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Abstract

Two principal methods have been used to simulate the evolution of two-phase immiscible flows of liquid and

gas separated by an interface. These are the Level-Set (LS) method and the Volume of Fluid (VoF) method.

Both methods attempt to represent the very sharp interface between the phases and to deal with the large

jumps in physical properties associated with it. Both methods have their own strengths and weaknesses. For

example, the VoF method is known to be prone to excessive numerical diffusion, while the basic LS method

has some difficulty in conserving mass. Major progress has been made in remedying these deficiencies, and

both methods have now reached a high level of physical accuracy. Nevertheless, there remains an issue, in

that each of these methods has been developed by different research groups, using different codes and most

importantly the implementations have been fine tuned to tackle different applications. Thus, it remains unclear

what are the remaining advantages and drawbacks of each method relative to the other, and what might be

the optimal way to unify them. In this paper, we address this gap by performing a direct comparison of two

current state-of-the-art variations of these methods (LS: RCLSFoam and VoF: interPore) and implemented in

the same code (OpenFoam). We subject both methods to a pair of benchmark test cases while using the same

numerical meshes to examine a) the accuracy of curvature representation, b) the effect of tuning parameters,

c) the ability to minimise spurious velocities and d) the ability to tackle fluids with very different densities. For

each method, one of the test cases is chosen to be fairly benign while the other test case is expected to present

a greater challenge. The results indicate that both methods can be made to work well on both test cases, while

displaying different sensitivity to the relevant parameters.
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1. Introduction

The representation of complex interface movement in real multiphase flows requires robust but also efficient

numerical techniques. This is particularly important for applications where hydrodynamic breakup is a dominant

feature. For example when high speed diesel jet atomisation is of interest, then the accurate representation of

the interface close to the nozzle is of paramount importance in order to predict primary breakup and the5

subsequent droplet size distribution [1]. Another example is low capillary oil/gas flows within porous media

where interface capturing techniques can help to understand better the highly complex nature of oil mobilisation

and extraction [2].
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Attempts to simulate various multiphase flows have resulted in a range of different numerical approaches.

Among them, implicit interface-capturing methods such as Volume of Fluid (VoF) and Level-Set (LS) have10

attracted significant attention for simulating flows involving extensive topological changes [3, 4, 5, 6, 7, 8, 9].

A comprehensive review on the subject was given by Tryggvason et al. [10]. The VoF method has become

a contemporary standard in commercial and open-source CFD software, e.g. [11, 12]. On the other hand,

LS methods are still used mainly within more specialised in-house research codes. These interface-capturing

methods, although successful in many problems, have a number of well-known but still inadequately addressed15

numerical deficiencies which limit their accuracy [13, 14, 15]. The most important of these are associated with

the accurate representation of the sharp interface in terms of its location and its advection while guaranteeing

mass conservation, as well as the representation of the effect of the surface tension forces. Amongst other things,

this requires the accurate computation of the interface normal and curvature, using the underlying liquid volume

fraction or level set field.20

In the VoF method [16] a volume fraction α is used to discriminate between the fluids in the domain. When

α = 1 the cell is fully filled with fluid 1 and when α = 0 the cell is filled with fluid 2. The interface is located in

the cells where α lies between [0,1]. Numerical challenges related to the advection of the interface in the context

of VoF are well documented in the literature [10]. Intrinsic to the method is numerical diffusion of the interface,

at a rate that is highly dependent on the mesh size [17]. The numerical diffusion can be reduced by using a25

geometrical reconstruction coupled with a geometrical approximation of the VoF advection [18]. The position

of the interface is determined by calculating the interface normal and the intersection points of the interface

with the cell faces. The main drawback of geometrical methods is their complexity for 3D applications, in

particular when used in conjunction with an unstructured mesh. Alternatively, using a compressive algorithm,

the convective term of the VoF advection equation can be discretised using a compressive differencing scheme30

designed to preserve the interface sharpness: examples include CICSAM by Ubbink and Issa [17], HRIC by

Muzaferija and Peric [19], or the compressive model available within OpenFoam [11]. Compression schemes do

not require any geometrical reconstruction of the interface and extension to three dimensions and unstructured

meshes is straightforward. However, compression schemes are not always sufficient to eliminate numerical

diffusion completely and additional treatment is needed [20].35

The LS method was first developed by Osher and Sethian [21]. After being initially used in the context of

multiphase incompressible flows by Sussman et al. [22], LS methods have matured into a promising numerical

technique for accurate simulation of multiphase flows as shown by Losasso et al. [23]. Instead of using a

continuous volume fraction variable, LS relies on a signed distance function φ to distinguish between the two

fluids in the mixture. The function has a positive value in one fluid and a negative value in the other, while40

it takes the value φ = 0 at the interface. The interface is advected by solving a transport equation for φ that

is re-initialised periodically to recover the distancing property [24]. The LS approach inherently offers a sharp

representation of the interface and accurate representation of the interfacial quantities such as the interface

normal and curvature, as needed for computing accurate surface tension forces. However, as opposed to VoF

approaches, mass conservation is not embedded in the formulation. It has been shown in Sussman et al. [22]45

that mass is lost due to the re-distancing procedure that may involve artificial displacement of the interface

[25]. Moreover, the re-initialisation procedure increases the computational cost.

The numerical challenge of representing the surface tension force at the phase interface is present in both

methods. Surface tension is commonly represented as a source term in the momentum equation, calculated using
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the Continuous Surface Force (CSF) model of Brackbill et al. [8]. The calculation involves an approximation50

of the interface curvature from the gradients of either the VoF or LS function, as well as the calculation of

the normal to the interface. Since the interface is a discontinuous function the calculation of derivatives is

problematic. For VoF methods that suffer from diffusion, it is difficult to achieve an accurate representation of

interface curvature. For LS methods that provide a sharp interface, the effect of the volumetric surface force is

confined to a narrow region around the interface and the calculation of the normal vector can be numerically55

unstable. These numerical effects are known to generate non-physical vortical flows at the interface, known as

spurious currents [4, 26, 6]. Various methods have been developed to minimise spurious currents, such as (i)

improvement of the curvature computation, (ii) achievement of discrete balance between surface tension and

pressure gradient and (iii) use of an adaptive time integration scheme to tackle the stiffness induced by surface

tension. One promising approach relies on minimal energy considerations and can eliminate spurious currents to60

machine precision. Alternatively, it is proposed to use consistent volume fluxes in the Navier–Stokes equations

either in the VoF framework [27] or in the LS framework [28] using geometric arguments. It should be noted

that the generation of spurious currents is not usually considered of great importance for inertia-dominated

flows. However, it is detrimental in the computation of capillary flows and surface tension dominated flows, for

example in hydrodynamic flows involving atomisation and pore-scale modelling. More recently it was shown65

that spurious currents also affect droplet collision with surfaces by preventing the transition to the recoil phase

[29]. Moreover for flows with large density ratios, the interfacial force imbalance is large and thus generation of

spurious currents is more likely [28, 10].

Hybrid methods have been proposed to combine the advantages of the VoF method in terms of mass

conservation even on coarse meshes and the LS method in terms of accuracy of the interface contour and70

a smoothly differentiable field for the calculation of the surface tension forces. A fully coupled CLSVOF

method was proposed by Sussman and Puckett [30] and has been implemented by a number of researchers

since. The CLSVOF method has been applied on cartesian orthogonal meshes, successfully tested byMénard

et al. [31, 32] on diesel jet atomisation, and by Yokoi [33] on the problem of droplet splashing and on the

Rayleigh–Taylor instability. A recent development by Arienti and Sussman [34] has reformulated the CLSVOF75

method to adaptive cartesian meshes. In addition, some recent works have applied CLSVOF on unstructured

meshes [35, 36].

Implementation of either the VoF or the LS method in a CFD code is very complex. Two-phase flow

codes developed in-house by research groups have demonstrated remarkable results bypassing some of the

shortcomings, but such codes are commonly tuned for specific sets of operating conditions that usually restrict80

the generality of the suggested remedies. Commercial codes offer much greater generality, but do not usually offer

source-code access to the detailed numerical algorithms. The commercial open-source CFD toolkit OpenFoam

incorporates a multiphase flow solver interFoam [37], and has been attracting an increasing amount of attention

[38]. The advantage of OpenFoam is that it allows source-level modifications to the two-phase flow treatment

within the same basic solver environment. The present study documents a detailed comparison in physical85

and computational performance of two novel in-house state-of-the-art two-phase flow solvers, i.e. the modified

VoF solver (interPore) and the modified LS solver (RCLSFoam). Both are implemented within the same

basic OpenFoam Navier-Stokes solver. These two solvers were initially tailored to tackle different classes of

physical problems, namely surface-dominated microfluidics flows (interPore) and high-speed liquid atomisation

(RCLSFoam). In this paper, the two solvers are compared using test cases designed to expose their relative90
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strengths and weaknesses. One test case is chosen to challenge the ability of each method to minimise the

occurrence of spurious currents, while the other is designed to challenge the ability of each method to capture

the dynamics of the phase interface.

The paper is organised as follows. The numerical description of both modelling algorithms is first given in

Section 2, with special attention to the different treatment of the phase interface in each approach. The first test95

case, consisting of a three-dimensional stationary spherical droplet in equilibrium, is described in Section 3.1.

Results are compared in terms of the development of spurious currents at steady state. The second test case

involves a developing Rayleigh-Taylor instability and is shown in Section 3.2. The evolution of the instability

is tracked and the solvers are compared in terms of their numerical and physical performance in capturing the

interface dynamics including the production of small droplets.100

2. Mathematical formulation

2.1. Solution of the incompressible Navier–Stokes equations and surface tension forces

Both numerical methods presented in this paper are implemented within the open-source CFD toolkit

OpenFoam [11] that solves for incompressible two-phase flows with constant densities ρg and ρl and viscosities

µg and µl. A single set of equations is used to describe mass and momentum conservation as follows:105

D

Dt
(ρu) = ∇ ·T−∇p+ f (1)

∇ · u = 0 (2)

where u is the fluid velocity, p is the pressure and ρ is the density. The pressure-velocity coupling is handled using

the Pressure-Implicit with Splitting Operators (PISO) method of Issa [39]. The term ∇·T = ∇·(µ∇u)+∇u·∇µ

is the viscous stress tensor. The term f = fg + fc corresponds to all the external forces, i.e. fg = ρg is the

gravitational force and fc represents the capillary forces which for the case of constant surface tension coefficient

σ are defined as:110

fc = σκδΓ (3)

where δΓ denotes a distribution concentrated on the interface. The sharp interface Γ represents a discontinuous

change of the properties of the two fluids. The dynamics of the interface are determined by the Young-Laplace

balance condition:

∆Pexact = σκ (4)

where ∆Pexact is the pressure difference across the fluid interface. The CSF description of Brackbill et al. [8]

is used to represent the surface tension forces in the cell volume. The quantity κ = −∇ · (ηs) in Eq. 3 is the115

interface curvature and ηs the normal to the interface given by:

ηs =
∇γ
|∇γ|

(5)

Although the two methods use the same set of Navier–Stokes equations for mass and momentum conservation

and are also based on the CSF description of the surface tension, their main difference lies in the calculation of

κ in Eq. 4 as well as the normal ηs in Eq. 5. The indicator function γ is defined according to each solver’s own

numerical approach, either as a volume fraction α or as a conservative level set function ψ (see Section 2.2 and120

Section 2.3).
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2.2. Computational framework for the RCLS method

The RCLS method is based on the conservative level-set method (CLS) of Olsson and Kreiss [40] and Olsson

et al. [41] that transports the interface accurately while conserving mass. The indicator function γ, introduced

in Section 2.1, here takes the form of a hyperbolic tangent function ψ (γ = ψ), defined as follows:125

ψ =
1

2

(
tanh(

φ

2ε
) + 1

)
. (6)

where φ is the signed distance to the interface satisfying |∇φ| = 1. The conservative level-set field (or CLS

field) ψ goes smoothly from zero (in the gas phase) to unity (in the liquid phase). It takes values between zero

and unity in the transition region in a similar way to α in the VoF approach (see Section 2.3). In this manner,

the level-set ψ is identified as a smeared out liquid volume fraction. The location of the interface is given by

the level-set value ψΓ = 0.5. This equation has been shown to guarantee mass conservation [40, 41, 42].130

The main parameter of the CLS method is the coefficient ε that controls the width of the hyperbolic tangent

profile in Eq. 6. Therefore, ε effectively controls the thickness of the numerical representation of the phase

transition. Stability studies by Olsson et al. [41] and Pringuey and Cant [42] recommend values of ε > 0.5∆x,

where ∆x is the characteristic mesh element size. Since a sharp interface provides a better representation of

the physics, it is preferable to model the interface to be as thin as possible, as well as to minimise the effect of135

smearing of the material properties and the surface tension. Nevertheless, the interface needs to have a minimal

thickness, so that the gradient of ψ and the interface normal are accurately calculated in the CSF method.

According to the CSF method, the material properties over the whole multiphase domain are given by:

ρ = ρg + (ρl − ρg)ψ (7)

µ = µg + (µl − µg)ψ (8)

The function ψ in Eq. 6 is advected in a conservative manner, in a zero-divergence velocity field, using an

arbitrarily high-order Weighted Essentially Non-Oscillatory (WENO) scheme developed for three-dimensional140

mixed-element unstructured meshes by Pringuey and Cant [43] in order to handle complex real-world geometries:

∂ψ

∂t
+∇ · (uψ) = 0 (9)

WENO schemes have the ability to preserve the required sharpness of the interface in front-propagating problems

and to cope efficiently with the large gradients associated with discontinuities in material properties resulting

from the presence of the phase interface. Although the scheme can formally reach arbitrarily high-order in145

space, here it is restricted to a third-order polynomial reconstruction. The numerical fluxes are calculated using

an exact Riemann solver for both Eq. 9 and Eq. 10 [42]. Accurate calculation of the face-averaged gradient ∇φ

for Eq. 5 and surface tension forces (Eq. 3) is important to avoid spurious oscillations [42, 44].

Even high-order numerics such as the WENO scheme will eventually diffuse the interface. As a result, there

is a need to re-initialise the level set profile ψ to maintain the interface thickness at a constant value. Here a150

re-initialisation algorithm is applied in which a compressive flux and a diffusive flux are applied in the direction

normal to the interface. The technique ensures mass-conservation to machine accuracy:

∂ψ

∂τ
+∇ · (ψ(1− ψ)ηS)− ε∇ · (∇ψ) = 0 (10)

where ηS is the normal to the interface and τ is the artificial time in which the equation is solved until the

initial level set profile is recovered.
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A third-order Total Variation Diminishing (TVD) Runge–Kutta (RK) scheme for temporal discretisation is155

used for both the advection and re-initialisation steps [42]. However, WENO schemes are not necessarily Total

Variation Bounded (TVB), even when coupled with a Runge–Kutta time integration. Non-physical values of

ψ such that ψ < 0 or ψ > 1 cannot be tolerated. As a result, the Multidimensional Universal Limiter with

Explicit Solution (MULES) of Weller et al. [11] is employed in OpenFoam to maintain the boundedness of the

conservative level-set profile. A description of the MULES limiter is given in Pringuey and Cant [42].160

In summary, the numerical parameters of the RCLS method are: the order of the polynomial reconstruction of

the high-order WENO scheme r, the coefficient controlling the thickness of the interface ε, and the interval of

the re-initialisation NS .

The relative performance of the RCLS method with respect to established multiphase numerical methods such

as OpenFoam multiphase flow solver interFoam and the Accurate Conservative Level Set (ACLS) method165

of [44, 45] has been assessed and discussed in previous work [42] using canonical numerical test cases, and

RCLSFoam was shown to perform well in terms of accuracy and robustness.

2.3. Computational framework for the modified VoF method

The VoF two-phase incompressible flow solver interPore developed at City University and the University of

Brighton [29] is described briefly in this section. The approach is based on a compressive/smoothing treatment of170

the phase interface, in which the indicator function γ introduced in Eq. 5 is used to represent the liquid volume

fraction α in each computational cell. It should be noted that the default two-phase flow solver interFoam as

supplied with OpenFoam is also based on a VoF formulation, but lacks a numerical formulation for correcting

capillary forces that would permit simulations at very low capillary numbers and avoid non-physical velocities.

2.3.1. Numerical treatment of the indicator function (compression and smoothing scheme)175

An artificial compression term is used in the present VoF approach to sharpen the interface. The indicator

function is advected according to Eq. 9, however an extra compression term is added to it. The new evolution

equation for the liquid volume fraction α in the VoF framework reads:

∂α

∂t
+∇ · (uα)−∇ ·

{
urα

(
(1− α)

)}
= 0 (11)

where ur is the relative velocity at the faces of each mesh cell, formulated based on the maximum velocity

magnitude at the interface and its direction:180

ur = min

(
Ccomp

|φf |
|Sf |

,max

[
|φf |
|Sf |

])
(ηs · Sf ) (12)

where φf is the volumetric flux, Sf is the outward-pointing cell-face area vector taken at the centre of the face,

and Ccomp is the scalar compression factor for limiting the artificial compression velocity as implemented in

interFoam.

The relative velocity ur applies only within the phase interface region. It is calculated in the normal direction

to the interface to minimise any dispersion errors, and it acts in such a way that the local flow steepens the185

gradient of the phase indicator function. Physically, ur is the relative velocity between the two fluids, arising

from the density and viscosity changes across the interface.

After solving Eq. 11, the indicator function α is updated at the cell centres and interpolated linearly to the

cell faces in order to estimate ηS and κ. As a result of the compression step, the steep change in the value of
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α creates errors in the estimation of the normal vector (Eq. 5) and the interface curvature. These errors act190

to induce non-physical spurious currents in the interfacial region, and these can be suppressed by computing

the interface curvature from a smoothed liquid volume fraction αsmooth, as proposed by Lafaurie et al. [26],

Georgoulas et al. [46] and Raeini et al. [47]. Here the approach implemented by Georgoulas et al. [46] is used.

The liquid volume fraction α is first smoothed by interpolating it from cell centres to face centres and back

recursively:195

αi+1 =
1

2

〈
〈αi〉c→f

〉
f→c

− 1

2
αi (13)

Then, the function αi+1 (Eq. 13) is transformed into a smoother function αsmooth via a Laplacian model:

αsmooth =

∑n
f=1(αi+1)fSf∑n

f=1 Sf
(14)

where n represents the number of smoothing loops and (αi+1)f is the linearly-interpolated face-centre value.

The smoothing operation can be repeated several times, although smoothing tends to level out high curvature

regions and increase the interface thickness. Hence it should be applied only as often as strictly necessary to

suppress spurious currents. There is a fine balance between smoothing the interface and altering its curvature.200

The solution to Eq. 14 is then used to compute the interface normal (Eq. 5) and the interface curvature.

The optimum number of smoothing loops is found to be of the order of 10.

After compressing and smoothing α an additional procedure is implemented in order to maintain the interface

sharpness. A sharpened function, αsh is introduced, as suggested by Raeini et al. [47] for the modelling of

capillary pressure in the case of flows through porous media:205

αsh =
1

1− Csh

[
min

(
max(α, 1− Csh

2
), 1− Csh

2

)
− Csh

2

]
(15)

where Csh is a sharpening coefficient. It limits the effect of unphysical values at the interface by imposing a

restriction on α. For Csh = 0 the original VoF formulation is recovered. As Csh approaches 1, αsh becomes

sharper, hence the estimation of capillary forces becomes more accurate.

2.3.2. Capillary pressure jump modelling

An important aspect that differentiates the present approach from that implemented in OpenFoam is the210

implicit treatment of the capillary pressure jump. Following the calculation of interface normal and interface

curvature, the capillary forces are calculated at the face centres based on Eq. 3. However in order to avoid

difficulties associated with the discretisation of the singular force term fc, the terms on the right hand side of

the momentum equation are rearranged following Raeini et al. [47]:

D

Dt
(ρu)−∇ · T = −∇pd + f ′ (16)

where215

f ′ = ρg + fc −∇pc (17)

This approach, in which the capillary force term appears explicitly in the Navier–Stokes equations, enables the

filtering of the numerical errors related to inaccurate calculation of fc. Pressure jumps across a phase interface
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result from normal stresses, and do not contribute to a jump in tangential stress. Consequently, tangential

surface stresses can only be balanced by viscous stresses associated with fluid motion. Therefore, a boundary

condition such that:220

∂pc
∂η

= 0 (18)

is applied, where η is the normal direction to the boundary. Spurious currents will still exist close to non-

flat (curved or edged) boundaries. These non-physical velocities are parallel to the fluid interface. Therefore,

components of the capillary forces that result in spurious currents parallel to the fluid interface are filtered using

the following model:

φfilter = |Sf | (f −∇pc)−max
(

min
(
|Sf |(f −∇pc), φthreshold

)
,−φthreshold

)
(19)

Eq. 19 is a simple threshold scheme to filter the capillary flux components of the capillary forces that result in225

spurious currents parallel to the fluid interface. This filtering will explicitly set the capillary fluxes to zero when

their magnitude is of the order of the numerical errors. The filtered capillary flux threshold is defined as:

φthreshold = Uf |f |avg |Sf | (20)

where φthreshold and Uf are threshold values below which the capillary fluxes are set to zero. The filtering

coefficient Uf is used to minimise the errors in the capillary fluxes and |f |avg is the average value of capillary

forces over all faces. By eliminating only a small fraction of the capillary fluxes, the filtering operator minimises230

numerical errors in the calculation of capillary forces that cause instabilities or introduce large errors in the

velocity field. It also reduces the stiffness of the problem by eliminating high-frequency capillary waves when

the capillary forces are close to equilibrium with capillary pressure, allowing larger time-steps to be used when

modelling interfacial motion at low capillary numbers. Finally, non-physical velocities that are parallel to the

fluid interface are filtered, so that the term fc − ∇pc that appears in the Navier–Stokes equations (Eq. 1)235

reduces to zero.

Crank-Nicholson and Euler schemes are used for time-advancement of the liquid volume fraction. The time-

step is limited dynamically by introducing a numerical capillary time scale; the numerical solution is stable

when the time-step resolves the propagation of capillary waves:

δt ≤
[ρavδx3

2πσ

] 1
3

(21)

The Courant–Friedrichs–Lewy (CFL) number is kept below 0.5 in order to maintain accuracy and stability.240

The solution procedure begins by advecting the liquid volume fraction for half of the time-step using the

fluxes at the start of the time-step. Then the liquid volume fraction for the second half of the time-step, the

capillary pressure, momentum and dynamic pressure are solved iteratively in two loops. The phase-fraction

equation (Eq. 11) is solved for 2-3 sub- timesteps using the MULES limiter along with ur from Eq. 12. Then

the smoothing and sharpening operations are applied to α and the curvature and the normal are calculated.245

Filtering of the capillary flux follows. Once the updated phase field is obtained, the updated surface tension

force is calculated and the pressure and velocity are corrected using the PISO algorithm, within the OpenFoam

environment, with 2-3 iterations at each time-step. The main tuning parameters of the present VoF method

8



are the capillary filtering threshold Uf (Eq. 20), the number of smoothing loops n (Eq. 14) and the amount of

sharpening Csh (Eq. 15).250

3. Numerical results

3.1. Selection of test cases

In the following sections, numerical simulations of two benchmark cases are presented that demonstrate

the performance of the two different solvers which have been developed to tackle very different applications.

RCLSFoam was developed for primary breakup modelling in airblast atomisers (high capillary numbers) while255

interPore was developed for oil extraction in porous media (low capillary numbers). The capillary number Ca

is defined as:

Ca =
µU

σ
(22)

The dynamic viscosity µ and characteristic velocity U are those of the liquid and σ is the interfacial tension

between the two fluid phases. The capillary number is a measure of the relative importance of viscous forces

and capillary forces.260

It is interesting to note that the capillary number is equal to the ratio of the Weber number to the Reynolds

number (i.e. Ca = We/Re). Hence the capillary number encapsulates the major physical effects that operate

in the two-phase flow configurations that are of interest in the present study. It should be noted that methods

based on achieving optimum interface sharpness at higher Ca numbers are more prone to spurious currents at

low Ca numbers. By the same token, methods that are more resistant to interface artefacts are less accurate in265

terms of sharpness. The natural tendency is to assess novel methods against benchmark cases that are suitable

for the “real world” application that motivates the development in the first place. Hence it is unclear whether

existing methods are suitable for a wide range of applications, going beyond their original design objectives.

Here we have chosen to test each numerical method on at least one test case which is well outside the parameter

range for which it was designed. In the first benchmark case, the determining factor is the elimination of spurious270

currents; the interface geometry is rather benign, however because of the low inertia environment in which it is

evolving, it is particularly challenging to pick up the flow field. In the second benchmark case, the determining

factor is the sharpness of the interface; a much more difficult interface geometry makes it challenging to track

the small-scale structures.

The aim of the following sections is a) to compare the two frameworks in terms of their performance in two275

cases (one that matches the strength and one that challenges each case), b) to evaluate the effect of the control

parameters and c) to extract conclusions relevant to the generality of the different methods suggested here.

3.2. Stationary deformation – circular droplet in equilibrium

When a square droplet of high density fluid is immersed in a low density fluid, the forces of surface tension

cause it to deform and relax to a circular shape. In theory, the circular interface should then remain at rest,280

with the pressure jump at the interface exactly balancing the surface-tension force (Laplace’s law). Depending

on the method used for representing the surface tension force and the pressure gradient, an exact numerical

balance is very difficult to obtain and spurious currents appear, triggered by this imbalance. Although the

set-up is simple, the lack of inertia makes this case very challenging for methods not designed for this situation.

In Harvie et al. [48] a correlation for the magnitude of spurious currents was presented as a function of the285
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physical and numerical parameters. It was demonstrated that spurious currents can severely limit the accuracy

of the standard CSF technique.

In the following test case, a comparison between the RCLS method and the low Capillary number VoF

method has been made, showing a numerical balance for Laplace’s problem provided the shape of the interface

is given enough time to relax to its numerical equilibrium shape. The numerical parameters for each method290

have been examined to demonstrate the efficiency of the two solvers, and are tabulated in Table 1.

Table 1: Table of varied numerical parameters for the Static Droplet simulation.

RCLS interPore interFoam

Case 1 WENO3 NS = 5 ε = 0.5∆x Ccomp = 0 Csh = 0.1 S = 10 Uf = 0.1 Ccomp = 1

Case 2 WENO3 NS = 5 ε = 1.0∆x Ccomp = 0 Csh = 0.5 S = 10 Uf = 0.1 Ccomp = 2

Case 3 WENO3 NS = 5 ε = 2.0∆x Ccomp = 1 Csh = 0.1 S = 10 Uf = 0.5

3.2.1. Numerical set up

The first test case models the relaxation process of an oil droplet of diameter D0= 300 µm in water at

static equilibrium in the absence of gravity. A droplet with an initial cubic shape is introduced inside a three-

dimensional cubic computational domain. The cubic droplet is allowed to relax to a static spherical shape as295

shown in Fig. 1. The force balance should converge to a correct solution of zero velocity everywhere and predict

a pressure jump from a constant value p0 outside the droplet to a value of p0+4σ/D0 inside the droplet. If this is

not the case then non-physical vortex-like velocities can develop at the interface and result in the destabilisation

of the droplet interface [8]. The fluid properties are as follows: the background (water) density ρ is 998 kgm−3,

and the viscosity ν is 1.004 × 10−6 m2s−1, while the droplet (oil) density ρ is 806.6 kgm−3, and its viscosity300

ν is 2.1 × 10−6 m2s−1. The surface tension coefficient is fixed to 0.02 kgs−2. Computational boundaries were

modelled as no-slip walls and the domain was discretised using a uniform square mesh.

Different methods are used for initialisation for each solver. At t = 0, the liquid volume fraction α in

interPore is initialised by setting α = 0 in the cells containing water and α = 1 in the cells containing oil, with

a cubic shape as shown in Fig. 1. In the RCLS method the initialisation is not so straightforward. At t = 0,305

the signed distance function from the interface φ is calculated analytically. The function used to initialise φ is

the implicit equation for a three-dimensional superquadric:

|x|r + |y|r + |z|r = R4 (23)

In the limit of large r a cube is recovered. With this initialisation method, the phase interface is smeared

over approximately 4 cells and remains constant during the simulation. The initial conservative level set field ψ

of the RCLS method is then easily derived by applying Eq. 10. This allows ψ to vary from 0 (oil) to 1 (water)310

smoothly, with no interface discontinuity at initialisation.

The simulations with RCLSFoam were carried out on the Cambridge HPC cluster, which consists of 9600

2.60GHz Intel Sandy Bridge cores connected by Mellanox FDR Infiniband (600 nodes, 64GB of RAM per 16-

cores node. A typical simulation on a 60×60×60 grid with RCLSFoam (Case 1) required about 90 CPU hours

to generate 0.01 seconds of simulated time. Calculations with interPore were made on an Intel Xeon machine315

with 64GB main memory possessing one 2.4Ghz CPU with 12 cores. A typical simulation on a 60 × 60 × 60
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grid with interPore (Case 3) required about 3.6 CPU hours to generate 0.01 seconds of simulated time. The

disparity in computational cost for this test case indicates that interPore is very efficient at solving low inertia

problems.

Figure 1: Solution domain for modelling the static droplet, (left) initial condition, a cube of size 600 µm, and (right) static shape

of droplet at t = 0.01s.

3.2.2. Accuracy of the velocity field320

Three simulations were run with each solver and with numerical parameters given in Table 1. As a first

step of the comparison, the maximum magnitude of the spurious currents was recorded as a function of vari-

ous numerical parameters, and then both numerical solvers were compared to the standard interFoam solver.

Spurious currents are expected to be limited during the initial relaxation period by the transient inertial term.

Looking at the velocity magnitude for the standard interFoam solver during the relaxation period (Fig. 2, red325

lines), it can be seen that even when only compression is used the spurious velocities remain fairly small. As the

relaxation process progresses the compression term alone is not capable of restricting diffusion and the interface

thickness increases. This has a stabilising effect in terms of spurious currents, but it creates a larger error in

the prediction of the capillary pressure as noted in the next section.

The interPore solver (Fig. 2, blue lines) provides the lowest velocities (almost two orders of magnitude differ-330

ence). By contrast, for RCLSFoam the spurious velocities (Fig. 2, black lines) are comparable with those of

interFoam. It is worth mentioning that the maximum velocity magnitude recorded by RCLSFoam is sensitive

to the value of the parameter ε. For higher values of ε, spurious velocities are reduced, with minimal overshoots

during the relaxation. On the other hand, the interPore solver is found to reduce the maximum velocity down

to very low values, regardless of the controlling parameters; however this happens over a longer time period.335

We now turn our focus to a) interface thickness, b) capillary pressure and c) the instantaneous velocity field.

The results are compared in Fig. 3 and Fig. 4. For RCLSFoam, the value of ε shows a direct impact on the

interface thickness (Fig. 3, left column) as expected and affects the pressure and the velocity of the surrounding

field. For Case 3 (Fig. 3, bottom row), with ε = 2.0∆x, the spurious currents become very low (see also Fig. 2)

but the interface becomes excessively diffused. For the interPore solver, comparisons in Fig. 4 show that the340

magnitude of the spurious currents is less sensitive to the interface thickness. For example for cases 1 and 3

(Fig. 4, top row and bottom row) the thickness of the interface is noticeably different while the order of magni-

tude of spurious currents (see also Fig. 2) remains comparable. Within interPore the interface capillary forces

are filtered and thus spurious currents remain very weak, even with very thin interfaces. This feature of the
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method is essential for the simulation of multiphase flows at low capillary numbers.345

The influence of the sharp interface-tracking methodologies used in both solvers is shown in Fig. 5 (a), where

the indicator function (α for interPore and ψ for RCLSFoam) is plotted across the x-axis of the droplet, after

relaxation. When a low value of ε (smaller induced diffusion) is used for the RCLS method the results confirm

the findings of Fig. 2. Since interface sharpness is increased and interface thickness is reduced, the spurious

currents are increased. The spurious currents eventually act to move the droplet away from the centre (Case350

1). With the interPore solver (Fig. 4), the magnitude of the spurious currents is reduced by two orders of

magnitude compared to the standard interFoam solver when less sharpening is applied and the number of cur-

vature smoothing loops is kept constant at n = 10 (Case 1). Moreover, the magnitude of the spurious currents

consistently decreases when increasing the filtering threshold value (Uf ) as shown in Fig. 2 (Case 3). Sensitivity

analysis of the smoothing loop number n (not shown here) indicates that n = 10 is the optimum number that355

provides good results for a range of the other parameters.

It is interesting to note that the spurious currents tend to form distinctive patterns that are similar for both

methods, as shown in the third column of Fig. 3 and Fig. 4. The patterns tend to emphasise the coordinate

axes, where the alignment between the mesh and the interface is at its best, and also the diagonals, where the

alignment is at its worst. Weak spurious vortices are formed in between these principal directions.360

Figure 2: Comparison between the numerical predictions for spurious currents by the standard interFoam solver, the modified VoF

solver (interPore) and the Conservative Level-Set solver (RCLSFoam).

3.2.3. Accuracy of the capillary pressure

Once equilibrium has been established, the shape of the droplet should be spherical and all fluid velocities

should be zero. In this instance, the curvature everywhere on the interface surrounding the droplet should be
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uniform and the interface normal should be directed everywhere in the radial direction. The non-dimensional

pressure should be uniform both inside and outside the droplet but undergo a step change of magnitude across365

the interface. After the relaxation period, the surface tension force should be balanced precisely by the pressure

gradient. The pressure jump should be equivalent to the Laplace pressure for the droplet.

The numerical results differ from the ideal description, as shown in Fig. 5 (a). Small errors occur in calculating

the interface normal. This results in the normal vector not being precisely radial. The interface curvature will

therefore vary slightly, and the density will also vary due to the variations in the interface location. Finally, the370

interface volume force will include a non-physical rotational component. In this situation, the surface tension

cannot be balanced by the irrotational pressure gradient term, so instead it will be balanced by one or more

of the inertial forces, all of which are velocity dependent. As these inertial effects (inertial transient, inertial

advection and viscous) all require non-zero velocities if they are to be non-zero, spurious currents develop. The

spurious currents increase with time and cause errors in the calculated pressure field. Fig. 5 (a) shows the375

numerically predicted pressure difference between the relaxed spherical droplet and the ambient liquid along

the droplet diameter axis for each of the 6 cases, in comparison with the theoretical value predicted from the

Laplace equation [49].

The results show that RCLSFoam (Fig. 5 (a), black lines), for low ε values (Case 1 and 2), achieves a pressure

jump almost equivalent to the theoretical one. However, it fails to predict the correct pressure jump for Case380

3 due to the high diffusion of the interface, which leads to an imbalance of the surface tension forces with the

pressure forces. The interPore (Fig. 5 (a), blue lines) solver provides a consistent prediction of the theoretical

pressure difference (Fig. 5 (a), red line) regardless of the interface thickness (Fig. 5 (b) ).

These results can also be presented in terms of the error in the predicted capillary pressure, Error(Pc), defined

as follows:385

Error(Pc) =
Pc − Pc,theoretical

Pc,theoretical
(24)

The results from Eq. 24 are tabulated in Table 2 and used to demonstrate that the calculated capillary

pressures converge to the theoretical solution when varying the interface sharpness. When the interface curvature

is obtained from a smoothed indicator function as seen in Case 1 and 2 with both RCLSFoam and interPore, it is

clear that both solvers can achieve a very low error, less than 3%, due to the precise calculation of curvature. By

contrast, the standard interFoam solver cannot achieve the desired theoretical pressure jump, and the average390

error goes up to 12% (see Table 2).

Table 2: Errors in predicted capillary pressure

RCLS interPore interFoam

Case 1 Error(Pc) = 0.01499 Error(Pc) = 0.03868 Error(Pc) = 0.109605263

Case 2 Error(Pc) = 0.00921 Error(Pc) = 0.03556 Error(Pc) = 0.131954887

Case 3 Error(Pc) = 0.05359 Error(Pc) = 0.04311

It is clear that both solvers accurately reproduce the dynamics of a square droplet relaxing in a static field

given the correct selection of the controlling parameters. The interPore solver that is designed for very low

Ca numbers offers good predictions with very low spurious currents and small interface thickness, with the

additional advantage of showing reduced sensitivity to the control parameters. On the other hand, RCLSFoam395
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Figure 3: Results predicted by RCLSFoam for the static droplet at t = 0.013s. Top to bottom: Case 1, Case 2, Case 3. From left

to right: indicator function, pressure field and velocity vector field.

offers better agreement with theoretical values for the capillary pressure, although it displays greater sensitivity

to the control parameters in terms of interface thickness and the magnitude of spurious currents.

In a previous study mesh independence of the solution was checked more specifically for the RCLS method

[42]. Here we conducted a mesh convergence study on the droplet relaxation case with both solvers down to a

mesh element size of 6µm. Both methods are found to produce mesh independent solutions at the mesh element400

sizes used for the results shown below.

3.3. Rayleigh–Taylor instability with surface tension

The second test configuration consists of a Rayleigh–Taylor problem with homogeneous layers of a high-

density fluid penetrating into a low-density fluid under the influence of gravity alone. A hydrodynamically-

unstable interface is formed between the stratified laminar immiscible fluid layers, initially at rest. The Rayleigh–405

Taylor instability (RTI) is of great fundamental interest in physics and fluid mechanics. For example, in

geological flows, it can represent situations where water is suspended above oil. In spray atomisation, it partly

drives the breakup of liquids due to aerodynamic forces on the phase interface. For the present unstable

configuration, infinitesimally small perturbations of the interface will grow with time due to the continuous
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Figure 4: Results predicted by interPore for the static droplet at t = 0.013s. Top to bottom: Case 1, Case 2, Case 3. From left to

right: indicator function, pressure field and velocity vector field.

generation of vorticity that leads to a pattern of bubbles of light fluid penetrating the heavy fluid (upwards),410

and spikes of heavy fluid penetrating the light fluid (downwards). This process may lead to the formation of a

turbulent mixing layer. The RTI was initially investigated by Lord Rayleigh in 1883 [50] and later theoretically

studied by Taylor [51]. An overview of the subject has been given by Sharp [7]. In the following sections the

capability of the VoF method as implemented in the interPore solver is evaluated along with the conservative

LS method as implemented in the RCLS solver, for the modelling of a single “finger”, or “spike”, of the RTI with415

surface tension. The numerical demonstration of the RTI is a common test case when examining the numerical

convergence and the capability of a solver to capture the interface physics in the presence of high density ratio

and surface tension [52, 9, 53]. We refer the reader to a previous study by Pringuey and Cant [42] that assessed

the performance of RCLSFoam against interFoam. To the best of the authors knowledge, there has not been a

systematic comparative study of state-of-the-art LS and VoF numerical methods on the RT problem.420

3.3.1. Numerical set-up

The two isothermal fluids are at ambient temperature and pressure. The viscosities are assumed equal, so

that there is no jump in viscosity at the interface and thus no jump in the velocity gradient, as viscosity controls
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(a) Laplace pressure jump across the droplet interface

(b) Indicator function profile across the droplet interface

Figure 5: Comparison between the numerical predictions of both solvers showing a) the Laplace pressure jump across the droplet

interface, and b) the liquid volume fraction profile.
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Table 3: Table of numerical parameters for the Raleigh–Taylor simulation for two different mesh sizes.

RCLS interPore 60× 224 128× 512

WENO3 NS = 5 ε = 0.5∆x Ccomp = 0 Csh = 0.1 S = 10 Uf = 0.1 Case 1 Case 4

WENO3 NS = 5 ε = 1.0∆x Ccomp = 0 Csh = 0.5 S = 10 Uf = 0.1 Case 2 Case 5

WENO3 NS = 5 ε = 2.0∆x Ccomp = 1 Csh = 0.1 S = 10 Uf = 0.5 Case 3 Case 6

the shear stress. The two adjacent fluids are initially quiescent but the sharp horizontal density mismatch induces

a density gradient (upwards) opposite to the pressure field and gravitational field (downwards). The interface425

is hydro-dynamically accelerated by the pressure gradient [7]. The gravitational forces act to destabilise the

interface, while the surface tension forces act to stabilise it.

The present set of simulations for comparison and validation are based on the settings for RTI given in

Popinet and Zaleski [9] and Puckett et al. [53] on a comparatively coarse mesh of 64× 224 hexahedral elements

and a finer one of 128 × 512 elements. The two-dimensional domain is [−0.5,−2] × [0.5, 2] m (Fig. 6). The430

physical parameters for the fluids are ρl = 0.1694kgm−3, µl = 3.13 × 10−3kgm−1s−1 and ρh = 1.255kgm−3,

µh = 3.13 × 10−3kgm−1s−1 (density ratio of 7.4), with a constant surface tension of σ = 0.01Nm−1. The

acceleration due to gravity is set as g = (0,−9.8ms−2, 0).

An initial surface perturbation is applied with a wave number of 2π and wavelength of 1 m. The initial

disturbance in the free surface is given by the expression:435

y = −0.05 cos(2πx). (25)

For the phase fraction and level-set, a homogeneous Neumann boundary condition was set at the bottom

boundary of the domain and symmetry conditions were set at both sides. The same boundary conditions were

set for the relative pressure pd = p + ρgh, as defined in the framework of OpenFoam. In multiphase flow

dynamics, the time-step ∆t must be small enough to resolve the propagation of the capillary waves that develop

at the interface. The time-step was set initially as ∆t = 0.001s, but it was allowed to adapt automatically at440

run time, which assured a Courant number below 0.5 throughout the run. Finally, the boundary conditions for

the velocity were set as no-slip walls for the top and bottom boundaries and symmetry planes at both sides.

The chosen set of simulation parameters is summarised in Table 3. Calculations with RCLSFoam were made

on an Intel Xeon machine with 32GB main memory possessing one 2.4Ghz CPU with 8 cores. The simulations

with interPore were carried out on an Intel Xeon machine with 64GB main memory possessing one 2.4Ghz CPU445

with 12 cores. The total execution time on a 128× 512 grid for RCLSFoam was 3.6 CPU hours, while that for

the interPore interPore was 17 CPU hours to generate 1.5 seconds of outputted results. It is interesting to note

that for this test case the disparity in computational cost between the two codes is reversed. Here RCLSFoam

is more efficient at dealing with the rapidly-evolving interface, as well as the fast-changing velocity and field.

3.4. Qualitative Description450

The relative performance of RCLSFoam with respect to interPore is presented in Fig. 7. This figure shows

the interfacial history obtained by the two solvers on the same rectangular mesh of 60 × 224 cells, for eight

different times in the interval [0; 1.3] seconds. It can be seen that as time passes, the initial perturbation of the

interface grows. The light fluid moves into the heavy fluid in the form of rising round bubbles on either side
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Figure 6: Computation domain for the simulation of the RTI.

of the domain, while the heavy fluid sinks into the light fluid under gravity, between the bubbles, building up455

a central falling spike(Fig. 7 (a) (i) t = 0.55s). A mushroom-shaped structure develops at t = 0.7s. Then, the

mushroom is stretched and filaments start to detach forming isolated liquid structures (at t = 0.95s). Towards

t = 1.3s, a settling process begins in which the denser fluid falls back down as droplets.

The complex phenomenology associated with the evolution of a RT unstable interface is reproduced reasonably

well here by both solvers. The evolution of the instability compares well with the calculations presented in the460

literature [9, 53]. Indeed, the solutions predicted by both numerical approaches remain close to the reference

solutions obtained with an accurate front tracking method [9]. The two numerical methods appear to provide

the same interface topology for most of the simulation. Nevertheless, differences are evident in terms of interface

thickness, penetration rate and secondary structure formation (filaments,droplets etc) as will be discussed in

the following sections.465

3.4.1. Interface capture and sharpness

The sharpness of the phase boundary between the two fluids is an indication of the numerical diffusion

of the scheme used. Also, the amount of fine-scale structure is sensitive to how well the algorithm preserves

the sharpness of the interface. The works of Popinet and Zaleski [9] and Puckett et al. [53] suggested that

the correct capture of the thin ligaments has a strong influence on the overall simulation results in terms of470

penetration of the dense phase and opening of the mushroom cap. As can be seen from Fig. 7 both simulation

methods are able to capture the thin liquid structures, and maintain a sharply defined interface. In the RCLS

method, as the interface thickness parameter ε is increased from 0.5∆x to 2∆x, the interface becomes smeared

over an increasing number of cells; there is a loss of sharp numerical resolution of very small secondary liquid

structures (Fig. 7 (a) ). The re-initialisation procedure integrated into RCLSFoam helps in capturing correctly475

the formation of droplets. The more diffused the interface, i.e. the bigger the interface thickness parameter ε,

the less visible are the droplets (compare Case 1 to Case 3 in Fig. 7 (a) ). In addition, the rate of high-density
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fluid penetration also decreases: for Case 3, at t = 1.3s the mushroom tip does not yet touch the bottom wall

(Fig. 7 (a) (iii) ).

Attention is then turned to the solution obtained with the interPore solver (Fig. 7 (b) ). A higher interface480

sharpening coefficient Csh with no numerical compression (Fig. 7 (b) (ii) ) is able to capture a sharper interfacial

jump than with a lower Csh. When numerical compression is added (Fig. 7 (b) (iii) ) the interface is even

sharper. Overall the comparison of the interface predicted by the two solvers for the first four times (t =

0.55, 0.70, 0.85, 0.95 seconds) demonstrates the similar performance of both simulation methods. The interPore

solver appears less sensitive to the tuning parameters than RCLSFoam, which is consistent with observations in485

the case of the static droplet. A disadvantage is while the VoF method is capable of reproducing the ligaments

formed by the elongation of the mushroom sides when low compression is used these ligaments disappear as

Csh increases and compression is added. The RCLS method on the other hand seems to be better able to

treat the small-scale inclusions of one phase into the other regardless of the ε parameter. Indeed, for times

beyond t = 0.95s, i.e. at t = 1.10s, t = 1.20s, and t = 1.30s, small differences in the solution can be perceived490

between the two methods (Fig. 7): for interPore the interface sharpening algorithm with no compression is

able to capture droplets up to a time of 0.95s. After that, filaments continue to detach from the mushroom but

fragment into liquid structures that are not trackable, and these get diffused numerically (Case 1 and Case 2 in

Fig. 7 (b) ).

3.4.2. Stem symmetry and numerical convection495

With the RCLSFoam solver, the symmetry of the flow structure is well captured (Fig. 7 (a) ). The interface

obtained for the central stem is slightly asymmetrical in the case of interPore with added numerical compression

(Case 3 in Fig. 7 (b) ). This may be due to the compression scheme in OpenFoam [11]. As a result, interPore

does not fully recover the physical solution published in the literature [9, 53] after t = 0.95s. On the other hand,

the non-physical wiggles usually seen with VoF solvers [54] in the neck of the stem close to the mushroom-shaped500

structure have disappeared for all interPore runs, with compression factors C = 0 and with C = 1 (Fig. 7 (b) ).

3.4.3. Rate of penetration of the heavy phase into the light phase

For both solvers, the dense phase penetrates into the light phase at a rate that is in accordance with the

simulations of Popinet and Zaleski [9]. As ε is increased from 0.5∆x to 2∆x in the RCLS formulation, the start

of the instability is marginally delayed at t = 0.7s, hence the rate of penetration of the spike is reduced overall.505

On the other hand, the penetration rate does not seem to be altered when varying the numerical parameters of

interPore (Fig. 7 (b)).

3.4.4. Mushroom-shaped structure development

Fig. 8 (ii) shows the distribution of the velocity field at a number of discrete time intervals, along with the

corresponding interface contour (Fig. 8 (i) ). The spike itself has a positive velocity downwards, consistent with510

the direction of acceleration it experiences from the pressure gradient. There is a stagnation point on the lower

tip of the spike. Upstream of the mushroom cap, there is a low velocity region. This location is consistent with

a high-pressure region. The highest velocities are located on either side of the mushroom cap, extending along

and at the tip of the ejected fluid ligaments. The light fluid is thus accelerated faster upwards than the spike

and mushroom cap are accelerated downwards. There is evidence of interfacial shearing instabilities (Fig. 8 (iii)515

) associated with the formation of a mushroom-shaped structure. It is believed [7] that the Kelvin–Helmholtz
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instability is the reason for the development of the mushroom cap at the tip of the spike. It is characterised

by the development of structures on the spike, arising mainly due to the velocity shear between the two fluid

layers. Once the mushroom cap is formed, the effect of drag forces on the spike is increased.

As ε is increased from 0.5∆x to 2∆x in the RCLS numerical formulation, the mushroom cap becomes less520

open (Fig. 7 (a) ). With the modified VoF method interPore, a change in the sharpening coefficient does not

seem to alter the openness of the mushroom cap, but adding numerical compression does make the cap more

open (Fig. 7 (b) (iii) ). At t = 0.70s, the roll-up of the edges of the mushroom cap under the shearing instability

is predicted similarly by both solvers (Fig. 8 (iii) ). At t = 0.85s however, droplets have already detached from

the two ligaments in the interPore solution (Fig. 8 (b) (i) ), causing a noticeable difference in the development525

of the shearing instability compared to the RCLS formulation. In the latter, the mushroom cap is more open

and at the point of droplet separation from the two ligaments a strong upwards velocity is visible (Fig. 8 (a)

(iii) ).

3.4.5. Ligament breakup into droplets

For all the runs with the RCLS method, at t = 0.95s, the filaments elongated on either side of the mushroom530

have not yet fragmented into droplets, in accordance with Popinet and Zaleski [9]. This is true also for Case

1 and Case 3 simulated with the interPore solver (Fig. 7 (b) (i and iii) ). However, in interPore Case 2, at

t = 0.95s, the two droplets have already detached from the end of the filaments (see Fig. Fig. 8 (b) (i)). This

may be due to the extra sharpening employed in this solver in Case 2.

3.4.6. Mesh refinement to 128× 512 cells535

Fig. 9 presents the volume fractions and interface predicted by RCLSFoam and interPore on a refined mesh

of 128 × 512 cells. The RCLS method with ε = 0.5∆x is not particularly affected by mesh refinement: the

interface is sharper but just as many liquid structures are resolved as with the previous coarser mesh (Fig. 9

(a)). Hence it is possible to run the RCLS numerical scheme on coarser meshes without loss of physical accuracy,

further highlighting the relevance of this capability. On the other hand, mesh refinement does slightly improve540

the performance of interPore, with extra droplet capture at later times (see Case 5 in Fig. 9(b) versus Case 2

in Fig. 7(b)(ii) ). This behaviour is expected. While LS methods provide interface sharpness inherently, VoF

methods require addtional treatment to limit diffusion, and mesh refinement acts as an additional sharpening

treatment. When compression is added (Case 6 in Fig. 9(b)), ligaments and ligament breakup are well resolved,

however, numerical wiggles start forming along the stem and mushroom cap. There appears to be an optimal545

numerical set-up for the interPore solver, in which the traditional OpenFoam numerical compression scheme

is not used, but in which the interface sharpening algorithm provides good physical accuracy and resolution of

the interface (Case 2 and Case 5), similarly to the conservative level-set method with ε = 0.5∆x (Case 1 and

Case 4).

3.5. Quantitative Results and Discussion550

The growth of a RTI can be described using a number of stages [7, 55] as follows. When the perturbation

amplitudes η are small compared to their wavelength λ, the early stages in the growth of the instability can

be analysed using the linearised equations of motion. The result is that small initial amplitude perturbations

of wavelength λ increase in magnitude, exponentially with time [7]. Substantial deviations from the linear
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(a) RCLSFoam (b) interPore

Figure 7: Volume fractions predicted by RCLSFoam and interPore for the Rayleigh–Taylor instability with 60×224 mesh elements.
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(a) RCLSFoam, Case 1

(b) interPore, Case 2

Figure 8: Interface (0.5 iso-contour of both indicator functions) predicted by both solvers for the Rayleigh–Taylor instability with

60 × 224 mesh elements, velocity field and velocity vectors overlaying the interface contour.
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(a) RCLSFoam, Case 4

(b) interPore, Case 5 (left) and Case 6 (right)

Figure 9: Volume fractions predicted by both solvers for the Rayleigh–Taylor instability with 128 × 512 mesh elements.
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theory are observed when non-linear effects begin to appear. Their development is strongly influenced by three-555

dimensional effects such as the formation of well-known structures: spikes, bubbles and mushrooms. At later

times, spikes and bubbles develop their own mushroom-shaped structures at their tips, which eventually interact

and merge. At this stage, non-linear effects can no longer be ignored. The system enters a regime of turbulent or

chaotic mixing of the two fluids. In order to describe the aforementioned stages a more quantitative description

of the RTI is presented through the amplitude growth rate and the volume fraction profiles.560

3.5.1. Amplitude growth rate

The initial growth rate of small amplitude perturbations can be affected by various physical properties

including viscosity and surface tension. In linear theory, viscosity tends to reduce the growth rate appreciably,

whereas surface tension stabilises wavelengths shorter than a critical wavelength.

The first stability analyses of Rayleigh [50] and Taylor [51] on RTI have been extended in various directions565

to include additional physical effects such as, for instance, surface tension and viscosity [7]. The work of

Chandrasekhar [56, Chapter 10] sought to extend the inviscid linear theory and has led to a rather complete

understanding of RTI in incompressible viscous fluids, including the effects of surface tension. At time t, a fluid

element of cross section dydx displaced at a distance η(t) below y = 0, feels a downwards force due to gravity

and a downward force from surface tension (Eq. 3). The fluid element net downward acceleration in the −y570

direction is a combination of the downward gravity force and the downward surface tension force:

g
ρh − ρl
ρh + ρl

− σ

ρh + ρl
k2. (26)

The simple harmonic solution is given by:

η̈ − α2(k)η = 0 (27)

where

α2(k) = gk
ρh − ρl
ρh + ρl

− σ

ρh + ρl
k3. (28)

Eq. 28 is the well-known dispersion equation for interfacial waves of wavenumber k when viscosity is neglected.

As expected the interface is now unstable, and the solution to Eq. 28 for fluids initially at rest is:575

η(t) = η(0)cosh(αt) (29)

where η(0) is the perturbation amplitude at t = 0. The interfacial wave amplitude grows like eαt. The

description of the instability is, of course, valid only so long as the amplitude remains small. It is evident from

Eq. 28 that surface tension can prevent the instability for sufficiently small wavelengths.

Chandrasekhar also applied normal mode analysis to the linearised Navier–Stokes equations to derive an

implicit fourth-order ODE for the amplitude of the y-velocity component as a viscous eigenvalue problem that580

needs to be solved numerically.

Fig. 10 shows the results of the linear stability analysis discussed above as well as some of the simulation

results. The numerical solutions reproduce accurately the theoretical prediction of Chandrasekhar [56] at early

times, when the system is still behaving linearly. RCLSFoam (Case 1) and interPore (Case 2) perform equally

well.585
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Figure 10: Amplitude growth for the Rayleigh–Taylor instability in the 60×224 computational domain compared to the theoretically

predicted growth rates of RCLSFoam (Case1) and interPore (Case 2).

3.5.2. Volume fraction profiles

Fig. 11 shows volume fraction profiles along the y-direction centreline of the computational domain at two

different times: t = 0s and t = 0.2s and for two different mesh resolutions. As ε is increased from 0.5∆x to 2∆x

in the RCLS method, at t = 0s, the ψ field is initially smeared over a chosen number of cells. The number of

cells within the interface thickness remains constant during the simulations. A change in mesh resolution does590

not change the diffusion of the interfacial thickness. In the modified VoF method with interface sharpening

however, the initialised interfacial jump happens over a single computational cell. The later development of the

interface thickness over the course of a simulation is affected by the order of accuracy of the numerical scheme

and the mesh resolution employed.

At t = 0.2s, and for the 60×224 mesh size, both solvers marginally under-predict the theoretical amplitude,595

at a liquid phase fraction of 0.5. As Chandrasekhar’s linear theory does not take into account viscosity, the

authors postulate that this is the reason for the under-prediction of the perturbation amplitude compared to

the estimated theoretical value (grey vertical line in Figure 11 bottom-left). The interPore solver shows a lower

sensitivity to the numerical parameters (i.e. numerically-added sharpening and/or filtering). The interPore

solver with high sharpening or compression (Case 2 and Case 3) predicts the same perturbation amplitude as600

the base case (Case 1) but the profiles are steeper. Over the range of interface parameters ε tested for the RCLS

method, as ε is increased the amplitude at the 0.5 iso-contour diminishes in magnitude, i.e. departs from the

theoretical value, in accordance with a less sharply defined interface location. Indeed, the interface needs to

have a minimal thickness, so that the gradient of φ and the interface normal are accurately calculated.

At t = 0.2s, and for the 128×512 mesh size, the 0.5 volume fraction iso-contour of the perturbation amplitude605

is slightly under-predicted for both solvers, probably for the same reason described in the paragraph above. For

the VoF solver with interface sharpening interPore, a refined mesh does not change the calculated amplitude of

the perturbation. RCLSFoam predicts an amplitude very slightly closer to the theoretical value.
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Figure 11: Indicator functions smeared over cell count and y-location at t = 0 (top row) and t = 0.2s (bottom row) for two mesh

sizes: 60 × 224 and 128 × 512 mesh elements.
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Figure 12: Theoretically predicted self-similar solution for the Rayleigh–Taylor instability against our numerically predicted solu-

tions.

3.6. Self-similarity solution

The RTI marks only the onset of a complex interpenetration process, leading ultimately to the growth of610

mixing regions between neighbouring fluids [57]. At later times, once the instability has become fully nonlinear,

it is difficult to make quantitative comparisons. However, the flow may enter a self-similar growth phase [58].

In the present case, self-similarity can be described by the following equation:

dh

dt
= 2
√
αAgh (30)

where h is the height of the mixing region and α is a dimensionless growth parameter [59]. The parameter α is

the subject of extensive research [60, 59, 61]. The physically realisable solution to Eq. 30 is615

h(t) = h(0) +
√
αAgh(0)t+ αAgt2 (31)

taking t = 0 as the moment in time when the flow first achieves self-similarity. Then h(0) corresponds to the

thickness of the mixing region at that instant. The last term dominates the right-hand side of Eq. 31 and hence

the mixing thickness becomes:

h(t) ∼ αAgt2. (32)

Fig. 12 shows the numerically calculated mixing height versus time, as well as the predicted mixing height

(Eq. 32) for two different numerical values of the parameter α. We chose here to compare what resulted620

through our previous results in the optimised runs for each solver in terms of numerical parameters (Table 3).

For t = 0.4−0.8s, both solvers present a similar behaviour, slightly under-predicting the two theoretical curves,

while for t ≥ 0.9s, our numerical predictions fall in-between the two theoretical curves. It is argued that the

system becomes self-similar from the very early stages of the instability. A numerical value of α between 0.19
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and 0.17 appears to match very well with the numerical results. As viscosity is not taken into account by the625

model [59], an additional case was run with RCLSFoam in which the dynamic viscosity was reduced artificially

by two orders of magnitude. This reduction in viscosity does not result in a change of the amplitude growth of

the instability (Fig. 12).

Table 4: Advantages and disadvantages of interPore and RCLSFoam on the current test cases

Approach Stationary droplet (low Ca) RT instability (high Ca)

interPore

– low spurious currents
– rapid convergence
– low sensitivity to solver parameters

– acceptable solutions obtained for a
– suitable choice of solver parameters

RCLSFoam

– higher spurious currents
– reasonable convergence and acceptable solution
– for suitable choice of solver parameters

– small-scale features well captured
– high resistance to numerical wiggles
– good symmetry of solution
– good representation of droplet pinch-off

4. Conclusions

Two different numerical methods for the solution of two-phase flow problems have been compared in detail on630

two different test cases, chosen specifically to highlight the strengths and weaknesses of each method (summarised

in Table 4). The work was intended to overcome a natural tendency to evaluate numerical methods using only

test cases close to the specific application for which they were designed in the first place. In the present context,

methods based on achieving optimum interface sharpness at higher Ca numbers were believed to be more prone

to spurious currents at low Ca numbers. By the same token, methods that are more resistant to interface635

artefacts may well be less accurate in terms of sharpness.

In this study, the conservative LS method implemented in the solver RCLSFoam and the VoF method

implemented in the solver interPore have both demonstrated their ability to capture the phase interface and

to achieve a good representation of surface tension effects, for suitable settings of the operating parameters

within each method. In a static droplet test case, both methods are able to minimise the development of640

spurious currents, with the interPore solver showing significantly smaller errors and with the RCLSFoam solver

showing a greater sensitivity to operating parameters. In a Rayleigh–Taylor test case, both methods are able

to capture the development of the instability, with the RCLSFoam solver showing a slightly better ability to

capture droplet pinch-off. Both methods compare favourably with the standard interFoam solver on both test

cases. The results indicate that a well-tuned implementation of either the LS or the VoF method is able to work645

well across a broad range of relevant conditions, and that the underlying techniques for interface capture have

many features in common. Future work will take advantage of those common features in order to move towards

a more unified approach for the high-fidelity simulation of two-phase flows. Further testing will involve other

well-known test cases such as the spiral in a deformation field or the Zalesak slotted disk, as tested already

using the RCLS method in Pringuey and Cant [42] or droplet spreading on surfaces, as tested in Aboukhedr650

et al. [29] and Aboukhedr et al. [62]. Over time, the aim is to develop the capability to simulate two-phase flow

problems regardless of the test case conditions and without the need to adjust solver parameters.
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