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Abstract:  

 We use scanning gate microscopy to map out the trajectories of ballistic carriers in 

high-mobility graphene encapsulated by hexagonal boron nitride and subject to a weak 

magnetic field. We employ a magnetic focusing geometry to image carriers that emerge 

ballistically from an injector, follow a cyclotron path due to the Lorentz force from an 

applied magnetic field, and land on an adjacent collector probe. The local electric field 

generated by the scanning tip in the vicinity of the carriers deflects their trajectories, 

modifying the proportion of carriers focused into the collector. By measuring the voltage 

at the collector while scanning the tip, we are able to obtain images with arcs that are 

consistent with the expected cyclotron motion. We also demonstrate that the tip can be 

used to redirect misaligned carriers back to the collector.  
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Recent advances in techniques for transferring and stacking single atomic layers have 

enabled the fabrication of van der Waals heterostructures of graphene and hexagonal 

boron nitride (h-BN) [1–4]. Graphene encapsulated by h-BN exhibits particularly high 

carrier mobility of  > 100,000 cm2/Vs [2] because, unlike previous generations of 

devices with graphene on SiO2, extrinsic carrier scattering from charged impurities, 

surface roughness, and optical phonons of SiO2 is largely eliminated [3]. Carriers 

consequently travel ballistically over a mesoscopic distance, of the order of several 

microns in graphene/h-BN, allowing the observation of transport phenomena such as 

negative bend resistance [5], magnetic electron focusing [6], and an anomalous 

magnetoresistance peak due to boundary scattering [7]. While there is a qualitative 

similarity with these effects in conventional two-dimensional electron systems (2DESs) 

based on semiconductor AlxGa1xAs/GaAs heterostuructures [8–10], hallmarks of the 

linear Dirac spectrum of excitations in graphene manifest through room-temperature 

ballistic carrier transport [5], Klein tunneling [11], the formation of snake states [12,13], 

and an anomalous commensurability ratio at the magnetoresistance peak due to boundary 

scattering [7]. 

Scanning gate microscopy (SGM) is now a well-established technique for visualizing 

local variations in the electronic properties of 2DESs [14–17]. SGM involves monitoring 

the conductance of the 2DES while scanning a sharp metallic tip over its surface. A bias 

voltage applied between the tip and 2DES modifies the carrier density under the tip, 

locally shifting the Hartree potential and Fermi level. In disordered low-mobility systems, 

the conductance predominantly changes due to the carrier density-dependent diffusion 

constant [18], while the behavior of ballistic high-mobility devices is more accurately 
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described in terms of diffraction of electron rays by tip-induced changes in the Fermi 

wavelength, a fact that has been employed in GaAs 2DESs to reveal ballistic carrier 

trajectories during magnetic electron focusing [19]. 

In this letter, we demonstrate how SGM can be used to reveal ballistic carrier 

trajectories in high-mobility graphene encapsulated by h-BN. We concentrate on 

capturing SGM images of excitations that are injected from a contact in a magnetic field 

and travel directly from injector to collector along a curved cyclotron orbit. This 

phenomenon, known as focusing due to the fact that electron density becomes singular on 

the caustic of carrier trajectories [6], is detected by measuring the non-local voltage VNL. 

This voltage is only generated when the cyclotron diameter of the charge carriers fits an 

integer number of times into the distance between the injector and collector probes [6,8]. 

In SGM the local electric field generated by the tip perturbs the cyclotron motion of the 

ballistic carriers [20], causing them to miss the collector and lowering the spatial charge 

build up responsible for VNL. Since the greatest disturbance from the tip occurs when it is 

directly over the beam of carriers, SGM images are characterized by arc-shaped areas 

where the reduction in VNL is most pronounced.  

For this study we fabricate a Hall-bar device on graphene encapsulated by h-BN 

crystals using a mechanical exfoliation and “pick-up” transfer technique of atomic 

layers  [2]. The assembly of graphene and h-BN layers in the present work utilizes van 

der Waals forces to pick up the exfoliated atomic layers from the surface of the Si 

substrate with a 290-nm-thick thermally oxidized layer of SiO2 [2]. Compared to the 

conventional technique for transfering atomic layers using a polymer film [3,4], the 

polymer-free assembly technique of atomic layers has the advantage that the interface 
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between graphene and h-BN does not come into contact with any polymer film 

throughout the entire process. This reduces the contamination of the channel and 

associated degradation of the carrier mobility. The sample consists of ~ 50 nm of h-BN 

on the bottom of a mono-layer graphene and ~ 50 nm of h-BN as a cap layer. The sample 

was masked with a Hall-bar-shaped hydrogen silsesquioxane (HSQ) resist and plasma-

etched to expose the edge of the graphene [2]. Finally, electron-beam lithography, 

evaporation of Cr/Pd/Au metal, and a subsequent lift-off process were used to form one-

dimensional contacts to the graphene edges [2]. The four-terminal longitudinal resistance 

measured as a function of the back-gate-bias voltage Vbg at the measurement temperature 

T = 4.2 K is shown in Fig. 2(a), revealing a small residual doping of n ~ 1011 cm2 and a 

high charge-carrier mobility of 60,000–80,000 cm2/Vs. The mean free path is estimated 

as ~ 1 m at n = 1012 cm2, which is one order of magnitude larger than that for graphene 

on SiO2 and is comparable to the size of the graphene channel. 

Our scanning gate microscope is mounted inside a cryostat with a base temperature of 

~ 4.2 K. The oscillation of the cantilever was measured using standard interferometric 

detection with a fiber-based infra-red laser. We used a conductive diamond-coated 

cantilever (NanoWorld POINTPROBE-CDT-FMR-10) with a nominal tip radius of 100–

200 nm. In order to avoid any cross-contamination between the tip and the flake during 

SGM, we mostly operate in lift-mode with the static tip at a height of ~ 10 nm from the 

top h-BN surface. Based on electrostatic simulations, the FWHM of electric field 

broadening from the SGM tip is thus expected to be ~ 200 nm (details are discussed in 

Sec. A in the supplementary information [21].). Broadening at this scale is small enough 

to image the local ballistic carrier trajectories during focusing (See Fig. S1 in the 
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supplementary information [21]). In order to associate the SGM response with specific 

locations of the device, we first measure the resonant frequency shift f of the SGM tip 

while applying a small Vbg. Since f depends on the screening of the electric field from 

the back gate, maps of f reveal the positions of the graphene and the contacts. 

Comparing the map of f with an optical microscopy image of the device then enables us 

to identify the area to be scanned without degrading the tip. 

First, we use conventional carrier transport measurements to confirm the ballisticity of 

excitations via the magnetic focusing effect in a weak magnetic field. The measurement 

configuration is shown in Fig. 1. With the tip parked far from the device, we inject 

carriers using a current I = 100 nA from contact i to contact g and measured VNL between 

contact c and contact f using conventional lock-in techniques. Contact i and contact c 

work as an injector and a collector of carriers, respectively. Note that VNL should be zero 

if the carriers travel diffusively because the voltage probes are located far from the path 

of charge carriers scattered by random impurities.  

Figure 2(b) shows VNL as a function of the magnetic field B at Vbg = 10, 15, and 25 V 

at T = 4.2 K. We observe two distinct peaks in VNL whose position in magnetic field, 

tracked by red and blue arrows, increases with Vbg. This behaviour is consistent with the 

earlier work by T. Taychatanapat et al., where the magnetic focusing of Dirac fermions in 

graphene was reported and can be explained as follows [6]. In a weak magnetic field, 

carriers emerging from the injector contact travel ballistically along a trajectory that is 

curved by the Lorentz force. The trajectory corresponds to a classical path of carriers 

performing cyclotron motion with radius, Cr n eB , where n, , and e denote the 

carrier density, Planck's constant, and elementary charge, respectively. At magnetic fields 
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corresponding to the peaks indicated by the red solid arrows, the diameter of cyclotron 

motion 2rc is equal to the distance between the injector and collector WIC, i.e., 2rc = WIC = 

750 nm, and the ballistic carriers reach the collector contact directly, resulting in a 

positive value of VNL [Fig. 2(c)]. At the magnetic field where the peak indicated by the 

blue arrow is observed, 2rc = WIC/2, carriers first bounce off the edge before being 

detected at the collector contact, as shown in Fig. 2(d). VNL should be positive for this 

case as well. To confirm that the peaks in VNL are observed when either the condition 2rc 

= WIC or 2rc = WIC/2 is satisfied, we compared the values of the peak magnetic field 

obtained experimentally with those expected for the cases when 2rc = WIC and 2rc = 

WIC/2, as shown in Fig. 2(e). The red and blue circles indicate the first (lower B) and the 

second (higher B) peak magnetic field obtained experimentally. The peak position is 

determined by fitting a Gaussian profile. The red and blue lines correspond to the 

estimated magnetic fields for Figs. 2(c) and 2(d), respectively. This can be expressed as 

 
IC

2 n
B p

eW

 
   
 

 , 

where p = 1, 2 (red, blue) [6]. n is derived from n = Cg(Vbg  VDirac)/e, where Cg is the 

capacitance between channel and back gate determined from quantum Hall measurements, 

and VDirac is the back-gate-bias voltage corresponding to the charge neutrality point. The 

uncertainity in the theoretical estimations are indicated by the width of the lines. The 

excellent agreement between the two suggests that the observed peaks are indeed 

signatures of magnetic focusing and hence confirms that carriers travel ballistically in our 

device. Note that the specularity of the sample edge can be estimated as s ~ 0.45–0.65 

from the amplitude ratio of the first and the second peaks [6,22]. 
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By combining the picture of magnetic focusing described above with SGM 

measurements we are able to reveal ballistic trajectories of Dirac fermions. Figure 3(a) 

shows the VNL obtained when the SGM tip is scanned with an applied tip bias of Vtip = 

20 V at B = 0.22 T and Vbg = 10 V. These B and Vbg values correspond to the first 

focusing peak shown by a red solid arrow at Vbg = 10 V in Fig. 2(b), where bulk transport 

measurements suggest carriers are focused into the collector. The expected position of the 

sample edge indicated by a red line is estimated from the f measurements as discussed 

above. A suppressed VNL signal is observed in an arc-shaped (black) region spanning the 

injector and collector voltage probes (The wider scan frame image is shown in Fig. S3 in 

the supplementary informaton [21]). A line section of VNL when the tip is scanned along 

the white dotted line in Fig. 3(a) is shown in Fig. 3(e). The suppressedVNL signal can be 

understood as follows. When the tip is on or near the ballistic carrier cyclotron trajectory, 

the local electric field generated by the tip deflects the carriers [20] from the circular 

paths connecting the injector and collector, as schematically depicted in Fig. 3(d), where 

the solid and dotted arrows depict carrier trajectories with and without the tip, 

respectively. The proportion of carriers reaching the collector contact consequently 

reduces, causing a reduction in VNL. Intuitively, we expect the precise magnitude of VNL 

to depend on the extent of the deflection and the density of the carriers disturbed by the 

tip. The arc-shaped suppressed VNL region in Fig. 3(a) is thus a direct impression of the 

original ballistic trajectories taken by carriers travelling between the contacts. We note 

that broadening of arc-like features can be interpreted as the effect of the finite width of 

the injector and the angle distribution of the injected carriers. (For further details see Sec. 

C in the supplementary information [21].) Clear confirmation of this picture is shown in 



 8 

Fig. 3(b), when we expect ballistic carriers to be first reflected by the edge before being 

picked up at the collector probe, as depicted in the accompanying schematic in Fig. 2(d). 

Fig. 3(b) shows spatial mapping of VNL obtained when the SGM tip is scanned at B = 

0.46 T and Vbg = 10 V, corresponding to the second focusing peak shown by a blue arrow 

at Vbg = 10 V in Fig. 2(b). As anticipated, this time we find two arc-shaped suppressed 

VNL regions between the injector probe and collector probe. The line cut of this image 

along the dotted line [Fig. 3(g)] shows three dips in VNL (indicated by black arrows), 

confirming the presence of two arc-shaped suppressed VNL regions. Using the same 

argument as above, these structures are entirely consistent with the original ballistic 

carrier trajectory [Fig. 3 (f)] and confirms that electrons bounce once from the edge in 

this regime [Fig. 2(d)]. Note that VNL is actually enhanced when the tip is near the edge of 

the graphene in Figs. 3(a) and 3(b), possibly due to the way caustics are distorted by the 

electrostatics at the edge and tip-induced refocusing of carriers into the collector [23]. 

Next we set B = 0.26 T, a field slightly greater than the focusing field [red dotted 

arrow at Vbg = 10 V in Fig. 2(b)]. VNL is less than the peak value, meaning that the focal 

point of trajectories falls on the injector side of the collector contact [Fig. 3(h)]. SGM 

images with Vtip = 10 V exhibit arc-shaped regions but with enhanced VNL (white) 

bridging between the injector and collector probe, as shown in Fig. 3(c). The line cut of 

this image along the white dotted line [Fig. 3(i)] confirms the enhanced value of VNL 

around the focusing region. When the tip is within the arc-shaped region, it deflects 

carriers just enough to deflect them back into the contact despite the Lorentz force on its 

own being insufficient for focusing. The enhanced VNL region in Fig. 3(c) shows the 

positions where the tip can realign the ballistic carriers to the collector probe, as shown in 
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Fig. 3(h). This suggests the tip is able to locally reconfigure the focal point of ballistic 

trajectories. Since the carrier trajectories that initially fall on the injector side of the 

collector are shifted toward the collector probe by applying a positive Vtip, the tip-induced 

realignment of ballistic carrier trajectories is explained qualitatively by the local increase 

of the cyclotron radius rc n B  induced by the increase in the local carrier density 

under the tip. However, the underlying mechanism responsible for the deflection itself 

requires further investigation. To shed some light on the deflection mechanism we parked 

the static tip within the focusing region and performed magnetic field spectroscopy. As 

discussed in Sec. D in the supplementary material [21], the behavior of the peak position 

at different tip bias is consistent with the description above. More detailed discussion 

about the characterization of tip influence is also shown in Sec. E in the supplementary 

material [21]. 

In summary, we have reported the imaging of ballistic carrier trajectories in graphene 

using SGM and high-mobility graphene encapsulated by h-BN crystals. We imaged 

ballistic carrier trajectories in graphene by deflecting the trajectories using a scanning tip. 

Finally, we showed how to use the tip to intentionally move the focal point of trajectories 

to a specific location in a device. Our results show the potential for using SGM to 

understand how Dirac fermions behave in ballistic quantum devices. For example, further 

study of the reflection of carriers at the edges should allow a better understanding of edge 

scattering. Moreover, our results also demonstrate that scanning probe tips are suitable as 

mobile lenses for manipulating ballistic carriers. Electron optics [24,25] in graphene 

continues to inspire device concepts not possible with conventional 2DESs, such as 

Veselago lensing [26], wave guiding [27], and cloaking [28], and our results offer a direct 
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insight into how tips might be used to prototype devices and perform experiments that 

require manipulation of electron flow on a local scale [29]. 

After completion of this study, we became aware of a related work with similar results 

of imaging the magnetic focusing effect by S. Bhandari et al [23].  
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Fig. 1.  

(Color online) Schematic of our setup used to perform scanning gate microscopy (SGM). 

A local electric field is generated near the tip by applying Vtip to a conductive diamond-

coated cantilever. The tip is scanned at a height of ~ 10 nm from the surface of h-

BN/graphene/h-BN. A magnetic field B is applied perpendicularly to the graphene. A 

current I = 100 nA is injected from contact i to contact g, and the non-local voltage VNL is 

measured between contact c and contact f. The distance between the injector and 

collector probes is WIC = 750 nm.  
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Fig. 2 

(Color online) (a) Four-terminal longitudinal resistance Rxx as a function of the back-gate-

bias voltage Vbg at T = 4.2 K. (b) Non-local voltage VNL as a function of the magnetic 

field B for Vbg = 25, 15, and 10 V (top to bottom). Schematics of the magnetic focusing 

carrier trajectories when (c) 2rc = WIC and (d) 2rc = WIC/2, where rc and WIC are the 

cyclotron radius and the distance between contact i and contact c. (e) Red and blue circles 

show the values of Vbg v.s. B at the first (lower B) and the second peak (higher B) of VNL. 

Red and blue lines show Vbg v.s. B satisfying  2rc = WIC and 2rc = WIC/2, respectively. 
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Fig. 3 

(Color online) Scanning gate images showing the spatial variation of VNL at Vbg = 10 V 

for (a) B = 0.22 T and Vtip = 20 V, (b) B = 0.46 T and Vtip = 20 V, and (c) B = 0.26 T 

and Vtip = 10 V, corresponding to the red solid, blue solid, and red dotted arrow in Fig. 

2(b), respectively. The red lines indicate the sample edges. The scale bar in each figure is 

200 nm. Schematic of the carrier trajectory corresponding to (a), (b), and (c) are 

illustrated in (d), (f), and (h), respectively. The solid and dotted arrows depict carrier 

trajectories with and without the tip. The grey circles indicate the regions over which the 

carrier density is strongly modulated by the tip. Spatial distribution of VNL along the 

white dotted line in (a), (b), and (c) are shown in (e), (g), and (i), respectively. The arrows 

in (g) mark the dip in VNL.  
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