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Abstract 

The self-assembly of small molecules into ordered structures is of significant interest in 
electronic applications due to simpler device fabrication and better performance. Here we present 
work on the development of self-assembled fibrous networks of thermotropic triphenylene 
discotic liquid crystals, where 2,3,6,7,10,11-Hexakishexyloxytriphenylene (HAT6) is studied. The 
formation of interconnected molecular fibres in acetonitrile-based solvents facilitates thermally-
reversible physical-gel (non-covalent) preparation, with the HAT6 network providing mechanical 
support and containment of the solvent. Furthermore, gel formation is also achieved using an 
acetonitrile-based iodide/tri-iodide redox liquid electrolyte, and the resulting gel mixture is utilised 
as an electrolyte in dye-sensitized solar cells (DSSCs). Our results show that it is indeed possible 
to achieve in situ gel formation in DSSCs, allowing for easy cell fabrication and electrolyte filling. 
In addition, the gel phase is found to increase device lifetime by limiting solvent evaporation. 
Differential scanning calorimetry (DSC) and polarising optical microscopy (POM) are used to 
study gel formation, and it is identified that the thermally reversible gels are stable up to working 
temperatures of 40 ºC. It is found that DSSCs filled with gel electrolyte exhibit longer electron 
lifetime in the TiO2 photo-anode (≈8.4 ms in the liquid electrolyte to ≈11.4 ms in the gel 
electrolytes), most likely due to electron screening from the electrolyte by HAT6. Current-Voltage 
(I-V) and electrochemical impedance spectroscopy (EIS) are used to study the effect of gel 
formation on conductivity and electrochemical properties, and it is found that confinement of the 
liquid electrolyte into a gel phase does not significantly reduce ionic conductivity, a problem 
common with solid-state polymer electrolytes. A 3.8 mM HAT6 gel electrolyte DSSC exhibited a 
PCE of 6.19 % vs. a 5.86 % liquid electrolyte reference. Extended device lifetimes studies showed 
that the gels increase stability of the DSSCs by reducing the rate of solvent evaporation. 

 

1. Introduction 

Discotic liquid crystals (DLCs) are a class of mesophases formed by disc-shaped 

molecules[1–3]. These materials are known to form columnar mesophases, where the molecules 

π-stack into molecular columns, and in the bulk several columns arrange together either in 

rectangular, hexagonal, or other packing geometries[4–6]. DLCs are also known to exhibit non-

columnar phases, such as the nematic phase [7,8], and, depending on the interaction between the 

bulk phase and chemical composition of individual molecules, LC materials can be tailored to 

diverse applications[9–11]. Examples of optoelectronic applications of DLCs include their use as 

organic semiconductors in solar cells[12–14], optical compensation layers in display panels[15], 

and more recently as low-molecular-mass organic gelators (LMOGs)[16–19]. In this paper, we 



explore the formation of physical gels using the symmetric triphenylene DLC 2,3,6,7,10,11-

Hexakishexyloxytriphenylene (HAT6) (Fig 1.a inset). More specifically, we explore its role as a 

gelating agent for an acetonitrile-based redox liquid electrolyte, and apply the resulting gel 

electrolytes to dye sensitized solar cells (DSSCs). Acetonitrile has been the solvent of choice for 

electrolyte applications in DSSCs, using Iodide/tri-Iodide (I-/I3
-)[20] as well as Cobalt (III/II) 

complex redox electrolytes[21], to fabricate DSSCs with efficiencies up to 13 %. Therefore, gel 

formation in acetonitrile based electrolytes using triphenylene DLC HAT6 is very exciting, and a 

promising prospect in photovoltaic applications.   

There are several ways to describe gel formation depending on the physical mechanism 

and chemistry of the gelation process. Gelators which are based on the formation of covalent 

bonds to form a network are called chemical-gelators/gels[22], whereas gelators which are bonded 

by non-covalent interactions, such as hydrogen bonding or π-π  interactions, are called physical 

gels. Sometimes more specifically, gelators based on interacting π-systems are classified as π-

gels[23].  

Within the gel, an interconnected network of a gelator macroscopically confines a solvent 

such that bulk flow is limited. The gels described here are formed by fibres of condensed columns 

of HAT6 molecules[24], where the molecules π-stack to form the fibres. Triphenylene derivatives 

have four flat fused rings that exhibit an extended conjugated pi-electron system (inset in Fig 1.a). 

Triphenylene gels can be made using both symmetric and asymmetric substitutions in the 

periphery alkyl chains. Previous studies focusing on the use of triphenylenes in gels have taken 

two different approaches[16],[25,26]. 

In the first approach, gelators are added to a liquid crystalline matrix[25,26], which has 

shown to stabilize the columnar phase, improve columnar packing and increase the hole 

conductivity in the materials. Similar gelators have also been added to calamitic liquid crystals to 

modulate their electro-optic properties[27]. An interesting property of external gelators added to 

LC mesophases is that depending on whether the liquid crystalline transition temperature TI-N is 

greater or lower than the solution-gelation temperature (Tsol-gel), we get either a disordered gel (TI-

N < Tsol-gel) or highly ordered (Tsol-gel < TI-N) LC templated gel[26]. Several types of gelators have 

been investigated, including photo-responsive (cis-trans azo-benzenes) and thermo-responsive 

gelators[26].  

In the second approach to LC gel fabrication, which is more relevant to the mechanism of 

gelation studied in this research, LC molecules are used as the gelators in a solvent medium[16]. 

The bulk LCs phase-separates from the solvent, hence the choice of solvent is very important in 



the gel formation. In addition to phase separation, intermolecular interactions (e.g. hydrogen 

bonding and π-π stacking) lead to the formation of long-range fibrous aggregates that ultimately 

results in a reversible temperature dependent LC network that supports a solvent. Several 

approaches have been taken to realize these “π-organogels” using triphenylene-based 

molecules[28]. A common feature of these approaches is the use of symmetric and asymmetric 

substitutions of one of the alkyl chains of a symmetric DLC with a functional group, such as an 

amide[18], alcohol[29], Imidazole[30] or carboxylic group[16].   From previous studies, it can be 

noted that the nature of the substituent group has a strong effect on gel formation in particular 

solvents. For example, in the case of an acidic functional group, gel formation was strongly 

favoured in alcohol based solvents, particularly methanol[16] due to hydrogen bonding. In almost 

all studies, gel formation is governed by the interplay of intermolecular interactions and solvation 

effects of the functional groups [26]. 

DSSCs are a class of third generation solar cell and are promising candidates for future 

renewable energy applications[31]. In 1991 O’Regan and Grätzel published their work on the use 

of mesoporous TiO2 for dye adsorption[20], and the high efficiency combined with easy 

fabrication make these hybrid organic/inorganic devices very appealing[32]. However, one of the 

lasting challenges with conventional DSSCs has been the volatile nature of the iodide/tri-iodide 

redox liquid electrolyte that typically uses acetonitrile as a solvent[33]. Solvent evaporation and 

leakage have been key factors which limit device lifetime, and there is nearly two decades worth of 

work on the development of approaches to mitigate these problems[34–37]. These approaches 

have included the use of solid hole transport layers[38,39], solid polymer[40],  quasi-solid gel 

electrolytes[34,41,42] , alternative low vapour pressure solvents[43], and ionic liquids[44].  

It is demonstrated that self-assembled physical gels using triphenylene DLCs as gelators 

can be used to form gel electrolytes that can be applied in DSSCs. Gel formation occurs in-situ, 

allowing convenient fabrication and complete infiltration of the mesoporous Titanium dioxide 

(TiO2). It is shown that the gels lead to reduced electron recombination at the TiO2 interface. 

Furthermore, significant enhancement in the device lifetime of the gel electrolyte based cells is 

measured as compared to standard liquid electrolyte DSSCs, as a result of solvent retention in the 

gel network.  

2. Materials, mixture formulation and fabrication 

2.1 Materials  

2,3,6,7,10,11-Hexakishexyloxytriphenylene (HAT6) (SYNTHON Chemicals) DLC was 

used as received. Acetonitrile (Sigma Aldrich) was used as a solvent in both pure and electrolyte-



based gels. Iodide/tri-iodide redox liquid electrolyte was prepared by mixing 0.5 M 4-tert-

butylpyridine (Sigma Aldrich), 0.5 M lithium iodide (LiI) (Sigma Aldrich), 0.6 M 1-Methyl-3-

propylimidazolium iodide (MPII) (Sigma Aldrich), and 0.05M iodine (I2) (Sigma Aldrich) in 

acetonitrile.  

For DSSC photoanodes, a compact layer of TiO2 was prepared by spin-coating a titanium 

iso-propoxide solution (35 µL 2M HCl (Fisher) and 350 µL Titanium Isopropoxide in 5 ml 

anhydrous ethanol (Sigma Aldrich)). To prepare mesoporous titanium dioxide (TiO2) (Dyesol 18 

NR-T Transparent Titania paste) was used. Fluorine-doped tin oxide FTO glass (Sigma Aldrich) 

was used as a substrate for both the anode and cathode. Platinum paste (PT-1 Dyesol) was used a 

catalyst for electrolyte regeneration.  

2.2 Gel mixture formation 

To prepare HAT6 DLC gels, varying concentrations of HAT6 were added to either pure 

acetonitrile or liquid electrolyte. This was followed by heating the sample in a vial in an oven at 

45ºC to melt the crystalline (Cr) HAT6 into the solution. The heated sample was then sonicated, 

followed by heating again in an oven at the same temperature (45ºC). Subsequently, cooling the 

sample to room temperature results in gel formation (Fig 1.g), and this temperature dependent 

transition from the gel phase to a solution was process is found to be repeatable.  

2.3 Cell Fabrication 

Symmetric electrode sandwich cells for current-voltage (I-V) measurements were prepared 

using Indium Tin Oxide (ITO) coated glass. A 25 µm sealing and spacer film (Meltonix 1170-25, 

Solaronix) was used to maintain a fixed gap between the substrates. For 9.7 µm ITO-ITO test 

cells, glass spacers dispersed in UV-curable glue (NOA-68) were used. Subsequently, for linear 

sweep voltammetry measurements, platinum-coated Fluorine doped Tin Oxide (FTO) substrates 

were used to make sandwich cells with 60 µm spacer film (Meltonix). 

For DSSC photo-anode preparation, a TiO2 blocking layer was prepared by spin-coating 

the compact layer solution at 2000 rpm for 60 s. This was followed by an annealing step at 450ºC 

for 30 minutes. Subsequently, mesoporous TiO2 paste was bar-coated using a circular mask (to 

control the active area across devices) and annealed at 450 ºC to give an 8 µm thick mesoporous 

layer. The substrate was then immersed in a dye solution for 24 hours for dye adsorption. To 

prepare the counter electrode, Pt paste was spin-coated at 2000 rpm for 30 s, followed by sintering 

at 450 ºC. The cell was then sealed using 25 µm Meltonix film, followed by filling with either liquid 

electrolyte at room temperature, or HAT6-electrolyte gel at 40 ºC (to fill in the isotropic phase).  



3. Experimental methods 

A polarising optical microscope (POM) (Olympus BX-60) combined with an integrated 

heating stage and temperature controller (Linkam TMS 94) were used to visualise gel formation 

inside sandwich cells as a function of temperature. Differential Scanning Calorimetry (DSC) 

(Mettler Toledo 823e) was used to measure phase transitions of the gels, using a cooling and heating 

rate of 5ºC/min. To perform I-V measurements on ITO-ITO sandwich cells filled with the gels, 

a Keithley 4200-SCS parameter analyser was used. DSSC devices were tested under simulated 

AM1.5 standard conditions using a solar simulator (ABET 2000), and a sourcemeter (Keithley 

2400) was used to perform voltage sweeps of the cell to measure the dark and AM1.5 light I-V 

response. Electrochemical impedance spectroscopy (EIS) (Autolab PGSTAT 302N) of the DSSC 

devices was performed to measure the small signal response at variable frequencies to study 

electron lifetimes in the TiO2 and changes in charge transfer resistance at the DSSC counter 

electrode due to gel formation. Linear sweep voltammetry (LSV) measurements are performed 

using an Autolab electrochemical interface instrument (PGSTAT 302N). Temperature dependent 

conductivity measurements were performed using a parameter analyzer (6440A, Wayne Kerr) with 

the sample placed on a hot-stage (Linkam). 

4. Results and discussion 

Experimental characterization of the gel electrolytes, their application in DSSC and 

subsequent discussion of the results is summarized in this section.  

4.1 Phase transition analysis 

HAT6 (chemical structure illustrated in inset in Fig 1.a) is a thermotropic DLC that forms 

a columnar mesophase between 68 ºC and 99 ºC on heating, and exhibits a crystalline (Cr) phase 

below, and an isotropic phase above, the mesophase temperature range. DSC scans of triphenylene 

HAT6 are shown in Fig 1.a. HAT6 was found to be soluble in aromatic solvents such as toluene 

and chlorobenzene, and also some non-aromatic solvents such as chloroform. Interestingly 

however, it was found that if the HAT6-acetonitrile sample is heated in an oven and cooled back 

to room temperature, then with of HAT6 to acetonitrile in a certain critical concentration, it was 

also possible to achieve gel formation by cooling the solution from isotropic. In addition, it was 

found that gel formation occurs in acetonitrile-based liquid electrolyte as well (see Section 2 for 

chemical composition).  

To understand the gel formation process better, we prepared gel mixtures with varying 

concentration of the gelator HAT6, the results of which are summarised in Table 1. It was 

identified that no precipitate is observed in the case of 0.0038M and 0.0078 M HAT6 in liquid 



electrolyte. At concentrations higher than 0.0078 M precipitation occurred (in addition to gelation), 

and at lower concentrations (0.00195 M HAT6) incomplete gel formation was observed. Based on 

these results, it is estimated that the critical gelation concentration of HAT6 in liquid electrolyte 

(i.e. the lowest concentration of the gelator that supports the formation of a stable gel) is in the 

range of 0.00195 M to 0.0038 M. Higher concentrations did not aid further gel formation.  

Concentration 

of HAT6 (M) 
1 0.5 0.25 0.125 0.063 0.031 0.0156 0.0078 0.0038 0.00195

Precipitate/ 

Gel/Liquid 
P/G P/G P/G P/G P/G P/G P/G G G G/L 

 

Table 1. Summary of the effect of HAT6 concentration in liquid electrolyte on gel formation. P/G: gel formation with HAT6 
precipitation at the bottom of the vial, G: gel formation with no precipitation, and G/L: partial gel formation with co-existing 
liquid phase.  

In order to quantify the phase transition temperatures of the gels, POM and DSC were 

utilized. Optical textures of a 0.0038 M HAT6-acetonitrile gel in a 9 µm ITO-ITO cell (with planar 

alignment layers) at various temperatures are illustrated in Fig 1.(c-f). The cell was initially heated 

to 40 ºC and capillary filled in the isotropic phase (Fig 1.c). Subsequently, the cell was slowly cooled 

and it was found that complete gel formation occurred at a temperature of 29 ºC (Fig 1.d). This is 

characterised by the formation of birefringent HAT6 fibres that seem to branch out and interlink 

in places, and the individual width of such fibres is of the order of a several microns.  On heating, 

the gel phase was found to be stable up to a temperature of 36 ºC, where the gel started to break, 

and further heating up to 42 ºC resulted in a complete isotropic phase (Fig 1.f). It can be seen in 

Fig 1.d that the width of individual fibres (measured to be ≈ 3 µm) is nearly three orders of 

magnitude larger than the width of each HAT6 molecular column (≈ 2.5 nm), where the diameter 

of individual molecular columns is dependent on the size of individual HAT6 molecules[45], so it 

is hypothesised that the self-assembled fibres visible in the POM must be bundles of molecular 

columns. Previous studies on amide and carboxylic substituted triphenylenes reported fibre widths 

of 90-180 nm, that were also considered to be bundles of individual columns[16]. 

DSC analysis of the gels (0.0038 M HAT6 in liquid electrolyte) was also performed (Fig 

1.b). It is interesting to note that during both heating and cooling, very broad transitions were 

measured, with a width of almost 3 ºC on cooling. On heating, it was observed that in addition to 

a broad transition that starts at 26 ºC, several smaller transitions were also observed (red circles in 

Fig 1.b, black line). It is clear that there are no sharp thermodynamic transitions as is the case with 

pure materials (e.g. the transition of HAT6 in Fig 1.a), and instead the transitions are distributed 



with temperature. It is also interesting to note that while HAT6 has a Cr-LC transition at an 

elevated temperature of 68 °C, in the gels we get a complete clearing (i.e. an isotropic phase) at ≈ 

40 °C due to solvent mediated interactions.  

Gel formation of HAT6 in acetonitrile and I-/I3
- liquid electrolyte inside glass bottles on a 

bench top is shown in Fig 1.g and Fig 1.h, respectively. The gels were heated to isotropic inside an 

oven, and left to cool passively to room temperature. Cloudy precipitates (turbid) are observed to 

initially form at the bottom of the sample bottles in Fig 1.g.ii, corresponding to the formation of 

DLC fibres. Further cooling (Fig 1.g.iii) leads to the elongation and cross-linking of the fibres, 

leading to the formation of a complete gel. Inversion of the sample bottles with the flow of liquid 

(Fig 1.g.iv) is indicative of gel formation. 

4.2 Conductivity and ionic diffusion studies 

Conductivity is dominated by the ionic diffusion of lithium cations (Li+) and iodine anions 

(I-/I3
-) in the electrolyte medium. The addition of gelators and other non-conducting additives to 

the electrolyte typically results in an increase in transport resistance because of a reduction in 

diffusion coefficient of the ions[46]  Conductivity measurements on HAT6-based gel electrolytes 

in symmetric ITO-ITO cells are presented in Fig 2.(a, b). The measurements here correspond to 

non-steady state conditions (i.e. fast sweeps, ≈ 70 mV/s) with ITO electrodes that do not catalyse 

the I-/I3- redox reaction. A liquid electrolyte was used as a reference and from Fig 2 it is evident 

that the conductivity of the gel and liquid electrolytes were measured to be very similar: at an 

applied voltage of 2 V to a 25 µm cell, the liquid electrolyte average conductivity is estimated to be 

(1.33 ± 0.21) x 10-3 S/m, whereas the 0.0038 M HAT6 gel electrolyte conductivity is estimated as 

(1.28 ± 0.16) x 10-3 S/m, both using a simple linear resistor model. There is some sample-to-sample 

variation of conductivity, which is likely the result of experimental and cell fabrication variations. 

The data indicates no significant decrease in conductivity upon gelation. Based on the conductivity 

results, it is hypothesized that HAT6 does not directly contribute towards conductivity through 

chemical reactions with the electrolyte, and the reactions governing conduction are: 

I2+I- → I3
-      (1) 

I3
-+ 2e- → 3I-     (2) 

An ITO-ITO test cell filled with 0.0038 M gel electrolyte (Cell 3 from Fig 2.a) was analysed 

under reflection using POM. Optical micrographs under crossed polarizers are shown before (Fig 

2.c) and after (Fig 2.d) a 45º anti-clockwise rotation. It is interesting to note the occurrence of 

birefringent fringes on the fibers, and that the sequence of bright and dark fringes changes under 

rotation (see enlarged regions compared after compensating for rotation). This is possible evidence 



towards the twisting of molecular column bundles inside the fibres, resulting in regions of low and 

high effective birefringence under crossed polarizers that vary under rotation.  

In order to quantify diffusion characteristics of the tri-iodide ionic species I3
- (which has 

the limiting concentration) in the liquid and gel electrolytes, steady state linear sweep voltammetry 

measurements were performed in symmetric sandwich cells. The results are summarised in Fig 3.a, 

which also shows the calculated diffusion coefficients by using limiting current values [46,47],using 

the equation: = [ ]
 ,                (3) 

where n is taken to be two (number of electrons needed to reduce I3
- to I-), d is the cell-

gap, F is the faraday constant, c0 is the concentration of the I3
-[46], and D[I3

-] is the tri-iodide 

diffusion coefficient. It can be seen that the diffusion coefficient is slightly higher in the liquid 

electrolyte (1.46 ± 0.24)x10-7 cm2.s-1 than the 0.0038 M gel electrolyte (1.04 ± 0.11)x10-7 cm2.s-1. This 

is in agreement with our EIS measurements (Fig 4.c), where it was found that the gel electrolytes 

exhibit a higher charge transfer resistance at the platinum cathode. Previous studies of ionic 

diffusion in polymer gel electrolytes report a decrease in ionic conductivity/diffusion coefficient 

with gel formation [46,48]. However, other studies utilising gel electrolytes instead report no 

significant change in conductivity on gel formation, as the ionic species are free to move within a 

continuously liquid electrolyte that is constrained within a porous insulating gel network[41].  

The variation of the conductivity of gel and liquid electrolytes as a function of temperature 

is shown in Fig 3.b. The measurements were performed on using an LCR bridge component 

analyzer (Wayne Kerr), at an applied voltage of 1 V at 1 KHz. The samples were placed on a hot-

stage and conductivity as a function of temperature was recorded. The temperature dependent 

conductivity behaviour of most common liquid electrolytes follows the Arrhenius relation[49], 

where a straight line relationship exists between the natural log of the rate constant (in this case 

conductivity) against inverse temperature (1/T). In Fig 3.b it can be assumed that the ln(σ) vs. 1/T 

plot is a straight line for the liquid electrolyte, despite the slight  curve at high temperatures (most 

likely due to solvent evaporation when testing), but the overall trend can be assumed to be 

somewhat linearly increasing. However, in the case of the gel electrolyte, it can be seen that the 

ln(σ) vs. 1/T curve does not follow the Arrhenius straight-line relation at all, and there is significant 

temperature dependence and resultant deviation. It can be seen that there is a stationary point in 

the curve at 45 °C, close to the clearing of the gel state to an isotropic liquid. The overall trend is 

an increase in conductivity as a result of increasing temperature, however it is clear by comparing 



the gradients of the liquid electrolyte and gel electrolyte curves at lower temperatures, that during 

the gel phase the incremental increase in conductivity of the gel electrolyte is less than the liquid 

electrolyte, followed by a significant change (and subsequent increase at higher temperature) in 

this gradient beyond the gel clearing temperature. Therefore, analysing the steady-state LSV and 

temperature dependent conductivity measurements, it is clear that there is interaction between the 

HAT6 fibers and diffusing ionic species which results in the lowering of the diffusion constant 

slightly. This could either be a manifestation of the trapping of I3
- ions due to the DLC fibers, or 

another possibility is that lowering of the diffusion constant is a result of the partial coverage the 

ITO electrodes by insulating HAT6. In the next section, we apply the redox gel electrolytes to 

DSSCs to analyze the effects of gel formation on photovoltaic parameters.   

Since no DLC precipitation inside the bottle was observed in the case of 0.0038 M and 

0.0078M HAT6 in liquid electrolyte, these two concentrations were used to prepare solar cells. A 

schematic of the devices is shown in Fig 4.f. Cells were prepared using the standard procedure (see 

Methods), with the exception that the cells were filled at an elevated temperature of 40 ºC. This 

temperature is high enough to melt the gel into an isotropic liquid, allowing complete filling, but 

not so high that the acetonitrile/TBP components of the electrolyte evaporate. Photovoltaic cells 

containing each gel type were prepared, and standard iodide/tri-iodide redox liquid electrolyte 

filled devices were used as a reference in the experiment. I-V curves corresponding to the highest 

performing devices of each category tested are shown in Fig 4.b. The dark I-V curves of the solar 

cells (Fig 4.a) are found to be very similar. It can be observed from the inset in Fig 4.b that the 

highest photovoltaic efficiency was measured in a cell utilising the 0.0038 M gel electrolyte. The 

open circuit voltage (VOC) and fill factor (FF) are relatively similar across the devices, and any 

differences between devices may be attributed to device characteristics rather than the electrolyte. 

The highest performing devices in all cases are distinguished by high short-circuit currents (JSC), 

and the highest JSC (13.3 mA/cm2) was measured in a 0.0038 M gel device. 

4.3 Electrochemical Impedance spectroscopy 

Electrochemical impedance spectroscopy (EIS) is performed to study the various 

interfaces involved in the DSSC devices [50]. Typical EIS spectra yield information about different 

intra-device processes depending on the magnitude of applied bias, illumination level and 

frequency of the small signal applied [51]. Fig 4.(c, d) show the EIS results for the case of a -0.7 V 

forward bias under dark conditions. Significant research has been performed to identify the 

frequency dependence of various interfaces in DSSC devices[51]. It is generally accepted that the 

high frequency semicircle corresponds to processes  at the Pt counter electrode, the middle semi-

circle is characteristic of impedances corresponding to electrons injected into the TiO2 anode, and 



the final (low frequency) region corresponding to the diffusion of the iodide ions in the electrolyte 

[52],[51]. It can be seen from Fig 4.c that the charge transfer impedance at the Pt electrode (the 

width of the first semi-circle) is ≈25 Ω in the case of a 0.0038 M HAT6 gel electrolyte, which is 

higher than the ≈7 Ω measured in the case of the liquid electrolyte. It is hypothesized that this is 

due to the presence of HAT6 fibres that partially cover the counter-electrode, thereby reducing 

the effective catalytic area for tri-iodide reduction, combined with a slight reduction in ionic 

diffusion rate due to gel formation.  

Furthermore, using the middle frequency peak positions (10 – 100 Hz) in Fig 4.d, it can be 

seen that there is a left-shift in the peak position for the gel electrolyte. This may be interpreted as 

an increase in the effective lifetime of the injected carriers in the TiO2 anode. These lifetimes are 

calculated to be ≈ 8.4 ms in the case of the reference liquid electrolyte and 11.4 ms in the case of 

the gel electrolyte. It is hypothesised that this increase in electron lifetime is due to the screening 

effect of the insulating HAT6 at the TiO2-electrolyte interface, which helps reduce recombination 

between the mesoporous TiO2 and the I3
- ions. Electron screening takes place due to the HAT6 

fibers in the electrolyte, as the fiber network reduces the extent of the direct contact between 

photo-injected the electrons in the TiO2 conduction band and the I3
- ions in the electrolyte, 

effectively passivating the TiO2 to an extent, leading towards a reduction in the back transfer of 

electrons. A similar effect was found in a previous study by Rui-Xuan et.al [42]. The overall 

efficiency of the gel electrolytes DSSCs in our experiment (inset Fig 4.b) was found to be similar 

(and in some cases greater) than the liquid electrolyte devices. It is speculated that the increase in 

charge transfer resistance at the Pt counter electrode (which reduced the short circuit current Jsc) 

is compensated by an increase in electron lifetime in the TiO2, keeping device efficiencies almost 

constant for both reference and gel electrolyte devices. 

4.4 DLC physical-gel electrolyte based DSSCs 

As discussed earlier, one of the main challenges associated with the widespread commercial 

adoption of DSSCs is the volatile and corrosive nature of the liquid electrolyte[38], whereby 

acetonitrile evaporation inevitably degrades device performance. By forming a physical-gel inside 

a DSSC through the use of a HAT6 liquid electrolyte, it should be possible to increase the lifetime 

of the photovoltaic devices. With this in mind, lifetime studies were performed over several weeks, 

and the cells were tested intermittently to evaluate performance over time. Once again, liquid 

electrolyte cells were used as a reference. It should be noted that DSSC preparation techniques 

and lifetimes may vary significantly between laboratories, and that what is important is therefore 

the relative lifetime of the devices. It is expected that industrial sealing and manufacturing 

techniques would greatly enhance the device lifetimes presented here. 



Fig 5.(a, b) shows the progression of solar cell efficiency as a function of time. The 

variation of efficiency in the case of 0.0038 M HAT6 gel electrolyte is presented in Fig 5.a, and the 

corresponding data for reference electrolyte devices is summarized in Fig 5.b. In both cases it is 

clear that there is a loss in device efficiency over time. However, the degradation is much faster in 

the reference electrolyte devices, where only one out of four devices (Cell 4, Fig 5.b) had a power 

conversion efficiency (PCE) of 4% seven days after fabrication; the other three cells degraded 

completely within the first week. In the case of the gel electrolytes (Fig 5.a), while there is still 

continuous degradation with time, the devices are much more stable. We hypothesize that the 

formation of a gel reduces the rate of solvent evaporation, thereby increasing the device lifetime. 

In particular, we measured a “levelling off” of the efficiency in the case of Cell 1 and Cell 2 (Fig 

5.a) at efficiencies of ≈1% and 2.1% respectively more than a month after fabrication. All devices 

tested were stored in opaque sample boxes (unsealed) at room temperature in ambient atmospheric 

conditions.  

Variation of individual performance parameters (Jsc, Voc, fill factor, and device efficiency) 

as a function of time for a gel-electrolyte DSSC (cell 2 from Fig. 4.a) are summarized in Fig 5.(c, 

d). The Fill factor of the device remained relatively unchanged over the several weeks that the 

measurements were performed. However, as discussed earlier, there is decrease in overall device 

performance efficiency with time. This is best captured by analysing the variation of short circuit 

current with time, which follows closely the efficiency curve. It is also noteworthy that the open 

circuit voltage was invariant and did not have a significant impact on device efficiency or 

degradation. If anything, the open circuit voltage was found to increase from the initial measured 

value. It is therefore clear that it is the short circuit current which dominates device performance, 

and keeping it constant is key to maximising lifetime. Optical micrographs under reflection of the 

active area of the 0.0038 M HAT6 cell (tested in Fig 5.a) illustrate the gel electrolyte on Day 1 (Fig 

5.e) and on Day 44 (Fig 5.f). The invariance of the gel texture over a relatively extended period of 

time is encouraging. This also implies that even after exposing the cell numerous times to 1 sun 

illumination in a solar simulator, the gel texture is maintained and a gel-sol transition did not occur. 

5. Conclusion 

It has been shown that the symmetric triphenylene molecule HAT6, which forms a 

hexagonal columnar mesophase, self-assembles into a fibrous network that forms physical-gels in 

an acetonitrile environment in its pure and liquid electrolyte forms. The gel formation is 

hypothesized to be a manifestation of the combined effects of intermolecular pi-stacking effects 

and interactions of the HAT6 alkyl chains with acetonitrile. The critical gelation concentration for 



gelation to take place in acetonitrile based I-/I3- redox electrolyte was identified to a HAT6 

concentration in the range of 1.95 mM to 3.8 mM. POM analysis of the birefringent fibres showed 

that the fibers have a typical diameter of ≈ 3µm, implying that the fibres are most likely bundles 

of individual HAT6 molecular columns wound together. Electrical conductivity measurements 

showed that the measured conductivity was found to be similar in the gel and liquid electrolytes. 

DSSCs were prepared using the DLC gel electrolytes and it was found that the photovoltaic 

performance parameters of the gel electrolyte devices were similar to the liquid electrolyte 

references, with the 0.0038 M HAT6 showing slightly higher short circuit current in some devices. 

EIS studies showed the presence of higher charge transfer resistance at the counter electrode in 

the gel devices, complemented with higher electron lifetime due to reduced back electron transfer, 

and hence lower loss, in the TiO2 anode. Extended device lifetime studies showed that under 

identical testing, sealing and storage conditions, the gel electrolyte cells exhibited significantly 

longer lifetimes than reference liquid electrolyte devices. In addition to their use as gel electrolytes 

in DSSCs, HAT6-based gels can potentially be used for other applications, such as super-

capacitors, and it is anticipated that future work on DLC based gelators will become very relevant 

to such commercial applications. 
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Figure 1. Phase transition measurements. DSC scans of (a) HAT6 and (b) 0.0036 M HAT6 gel electrolyte. Measurements were
performed at a heating and cooling rate of 5 ºC/min. Inset in (a) shows chemical structure of HAT6. (c-f) Temperature dependent 
POM of a 9 µm ITO-ITO cell filled with 3.8 mM HAT6 in acetonitrile. The cell is cooled from isotropic (c), to form a gel (d),
followed by heating (e) till the birefringent fibres disappear (f). Cooling of 3.8 mM of HAT6 in (g) acetonitrile, and (h)  I-/I3- redox 
liquid electrolyte mixtures from isotropic (i) to an intermediate state (ii) and eventually forming a gel (iii), that is stable on inversion 
of the sample vial (iv). The scale bar in (c) – (f) is 200 µm. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Conductivity measurements of liquid electrolyte in an ITO-ITO sandwich cell configuration with 25 µm spacers for (a) 
HAT6 gelators or (b) reference electrolyte (inset in (a) illustrates test device schematic). Optical micrographs of Cell 3 from (a), 
under reflection at 25 ºC at angle (c) 0º and followed by a 45 º rotation (d), and an enlarged region from both micrographs is
compared.  



 

  

Figure 3.  Linear sweep voltammetry (a) measurements performed at a scan rate of 10 mV/s to determine the diffusion coefficients
of the ions in the reference and gel electrolytes in a FTO-FTO (platinum coated) sandwich cell configuration with 60 µm spacers. 
(b) Variation of conductivity with in 25 µm ITO-ITO cells at an applied voltage of 1 V at 1 KHz frequency. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Compilation of solar cell performance using triphenylene-based gel electrolytes and their comparison with a standard 
liquid electrolyte. (a) Dark IV curves of DSSC devices filled with a reference liquid electrolyte and 0.0038 M, 0.0078 M HAT6 gel 
electrolytes. (b) Corresponding IV curves under simulated AM 1.5 light condition. (c) Nyquist plot obtained using EIS of a liquid
and 0.0038 M HAT6 gel electrolyte in a DSSC configuration, at a biased voltage of -0.7 V under dark conditions. (d) Impedance 
angle as a function of frequency, using EIS presented in (c). (e) Equivalent circuit of the DSSC used for EIS measurements to
model charge transfer parameters at various interfaces. (f) Schematic of the cross-section of a gel electrolyte DSSC device 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Variation of device efficiencies plotted against the number of days since fabrication (Day 1 is the day the devices were 
made). Data corresponds to devices utilising (a) 0.0038M HAT6 gel electrolytes is summarized in and (b) for cells utilizing refrence 
liquid electrolyte. (c),(d) Lifetime studies on a gel electrolyte solar cell (Cell 2 from Fig 4.a). Variation of individual performance
parameters, fill factor and efficiency (c); Jsc and Voc (d) as a function of days since fabrication. Optical micrographs of the active 
area on (e) the 1st and  (f) the 44th day, illustrating the stability of the gel texture. The scale bar in (e) and (f) is 800 µm. 


