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Tropical forests constitute some of the most diverse, complex, but also threatened, 

terrestrial ecosystems on the planet. They provide crucial ecosystem services (e.g. foods, 

construction materials, and medicinal resources) for vast portions of the world’s human 

population. These environments provided the cradle for the emergence of early 

hominins in Africa as well as a habitat for the continued survival of our closest living 

relatives, the great apes. However, while the important early role of tropical forests in 

human evolution has been recognized, forest adaptations tend to be eclipsed in later 

evolutionary narratives, including the emergence of the genus Homo and the expansion 

of Homo species across the globe. While researchers have argued for Early-Middle 

Pleistocene evidence for potential tropical forest occupation by our genus in Southeast 

Asia, it is only with the emergence of Homo sapiens that a Homo species can definitively 

be seen engaging, and even specializing, in the use of tropical forests at an ever-

intensifying rate. Indeed, it is only our species, via the medium of activities such as 

farming, trade networks, complex states, and industrial exploitation, that has affected 

tropical forests on scales that threaten their very existence. 

 

Tropical forests are some of the oldest land-based ecosystems on the planet and contain over 

half of the world’s existing plant and animal species (Wilson 1988; Whitmore 1998). This 

inherent diversity, the regular supply of fresh water from well-fed streams or rivers, and a 

lack of high amplitude swings in resource availability likely contributed to the important role 

these environments played in the origins of all the great apes, including hominins, during the 

Miocene (Tuttle, 2014). Today these habitats also provide the settings for significant 

biological diversity among our closest living relatives, the African great apes (Tuttle, 2014). 

Despite their ecological richness, the role of these habitats in Plio-Pleistocene hominin 

diversity, the appearance of our genus (Homo), and its movement into Eurasia, remains less 
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clear. Mosaics of open, mixed woodland and forest habitats in eastern and southern Africa 

have received the most attention in these processes on the basis of palaeoecological and 

palaeodietary reconstruction, including stable isotope analysis. (Sponheimer et al., 2013). 

From this point, until the emergence of our species Homo sapiens (Roberts and Petraglia, 

2015), evidence for tropical forest use appears remarkably scarce.  

 

We review the dynamic relationship between our genus and tropical forests, one of the most 

over-utilized environments on the globe today. We begin by briefly contrasting evidence for 

forest occupation amongst some of the earliest members of the hominin clade with evidence 

for an increasing emphasis on C4 resources and open environments among Pliocene and 

Pleistocene hominin species, including the earliest members of the genus Homo, in Africa. 

We then evaluate the extent to which this apparent ‘gap’ in tropical forest use is real through 

analysis of evidence for the palaeoecological context for some of the earliest fossils of our 

genus in Southeast Asia. This region is crucial in the assessment of early tropical forest 

exploitation by our genus not only because it has it yielded some of the earliest Homo fossils 

beyond Africa, but also because it is covered by vast swathes of tropical forest today. We 

compare this evidence to that for the global relationship between the only remaining species 

of Homo, Homo sapiens, and tropical forests, and its culmination in increasingly large-scale 

forest ecosystem impacts.  

 

Tropical forests and opportunities for hominin existence 
 
We define tropical forests as those forest formations that lie between the Tropic of Cancer 

(23°26′14.0″N) and the Tropic of Capricorn (23°26′14.0″S) (Figure 1). The term ‘tropical 

forest’ is most often associated with tropical rainforests, a designation first employed by the 

botanist A.F.W. Schimper in 1898 (tropische Regenwald) (Allaby, 2010). While ecologists 
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have defined tropical rainforests on the basis of their unique plant species composition 

(White, 1983), high precipitation (Grainger, 1996), and temperature (e.g. mean annual 

temperature >24°C) (Holdridge, 1947), the key climatic parameter is low seasonality of both 

temperature and rainfall (Whitmore, 1998). Rainforests develop when every month is wet 

(with 100 mm rainfall or more), or where there are only short, dry spells lasting just a few 

days or weeks. This consistency in warm temperature and high humidity has been argued to 

be crucial for the diversity of rainforest biota (Whitmore, 1998), although high species 

diversity has also been linked to the sheltering of biodiversity in forest refugia during dry, 

glacial periods, that then expands as climate ameliorates (Haffer, 1969; Hamilton, 1972) (Box 

1).  

 

These climatic parameters, as well as local factors such as geological substrate, altitude, and 

precipitation dynamics, lead to a series of different tropical forest formations, including semi-

evergreen rainforest, montane rainforest, heath forest, peat swamp forest, freshwater swamp 

forest and dry deciduous forests, whose frequency differs across the Americas, Africa, and 

Asia (Whitmore, 1998) (Figure 1). Where seasonality and dry periods of more than two 

months exist in the tropics, monsoonal forests, deciduous forests, open forest structures, and 

mosaics prevail (Grainger, 1996). Each of these forest types presents different challenges and 

opportunities for hominin communities (Box 1). For example, while the masting dipterocarp 

trees of evergreen tropical forests in Southeast Asia provide an abundance of fruit for local 

primate, and potentially hominin, populations  (Knott, 1998), high frequencies of acidic peat 

swamp and heath forest soils often prohibit the growth of crops (Whitmore, 1998). Similarly, 

the formation of deciduous, open forest structures and grassland mosaics along the borders of 

African rainforests would have presented important, simultaneous opportunities of forest 

resources and fauna and access to large game populations (Blome et al., 2012) (Box 1). 
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There is also considerable diversity within a given tropical forest formation, structured by 

verticality. Forests are frequently divided into different strata, with vegetation and resources 

conceptualized as a series of vertically stratified layers, from ground level to the canopy that 

each present different resources for hominin communities (Figure 2) (Denslow, 1987). In 

dense forests, low light on the forest floor can lead to a paucity of vegetation and fauna. By 

contrast, tree fruits and lianas in canopy and emergent canopy layers often provide food for 

large numbers of primates, birds, and insects that can all be used as sources of food 

(Whitmore, 1998) (Figure 2). Canopy gaps can also occur within forests, as a result of the 

presence of tree death or the intersection of streams and rivers. Gaps at ground level are 

rapidly colonized by seedlings and often facilitate increased species-richness and higher 

densities of vegetation growth (Denslow, 1987). Large numbers of fauna gather in these 

locations to exploit this richness and, in the case of streams and rivers, to drink (Figure 2). 

Given the reliable access to water, ease of navigation, and relative faunal and floral richness 

it is possible that tropical forest canopy gaps around rivers provided crucial corridors for the 

expansion of hominins and, later, farming communities in the past (Grollemund et al., 2014).  

 

 

Box 1: Forests in flux 

The equatorial portions of Africa and beyond have generally been considered as relatively 

stable, and hence little-considered in climate-linked models of hominin and human evolution 

(Basell, 2008). The assumed stability of these environments is not supported, however, by 

hard evidence for considerable changes in the extent, structure, and composition of tropical 

forests on a number of different temporal and spatial scales, from the Miocene to the 

Holocene. Under low CO2 conditions C3 plants, which dominate tropical and sub-tropical 
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forest ecologies, lose their adaptive advantage to C4 grasses, resulting in forest retreat (Jolly 

and Haxeltine, 1997; Morley, 2001). Similarly, decreased temperature and precipitation 

causes forest fragmentation and re-structuring particularly at high altitudes or sub-tropical 

fringes (Jolly and Haxeltine, 1997; Mayle et al., 2004). Changing seasonality in rainfall and 

temperature, although difficult to measure, will also have had considerable impacts on 

regional tropical forest extent and composition (Whitmore, 1998).  

 

Past changes in rainfall, temperature, and climatic seasonality, have strongly regional impacts 

on tropical forests (Malhi and Wright, 2011). The tropical rainforests of Africa have been 

argued to be particularly vulnerable to climate-linked changes in extent and structure 

(Morley, 2001; Malhi and Wright, 2011). Here, faunal abundance records and stable isotope 

analysis of fossil fauna (Reed, 1997; Uno et al., 2011) have been used to postulate an 

expansion of C4 grasses and savanna vegetation, at the expense of these formerly extensive 

forests (Uno et al., 2011), during the Pliocene and Pleistocene epochs. These changes have 

been considered advantageous to broad-spectrum hominin foragers (Box 2), adaptive 

radiation concomitant with changes in community structure, and the eventual emergence of 

the genus Homo (Potts, 1998; de Menocal, 2004). Similarly, the expansion of Homo sapiens 

in tropical Africa has been linked to forest fragmentation during colder and drier glacial 

periods when mosaic forest-grassland environments became available (Basell, 2008; Blome 

et al., 2012). 

 

In contrast to Africa, the extent and structure of the tropical forests of Southeast Asia and the 

Americas are more stable (Mayle and Bush, 2011), perhaps necessitating rapid adaptations to 

tropical forests by hominin and human populations entering these regions (Semah et al., 

2009; Bush et al., 2011). For example, in Southeast Asia the migration of Homo erectus in 
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the region c. 1.5 Ma has been argued to represent the earliest encounters of our genus with 

tropical forest exploitation (Semah et al., 2009; Semah and Semah, 2012; Semah et al., 2016). 

Similarly, some of the earliest Homo sapiens fossils in Asia are associated with the intensive 

use of a tropical forest environment in Borneo, Southeast Asia (Barker et al., 2007). That 

said, others have highlighted the distinctive, important impacts of changes in sea-level and 

associated land-mass fragmentation in promoting forest-grassland mosaics that facilitated the 

expansion of Homo erectus (Bettis et al., 2009; Ciochon, 2009; Marwick, 2009) and Homo 

sapiens (Bird et al., 2005) throughout this region. 

 

Climate fluctuations across the LGM, Terminal Pleistocene-Holocene boundary, and the 

Holocene have also been argued to have regionally-varied impacts on the ever-intensifying 

relationship between humans and tropical forests at this time. Tropical experimentations with 

agriculture in Melanesia at Kuk Swamp appear to be associated with altitudinal gradients 

from lowland to montane tropical forests that would be particularly vulnerable to reductions 

in temperature, lower atmospheric CO2, and declines in precipitation across the Pleistocene-

Holocene transition (Golson, 1989; Denham et al., 2009). The early onset of forest burning in 

this region, and intensifying burning across the Terminal Holocene boundary, may represent 

active human attempts to maintain these ecotonal boundaries and preserve resource diversity 

(Golson, 1989; Denham et al., 2004; Haberle et al., 2012). The origins of agricultural 

experimentation in the Americas also appear to be associated with seasonal types of lowland 

tropical forest and mid-elevation moist forest habitats (Piperno 2011). 

 

 

 
A shady cradle 



Author's Accepted Manuscript:  Roberts, P., Boivin, N., Lee-Thorp. J., Petraglia, M., Stock, J.T. (2016) Tropical forests and human evolution. Evolutionary Anthropology 25(6):306-317. DOI: 10.1002/evan.21508 

 

 9

 
The rich, but variable, opportunities presented by tropical forests have provided an important 

catalyst for the evolution of significant dietary and locomotor diversity in our closest living 

relatives, the great apes. The most arboreal of the great apes, the orangutan (Pongo 

pygmaeus), employs bipedal locomotion most frequently. It has been argued that this 

behavior is an adaptation to the navigation of thin, flexible branches when gathering fruit 

high in the canopy (Thorpe et al., 2007). The focus on these fruits likely represents an 

adaptation to the characteristic masting dipterocarp trees found in the evergreen rainforests of 

Southeast Asia (Knott, 1998). Chimpanzees (Pan troglodytes) demonstrate large dietary 

variability across the tropical forests of Africa. In the evergreen and semi-evergreen 

rainforests of the West African lowlands, chimpanzees congregate in large groups to eat ripe 

fruit when it is available during the wet season, but fragment into smaller groups and 

consume a variety of other lower quality foods during the dry season (Tutin et al., 1991). 

Furthermore, chimpanzees inhabiting the drier, mosaic forests of Fongoli, Senegal have been 

documented using tool-assisted hunting to obtain the meat of small mammals (Pruetz and 

Bertolani, 2007). While foraging, chimpanzees will regularly demonstrate bipedal forms of 

locomotion across the tropical forest floor (Crompton et al., 2010).  

 

It is therefore perhaps not surprising that the origin of the hominin clade, and most likely also 

the Last Common Ancestor of great apes and humans, is to be found within tropical forest 

settings in Africa. The ubiquity of facultative bipedalism, combined with other locomotor 

patterns among extant apes, suggests that the earliest members of the hominin clade evolved 

habitual bipedalism while retaining other forms of locomotion, some of which are relevant in 

forest/closed environments. For example, the femur of Orrorin tugenensis (6.1-5.7 Ma) has a 

long, antero-posteriorly narrow neck and a wide proximal diaphysis, features shared with 

later bipedal australopithecines (Richmond and Jungers, 2008), while muscle insertions on 
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the humerus and the curvature of phalanges have been linked to tree climbing (Senut et al., 

2001). Similarly, the lower limb proportions and the foot and hand morphology of 

Ardipithecus ramidus (c. 4.4 Ma) have been associated with tree climbing, while its pelvic 

morphology has been linked to ground-based bipedal walking (White et al., 2009; Kimbel et 

al., 2014).  

 

The period between c. 4 and 2 Ma provides evidence for an adaptive radiation of habitual and 

obligate bipedal species within the hominin clade. However, arboreal-like faculties persist 

even as the accumulation of evidence for habitual terrestrial locomotion continues, perhaps 

hinting at the ongoing importance of arboreal subsistence within open grassland/tropical 

forest mosaics in Africa during the Pliocene and Pleistocene (Box 1). Highly-derived pelvic 

morphology, a valgus angle of the femur, and derived foot morphology have been interpreted 

as evidence for increasing bipedal specialization in Australopithecus afarensis (c. 3.9-2.9 

Ma) (Latimer and Lovejoy, 1989). However, the limb and scapular morphology and ontogeny 

of Australopithecus afarensis has suggested that their locomotor repertoire included a 

substantial amount of climbing (Green and Alemseged, 2012). A similar mosaic is seen in 

Australopithecus sediba (1.97 Ma) (Kivell et al., 2011). Even in the context of our genus 

biomechanical analyses of the limb bones of Homo habilis also demonstrate high humeral 

relative to femoral strength, which suggests at least partial arboreality among Homo habilis 

relative to Homo erectus, with the more derived pattern not evolving until after 1.6 Mya 

(Ruff, 2009). 

 

Nevertheless, between 4 and 2 Ma researchers have placed most emphasis on the new 

opportunities afforded by expanding open grassland environments and C4 resources in the 

evolution of specialized bipedalism and tool use (Uno et al., 2011) (Box 1). By 2 Ma, with 
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more human-like thumb-to-finger proportions and spinal orientation, Paranthropus boisei, 

Paranthropus robustus, Australopithecus africanus and early putative members of the genus 

Homo appear to have specialized adaptations to upright walking and ground movement 

(Skinner et al., 2015). Phenotypic variability among early Homo species also appears to have 

been driven by thermal stress within the Turkana Basin (Will and Stock, 2015). Likewise, 

stable isotopic dietary information from multiple hominin species points to increasing 

engagement with foods originating in 13C-enriched C4 grasses or sedges after c. 4 Ma (Figure 

3). Focus on C3 resources, likely linked to woodland or forest habitats, in earlier hominin 

species, Ardipithecus ramidus and Australopithecus anamensis, gives way to increasing 

engagement with C4 resources in Australopithecus afarensis, Australopithecus africanus, 

Paranthropus boisei and Homo (Figure 3). This period has therefore been seen as possibly 

representing the onset of a lacuna in evidence for hominin tropical forest use until the 

evolution of our species, Homo sapiens, 200 ka. However, this lacuna may be one of research 

focus and preservation rather than real hominin preference (Box 2). 

 

 

Box 2. Forests of plenty or green deserts? 

In the 1980s and 1990s it was postulated that a scarcity of fat- and protein-rich fauna, and 

carbohydrate-rich plants (Hart and Hart, 1986), meant that dedicated human rainforest 

foraging in these ‘green deserts’ was impossible without recourse to other environments and 

resources, with many tropical forest foragers apparently trading with agricultural 

communities in order to meet their subsistence needs (Bailey et al., 1989). This hypothesis 

was criticized by researchers who showed that tropical game can be fat-rich, that many other 

carbohydrate-rich animal and plant resources exist in tropical forests including honey and 

palm starch, and that underground storage organs are in fact relatively prevalent in some 



Author's Accepted Manuscript:  Roberts, P., Boivin, N., Lee-Thorp. J., Petraglia, M., Stock, J.T. (2016) Tropical forests and human evolution. Evolutionary Anthropology 25(6):306-317. DOI: 10.1002/evan.21508 

 

 12

tropical forests (Bahuchet et al., 1991; Brosius, 1991; Dentan, 1991). In the ethnographic 

literature, specialized tropical forest foraging completely independent of agriculture has been 

definitively demonstrated (Hewlett, 2014). 

 

This literature has, however, taken time to filter into studies of the past.  Tropical forests are 

often perceived as barriers to hominin population movement, with studies citing difficulties 

of navigation, thermoregulation, limited large game opportunities and a lack of easily-

processed foods, as well as the need for savannah-adapted humans to develop the 

technologies and expertise necessary to expand into forest environments (Bird et al., 2005; 

Dennell and Roebroeks, 2005; Cosgrove et al., 2007; Boivin et al., 2013). This has not been 

helped by poor archaeological visibility in tropical forests as a result of poor archaeological 

preservation, including the rapid disintegration of organic remains (Tappen, 1994), and also 

difficulties of archaeological survey in these environments until the recent advances in 

LiDAR scanning (Evans et al., 2016). Assertions of early tropical forest use have often been 

forced to rely on  ‘off-site’ pollen, microcharcoal, and geochemical studies from lake and 

marine settings (Mercader, 2002a,b). 

 

In the last two decades, excavation of some cave and rockshelter sites that have good organic 

preservation has permitted more direct insights into human occupation of tropical forests. 

Archaeobotany, archaeoozoology, and technological and use-wear analysis of stone and bone 

tool technologies have demonstrated Late Pleistocene manipulation of toxic forest plants and 

long term reliance on tropical forest fauna (Barker et al., 2007; Perera et al., 2011; O’Connor 

et al., 2014). Similarly, stable isotope analysis of Late Pleistocene Homo sapiens tooth 

enamel has shown that they specialized in subsisting within forest ecosystems (Roberts et al., 

2015). However, well-preserved cave and rockshelter sequences are absent for Early and 
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Middle Pleistocene sites, leaving this period something of an unknown in the context of 

interactions of members of our genus with tropical forest habitats.  

 

 
The genus Homo and ‘Savannahstan’ 
 
 
Dennell and Roebooks (2005) have argued that the first ‘Out of Africa’ expansion of 

hominins, including Homo erectus and the Dmanisi hominins, c. 1.8 Ma was driven by the 

development of the grasslands of ‘savannahstan’, stretching from East Africa and into Central 

Asia during the Late Pliocene and Early Pleistocene. The emergence of grasslands at this 

time are seen as favoring adaptations to long distance ranging and the pursuit of large 

mammals that are suggested to have characterized the genus Homo from this point onwards 

(Dennell and Roebroeks, 2005). Similar discussions of the colonization of Sahul by Homo 

sapiens have used foraging theory to suggest that humans rank foods by net calorific gain, 

always collect the highest ranked prey on encounter, and will always favor the habitat where 

return rates relative to search, collection and processing costs are highest (Allen and 

O’Connell, 2012). On this basis, tropical forest habitats have been considered marginal due to 

a paucity of high yield, easily processed foods (Cosgrove et al., 2007; Allen and O’Connell, 

2012) (Box 2).  

 

Interestingly, however, some of the earliest Early-Middle Pleistocene Homo fossils outside of 

Africa come from the tropical environments of Southeast Asia. The Sangiran Formation, 

characterized in the Solo Basin of eastern Java, has produced Homo erectus fossils dated to c. 

1.5 Ma (Zaim et al., 2011). The Bapang and Trinil Formations have yielded further fossil 

evidence for Homo erectus in excess of 1 Ma (de Vos et al., 1994; Larick et al., 2001). Some 

have suggested that rainforest was the dominant vegetation type in this region between 2.6 



Author's Accepted Manuscript:  Roberts, P., Boivin, N., Lee-Thorp. J., Petraglia, M., Stock, J.T. (2016) Tropical forests and human evolution. Evolutionary Anthropology 25(6):306-317. DOI: 10.1002/evan.21508 

 

 14

and 1 Ma (Semah et al., 2002; Semah and Semah, 2012; Semah et al., 2016). However, there 

currently remains no direct evidence of tropical forest use by Homo erectus in this region. 

Where stone tools do occur, organic residue information about their use is absent (Box 2). 

Some have argued that a paucity of lithics in Southeast Asia may suggest that Homo erectus 

made use of bamboo or wooden tools, thus implying utilization of tropical forest 

environments (Bar-Yosef et al., 2012). Nevertheless, no such implements have yet been 

found and are unlikely to ever be recovered from Early to Middle Pleistocene sites in this 

region. 

 

Relying on largely indirect palaeoeenvironmental records, other researchers have highlighted 

the prevalence of lake-edge and marsh environments that supported sedges, ferns, water-

tolerant grasses and some sections of forest associated with Homo erectus in Southeast Asia. 

(Tonkunaga et al., 1985; Marwick, 2009). Aquatic and semi-aquatic vertebrates such as 

pygmy hippo (Hexaprotodon), crocodile (Crocodylus), the tortoise (Geochelone), turtles and 

fish (de Vos et al., 1994), and open woodland-grassland fauna including pigs (Sus 

brachygnatus), cervids (Axis lydekkeri), and bovids (Bubalus palaeokerabau) (Rozzi et al., 

2013), have been associated with Homo erectus in this region.  Finds of stone tools on the 

island of Flores dated to c. 0.8 Ma are thought to indicate a later expansion of Homo erectus 

east of Wallace’s line and into more isolated tropical forest settings (Van den Bergh et al., 

1996). Recent fossil discoveries at Mata Menge in Flores represent a hominin population on 

this island that is already representative of the divergence towards the smaller bodied Homo 

floresiensis c. 0.7 Ma, perhaps demonstrating a similar morphological adaptation to dense 

tropical forest environments as extant human pygmy populations (Brumm et al., 2016; van 

den Bergh et al., 2016). However, stable isotope analysis of faunal remains, faunal profiles, 

and pollen and phytolith analysis indicate that these fossils are associated with dry climates 
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and open grassland, perhaps representing a continuation of Homo erectus’ ecological 

preferences in the region (Brumm et al., 2016).  

 

The expansion of hominins into Flores from 0.8 Ma seems best associated with declines in 

sea-level and forest cover rather than the development of specialized tropical forest 

adaptations (Marwick, 2009). During this early phase of hominin expansion, and the ongoing 

presence of Homo erectus on Sulawesi and Java c. 200-100 ka (Van den Bergh et al., 2016), 

Homo species appear to be part of a grassland-woodland mosaic fauna that became extinct 

during the shift towards modern rainforest conditions c. 125 ka (Westaway et al., 2007; 

Marwick, 2009). The Punung fauna that appears from this point, includes Pongo (orangutan), 

Hylobates (gibbon) and Helarctos malayanus (sun bear) that characterize the tropical forest 

fauna of the region into the Holocene. It is possible that Homo floresiensis, now dated to 190 

to 50 ka at the site of Liang Bua (Sutikna et al., 2016), was more specialized in the 

exploitation of these rainforest environments. Indeed, Westaway et al. (2009) argue that the 

occupation intensity of this hominin increases during increasingly wet and humid conditions, 

and the expansion of tropical forest (Westaway et al., 2009). However, given an apparent 

focus on the exploitation of Stegodon species, prevalent across grassland and open-woodland 

environments across Southeast Asia, it is possible that the body size of this hominin is related 

purely to island insularity and a paucity of resource opportunities, rather than an association 

with rainforest per se (Larick and Ciochon, 2015).  

 

Late Pleistocene expansion – a global tropical forest prehistory 
 
 
It is with the emergence of Homo sapiens in Africa c. 200 ka that more evidence, in multiple 

regions, of tropical rainforest use and occupation by a hominin species can be found. 

Mercader (2002), and others (Clark, 1988; Barham 2001), have suggested that the Late 
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Pleistocene heavy duty Middle Stone Age Sangoan and Lupemban toolkits of Central, West, 

and East Africa, were used to extract tropical roots and tubers, perhaps as early as 200-250 

ka. However, it has been difficult to firmly ascertain the ages of Sangoan and Lupemban 

toolkits that frequently come from fluvially disturbed sequences (Taylor, 2011). This is 

particularly problematic in the context of discerning tropical rainforest adaptations given 

dramatic fluctuations in the extent of the African rainforest in the past (Taylor, 2011; Taylor 

et al., 2016) (Box 1). Well-dated, regional and on-site pollen and phytolith evidence from 

Cameroon and Congo Kinshasa does, however, indicate a preponderance of rainforest trees, 

including Canarium sp., in association with Sangoan assemblages back to at least c. 28 ka  

(Mercader and Marti, 1999; Mercader et al., 2003).  

 

Southeast Asia is potentially home to some of the earliest fossils of our species in tropical 

forest contexts, though definitive evidence is largely lacking. Confirmed early Homo sapiens 

have been found at Fuyan Cave, in Daoxian, South China, dated to c. 100 ka and in 

association with mixed tropical rainforest, woodland, and grassland fauna (Liu et al., 2015), 

though their relationship to the dated flowstone remains disputed. A premolar possibly dating 

to earlier than c. 100 ka on the island of Java, associated with the above-mentioned Punung 

tropical rainforest fauna, has been argued to represent early human rainforest presence in 

Indonesia (Storm and De Vos, 2006; Westaway et al., 2007). The recent find of Homo 

sapiens fossils at Tam Pa Ling, Laos, dated to between c. 60 and 46 ka, though lacking 

palaeoenvironmental information, represents another potentially early human fossil presence 

in the tropical ecologies of this region (Demeter et al., 2012), as does the find of a human 

metatarsal within a rainforest river valley environment at Callao Cave in the Philippines 

(Mijares et al., 2010).  
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Direct evidence for the use of rainforest environments increases significantly in Southeast 

Asia, South Asia and Melanesia from around 45 ka. Sedimentological, palynological, 

botanical and faunal analysis, and use-wear studies of stone and bone toolkits at the Niah 

Caves, Borneo, for example, demonstrate that human foraging activities were tailored to a 

tropical forest environment c. 45 ka (Barker et al., 2007). Charred Canarium nutshells and 

starch grains from the Ivane Valley of New Guinea, and increased forest burning, also 

indicate the utilization of montane rainforests in Melanesia c. 50-40 ka (Summerhayes et al., 

2010, 2016). Archaeobotanical and archaeozoological remains from the sites of Batadomba-

lena and Fa Hien-lena in Sri Lanka provide evidence for a long-term reliance on tropical 

forest primates and tree fruits from c. 38-36 ka (Perera et al., 2011; Roberts et al., 2015b), 

while the stable isotope analysis of human tooth enamel in Sri Lanka has demonstrated that 

individuals not only used but also specialized in the exploitation of rainforest resources in 

South Asia from at least 20 ka (Roberts et al., 2015a) (Figure 3). Some of the earliest 

humans in the Americas also appear to have very quickly occupied and exploited the tropical 

forests of Central and South America c. 13 ka (Bush et al., 2011).  

 

The expansion of Homo sapiens populations into a number of the world’s tropical forest 

environments from the Late Pleistocene has also been implicated in significant modifications 

to the flora and fauna of these habitats. Within Southeast Asia and Sahul, tropical forest 

colonization is associated with fire regime change and plant community composition change 

in tropical forest environments (Summerhayes et al., 2010; Hunt et al., 2012). The montane 

tropical forests of the latter are particularly vulnerable to fires and pollen and microcharcoal 

evidence suggest that some of the earliest human inhabitants of the New Guinea Highlands 

deliberately burned tropical rainforests to promote the growth of gap-colonising plants such 

as Dioscorea spp. (yams) (Summerhayes et al., 2010). Less research has focused on Late 
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Pleistocene human impacts on tropical forest fauna, but it appears that humans may have 

contributed to the demise of tropical megafaunal populations in Southeast Asia (Louys et al., 

2007) and Sri Lanka (Roberts et al., 2015b), although more work remains to be done in this 

area on a global and regional scale. 

 

The time-depth of interaction between Homo sapiens and tropical forest ecologies has also 

left its mark on the biology of our species. The most significant example of this is the ‘human 

pygmy phenotype’ (Perry and Dominy, 2009). Human populations in Africa (e.g. the Efe), 

Southeast Asia (e.g. the Agta), South America (e.g. Yanomamo) and Australia (e.g. the 

Barrinneans) appear to have arrived at characteristically small final adult statures through 

convergent evolution due to a selective advantage conferred upon small body size in tropical 

forests (Perry et al., 2014; Perry and Verdu, 2016). Adaptive hypotheses stress the advantages 

of small body size for coping with the energetic demands these environments including: 

reduced caloric intake and energetic expenditure; thermal stress of a combination of heat and 

high humidity; high rates of mortality linked to disease; or locomotion through dense forest 

undergrowth (Perry and Dominy, 2009) (Figure 4). There is also growing genetic and 

epigenetic evidence that adaptations for small body size represent convergent evolution of 

phenotypes as a result of natural selection to tropical rainforest environments (Jarvis et al., 

2012; Fagny et al., 2015).  

 

Archaeological evidence from Callao Cave in the Philippines has been argued to provide 

evidence for the evolution of small-bodied Homo sapiens in a tropical forest environment c. 

66 ka (Détroit et al., 2013). Although this fossil evidence remains contentious, early genetic 

divergence of rainforest hunter-gatherers from their current nearest neighbours, as well as 

later arguments for the role of forest fragmentation and expansion in the genetic isolation of 
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pygmy groups in Africa (Verdu et al., 2009), demonstrate the role tropical forests can play as 

evolutionary ‘islands’ in the development of human phenotypes. While consideration of the 

impact of tropical forest lifeways on human phenotypes has largely been restricted to issues 

related to body size, thermal stress and energy balance, the additional biomechanical 

demands of arboreal resource extraction may drive phenotypic variation through plasticity. 

Modern human foragers in tropical forest environments frequently climb to tropical forest 

canopy levels to exploit high-value resources such as honey, fruit, and game (Venkataraman 

et al., 2013; Kraft et al., 2014) (Figure 2). This climbing has demonstrated to lead to 

muscular but not skeletal differences between climbers and non-climbers (Venkataraman et 

al., 2013), emphasizing the human capacity for habitual arboreal climbing without devolution 

from derived, ‘obligate’ bipedal skeletal adaptations. 

 
Farmers in the forest 
 
The relationship between Homo sapiens and tropical forests reached a new level of intensity 

during the Terminal Pleistocene and early Holocene (c. 12-8 ka). At this time there is 

increasing evidence of settlement, manipulation, and use of tropical forests by hunter-

gatherer communities in Africa (Mercader, 2002a), Southeast Asia (Rabett, 2012), Melanesia 

(Gosden and Robertson, 1991; Summerhayes et al., 2016), Australia (Hasberle et al., 2010), 

and the Americas (Bush et al., 2011). Furthermore, it is during this time that mutualistic 

relationships between Homo sapiens and certain plant and animal species led to novel 

evolutionary pressures that culminated in the domestication of numerous species. This 

represents a major threshold in human evolution and in human relationships with tropical 

forests.  

 

Early archaeological focus on the domestication of cereals and livestock in the Near East and 

Europe strongly shaped ideas about agricultural origins. In the tropics, it led to an initial 
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focus on whether this type of agriculture could survive in the typical nutrient-poor, acidic, 

and wet soils of tropical forests. In South America, this debate was dominated by the 

suitability of terra pretta soils for agricultural clearance and cropping (Meggars, 1954). In 

Africa, studies focused on the zoonotic diseases of the Central African rainforest that may 

have hindered sub-Saharan expansion of pastoralism (Gifford-Gonzales, 2000; Marshall and 

Hildebrand, 2002). Prominent theories for the Bantu farming expansion still hinge on the 

tracking of waterways or grassland corridors through rainforest regions (Grollemund et al., 

2014).  

 

However, research into indigenous domestication processes within tropical forest themselves 

have begun to challenge and reshape thinking about the antiquity of farmer-forest 

relationships in the tropics (Denham et al., 2009). It is clear that crops were domesticated in 

the humid tropics of Melanesia (Golson, 1977), the Americas (Heckenberger & Neves 2009), 

and potential Australasia (Denham et al., 2003), including the banana (Musa spp.), yam 

(Dioscorea), taro (Colocasia esculenta), cassava (Manihot esculenta) sweet potato (Ipomoea 

batatas) and manioc (Manihot esculenta). In the context of extensive forest burning, 

clearance, and landscape modification extending back to the Late Pleistocene in regions such 

as New Guinea (Box 1), the eventual domestication of several tropical plants, notably banana 

and taro, should not be surprising (Denham et al., 2009).  

 

Tropical ‘agriculture’ blurs the line between forager and farmer. Tropical crops were often 

tended by mobile societies who integrated planting with collecting and hunting; swidden 

(slash and burn) agriculture, which itself demands continued movement to new areas, was 

common. Tropical vegeculture, which focuses largely on root crops, is suggested to have 

attracted and supported a broad range of wild animals that were exploited as part of a ‘garden 
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hunting’ pattern of subsistence that substituted for animal domestication (Linares 1976). 

Non- or semi-domesticated plants were often actively managed, such as palms in Amazonia 

(Heckenberger & Neves 2009). Direct human management of wild tropical fauna is also 

postulated; for example, Late and Terminal Pleistocene foragers appear to have deliberately 

translocated the common cuscus (Phalanger orientalis) to the depauparate island of New 

Ireland as a protein source (Heinsohn 2010). Various species of birds, fish and other aquatic 

species were actively managed by early Amazonians (Heckenberger & Neves 2009). 

 

The intensive exploitation of tropical forest plant and animal resources expanded into 

emerging global networks that appeared in the two millennia AD. Tropical forest 

commodities from the islands of Southeast Asia became some of the most highly valued 

commodities of Old World trade by the first millennium AD. The so-called ‘spice’ or ‘clove’ 

routes saw cloves from the Philippines, cinnamon from South China, and cassia and 

aloeswood from Java spread from the tropical forests of Southeast Asia across the Indian 

Ocean to the Middle East, Europe, and the East coast of Africa (Hoogervorst, 2013). Bananas 

also appear to have moved from Southeast Asia into Africa at this time (Fuller et al., 2010). 

Likewise, the Maya may have expanded into lowland tropical forest specifically to exploit 

rainforest commodities, including a broad range of medicines, perfumes, dyes, and other 

exotic items (Voorhies, 1982). These trade networks, and their impacts on forests, became 

increasingly commercialized with the maritime expansion of colonial powers, often having 

devastating impacts on forests and local people such as in the case of South American rubber 

exploitation (Hemming, 2009).  

 

Conclusion: Human forests – a path to destruction? 
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Tropical forests apparently represent the cradle for all of the great apes, including the 

hominin clade, in Africa. Although it has been suggested that some of the earliest members of 

the genus Homo to move beyond Africa made use of tropical forests in Southeast Asia, direct 

evidence for this is thus far lacking. While stable isotope analysis of Homo erectus and Homo 

floresiensis fossils, and long-term, multi-proxy palaeoenvironmental sequences in direct 

association with these hominins and their technologies, may provide further insight into the 

forest adaptations of these species in future, there remains something of a gap in our 

knowledge of the interaction of our genus with these environments until the evolution of our 

species in the Late Pleistocene. If this gap is real, rather than any significant shifts in 

cognition (Klein, 2000), this may further highlight the unique adaptive flexibility of Homo 

sapiens that is perhaps related to its ability to form complex social networks (Rabett, 2012).  

During the Late Pleistocene Homo sapiens not only appears to have traversed extreme 

environments, including deserts (Groucutt et al., 2015), tundra (Fu et al., 2014), and tropical 

forests, but specialized in the long-term exploitation and manipulation of these habitats. 

 

This simultaneous plasticity and focus is also seen in the unique capacity of our species to 

construct and shape its own ecological niches, changing environments, flora and fauna 

(Boivin et al., 2016). In tropical forest environments, however, this niche construction can 

have disastrous consequences. Today, these environments continue to support global human 

demand for ecosystem services, including ‘supporting’ services such as soil formation and 

nutrient and water cycling, ‘provision’ services in the form of food, fuel, genetic diversity, 

and freshwater, and ‘cultural’ services of aesthetic value (Gardner et al., 2009). Tropical 

forests are now mined, both literally and metaphorically, for precious metals, gemstones, and 

oil, while forest clearing takes place on industrial scales to grow cash crops responding to 

global demands for hardwood, medicines, coffee, and chocolate (Hemming, 2009). The 
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increasing commercialization of tropical forests by human societies today threatens these 

environments through mechanical deforestation, chemical pollution, and the influence of tree 

crop monoculture on plant genetic diversity and disease resistance (Ghazoul and Shiel, 2010). 

The expansion of palm oil plantations in Southeast Asia is a high profile example of how 

rapidly vast areas ancient tropical forest diversity can be obliterated through clearance, 

monoculture, and unintentional fires. 

 

Humans have also increasingly placed themselves, and their ever-growing population 

numbers and urban settlements, within tropical forests. From the Late Holocene, a range of 

societies in the prehistoric Amazon developed features such as integrated regional social 

systems, monumentality, elites, and extensive networks of exchange (Heckenberger and 

Neves, 2009). The lowland Maya also inhabited dense tropical forest, and forest declined 

significantly with rising population numbers (Dunning et al., 2012). Numerous other 

examples of low-density agrarian cities dominated the tropical forests of lowland 

Mesoamerica, Sri Lanka and mainland Southeast Asia between the late first millennium BC 

and the mid-second millennium AD (Fletcher, 2012). While these urban experiments proved 

relatively resilient, the sustainability of ever-expanding urbanism in the tropics of the modern 

world may be compromised by ongoing forest clearance for building materials, farmland and 

urban space. The fight to preserve these environments is center stage in the test as to whether 

the unique global ecological impact of our species will be sustainable in the face of climatic, 

environmental, and demographic threats, in part, of its own making.   
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2005), Foody and Curran’s (1994) data for the extent of tropical forest in South Asia in 
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Figure 2. The distribution of plant and animal resources, and conditions, relevant to human 
subsistence in a tropical forest ecology.

 
 
  



Author's Accepted Manuscript:  Roberts, P., Boivin, N., Lee-Thorp. J., Petraglia, M., Stock, J.T. (2016) Tropical forests and human evolution. Evolutionary Anthropology 25(6):306-317. DOI: 10.1002/evan.21508 

 

 41

Figure 3. Inferred stable carbon isotope data of vegetation for a) modern chimpanzees and 
gorillas in western-central Africa (Macho and Lee-Thorp, 2014; Oelze et al., 2014), extinct 
apes (Sivapithecus (Nelson, 2007) Gigantopithecus (Nelson, 2014; Bocherens et al., 2015) b) 
African hominin species (from data compiled in Sponheimer et al. 2013) and c) Homo 
sapiens in Late Pleistocene/Holocene Sri Lanka (data from Roberts et al., 2015a) and 
Holocene Southeast Asia (Krigbaum, 2001). A correction of -13‰ (shown by Cerling and 
Harris (1999) for non-ruminant ungulates) has been applied to the fossil enamel data, while a 
correction of -4.5‰ has been applied to modern ape hair data. This latter value includes a 
correction of -3‰ for diet-hair enrichment (as in Sponheimer et al. 2003) and a further -1.5‰ 
in order to correct for the fossil fuel effect where appropriate (Francey et al., 1999). 
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Figure 4. Selective pressures hypothesized to favor small body size in tropical forests. In 
tropical forest environments: 1) food scarcity may lead to selective pressure on body size for 
reduced energy requirements and reduced caloric intake; and the energetic demands of forest 
mobility relative to dietary intake may lead to further selective pressure and reduced energy 
expenditure; 2) high daily maximum temperature combined with high humidity makes 
evaporative cooling from sweating ineffective, which may favor small body size to decrease 
metabolic heat generation; or 3) high mortality and low life expectancy may favor life history 
strategies of earlier reproduction and growth cessation. 

 


