1/2
Σ ), where Rµ

νκλ is the Riemann curvature of the Levi-

Civita connection. At the classical level, these transformations are generated by the

Noether currents
G cl :=ψµ

(
Πµ−Γκµλψ̄κψ

λ
)
=ψµΠµ

Ḡ cl := gµνψ̄ν

(
Πµ−Γκµλψ̄κψ

λ
) (4.6)

where the equality in the first line follows by the symmetry of the Levi-Civita connection.

The Poisson brackets of these curved space currents obey the same algebra{
G cl, Ḡ cl

}
=H cl ,

{
G cl, G cl

}
= 0 ,

{
Ḡ cl, Ḡ cl

}
= 0 (4.7)

as in flat space, where now

H cl := gµν(Πµ−Γκµλψ̄κψ
λ)(Πν−Γρνσψ̄ρψ

σ)− 1

2
Rκλ

µνψ̄κψ̄λψ
µψν . (4.8)

The currents (4.6) & (4.8) generalize the flat space currents G 0, Ḡ 0 and H 0. They take

a similar form to the worldline supersymmetry currents and Hamiltonian in supersym-

metric quantum mechanics. In particular, sinceΠµ is canonically conjugate to X µ while

Jµν = ψ̄µψ
ν generates target space Lorentz transformations, after quantization H cl is a

Lichnerowicz Laplacian acting on forms on the infinite dimensional space of maps from

Σ to M .

If there is a B-field on M , with 3-form field strength H = dB , then the currents are

further modified to

G cl =ψµΠµ+ 1

3!
ψµψνψκ Hµνκ

Ḡ cl = gµνψ̄ν

(
Πµ−Γκµλψ̄κψ

λ
)
+ 1

3!
ψ̄µψ̄νψ̄κHµνκ

H cl = gµν
(
Πµ−Γκµλψ̄κψ

λ+ 1

2
Hµκλψ

κψλ

)(
Πν−Γρνσψ̄ρψ

σ+ 1

2
Hνρσψ̄

ρψ̄σ

)
− 1

2
Rκλ

µνψ̄κψ̄λψ
µψν− 1

3!
ψµψ̄νψ̄κψ̄λ∇µHνκλ− 1

3!
ψ̄µψ

νψκψλ∇µHνκλ ,

(4.9)
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without changing the action. The Poisson brackets of these currents still obey (4.7). Note

that the B-field here does not appear simply as the torsion of the connection, but rather

breaks the C∗-symmetry of the fermion system to Z2. As in the classical string, including a

target space dilaton is best done in the context of the quantum theory.

At the classical level, the transformations generated by these currents, with local

parameters {ϵ̄,ϵ,α} respectively, are gauge symmetries of the action

S = 1

2π

∫
Σ
Πµ∂̄X µ+ ψ̄µ∂̄ψ

µ+ χ̄G cl +χḠ cl + e

2
H cl (4.10)

provided the gauge fields transform as δχ̄=−∂̄ϵ̄, δχ=−∂̄ϵ and δe =−∂̄α. As in the flat

space model, at genus zero, in the absence of vertex operators it is possible to choose the

parameters so that the gauge fields vanish and the currents disappear from the action.
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4.2 Quantum corrections

The generalization of the flat space model to a curved target involves only changing the

currents, after a field redefinition the kinetic terms in the action are the same as in flat

space. In the gauge where e, χ and χ̄ vanish the worldsheet action is free and the theory

knows about the target space fields (g ,B ,Φ) only through the BRST operator. The resulting

action is an example of a curved βγ-system.

In this section the properties of this theory at the quantum level are studied. The

quantum behaviour of curved βγ-systems is known to be subtle [109–113], though the

supersymmetric case is much more straightforward than the purely bosonic one [114–118].

The first piece of good news is that since the action is free, correlation functions may be

computed using the free OPEs

X µ(z)Πν(w) ∼ δµν

z −w
, ψµ(z) ψ̄ν(w) ∼ δµν

z −w
. (4.11)

This is one of the main advantages of curved βγ-systems in general. It also corresponds to

what is expected from the curved space version of a worldsheet theory describing pure

supergravity with no higher curvature corrections. Since higher order corrections come

from the loop expansion on the worldsheet, a theory that only gives the supergravity

equations of motion should at least be solvable. Here the situation is even better since the

gauge-fixed action turns out to be locally free. Therefore calculations in this theory can be

carried out using only free OPEs. In the next two sections these are used to examine the

transformation properties of the currents (4.9) under diffeomorphisms of both the target

and worldsheet. In order to be covariant at the quantum level these currents will receive

corrections quantum corrections.

4.2.1 Target space diffeomorphisms

Infinitesimally, target space diffeomorphisms are generated by the Lie derivative LV along

some vector field V . In the quantum theory this is realized by an operator OV , whose OPE

with the currents should generates diffeomorphisms. In order for OV to represent the

diffeomorphism algebra, given two vectors V and W , the operators OV and OW must have

the OPE

OV (z)OW (w) ∼ O[V ,W ](w)

z −w
, (4.12)
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where [V , W ] is the Lie bracket of the two vector fields. A naive guess is

Onaive
V (z) :=− :V µ(X )Πµ : ≡ lim

ϵ→0

(
V µ(X (z +ϵ))Πµ(z)− 1

ϵ
∂µV µ(z)

)
, (4.13)

but this fails for two reasons. Firstly, the OPE Onaive
V (z)Onaive

W (w) does not agree with (4.12)

because of double contractions. This is a common feature of curved βγ-systems [109–113]

whose resolution usually requires replacing the Lie bracket on TM by the Courant bracket

on TM ⊕T ∗
M . In the supersymmetric context a further problem with Onaive

V is that it does

not act on the fermions, whereas these transform non-trivially under Diff(M) since they

take values in the pullbacks of the target space tangent and cotangent bundles.

Remarkably, these two problems cure one another. The operator

OV :=−(
:V µΠµ : +∂νV µ :ψ̄µψ

ν :
)

(4.14)

both obeys the desired OPE (4.12) and generates the correct Diff(M) transformations of

all fields. That is, its OPE with the fields are

OV (z) X µ(w) ∼ V µ(w)

z −w
,

OV (z)ψµ(w) ∼ ∂νV µψν(w)

z −w
,

OV (z)ψ̄µ(w) ∼ −∂µV ν ψ̄ν(w)

z −w

OV (z)Πµ(w) ∼− 1

z −w

(
:∂µV νΠν : +∂µ∂νV κ :ψ̄κψ

λ :
)

(w) ,

(4.15)

where the second term in the transformation ofΠ is the expected non-tensorial behaviour

of the Levi-Civita connection. The fact that supersymmetric curved βγ-systems behave

more straightforwardly under Diff(M) than their bosonic counterparts has been noted

before, see e.g. [115–118].

Although the choice (4.14) ensures that the fundamental fields {X ,Π,ψ,ψ̄} transform

as expected under target space diffeomorphisms, this does not guarantee that the same is

true of composite operators because of the potential for double (or higher) contractions

between OV and the composite operator. In particular, while at the classical level the

currents G cl, Ḡ cl and H cl introduced in (4.9) transform geometrically under Diff(M),

this is not true in the quantum theory. For example, the OPE of G cl with OV contains a

non-vanishing first-order pole

OV (z)G cl(w) ∼ ·· ·+ ∂
(
∂µ∂νV µψν

)
z −w

+·· · , (4.16)



82 Ambitwistor string on curved backgrounds

which does not combine with other terms to form any sort of Lie derivative along V . As

with all quantum anomalies, the origin of this term is a double contraction between G cl

and OV .

To correct this anomalous behaviour, the currents (4.9) must be modified in the quan-

tum theory. The required modification is to add new terms that involve (holomorphic)

worldsheet derivatives. Such terms generate both new contributions to the higher-order

pole terms in the OPE with OV , and also modify the coefficients of the simple poles by

terms involving worldsheet derivatives. After some experimentation, one finds that the

modifications should be
G = :G cl : +∂(

ψµΓκµκ
)

Ḡ = :Ḡ cl : +gµν∂
(
ψ̄κΓ

κ
µν

)
.

(4.17)

These quantum currents do indeed behave appropriately under target space diffeomor-

phisms, having the OPEs

OV (z)G (w) ∼ ·· ·+ LV G

z −w
, OV (z) Ḡ (w) ∼ ·· ·+ LV Ḡ

z −w
, (4.18)

and so are covariant under target space diffeomorphisms at the quantum level.

In order to include a dilaton it is convenient to rewrite these currents as

G = :G cl : +∂
(
Lψµ∂µ logΩ

)
,

Ḡ = :Ḡ cl : +∂
(
Lgµνψ̄µ∂ν logΩ

)
+ ψ̄µΓ

µ
νρ ∂gνρ ,

(4.19)

whereΩ= X ∗(
p

g dx1 ∧·· ·∧dxd ) is the pullback to Σ of a top holomorphic form on the

(complex) target space M .1 To incorporate a dilaton fieldΦ on M , simply chooseΩ to be

the pullback of e−2Φpg dx1 ∧·· ·∧dxd instead.

4.2.2 Worldsheet diffeomorphisms

While the quantum corrections ensure that the currents (4.17) transform covariantly under

Diff(M) transformations, they also affect their behaviour under worldsheet diffeomor-

phisms. This can be seen by considering their OPEs with the worldsheet stress tensor

T cl :=− :Πµ∂X µ : −1

2

(
:ψ̄µ∂ψ

µ : + :ψµ∂ψ̄µ :
)

(4.20)

1Thus, for any vector field V , LV logΩ=Ω−1LVΩ=∇µV µ, where ∇µ is the Levi-Civita covariant deriva-
tive. The existence of Ω is not restrictive on an affine complex space, but may be expected to lead to
interesting constraints on possible compactifications.
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that follows from the free action (4.3). For example, there is now a triple pole in the OPE

between the stress tensor and G

T cl(z)G (w) ∼−1

2

Lψµ∂µ logΩ

(z −w)3
+·· · ,

showing that G is no longer primary. The resolution is to modify the stress tensor by a

total derivative term; that is, the actual stress tensor of the quantum theory is

T := T cl − 1

2
∂2 log

(
e−2Φpg

)
. (4.21)

It is straightforward to check that using this stress tensor, the currents G and Ḡ of (4.17) are

primary operators, transforming as sections of K 3/2
Σ under worldsheet diffeomorphisms.

Note that unlike in string theory, this modification does not affect the condition for

worldsheet conformal invariance, because here the X (z) X (w) OPE is trivial, so there are

no new contributions to the fourth order pole in T (z)T (w). Thus, despite the presence of

a non-trivial metric, B-field and dilaton on the target, the only restriction on the model to

emerges from the T (z)T (w) OPE (including ghosts) is the critical dimension dimC(M) =
10, as in flat space. In particular, unlike in usual string theory [103, 119], the target

space field equations do not appear in T (z)T (w), and so are not related to worldsheet

β-functions. This is as expected from the flat space theory [5, 32] reviewed in chapter 2:

the requirement that the vertex operators had to obey linearised field equations came

not from any anomalous conformal weight, but rather from their potentially anomalous

behaviour under transformations generated by the gauged currents.

The choice (4.21) of stress tensor implies that the worldsheet action should likewise

be modified to

S → S + 1

8π

∫
Σ

RΣ log
(
e−2Φpg

)
, (4.22)

where RΣ is the worldsheet curvature. In two dimensions RΣ can always be chosen to

vanish locally, so the addition of this term does not affect the short distance OPE, and the

above calculations are self-consistent. Actually, the dilaton coupling (4.22) is well-known

in first-order formulations of string theory [112, 120], in particular the fact that the dilaton

is effectively shifted Φ→Φ− 1
2 log

p
g compared to the usual dilaton coupling in string

theory. This shifted coupling also plays an important role in T-duality, see e.g. [121], and

analogous shifts also appear when studying α′-corrections to string theory using doubled

geometry seee.g. [122].



84 Ambitwistor string on curved backgrounds

4.3 Supergravity equations of motion as an anomaly

In the previous section currents (4.17) that behave correctly under both target space and

worldsheet diffeomorphisms at the quantum level were constructed. Contrary to usual

string theory, the requirement of quantum worldsheet conformal invariance places no

restrictions on the target space fields.

Instead, the target space field equations come from quantum consistency of the

current algebra. At the quantum level, the Poisson bracket relations{
G cl, Ḡ cl

}
=H cl ,

{
G cl, G cl

}
= 0 ,

{
Ḡ cl, Ḡ cl

}
= 0 (4.23)

between the classical currents should be replaced by OPEs of the quantum currents (4.17),

so that the G (z)G (w) and Ḡ (z) Ḡ (w) OPEs are non-singular, while the G (z) Ḡ (w) OPE has

only a simple pole. Only if this is true, so that the algebra of currents is non-anomalous, will

the BRST operator (5.31) obey Q2 = 0. It is a remarkable fact that because the worldsheet

action is (locally) free, these OPEs can be computed exactly, and so the exact quantum

consistency conditions can be obtained. This is quite distinct from the usual case in string

theory, where for generic backgrounds, one is faced with an interacting worldsheet CFT

and so must work perturbatively around some fixed background, treating α′ as a loop

expansion on the worldsheet, or derivative expansion in the target. The ambitwistor string

ha no α′ parameter.

The simplest OPE is G (z)G (w). Performing all possible contractions and expanding

the coefficients of higher order poles around the mid-point gives

G (z)G (w) ∼−1

3

ψκψλψµψν

z −w
∂κHλµν−

∂
(
ψµψν∂µΓ

κ
νκ

)
z −w

+2
∂
(
ψµψν∂µ∂νΦ

)
z −w

. (4.24)

The second and third terms in this expression vanish by the antisymmetry of fermions

contracted into partial derivatives. (Recall that ∂µΓκνκ = ∂µ∂ν log
p

g .) Hence the only

non-trivial anomaly cancellation condition in (4.24) is given by the first term. This is

simply the requirement that the 3-form H is closed so that H = dB at least locally on M .

Thus H is indeed the field strength of a B-field.

Next is the Ḡ (z) Ḡ (w) OPE. Again, performing all possible contractions and expanding

around the mid-point gives

Ḡ (z) Ḡ (w) ∼ 1

2

:ψ̄κψ̄λψ̄µψ
ν :

z −w
R κλµ
ν + ∂

(
ψ̄µψ̄νRµν

)
z −w

− 1

3

ψ̄κψ̄λψ̄µψ̄ν

z −w
∂κHλµν

+2
ψ̄µψ̄ν∂X κ

z −w

[
ΓνρσRσρµ

κ+Γρκσ(Rµσν
ρ+Rνσµ

ρ)
]

.

(4.25)
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These anomalies vanish provided that again dH = 0 and the Riemann and Ricci tensors

obey the identities

Rν
[κλµ] = 0, R [µν] = 0 and R(µν)

ρσ = 0. (4.26)

These are of course the first Bianchi identity and basic symmetries of the Riemann and

Ricci tensors that hold provided the connection Γ is indeed Levi-Civita. So neither of these

two OPEs impose any dynamical restrictions on the target space fields.

The only remaining OPE to be checked is that of G (z) and Ḡ (w). This OPE has first,

second and third order poles. The coefficient of the first order pole defines the quantum

corrected current H , but the coefficients of the higher order poles must be made to vanish.

Proceeding as above, a straightforward, if somewhat lengthy, calculation yields

G (z) Ḡ (w) ∼ 2

(z −w)3

(
R +4∇µ∇µΦ−4∇µΦ∇µΦ− 1

12
H 2

)
+2

(Γµκν∂X κ+ψµψ̄ν)

(z −w)2
gνλ

(
Rµλ+2∇µ∇λΦ− 1

4
HµρσHλ

ρσ

)
+ (ψµψν− ψ̄µψ̄ν)

(z −w)2

(∇κHκ
µν−2Hκ

µν∇κΦ
)+ H

z −w
.

(4.27)

The quantum corrected current H takes the somewhat unenlightening form

H =H cl +∂
(
LgµνΠµ∂ν logΩ

)
− 1

2
∂2(gµν)∂µ∂ν log

(p
g e−2Φ)− ψ̄κ∂ψ

λ gµν∂λΓ
κ
µν

−1

4
∂(gµν)∂

[
∂µ∂ν log

(p
g e−2Φ)]+ 1

2
Hµνκψ̄κ∂

(
Hµνλψ

λ
)
+∂(

Hκλνψ
ν
)

gκσΓλσρψ
ρ

−1

2
∂σHµνρψ

νψρ ∂(gσµ)− 1

12
Hµνρ∂2Hµνρ+ 1

2
∂(gµν)Γρµν

(
2Πρ+Hσλρψ

σψλ
)

−∂
[
∂(gµν)

(
∂σΦΓ

σ
µν+ 1

2
ΓσµνΓ

ρ
σρ− 1

2
∂σΓ

σ
µν

)
+ gµνΓρµσ∂(Γσνρ)

]
−∂

[
ψ̄κψ

λ
(∇κ∇λΦ−2gµνΓκµλ∂νΦ

)]
.

(4.28)

Equation (4.27) shows that the algebra of currents is anomaly free if and only if the space-

time fields (g ,B ,Φ) obey the equations

Rµν− 1

4
Hµκλ Hν

κλ+2∇µ∇νΦ = 0,

∇κHκ
µν−2Hκ

µν∇κΦ = 0,

R +4∇µ∇µΦ−4∇µΦ∇µΦ− 1

12
H 2 = 0.

(4.29)
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These are precisely the field equations of general relativity with a B-field and dilaton.

Hence, the exact condition for the worldsheet theory to be consistent at the quantum

level is that the target space (M ; g ,B ,Φ) obeys the non-linear d = 10 supergravity field

equations, in the Neveu-Schwarz sector.

The BRST operator constrains physical field configurations to obey H = 0, which

in flat space is the condition ηµνΠµΠν = 0 at every point of the worldsheet. Recall that

this the content of the scattering equations. The G (z) Ḡ (w) OPE has H as its classical

contribution, while the field equations (4.29) appear as the coefficients of higher poles.

In this sense, the Einstein equations emerge as quantum corrections to the curved space

generalization of the scattering equations.

A couple of remarks before moving to the next chapter. Firstly, the curved space

worldsheet theory encodes the vertex operators for perturbations of the metric, B-field,

and dilaton around flat space. In the non-linear sigma model of string theory, the flat

space vertex operators are found by considering linearised perturbations of the action;

here the vertex operators arise by perturbing the currents. For example, expanding the

metric in H to linear order around the Minkowski metric one finds

H −H 0 = δgµνΠµΠν−2ηµνΠµδΓ
κ
νλ ψ̄κψ

λ−δµ(δΓκνλ)ψ̄κψ̄
λψµψν, (4.30)

up to terms which vanish on the support of the flat space scattering equations H 0 =
ηµνΠµΠν = 0. This quadratic differential is essentially the vertex operator describing

fluctuations δg around flat space. When the fluctuations are plane waves with target

space momentum kµ, the remaining factor of the integrated vertex operator is δ̄(k ·Π) ∈
H 0,1(Σ,TΣ), which is best interpreted as a modulus of the gauge field e on the marked

worldsheet. The integrated vertex operators describing fluctuations δB or δΦ around flat

space are obtained similarly. Expanding the currents G and Ḡ around flat space (and re-

expressing them in terms of real fermions) likewise gives the vertex operators in different

pictures. See [32] for details.

Secondly, note that the dilaton equation of motion enters in the G (z) Ḡ (w) OPE (4.27)

at order (z−w)−3, whereas the Einstein and B-field equations enter at order (z−w)−2. This

is analogous to the way the dilaton equation of motion appears at higher loop order in the

worldsheet β-functionals in usual string theory. Of course, the dilaton equation of motion

is implied by the Einstein and B-field equations, so that the triple pole in G (z) Ḡ (w) is

guaranteed to vanish if the double poles do. In this sense, the exact target space field

equations indeed arise from a 1-loop anomaly of the currents.



Chapter 5

CFTs, soft theorems and the geometry of

I

It is a fair question to ask if the methods of the past chapters are useful to understand

more than just scattering amplitudes. In the previous chapter I showed that indeed, the

ambitwistor model knows non-linear information about the target space and can, in

principle, be used to calculate interesting quantities in curved space. In this chapter

I’ll show another application of similar methods to the ambitwistor string. Here I’ll be

interested in studying the properties of asymptotically flat spacetimes viewed from the

perspective of its boundary I . The aim will be to understand the interplay between

asymptotic symmetries of I and bulk observables, in particular the S-matrix. Worldsheet

methods similar to the ambitwistor string, and including it, have been very successful

in giving alternative formulations of S-matrices that don’t rely on Lagrangians or even

ordinary spacetime. Therefore one might wonder if they can provide insight into the

structure of a putative holographic dual to gravity in asymptotically flat space-time, at

least in some limiting regime.

This chapter starts with a brief introduction and literature review relevant for this work.

Next, the gravitational model is introduced and it is shown that the Ward identities for a

certain generator of the symmetry group of I are equivalent to Weinberg’s soft theorem.

In the same section it is also shown that the Ward identities for an extension of the

symmetry group of I are equivalent to the recently introduced gravitational subleading

soft factor.
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5.1 Introduction

The conformal boundary of a four dimensional asymptotically flat space-time is a null

hypersurface I , whose past and future components I ± are topologicallyR×S2 [123, 124].

The symmetry group of each of I ± is a copy of the infinite dimensional BMS group [125,

126]. The BMS group is the asymptotic symmetry group of the bulk space-time and, as in

AdS/CFT, it is expected to play an important role in any candidate holographic description

of gravity. Indeed, this perspective was taken well before the advent of AdS/CFT, for

instance in Ashtekar’s asymptotic quantization programme [127, 128] which encodes bulk

gravitational degrees of freedom in terms of geometric data defined intrinsically on I .

Much subsequent research has followed this general line of thought (often with the

language of holography), seeking to determine the symmetry properties required for a

boundary theory in asymptotically flat space-time (e.g. [129–133]). Most recently, Stro-

minger [134] has shown that in space-times where space-like infinity is sufficiently well-

behaved [135, 136], one can identify a diagonal action of the BMS groups on I + and I −;

this diagonal action is a symmetry of the gravitational S-matrix. In particular, the Ward

identity associated with certain carefully chosen BMS generators is equivalent [137] to

Weinberg’s soft graviton theorem [138] in the bulk. It has further been suggested that

the subleading behaviour of soft gravitons [139–141] are be due to a Ward identity for an

extension of the BMS group proposed by Barnich and Troessaert [142, 143].

Yang-Mills theory has also been studied from the perspective of asymptotic symmetries

of I [144, 145]. The Ward identity for these extended gauge transformations is associated

with a Kac-Moody symmetry on the sphere of null generators of I , and has been shown to

encode the soft gluon theorem for both Abelian and non-Abelian gauge groups [146–148].

There is also a subleading soft gluon factor [149], first found in the Abelian setting of

QED [150, 151], which can be obtained an asymptotic symmetry perspective [152].

This kinematic work is important because of its universality: the soft graviton theorem

holds irrespective of the matter content of the theory, and receives no quantum correc-

tions to all orders in perturbation theory. The subleading behaviour of soft gravitons

does receive corrections but only at one loop, the soft gluon theorem does receive loop

corrections [153–156]. Both soft behaviour of soft gravitons and soft gluons are tightly

constrained and can be obtained, with minimal assumptions, from Poincaré and gauge

invariance. They are universal features of the gravitational and gauge theory S-matrix [157–

160].

In this chapter I’ll go beyond these purely kinematic considerations. The most obvious,

diffeomorphism invariant observable in an asymptotically flat space-time is the S-matrix.

Indeed, the S-matrix is almost tautologically holographic, being defined in terms of how



5.2 The geometry of I 89

states look in the distant past and future. For massless particles, the relevant asymptotic

region is I , and one might hope that correlation functions in a boundary theory on I

can compute scattering amplitudes in the bulk. In fact, the usual on-shell momentum

eigenstates considered in scattering amplitudes are extremely closely related to local

insertions on I . The precise form of the scattering amplitudes of course depends on the

details of the quantum gravity in the bulk, but it seems reasonable to expect that there

should exist a regime where classical (super)gravity is a good bulk description.

Traditionally, amplitudes have been computed using Feynman diagrams to evolve

fields through the bulk, or else by considering a string theory whose worldsheet is mapped

to a minimal surface in the bulk space-time. In recent years however, powerful techniques

have been developed that compute amplitudes purely using on-shell quantities: notions

such as a space-time Lagrangian or off-shell propagator do not arise. Furthermore, in

these methods the building blocks from which amplitudes are constructed do not have a

straightforward bulk space-time interpretation.

The aim of this chapter is to construct a worldsheet models that lives entirely on

(complexified) I , and whose states encode the asymptotic radiative modes of gravity

and gauge theory in the bulk. These models have an action of the relevant asymptotic

symmetry groups, either BMS or ’large’ gauge transformations. The Ward identities

for the charges that generate these symmetries recover the soft graviton and soft gluon

theorems. The theories also accommodate charges for the proposed extensions of the

asymptotic symmetry algebras [142], and when acting on correlation functions, these

produce the sub-leading gravitational and gauge soft factors found in [140, 149]. Lastly,

the simplest correlation functions of these theories reproduce the tree-level S-matrix of

N = 8 supergravity and N = 4 sYM.

Of course these theories are not a full realization of a boundary theories dual to gravity

in asymptotically flat space. Rather, they may provide a perturbative description of such a

theory in a regime where classical supergravity is valid in the bulk. Nevertheless, it still

provides a dynamical realization of a theory defined entirely on I which produces bulk

observables and carries a natural action of the BMS group.

5.2 The geometry of I

In four dimensions, the conformal boundary I of an asymptotically flat space-time is a

null hypersurface in the conformally re-scaled metric, composed of two disjoint factors

I =I −∪I +. Each of I ± has the topology of a light cone I ± ∼=R×S2 [123, 124]. Null

infinity is the natural holographic screen on which the S-matrix of massless states may be
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defined. In Lorentzian signature, the scattering process evolves initial data on I − to final

data on I +.

From now the space being considered won’t be I itself, but rather its complexification

IC [161]. There are many physically interesting situations in classical relativity where

one must complexify I in order to obtain non-trivial information (e.g. [162–164]), reality

conditions being imposed only subsequently. In the context of the S-matrix, crossing

symmetry implies that amplitudes extend analytically to IC. More generally, the possi-

bility of working on IC without reference to a future or past boundary should be closely

tied to the ‘Christodoulou-Klainerman’ property of real space-times [135, 136]. This, in

particular, allows one to make an identification between the generators of I − and I +,

thereby selecting a single copy of the BMS group (or gauge group) to act on all asymptotic

data [134].

Complexified null infinity IC is a complex three-manifold which can be charted with

coordinates (u,ζ, ζ̃), where u is a complex coordinate along the null generators of IC and

(ζ, ζ̃) are complex stereographic coordinates related to the usual (θ,φ) by ζ= eiφ cot(θ/2)

and ζ̃= e−iφ cot(θ/2). (Note that (ζ, ζ̃) are not necessarily complex conjugates if (θ,φ) are

not assumed real.) Equivalently, the complexified space of generators can be viewed as

the product CP1 ×CP1 of two Riemann spheres, described by homogeneous coordinates

λα = (λ0,λ1) and λ̃α̇ = (λ̃0̇, λ̃1̇), respectively. Hence, IC can be charted with ‘projective’

coordinates (u,λ, λ̃), defined up to the equivalence [165]

(u,λ, λ̃) ∼ (r r̃ u,rλ, r̃ λ̃), r, r̃ ∈C∗.

Denoting the line bundle of complex functions on CP1 ×CP1 which are homogeneous of

degree m in λ and degree n in λ̃ by O (m,n), this means that IC is realized as the total

space of the line bundle

O (1,1) →CP1 ×CP1. (5.1)

To recover the Lorentzian real slice one simply imposes λ̃α̇ =λα and u = ū. Thus, the real

Lorentzian cones I ± may each be viewed as the total space of the bundle OR(1,1) →CP1,

where OR(1,1) is the restriction of O (1,1) to real-valued functions.

The BMS group (the asymptotic symmetry group of asymptotically flat space-times

[125, 126]) acts naturally on I , and hence on IC by analytic continuation. This group is

the semi-direct product

BMS = ST⋉SL(2,C). (5.2)

of an infinite dimensional Abelian group ST of supertranslations that moves one up and

down a generator of the null cone, with rotations that are the global diffeomorphisms of
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the space S2 of generators. In terms of the coordinates (u,λ, λ̃), the supertranslations act

as

u → u +α(λ, λ̃) , λ→λ , λ̃→ λ̃ , (5.3)

where α transforms in the same way as u under a rescaling of the homogeneous coordi-

nates, and where λ̃= λ̄ and α is real in Lorentzian signature. Expanding α in spherical har-

monics, the ℓ= 0,1 terms correspond to Poincaré translations. These Poincaré translations

are a symmetry of any asymptotically flat space-time, while a generic supertranslation

transforms one asymptotically flat solution of general relativity to another [128, 166].

An asymptotically flat Lorentzian space-time carries two copies of this BMS group,

acting at I ± separately. As explained in [134], only the diagonal subgroup can act on the

S-matrix. IC carries an action of (one copy of) the complexified BMS group that admits

independent SL(2,C) transformations of λ and λ̃ and allows α(λ, λ̃) to be complex.

It has been suggested that the BMS group can be extended by supplementing globally

well-defined SL(2,C) rotations with any local conformal transformations of the sphere

[130, 142, 167]. This leads to an enhanced set of (singular) rotations, known as superrota-

tions, on the space of null generators of IC, which contains two copies of the Virasoro

algebra at the infinitesimal level [143].

In the case where massless Yang-Mills (with gauge group G) states propagate in the

bulk spacetime, one must give boundary conditions at I in order to have a well-defined

asymptotic symmetry group. This can be done, following [144], by imposing boundary

conditions on the gauge field such that the charge and energy flux through any subset

of I is finite. With these boundary conditions, it is easy to show that the asymptotic

radiative degrees of freedom of the gauge field are controlled by a single function on I ,

taking values in the Lie algebra g of the gauge group.

On IC, the gravitational radiative information from the interior of the space-time

is controlled by a single complex function taking values in O (−3,1), denoted here by

σ0(u,λ, λ̃). In the Newman-Penrose formalism, this is known as the ‘asymptotic shear’

[168]. The energy flux from the interior of the space-time is encoded in the Bondi news

function [125],

N (u,λ, λ̃) = ∂σ0

∂u
≡ σ̇0, (5.4)

taking values in O (−4,0). The news function has long been regarded as fundamental to

studying quantum gravity on I , since it encodes the asymptotic ‘radiative modes’ of the

gravitational field [127, 128].

In the Yang-Mills case, analytically continuing the gauge field to complexified Minkowski

space, the function controlling the asymptotic radiative information becomes a g-valued
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function on IC, taking values in O (−1,1). This function is denoted here by A 0(u,λ, λ̃), sup-

pressing gauge indices. The energy flux of the gauge field from the interior of Minkowski

space through IC is encoded by the broadcasting function [127, 169, 170]

F (u,λ, λ̃) = ∂A 0

∂u
, (5.5)

taking values in O (−2,0)⊗g.1 This broadcasting function is the gauge theoretic version of

the Bondi news function [125].

Hence, a description of gravitational scattering states at IC should encode scattering

data in terms of ‘insertions’ of news functions, while a description gauge theoretic scatter-

ing states should encode the date in terms of ’insertions’ of the broadcasting function.

It is worth noting that the coordinate u is naturally conjugate to the ‘frequency’ of

on-shell momentum eigenstates of massless particles. To define this, in place of the

standard spinor helicity variables pαα̇ =ΛαΛ̃α̇, whereΛα and Λ̃α̇ are defined up to (Λ,Λ̃) ∼
(rΛ,r−1Λ̃), the null momentum is taken to be

pαα̇ =ωλα λ̃α̇

with the equivalence (ω,λ, λ̃) ∼ (r−1r̃−1ω,rλ, r̃ λ̃). Thus, on a (complex) Minkowski back-

ground, massless momentum eigenstates appear on IC as plane waves eiωu of frequency

ω, localized along the generator of IC at fixed angular location (λ, λ̃) ∈CP1 ×CP1.

Finally, the extension of I required to incorporate N = 2p extended supersymmetry

is straightforward: one replaces the complexified space of null generators byCP1|p ×CP1|p ,

where each factor may now be described by homogeneous coordinates λA = (λα,ηa) and

λ̃Ȧ = (λ̃α̇, η̃ȧ), respectively. The ηa , η̃ȧ are Grassmann (anti-commuting) coordinates, with

a, ȧ = 1, . . . , p. In the case of the gravity model p = 4, corresponding to a parity symmetric

treatment of N = 8 supergravity in which only N = 4 supersymmetry is manifest. Latter,

when discussing the YM model p = 2, which gives a parity symmetric treatment of N = 4

super Yang-Mills where only N = 2 supersymmetry is manifest.

In the supergravity context, that is p = 4, the news function (5.4) is replaced by a news

supermultipletΦ that takes values in O (0,0). The first component φ= Φ|η=η̃=0 represents

a scalar field at null infinity, while the usual news tensor and its conjugate are encoded by

the coefficients of (η)4 and (η̃)4. The multiplet terminates with a further scalar at order

(ηη̃)4. As for Yang-Mills (p = 2), the broadcasting function is replaced by a broadcasting

1In the case G = U(1), the broadcasting function is the Newman-Penrose coefficient for the asymptotic
Maxwell field φ0

2 [168].
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supermultiplet 0 which also takes values in O (0,0). The broadcasting function and its

conjugate are the coefficients of the (η)2 and (η̃)2 respectively.

From here on the IC will also be used to denote the total space of O (1,1) →CP1|p ×
CP1|p , it should be clear from the context which manifold is being referred to.

5.3 The gravity model

The model which describes gravitational degrees of freedom is given by a chiral CFT

describing holomorphic maps (u,λ, λ̃) : Σ→ IC from a Riemann sphere Σ to the su-

persymmetric extension of complexified null infinity, taken to be the total space of

O (1,1) → CP1|4 ×CP1|4 as above. This model is expected to serve as a description for

some effective theory on IC, analogous to a worldline formalism for a field theory. Σ

serves as the chiral complexification of the usual worldline.

In order to implement the GL(1,C)×GL(1,C) scaling on IC associated with (5.1) at the

level of Σ, introduce two line bundles L ,L̃ →Σ of degree d , d̃ ≥ 0, respectively. The basic

fields of the model are then

u ∈Ω0(Σ,L ⊗L̃ ), λA ∈Ω0(Σ,C2|4 ⊗L ), λ̃Ȧ ∈Ω0(Σ,C2|4 ⊗L̃ ),

which describe the pullbacks to Σ of homogeneous coordinates on IC. These fields have

a chiral action

S1 = 1

2π

∫
Σ

w ∂̄u +νA∂̄λA + ν̃Ȧ∂̄λ̃Ȧ (5.6)

where {w,νA, ν̃Ȧ} are each (1,0)-forms on the worldsheet, with gauge charges opposite

those of {u,λA, λ̃Ȧ}, respectively. These are Lagrange multipliers that ensure the map

to IC is holomorphic. Introduce also the fields ψA and ψ̃Ȧ of opposite statistics to λA

and λ̃Ȧ, together with their conjugates ψ̄A and ¯̃ψȦ, respectively. Each of these fields is a

worldsheet spinor, neutral under both GL(1,C) scalings. Their action is

S2 = 1

2π

∫
Σ
ψ̄A∂̄ψA + ¯̃ψȦ∂̄ψ̃Ȧ (5.7)

and the combined action S1 +S2 is invariant under the fermionic transformations

δψA = ε1λA , δψ̄α = ε2 ϵ
αβλβ , δνA = ε1ψ̄

A −ε2δ
A
αϵ

αβψα̇ , (5.8)

with similar transformations for the tilded fields. All other fields remain invariant.



94 CFTs, soft theorems and the geometry of I

To gauge these fermionic symmetries include bosonic ghosts s1,2 ∈Ω0(Σ,K 1/2 ⊗L −1)

and s̃1,2 ∈Ω0(Σ,K 1/2 ⊗L̃ −1) together with their antighosts r1,2 and r̃1,2. Fermionic ghosts

are also needed, these are given by the fields n, ñ ∈Ω0(Σ) and the antighosts are m, m̃ ∈
Ω0(Σ,K ), these are associated to gauging the GL(1,C)×GL(1,C) transformations. The

ghost action is

S3 = 1

2π

∫
Σ

ra ∂̄sa + r̃a ∂̄s̃a +m ∂̄n+m̃ ∂̄ñ . (5.9)

The final ingredient is a conjugate pair of fermionic fields ξ ∈ Ω0(Σ, (L ⊗ L̃ )−1) and

χ ∈Ω0(Σ,K ⊗L ⊗L̃ ) with action

S4 = 1

2π

∫
Σ
χ∂̄ξ . (5.10)

The role of these fields will be explained below.

The BRST operator is taken to be2

QBRST =
∮

−n(w u +νAλA + ra sa +χξ)− ñ(w u + ν̃Ȧλ̃Ȧ + r̃a s̃a +χξ)

+ s1λAψ̄
A + s2 〈

λψ
〉+ s̃1λ̃Ȧ

˜̄ψȦ + s̃2[λ̃ψ̃] .
(5.11)

This includes gaugings of the fermionic symmetries above as well as the gaugings associ-

ated to L and L̃ . It is straightforward to check that QBRST is nilpotent and anomaly free.

For example, there is a potential GL(1,C) anomaly aGL(1) associated with the line bundle

L . This is given by the sum of squares of the fields’ GL(1,C)-charges, weighted by a sign

for their respective statistics:

aGL(1) =
∑

i
(−1)Fi q2

i = 1wu + (2−4)νλ+2r s −1χξ = 0.

The anomalies associated with L̃ and L ×L̃ vanish by identical calculations. Note that

the central charge of this chiral CFT is given by3:

c= 2wu +3(2−4)νλ,ψ̄ψ+3(2−4)ν̃λ̃, ˜̄ψψ̃−4r s, r̃ s̃ −4mn,m̃ñ −2χξ =−20.

BRST closed vertex operators are built out of the worldsheet fields in such a way

as to have vanishing charge under L and L̃ , and be invariant under the fermionic

transformations (5.8). The simplest such operators are gauge-invariant functions Φ =

2Here the brackets denote the usual invariants 〈ab〉 = ϵαβaαbβ,[ãb̃] = ϵα̇β̇ãα̇b̃β̇.
3Non-vanishing c corresponds to a non-vanishing Virasoro anomaly, but as there is no gauging of gravity

on Σ (i.e., no bc-ghost system) the role of such an anomaly is unclear.
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Φ(u,λ, λ̃) of the target space coordinate fields that have vanishing worldsheet conformal

weight. Crucially, these operators encode the energy flux through IC, so their correlation

functions should contain information about the bulk space-time. Expanding Φ in the

fermionic coordinates on IC gives

Φ(0,0)(u,λ, λ̃) =φ(0,0) +·· ·+ (η)4N(−4,0) +·· ·+ (η̃)4Ñ(0,−4) +·· ·+ (η)4(η̃)4φ̃(−4,−4) , (5.12)

where subscripts denote weights with respect to (λ, λ̃) and the component fields are

functions only of the bosonic coordinates. In particular, N(−4,0) represents the Bondi

news function (5.4), encoding the radiative data of a negative helicity graviton, while

Ñ(0,−4) is the news function for the positive helicity graviton. The other components

represent analogous ‘news functions’ for the other particle content of N = 8 supergravity;

for instance the 28 components with two more ηs than η̃s represent negative helicity

photons, while the 70 components with equal numbers of η and η̃s are scalars4. Note

that the vertex operators of the worldsheet CFT are not constrained to have vanishing

conformal weight, so there will be an infinite tower of states beyond these simplest ones.

It will be shown below that correlation functions of arbitrarily manyΦ(u,λ, λ̃) operators

do not excite these other states. These states won’t be discussed further since they don’t

affect the relevant correlation functions.

The bosonic antighost fields r, r̃ have zero modes when d , d̃ > 0. To make sense of

the path-integral measure picture changing operators (PCOs) must be inserted to absorb

these zero modes:

Υ= δ(r1)δ(r2)λAψ̄
A 〈
λψ

〉
, Υ̃= δ(r̃1)δ(r̃2) λ̃Ȧ

¯̃ψȦ [λ̃ψ̃]. (5.13)

Insertions ofΥ (Υ̃) absorb 2d (2d̃) zero modes of the r1,r2 (r̃1, r̃2) antighosts. As usual, the

correlation function doesn’t depend on the location of the PCOs.

The next step is picking measure with which to integrate over the moduli space of

vertex operator locations. This will reveal the role of the ξχ system. Consider the composite

operator w χ. This is an uncharged fermionic quadratic differential on the worldsheet, and

is BRST closed5. In the presence of vertex operators at points {x1, · · · , xn} ∈Σ, it has n −3

zero modes. As usual in string theory, if {µ j } form a basis of Beltrami differentials on the

punctured worldsheet, a top holomorphic form on the moduli space of these punctures

can be constructed with
∏n−3

j=1 (w χ|µ j ), where the bracket denotes integration over Σ. This

4Encoding the N = 8 gravitational multiplet in this way breaks the SU(8) R-symmetry group to a SU(4)×
SU(4) subsector (in Lorentzian signature) where the two factors are related by parity symmetry.

5In particular {QBRST, w χ} ̸= T , so w χ cannot be interpreted as a composite b ghost.
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choice of measure places an important constraint on the possible degrees of the line

bundles L and L̃ . Since χ has d + d̃ −1 zero modes, the correlation function vanishes

unless

d + d̃ = n −2, (5.14)

As in [31], this amounts to the requirement that L ⊗L̃ ∼= K (x1 +·· ·+xn).

The simplest correlation function in this model is thus

Mn,d =
〈

n∏
i=1
Φ(σi )

n∏
j=4

(
w χ|µ j

) d∏
k=1

Υk

d̃∏
l=1
Υ̃l

〉
=

〈〈
3∏

i=1
Φ(σi )

n∏
j=4

∫
Σ
χ(σ j )Φ̇(σ j )

〉〉
, (5.15)

where Φ̇ = ∂uΦ takes values in O (−1,−1) on IC and 〈〈· · · 〉〉 denotes a correlator in the

presence of the PCOs.

5.4 Symmetries and Ward identities

The symmetries of IC must have a realization in terms of charges on Σ, which act on

correlators such as (5.15). The simplest such symmetry is the Poincaré group, which is

generated by the charges

QSL(2,C) =
∮

aαβλα(σ)νβ(σ)+c.c. and QT =
∮

bαα̇λα(σ)λ̃α̇(σ) w(σ) , (5.16)

where aαβ and bαα̇ are constant and the former is traceless. It is easy to see that these

charges commute with the action and are bona fide symmetries of the model, just as the

Poincaré group is an asymptotic symmetry of every asymptotically flat space-time.

However, as discussed in section 5.2, there is a larger symmetry group on IC: the

infinite dimensional BMS group, built from Lorentz transformations and supertranslations.

The latter are generated on Σ by charges

QST =
∮

f (λ, λ̃) w(σ), (5.17)

where f is a function of weight one in both λ and λ̃.6 Unlike the Poincaré charges (5.16),

the general supertranslation charge (5.17) will have poles, and its commutator with the

action will be non-vanishing at these poles. This is expected, since the realization of IC as

a vector bundle overCP1×CP1 endows it with more structure than necessary. In particular,

6QST generates ‘complexified’ supertranslations on IC; to restrict to the real I , set λ̃ = λ̄ so that f
becomes a smooth function on CP1, defining a real supertranslation.
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the choice of an origin for this vector bundle is equivalent to a choice of classical vacuum

from the perspective of asymptotic quantization [127, 128]; since supertranslations map

one vacuum to an inequivalent vacuum, they shouldn’t be exact symmetries of the model.

Nonetheless, QST does give nontrivial information in the form of a Ward identity containing

information about soft gravitons [134, 137].

In particular, consider the supertranslation given by the charge

Q(1)
ST =

∮
f (1)(λ, λ̃) w(σ), f (1)(λ, λ̃) = aαbβλ̃α̇s

〈a s〉〈b s〉
λα(σ)λβ(σ)λ̃α̇(σ)

〈sλ(σ)〉 , (5.18)

where (λs , λ̃s) is a fixed point on the space of generators of IC associated with the in-

sertion of a soft graviton. Note that f (1) has weight (1,1) in (λ(σ), λ̃(σ)) as required for a

supertranslation, and weight (−3,1) in (λs , λ̃s) as for the asymptotic shear of a soft graviton.

Inserting this charge into (5.15), its effect is to differentiate each vertex operatorΦi in the

u-direction. Assuming that these operators are momentum eigenstates of frequency (or

energy) ωi , this results in a Ward identity〈〈
Q(1)

ST

3∏
i=1
Φ(σi )

n∏
j=4

∫
Σ
χ(σ j )Φ̇(σ j )

〉〉
=

n∑
i=1

ωi f (1)(λ(σi ), λ̃(σi )) Mn,d , (5.19)

where on the left hand side, the contour in Q(1)
ST is taken along |〈λ(σ) s〉| = ϵ. This is

equivalent to the Ward identity found in [134] for the supertranslations generated by

(5.18).

More specifically, suppose that one-particle states are represented by the explicit

momentum eigenstates

Φi =
∫

dti dt̃i

ti t̃i ωi
δ2|4(λi − tiλ(σi )) δ2|4(λ̃i − t̃i λ̃(σi )) eti t̃iωi u(σi ). (5.20)

Then on the support of the delta functions in these vertex operators, the action of Q(1)
ST on

the correlator reads

n∑
i=1

aαbβλ̃α̇s
〈a s〉〈b s〉 ti t̃iωi

〈〈
λα(σi )λβ(σi )λ̃α̇(σi )

〈sλ(σi )〉
3∏

k=1
Φ(σk )

n∏
j=4

∫
Σ
χ(σ j )Φ̇(σ j )

〉〉

=
n∑

i=1
ωi

[s i ]

〈s i 〉
〈a i 〉 〈b i 〉
〈a s〉 〈b s〉 Mn,d . (5.21)

This is precisely Weinberg’s soft graviton theorem as re-derived in the context of super-

translations acting on the S-matrix in [137]. In this worldsheet model, the universal soft
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graviton factor arises from the action of a charge generating a supertranslation, which

effectively creates the soft graviton at the position (λs , λ̃s) ∈CP1 ×CP1.

More general supertranslations (having additional or higher-order poles) are related

to the creation of multiple soft gravitons. The worldsheet model also includes super-

symmetric extensions of supertranslations, which correspond to other soft particles in

the spectrum of N = 8 supergravity. Hence, the supertranslations (5.17) combined with

QSL(2,C) generate the action of the BMS group in the worldsheet model.

Interestingly, the superrotations of the extended BMS group can be easily incorporated.

The relevant charge on Σ is

QSR =
∮

R(λ, λ̃)αβλα(σ)νβ(σ)+ R̃(λ, λ̃)α̇β̇ λ̃α̇(σ) ν̃β̇(σ) , (5.22)

where R(λ, λ̃)αβ, R(λ, λ̃)α̇β̇ are traceless, weightless holomorphic functions of (λ, λ̃). Gen-

eral operators of this form suffer from normal ordering ambiguities, but a large interesting

class are free from such problems. For instance, consider (5.22) with

Rα
β = 0, R̃α̇

β̇ =
〈aλ(σ)〉
〈sλ(σ)〉

λ̃α̇s λ̃sβ̇

〈a s〉 .

A calculation similar to that which led to (5.21) gives the action of this charge on the

correlator with momentum eigenstates:〈〈
QSR

3∏
i=1
Φ(σi )

n∏
j=4

∫
Σ
χ(σ j )Φ̇(σ j )

〉〉
=−

n∑
i=1

[s i ]

〈s i 〉
〈a i 〉
〈a s〉 λ̃sα̇

∂

∂λ̃i α̇
Mn,d , (5.23)

where the contour for QSR is as before. The last line is the holomorphic subleading

soft graviton contribution recently discussed by Cachazo and Strominger [140]. It was

conjectured that this subleading contribution is related to the action of superrotations;

(5.23) demonstrates this explicitly at the level of charges acting on the correlator. This was

latter verified using different methods in [].

5.5 Gravitational scattering amplitudes

Having shown that the model has vertex operators naturally encoding the asymptotic

radiative degrees of freedom, and that the charges corresponding to the BMS group

have a natural action on its correlators, the last thing to do is to evaluate the correlation

functions (5.15) themselves. First, notice that the PCO insertions only have non-trivial

Wick contractions with other PCOs of the same type. The resulting correlation function on
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the PCOs can then be computed using the arguments employed for PCOs in [43], resulting

in 〈
d∏

k=1
Υk

d̃∏
l=1
Υ̃l

〉
= R(λ) R(λ̃), (5.24)

where R(λ), R(λ̃) are the resultants of the maps

λα :Σ→CP1, λ̃α̇ :Σ→CP1, (5.25)

respectively [44]. The resultant R(λ) vanishes iff both λα(σ∗) vanish simultaneously for

some σ∗ ∈ Σ. The factor (5.24) thus ensures that the amplitude receives contributions

only when (λα(σ), λ̃α̇(σ)) is a well-defined map to CP1 ×CP1.

Evaluating the remainder of the correlator with the choice of momentum eigenstates

(5.41) forΦ leads to

Mn,d =
∫ ∏d+1

r=1 d2|4λ0
r

∏d̃+1
s=1 d2|4λ̃0

s

vol(C∗×C∗)

R(λ)R(λ̃) |σ4 · · ·σn |∏
j=1,2,3 t j t̃ j ω j Dσ j

d+d̃+1∏
a=1

δ

(
n∑

i=1
ti t̃iωi sa(σi )

)
n∏

i=1
Dσi dti dt̃i δ

2|4(λi − tiλ(σi )) δ2|4(λ̃i − t̃i λ̃(σi )) . (5.26)

Here, the measure in the first line is over the zero modes of the maps (5.25), while the

quotient by two C∗-freedoms reflects the rescaling symmetry associated with L and

L̃ . The σ
α

i = (σ
0
i ,σ

1
i ) are homogeneous coordinates on Σ, which have SL(2,C)-invariant

contraction ϵαβσ
α

i σ
β

j = (i j ). The Vandermonde determinant

|σ4 · · ·σn | := ∏
4≤i< j≤n

(i j )

is produced by the n −3 χ-insertions, and Dσi := (σi dσi ) is the natural weight +2 holo-

morphic measure on Σ. Finally, the first set of δ-functions in the second line arises by

performing the integral over zero modes for the map component u :Σ→C,

∫
dd+d̃+1u0 exp

[
i

n∑
i=1

ti t̃iωi u(σi )

]
=

d+d̃+1∏
a=1

δ

(
n∑

i=1
ti t̃iωi sa(σi )

)
,

for {sa} a basis of H 0(Σ,L ⊗L̃ ).
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The expression (5.45) for Mn,d can be manipulated into a more recognizable form.

Using the constraint (5.14), one can show ([31, 45]) that

d+d̃+1∏
a=1

δ

(
n∑

i=1
ti t̃iωi sa(σi )

)
= 1

|σ1 · · ·σn |
∫
C

dr
n∏

i=1
δ

(
ti t̃iωi − r∏

j ̸=i (σiσ j )

)
.

Inserting this identity into (5.45) and working on the support of the various delta-functions

produces an equivalent expression for the correlator:

Mn,d =
∫ ∏d+1

r=1 d2|4λ0
r

∏d̃+1
s=1 d2|4λ̃0

s

vol(SL(2,C)×C∗×C∗)
R(λ)R(λ̃)

dr

r 3

n∏
i=1

δ

(
ti t̃iωi − r∏

j ̸=i (σiσ j )

)
× Dσi dti dt̃i δ

2|4(λi − tiλ(σi )) δ2|4(λ̃i − t̃i λ̃(σi )) . (5.27)

Using one of the C∗-freedoms to fix the r -integral, this expression is equal to a repre-

sentation derived in [44] of the Cachazo-Skinner formula for the tree-level S-matrix of

N = 8 supergravity [171]. Hence, the simplest correlation function of the model, with

vertex operators represented by momentum eigenstates, produces the tree-level scattering

amplitudes of gravity.

5.6 The Yang-Mills model

The set up of the Yang-Mills model is similar to the gravitational one. Matter fields

are mostly the same, the difference lies on the symmetries being gauged. It’s worth

nothing from the beginning that if this model is to be interpreted as giving a holographic

description of Yang-Mills theory in some regime of validity it should also include gravity.

Indeed, it turns out that the YM model contains states of conformal gravity, quite similar

to the original twistor string of Berkovits and Witten [2–4]. For tree-level single trace

amplitudes there is no contribution from the conformal gravity states, so I’ll focus on this

case.

As in the gravitational case studied above, the worldsheet model for Yang-Mills is a

CFT on the Riemann sphere Σ governing holomorphic maps from Σ to IC. Now IC is

the total space of O (1,1) →CP1|2 ×CP1|2, which gives N = 4 supersymmetry on the target

space. As above the GL(1,C)×GL(1,C) scaling built into the projective description of IC

is given on the Riemann sphere in terms of two line bundles L ,L̃ →Σ, of degree d , d̃ ≥ 0.

And the coordinates on IC are given by the same worldsheet fields as in the gravitational

case

u ∈Ω0(Σ,L ⊗L̃ ) , λA ∈Ω0(Σ,C2|2 ⊗L ) , λ̃Ȧ ∈Ω0(Σ,C2|2 ⊗L̃ ) ,
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with the chiral, first-order action:

S1 = 1

2π

∫
Σ

w ∂̄u +νA ∂̄λA + ν̃Ȧ ∂̄λ̃Ȧ . (5.28)

The conformal weight (1,0) fields {w,νA, ν̃Ȧ} are conjugate to the coordinates on IC.

To describe gauge degrees of freedom add the action SC for a worldsheet current

algebra corresponding to the space-time gauge group G . As usual, this can be realized

explicitly in terms of free fermions on the worldsheet. The two GL(1,C) symmetries

associated with the line bundles L and L̃ are being gauge as well as two-dimensional

gravity on the worldsheet.7. The ghost action is then

S2 = 1

2π

∫
Σ

m ∂̄n+m̃ ∂̄ñ+b ∂̄c , (5.29)

where all ghost fields have fermionic statistics and n,ñ ∈Ω0(Σ), c ∈Ω0(Σ,TΣ). Finally, add

an additional set of fermionic fields

χ ∈Ω0(Σ,L ⊗L̃ ) , ξ ∈Ω0(Σ,KΣ⊗ (L ⊗L̃ )−1) ,

with action

S3 = 1

2π

∫
Σ
ξ∂̄χ . (5.30)

Note that this pair of fields have different conformal weights from the ones in the gravita-

tional model. They play a similar role in this model as in the gravitational one so they will

be denoted by the same symbols. Since from now on only the gauge theory model will be

discussed I trust that no confusion arise from it.

The full action is S = S1 +S2 +S3 +SC and the BRST charge implementing scale and

conformal invariance on Σ is:

Q =
∮

c T −n
(
w u +νAλA +χξ)− ñ

(
w u + ν̃Ȧ λ̃Ȧ +χξ

)
, (5.31)

where T is the holomorphic stress tensor of the action. It is easy to see that the anomalies

associated with L ,L̃ vanish, and the theory has vanishing conformal anomaly provided

the worldsheet current algebra contributes +30 to the central charge. When working on

the Riemann sphere (Σ∼=CP1) the conformal anomaly is somewhat tame, so no explicit

choice of gauge group that would make c = 0 will be made.

7This was not the case for the gravitational model, where the stress tensor T wasn’t part of the BRST
operator.
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Vertex operators of the model sit inside the cohomology of the BRST charge Q. The

structure of (5.31) makes clear that these vertex operators should be functions of confor-

mal weight zero, uncharged-charged under L ×L̃ . Such vertex operators fall into two

broad classes: gauge theoretic and gravitational. The former are given by

c tr
(
O(u,λ, λ̃) j

)
, (5.32)

where O(u,λ, λ̃) is a homogeneous function on IC taking values in g (the Lie algebra of

the gauge group) and j is the conformal weight (1,0) Kac-Moody current provided by

the worldsheet current algebra. Inside the trace there is a c-ghost, which absorbs the

conformal weight of the current j and creates a puncture on Σ. As usual, the current obeys

j a(z) jb(w) ∼ k δab

(z −w)2
+ f abc j c

(z −w)
, (5.33)

where k is the level of the current algebra and f abc are the structure constants of g.8 The

current algebra is chosen to have level k = 0 as in [148], but this assumption can be relaxed

for most calculations.

Expanding the function O(u,λ, λ̃) with respect to the fermionic coordinates reveals

how the radiative degrees of freedom for the gauge field at IC are encoded. The super-

multiplet is expanded as:

O(u,λ, λ̃) =ϕ(0,0) +·· ·+ (η)2F(−2,0) +·· ·+ (η̃)2F̃(0,−2) +·· ·+ (η)2(η̃)2ϕ̃(−2,−2) ,

with the components being g-valued functions on the bosonic body of IC whose weight is

indicated by the subscripts. The component F(−2,0) (F̃(0,−2)) is the broadcasting function

for a positive (negative) helicity gluon defined by (5.5), while each of the other components

corresponds to the radiative degrees of freedom of the full spectrum of N = 4 super-Yang-

Mills theory. For example, the six components coming with an equal number of ηs and η̃s

represent the scalars.

However, there are additional vertex operators which do not involve the worldsheet

current algebra. Roughly, these correspond to deformations of the complex and Hermitian

structures of IC, and are given by

c w v , c νA v A , c ν̃Ȧ ṽ Ȧ ,

8Note that here the indices a,b,c run over the dimension of the Lie algebra, and are not to be confused
with those of fermionic variables ηa .
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c ∂u g , c ∂λA g A , c ∂λ̃Ȧ g̃ Ȧ , (5.34)

where v, v A, ṽ Ȧ, g , g A, and g̃ Ȧ are functions on IC taking values in appropriate powers of

L and L̃ to ensure overall homogeneity. Given their geometric action, it is natural to

interpret these vertex operators as gravitational perturbations away from the Minkowski

vacuum defining IC. Indeed, from a holographic perspective it is expected that any

model living at null infinity with gauge-theoretic degrees of freedom must be coupled to

gravitation in some way. Below I’ll argue that (5.34) actually correspond to a non-unitary

theory of gravity. On the Riemann sphere and at single trace it is possible to consistently

study only the gauge-theoretic vertex operators (5.32), conformal gravity states will only

contribute to multi trace amplitudes and at loop level.

Several of the fields in this model have zero modes on the Riemann sphere, thus a pre-

scription for computing correlation functions in this CFT is required. While the bc-ghost

system provides a measure on the moduli space of Σ in the presence of vertex operator

insertions, the field χ from (5.30) has d + d̃ zero modes which must be absorbed. To do

this, note that the composite operator wχ has conformal weight (1,0) and is uncharged-

charged with respect to L , L̃ . In the presence of vertex operator insertions at points

{z1, . . . , zn} ∈Σ, wχ acquires poles at these insertions. Thus, define∮
zi

w(z)χ(z) ,

to be the scalar given by the residue of wχ at zi ∈Σ.

As an uncharged-charged scalar, this quantity is clearly BRST-closed and has n−1 zero

modes. In analogy to the gravitational model, demand that these zero modes also saturate

the zero modes of χ itself. This results in the constraint

d + d̃ = n −2. (5.35)

With this prescription it is possible to eliminate the degree of L̃ in terms of d and n

in any correlation function, and reproduces the identification between line bundles

L ⊗L̃ ∼= KΣ(z1 +·· ·+ zn) given by [31].
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The correlation function involving n gauge theory vertex operators (5.32) is given by

An,d =
〈

n∏
i=1

ci tr
(
O j

)
i

n−3∏
j=1

(b|µ) j

n∏
k=2

∮
σk

w(σ)χ(σ)

〉

=
〈

c1 tr
(
O j

)
1 c2χ2 tr

(
Ȯ j

)
2 c3χ3 tr

(
Ȯ j

)
3

n∏
k=3

∫
Σ
χk tr

(
Ȯ j

)
k

〉
, (5.36)

where a subscript denotes dependence on an insertion point (e.g., c1 = c(σ1)) and Ȯ = ∂uO

takes values in O (−1,−1) on IC.

5.7 Kac-Moody symmetries and Ward identities

The correlator (5.36) involves insertions of the broadcasting function, which encodes the

radiative degrees of freedom of (super-)Yang-Mills theory asymptotically. The asymptotic

symmetries of the gauge field should have a realization in the context of this worldsheet

model and a natural action on correlators.

The most obvious asymptotic symmetry of the gauge theory are global gauge transfor-

mations on IC. These are implemented in this model by charges

Jg =
∮

tr
(
T j (σ)

)
, (5.37)

where {Ta} are the generators of the Lie algebra g and j a(σ) is the g-Kac-Moody current.

Since they are global on IC and holomorphic on the worldsheet, it is obvious that these

charges commute with the action and generate exact symmetries of the correlators.

The asymptotic symmetries of Yang-Mills theory are larger than global gauge transfor-

mations, though. Strominger showed that the possibility of non-zero colour flux through

I leads to ‘large’ gauge transformations which are constant along the null generators [144].

Such gauge transformations are parametrized by a function on the sphere of null genera-

tors which is only locally holomorphic. These are implemented in the model by charges

Jε =
∮
ε(λ, λ̃) tr

(
T j (σ)

)
, (5.38)

where the function ε specifies the ‘large’ gauge transformation.9

Crucially, ε may have poles, in which case the charge Jε is not an exact symmetry

due to the residue at those poles. In this case, the contour in (5.38) is taken around these

9This charge actually generates a complexified ‘large’ gauge transformation; the real transformation is
obtained by restricting to the real slice I .
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poles; assuming only simple poles, inserting the charge into the correlator (5.36) results in

a Ward identity:

〈Jε c1 tr
(
O j

)
1 · · ·

∫
Σ
χn tr

(
Ȯ j

)
n〉

= ∑
w∈Sn /Zn

n∑
i=1

ε(λ(σwi ), λ̃(σwi )) tr(Tw1 · · · [T,Twi ] · · ·Twn )An,d . (5.39)

Here Ta
i is the generator of g acting in the representation carried by the vertex operator

at σi ∈Σ. This is closely related to the Ward identity found in [144] for the action of the

Kac-Moody current implementing the ‘large’ gauge transformation (5.38). Here, A a,i
n,d is

shorthand for the correlator

A a,i
n,d =

〈
c1 tr

(
O j

)
1 · · ·Ta

i

∫
Σ
χi tr(Ȯ j )i · · ·

∫
Σ
χn tr

(
Ȯ j

)
n

〉
,

with Ta
i in the representation carried by the vertex operator at insertion σi ∈Σ.

It has been shown that the content of the Ward identity (5.39) should be equivalent to

Weinberg’s soft gluon theorem [144, 148], and this is confirmed in the context of the YM

model with an appropriate choice for the ‘large’ gauge transformation parameter. Indeed,

the simplest non-trivial choice for the function ε is

ε(1)(λ, λ̃) = 〈aλ(σ)〉
〈a s〉〈sλ(σ)〉 , (5.40)

where aα is an arbitrary point on CP1, (λs , λ̃s) labels the generator of IC associated with

the insertion. Since ε(1) is homogeneous with respect to a and λ(σ), and is independent of

λ̃(σ), the associated charge corresponds to a ‘holomorphic’ Kac-Moody current. Further-

more, ε(1) has weight (−2,0) with respect to (λs , λ̃s), the same as the broadcasting function

for a positive helicity gluon.

The single particle states in (5.36) can be given in the momentum eigenstate represen-

tation:

Oa
i =Ta

i

∫
dti dt̃i

ti t̃iωi
δ2|2(λi − tiλ(σi ))δ2|2(λ̃i − t̃i λ̃(σi ))eti t̃iωi u(σi ) . (5.41)

In a fixed colour-ordering, the Ward identity (5.39) then becomes

aα

〈a s〉
(〈

λα(σ1)

〈sλ(σ1)〉c1 tr(O j )1 · · ·
〉
−

〈
λα(σn)

〈sλ(σn)〉c1 tr(O j )1 · · ·
〉)

=
( 〈a 1〉
〈a s〉〈s 1〉 −

〈a n〉
〈a s〉〈s n〉

)
An,d = 〈1n〉

〈s 1〉〈s n〉 An,d , (5.42)
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which is precisely the soft gluon theorem [138]. So the soft gluon theorem is realized

(for a positive helicity soft gluon) by the action of a holomorphic Kac-Moody current

generating a ‘large’ gauge transformation at IC, which corresponds to the insertion of a

soft gluon broadcasting function at (λs , λ̃s) ∈CP1 ×CP1. Analogous to the gravitational

model introduced above, more general ‘large’ gauge transformations will be related to the

insertion of other soft particles in the spectrum of N = 4 super-Yang-Mills or to multiple

such soft insertions.

Following the discovery of subleading soft factors for gravity [139, 140], a similar

subleading soft factor for gauge theory amplitudes was found [149]. This subleading soft

theorem has recently been derived from an asymptotic symmetry perspective for Abelian

gauge group, where the associated symmetry is not simply a gauge transformation, but

also acts as a vector field on the sphere of null generators at I [152]. It seems natural

that the subleading soft theorem is generated by a similar symmetry in the non-Abelian

setting.

It is straightforward to write charges generating such rotations on the (complexified)

sphere of null generators:

JV =
∮

V α̇(λ, λ̃)ν̃α̇(σ) tr
(
T j (σ)

)
,

where V α̇ must take values in O (0,−1) on IC and have conformal weight (−1,0). There is

the possibility for a rotation in the λ-direction which has been dropped for simplicity. A

particularly interesting choice for V α̇ is

V α̇(λ, λ̃) = λ̃α̇s
w(σ)〈sλ(σ)〉 . (5.43)

As above there is a Ward identity associated with the action of JV inside the correlator

(5.36). Once more, the vector V α̇ has poles which ensure that it is not an exact symmetry of

the theory. In order to evaluate the Ward identity when all external states are in momentum

eigenstate representations (5.41), note that the path integral over non-zero modes of u(σ)

can be performed explicitly, fixing [39]

w(σ) =
n∑

i=1
ti t̃iωi

Dσi

(σσi )

d+d̃∏
a=0

(paσi )

(paσ)
,

where (σi σ j ) is the SL(2,C)-invariant inner product ϵαβσ
α

i σ
β

j for homogeneous coordi-

nates on Σ, Dσi = (σi dσi ) is the weight +2 holomorphic measure on Σ, and the {pa} ⊂Σ
are an arbitrary collection of d + d̃ +1 points.
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Taking the usual contour to pick out the poles, and making a choice of colour-ordering

as before, the Ward identity reads:

〈
JV c1 tr(O j )1 · · ·

∫
Σ
χn tr(Ȯ j )n

〉
=

(
λ̃α̇s

ω1 〈s 1〉
∂

∂λ̃α̇1
− λ̃α̇s
ωn 〈s n〉

∂

∂λ̃α̇n

)
An,d , (5.44)

which is the subleading soft factor for a positive helicity gluon inserted between particles

1 and n in the colour ordering [149]. In the Abelian case, this is equivalent to the Ward

identity used to derive Low’s subleading soft theorem [152]. For general gauge group,

(5.44) explicitly confirms that the subleading gluon soft factor is related to the action of

vector fields on the conformal two-sphere.

5.8 Scattering amplitudes in the YM model

At this point, only correlators involving gauge-theoretic vertex operators (5.32) encoding

the broadcasting data of the gauge field were considered. On the Riemann sphere this

restriction is consistent and corresponds to isolating single trace contributions in the

colour structure. The Ward identity (5.39) establishes that charges implementing the

action of asymptotic ‘large’ gauge transformations act on these correlators in a natural

way, implying the soft gluon theorem. This extends to other charges, acting as rotations

on the space of generators of IC, which give the subleading soft theorem. What is left to

do is to actually evaluate the correlator (5.36), and discuss the role of the other states in

the theory given by vertex operators (5.34).

To evaluate (5.36), consider all vertex operator insertions to be given by the momentum

eigenstates (5.41). The only non-trivial Wick contractions between the vertex operators

are in the worldsheet current algebra; using (5.33) and choosing a specific colour-ordering

this leads to the usual Parke-Taylor factor:〈
n∏

i=1
j ai (σi )

〉
= tr

(
Ta1 · · ·Tan

) n∏
i=1

Dσi

(σi σi+1)
.
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The remainder of the correlator is given by the zero mode integrals for the various world-

sheet fields, with the result:

An,d = tr
(
Ta1 · · ·Tan

)∫ ∏d
r=0 d2|2λ0

r
∏d̃

s=0 d2|2λ̃0
s

vol(C∗×C∗)

|σ1σ2σ3|
Dσ1Dσ2Dσ3

|σ2 · · ·σn |
t1 t̃1ω1

d+d̃∏
a=0

δ

(
n∑

i=1
ti t̃iωi sa(σi )

)
n∏

i=1

Dσi

(σi σi+1)
dti dt̃i δ

2|2(λi − tiλ(σi ))δ2|2(λ̃i − t̃i λ̃(σi )) (5.45)

In this expression, the measure in the first line is over the zero modes of the maps

λA(σ), λ̃Ȧ(σ) : Σ→ CP1|2, the two C∗-freedoms are associated with the scalings of L

and L̃ , and the Vandermonde determinants

|σ1σ2σ3|
Dσ1 Dσ2 Dσ3

= (σ1σ2)(σ2σ3)(σ3σ1)

Dσ1Dσ2Dσ3
, |σ2 · · ·σn | =

∏
2≤i< j≤n

(σi σ j ) ,

are given by the 3 zero modes of c and n − 1 zero modes of χ, respectively. The delta

functions in the second line are from momentum eigenstate insertions and the integral

over u(σ) zero modes:

∫ d+d̃∏
a=0

du0
a exp

[
n∑

i=1
ti t̃iωi u(σi )

]
=

d+d̃∏
a=0

δ

(
n∑

i=1
ti t̃iωi sa(σi )

)
,

where {sa} form a basis of H 0(Σ,L ⊗L̃ ).

This expression can be manipulated into a more recognizable form by using the

identity (see [31, 44, 45])

d+d̃∏
a=0

δ

(
n∑

i=1
ti t̃iωi sa(σi )

)
= 1

|σ1 · · ·σn |
∫

dr
n∏

i=1
δ

(
ti t̃iωi − r∏

j ̸=i (σi σ j )

)
.

The result,

An,d = tr
(
Ta1 · · ·Tan

)∫ ∏d
r=0 d2|2λ0

r
∏d̃

s=0 d2|2λ̃0
s

vol(SL(2,C)×C∗×C∗)

dr

r

n∏
i=1

δ

(
ti t̃iωi − r∏

j ̸=i (σi σ j )

)

× Dσi

(σi σi+1)
dti dt̃i δ

2|2(λi − tiλ(σi ))δ2|2(λ̃i − t̃i λ̃(σi )) (5.46)

is equal to the parity-invariant form of the Roiban-Spradlin-Volovich [45] expression for

the classical S-matrix of N = 4 super-Yang-Mills given by Witten [31]. Thus, the correlators

(5.36) of the YM model reproduce all tree-level amplitudes of gauge theory, confirming

the interpretation of the Ward identities in the previous section.
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Now consider the gravitational degrees of freedom in this model, corresponding to

the vertex operators (5.34). While consistently omitted from single trace gauge theory

interactions at tree-level, these states can mediate multi-trace tree-level amplitudes in

the gauge theory and would also run in any amplitudes computed to higher-order in

perturbation theory. The claim is that these degrees of freedom correspond to a non-

unitary theory of gravity with fourth-order equations of motion.

The non-unitary nature of the gravitational degrees of freedom is manifest by consid-

ering a multi-trace correlator where all external states are given by gauge-theoretic vertex

operators (5.32). Since the only non-trivial Wick contractions between these operator

insertions are in the worldsheet current algebra, the arguments of [61] ensure that this

double trace is mediated by gravitational degrees of freedom with fourth-order equations

of motion. As an explicit example, consider a double trace correlator of n external states,

with n1 in one trace and n2 in the other (n1 +n2 = n). It is straightforward to show that

such a correlator can be written (for momentum eigenstates) as:

tr
(
Ta1 · · ·Tan1

)
tr

(
Tb1 · · ·Tbn2

)∫ ∏d
r=0 d2|2λ0

r
∏d̃

s=0 d2|2λ̃0
s

vol(SL(2,C)×C∗×C∗)

dr

r

×
n1∏

j=1

Dσ j

(σ j σ j+1)
dt j dt̃ j δ

(
t j t̃ jω j − r∏

l ̸= j (σ j σl )

)
δ2|2(λ j − t jλ(σ j ))δ2|2(λ̃ j − t̃ j λ̃(σ j ))

×
n2∏

k=1

Dσk

(σk σk+1)
dtk dt̃k δ

(
tk t̃kωk −

r∏
m ̸=k (σk σm)

)
δ2|2(λk − tkλ(σk ))δ2|2(λ̃k − t̃k λ̃(σk )) .

Consider the limit where this correlator factorizes without splitting the colour traces:

the worldsheet Σ degenerates into two Riemann spheres Σ1 and Σ2 attached at a node,

with vertex operators 1, . . . ,n1 on Σ1 and 1, . . . ,n2 on Σ2. In this limit the only states flowing

through the factorization channel are gravitational. The worldsheet can be modelled on

a conic in CP2 with a complex parameter q controlling the degeneration; in the q → 0

limit, Σ factorizes into Σ1 ∪Σ2, with the marked points σx ∈Σ1 and σy ∈Σ2 identified at

the node.

Standard arguments (see Appendix C of [61]) show that in the q → 0 limit, the portion

of the correlator encoding the trace structure factorizes as

1

vol SL(2,C)

n1∏
j=1

Dσ j

(σ j σ j+1)

n2∏
k=1

Dσk

(σk σk+1)

→ dq

q2

(
Dσx

vol SL(2,C)

n1∏
j=1

Dσ j

(σ j σ j+1)

) (
Dσy

vol SL(2,C)

n2∏
j=1

Dσk

(σk σk+1)

)
+O(q−1) .
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Due to the N = 4 supersymmetry in play, all other parts of the correlator are homogeneous,

introducing no additional powers of q . The various delta functions can be used to show

that in the factorization limit, q scales as the square of the total momentum flowing

through the channel. Thus, the presence of a double pole in q indicates a momentum

space propagator of the form p−4, as expected for a theory with fourth-order equations of

motion.

While this factorization argument confirms that the gravitational vertex operators of

the YM model do not correspond to Einstein gravity, a more precise statement can be

made by considering correlators of the operators (5.34) themselves. These give gravita-

tional interactions which are consistent with a particular non-minimal N = 4 conformal

supergravity [172] arising in the twistor-strings of Witten and Berkovits [2–4].10 In the

YM model conformal invariance is explicitly broken by the choice of target space: IC

is topologically distinct from the conformal boundary of (anti-)de Sitter space, which

is a conformally equivalent bulk space-time. Minkowski space is a vacuum solution to

the conformal gravity equations of motion, though, so the vertex operators (5.34) can be

thought of as linearised perturbations around this fixed background conformal structure.

Low-point amplitudes of non-minimal conformal supergravity have been calculated in

the context of twistor-string theory [4, 175–177], and the structure of the vertex operators

makes it clear that the YM model will reproduce those amplitudes in a parity-symmetric

form, analogous to the gauge theory calculation above. For instance, the n = 3, d = 0

correlator〈
3∏

i=1
ci ν

A
i vi A

∏
j=2,3

∮
σ j

w(σ)χ(σ)

〉

=
∫

d2|2λ0 ∏
s=0,1 d2|2λ̃0

s
∏2

t=0 du0
t

vol(C∗×C∗)

(
∂v1B

∂λA

∂v̇2C

∂λB

∂v̇3 A

∂λC
− ∂v1B

∂λC

∂v̇2C

∂λA

∂v̇3 A

∂λB

)
,

is non-vanishing, and corresponds to a cubic interaction between two conformal gravitons

and a conformal scalar in Minkowski space. This interaction is forbidden in minimal

N = 4 conformal supergravity by a global SU(1,1) symmetry acting on the conformal

scalar [172, 178].

Another test of non-minimality is given by embedding Einstein degrees of freedom

inside the gravitational vertex operators. Fixing a conformal structure to perform this em-

bedding corresponds to picking a cosmological constant,Λ; in minimal conformal super-

10‘Non-minimal’ refers to the presence of interaction terms between scalars and two Weyl tensors in the
space-time action [173]. The existence of this non-minimal theory at the quantum level is questionable due
to SU(4) axial anomaly calculations [174], but here only tree-level observables were used.
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gravity, correlators of the embedded Einstein operators will be O(Λ) polynomials [179, 180].

In this model, such an embedding can be given by taking linear combinations of (5.34):

νA v A + ν̃Ȧ ṽ Ȧ →ΛνA ∂h

∂λA
+ ν̃Ȧ ∂h̃

∂λ̃Ȧ

, ∂λA g A +∂λ̃Ȧ g̃ Ȧ →〈∂λλ〉G +Λ [∂λ̃λ̃]G̃ ,

where h, h̃, G , and G̃ encode Einstein degrees of freedom. For example, in the expansion

h = f(−2,0) +·· ·+ (η)2N(−4,0) +·· ·+ (η̃)2φ(−2,−2) +·· ·+ (η)2(η̃)2 f̃(−4,−2)

the component N(−4,0) is the news function of a positive helicity Einstein graviton, while

f(−2,0), f̃(−4,−2) andφ(−2,−2) encode the radiative degrees of freedom for photons and scalars

in N = 4 supergravity. It is easy to see that correlators of these operators will have an

O(Λ0) piece, indicating non-minimal structure.11

While this hardly suffices to establish that the gravitational interactions of the YM

model are equivalent to non-minimal conformal supergravity, it does seem to indicate that

this theory is at least a subsector of the model (presented in a conformally broken target

space framework). Combined with other obvious similarities to the Berkovits-Witten

twistor-string, this suggests that there could be a transcription (in some sense) of this

model from IC to twistor space.

It is easy to see that correlators of these operators will have an O(Λ0) piece, indicating

non-minimal structure. Furthermore, the correlators〈
d+1∏
i=1

ci (〈∂λλ〉G +Λ [∂λ̃λ̃]G̃)i

n∏
j=d+2

c j (ΛνA ∂h

∂λA
+ ν̃Ȧ ∂h̃

∂λ̃Ȧ

) j

n∏
k=4

(b|µ)k

n∏
l=2

∮
σl

w(σ)χ(σ)

〉
,

which would lead to Nd−1MHV amplitudes in minimal conformal supergravity are struc-

turally equivalent to those produced by the non-minimal Berkovits-Witten model in the

Λ→ 0 limit [181].

11TheΛ→ 0 limit of certain correlators also matches those produced by the non-minimal Berkovits-Witten
model at arbitrary n and d [181], though there are other correlators whose interpretation is less clear.





Chapter 6

Conclusion

I have shown in this thesis that there’s much to be gained from pushing forwards the

twistor string approach to scattering amplitudes. There are now many variants of the

twistor string, and many more twistor string inspired formulas, which share the as a basic

ingredient the scattering equations. Among them the type II ambitwistor string, either

in the RNS or pure spinor guise, stands out as giving a geometrical interpretation of the

scattering equations as enforcing the worldsheet to be mapped into ambitwistor space. As

shown in this thesis, this geometrical view is key in generalizing the scattering equations

to loop level and to curved spacetimes, giving more heft to the claim that it gives an

alternative description of type II supergravity.

I have also shown that these worldsheet methods have applications to the study of

asymptotic symmetries of the S-matrix and flat space holography, at least in some specific

cases. Given the connection between scri and asymptotic twistor space it might have

been expected that twistor string methods might be applied in these cases, but it is still

intriguing that a theory living completely on scri can reproduce the tree-level S-matrix of

N = 4 sYM and N = 8 sugra. There’s also a connection between ambitwistor space and

the cotangent bundle to scri [39] which would be interesting to study further.

The work done here is a small step in furthering our understanding of QFTs and

there are many, many things left to be done. Particularly, in the subject of twistor strings

there has been many exciting recent developments. Among them are: the great number

of theories described in the CHY formalism [14, 15], new and simpler loop formulas

[41], a geometrical understanding of the ambitwistor string through localization [33], an

elucidation of the role of twistors in superstring theory [83], and others. It seems that all

of those should somehow come together under some unified description or framework,

though at this point it is not clear exactly how. The next few years promise a lot of new

surprises and insights, and I look forward to it.
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Appendix A

One loop formulas

This appendix contains some useful expressions for the ingredients of the loop amplitudes

appearing in various places in chapter 3.

Let τ ∈C define a torus by the quotient C/(Z+τZ). The modular parameter will also

be denoted by q such that

q = e2iπτ , (A.1)

The Jacobi theta functions are defined by their Fourier-Jacobi q-expansions,

θα(z|τ) = ∑
n∈Z

q (1/2)(n−a/2)2
e2iπ(z−b/2)(n−a/2) . (A.2)

Hereα := (a,b) = {(0,0), (0,1), (1,0)} are the even characteristics (spin structures) and (1,1)

is the odd one. In theα= {1,2,3,4} notation used above, they correspond toα= {3,4,2}

andα= 1 respectively. These are used to define the propagators on the elliptic curve.

The function G(zi j |τ) denotes the bosonic propagator on the torus defined by

G(z|τ) =− ln

∣∣∣∣ θ1(z|τ)

∂θ1(0|τ)

∣∣∣∣2

+2π
(Imz)2

Imτ
. (A.3)

where the notation zi j = zi − z j and ∂≡ (∂/∂z) (respectively for ∂̄) is used. The functions

Sα(zi j |τ) = ∂θ1(0|τ)

θ1(zi j |τ)

θα(zi j |τ)

θα(0|τ)

√
dzi

√
dz j (A.4)

are the torus free fermion propagators, or Szëgo kernels, in the even spin-structureα. For

example the Fourier-Jacobi q-expansion of S1 is

S1(z|τ) = π

tan(πz)
+4π

∞∑
n=1

qn

1−qn
sin(2nπz) . (A.5)
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Finally the Dedekind eta function is defined as

η(τ) = q1/24
∞∏

n=1
(1−qn) . (A.6)



Appendix B

Worldsheet currents and OPEs

For convenience, this appendix lists the various composite currents appearing in the non-

minimal formalism discussed in this thesis, and their various OPEs with each other. Only

the untilded-tilded variables are listed, as the currents and OPEs for the tilded sector are

identical. Note that the only difference between the list here and that for the superstring

is the definition of the Green-Schwarz current dα [51].

The pure spinor conditions on minimal and non-minimal variables imply a gauge

invariance, meaning that the conformal weight (1,0) pure spinor fields can only appear in

the currents:

N nm = 1

2
(wγnmλ) , J =λ ·w , Tλ =−wα∂λ

α ,

N̄ nm = 1

2

(
w̄γnmλ̄+ sγnmr

)
, J̄ = w̄ · λ̄+ s · r , Tλ̄,r =−w̄α∂λ̄α− sα∂rα ,

Smn = 1

2
(sγmnλ̄) , S = s · λ̄ .

The minimal currents have OPEs:

N nm(z)λα(w) ∼−1

2

(γnmλ)α

z −w
, J (z)λα(w) ∼− λα

z −w
, J (z) N nm(w) ∼ 0,

J (z) J (w) ∼ −4

(z −w)2
, N pq (z) N nm(z) ∼−3

ηm[pηq]n

(z −w)2
+ ηm[q N p]n −ηn[q N p]m

z −w
,

N nm(z)Tλ(w) ∼ N nm(z)

(z −w)2
, J (z)Tλ(w) ∼ 8

(z −w)3
+ J (z)

(z −w)2
,

Tλ(z)Tλ(w) ∼ 11

(z −w)4
+ 2Tλ(z)

(z −w)2
+ ∂Tλ

z −w
.

The last of these confirms the +22 central charge contribution of the pure spinor variables.
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For the non-minimal variables:

N̄ nm(z) λ̄α(w) ∼−1

2

(γnmλ̄)α
z −w

, N̄ nm(z)rα(w) ∼−1

2

(γnmr )α
z −w

, J̄ (z) N̄ nm(w) ∼ 0,

J̄ (z) λ̄α(w) ∼− λ̄α

z −w
, J̄ (z)rα(w) ∼− rα

z −w
, J̄ (z) J̄ (w) ∼ 0,

N̄ pq (z) N̄ nm(w) ∼ ηm[q N̄ p]n −ηn[q N̄ p]m

z −w
,

N̄ nm(z)Tλ̄,r (w) ∼ N̄ nm(z)

(z −w)2
, J̄ (z)Tλ̄,r (w) ∼ J̄ (z)

(z −w)2
,

Tλ̄,r (z)Tλ̄,r (w) ∼
2Tλ̄,r (z)

(z −w)2
+
∂Tλ̄,r

z −w
,

Any additional OPEs (involving Snm or S) can be read off directly from the superstring

[76]. Note that the OPE of the stress tensor Tλ̄,r with itself confirms that the non-minimal

variables do not modify the central charge of the model.

Finally, the BRST charge for both the minimal and non-minimal models is built upon

the Green-Schwarz constraint dα (2.41), which is the holomorphic generalization of the

superparticle constraint:

dα = pα− 1

2
Pmγ

m
αβθ

β.

The OPEs of this constraint with the other matter variables are crucial in proving that

the BRST charge is nilpotent, the closure of the vertex operators, as well as deriving the

effective b-ghost (3.126), and can be derived using the free OPEs (2.40):

dα(z) f (X ,θ) (w) ∼ Dα f

z −w
, dα(z)dβ(w) ∼−

Pmγ
m
αβ

z −w
,

where Dα is the supersymmetric derivative.
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