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Abstract

A Coastal Risk Assessment Framework (CRAF) provides two levels of coastal

risk and vulnerability assessment, by combining information on the spatially

variable hazard and exposure. In Phase 1, areas of greatest risk or ‘hotspots’ are

identified. In Phase 2, these hotspots are then analysed in greater detail to iden-

tify both direct and indirect extreme event impacts. This approach was applied

to the barrier coastline of North Norfolk, eastern England. The CRAF identified

high risk coastal hotspots on the basis of both hazard impacts (swash regime

(tide + surge + wave runup) and overwash/terrestrial inundation regimes) from

a 1 in 115 year return period storm and a range of land use, infrastructure, eco-

nomic and social vulnerability indicators. Hazard extents and hazard severity, in

some locations modified by the presence of intertidal saltmarsh, were calculated

for 45, 1-2 km wide sections along the topographically complex coast. When

combined with five exposure indicators, eight hotspots were identified along the

45 km long frontage. In a 2nd phase, two of these hotspots, one a chain of

small villages (Brancaster/Brancaster Staithe/Burnham Deepdale) and one a

small town (Wells-next-the-Sea), were compared in more detail using a suite

of coastal inundation and impact assessment models to determine both direct

and indirect impacts. Hazards at this higher resolution were calculated using
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the 1D process-based XBeach model and the 2D LISFLOOD inundation model.

Vulnerability to the hazards was calculated using the INDRA (Integrated Dis-

ruption Assessment) model with comparison of the two hotspots through the

use of a Multi Criteria Analysis (MCA). The selection of hazard hotspots and

comparison of hotspots using these techniques allows areas at greatest risk to be

identified, of vital importance for coastal management and resource allocation.

Keywords: storm surge flooding, wave runup, wave overwash, XBeach,

LISFLOOD, barrier islands, vulnerability, coastal tourism, Multi Criteria

Analysis

1. Introduction

On bathymetrically and topographically complex barrier island coastlines,

records of storm surge impacts often show considerable local variability at the

populated coast (Spencer et al., 2015). This variability can determine local pat-

terns of flood impacts on the linearly-dispersed rural and small urban (popula-5

tion < 5, 000) settlements characteristic of back-barrier locations. For regional

authorities faced with inadequate and reducing budgets, identifying the sites

of greatest vulnerability to coastal flooding allows scarce resources for disaster

risk reduction to be most effectively deployed. Applying complex modelling ap-

proaches along a regional coast may not be resource efficient, necessitating an10

initial assessment process. In the complex coastal domain this initial assessment

must take into account spatial variability in topography, hydrodynamic forcing

and exposure.

A common approach to coastal vulnerability assessment is through a coastal

vulnerability index. On a very large scale the coastline can be categorised and15

a vulnerability index created based on the sensitivity of sections of the coast

to hazards (Abuodha and Woodroffe, 2006). The sensitivity of the coast can

also be combined with politico-administrative and socio-economic indicators

to relate hazard susceptibility to exposure and resilience (Balica et al., 2012).

McLaughlin and Cooper (2010) highlighted the importance of scale in choosing20
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the relevant variables to include in coastal vulnerability indicators. To aid deci-

sion making and coastal management, these variables can be weighted based on

importance by stakeholders Torresan et al. (2012). Analysis of historic hydrody-

namic conditions and storm impacts can be used with simple empirical formulae

to assess the probability of event occurrence and hazards can then be related25

to risk through vulnerability thresholds (Armaroli et al., 2012). Torresan et al.

(2008) noted the importance of inclusion of environmental variables to more

accurately predict coastal susceptibility, such variables include geomorphology,

wetlands and vegetation cover.

To improve upon existing coastal risk assessment methods, we combine some30

of the above approaches of coastal vulnerability assessment. The Coastal Risk

Assessment Framework (CRAF) provides a standardized assessment of coastal

risk at 2 levels of scale and model complexity. In CRAF Phase 1 a coastal

index approach is used, which provides an initial screening process applied on

a regional scale. We demonstrate how the spatial variability of coastal hazards35

can be calculated using historical hydrodynamic conditions and simple empirical

formulae (Holman, 1986; Stockdon et al., 2006; Pullen et al., 2007; Donnelly,

2008). We also present new techniques of incorporating the natural coastal

defence of intertidal wetlands in the calculation of hazards. The hazards are

combined with spatial variable exposure components in a coastal vulnerability40

indicator to identify coastal hotspots of risk (Viavattene et al., 2015). In CRAF

Phase 2, these hotspots are then compared on a smaller scale in more detail. A

chain of coastal inundation and impact assessment models are used to determine

both direct and indirect impacts. The vulnerability indicators are weighted by

expert judgement to complete a Multi Criteria Analysis (MCA).45

In this paper we present the CRAF framework for the North Norfolk coast,

eastern England. Section 2 describes the case study site, section 3 presents

the first phase of the CRAF framework, the identification of risk hotspots. In

section 4, the 2nd phase of the CRAF framework is presented, the comparison

of the hotspots. Finally, in section 5 we discuss the results and present our50

conclusions.
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2. Study Site

The 45 km long North Norfolk coast (Figure 1) is macro-tidal (mean spring

tidal range of 6.6 m in the west at Hunstanton, reducing eastwards to 4.7 m

at Cromer) but characterised by a moderate to low wave climate (monthly55

mean significant wave heights (2006 - 2009): 0.36 and 0.80 m at Scolt Head

Island (5 m water depth), and Cley (7 m) respectively (Environment Agency,

2014)). The wave climate recorded at these nearshore wave buoys is largely

uni-directional, with a dominant wave direction of North - North East, and uni-

modal. The nearshore wave peak periods show a dominance of locally generated60

wind waves (3-5 s peak period). Swell waves occur occasionally during stormier

periods caused by low pressure to the North. The combination of high tidal

range and low offshore slopes has allowed the development of extensive subtidal

and intertidal mudflats, sandflats seaward of large gravel barriers (Scolt Head

Island, Blakeney Point), back-barrier mudflats, tidal channels and saltmarshes.65

Landward margins are characterised by reclaimed saltmarsh (freshwater marsh)

and, locally, by reedbeds and sand dunes (some with plantation forest). Within

the case study site there are 2 towns and 14 villages, some with small harbours

and quays. Whilst predominantly agricultural, the coast is an important area for

nature conservation, with walking and birdwatching activities bringing tourism70

to the coast year round.

The southern North Sea is susceptible to storm surges which can elevate

peak water levels over 1 m above the predicted tidal levels; there have been 21

such events, of varying severity, since 1883 (Brooks et al., 2016). Landscape

impacts of major surges are: landward washover of beach and dune sands onto75

back-barrier marshes; cliffing and retreat of coastal dunes; breaching of the ma-

jor gravel barrier between Cley and Salthouse; flooding of freshwater marshes

and ponding of saltwater; loss of invertebrate populations and ‘washout’ of bird

breeding sites. Impacts on lives and livelihoods include: overtopping and breach-

ing of earthen embankments with extensive flooding of reclaimed marshes and80

loss of agricultural production; saltwater intrusion into coastal valleys; flooding
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Figure 1: North Norfolk case study site, A) Location map, B) Regional coastal assessment

sections and transects for hazard assessment

of coastal settlements with disruption to shops and businesses in larger settle-

ments; disruption to inshore fisheries, local shellfish industry and, at Wells-next-

the-Sea, port activities; and road flooding, including closure of the main W-E

road network.85

3. Identification of Coastal Risk Hotspots

Initially the risk hotspots from extreme events over the entire 45 km frontage

were identified in a regional assessment. Risk is defined as the probability of

a hazard, its extent, and its consequences. A probabilistic response approach

was used, in which the probability of occurrence of the hazards was determined.90

We show below how the hazard extent was calculated by empirical formulae,

based on the potential type of hazard experienced (Holman, 1986; Stockdon

et al., 2006; Pullen et al., 2007; Donnelly, 2008). A coastal exposure indicator

was used to calculate the relative risks experienced by different flooded areas;

this was based on hazard severity, land use, population and social vulnerability,95
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transport systems, utilities and business settings (Viavattene et al., 2015).

The assessment framework required the region to be divided into represen-

tative sectors, to capture the spatial variability in the bathymetry/topography

and extreme event forcing. A total of 45, 1-2 km wide sections (Figure 1)

were generated, based on topographical features, location of towns, and type100

of ecosystem. For each section, a representative shore-normal transect was se-

lected. On the UK east coast, the Environment Agency (EA) has undertaken

long-term monitoring of coastline change through bi-annual shore-normal tran-

sect surveys, at an alongshore spacing of 1 km, since 1992. Where possible, the

EA transects were chosen for this analysis.105

Bathymetry data was drawn largely from the UK Hydrographic Office (UKHO)

MEDIN bathymetry dataset, at resolutions ranging from 1 to 200 m. Near to

the coast, 1 m resolution DTM LIDAR data (obtained from the EA) from Jan-

uary and February 2014 was used, with gaps in this data being filled with the 1

km EA shore-normal profile data described above. Further inland, topograph-110

ical data was taken from 5 m resolution UK Ordnance Survey data (EDINA

Digimap Ordnance Survey Service1). At the study site there is a datum shift

between the bathymetry Chart Datum (CD) and the topographic Ordnance

Datum Newlyn (ODN); this shift varies across the study site. In order to join

the bathymetry and topography data together, the UKHO Vertical Offshore115

Reference Frame (VORF) surface (Lessnoff, 2008) was used.

3.1. Regional Hazards

The extent of the flooding was calculated with a probabilistic response

method based on the type of hazard (wave runup, wave overwash, overtop-

ping) experienced at each sector. A scale of storm hazard was used to deter-120

mine the type of hazard experienced at each transect, relating the water level

reached to the height of the first line of defence, i.e the crest of earthen embank-

ment/seawall/dune. The scale of storm hazards was modified from Sallenger Jr

1https://www.digimap.edina.ac.uk
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(2000), the modification is necessary as we were interested in the inundation

over the intertidal zone (i.e. saltmarsh) which can occur when the first line125

of defence, often an earthen embankment, seawall or dune, is not exceeded.

We therefore distinguished inundation landward of the first line of defence as

terrestrial inundation. The modified impact classification regime is shown in

Table 1.

In the swash regime the wave runup, defined as the height reached by the130

swash above the still water level (including wave setup), is confined to the fore-

shore. For the swash regime the hazard extent was calculated from the height of

the total water level (tide+surge+wave runup). For the overwash and terrestrial

inundation regimes, the hazard extent was taken as the overwash extent. As

the topography is very varied within most of the sections, the overwash extent135

was adapted to follow the topographic contours on either side of the transect.

The hazard was assessed using a response approach for a 1 in 115 year return

period storm. The 1 in 115 year return period was chosen as it is the return

period for the recent extreme storm surge event in December 2013, as calculated

by the method in Section 3.1.2. The December 2013 storm surge is the highest140

magnitude event in the last 60 years recorded on UK East coast tide gauges

(Steers et al., 1979; Haigh et al., 2015; Spencer et al., 2015). During the event

peak significant wave heights offshore from North Norfolk reached 3.8 m and

reached 2.9 m inshore. Maximum surge residuals reached 1.97 m at Immingham

tide gauge (90 km North East of the study site) and 2.18 m at Lowestoft tide145

gauge (70 km South West of the study site). The peak in storm surge residual

closely preceded high water level (Spencer et al., 2015).

3.1.1. Water Level

A long water level record (tide+surge) was obtained from the tide gauge at

Cromer (UK National Tidal and Sea Level Facility NTSLF2), 12 km east of the150

case study site. The Cromer gauge has records from 1973 to the present but

2https://www.ntslf.org
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Swash Regime
Rhigh

Dhigh
< 1 Runup confined to foreshore

Overwash Regime
Rhigh

Dhigh
> 1 and Rlow

Dhigh
< 1

Runup exceeds the elevation of

the first line of defence

Terrestrial Inunda-

tion Regime

Rhigh

Dhigh
> 1 and Rlow

Dhigh
> 1

Elevation of the base of the

swash motion exceeds the el-

evation of the first line of de-

fence

Table 1: Coastal impact classification modified from Sallenger Jr (2000). Where

Rhigh andRlow are the representative high and low water levels, and Dhigh andDlow are

the high and low frontage elevations.

there are large gaps in the record. In particular, due to the gauge’s location

under Cromer pier, there are typically no maximum water level readings during

large storm surges (e.g. 2013 storm surge). Hindcast modelled water level

data (tide+surge) from the UK National Oceanography Centre (NOC) CS3X155

Continental Shelf tidal surge model (Flather, 2000) at the closest grid point to

Cromer (19 km distance) was used to fill in some of the gaps during large storm

surge events. Hindcast data was obtained for four weeks surrounding the largest

storm surges for which data was available (12/12/1990, 20/02/1993, 10/01/1995,

19/02/1996, 14/12/2003, 31/10/2006, 17/03/2007, 08/11/2007 and 05/12/2013160

storm surges (Brooks et al., 2016)). As the model data point is offshore in deeper

water than the tide gauge, an empirical transformation function was determined

between the modelled hindcast water level and the tide gauge water level. For

the time periods where there is concurrent modelled and tide gauge data, the

extreme sea levels were selected. Extreme values were defined as the water levels165

above the 95th percentile, occurring at least 3.5 days apart in order to separate

individual storms. Haigh et al. (2015) found that the effect of storms which give

rise to high water levels around the UK coastline typically last 3.5 days. The

regression analysis found a good fit between the tide gauge and modelled data

(y = 0.951x + 0.478, R2 = 0.864). The transfer function was applied to the170

modelled water level data and combined with the tide gauge water level data,

providing a record length of 25.4 years (Figure 2a).
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There is a significant variation in tidal levels with distance along the North

Norfolk coast (1.5 m difference in mean high water springs between Cromer

and Hunstanton) due to variations in tidal range. The relationship between175

the height of mean high water springs (MHWS) water level from Admiralty

tide tables (Environment Agency, 2010) and Easting (British National Grid)

(Figure 2b) was fitted with a regression line of y = 2.664x10−5x+ 18.514, R2 =

0.938. The fitted slope was used to calculate the difference in water level at

each transect from the value at Cromer, based on where the transect crosses the180

shoreline.

3.1.2. Offshore wave climate and inshore wave transformation

A long (35.5 year) wave data series was obtained from the Met Office Wave-

watch III (WWIII) model (Bunney and Saulter, 2015) at location 53.109N

0.615E (5 m water depth). For the period January 1980 to June 2015, waves185

were predominately from the North to North-East at this location. The mean

significant wave height (Hs) over the period was 0.75 m, and the maximum

significant wave height reached was 4.70 m.

The presence or absence of saltmarsh along a transect was assessed using

an Environment Agency habitat map. For all transects with saltmarsh (23 out190

of 45 transects), the wave transformation over the vegetation was determined

using a 1D SWAN model. SWAN is a third generation spectral wave model

for computation of waves in shallow water (Booij et al., 1996). The 1D SWAN

transects were set up with a 10 m resolution using the transect bathymetry and

the location of the saltmarsh along the transect. The resolution allowed the195

variations in marsh topography to be represented in the grid. Wave dissipation

was calculated along the transect from 5 m water depth to the landward limit

of the saltmarsh using a modified SWAN vegetation module which better repre-

sents the dissipation due to vegetation under storm conditions (Roelvink et al.,

2015).200

To reduce the number of model runs, a set of representative wave data

was created for each saltmarsh covered transect. The relationship between the
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(a)

(b)

Figure 2: Regression analysis for (a) Transformation function between Cromer tide gauge

and offshore modelled water levels, (b) Mean high water level and distance along the coast.

mODN = m Ordnance Datum Newlyn where 0.0 m ODN approximates to mean sea level.

10



offshore significant wave height (at 5 m water depth) and water depth, or offshore

relative wave height (Hs/h), was calculated at each of the transects over the

full wave record. Water levels for three return periods (25, 100 and 115 years)205

were calculated for each transect to provide a range of potential water levels.

The extreme water levels for each transect were determined with a peak over

threshold analysis. Water level peaks above the 99.9th percentile and with a

separation of 3.5 days between peaks were selected as the extreme values. The

analysis identified 111 extreme water level events over the record length of 25.4210

years, an average of 4.4 storms per year. These extreme water levels were fitted

with a generalized pareto distribution and the resulting curve was extrapolated

to determine storm return periods (Figure 3).

(a)

(b)

(c)

Figure 3: Extreme water level (m ODN) analysis for Transect 1. a) frequency distribution

histogram for extreme water levels, fitted with a generalised pareto distribution; b) water level

return period from the extreme water levels; c) extrapolated return period for water level.
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The relative wave height was calculated and sorted and 8 percentiles were

chosen based on the full range of data for each water level. The 8 wave con-215

ditions for each of the 3 water levels were then run through the SWAN model

using stationary wave parameters and water depth, and the wave height reduc-

tion calculated. The relationship between the relative wave height and the wave

height reduction was calculated using an ordinary-least squares regression for

each transect (an example relationship for Transect 18 is presented in Figure 4,220

length of the saltmarsh for Transect 18 is 375 m). This wave height reduc-

tion formula was then applied to the full wave record for all the subsequent

calculations.

Figure 4: Relative wave height (Hs/h) and wave height dissipation due to the presence of

saltmarsh vegetation at Transect 18 (saltmarsh length is 375 m)

3.2. Hazard Calculation

The probability of occurrence of the hazards was determined using a response225

approach. The hazard magnitude was calculated from the the full wave and tidal

record and the probabilistic distribution of the hazard was used to produce a

1 in 115 year return period event. The calculations resulted in hazard extents

and an index of hazard severity for each section.
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3.2.1. Wave Runup230

Wave runup was calculated for each of the 45 transects along the case study

site. The transects were classified into those with a natural beach slope (31

transects) and those with a man-made artificial frontage (14 transects). For the

natural beach slope transects, the wave runup was calculated over the full wave

records according to Stockdon et al. (2006) and Holman (1986).235

Runup in Stockdon et al. (2006) is predicted as:

Ru2% = 1.1

(
0.35 tanβ (HsLo)

1/2
+

(
HsLo

(
0.563 tanβ2 + 0.004

))1/2
2

)
(1)

under dissipative conditions (ζ < 0.3):

Ru2% = 0.043 (HsLo)
1/2

(2)

where Hs is the significant wave height, Lo is the wave length, tanβ is the beach

face slope defined as the beach slope where the predicted water level intersects

the beach, and ζ is the Iribarren number, defined as:

ζ =
tanβ√

Hs

Lo

(3)

Runup in Holman (1986) is predicted as:

Ru2% = Hs (0.83ζ + 0.2) (4)

The runup calculated from each method was added to the water level at each

transect and then compared with high resolution (three dimensional coordinate

quality < 50 millimetres and typically < 20 millimetres) Real Time Kinetic

(RTK) measurements taken on or behind shoreline features immediately after

the December 2013 storm surge. The Stockdon et al. (2006) method gave the240

best results for gravel and sand beaches whereas the Holman (1986) equation

gave the best predicted total water level for transects with saltmarsh.

For the artificial beach transects, the wave runup was calculated using the

EurOtop method (Pullen et al., 2007). For each transect, the surface roughness

13



at the beach slope was estimated on the basis of the flood defence material245

characteristics.

The wave runup for the 115 year return period used the same probabilistic

method as had been used to calculate the extreme water level values: a peak over

threshold analysis was used to select the extreme values; the extreme wave runup

threshold was taken as the 99.5th percentile; and extremes were only detected250

if separated by a minimum of 3.5 days. This analysis generated 155 extreme

events at an average of 4.4 events per year. The extreme values were fitted with

a generalized pareto distribution and the return period was determined.

For transects and storms within the swash regime the total water level

(tide+surge+wave runup) was calculated and a contour at the total water level255

used to demarcate the hazard extent for each sector.

3.2.2. Wave Overwash

For transects and storms within the overwash or terrestrial inundation regime

(where the water level exceeded the first line of defence) the wave overwash depth

(hc) was calculated using the method of Donnelly (2008).

hc =
h0
xR

(xR − xC) (5)

where h0 is the depth at the still water line during maximum runup, xC is the

difference between the still water level and the maximum beach height, xR is

the horizontal projection of maximum runup from the still water level. The

term h0

xR
can be substituted by a constant value based on empirical data by

Schüttrumpf and Oumeraci (2005):

tanβ ≥ 0.21,
h0
xR

= 0.028 (6)

tanβ < 0.21,
h0
xR

= 0.035 (7)

The coefficient xC was measured directly from the transect bathymetry, the

coefficient xR was calculated as wave runup divided by the beach slope. To

account for volume of water lost due to infiltration the evolution of hc was
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calculated as:

h(x) = hce
−a x

uc (8)

where a is the proportionality constant for infiltration (a = 0.01 for an imper-

meable bed, else a = 0.12), uc is the flow velocity at the highest point of the

beach:

uc = Cu

√
ghc (9)

where Cu is the bore front coefficient (Cu = 1.53 for a sandy beach (Donnelly,

2008), Cu = 2 for a man-made frontage (analytical dam break solution), and

Cu = 2.6 for a gravel barrier (Matias et al., 2014)).260

The hazard extent was determined as the maximum distance at which the

overwash depth was greater than 0.01 m.

3.3. Regional hotspots of risk

A coastal index for flooding, resulting from variations in the severity of the

hazard experienced and a range of vulnerability measures, was developed by

Viavattene et al. (2015). It was used to compare the different sectors along the

North Norfolk coast and identify risk hotspots:

CI = (ih × iexp)
1
2 (10)

where ih is the hazard index and iexp is the overall exposure indicator defined

as:

iexp = (iLU × iPOP × iTS × iUT × iBS)
1
5 (11)

where iLU is the exposure indicator for land use, iPOP is the indicator for

population and social vulnerability, iTS is the indicator for transport systems,265

iUT is the indicator for utilities, and iBS is the indicator for business settings.

3.3.1. Flooding Hazard Index

In this research, the flooding hazard index was calculated in two ways, de-

pending upon the flooding regime present. For transects in the swash regime,

the hazard value was determined from the mean water depth over that part of270
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the transect above the mean high waterline. For transects in the overwash or

terrestrial inundation regime, the hazard value was determined from the over-

wash depth immediately behind the coastal defence. The hazard index values

were assigned to the water depths using Jenks Natural Breaks classification

(Jenks, 1967) based on the range of results (Table 2).275

Hazard Index Runup Overwash

Mean water depth (m) Water depth (m)

0 0 0

1 0.01 - 1.51 0.01 - 0.27

2 1.51 - 1.84 0.27 - 0.44

3 1.84 - 2.49 0.44 - 0.96

4 2.49 - 3.65 0.96 - 1.43

5 3.65 - 5.14 1.43 - 2.27

Table 2: Hazard Index based on the type of coastline and calculation method

3.3.2. Exposure Indicator: Land Use

The land use exposure indicator (iLU ) is determined by:

iLU =

n∑
j=0

Sj × Vj (12)

where n is number of land use classes, S is the normalised surface area, and V

is the importance value.

The distribution of land use types within the North Norfolk case study

site was obtained from Land Cover data from 2007, accessed through EDINA280

Digimap3. Importance values were assigned to each land use class based on

expert knowledge and perceived importance within the study area. The highest

importance values were assigned to built-up areas (suburban, urban or indus-

trial). Some natural habitats were assigned high values, such as fen marsh and

swamp, as these attract the wild birds that bring many of the tourists to the285

area, generating income and livelihoods.

3https://www.digimap.edina.ac.uk

16



3.3.3. Exposure Indicator: Population and Social Vulnerability

The population and social vulnerability exposure indicator (iPOP ) was cal-

culated based on the Social Flood Vulnerability Index (SFVI) for census areas in

England (Tapsell et al., 2002). The SFVI is a composite additive index based on

four characteristics: financial deprivation (unemployment, overcrowding, non-

car ownership and non-home ownership); age; household structure; and health.

Data for the four characteristics was transformed into percentages based on the

total population of the census areas. The SFV I was calculated as:

SFV I = SFV Is+SFV Ip+SFV Ie+
1

4
(SFV Iu + SFV Io + SFV Ic + SFV Ih)

(13)

where SFV Is is the SFVI indicator for long-term sick, SFV Ip is the SFVI

indicator for single parents, SFV Ie is indicator for the elderly, SFV Iu is the

indicator for unemployment, SFV Io is the indicator for overcrowding of house-290

holds, SFV Ic is the indicator for non-car ownership, and SFV Ih is the indicator

for non-home ownership.

SFVI was calculated for each census area and the values split into five cate-

gories, using the Jenks Natural Breaks classification method. The categories of

SFVI were then assigned iPOP values in Table 3.295

Category SFVI value iPOP

Very low vulnerability -1.19 to -0.72 1

Low vulnerability -0.72 to -0.03 2

Medium vulnerability -0.03 to 0.38 3

High vulnerability 0.38 to 1.83 4

Very high vulnerability 1.83 to 2.78 5

Table 3: Population and social vulnerability indicator values

3.3.4. Exposure Indicator: Transport Systems

The transport systems indicator iTS was calculated based on the type and

importance of the transport system flooded. The exposure indicator value cat-

egories are presented in Table 4. The transport system within the case study
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site were limited to roads only, with the key road being the A149 from Kings300

Lynn (to the West) to Cromer/Sheringham (East). Flooded sectors with high-

est category A roads were given iTS = 3, B roads iTS = 2, and sectors with no

A or B roads iTS = 1.

Category iTS

No significant transport network within flood extent 1

Mainly local and small network within flood extent 2

Presence of transport network with local/regional importance 3

High density and multiple networks (train, road, airport) of

local importance or regional importance

4

High density and multiple networks (train, road, airport) of

national or international importance

5

Table 4: Transport system exposure indicator values

3.3.5. Exposure Indicator: Utilities

The utilities indicator iUT was calculated based on the density and impor-305

tance of utility assets or networks (Table 5). Utilities data for this stretch of

coast were collected from on OpenStreet maps and a site inspection. Point data

was obtained for water pumping stations, sewage treatment plants, electricity

sub-stations, mobile phone masts and emergency services. Most of the sectors

have no utilities or utilities of only local importance (iUT = 1 or 2). The life310

boat station at Wells-next-the-Sea gave this location an index value of 3.

Category iUT

No significant utility network/asset within flood extent 1

Utility of local importance 2

Medium density or multiple utility network/asset of local importance 3

High density and multiple utility networks/assets of regional impor-

tance

4

High density and multiple utility networks/assets of national impor-

tance

5

Table 5: Utilities exposure indicator values
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3.3.6. Exposure Indicator: Business Settings

The importance of commercial properties within the flood extents was checked

by visual inspection and then used to calculate a Business Settings exposure in-

dex (iBS). The index was determined using the ranking in Table 6 with the315

maximum exposure index within each flooded section being selected. Business

setting index values of 2 were given to businesses with a local importance only

and include general stores, hairdressers and boat storage. Index values of 3

were given to businesses with a greater importance in the local economy. They

included tourist shops, cafés, restaurants and public houses. Business index320

values of 4 were given to larger pubs and restaurants, as well as camping and

caravan sites, Bed and Breakfast (B&B) establishments and hotels. Businesses

deemed to have a national importance and hence given an index value of 5, in-

clude the Royal West Norfolk Golf Club, the Wells outer harbour which services

the Sheringham Shoal offshore wind farm, and the Blakeney Hotel.325

Category iBS

No significant economic activities 1

Mainly local small economic activities 2

Local/Regional economic activities 3

Economic activities with regional importance 4

Economic activities with National or International importance 5

Table 6: Business settings exposure indicator values

3.4. Results and Hotspot Selection

Results of the CRAF Phase 1 assessment are presented in Figure 5. The

Coastal Index values ranged between 1.00 and 3.57, with a mean value of 2.06.

The coastal index (Figure 5g) highlighted hotspots at Old Hunstanton, Thorn-

ham, Titchwell Nature Reserve, Brancaster/Brancaster Staithe/Burnham Deep-330

dale, Burnham Overy Staithe, Holkham, Wells-next-the-Sea, and Salthouse.

The hotspots are generally located in sectors with residential to urban elements.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5: Exposure Indicators and Coastal Index; a) Hazard indicator, b) Land Use exposure

indicator, c) Population and social vulnerability exposure indicator, d) Transport system

exposure indicator, e) Utilities exposure indicator, f) Business exposure indicator, g) Coastal

Index. Hotspots are identified with stars.
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4. Comparison of Hotspots

Two hotspots were selected for further modelling and comparison in CRAF

Phase 2, Brancaster/Brancaster Staithe/Burnham Deepdale and Wells-next-335

the-Sea. These two hotspots represented two of the three highest coastal indices

generated by Phase 1 (CI =3.36 and 3.00 for Wells-next-the-Sea and Brancaster,

respectively). Additionally they showed a variety of topographic/bathymetric

features and receptor data in order to test the Phase 2 method. CRAF Phase

2 used more complex and higher resolution hazard and vulnerability modelling340

methods than CRAF Phase 1. Hazards were calculated using 1D process based

XBeach model transects (Roelvink et al., 2010), and a LISFLOOD-ACC inun-

dation model (Bates et al., 2013). XBeach is a coupled flow, wave and sediment

transport model for simulation of nearshore processes. XBeach was particularly

suited to this research as it was originally designed to study nearshore response345

to extreme events, particularly overwash, dune erosion and breaching (Roelvink

et al., 2009; McCall et al., 2010). LISFLOOD is an hydrodynamic inunda-

tion model designed for fluvial and coastal use. The LISFLOOD acceleration

module (LISFLOOD-ACC) was used in this study, which solves the inertial for-

mulation of the shallow water equations (Bates et al., 2010).The combination350

of the XBeach and LISFLOOD models allowed the inundation extent, water

depth and flow velocity to be mapped in 2D. The combined models have been

shown to be suitable for inundation modelling of storms by Prime et al. (2016),

and they represent a significant saving in computational time from modelling

inundation in a 2D XBeach inundation model.355

Vulnerability to the hazards was calculated with the Integrated Disruption

Assessment (INDRA) model (Viavattene et al., 2016). INDRA is an innovative

open-access model which allows the assessment of direct and indirect impacts

from an extreme coastal event. Standardised indicators come from a Multi

Criteria Analysis.360

The hazards were initially assessed at the two hotspots locations. The haz-

ard information generated was then used as input data for the INDRA model.
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Finally, an MCA was used to compare the regional impact at the two hotspots.

4.1. Local Hazard Assessment

The hazards were calculated in Phase 2 using an event approach for the365

December 2013 storm surge (1 in 115 year return period based on tide+surge).

Hazard impacts at the two hotspots were assessed through the generation of

multiple transects for each hotspot (41 transects at Brancaster (Figure 6a), 58

transects at Wells (Figure 6b)). Transects were selected based on the variation

in topography of the first line of defence. The transects were perpendicular370

to the shoreline except in the embankment running North-South at the Wells

harbour where transects followed the lines of channels. XBeach modelling at

each transect was driven by water level and wave conditions for the December

2013 storm event. Wave conditions were input as a JONSWAP spectra gen-

erated in XBeach from the storm wave parameters. XBeach was run with no375

morphological updating, as it was considered that erosion would not impact the

vulnerability indicators at these locations.

Water level data was obtained by the same method as CRAF Phase 1 (see

Section 3.1.1). The wave data record was obtained from the Met Office WWIII

model at 2 locations, 53.109N 0.615E for Brancaster and 53.102N 0.882E for380

Wells.

The XBeach model was run with the default parameters, unless otherwise

stated. Energy dissipation due to vegetation was included in the modelling for

those transects containing saltmarsh. Vegetation height was taken as Hv = 0.11

m (field data from Stiffkey, North Norfolk (Möller et al., 1999)), plant diameter385

as Dv = 0.00125 m (Möller et al., 2014), and plant density (stems/m2) as Nv

= 1061 (field data for comparable saltmarsh communities at Tillingham, Essex

(Möller, 2006)).

The spatially variable overtopping discharge generated by the XBeach mod-

elling was used as input conditions for the LISFLOOD inundation model at390

the two hotspots. The discharge was applied 1 m beyond the first line of

defence with a 30 minute frequency. Due to the complex bathymetry with
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(a) (b)

Figure 6: XBeach transect locations for assessment of hazards in risk hotspots for (a) Bran-

caster/Brancaster Staithe/Burnham Deepdale and (b) Wells-next-the-Sea

creeks/channels/barrier islands the transect method fails to fully represent the

hazard, as it cannot represent all flow pathways. Therefore, the time-varying

tidal water level for the event was used as an input to the LISFLOOD model395

together with the discharge. The tidal water level was defined at a frequency of

30 minutes over a grid of 200 x 200 m resolution to properly represent flooding

of the complex bathymetry.

The LISFLOOD model used bathymetry/topography resampled onto a 5x5

m grid (See Section 3). The Wells grid DTM was updated to include the heights400

of the town’s flood wall and demountable barrier. For both hotspots, a Mannings

coefficient of 0.06 (land use of dense grass) was used and an infiltration rate of

1×10−7ms−1 (British Geological Survey (BGS) superficial permeability indices

from EDINA Digimap and Brouwer et al. (1988)).

The inundation modelling produced maximum water level and maximum405

depth-velocity product (maximum of the water depth × the depth-averaged

velocity at each grid cell over the computation period) across the hotspots.

Additionally wave heights across the transect were extrapolated over the salt-
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marsh, and the duration of the flood event over freshwater grazing marsh was

determined (assuming an infiltration rate of 7.5 mm/hr).410

4.2. Regional Impacts

The impacts of the two selected hotspots in a regional context was assessed

with the INDRA model. The overall impact score is based on the aggregation

of 8 impact indicators: risk to life; household displacement; household financial

recovery; business supply chain disruption; business financial recovery; impacts415

to ecosystems and agriculture; and disruption to transport networks (Viavattene

et al., 2015). In INDRA, impacts are both direct, in response to the exposure of

a receptor, and indirect, occurring outside the flooded area and/or continuing

after the food event.

4.2.1. Direct Impacts420

All residential and commercial properties were identified with the UK En-

vironment Agency’s National Receptor Dataset (NRD), a database of the type,

size and location of land use which could be impacted by a hazard. For each of

the property types, flood damage thresholds were determined using susceptibil-

ity curves obtained from Penning-Rowsell et al. (2016). All residential properties425

were assigned an average set of thresholds. Individual thresholds were devel-

oped for shops, hotels, catering establishments, caravans, B&B establishments

and holiday cottages. Building collapse thresholds, based on the depth-velocity

product, were taken from Karvonen et al. (2000).

The ecosystem considered to be important for this case study site are crops430

(in particular winter cereals, selected as most flood events occur during the

winter months), freshwater grazing marsh and saltmarsh (Table 7). The 2007

Land Cover data from EDINA Digimap was used to identify the location of

these types of land cover. The areas were then resampled and converted to

point data with a 15 m resolution.435

Risk to Life was measured using the method of Priest et al. (2007), based

on the depth-velocity product and the vulnerability of the receptor (Table 8).
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Wave Height (m)

Depth (m) <0.3 0.3-0.6 0.6-1 1-2 >2

0 to 1 0 2 2 3 3

1 to 2 0 1 2 2 3

2 to 3 0 1 1 2 2

3 to 4 0 0 1 1 2

0: No effect

1: Changes within normal seasonal variation
2: Changes beyond normal seasonal variation,

but partial/total recovery

3: Irreversible change

Table 7: Saltmarsh Ecosystem Vulnerability Indicator

Vulnerability of the area was defined based on the land use data from the NRD

and scored on a scale of 1-3. Point data for each receptor is assigned at one of

the three levels: low vulnerability applies to multi-storey apartments, masonry440

concrete and brick properties; medium vulnerability applies to typical residential

areas with mixed type of properties; and high vulnerability applies to mobile

homes, camp sites, bungalows, and poorly constructed properties. The NRD

does not supply information on property construction for residential properties,

therefore they are assumed to be of mixed type with medium vulnerability. The445

area vulnerability was calculated by aggregating and normalising the individual

exposed receptors vulnerability score. The depth-velocity product was then

used to determine the level of risk to life, from low to very high risk.

Nature of the Area

Depth-velocity product

m2s−1

Low Vulnerability Medium Vulnerability High vulnerability

<0.25 Low risk Low risk Low risk

0.25-0.50 Low risk Medium risk Medium risk

0.50-1.10 Medium risk Medium risk High risk

1.10-7 Medium risk High risk Very High risk

>7 Very High risk Very High risk Very High risk

Table 8: Risk to Life matrix
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4.2.2. Displacement and reinstatement time

An indirect impact on households and businesses was assessed through the450

displacement time and reinstatement time, linked to the low, medium, high and

very high thresholds of direct impacts for each receptor.

For household displacement, a dataset was analysed containing 5000 UK

insurance claims, collected and supplied by WeatherNet4. This provided infor-

mation on the total claim per property and the associated cost of alternative455

accommodation. Using UK depth-damage curves, and an average cost per dis-

placement event taken from Penning-Rowsell et al. (2016), it was possible to

ascertain the likely duration of displacement and the likely flood depth inside

each property. With this information, the percentage of households displaced

due to the direct impacts considered was calculated (Table 9).460

Specific data on business recovery time in relation to flood depth is very lim-

ited. Using media reports and grey literature, reinstatement times for hotels,

catering establishments and shops in North Norfolk were set at 182, 105 and

30 days for high, medium and low threshold events respectively. The equiva-

lent reinstatement times for Bed & Breakfasts and holiday cottages were set at465

225, 105 and 30 days. Static caravans were considered to be a total loss once

infiltrated by floodwaters (Penning-Rowsell et al., 2013); it was assumed that it

takes 4 months to replace these assets.

4.2.3. Financial Recovery

The financial recovery was assessed with a matrix relating thresholds of470

direct impact on a property and the type of financial recovery mechanism(s)

(insurance, savings etc.) present. Information on the percentage of insured

and non-insured households by income decile was derived from datasets held by

the Office for National Statistics (ONS) (2014). These percentages were then

linked to average weekly income. The results showed little variability across475

the case study area, with slightly higher levels of prosperity to the west. These

4http://www.weathernet.co.uk
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Direct Impact on Property

Index Low Medium High Very High

Not displaced 0 0.87 0.30 0.18 n/a

Displaced for up to 1 month 1 0.03 0.04 0.01 n/a

Short term displacement, > 1 month

<= 3 months

2 0.05 0.17 0.07 n/a

Medium term displacement,>3 month

<=12 months

3 0.05 0.40 0.49 n/a

Long lasting displacement, > 12

months

4 0 0.09 0.25 n/a

Never return to the original property 5 0 0 0 n/a

Total Receptor Distribution 0.28 1.94 2.62 n/a

Table 9: Household displacement matrix

insurance penetration figures were adjusted to take into account the estimated

20% (Association of British Insurers (ABI), undated a) of under insured UK

households. The likely percentage of self-insured households was also assessed.

Self-insurance is defined as those households which have sufficient savings to480

cover the cost of damages to property and contents, based on the average cost

of flood insurance claims (ABI, 2016) and household savings in the UK (Scottish

Widows, 2014).

Around 95% of UK businesses are insured for buildings, contents and/or

disruption. Again, this figure was reduced to take into account data on under485

insurance (ABI, 2007; AXA, 2007) and the potential for small business to recover

without external assistance (ABI, undated b). All the North Norfolk businesses

in potentially impacted areas are small or micro-sized business (i.e. likely to

have fewer than 10 employees) and are typically independent shops, cafés or

restaurants.490

4.2.4. Transport Disruption

The systemic impacts were determined in INDRA through a network anal-

ysis technique, which defines the network as a series of nodes and the links

between them. The transport disruption was assessed through a Weighted Dis-
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connection and Time Lengthening (WDTL) indicator developed by Viavattene495

et al. (2015). This indicator is the product of the ratio of the time taken for a

journey before and after a flood event and the ratio of connectivity before and

after a flood event. To calculate the connectivity ratio the nodes are weighted

by their importance. The INDRA model required a map of the transport net-

work with links (roads) and nodes (junctions), speed limits across the network,500

an importance value for the junction and a reinstatement time

A shapefile of the regional road network was produced in ArcGIS based on a

geographically-referenced layer taken from Ordnance Survey (OS) Mastermap.

The expected maximum speed of vehicular traffic was assigned using a combi-

nation of Google Street View5 and national speed limits. A value between 1505

(no importance) to 10 (very high importance) was assigned to each of the 38

junctions in the road network. This was based partly on daily traffic flow data,

available for various sections of the A149 (Department for Transport, 2016) with

the location of emergency assets also being taken into consideration. Based on

information from past local flood events, it was assumed that roads will be im-510

passable for up to 4 days following a flood event to allow for the removal of

sediments and other debris; recent major surges have been accompanied by the

deposition of extensive rafts of vegetation debris, stripped by storm water levels

and waves from saltmarshes and reedbeds, onto road surfaces (Spencer et al.,

2015). If major storms are accompanied by high rainfall, and arable field cover515

on the high ground to the south of the A149 is seasonally low, then ‘muddy

floods’ (Boardman et al., 2003) can deposit layers of sands, silts and muds on

roads and within coastal villages.

4.2.5. Business Disruption

The systemic impact of business disruption was also calculated through a520

network analysis. The disruption to business was assessed through a business

supply chain framework which characterises the supply and demand. Businesses

5https://www.google.co.uk/maps
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and supply sources were mapped as nodes and the conveyance of goods/services

mapped as a link. An overall business disruption indicator was calculated as the

sum of the reduction in supply capacity of nodes weighted by their importance525

to the local economy (Viavattene et al., 2015). The regional supply chains were

simplified to focus on the main industry.

Due to the importance of tourism to the Norfolk economy, the tourism indus-

try was selected for the business supply chain analysis. Tourism is the largest

economic sector in the county of Norfolk, valued at £2.96 billion in 2014, and ac-530

counts for around 17% of all regional employment (Destination Research, 2014).

Annual visitor numbers are estimated at 571,000 for staying visitors (spending

one night or more) and 5,948,000 day visitors (The South West Research Com-

pany, 2014). It was estimated that half of the above visit and stay near the

coast in the case study region. Visitor numbers were adjusted to represent a535

typical day in the low tourist season (December) and high season (August).

These numbers were then distributed along the coast, based on the number of

attractions and availability of accommodation. Data is available (Royal Society

for the Protection of Birds (RSPB), 2000) on the likely change in visitor num-

bers following damage or destruction to the receptors responsible for attracting540

visitors, principally bird habitats and birdwatching infrastructure and access

to it, beaches, walking routes and accommodation. As a result of a change in

visitor numbers, it is then possible to model the second-tier impacts on cater-

ing establishments, shops and accommodation. A schematic diagram of this

business supply chain is provided in Figure 7.545

4.3. Hotspot Comparison: Result of the Multi Criteria Analysis (MCA)

The weighting of the 8 impact indicators for the multi-criteria analysis are

presented in Table 10. The weightings were selected using three different ap-

proaches:

• Method A uses a neutral approach, where each category is given equal550

weighting;
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Figure 7: Schematic diagram of the business supply chain model. Showing attraction, demand,

and supply nodes, and the relationship between natural activities (birdwatching and walking)

and accommodation/catering facilities.

• Method B uses expert judgement where the importance of people, house-

holds and business are highlighted;

• Method C uses expert judgement where the importance of people and

ecosystems are highlighted.555

The hazard scenario for the 115 year return period flood event was used as input

to the INDRA model. The model was run with a model simulation duration

of 105 days for all three approaches. The simulation duration covered the re-

instatement time for businesses from a medium impact event, which was the

highest threshold reached for businesses.560

The scores for the impact indicator categories for hotspots are presented

in Table 11. For both hotspots, the business financial recovery was low and
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business disruption only occurred in Wells. This low level of business disruption

is most likely due to the spare capacity in the network at the hotspots. The

transport system in Brancaster experiences no disruption for this magnitude565

of storm event, whilst in Wells there is a small transport disruption. The risk

to life, household displacement and household financial recovery is higher at

the Wells hotspot than at Brancaster. However, at Brancaster the ecosystems

are more impacted than at Wells, for both managed (agriculture) and wetland

ecosystems.570

Category Weighting

A B C

Population

Risk to Life 12.5 30 35

Household Financial Recovery 12.5 10 5

Household Displacement 12.5 15 5

Business
Business Financial Recovery 12.5 15 5

Business Disruption 12.5 10 5

Ecosystem
Natural Ecosystem 12.5 5 20

Agriculture 12.5 5 5

Transport Transport Disruption 12.5 10 20

Table 10: MCA Weighting of the impact indicators using three approaches. A: a neutral

approach, B: expert judgement with a household and business focus, C: expert judgement

with an ecosystem focus.

The final MCA scores for the Wells and Brancaster hotspot sites are pre-

sented in Figure 8. The MCA scores for both hotspots sites are low, suggesting

low impact from the flooding event. For the weighting methods A and C, the

hotspot of Brancaster has a greater MCA score than the Wells hotspot, suggest-

ing Brancaster experiences greater risk. This result is largely due to the high575

ecosystem indicator score at Brancaster, which both method A and C weight

highly. For weighting method B, where ecosystems are weighted at a low level,

Wells has a greater risk.
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MCA Indicator Scores Wells Brancaster

Risk to Life 0.00083 0.00009

Household Financial Recovery 0.00014 0.00008

Household Displacement 0.00013 0.00011

Business Financial Recovery 0.00091 0

Business Disruption 0.00225 0

Natural Ecosystems 0.00316 0.01364

Agriculture 0.00003 0.00112

Transport Disruption 0.00249 0

Table 11: Multi Criteria Analysis vulnerability indicator score

Figure 8: Total Multi Criteria Analysis Score

5. Discussion and Conclusions

New methods have been developed to initially identify parts of the coast at580

risk from high total water levels resulting from storm surge flooding, coastal

‘hotspots’, and then to prioritize the areas of risk identified. Working with

coastal sections typically 1-2 km in width, variations in the extent of flooding

alongshore were calculated from long term historical hydrodynamic conditions

with empirical formulae. The modification to the hazard by natural coastal de-585

fences, such as saltmarshes, was also assessed. A probabilistic method was used

to calculate the hazard based on the type of hazard experienced (wave runup,

wave overwash, overtopping). A coastal indicator was used to calculate the rel-

ative risks experienced by different sections; this was based on hazard severity,
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land use, population and social vulnerability, transport systems, utilities and590

business settings.

For the North Norfolk coast, 8 initial hotspots of coastal risk were identified.

These hotpsots were then reduced to two locations for more detailed analy-

sis. At this second stage, hazards were calculated using the 1D process based

XBeach model for a series of closely spaced transects and a 2D LISFLOOD in-595

undation model. Hazard outputs (for the 1 in 115 year return period event run

over 105 days) were then input, alongside detailed information on the vulnera-

bility to these hazards, into the INDRA model. Impact was calculated through

both direct and indirect vulnerability indicators using a MCA approach. The

vulnerability indicators were weighted to produce a final MCA score by expert600

judgement, this allowed perceptions of importance to be included in the analysis.

In general, the analysis showed that business disruption and transport disrup-

tion from storm surge events impacting the North Norfolk coast is low, due

to sufficient spare capacity within both these networks to absorb local shocks.

Risks to life, household displacement and household financial recovery are also605

generally low, but greater in the hotspot which is a small town (Wells-next-

the-Sea) than that formed of a chain of small villages (Brancaster / Brancaster

Staithe / Burnham Deepdale). However, it is clear from the MCA analysis that

the prioritization of resources for disaster risk reduction does depend on how

different sectors are perceived as being of importance. If people, households and610

business are seen as being of greatest importance then small towns are likely

to demand the greatest resources. However, if ecosystem valuation is included

in the analysis (which may be of significance to coastal economies with a high

dependency on income from nature-based tourism) then non urban settings can

obtain much greater significance.615

The CRAF tool has been shown to identify hotspots of risk through an

initial screening followed by a comparison of the hotspots through a standardised

assessment technique. The framework is resource efficient, using a hierarchical

system which increases in both model complexity and spatial resolution for the

smaller area hotspot comparison. It allowed focus on the key local economic620
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sectors, bringing together receptor vulnerability data from multiple sources to

establish direct and indirect impacts. Furthermore, the staged analysis made

the approach readily transferable to other coastal locations.

The transect approach used in both Phase 1 and 2 has the potential to lead

to inaccurate hazard calculation as not all flow pathways are represented. In625

Phase 1, this was minimised by selecting sections based on similar topography

and first lines of defence. In Phase 2 the tidal water level was input into the

flood model to create a more realistic flow pattern, as such it was capable of

replicating the complex coastal system. The study site is a relatively data

rich coastline, which gives a high degree of confidence in the quality of the630

data. However, in some cases proxy data needed to be used where data was

not available. Further applications along shorelines with different levels of data

availability would usefully establish the minimum data requirement for the risk

analysis.
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