Anchoring Ultrafine Metallic and Oxidized Pt Nanoclusters on Yolk-Shell TiO₂ for Unprecedentedly High Photocatalytic Hydrogen Production

Jun Jin,^a Chao Wang,^a Xiao-Ning Ren,^a Shao-Zhuan Huang,^a Min Wu,^a Li-Hua Chen,^a Tawfique Hasan,^b Bin-Jie Wang,^c Yu Li^{a,} * and Bao-Lian Su^{a, d, e, *}

^aLaboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Email: <u>yu.li@whut.edu.cn</u> and <u>baoliansu@whut.edu.cn</u>

^bCambrige Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, United Kingdom.

^cFEI Company, Shanghai Nanoport, 399 Shengxia Road, 201210 Shanghai, China.

^dLaboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium; E-mail: <u>bao-lian.su@unamur.be</u>

^e Clare Hall, University of Cambridge, United Kingdom; E-mail: <u>bls26@cam.ac.uk</u>

Abstract: We demonstrate an alkali modification process to produce highly dispersed ultrafine Pt nanoclusters with metallic Pt^0 and oxidized Pt^{2+} species as co-catalyst anchored on nanosheet-constructed yolk-shell TiO₂ (NYTiO₂-Pt) acting as light harvesting reactor for highly efficient photocatalytic H₂ production. Benefiting from the high surface area, highly dispersed ultrafine Pt nanoclusters (~ 0.6 nm) with Pt⁰ and Pt²⁺ species and special nanosheet-constructed yolk-shell structure, this novel light harvesting reactor exhibits excellent performance for photocatalytic H₂ production. The NYTiO₂-Pt-0.5 (0.188 wt% Pt) demonstrates an unprecedentedly high H₂ evolution rate of 20.88 mmol h^{-1} g⁻¹ with excellent photocatalytic stability, which is 87 times than that of NYTiO₂-Pt-3.0 (0.24 mmol h⁻¹ g⁻¹, 1.88 wt% Pt), and also much higher than those of other TiO₂ nanostructures with the same Pt content. Such H₂ evolution rate is the highest reported for photocatalytic H₂ production with such a low Pt content under simulated solar light. Our strategy here suggests that via alkali modifying the photocatalysts, we can not only enhance the H₂ production for solar energy conversion but also significantly decrease the noble metal content for cost saving.

Keywords: Nanosheet-constructed yolk-shell TiO₂; alkali modification; Pt nanoclusters; Pt^{0} and Pt^{2+} ; photocatalytic H₂ production.

Introduction

Solar-driven photocatalysis for hydrogen production from renewable resources has attracted a tremendous interest as a promising approach for clean energy generation and environmental remediation in recent years.[1, 2] Generally, for H₂ production using a semiconductor, the conduction band (CB) edge should be more negative than $E(H^+/H_2)$ (0 V at pH 0), while the valence band (VB) edge should be more positive than $E(O_2/H_2O)$ (1.23 V at pH 0).[3] Using this criterion, thus far, various photocatalysts (such as TiO₂, ZnO, CdS, ZnS, MoS₂, BiWO₃, g-C₃N₄) have been developed for hydrogen production.[4-13] And these photocatalysts often co-catalysed modified non-metals,[14] are or by other semiconductors,[15-18] non-noble metals[19] and noble metals[20, 21] to turn their electronic band gaps and address the rapid recombination of photogenerated electron-hole pairs.

Amongst these strategies proposed to enhance photocatalytic H_2 production, noble metal (such as Pt, Pd, Au, Ag and Rh) deposition as co-catalyst has been proven to be an effective method for photocatalytic H_2 production enhancement (without cost consideration) because they exhibit high affinity to photogenerated electrons in CB of many photocatalysts.[22] In particular, Pt is considered as the most effective noble metal for H_2 production due to its photostability with the lowest overpotential and largest work function.[23] Generally, it is essential to create Schottky barriers between Pt and photocatalyst. When a Fermi level equilibration is achieved, interfacial charges quickly transfer to Pt through the metal-semiconductor heterojunction, resulting in the reduction of H^+ and formation of H_2 on Pt.[24] This means that the size, dispersion and content of Pt on to photocatalysts have a significant effect on the photocatalytic H_2 production activity of Pt-deposited photocatalyst.[24, 25] Thus it is critical to employ appropriate synthetic routes for the deposition of uniformly dispersed ultrafine Pt nanoparticles on to photocatalysts for highly improved H_2 production. Recently, Li *et al.* have reported isolated single-atom Pt as co-catalyst in 2D g-C₃N₄ to change the intrinsic surface trap states for a highly efficient photocatalytic H_2 production, due to a longer lifetime of photogenerated electrons caused by the isolated single Pt atom.[26] This method is effective to embed single-atom Pt in g-C₃N₄ due to the only carbon and nitrogen. However, the posibility of co-catalysing single Pt atom in metal oxides-based photocatalysts is unclear. Indeed, anchoring ultrafine Pt nanoparticles on these metal oxides-based photocatalysts is still a big challenge.

In this context, wet-chemistry reduction of H₂PtCl₆ has already offered the opportunity for Pt nanoparticles deposition as co-catalysts for photocatalytic enhancement.[27-30] Recently, Zhai *et al.* have reported that alkali modification of Pt can induce Pt nanoparticles with alkali-O_x(OH)_y species loaded on alumina or silica, which are active at the low-temperature for H₂ production via water-gas shift reaction both in experiment and in density functional theory calculations.[31] We then reasonably suppose that alkali modification has the same effect on improving the amount of the surface bridging hydroxyls on the surface of both metal oxides-based photocatalysts and Pt nanoparticles. And the surface bridging hydroxyls on the metal oxides-based photocatalyst may increase the active sites for Pt deposition and promote uniform deposition of ultrafine Pt nanoparticles (or even nanoclusters). This also decreases the content of Pt for cost saving. Further, in the alkali modification reaction process, the reduction of H_2PtCl_6 can be retarded. This may induce Pt^{2+} species within the Pt nanoparticles (or nanoclusters) to effectively prevent the backward reaction of H_2 and O_2 .[24]

Herein, we choose a hierarchical nanosheet-constructed yolk-shell TiO₂ (NYTiO₂) microsphere as model photocatalyst for alkali modification. On one hand, TiO₂ is considered as one of the most promising photocatalysts for water splitting due to its superior photocatalytic properties, abundance, non-toxicity and photostability.[32-34] On the other hand, such hierarchically yolk-shell structure with high surface area and low density can enhance light harvesting efficiency through multiple reflections of incident light and provide short diffusion paths for photogenerated electrons.[34, 35] In addition, the nanosheets are suitable for ultrafine Pt deposition and uniform distribution. Then, a simultaneous NaOH-modification and NaBH₄-reduction of Pt is adopted. This leads to the synthesis of the alkali modified Pt nanoclusters in NYTiO₂ light harvesting reactor (Scheme 1a). As expected, ultrafine Pt nanoclusters (~ 0.6 nm) with metallic Pt⁰ and oxidized Pt²⁺ species are achieved and uniformly dispersed in such hierarchical NYTiO₂. The NaOH-modified NYTiO₂-Pt-0.5 (0.188 wt% Pt) light harvesting reactor demonstrates an excellent H₂ evolution rate of 20.88 mmol h⁻¹ g⁻¹, 87 times that of NYTiO₂-Pt-3.0 (0.24 mmol h⁻¹ g⁻¹, 1.88 wt% Pt) and much higher than those of other TiO₂ nanostructures with 0.188 wt% Pt. To the best of our knowledge, this represents the highest H₂ evolution ever reported under simulated solar light with such a low Pt content. Our results indicate that alkali modification of hierarchically structured porous metal oxides-based photocatalysts with Pt nanoclusters deposition is highly efficient for photocatalytic H₂ production, and offers significant cost saving due to very low Pt content.

Scheme 1. (a) The Pt deposition and NaOH-modification process of NYTiO₂ and (b) the illustration of NYTiO₂-Pt light harvesting reactor for H_2 production.

Experimental Section

Materials

Titanium isopropoxide (TTIP), titanium (IV) butoxide (TBT) are purchased from Aldrich. Tetraethylenepentamine (TEPA) is purchased from Aladdin. Isopropanol, anhydrous methanol, anhydrous ethanol, sodium hydroxide (NaOH), NaBH₄ and KCl are purchased from Sinopharm Chemical Reagent Ltd. Co. Chloroplatinic acid (H₂PtCl₆·6H₂O) is purchased from Sigma Chemical Co. Commercial P25 is purchased from Degussa Co. Ltd. All the chemicals are used as received.

Synthesis of NYTiO₂

In a typical synthesis, 0.12 mL TEPA is added in to 84 mL isopropanol under stirring. Then, 3 mL of TTIP is added to the above solution and stirred for 30 minutes. The solution is then transferred into a 150 mL Teflon-lined autoclave and kept at 200 °C for 24 h. After cooled to room temperature, the precipitate is washed with ethanol via centrifugation for several times and dried at 60 °C. Finally, the NYTiO₂ product is obtained via calcination of the precipitate at 400 °C for 2 h.

Synthesis of MeTiO₂

The mesoporous TiO_2 (MeTiO_2) microspheres are prepared via a sol-gel synthesis. Typically, 200 mL ethanol is mixed with 0.8 mL 0.1 M KCl aqueous solution, followed by adding 5.0 mL TBT to the above mixed solution and is stirred for 30 minutes. Then the suspension is aged at room temperature for 24 h. The white precipitate is washed with ethanol for several times. Finally, the MeTiO₂ microspheres are obtained after calcination of the TiO₂ solid spheres at 400 °C for 2 h.

Synthesis of NYTiO₂-Pt photocatalysts

Typically, 200 mg NYTiO₂ is added into a single-necked flask containing chloroplatinic acid solution (20 mL, 0.05 mg mL⁻¹). Then 2 mL freshly prepared NaBH₄ aqueous solution (2 mg mL⁻¹, containing 0.5 M NaOH) is rapidly injected into the solution under vigorous magnetic stirring. After 2 h of stirring, another 2 mL freshly prepared NaBH₄ solution (2 mg

mL⁻¹, containing 0.5 M NaOH) is injected into the solution and stirred for 12 h. The precipitate is washed by distilled water and ethanol via centrifugation for several times. After drying at 60 °C in a vacuum oven, the NYTiO₂-Pt photocatalysts are finally obtained. The NYTiO₂-Pt photocatalysts with various Pt contents, NYTiO₂-Pt-0.25, NYTiO₂-Pt-0.5, NYTiO₂-Pt-1.0, NYTiO₂-Pt-2.0 and NYTiO₂-Pt-3.0, are synthesized through changing chloroplatinic acid concentrations of 0.025, 0.05, 0.1, 0.2 and 0.5 mg mL⁻¹, respectively. Table S1 shows the weight content of Pt. The MeTiO₂-Pt-0.5 and P25-Pt-0.5 are synthesized with the same procedure of NYTiO₂-Pt-0.5. The NYTiO₂-Pt-0.5N is also prepared with the same procedure of NYTiO₂-Pt-0.5 without NaOH in NaBH₄ solution.

Characterizations

Crystallographic phases of the samples are investigated by XRD on a Bruker D8 with Cu K α radiation (λ =0.15405 nm) at 40 mA and 40 kV. The morphologies of the samples are characterized by a field-emission scanning microscopy (FESEM, Hitachi S-4800). Transmission electron microscopy (TEM), including bright field (BF) images, dark field (DF) images, HAADF-STEM images, STEM-EDS mapping images of NYTiO₂-Pt are collected on a FEI Talos-200X at 200 kV. TEM images of NYTiO₂, MeTiO₂ and P25 are collected on a JEOL JEM 2100F at 200 kV. Nitrogen adsorption-desorption isotherms are obtained using a Micromeritics surface area & porosity analyzer (TriStar II 3020). The absorption spectra are collected on with a UV-vis spectrometer (UV2550, Shimadzu). The surface electronic states of Ti, O and Pt are analyzed by X-ray photoelectron spectroscopy (XPS, VG Multilab 2000).

Evaluation of photocatalytic activity

The photocatalytic hydrogen production is performed in a glass-closed-circulation system with a top irradiation-type reaction vessel (LabSolar II H₂ production system, Perfect light, China) using a PLS-SXE-300C Xe lamp with a UV light of 34 mW cm⁻² and visible light of 158 mW cm⁻² at a distance of 15 cm. The temperature of reactant solution is maintained at 15 °C by a flow of cooling water during the photocatalytic process. 50 mg NYTiO₂-Pt photocatalyst is dispersed in a reaction vessel containing 50 mL of distilled water and 30 mL of methanol. The amount of H₂ is monitored on an online thermal conductivity detector (TCD) gas chromatograph (GC, Agilent 7890A).

Apparent quantum yields (AQY) defined by the following equation are measured using a PLS-SXE-300C Xe lamp with 365 nm band-pass filter (20 mW cm⁻²) and an irradiatometer:

$$AQY = \frac{\text{Number of reacted electrons}}{\text{Number of incident photos}} \times 100$$
$$= \frac{\text{Number of evolved H}_2 \text{ molecules} \times 2}{\text{Number of incident photons}} \times 100$$
(1)

For the photocatalytic experiment and AQY test, 20 mg NYTiO₂-Pt-0.5 photocatalyst is dispersed in 80 mL aqueous solution containing 30 mL CH₃OH as a sacrificing agent. The amount of H_2 is also monitored on an online thermal conductivity detector (TCD) gas chromatograph (GC, Agilent 7890A).

Results and discussions

The details of the NYTiO₂ synthesis can be found in the literature.[36] Here, we briefly mention the pertaining morphological information of the NYTiO₂ microspheres obtained via X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron

microscopy (TEM). The outer shell (~250 nm thick; Figure S1a, b) of the anatase phase NYTiO₂ (Figure 1) is formed by nanosheets (Figure S1c) while the inner core (~500 nm diameter; Figure S1d, e) is constructed by aggregated small nanoparticles (Figure S1c). The shell thickness is ~250 nm and core size is ~500 nm (Figure S1e). The NYTiO₂ microspheres exhibit 168 m² g⁻¹ specific surface area, 3 nm (in inner mesoporous core) and 15 nm (in outer nanosheets) dual pore sizes (Figure S2). This special yolk-shell structure with high BET surface area is beneficial for ultrafine Pt nanoclusters uniformly anchored onto TiO₂ nanosheets shell. The dual pores in this unique yolk-shell structure are helpful for light harvesting.

Figure 1. XRD patterns of NYTiO₂ and NYTiO₂-Pt samples with different Pt contents.

Pt nanoclusters are then deposited onto the hierarchical NYTiO₂ via NaOH modification (Scheme 1a). Table 1 lists the Pt content for all these samples. However, XRD results show no obvious difference for the NYTiO₂ and NYTiO₂-Pt samples (Figure 1). We believe that this is due to the very low Pt content and highly dispersed ultrafine Pt nanoclusters. Figure S3a shows the UV-Vis absorption spectra of NYTiO₂ and NYTiO₂-Pt samples. The

corresponding Tauc plots revealing the quantity hv (the energy of the light) and the quantity $(Ahv)^{1/2}$ (A is the absorption coefficient) are presented in Figure S3b. All the obtained E_g from the intercept of the tangents are similar and are listed in Table 1, indicating that there is no obvious difference on the electronic band gaps for these samples.

Table 1 The Pt contents, band gaps and H_2 rate of the NYTiO₂-Pt samples with/without NaOH modification and the MeTiO₂-Pt sample.

Sample	Pt content (wt%)	Band gap (eV)	H_2 production rate (mmol $h^{-1} g^{-1}$)
NYTiO ₂ -Pt-0.25	0.094%	2.86	14.06
NYTiO ₂ -Pt-0.5	0.188%	2.85	20.88
NYTiO ₂ -Pt-1.0	0.377%	2.86	16.50
NYTiO ₂ -Pt-2.0	0.753%	2.93	0.64
NYTiO ₂ -Pt-3.0	1.88%	2.94	0.24
NYTiO ₂ -Pt-0.5N	0.188%	2.94	5.20
MeTiO ₂ -Pt-0.5	0.188%	3.01	6.81
P25-Pt-0.5	0.188%	2.96	8.62

SEM images show that the hierarchical nanosheet-constructed yolk-shell structure can be completely retained after Pt deposition, via the chemical reduction process in an alkaline condition (Figure 2). It is interesting to note that after NaOH modification, the nanosheets-constructed shell has loosed a little comparing to the original NYTiO₂. In particular, many pores appear in the nanosheets after Pt nanoclusters deposition under alkali modification. These pores are also beneficial for light penetrating and harvesting. However, upon intensive SEM investigations, no Pt nanoclusters are observed in any of the NYTiO₂-Pt samples. Further, no signal of Pt is detected via the SEM-EDS characterization, even for NYTiO₂-Pt-3.0 with a high content of 1.88 wt% Pt (Figure S4). We thus reasonably conclude that the Pt nanoclusters are beyond the detection range due to their ultrafine size and uniform

deposition onto TiO₂ nanosheets.

Figure 2. SEM images of NYTiO₂-Pt samples with different Pt contents: (a, b) NYTiO₂-Pt-0. 5, (c)-(d) NYTiO₂-Pt-1.0, (e)-(f) NYTiO₂-Pt-3.0.

TEM analysis is then carried out to investigate the Pt nanocluster size and distribution in the NYTiO₂-Pt samples. Figure 3a-c demonstrate typical bright field (BF), dark field (DF) and high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) images of NYTiO₂-Pt-0.5 at low magnification, respectively. These images verify the well-retained hierarchical yolk-shell structure of NYTiO₂ after NaOH modification and Pt deposition. Figure 3d presents a close observation of the shell. It shows several ultrafine Pt nanoclusters in NYTiO₂-Pt-0.5. Figure 3d inset gives the HRTEM image of one Pt nanocluster in size of 0.8 nm. Figure 3e shows the HAADF-STEM image with a small area of the outer shell. Still, it clearly displays the highly dispersed ultrafine Pt nanoclusters in TiO_2 nanosheets. Figure 3f gives the size distribution of Pt nanoclusters from TEM images. It shows the size of the Pt nanoclusters mainly centering at ~0.6 nm.

Figure 3. TEM characterizations of NYTiO₂-Pt-0.5. (a) BF image, (b) DF image, (c, e) HAADF-STEM images and (d) HRTEM image. The inset image in (d) is the HRTEM images of one Pt nanocluster in size of ~0.8 nm. (f) The Pt nanoparticle size distribution measured from TEM images. (g)-(j) STEM-EDS mapping images: (j) O; (k) Ti; (l) Pt; (m) whole elements.

Scanning transmission electron microscopy-electron dispersive spectroscopy (STEM-EDS) elemental mapping is further carried out to clearly show the chemical distribution of NYTiO₂-Pt-0.5. The elemental mapping images (Figure 3g-i) indicate the uniform distribution of O, Ti and Pt elements. Figure 3j superimposes the chemical distribution images of O, Ti and Pt elements. In particular, the uniform distribution of Pt means that the Pt nanoclusters are well dispersed in nanosheet-constructed yolk-shell structure. This is very important for photocatalytic H₂ production enhancement and also for cost saving. Figure S5 also presents the HAADF-STEM and STEM-EDS images of NYTiO₂-Pt-3.0, indicating the well dispersed Pt nanoclusters. Figure S5c shows the size of Pt nanoclusters in NYTiO₂-Pt-3.0, similar to that of NYTiO₂-Pt-0.5.

Figure 4. XPS spectra of NYTiO₂, NYTiO₂-Pt-0.5 and NYTiO₂-Pt-3.0: (a) full-range spectra, (b) Ti 2p, (c) O 1s and (d) Pt 4f.

X-ray photoelectron spectroscopy (XPS) is used to investigate the surface chemical states of the elements before and after Pt deposition. Figure 4a shows the full range spectra of NYTiO₂, NYTiO₂-Pt-0.5 and NYTiO₂-Pt-3.0. For NYTiO₂, the characteristic binding energies of Ti 2p_{3/2} and 2p_{1/2} are observed at 458.7 and 464.3 eV, respectively (Figure 4b), confirming the presence of Ti⁴⁺.[37] The O 1s signal can be fitted into two symmetric peaks at 529.9 and 531.6 eV as illustrated in Figure 4c, corresponding to lattice oxygen (Ti-O) and absorbed H₂O, respectively.[37] For NYTiO₂-Pt-0.5, the binding energies of O 1s are centered at 529.7 and 530.9 eV, corresponding to lattice oxygen (Ti-O) and surface hydroxyl groups (Ti-OH). The binding energies of Ti $2p_{3/2}$ and Ti $2p_{1/2}$ slightly shift to 458.5 and 464.2 eV, respectively. The binding energies of Ti 2p_{3/2}, Ti 2p_{1/2} and O 1s (Ti-O) further shift to 458.3, 464.0 and 529.5 in NYTiO₂-Pt-3.0, respectively. The peak of surface hydroxyl groups (Ti-OH) can be observed at 530.9 eV in the O 1s spectrum of NYTiO₂-Pt-3.0. Figure 4d presents the Pt 4f spectra. For NYTiO₂-Pt-0.5, the peak position of Pt $4f_{7/2}$ is at 70.8 eV, corresponding to metallic Pt^{0} .[24, 38, 39] The peak positions of Pt $4f_{5/2}$ are observed at 74.3 and 76.2 eV, corresponding to metallic Pt^0 and oxidized Pt^{2+} , respectively, indicating the coexistence of Pt^0 and Pt^{2+} species in the Pt nanoclusters [24, 38, 39]. For NYTiO₂-Pt-3.0, the peak positions of Pt $4f_{7/2}$ and $4f_{5/2}$ are 70.4 and 73.8 eV, respectively, indicating the existence of only metallic Pt⁰ species. Namely, there is Pt-O-Ti bond between Pt nanoclusters and TiO₂ in NYTiO₂-Pt-0.5. Further, the presence of oxidized Pt^{2+} species is conducive to H₂ production via suppressing the hydrogen oxidation in the photocatalytic water splitting.[31, 38] The peaks of Pt $4f_{7/2}$ and $4f_{5/2}$ for NYTiO₂-Pt-3.0 are more obvious, due to the higher Pt

content, leading to a better signal-to-noise ratio.

From the XPS results and discussion, one can see that the negative shifts of Ti 2p and O 1s after NaOH-modification accompanying with Pt deposition can be attributed to two reasons. First, Pt nanoclusters have high ability to trap electrons, leading to higher negative shift of Ti 2p and O 1s in NYTiO₂-Pt-3.0 than in NYTiO₂-Pt-0.5. On the other hand, the NaOH-modification of the TiO₂ surface can induce the surface hydroxyl groups to bring a negative shift in the binding energies of Ti 2p and O 1s.[40]

XPS results show that the NYTiO₂-Pt-0.5 presents metallic Pt⁰ and oxidized Pt²⁺ species, while the NYTiO₂-Pt-3.0 possesses only metallic Pt⁰ species. This means that NaOH-modification can induce both metallic Pt⁰ and oxidized Pt²⁺ species at low Pt content and only metallic Pt⁰ species at high Pt content in NYTiO₂-Pt. Most possibly, at high Pt content, NaOH can not retard the reduction speed of H₂PtCl₆, leading to only metallic Pt⁰ species. However, at low Pt content, NaOH can effectively retard the Pt nanocrystallites growth via decreasing the reduction speed of H₂PtCl₆, resulting in both metallic Pt⁰ and oxidized Pt²⁺ species in Pt nanoclusters. In addition, this NaOH modification process also leads to numerious hydroxyls groups attached on TiO₂ surface, which is also helpful for highly dispersed ultrafine Pt nanoclusters. The metallic Pt⁰ species adsorbed on the TiO₂ surface can serve as the active sites trapping photogenerated electrons and facilitate H₂ evolution.[24, 41] And oxidized Pt²⁺ species embedded in NYTiO₂-Pt can take the role of the photocatalytically active sites and limit the fast backward reaction of H₂ and O₂.[38, 39] Thus, although NYTiO₂-Pt-0.5 has lower Pt content, it may demonstrate higher H_2 evolution rate than that demonstrated by NYTiO₂-Pt-3.0 due to the co-existence of Pt⁰ and Pt²⁺ species.

The photocatalytic H₂ production performance of the NYTiO₂-Pt samples is then evaluated in methanol/water mixture under simulated solar light. Figure 5a depicts the H₂ production profiles of the NYTiO₂-Pt samples in 5 h. It shows that NYTiO₂-Pt-0.5 has the best performance of photocatalytic H₂ production, with 104.38 mmol g⁻¹ in 5 h, consistent with our argument. On the contrary, NYTiO₂-Pt-3.0 demonstrates the worst performance, with only 1.22 mmol g^{-1} in 5h. Figure 5b presents the H₂ production rates of the NYTiO₂-Pt samples. The NYTiO₂-Pt-3.0 with the highest Pt content produces hydrogen at a rate of 0.24 mmol h^{-1} g⁻¹. The H₂ evolution rate increases to 0.64 mmol h^{-1} g⁻¹ for NYTiO₂-Pt-2.0 and jumps to 16.50 mmol h⁻¹ g⁻¹ for NYTiO₂-Pt-1.0, 25.8 times comparing to that produced by NYTiO₂-Pt-2.0. We observe even further increase up to 20.88 mmol h^{-1} g⁻¹ for NYTiO₂-Pt-0.5, before it drops to 14.06 mmol h⁻¹ g⁻¹ for NYTiO₂-Pt-0.25. These indicate that NYTiO₂-Pt-0.5 contains optimal Pt content. Comparing to pure NYTiO₂ (Figure S6), all the NYTiO₂-Pt samples perform significantly better photocatalytic activities under the same water splitting reaction conditions. Furthermore, irradiation under a monochromatic light at 365 nm, NYTiO₂-Pt-0.5 demonstrates a H₂-evolution rate of 4.71 mmol h⁻¹ g⁻¹, corresponding to an apparent quantum yield (AQY) value of ~85.6%, which is higher than many previously reported TiO₂-Pt photocatalysts.[42-45] Such strong photocatalytic performance is attributed to the unique yolk-shell structure for effective light harvesting and uniformly anchored Pt nanoclusters with metallic Pt^0 and oxidized Pt^{2+} species.

Figure 5. (a) H₂ production profiles of the NYTiO₂-Pt samples, (b) H₂ production rates of all the samples, (c) H₂ production profiles of NYTiO₂-Pt-0.5, NYTiO₂-Pt-0.5N, MeTiO₂-0.5 and P25-Pt-0.5 with the same Pt content and (d) cycle performance of H₂ production of NYTiO₂-Pt-0.5.

To investigate the effect of NaOH modification, 0.188 wt% Pt in NYTiO₂ photocatalyst without NaOH treatment (designated as NYTiO₂-Pt-0.5N) is prepared through a NaBH₄-reduction process of H₂PtCl₆ in a neutral environment. Figure 5c presents the photocatalytic H₂ production performance of NYTiO₂-Pt-0.5N in 5h. It clearly shows that the H₂ evolution rate of NYTiO₂-Pt-0.5 is 4 times that from NYTiO₂-Pt-0.5N (5.20 mmol h⁻¹ g⁻¹). This means that the NaOH modification of NYTiO₂-Pt photocatalyst significantly improves its photocatalytic activity.

To further verify the role of hierarchical nanosheet-constructed yolk-shell structure for

light harvesting, mesoporous TiO₂ (MeTiO₂) microspheres are synthesized and utilized for photocatalytic H₂ production at the same condition. The anatase nanoparticle constructed MeTiO₂ porous microspheres exhibit a BET specific surface area of 82.1 m² g⁻¹ and an average pore size of ~9 nm (Figure S7-S9). The 0.188 wt% Pt in MeTiO₂ photocatalyst (designated as MeTiO₂-Pt-0.5) is prepared with the same procedure for NYTiO₂-Pt-0.5. However, the MeTiO₂-Pt-0.5 only demonstrates a H₂ production rate of 6.81 mmol h^{-1} g⁻¹, only 32.6% of the H₂ production rate of NYTiO₂-Pt-0.5 (Figure 5b and 5c). The commercial P25 nanoparticles are also loaded with 0.188 wt% Pt (designated as P25-Pt-0.5) for photocatalytic H₂ production at the same condition. Figure S10 shows the XRD and HRTEM images of P25-Pt-0.5, confirming the existence of anatase-rutile phase and Pt nanoclusters. Figure S11 also displays the UV-Vis absorption spectrum of P25-Pt-0.5. Table 1 lists its electronic band gap, similar to those of other samples. The prepared P25-Pt-0.5 presents a H₂ production rate of 8.62 mmol h⁻¹ g⁻¹, only 41.3% of the H₂ production rate of NYTiO₂-Pt-0.5 (Figure 5b and 5c). These confirm that the nanosheet-constructed volk-shell structure is favorable for effective light harvesting (Scheme 1b), thus enhancing the photocatalytic H_2 production.

Since the NYTiO₂-Pt-0.5 is synthesized under alkaline environment, the surfaces of Pt nanoclusters are surrounded by numerous hydroxyl groups.[31] This retards the H₂PtCl₆ reduction as well as the growth and aggregation of Pt nanoclusters, resulting in co-existence of metallic Pt⁰ and oxidized Pt²⁺ species.[24] The metallic Pt⁰ species acts as electron trapping reservoirs to effectively separate photogenerated electron-hole pairs. The oxidized Pt²⁺

species can efficiently prevent the backward reaction of H₂ and O₂. Meanwhile, the surface of TiO₂ nanosheets is also modified by the hydroxyl groups to introduce active sites for Pt deposition, leading to uniform and ultrafine Pt nanoclusters strongly anchoring onto the surface of TiO₂ nanosheets in the NYTiO₂ shell. Since the photocatalytic H₂ production reaction occurs at the interface of TiO₂ and Pt,[24] the NaOH-modified ~0.6 nm Pt nanoclusters anchoring onto NYTiO₂-Pt-0.5 can essentially improve the H₂ production.

The stability of the NYTiO₂-Pt-0.5 for the photocatalytic H₂ evolution is evaluated through cycling H₂ production (Figure 5d). No obvious decrease in the photocatalytic activity after 5 cycles (25 h) is observed, indicating very good stability of NYTiO₂-Pt-0.5. The good stability of NYTiO₂-Pt-0.5 catalyst is attributed to the numerous hydroxyl group, strong Pt-O-Ti bond, ultrafine size and good dispersion of Pt nanoclusters as shown in Scheme 1b. XPS is further employed to investigate the structural stability of NYTiO₂-Pt-0.5 after 25 h reaction (designated as NYTiO₂-Pt-0.5H); see Figure S12. One can see that after 25 h of photocatalytic reaction, there is no obvious difference between NYTiO₂-Pt-0.5 and NYTiO₂-Pt-0.5H except for the noise signal increase for Pt. We speculate that this increase of noise signals is induced by more hydroxyls groups attached on TiO₂ and Pt nanoclusters. More detailed investigation is required to verify this.

Conclusions

In summary, we have designed an alkali-modified NYTiO₂-Pt light harvesting reactor for highly efficient photocatalytic H₂ production. The Pt nanoclusters are uniformly deposited

through a simultaneous NaBH₄ reduction of H₂PtCl₄ and NaOH-modification in an alkaline environment. The porous, nanosheet-based yolk-shell microspherical TiO₂, co-catalysing with highly dispersed ~0.6 nm Pt nanoclusters with metallic Pt⁰ and oxidized Pt²⁺ species in a low content of 0.188 wt% Pt, demonstrates excellent photocatalytic stability and up to 20.88 mmol h⁻¹ g⁻¹ H₂ production under simulated solar light. We believe that our demonstration here provides a simple, efficient and economic route to decorate metal oxides-based photocatalysts with ultrafine noble metal nanoclusters for highly efficient solar energy assisted water splitting at a very low content of noble metal. On the basis of these findings, other efficient light harvesting systems with a facile alkali modification might be further developed for highly photocatalytic H₂ production.

Acknowledgments

B. L. Su acknowledges the Chinese Central Government for an "Expert of the State" position in the Program of the "Thousand Talents" and a Life Membership at the Clare Hall, Cambridge and the financial support of the Department of Chemistry, University of Cambridge. Y. Li acknowledges Hubei Provincial Department of Education for the "Chutian Scholar" program. T. H. acknowledges support from the Royal Academy of Engineering through a Research Fellowship and an EPSRC Impact acceleration grant. This work is supported by the National Key Research and Development Program of China (2016YFA0202602), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), International Science & Technology Cooperation Program of China

(2015DFE52870), National Natural Science Foundation of China (51302204 and 51502225) and the Fundamental Research Funds for the Central Universities (WUT: 2016III029).

Appendix A. Supporting information

Part of the materials characterizations.

References

- [1] X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev., 110 (2010) 6503-6570.
- [2] M. Murdoch, G.I.N. Waterhouse, M.A. Nadeem, J.B. Metson, M.A. Keane, R.F. Howe, J. Llorca, H. Idriss, Nat. Chem., 3 (2011) 489-492.
- [3] A. Patsoura, D.I. Kondarides, X.E. Verykios, Appl. Catal. B: Environ., 64 (2006) 171-179.
- [4] W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, A.R. Mohamed, ChemSusChem, 7 (2014)690-719.
- [5] A.U. Pawar, C.W. Kim, M.J. Kang, Y.S. Kang, Nano Energy, 20 (2016) 156-167.
- [6] X. Chen, L. Liu, Y.Y. Peter, S.S. Mao, Science, 331 (2011) 746-750.
- [7] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, J. Am. Chem. Soc., 133 (2011)10878-10884.
- [8] L. Zhang, C. Baumanis, L. Robben, T. Kandiel, D. Bahnemann, Small, 7 (2011) 2714-2720.
- [9] J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, X. Wang, Nat. Commun., 3 (2012)

- [10] F. Wang, C. Di Valentin, G. Pacchioni, J. Phys. Chem. C, 116 (2012) 8901-8909.
- [11] A. Kubacka, M. Fernández-García, G. Colón, Chem. Rev., 112 (2011) 1555-1614.
- [12] C. Wang, L. Wang, J. Jin, J. Liu, Y. Li, M. Wu, L. Chen, B. Wang, X. Yang, B.L. Su, Appl. Catal. B: Environ., 188 (2016) 351-359.
- [13] Z. Zhang, W. Li, M.F. Yuen, T.-W. Ng, Y. Tang, C.-S. Lee, X. Chen, W. Zhang, Nano Energy, 18 (2015) 196-204.
- [14] A. Samokhvalov, Renew. Sust. Energy Rev., 72 (2017) 981-1000.
- [15] Y. L. Lee, C.F. Chi, S.Y. Liau, Chem. Mater., 22 (2009) 922-927.
- [16] L. Zhu, M. Hong, G.W. Ho, Nano Energy, 11 (2015) 28-37.
- [17] X. Yu, J. Zhang, Z. Zhao, W. Guo, J. Qiu, X. Mou, A. Li, J.P. Claverie, H. Liu, Nano Energy, 16 (2015) 207-217.
- [18] G. Li, Z. Lian, W. Wang, D. Zhang, H. Li, Nano Energy, 19 (2016) 446-454.
- [19] J.M. Valero, S. Obregón, G. Colón, ACS Catal., 4 (2014) 3320-3329.
- [20] J. Yu, G. Dai, B. Huang, J. Phys. Chem. C, 113 (2009) 16394-16401.
- [21] H. Zhao, M. Wu, J. Liu, Z. Deng, Y. Li, B.L. Su, Appl. Catal. B: Environ., 184 (2016)182-190.
- [22] X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, J. Mater. Chem. A, 3 (2015) 2485-2534.

[23] W.Y. Teoh, L. Mädler, R. Amal, J. Catal., 251 (2007) 271-280.

[24] F.C. Wang, C.H. Liu, C.W. Liu, J.H. Chao, C.H. Lin, J. Phys. Chem. C, 113 (2009) 13832-13840.

[25] H.S. Kibombo, C.M. Wu, R. Peng, J. Baltrusaitis, R.T. Koodali, Appl. Catal. B: Environ.,136 (2013) 248-259.

[26] X. Li, W. Bi, L. Zhang, S. Tao, W. Chu, Q. Zhang, Y. Luo, C. Wu, Y. Xie, Adv. Mater.,28 (2016) 2427-2431.

[27] B.S. Huang, F.Y. Chang, M.Y. Wey, Int. J. Hydrogen Energy, 35 (2010) 7699-7705.

[28] M.P. Languer, F.R. Scheffer, A.F. Feil, D.L. Baptista, P. Migowski, G.J. Machado, D.P.de Moraes, J. Dupont, S.R. Teixeira, D.E. Weibel, Int. J. Hydrogen Energy, 38 (2013)14440-14450.

[29] B. Zhu, K. Li, S. Wang, S. Zhang, S. Wu, W. Huang, J. Dispersion Sci. Technol., 29(2008) 1408-1411.

[30] X. Meng, S. Ouyang, T. Kako, P. Li, Q. Yu, T. Wang, J. Ye, Chem. Commun., 50 (2014)11517-11519.

[31] Y. Zhai, D. Pierre, R. Si, W. Deng, P. Ferrin, A.U. Nilekar, G. Peng, J.A. Herron, D.C.Bell, Science, 329 (2010) 1633-1636.

[32] C.T. Dinh, H. Yen, F. Kleitz, T.O. Do, Angew. Chem. Int. Ed., 53 (2014) 6618-6623.

[33] J. Yu, Y. Hai, B. Cheng, J. Phys. Chem. C, 115 (2011) 4953-4958.

[34] Y. Li, Z.Y. Fu, B.L. Su, Adv. Funct. Mater., 22 (2012) 4634-4667.

[35] X. Wang, J.C. Yu, C. Ho, Y. Hou, X. Fu, Langmuir, 21 (2005) 2552-2559.

[36] J. Jin, S.Z. Huang, Y. Li, H. Tian, H.E. Wang, Y. Yu, L.H. Chen, T. Hasan, B.L. Su, Nanoscale, 7 (2015) 12979-12989.

[37] Z. Zhang, Z. Wang, S.W. Cao, C. Xue, J. Phys. Chem. C, 117 (2013) 25939-25947.

[38] Y. Hang Li, J. Xing, Z. Jia Chen, Z. Li, F. Tian, L. Rong Zheng, H. Feng Wang, P. Hu, H. Jun Zhao, H. Gui Yang, Nat. Commun., 4 (2013) 2500.

[39] J. Xing, H.B. Jiang, J.F. Chen, Y.H. Li, L. Wu, S. Yang, L.R. Zheng, H.F. Wang, P. Hu,H.J. Zhao, H.G. Yang, J. Mater. Chem. A, 1 (2013) 15258-15264.

[40] J. Yu, X. Li, Z. Xu, W. Xiao, Environ. Sci. Technol., 47 (2013) 9928-9933.

[41] H.S. Kibombo, C.M. Wu, R. Peng, J. Baltrusaitis, R.T. Koodali, Appl. Catal. B: Environ.,136–137 (2013) 248-259.

[42] H. Zhou, X. Li, T. Fan, F.E. Osterloh, J. Ding, E.M. Sabio, D. Zhang, Q. Guo, Adv.Mater., 22 (2010) 951-956.

[43] A.A. Melvin, K. Illath, T. Das, T. Raja, S. Bhattacharyya, C.S. Gopinath, Nanoscale, 7(2015) 13477-13488.

[44] J. Liu, G. Liu, M. Li, W. Shen, Z. Liu, J. Wang, J. Zhao, L. Jiang, Y. Song, Energy Environ. Sci., 3 (2010) 1503-1506. [45] C. Yang, Z. Wang, T. Lin, H. Yin, X. Lü, D. Wan, T. Xu, C. Zheng, J. Lin, F. Huang, J. Am. Chem. Soc. 135 (2013) 17831-17838.

Jun Jin received the Ph. D. degree in 2015 under the supervision of Prof. Dr. Bao-Lian Su and Prof. Dr. Yu Li from Wuhan University of Technology, China. Currently, he is a Postdoctoral Research Fellow at Nanyang Technological University, Singapore. His research interests focus on designing novel nanomaterials for energy conversion and storage.

Chao Wang obtained the Master of Engineering degree in 2013 from Wuhan University of Technology, China. He is pursuing his Ph.D. degree under the guidance of Prof. Bao-Lian Su and Prof. Yu Li at State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, China. His current research involves developing techniques for advanced microscopy and the synthesis of organic-inorganic metal sulfide nanomaterials for photocatalysis applications and their antiphotocorrosion mechanism.

Xiao-Ning Ren received the Bachelor degree in Inorganic Non-Metallic Materials Engineering in 2011 from Wuhan University of Technology. She is pursuing her Ph. D. degree under the guidance of Prof. Bao-Lian Su and Prof. Yu Li at State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, China. Her current research interests are mainly focused on designing novel nanomaterials for photocatalysis application.

Shaozhuan Huang received his Ph. D. degree in Materials Physics and Chemistry under the supervision of Prof. Dr. Bao-Lian Su and Prof. Dr. Yu Li from Wuhan University of Technology in 2015. Then he worked as a postdoctoral researcher in in Leibniz Institute for Solid State and Materials Research (IFW Dresden), Germany. He is currently a research assistant in Singapore University of Technology and Design (SUTD), Singapore. His current research interests are mainly focused on designing novel materials for electrochemical energy conversion and storage.

Min Wu received her Ph. D. in Physics from Institute of Photonics, University of Strathclyde, UK in 2010 and went to the University of Namur as a post-doctoral researcher in CMI Laboratory with Prof. Bao-Lian Su after. Currently, she is a Professor in Wuhan University of Technology and her research interests are inorganic semiconductor nanomaterials photonic crystals design and synthesis for photosynthesis and photocatalysis in environment and energy fields.

Li-Hua Chen awarded his Ph. D. degrees, one in inorganic chemistry from Jilin University, China (2009), and another in inorganic materials chemistry from University of Namur, FUNDP, Belgium (2011). He is currently a full professor working in the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing from the Wuhan University of Technology, China. His research is aimed at new porous materials with designed hierarchically porosity towards catalysis.

Bin-Jie Wang received his Ph. D. degree of Physics at Electron Microscopy for Materials Science (EMAT) Laboratory of Physics Department in University of Antwerp in 2007 and 2011 respectively. Most of his PhD work was done under the supervision of Profs. Dominique Schryvers and Hosni Idrissi. Currently, he works in the leading APR TEM application team at FEI Company in Shanghai. His main research interests are TEM techniques application on material science and plasticity mechanisms in metals and alloys.

Tawfique Hasan gained his PhD from the University of Cambridge in 2009. He is currently a University Lecturer in Electronic Materials and Devices, Deputy Director for Teaching and Training of the EPSRC funded Centre for Doctoral Training in Graphene Technology and Director of the MRes program in Graphene Technology at the Cambridge Graphene Centre, Cambridge University Engineering Department. His current research focuses on formulation of functional inks of 0, 1- and 2-dimensional nanomaterials and their hybrids for a wide range of printable and flexible device applications including ultrafast lasers, photonic, (opto)electronic and energy devices. He is a Title A Fellow of Churchill College, Cambridge and currently holds a prestigious Royal Academy of Engineering Research Fellowship.

Prof. Yu Li received his Bachelor degree from Xi'an Jiaotong University in 1999 and received his Mater degree from Liaoning Shihua University in 2002. He obtained his Ph.D. from Zhejiang University in 2005. He worked in EMAT at the University of Antwerp with Prof. G. Van Tendeloo in 2005 and then in CMI at the University of Namur with Prof. Bao-Lian Su in 2006. Currently, he is a "Chutian" Professor at Wuhan University of Technology. His research interests include nanomaterials design and synthesis, hierarchically porous materials synthesis, and their applications in the fundamental aspects of energy and environment.

Prof. Bao-Lian Su created the Laboratory of Inorganic Materials Chemistry (CMI) at the University of Namur, Belgium in 1995. He is currently Full Professor of Chemistry, Member of the Royal Academy of Belgium, Fellow of the Royal Society of Chemistry, UK and Life Member of Clare Hall College, University of Cambridge. He is also Changjiang Professor at Wuhan University of Technology and an "Expert of the State" in the frame of "Thousands Talents" program, China. His current research fields include the synthesis, the property study and the molecular engineering of organized, hierarchically porous and bio-inspired materials, living materials and leaf-like materials and the immobilization of bio-organisms for artificial photosynthesis, (photo) Catalysis, Energy Conversion and Storage, Biotechnology, Cell therapy and Biomedical applications.