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ABSTRACT

Local models of gaseous accretion discs have been successfully employed for
decades to describe an assortment of small scale phenomena, from instabilities and
turbulence, to dust dynamics and planet formation. For the most part, they have
been derived in a physically motivated but essentially ad hoc fashion, with some of
the mathematical assumptions never made explicit nor checked for consistency. This
approach is susceptible to error, and it is easy to derive local models that support
spurious instabilities or fail to conserve key quantities. In this paper we present rig-
orous derivations, based on an asympototic ordering, and formulate a hierarchy of
local models (incompressible, Boussinesq, and compressible), making clear which is
best suited for a particular flow or phenomenon, while spelling out explicitly the as-
sumptions and approximations of each. We also discuss the merits of the anelastic
approximation, emphasising that anelastic systems struggle to conserve energy unless
strong restrictions are imposed on the flow. The problems encountered by the anelas-
tic approximation are exacerbated by the disk’s differential rotation, but also attend
non-rotating systems such as stellar interiors. We conclude with a defence of local
models and their continued utility in astrophysical research.
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1 INTRODUCTION

Astrophysical discs exhibit dynamical phenomena on a wide
range of scales, from the global (e.g. warps, outbursts, spiral
waves, and outflows) to the small-scale (turbulence, planet
formation, etc). In order to attack the latter it is convenient,
analytically and computationally, to deploy a local model:
i.e. to ‘zoom in’ on a small patch of disc, approximate it as
Cartesian, and treat it in isolation of the rest of the system.
This technique is commonly employed in the study of ce-
lestial mechanics (cf. the Hill equations), galactic dynamics
(Goldreich and Lynden-Bell 1965), planetary rings (Wisdom
and Tremaine 1988), and gaseous accretion discs (made es-
pecially famous by application to the magnetorotational in-
stability, MRI; Hawley et al. 1995).

The derivation of local models for particulate discs is
relatively straightforward, but there are subtleties involved
when dealing with a gas, and its thermodynamic variables.
Depending on the properties of the flow, in particular the
sizes of its characteristic lengthscales and Mach number, cer-
tain terms in the governing equations are dominant, some
negligible; as a consequence, we are led to a number of

⋆ E-mail: hl278@cam.ac.uk

different local approximations: incompressible, Boussinesq,
anelastic, and small and large compressible boxes. Though
regularly used, their derivations have been ad hoc for the
most part, and though physically motivated it is easy to de-
rive equations that fail to conserve key properties or, even
worse, introduce spurious instabilities. These problems arise
especially when attempting to incorporate the background
thermodynamic gradients, and can be connected to the vio-
lation of wave-action conservation.

The main aim of this paper is to highlight these issues
while rigorously deriving local approximations that are un-
ambiguously consistent and conservative, hence fit for pur-
pose. The essential assumptions of each model are clearly
spelled out so that each may be matched to the appropriate
problem. They may then serve as a set of references for re-
searchers in the field. We employ an ordering approach simi-
lar in some details to Spiegel and Veronis (1960) and Gough
(1969). The different models can then be clearly delineated
in terms of a handful of key dimensionless parameters, such
as λ/R, λ/HZ , and M, where λ is a characteristic length
scale of the flow, R is disk radius, HZ is the vertical pressure
scale height, and M is the Mach number of the perturbed
flow in the corotating frame.

Starting from a flow in a fully global and fully com-
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2 H. N. Latter & J. Papaloizou

pressible disc, we first derive the equations governing the
incompressible shearing box, the independent distinguish-
ing features of which are (a) the flow is small-scale, with a
characteristic lengthscale much less than the scale height,
λ/HZ ≪ 1, (b) it is subsonic M ≪ 1, and (c) the frac-
tional density and pressure perturbations are equally small
(note, however, that the density plays no part in the final
equations). The Boussinesq box, which we deal with next,
also assumes (a) and (b) but instead of (c) lets the frac-
tional density perturbation take significantly larger values
than the fractional pressure perturbation (though both must
still be ≪ 1). The last move permits the inclusion of a con-
stant background entropy gradient, and hence buoyancy ef-
fects. We show how weak vertical shear may be incorporated
consistently, and how potential vorticity manifests in these
equations.

Anelastic models generally assume slow flows and small
thermodynamic perturbations, as earlier, but permit the
flow to range over longer length-scales, up to the scale height,
i.e. λ/HZ ∼ 1. We highlight the inability of this approx-
imation to conserve energy under general conditions, and
we derive a consistent set of conservative equations that
resemble the so-called ‘pseudo-incompressible’ approxima-
tion (Durran 1989, Vasil et al. 2013), but which requires
additional restrictions on the lengthscale of the flow. These
additional restrictions issue directly from the strong differ-
ential rotation and illustrate the challenges in combining
anelasticity and astrophysical disks. Note that even in the
absence of strong rotation and shear, as in the stellar con-
text, the anelastic equations remain extremely problematic
(see Brown et al. 2012).

Compressible models impose no restriction on the flow
speed, and hence the Mach number M can take any value.
We obtain the ‘small compressible box’ by assuming small
scales λ/HZ ≪ 1, a model that cannot involve any back-
ground thermodynamic gradients, and the ‘large compress-
ible box’, by assuming λ/HZ ∼ 1, which must include the
full vertical structure of the disc. We devote time to exposing
the spurious instabilities that appear when the background
gradients are included incorrectly, and discuss how they are
associated with a breakdown of wave-action conservation.

The paper concludes with a short defence of local mod-
els and their importance for research in astrophysical accre-
tion flows. We argue that previous criticisms are overstated,
and that global set-ups suffer from problems of a similar or
greater magnitude. Our essential point is that, owing to the
simpler geometry afforded by local models, researchers can
more easily disentangle the salient physical processes and
their interconnection, and as a consequence develop a deeper
understanding of the overall astrophysical flow. Local model
help us work out the conceptual ideas and physical intuition
necessary for the interpretation of observations and global
simulations, which are usually much more complicated and
messy.

The paper is lengthy and technically detailed. In order
to ease its readability, each of Sections 3 to 6 are as self-
contained as possible and may be read independently. All
four section, however, make use of the material in Section
2, in which we present our background global disk (with its
key length and timescales) and introduce the thin disk and

local approximations, both necessary to derive the equations
of any shearing box. Section 3 presents a derivation of the
incompressible shearing box, and Section 4 the Boussinesq
box, both from this global, compressible starting point. In
Section 5, we discuss anelastic models and their problems,
while developing a consistent and conservative set of anelas-
tic equations. In Section 6, we present compressible mod-
els, purely local (‘small box’) and vertically stratified (‘large
box’), emphasising the spurious instabilities that arise if the
equations are incorrectly derived. Our conclusions appear
in Section 7. For readers who wish to skip the derivations
and go straight to the presentation of the final equations as-
sociated with each model, the incompressible shearing box
equations appear in Section 3.3, the Boussinesq equations
in Section 4.3, the consistent anelastic equations in Section
5.2.4, and the compressible equations in Sections 6.1.1 and
6.2.

2 PRELIMINARIES

To begin, we display the equations governing fluid flow in a
representative disc alongside its basic global equilibrium. It
is upon this quasi-steady equilibrium state that fast small-
scale phenomenon (captured by local models) manifests. We
subsequently introduce the additional assumptions of a thin
disc and small-scales.

2.1 Governing equations

Consider an inviscid astrophysical disc, rotating about a cen-
tral object. Let us describe it in a rotating cylindrical ref-
erence frame with rotation vector Ω = Ω0 ez, where Ω0 is a
constant frequency specified later. We assume that the disk
is radially extended, and thus do not consider slender tori
or narrow rings, nor their local representations (see for e.g.
Goldreich et al. 1986 and Narayan et al. 1987) The equations
controlling the flow are

Dρ

Dt
= −ρ∇ · u, (1)

Du

Dt
= −2Ω0ez × u− 1

ρ
∇P −∇Φ, (2)

DS

Dt
= Γ− Λ, (3)

where ρ is volumetric mass density, u is velocity, and P is
pressure. The symbol Φ combines the centrifugal potential
− 1

2
Ω0R

2, with R cylindrical radius, and the gravitational
potential of the star Φ∗. To make life simple we assume that
the star possesses a point mass potential. In addition, S
denotes the entropy function, Γ represents external heating
(from the star or cosmic rays, perhaps), and Λ represents ra-
diative cooling (which may take the form −∇·F, where F is
a radiative flux). It is assumed that Γ and Λ are functions of
the spatial coordinates, or else of the thermodynamic vari-
ables. In what follows, often we combine both cooling and
heating into the single function Ξ. Finally, the disc is com-
posed of an ideal gas, so that P = RρT , where R is the gas
constant, and T is temperature.
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Local models of discs 3

2.2 Equilibrium

A local model’s small-scale phenomena take place upon a
pre-existing equilibrium state. An assumption, shared by all
local models, is that the smaller-scale processes do not feed

back onto the background equilibrium. The equilibrium re-
mains fixed on the short timescales of interest.

We assume that the disc falls into the steady state

u = u ≡ RΩ(R,Z) eφ, P = P (R,Z), ρ = ρ(R,Z), (4)

where the three functions Ω, P , and ρ may be obtained from
the equations:

u · ∇u = −2Ω0ez × u− 1

ρ
∇P −∇Φ, (5)

Γ = Λ. (6)

Note that Ω is the orbital frequency of the gas in the rotating
frame. Because Ω does not appear in the energy balance, we
can obtain ρ and P from the vertical component of Eq. (5)
and from Eq. (6). Then the radial component of (5) obtains
Ω. For reference, Eqs (5) may be recast as

−R(Ω + Ω0)
2 = −1

ρ
∂RP − ∂RΦ, (7)

1

ρ
∂ZP = −∂ZΦ. (8)

We next define three fundamental lengthscales. The equi-
librium is taken to vary relatively smoothly with respect to
the spatial coordinates and that ρ, P , and Ω exhibit well-
defined scales of variation. We introduce the radial pressure
scale height HR, and the vertical pressure scale height HZ .
These possess the scalings

H−1

R ∼ ∂R lnP ∼ ∂R ln ρ, (9)

H−1

Z ∼ ∂Z lnP ∼ ∂Z ln ρ. (10)

Note that it has been assumed that the density and pressure
scale heights are of the same order of magnitude, which is
reasonable in most contexts.

An astrophysical disc, perhaps by definition, is rota-
tionally supported, so the scale of Ω’s radial variation will
be ∼ R. Its vertical scale of variation we denote by HΩ, and
it satisfies

H−1

Ω ∼ ∂Z lnΩ. (11)

In fact, this length can be estimated from the thermal wind
equation, as shown in the next subsection.

2.3 The local and thin-disc approximations

The equilibrium is disturbed so that ρ = ρ+ρ′, etc, where a
prime denotes a perturbation. The (nonlinear) perturbation
equations are

Dρ′

Dt
= −(ρ+ ρ′)∇ · u′ − u′ · ∇ρ, (12)

Du′

Dt
= − 1

ρ+ ρ′
∇P ′ +

∇P

ρ(ρ+ ρ′)
ρ′

− 2Ω0ez × u′ − u′ · ∇u, (13)

DS′

Dt
= Γ− Λ− u′ · ∇S (14)

where now D/Dt = ∂t+(u+u′)·∇, and S is the equilibrium
entropy distribution.

The perturbations exhibit a characteristic lengthscale
λ. We could in fact specify lengthscales in all three direc-
tions λR, λφ, and λZ , but it suffices to designate only one
length, at this stage. We also assume the phenomena ex-
hibits a characteristic velocity scale w, and thus a charac-
teristic timescale of λ/w. The first essential assumption that
we make, and which is shared by all local models, is that at
any radial location λ ≪ R. The perturbations are small scale
relative to radius.

The next step is to exclusively focus upon a specific
location in the disc

R = R0, φ = φ0, Z = Z0. (15)

Then we choose the rotation frequency of our frame of ref-
erence Ω0 so that Ω(R0, Z0) = 0. This means that at this
location the disc’s orbital frequency is equal to the frame’s
rotation rate. We introduce spatial variables centred upon
this location

x = R −R0, y = R0(φ− φ0), z = Z − Z0, (16)

and suppose that they take values over a range of order λ.
Hence x, y, z ≪ R0. For the moment we do not specify the
relative sizes of λ and Z0. It is not hard to see that, to
leading order in λ/R0, the del operator simplifies to

∇ ≈ ex∂x + ey∂y + ez∂z, (17)

where the new locally Cartesian coordinates x, y, z point in
the radial, azimuthal, and vertical directions. All the cylin-
drical terms are subdominant, because they are ∼ λ/R0 ≪ 1
smaller.

The second essential assumption is that the disc is thin.
Mathematically, this corresponds to HZ ≪ R0. Because our
local box must be located in the bulk of the disc, we assume
that Z0 . HZ . Furthermore, the new variable z cannot be
much greater than HZ . The assumption of a thin disc is
crucial as it permits us to obtain a dimensional estimate on
the equilibrium pressure. From Eq. (8), expanding the point
mass potential Φ in small Z/R yields

∂ZP = ρΩ2

0Z.

Assuming Z ∼ HZ and ∂Z ∼ 1/HZ gives the following scal-
ing for the equilibrium pressure

P ∼ ρH2

ZΩ
2

0, (18)

one that is unique to astrophysical discs. We then recognise
that the sound speed of the gas c scales as HZΩ0.

Finally, we take the curl of (5) and write its φ-
component as

R∂ZΩ
2 =

1

ρ2
(

∇P ×∇ρ
)

· eφ. (19)

This is the ‘thermal wind equation’. It helps us assess the
amount of vertical shear in the equilibrium. Only baroclinic
equilibria, in which pressure depends on both density and
another thermodynamic variable, permit a nonzero ∂ZΩ. Us-
ing (18) and the characteristic lengthscales introduced in the
previous subsection, we obtain the following estimate:

HΩ ∼
(

HR

HZ

)

R0 > R0. (20)
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4 H. N. Latter & J. Papaloizou

Symbols Definitions

ρ, u, P , S Equilibrium quantities
HR, HZ Eq’m radial and vertical scaleheights

HΩ Lengthscale of eq’m vertical shear
qR = (∂ lnΩ/∂ lnR)0 Dimensionless radial shear rate
qZ = (R∂ lnΩ/∂Z)0, Dimensionless vertical shear rate

ΦT = Ω2
0
qRx2, Radial part of the tidal potential

ΦZ = 1

2
Ω2

0
z2, Vertical part of the tidal potential

ρ′, u′, P ′, S′ Perturbations
λ, w Perturbation length and velocity scales

ρ∗, u∗, P ∗, S∗ Dimensionless perturbations
ξ Lagrangian displacement

ǫ = λ/Hz Lengthscale ratio
M = w/(HZΩ0) Mach number
Ro = w/(λΩ0) Rossby number
ℓ = uy + 2Ω0x Specific angular momentum

ω = ∇× u+ 2Ω0ez Vorticity
Θ Potential vorticity

Table 1. Important symbols, characteristic scales, and defini-
tions.

Thus the characteristic vertical lengthscale of the vertical
shear is long, greater than R0 in fact.

In summary, we have introduced two assumptions,
shared by all shearing box models. First: radial locality,
i.e. that λ ≪ R0. Second: the thin disc approximation, i.e.
HZ ≪ R0. These assumptions lead to a sequence of local
models, their distinguishing features resting on the size of
(a) the ratio of lengths

ǫ ≡ λ/HZ , (21)

(b) the Mach number of the flow

M ≡ w

HZΩ0

, (22)

and (c) the size of the fractional perturbations in pressure
and density. In Table I we list the most important param-
eters, scales, and definitions that appear in the following
derivations.

3 INCOMPRESSIBLE DYNAMICS

3.1 Distinguishing assumptions

We begin with the derivation of a purely incompressible
model, suitable for slow dynamics: shear instability, convec-
tion (both radial and vertical), vortices, and the MRI. First,
we assume that λ ≪ HZ , HR, which means the parameter
ǫ ≪ 1. If Z0 . HZ , we can expand the equilibrium func-
tion Ω in Eqs (12)-(13) in small x and z and only retain the
leading order terms. This move is acceptable because Ω’s
characteristic lengthscales of variation are larger than that
of the phenomena in question. In fact,

Ω(R0 + x, Z0 + z) = (∂RΩ)0x+ (∂ZΩ)0z +O(x2, z2), (23)

where the subscript the 0 indicates evaluation at the centre
of the box. Note that the leading order constant term in the
expansion of Ω is zero. Moreover, if we locate the shearing
box at the midplane, Z0 = 0, then (∂ZΩ)0 = 0 because of

symmetry: in this special case there is no vertical shear in
the box. In general, however, we write

u = Ω0(qR x+ qZ z)ey, (24)

where

qR ≡ (∂ lnΩ/∂ lnR)0 and qZ ≡ R0(∂ ln Ω/∂Z)0. (25)

It is worth noting at this point that while typically qR ∼ 1,
we have qZ ∼ HZ/HR and so could be considerably smaller
(though not necessarily as small as ǫ) and possible to omit.
If Z0 = 0, then qZ = 0 exactly.

What of the equilibrium thermodynamic variables P
and ρ? Because we are only interested in very short scales
λ, much smaller than the variation in P and ρ, we do not
expect P and ρ to change greatly in our box. In particular,
ρ ≈ ρ

0
, true to leading order in ǫ, where ρ

0
= ρ(R0, Z0), a

constant. Similarly ∇P ≈ (∇P )0, a constant vector.
The second assumption we make concerns the Mach

number of the flow. ‘Slow’ approximations, such as the in-
compressible, Boussinesq, and anelastic models, set M ≪
1, and are valuable because they filter out sound waves
that may pose numerical challenges and prevent analytical
progress. We thus have two small ordering parameters ǫ and
M, which are instructive to keep separate (though it is pos-
sible to equate them). In fact, if we set M ∼ ǫ then we are
unduly restricting the kinds of phenomena described, ensur-
ing their characteristic timescale is 1/Ω, and thus pinned to
the orbital period.

The third and final assumption deals with the sizes of
the thermodynamic perturbations ρ′ and P ′. They must re-
main very small compared to the background but stay the
same magnitude as each other. We let

ρ′

ρ
∼ P ′

P
∼ M2. (26)

It might seem strange to force the pressure perturbations to
be small in a nominally incompressible model — but what
matters most are the pressure gradients, and because the
spatial scales of variation are so small, λ ≪ HZ , the gradi-
ents are potentially huge. The pressure perturbation must
be scaled appropriately so the pressure term does not blow
up.

3.2 Derivation

We are now in a position to derive our equations, by rescaling
all the variables and collecting the leading order terms in ǫ
and M. The perturbations may be written as

u′ = wu∗, ρ′ = M2ρ
0
ρ∗, P ′ = M2ρ

0
H2

ZΩ
2

0 P
∗, (27)

where the star indicates an order 1 dimensionless vari-
able. The spatial variables are x = λx∗, etc, and time is
t = t∗(w/λ). Acknowledging the scaling Eq. (18), the back-
ground equilibrium may be non-dimensionalised as

(∂ZP )0 = ρ0HZΩ
2

0(∂ZP )∗0, (∂RP )0 = ρ0
H2

Z

HR
Ω2

0(∂RP )∗0,

(28)

(∂Zρ)0 = ρ0
1

HZ
(∂Zρ)

∗

0, (∂Rρ)0 = ρ0
1

HR
(∂Rρ)

∗

0, (29)
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Local models of discs 5

and

u = λΩ0u
∗ = λΩ0(qR x∗ + qZ z∗)ey. (30)

Expressions (27)-(30) are thrown into the continuity
equation Eq. (12). There is only a single order 1 term, with
respect to both ǫ and M, and the equation reduces to the
incompressibility condition

∇∗ · u∗ = 0. (31)

On the other hand, the order 1 terms in the momentum
equation are

Du∗

Dt∗
= −∇∗P ∗ − 2Ro−1ez × u∗

− Ro−1(qR u∗

x + qZ u∗

z)ey, (32)

where D/Dt∗ = ∂∗

t + (u∗ + Ro−1u∗) · ∇. The background
pressure gradient is ǫ smaller than the terms above and is
hence dropped. Also, the Rossby number

Ro ≡ w

λΩ0

(33)

appears, which quantifies the importance of the differen-
tial rotation. When the characteristic frequency of the phe-
nomenon exceeds Ω0 then Ro increases and the Coriolis
and shear terms become subdominant. In fact, in this limit
the shearing box is isotropic and homogeneous. This regime
manifests on sufficiently short scales if w does not increase
concomitantly with λ. Thus it is to be expected that a typ-
ical hydrodynamical turbulent cascade ultimately reaches
Ro ≫ 1 on a small enough scale, flow on these short scales
ignorant of shear and rotation. In some applications (e.g.
involving well-coupled dust) it may not be necessary to de-
scribe the system with a shearing box at all.

3.3 Final incompressible equations

In dimensional form the final system is

Du′

Dt
= − 1

ρ
0

∇P ′ − 2Ω0ez × u′ − Ω0(qR ux + qZ uz)ey,

(34)

∇ · u′ = 0, (35)

where D/Dt = ∂t + Ω0(qRx + qZz)∂y + u′ · ∇. There is no
need for the equation of state, nor the entropy equation.

In terms of total, rather than perturbed, variables, the
momentum equation may be written as

Du

Dt
= − 1

ρ
0

∇P − 2Ω0ez × u− 2Ω2

0(xqR + zqZ)ex, (36)

where the last term is the tidal force. Note that if qZ 6=
0 then this tidal force is not conservative (i.e. cannot be
written as the gradient of a scalar).

In summary: to obtain these equations we have adopted
(a) radial locality, (b) the thin disc approximation, as in all
shearing box models, and then assumed that (c) the char-
acteristic scales are much smaller than the scale heights, i.e.
λ ≪ HZ , HR, (d) the phenomena are very slow, so that
the Mach number is M ≪ 1, and (e) the fractional ther-
modynamic perturbations are both ∼ M2. Note that the

last two conditions are not enforced by the model: simula-
tions that exhibit extremely strong flows could be violating
these assumptions. Runaway MRI channel flows in incom-
pressible boxes are an example that come to mind (Lesaffre
et al. 2009). Given, however, that formally the soundspeed
is infinity, it is difficult to judge a posteriori whether restric-
tion (d) is violated from the simulation data itself.

3.4 Conservation laws

In order to produce physically acceptable dynamics, the gov-
erning equations must conserve certain quantities. Energy,
angular momentum, and vorticity are the most important.

3.4.1 Kinetic energy

We derive an equation for the specific kinetic energy by tak-
ing the scalar product of Eq. (36) with u and making re-
peated use of the incompressibility condition. We find

∂t(
1

2
u2)+∇·

[

( 1
2
u2 + h+ 1

2
Ω2

0qRx
2)u

]

= −Ω2

0qZz ux, (37)

where h = P/ρ0 is the pseudo-enthalpy. Note the source
term on the right hand side: when vertical shear is included
in the model, i.e. qz 6= 0, then energy is not conserved in the
box.

The source term, however, is physical and comes from
the rate of doing PdV work in a baroclinic flow. In a
barotropic fluid, energy is conserved on a closed stream tube.
But this need not be true if the fluid were baroclinic: energy
can be input when material flows from a high density region
to a low density region and back via a different path, even
when that flow is incompressible. In Appendix A, the origin
and form of this term is discussed in greater detail.

3.4.2 Angular momentum

Next we turn to angular momentum, which in the shearing
sheet is represented by the specific canonical y-momentum

ℓ ≡ uy + 2Ω0x. (38)

Rearranging the y-component of (36) yields

∂tℓ+ u · ∇ℓ = −∂yP. (39)

Thus the angular momentum of a fluid blob can only change
due to azimuthal accelerations from the pressure gradient.
It follows that angular momentum is materially conserved
in axisymmetric flow, and there can be no accretion in this
case; fluid blobs (or rather rings) cannot exchange angu-
lar momentum because they cannot azimuthally accelerate
one another (also see Stone and Balbus 1996). Finally, if we
integrate Eq. (39) over the box, use the incompressibility
condition, and impose periodic boundaries in y, we observe
that the total angular momentum of the system is constant.

3.4.3 Vorticity

Finally, we exhibit the vorticity equation. By taking the curl
of (36) and applying standard vector identities, one obtains

∂tω + u · ∇ω −ω · ∇u = −Ω2

0qZey, (40)

c© 0000 RAS, MNRAS 000, 000–000



6 H. N. Latter & J. Papaloizou

where

ω = ∇× u+ 2Ω0ez (41)

is the vorticity in the shearing box. Note the constant source
term on the right side of Eq. (40); it is zero only in the ab-
sence of vertical shear. The source term is result of the baro-
clinicity of the flow, and in fact, is the local manifestation
of the ∇ρ×∇P term in the thermal wind balance (19).

The existence of a constant injection of vorticity pos-
sibly causes problems in simulations of the flow. It comes
about essentially because of the local dynamics’ inability
to react back on the equilibrium conditions. This might be
reasonable when dealing with the radial shear, but the verti-
cal shear might get smoothed out effectively on short times
by the Goldreich-Schubert-Fricke instability (Goldreich and
Schubert 1967, Fricke 1968, Nelson et al. 2013) unless it is
forcibly maintained (by powerful stellar radiation, for in-
stance; Barker and Latter 2015).

4 THE BOUSSINESQ APPROXIMATION

4.1 Distinguishing assumptions

This class of model differs from the previous incompress-
ible case in its treatment of the density perturbation. As
before, we assume that the phenomena of interest exhibit
lengthscales much less than the scale heights of the disk,
λ ≪ HZ, HR so that ǫ ≪ 1. As a result the background
fields u, P and ρ and their derivatives may be expanded in
small x and z. The former is hence linear in these variables,
taking the form of Eq. (24), while the latter two are con-
stant. In addition, the flow is presumed to be subsonic, so
that M ≪ 1. However, we assume that ρ′/ρ is much larger
than P ′/P , though both remain ≪ 1. More precisely

ρ′

ρ
∼ M2

ǫ
,

P ′

P
∼ M2, (42)

with the additional requirement that M2 ≪ ǫ. We could
just set M ∼ ǫ but this is unnecessary, and in fact imposes
an additional restriction that is undesirable.

4.2 Derivation

As in Section 3.2 we proceed by introducing dimensionless
variables. The equilibrium fields are expressed as in Eqs
(28)-(30), while the independent variables may be written
as x = λx∗, etc, and t = (w/λ)t∗, where a star indicates a
dimensionless order 1 quantity. The perturbations are

u′ = wu∗, ρ′ = (M2/ǫ)ρ0ρ
∗, P ′ = M2ρ0H

2

ZΩ
2

0 P
∗. (43)

Throwing these into the continuity equation yields to order
1,

∇∗ · u∗ = 0, (44)

the incompressibility condition again. The momentum equa-
tion is more interesting. We obtain

Du∗

Dt∗
= −∇∗P ∗ − 2Ro−1ez × u∗ −Ro−1(qR u∗

x + qZ u∗

z)ey

+

[

HZ

HR

(

∂RP
)

∗

0
ex + (∂ZP )∗0ez

]

ρ∗, (45)

where Ro= w/(λΩ0) is the Rossby number, and D/Dt∗ =
∂∗

t +(u∗+Ro−1u∗) ·∇. Note the buoyancy term on the right
hand side in square brackets, absent in the incompressible
derivation in Section 3.2. It prompts a number of comments.

First, if our sheet is located on the midplane, i.e. Z0 = 0,
then (∂ZP )0 = 0 by symmetry and hence there can be no
vertical buoyancy contribution.

Second, the radial buoyancy term is multiplied by a
factor HZ/HR. We have been careful, so far, not to specify
explicitly the relative magnitudes of the two scale heights.
If HR ∼ R0, as we might expect for a very smooth thin disc,
then the radial buoyancy term is ǫ smaller than the other
terms and should be dropped. If however, the disc exhibits
more abrupt radial structure, so that HZ . HR, then the
term should be retained. Dead-zone edges, gaps opened by
planets, or icelines in protoplanetary discs are examples of
structures that could give rise to the latter.

Third, the new buoyancy term brings in the variable
ρ∗, in addition to P ∗ and u∗, and so another equation is
required. From the definition of the entropy function S ∝
ln(Pρ−γ), we have

S∗ = −γ
ρ′

ρ
= −(M2/ǫ) γρ∗, (46)

to leading order, according to the scalings (42). Next, in
Eq. (14) the equilibrium entropy ∇S is expanded in small x
and z, and is, to leading order, an order 1 constant vector.
The dominant terms in the entropy equation are then

Dρ∗

Dt∗
= − 1

γ
Ro−2u∗ ·

[

HZ

HR
(∂RS)0ex + (∂ZS)0ez

]

+ Ξ∗(ρ∗),

(47)
where the perturbed non-adiabatic contributions have been
packaged into the linear function/operator Ξ. An important
case is when the external heating does not depend on ρ
and radiative cooling can be represented using the diffusion
approximation. Then Ξ(ρ∗) = η∇2ρ∗, with η the thermal
diffusivity. An alternative is a cooling law, such as Ξ ∝ −ρ∗.
Whatever form Ξ takes, however, it should be linear. Note
again the coefficient HZ/HR, which may be small, but the
term is retained, as explained earlier.

Finally, the entropy gradient term in the ρ∗-equation
(47) is multiplied by the inverse squared Rossby number. In
a typical hydrodynamic turbulent cascade, the flow enters
the Ro ≫ 1 regime on sufficiently short scales; then, not
only does the differential rotation drop out of the problem,
so does the background entropy gradient. As a result, the
ρ∗ perturbation is controlled by simple advection and the
heating/cooling physics embodied in Ξ. Certainly the latter
we expect to return ρ∗ to zero and the thermal dimension
of the problem likely drops out entirely.
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4.3 Final Boussinesq equations

When we return to dimensional variables it is convenient
to introduce the following notation. Define the radial and
vertical buoyancy frequencies by

N2

R ≡ − 1

γρ
0

(∂RP )0(∂RS)0, N2

Z ≡ − 1

γρ
0

(∂ZP )0(∂ZS)0.

(48)

And now formally set the radial and vertical stratification
lengths to

1

HR
≡ 1

γ
(∂RS)0,

1

HZ
≡ 1

γ
(∂ZS)0. (49)

Then the dimensional Boussinesq equations may be written
as

Du′

Dt
= − 1

ρ0
∇P − 2Ω0ez × u− Ω0(qR ux + qZ uz)ey

+
(

HRN
2

Rex +HZN
2

Zez

)

(

ρ′

ρ0

)

, (50)

∇ · u′ = 0, (51)

D

Dt

(

ρ′

ρ0

)

=
1

HR
u′

x +
1

HZ
u′

z + Ξ[ρ′]. (52)

Usually, we choose stratification in one direction only (either
radial or vertical), and then it is convenient to introduce the
buoyancy variable θ = Hρ′/ρ0 (with units of length), where
H can be either HR or HZ . As a consequence, the system
only depends on the buoyancy frequency and the rotation
law.

The momentum equation in terms of total, rather than
perturbed, velocity, is

Du

Dt
= − 1

ρ
0

∇P − 2Ω0ez × u− 2Ω2

0(xqR + zqZ)ex

+
(

HRN
2

Rex +HZN
2

Zez

)

(

ρ′

ρ
0

)

. (53)

Finally, if we want the temperature perturbation then we
turn to the equation of state, which to leading order gives
ρ′/ρ

0
= −T ′/T 0.

In summary, the Boussinesq approximation requires
that ǫ ≪ 1 and M ≪ 1, as in the incompressible model,
but it differs in the permitted magnitude of the fractional
density perturbation. It assumes P ′/P ≪ ρ′/ρ ≪ 1. The
larger density fluctuation gives rise to buoyancy terms in
both the radial and vertical direction. Note that if the box
is placed at the midplane there is no vertical buoyancy force.
Note also that the radial buoyancy force is of order HZ/HR

smaller than the other terms and could be neglected in cer-
tain circumstances. The equations do not guarantee that ρ′

remains small in the way defined: it is possible for the sys-
tem to evolve away from its domain of validity, just as in
the incompressible box.

Finally, these equations are what Umurhan and Regev
(2004, 2008) refer to as the ‘small shearing box’, which they
derive in an alternative manner. Because the equation for
their buoyancy variable arises from the continuity equation,
however, their system cannot incorporate background en-
tropy gradients (hence convection) nor diabatic effects such
as cooling or thermal diffusion, and is hence far more re-
strictive.

4.4 Conservation laws

As in Section 3.1, we derive a number of conservation laws
that the flow obeys. To make life simpler, we set qZ = 0 and
assume stratification in only one direction, the z direction.
ThusNR = 0. The more general case of x and z stratification
can be found in Appendix B. In addition, the fluid is taken to
be adiabatic so that Ξ = 0. Finally, we do not treat angular
momentum, as the result is identical to that appearing in
the incompressible case (Section 3.4.2).

4.4.1 Energy

By taking scalar products and manipulating, we obtain the
energy result

∂t(
1

2
u2 + 1

2
N2

Zθ
2)

+∇ ·
[

( 1
2
u2 + h+ 1

2
Ω2

0x
2qR + 1

2
N2

Zθ
2)u

]

= 0. (54)

The specific ‘thermal energy’ in the Boussinesq box is thus
1

2
N2

Zθ
2.

4.4.2 Potential vorticity

We introduce the convenient ‘total’ buoyancy variable θz =
HZρ

′/ρ
0
+ z, which transforms the entropy equation into

Dθz
Dt

= 0. (55)

Taking the curl of (53) obtains an equation for the vorticity
in the shearing box:

Dω

Dt
= ω · ∇u−N2

Z∇θz × ez , (56)

where ω is the vorticity, defined in Eq. (41). This equation
is saying that vorticity can be generated by the buoyancy
term, but only in a direction perpendicular to both ez (the
direction of the background entropy gradient) and to the
gradient in θz, which suggest ways to construct conserved
quantities.

We take the inner product of (56) with ez and obtain:

Dωz

Dt
= ω · ∇uz,

which, with incompressibility, can then be transformed into
the conservation law:

∂ωz

∂t
+∇ · (ωz u− uz ω) = 0. (57)

The component of the vorticity in the direction of the strat-
ification is always conserved.

We now consider the second direction and take the inner
product of (56) with ∇θz, giving

∇θz · Dω

Dt
= ∇θz · [(ω · ∇)u] . (58)

Next we take the gradient of (55) and find

D∇θz
Dt

= −(∇u) · ∇θz. (59)

Putting these two together obtains a second conservation
law:

∂Θ

∂t
+∇ · (Θu) = 0, (60)
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where the conserved quantity is defined by Θ ≡ ω · ∇θz.
This we regard as the potential vorticity in the Boussi-
nesq shearing box. Moreover, because of incompressibility
we have DΘ/Dt = 0, and Θ is materially conserved. Of
course, Eq. (60) is nothing but Ertel’s theorem in the con-
text of Boussinesq hydrodynamics (Müller, 1995).

Note that a conservation law is possible even when there
is some kind of ‘frictional force’, G, in (53) (see Haynes and
McIntyre 1987). This could be viscosity or hyperviscosity.
The vorticity equation now picks up a term ∇ × G on its
right hand side. Taking the inner product of the new term
with ∇ρ yields

∇ρ · (∇×G) = ∇ · (G×∇ρ), (61)

where we have used the fact that a curl of a gradient is zero.
The modified conservation law for Θ is then

∂Θ

∂t
+∇ · (Θu+G×∇ρ) = 0. (62)

5 THE ANELASTIC APPROXIMATION

The next model in our hierarchy still requires the motions
to be slow and the Mach number and thermodynamic per-
turbations small. However, it extends the size of the box to
cover the disc’s vertical scale height. In its strongest form
it also permits λ to reach HZ . This is the anelastic model
(Ogura and Phillips 1962, Gough 1969), used with some suc-
cess in modelling solar convection, though less frequently in
the disc context (see Barranco and Marcus 2005, 2006). Ba-
sically, an anelastic shearing box is a vertically stratified
shearing box in which the sound waves and other compress-
ible dynamics have been filtered out.

As has been discussed elsewhere, it is not straightfor-
ward to formally derive an anelastic model that satisfies the
conservation laws one would want it to. This can lead to
the advent of spurious instabilities, amongst other problems
(e.g. Bannon 1996, Brown et al. 2012, Vasil et al. 2013). One
response has been to make ad hoc tweaks to the derived
equations in order that the conservation laws are preserved.
Of course, the relationship of the new equations to the orig-
inal set is unclear, and even then the new systems are not
conservative in general.

In this section we revisit the problems the analestic
model faces. We then show that anelastic models with ad-
ditional restrictions can be derived that possess the correct
properties.

5.1 Classical anelastic equations

In this section we demonstrate how to derive the ‘classical
anelastic equations’ as presented in Gough (1969) but in
the context of an astrophysical disc (not a star). The model
permits the characteristic lengthscale of phenomena to reach
the scale height, i.e. λ ∼ HZ (thus ǫ ∼ 1), but for simplicity
we set HZ ≪ HR. The fractional perturbations in density
and pressure are assumed small, so that

ρ′

ρ
∼ P ′

P
∼ M2 ≪ 1, (63)

where we assume that the Mach number of the flow is also
small.

5.1.1 Derivation and governing equations

The first thing to note is that the background thermody-
namic variables ρ and P can no longer be expanded in z
and then truncated at leading order. They may still, how-
ever, be expanded and truncated in small x, as we assume
that λ ≪ HR. In contrast, the rotation profile Ω may be
expanded in z because its characteristic scale of variation
is ∼ (HR/HZ)R0 ≫ λ. The natural location to anchor an
anelastic shearing box is at the midplane, and thus Z0 = 0.
But then this means (∂zΩ)0 = 0 and vertical shear drops
out of the problem; the quadratic terms in z are at most
(HZ/R0)

2 smaller than the leading order terms. To retain
vertical shear, additional scaling assumptions are required
such as radial geostrophic balance (see Nelson et al. 2013).

We now rescale the variables. First, x = HZx
∗, etc, and

t = (HZ/w)t∗, and the perturbations follow

u′ = wu∗, ρ′ = M2ρ0ρ
∗ P ′ = M2ρ0H

2

ZΩ
2

0P
∗, (64)

where now ρ
0
should be understood as the equilibrium den-

sity at the midplane Z = Z0 = 0 and at R = R0. The
equilibrium quantities are written as

ρ = ρ0ρ
∗(z), P = ρ0H

2

ZΩ
2

0P
∗

(z), (65)

∂Rρ = ρ
0

1

HR
(∂Rρ)

∗(z), ∂RP = ρ
0

H2

Z

HR
(∂RP )∗(z), (66)

where it is understood that the starred quantities are the di-
mensionless leading-order terms in an expansion in x around
R = R0. They do not depend on x but they do depend on z,
as indicated. Finally, u = λΩ0qRx

∗ey, where qR is defined
in (25).

These scaling are substituted into the governing equa-
tions. The continuity equation at order 1 becomes

∇∗ · (ρ∗u∗) = 0. (67)

The other terms are either M2 or HZ/HR smaller. The mo-
mentum equation to leading order is

Du∗

Dt∗
= − 1

ρ∗
∇∗P ∗ +

∂∗

zP
∗

ρ∗

(

ρ∗

ρ∗

)

ez

− 2Ro−1ez × u∗ − Ro−1qR u∗

xey, (68)

where Ro= w/(λΩ0) is the Rossby number. Again we have
dropped a term a factor HZ/HR smaller than the others (the
radial gradient of the background pressure). Also, (∂∗

zP
∗

/ρ∗)
may be replaced by z∗, on using the vertical hydrostatic
balance equation.

The entropy equation can be tackled by first linearising
S in P ∗ and ρ∗, which sets the entropy perturbation as

S∗ =
P ∗

P
∗
− γ

ρ∗

ρ∗
. (69)

Likewise, the heating and cooling terms can be expanded.
The resulting entropy equation is written in terms of density
and pressure or, more compactly, as

DS∗

Dt∗
= −u∗

z∂
∗

zS
∗

+ (∂ρΞ)
∗ρ∗ + (∂PΞ)

∗P ∗, (70)
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where we have packaged heating and cooling into the single
function Ξ(ρ, P ). Returning to total velocity variables and
putting things in dimensional form, we get the set:

∇ · (ρu) = 0, (71)

Du

Dt
= −1

ρ
∇∗P ′ − zΩ2

0

(

ρ′

ρ

)

ez

− 2Ω0ez × u−∇ΦT , (72)

DS′

Dt
= −uz∂zS + (∂ρΞ)ρ

′ + (∂PΞ)P
′, (73)

S′ =
P ′

P
− γ

ρ′

ρ
. (74)

where ΦT = Ω2
0qRx

2.

5.1.2 Conservation issues

As has been pointed our for some time, the anelastic ap-
proximation struggles with conserving energy. See Brown et
al. (2012) for some discussion of this issue. Certainly, as they
stand, equations (71)-(74) do not conserve total energy.

First by taking the scalar product of (72) with u, one
obtains an equation for the kinetic energy. With a bit of
manipulation this is

∂t(
1

2
ρu2) +∇ ·

[

u
(

1

2
ρu2 + ρΦT + P ′

)]

= −P ′∇ · u+
ρ′

ρ
u · ∇P

= −P ′P
−1/γ∇ · (P 1/γ

u)− S′

γ
u · ∇P. (75)

For demonstration purposes, we assume that the back-
ground state is barotropic so that P = P (S) and thus
∇P = (dP/dS)∇S. Using this and (74) we obtain the total
energy equation

∂t(
1

2
ρu2 + V) +∇ ·

[

u
(

1

2
ρu2 + ρΦT + V + P ′

)]

=
−P ′

P
1/γ

∇ · (P 1/γ
u)− S′

γ

dP

dS

[

(∂ρΞ)ρ
′ + (∂PΞ)P

′
]

− ρS′2

2γ

d

dS

(

1

ρ

dP

dS

)

u · ∇S. (76)

Here V ≡ −S′2(dP/dS)/(2γ) plays the role of thermal
energy. We remark that for linear adiabatic perturbations
S′ = −ξzdS/dz, where ξz is the vertical component of the
Lagrangian displacement, and accordingly

V =
1

2
ρξ2zN

2

Z , (77)

which being a quadratic form in the perturbation, represents
the potential energy associated with linear buoyant motions.

Each of the three terms on the right hand side of (76)
destroys conservation. The first term is the most serious as
it is non-zero when the background entropy gradient is non-
zero, and thus only vanishes for homentropic equilibria. The
term is associated with a failure to conserve energy properly
even for adiabatic linear waves, and thus wave-action conser-
vation for those waves is incorrectly represented. The second
term vanishes for adiabatic motions, and is hence unprob-
lematic, while the third term is third order in the amplitude
of the perturbations. This third term does not affect energy

conservation for linear perturbations but could cause depar-
tures on a time scale that scales inversely with the amplitude
of those perturbations.

Similar problems afflict most formulations of the anelas-
tic equations. For example, the anelastic scheme introduced
by Bannon (1996) and employed by Barranco & Marcus
(2005, 2006), replaces the entropy perturbation Eq. (69)
with an ad hoc prescription that is only strictly true for a
vertically homentropic background. Furthermore, they show
even then that energy conservation only holds in the spe-
cial case of an isothermal background. We are aware of no
anelastic system that is conservative in general. If indeed
conservative anelastic models are confined to isothermality,
their utility is greatly reduced; they can no longer reliably
describe convection, nor the influence of stratification on
wave propagation, dynamo action, etc.

In the next subsection, we derive a set of conservative
anelastic equations that retains diabaticity. The price to be
paid, however, is a restriction on the characteristic wave-
length of the phenomena, which must be significantly less
than HZ (as in the Boussinesq approximation), yet we per-
mit the flow to range over a domain of size HZ . Physical
problems well suited to this model include: wave packets
propagating upward from the disc midplane to the surface,
where they may suffer refraction, wave channelling, or break-
ing (Bate et al. 2002), and small-scale disc turbulence lo-
calised to certain altitudes, such as MRI in the disc surface
(Fleming and Stone 2003), or convection in a limited range
of convectively unstable layers (Stone and Balbus 1996). The
system derived below bears a close similarity to the ‘pseudo-
incompressible’ equations, first presented by Durran (1989)
in the context of atmospheric dynamics. We, however, must
enforce the additional lengthscale restriction because of the
strong differential rotation exhibited by astrophysical disks
(absent in most atmospheric and planetary applications).
This dynamical feature is uniquely dominant in disks, and
presents a considerable obstacle to the derivation of consis-
tent anelastic models in that context.

5.2 A conservative anelastic model

We assume that the phenomena are spread across a domain
of spatial extent ∼ HZ , meaning that −O(HZ) < (x, y, z) <
O(HZ). However, we impose the condition that the charac-
teristic radial and vertical length scales of the phenomena
under study are much smaller, so that λ ≪ HZ , or in other
words ǫ ≪ 1. The scale of these motions in the direction
of shear, y, on the other hand, we let equal the vertical
scale height which makes the motions almost axisymmetric
(the tight-winding approximation). It is necessary to enforce
short scales, radially at the very least, because across ∼ HZ

the background shear velocity is supersonic, and large-scale
disturbances rapidly wind up into smaller scale structures.
A related issue is the scaling of the background pressure,
Eq. (18), which differs from that appearing in planetary and
stellar contexts.

In contrast to the classical anelastic approximation, we
scale the fractional thermodynamic perturbations according
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to

ρ′

ρ
∼ ǫ,

P ′

P
∼ M2. (78)

With this scaling P ′/P ∼ ǫ2Ro2, so that for Rossby numbers
of order unity we are assured P ′/P ≪ ρ′/ρ.

We introduce dimensionless independent variables, x =
λx∗, z = λz∗, and t = (λ/w)t∗, and scale the dependent
variables through

u′ = wu∗, ρ′ = ǫρ
0
ρ∗, P ′ = M2ρ

0
H2

ZΩ
2P ∗, (79)

where now ρ0 should be understood as the equilibrium den-
sity at the midplane and at R = R0. The equilibrium quan-
tities are written as earlier in Eqs (65) and (66).

5.2.1 The continuity equation

These scaling are inserted into the continuity equation which
becomes, without approximation,

ǫ

(

∂ρ∗

∂t∗
+

qRx

Ro

∂ρ∗

∂y
+∇∗ · (ρ∗u∗)

)

+∇∗ · (ρ∗u∗) = 0. (80)

Here ∇∗ ≡ ex∂/∂x
∗ + ez∂/∂z

∗ + eyλ∂/∂y. We have been
careful to retain dimensional x where it appears in equa-
tion (80) because the radial size of the domain may greatly
exceed λ. In addition, the y derivative in the del operator is
kept dimensional for the moment. Note that the term pro-
portional to ǫ in Eq. (80) is small and one might expect
to be able to neglect it. This is appropriate if disturbances
with scales ∼ λ are considered in a domain of comparable
size. However, if we wish to consider disturbances propagat-
ing over scales HZ ≫ λ, doing so may be invalid and this
term is retained for now. The contribution eyλ∂/∂y in ∇∗

can be argued to be small for disturbances of scale HZ in
the y direction. However, on account of the second term in
(80), the dependence on y may not be neglected except for
axisymmetric disturbances so we shall also retain this term.

By making use of the identity

∇∗ · (ρ∗u∗) =
ρ∗

ρ∗
∇∗ · (ρ∗u∗) + ρ∗u∗ · ∇∗

(

ρ∗

ρ∗

)

(81)

equation (80) may be rewritten in the form

λρ2

ρρ
0
HZ

(

∂

∂t∗
+

qRx

Ro

∂

∂y
+ u∗ · ∇∗

)(

ρ∗

ρ∗

)

+∇∗ ·(ρ∗u∗) = 0,

(82)
where we recall that ρ = (ǫρ∗ + ρ∗)ρ

0
.

5.2.2 The entropy equation

We begin by recognising that, for a simple ideal gas, the
density, pressure and entropy are related by

ρ = P 1/γ exp(−S/γ). (83)

Writing S = S+S′, where S is the equilibrium entropy and
S′ is the perturbation, we have

1 +
ρ′

ρ
=

(

P + P ′

P

)1/γ

exp(−S′/γ). (84)

In our ordering scheme the pressure perturbation is of higher
order than the relative density perturbation. For this reason

it will be neglected. The removal of pressure fluctuations in
this way filters out sound waves and thus leads us to an
anelastic approximation. Adopting dimensionless variables,
the entropy perturbation is then related to the density per-
turbation through

exp(−S∗/γ) = 1 + ǫ
ρ∗

ρ∗
, (85)

where we have written S∗ ≡ S′.
Neglecting the pressure perturbation therein, the heat-

ing/cooling term is expressed in terms of ρ∗/ρ∗ only. The
entropy equation will then only contain the density pertur-
bation, taking the form

(

∂

∂t∗
+

qRx

Ro

∂

∂y
+ u∗ · ∇∗

)

S∗ = −u∗

z∂
∗

zS + (∂ρΞ)
∗ρ∗.

(86)

We emphasise that the only approximations made up to now
are the neglect of the pressure perturbation together with
the linearization of the heating/cooling term . We go on to
use (85) to eliminate ρ∗ in equation (82); the latter then
takes the form

ρ

γρ0

(

∂

∂t∗
+

qRx

Ro

∂

∂y
+ u∗ · ∇∗

)

S∗ = ∇∗ · (ρ∗u∗). (87)

We remark that, on account of the smallness of the neglected
pressure perturbation on the left hand side, the above equa-
tion incorporates all corrections of order ǫ to the dominant
term on the right hand side.

5.2.3 The momentum equation

The only approximation made in the momentum equation is
the neglect of the pressure perturbation except where it ap-
pears as a gradient. We shall work directly with the unscaled
nonlinear equation, which takes the form

ρ
Du

Dt
= −∇P − 2ρΩ0ez × u− ρ∇Φ, (88)

where the potential Φ = ΦZ + ΦT , with ΦZ = Ω2
0z

2/2 and
ΦT = qRΩ

2
0x

2. We set P = P + P ′ with dP/dz = ρdΦZ/dz
which is just the condition of vertical hydrostatic equilib-
rium. Equation (88) then becomes

ρ
Du

Dt
= −∇P ′ − 2ρΩ0ez × u− ρ∇ΦT − (ρ− ρ)∇ΦZ ,

(89)

Anticipating what is needed to obtain a system that con-
serves energy, we modify equation (89) so that it becomes

ρ
Du

Dt
= −P

1/γ∇
(

P ′

P
1/γ

)

− 2ρΩ0ez × u− ρ∇ΦT − (ρ− ρ)∇ΦZ . (90)

Note that (89) and (90) differ by a term on the RHS that is
∝ P ′ and is of order ǫ smaller than the term involving the
gradient of P ′. Naively, the two equations may be consid-
ered identical, to leading order. An objection one may raise,
however, is that this procedure permits the addition of ar-
bitrary terms of the same order and we end up with a set
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of equations lacking uniqueness. This is not a problem here.
The term added to the right hand side is

P ′

γP
∇P = −P ′ρ

γP
∇ΦZ , (91)

which can be viewed as supplying an additional contribu-
tion to ρ − ρ. This contribution turns out to be ∝ P ′ and
was in fact dropped when approximating equation (84) by
(85). The procedure hence reincorporates this contribution
correct to linear order in the density and pressure perturba-
tions. This justifies the modification.

5.2.4 Final anelastic governing equations

Putting the equations in dimensional form and eliminating
S′ from (86) and (87), obtains the set:

∇ · (ρu) = − ρ

γ

(

uz∂zS − (∂ρΞ)(ρ− ρ)
)

, (92)

ρ
Du

Dt
= −P

1/γ∇
(

P ′

P
1/γ

)

− 2ρΩ0ez × u− ρ∇ΦT − (ρ− ρ)∇ΦZ . (93)

Dρ

Dt
= −ρ∇ · u. (94)

These yield five equations for the three velocity components,
ρ and P ′. The pressure perturbation, P ′, is determined after
applying (92) as a constraint condition on the velocities in
the same way as would be done in an incompressible model.
In this case the constraint (92) replaces the condition ∇·u =
0 in the incompressible case, and ∇·(ρu) = 0 in the classical
anelastic model.

An important aspect of the new equations is that they
yield conservation laws for entropy, potential vorticity and
total energy when heating and/or cooling is absent. In this
case, the constraint equation (92) becomes

∇ · (P 1/γ
u) = 0, (95)

which is in a form familiar from the pseudo-incompressible
approximation (Durran 1989, Vasil et al. 2013).

5.2.5 Conservation of energy

Taking the scalar product of (90) with u, while making use
of (95) and vertical hydrostatic equilibrium, gives us the
conservation law for the energy of the system, in the form

∂t

(

ρ

(

1

2
u2 + ΦT + ΦZ +

P

ρ(γ − 1)

))

+

∇ ·
[

u

(

1

2
ρu2 + ρ(ΦT + ΦZ) + P ′ +

γP

γ − 1

)]

= 0. (96)

The quantity P/[(γ − 1)ρ] on the left hand plays the role of
the internal energy per unit mass. It involves P rather than
the usual P on account of the neglect of P ′ in the entropy
equation. Owing to the cancellation of ρ it ultimately makes
no contribution. However, we have included it in order to
relate to the general case.

5.2.6 Conservation of entropy

Combining (92) with (95) we obtain

D

Dt

(

ρ

P
1/γ

)

= 0. (97)

This is a statement of the conservation of entropy. But note

that P
1/γ

occurs rather than the expected P 1/γ . This is
because the Eulerian pressure perturbation is assumed to
be negligible in the anelastic model.

5.2.7 Conservation of potential vorticity

Dividing (90) by ρ, taking the curl and making use of the
continuity equation (94) we obtain

ρ
D

Dt

(

ω

ρ

)

− ω · ∇u =

∇
(

P
1/γ

/ρ
)

×
(

ρ

P
1/γ

∇ΦZ −∇(P ′/P
1/γ

)

)

, (98)

where ω = ∇× u+ 2Ω0ez is the absolute vorticity. Making
use of (97) we obtain the conservation of potential vorticity

D

Dt

[(

ω

ρ

)

· ∇
(

ρ

P
1/γ

)]

= 0 (99)

Note that this conservation law survives the introduction of
viscous forces as indicated in Section 4.4.2.

6 COMPRESSIBLE DYNAMICS

Finally we deal with local models that fully incorporate com-
pressible motions, and thus describe fast phenomena such as
sound waves and transonic turbulence. In the previous ‘slow’
approximations we set the Mach number to be small, but
now suppose M can take any value. In addition, we do not
initially specify the length scales over which the dynamics
will manifest, and thus ǫ = λ/HZ will be free for the time
being. The thermodynamic perturbations are assumed to be
such that

ρ′

ρ
∼ 1,

P ′

P
∼ 1. (100)

and now the equations are set up to capture large fluctua-
tions in density and pressure.

Enforcing radial locality, we expand the background in
small x and retain the leading order terms. The equilibrium,
however, retains its full dependence on z at first. We next
scale the background fields according to Eqs (30) and (65)-
(66). Perturbation scalings are given by (64) but with M
set equal to unity. Finally, x = λx∗, etc, and t = (λ/w)t∗

where a star indicates a dimensionless order 1 quantity.
We insert the scaled form of the dependent and indepen-

dent variables into the governing equations (12)-(14). The
continuity equation becomes

Dρ∗

Dt∗
= −(ρ∗+ρ∗)∇∗ ·u∗−ǫu∗

z∂
∗

zρ
∗−ǫ

HZ

HR
u∗

x(∂R ρ)∗. (101)

Here we have made use of (28) and (29). Similarly for the
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12 H. N. Latter & J. Papaloizou

momentum equation we have

Du∗

Dt∗
= − M−2

ρ∗ + ρ∗
∇∗P ∗ − 2Ro−1ez × u∗

− Ro−1(qR u∗

x + qZ u∗

z)ey

+ ǫM−2 ρ∗

ρ∗(ρ∗ + ρ∗)

(

∂∗

zP
∗

ez +
HZ

HR
∂∗

RP
∗

ex

)

, (102)

where again use has been made of (28) and (29). In the
above, Ro= w/(λΩ0) is the Rossby number. We next analyse
these equations in the two relevant limits for compressible
flow.

6.1 The ‘small’ compressible shearing box

The next assumption we make is that the compressible
phenomena of interest takes place on small scales, so that
λ ≪ HZ , i.e. ǫ ≪ 1. We may then expand the background
thermodynamic variables in small z, and to leading order
they become constant. The continuity equation is, to lead-
ing order in ǫ,

Dρ∗

Dt∗
= −(ρ∗ + ρ∗)∇∗ · u∗, (103)

while the momentum equation is obtained by making use of
(2), (4) and (24):

Du∗

Dt∗
= − M−2

ρ∗ + ρ∗
∇∗P ∗ − 2Ro−1ez × u∗

− Ro−1(qR u∗

x + qZ u∗

z)ey. (104)

We have not explicitly constrained the velocity scale w yet. If
we insist that it is of order the sound speed thenM ∼ 1, and
w ∼ HZΩ0, but this immediately means that Ro−1 ∼ ǫ and
hence the shear and rotation terms drop out! Small-scale fast
disturbances are unaware they exist in a shearing box. As the
compressible model may also describe slower phenomena, in
addition to transonic flow, and the only approximation made
so far is that ǫ ≪ 1, we keep all the terms in (104) for the
moment. Finally, the entropy equation is simplyDS∗/Dt∗ =
Ξ∗, where heating and cooling have been incorporated into
the single function Ξ, and the background gradients in the
entropy are subdominant and do not appear.

6.1.1 Final compressible equations

In dimensional form and using total variables rather than
perturbations, we have the set

Dρ

Dt
= −ρ∇ · u, (105)

Du

Dt
= −1

ρ
∇P − 2Ω0ez × u−∇Φ− (2Ω2

0qZ)zex, (106)

DS

Dt
= Ξ, (107)

where the tidal potential is Φ = Ω2
0qRx

2. We note that
to maintain consistency in the ordering scheme, the back-
ground density and pressure are taken to be constants and
there is no vertical stratification. This is because terms in-
volving the gradient of the background state variables have
vanished as a result of the assumption ǫ ≪ 1.

A few comments about this ‘small box’ compressible
model. First, especially in numerical simulations, these equa-
tions are frequently employed to describe phenomena on
length scales of order the vertical scale height HZ, which
is strictly outside its range of validity. Indeed, many of the
seminal MRI simulations were undertaken in computational
domains equal toHZ or larger (Hawley et al. 1995, etc). If we
are tracking phenomena with length scales ∼ HZ , then we
should avoid using this approximation. However, the failure
to do so is harmless for many applications, and the results
obtained still instructive.

Second, in a number of simulations, especially those
studying the subcritical baroclinic instability, background
gradients in pressure are included in the momentum equa-
tion (the last terms in (102)), despite ǫ ≪ 1. Doing so turns
out to be far from harmless, however, as they give rise to
spurious overstabilities. This is discussed further in Section
6.4.

6.2 The ‘large’ (vertically stratified) shearing box

We next allow λ to be of order HZ and accordingly set ǫ = 1.
In addition, the velocity scale is set to be Ω0HZ so that
M = 1. As in the anelastic model earlier, our shearing box
sits at the midplane, so that Z0 = 0 and hence qz = 0. When
we expand the background flow, we obtain u = Ω0qRxey to
leading order. Vertical shear is difficult to justify, as the next
order term (quadratic in z) in u is (HZ/R0)

2 smaller than
the other terms (and even smaller than the omitted cylin-
drical terms). Unsurprisingly, Lin and Youdin (2015) report
the emergence of spurious instabilities when it is included
that may be traced back to this inconsistency.

Because z ranges over HZ , we retain the explicit varia-
tion of ρ and P with z, but Taylor expand them to leading
order in x. In order to perform the latter operation we must
assume that HR ≫ HZ as x ∼ HZ . As a consequence, the
equilibrium radial-gradient terms in (101) and (102) must
be dropped to maintain consistency: unlike the Boussinesq
approximation, there is no flexibility when it comes to in-
corporating constant background radial gradients. If radial
gradients are sufficiently sharp, their full x structure must
be retained, as is done in local models of slender tori, nar-
row rings, and localised density bumps (not treated in this
paper; see Goldreich et al. 1986 and Narayan et al. 1987).

The continuity equation (101) is then

Dρ∗

Dt∗
= − [ρ∗(z) + ρ∗]∇∗ · u∗ − u∗

z∂
∗

zρ
∗, (108)

where we have dropped terms of order HZ/HR. The mo-
mentum equation becomes

Du∗

Dt∗
= − 1

ρ∗ + ρ∗
∇∗P ∗ − 2Ro−1ez × u∗

− Ro−1qR u∗

x ey +
ρ∗

ρ∗(ρ∗ + ρ∗)
∂∗

zP
∗

ez, (109)

where again we have dropped the radial gradient in the
background pressure as subdominant. Finally, these equa-
tions in dimensional form and in total variables are identi-
cal to Eqs (105)-(107), but with qz = 0, the tidal potential
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Φ = Ω2
0qRx

2 + 1

2
Ω2

0z
2, and the background no longer uni-

form but dependant on z. We point out that this model
corresponds to what Umurhan and Regev (2008) call the
‘large shearing box’.

6.3 Conservation laws

In both compressible shearing boxes the conservation laws
of energy and potential vorticity for inviscid adiabatic flows
are relatively familiar (see e.g. Ogilvie 2016). Introducing
the specific internal energy e = P/(γ − 1), the former may
be expressed as

∂t(
1

2
ρu2 + ρ e) +∇ ·

[

ρu
(

1

2
u2 + Φ+ e) + Pu

)]

= 0. (110)

where the potential Φ is either Ω2
0qRx

2 or Ω2
0qRx

2 + 1

2
Ω2

0z
2.

If A is any materially conserved quantity that is a func-
tion of the thermodynamic variables (such as the entropy),
i.e. it satisfies DA/Dt = 0, then it follows that the quantity
Θ = (ω · ∇A)/ρ also satisfies DΘ/Dt = 0, and is thus a
generalisation of the potential vorticity.

6.4 Spurious instabilities

In the astrophysical literature one can find examples of small
compressible shearing boxes that include a constant gradient
in the thermodynamic background; this is in order to either
drive radial or vertical convection or in a misguided attempt
at completeness. Such terms are formally subdominant, but
when included these terms are dangerous, as we now explore.

Consider a small box model of an isothermal gas with
perturbation equations

Dρ′

Dt
= −(ρ0 + ρ′)∇ · u′, (111)

Du′

Dt
= − ∇P ′

ρ
0
+ ρ′

− 2Ω0ez × u′ − Ω0qRu
′

xey

+
ρ′

ρ
0
(ρ

0
+ ρ′)

(∂ZP )0ez. (112)

Here ρ
0
and (∂zP )0 are constants, and ρ = c2P , with c the

isothermal sound speed. These are essentially Eqs (108) and
(109) but with an extra constant term (formally subdomi-
nant) involving a background vertical pressure gradient so
as to allow for possible buoyancy effects.

If we linearise these equations and seek normal modes of
the type eikzz−iωt, where ω is a possibly complex frequency
and kz is a real wavenumber, then the vertical and horizon-
tal oscillations decouple. The former possess the dispersion
relation

ω2 = k2

zc
2 + ikz

(∂ZP )0
ρ0

(113)

and result in growing sound waves, on account of the second
imaginary term on the right side. This term arises explicitly
from inclusion of the constant (and subdominant) vertical
gradient in pressure. Note that the instability occurs for all
vertical wave numbers.

Let us next include a constant radial gradient, but no
vertical gradient, and replace the last term in (112) with

ρ′/[ρ
0
(ρ

0
+ ρ′)](∂RP )0ex. Again we linearise but now exam-

ine modes ∝ eikxx−iωt, where kx is a real radial wavenumber.
The ensuing dispersion relation is

ω2 = κ2 + ikx
(∂RP )0

ρ
0

+ k2

xc
2, (114)

where the epicyclic frequency is defined as κ2 = 2Ω2
0(2+qR).

Equation (114) describes classical density waves, but these
are growing because of the imaginary second term, which
issues from the (subdominant) background radial gradient.
As above, the instability attacks all radial scales.

It is straightforward to show these two instabilities
are spurious by simply examining the Høiland criteria (e.g.
Ogilvie 2016). We think it useful instead to tackle the two
linear problems directly in semi-global geometries, thereby
demonstrating instabilites fail to appear when background
gradients are incorporated in full.

To deal with the first example we turn to the large com-
pressible shearing box, which exhibits the disk’s full verti-
cal structure. In this case, the background equilibrium is
ρ = ρ

0
exp

[

−z2/(2H2)
]

, where H = c/Ω0. We perturb this

with modes ∝ e−iωt and depending only on z. The prob-
lem reduces to a single equation for the perturbed enthalpy,
h = c2ρ′/ρ:

d2h

dz2
− z

H2

dh

dz
+

ω2

c2
h = 0. (115)

This is the Hermite equation. For sensible solutions at
z = ±∞, the dispersion relation is ω2 = nΩ2

0, where n is
a positive integer. This equation should be compared with
Eq. (113). With the identification kzH =

√
n, the first terms

in each expression agree, but not the second: when the prob-
lem is done without approximation there is no instability.

It is a little more involved to show that the radial in-
stability is spurious. To do so we investigate the modes of a
global cylindrical disc with background structure ρ = ρ(R),
P = P (R). We take the modes to be isothermal, to depend
only on R, and to be ∝ e−iωt. The governing linearised equa-
tions are

− iωu′

R = − c2

ρ
∂Rρ

′ − 2Ωu′

φ +
∂RP

ρ2
ρ′, (116)

− iωu′

φ =
κ2

2Ω
u′

R, −iωρ′ = − 1

R
∂R(Rρu′

R), (117)

where the epicyclic frequency in the global problem is κ2 =
(2Ω/R)d(R2Ω)/dR. These equations may be manipulated
into a single ODE for the dependent variable W = Rρu′

R,

ρ
d

dR

[

c2

ρR

dW

dR

]

+
1

R
(ω2 − κ2)W = 0, (118)

and assume the innocuous condition that W = 0 at the
radial boundaries of the disc. Multiplying (118) by the com-
plex conjugate of W/ρ and integrating over radius, one can
obtain

ω2 =

∫

κ2 f |W |2dR
∫

f |W |2dR + c2
∫

f |dW/dR|2dR
∫

f |W |2dR , (119)

where f = 1/(ρR). Because f is always positive, both terms
in (119) must also be positive. They, in fact, correspond to
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the first and third terms in Eq. (114); there is no equiva-
lent to the imaginary term. It follows that ω is real and no
instability occurs, in contradiction to Eq. (114).

These demonstrations show clearly that when the prob-
lem is done correctly in a global or quasi-global setting (in
which the background equilibrium is accounted for without
approximation) the local instabilities vanish. They are spu-
rious. The conclusion is that it is not always safe to include
subdominant terms: they may not always offer small correc-
tions to the outcome but something radically incorrect that
on intermediate to long times may overwhelm a simulation.

6.5 Wave action and energy conservation for
small perturbations

The problems discussed above issue from the fact that the
fundamental conservation laws for wave action and energy,
applicable to small perturbations, break down when spatial
variations in the background state are incorporated incor-
rectly. In fact, these conservation laws exclude instabilities
of the kind presented in the previous subsection.

In the absence of heating and cooling, conservation laws
issue from the fact that the equations of motion can be de-
rived from a stationary action principle. The principle is
applied to the action

S [r] =
∫

L(r)d3rdt, (120)

in which we have employed a Lagrangian description and r
represents the coordinates of a fluid element. The action is
a function of the initial coordinate positions r0 and t, and
the Lagrangian density for the compressible system is given
by

L = ρ

(

1

2
u2 + Ω0(ez × r) · u− ΦT − P

(γ − 1)ρ
− B2

8π

)

.

(121)
Apart from the second term, arising from the rotating frame,
this expression is identical to that presented by Ogilvie
(2016). An expression incorporating the second term but
without a magnetic field, B, applicable to a 2D shearing
sheet, has been formulated by Goldreich et al. (1987). For
the incompressible and anelastic cases, the fourth thermal
energy term is absent and instead one must apply a conser-
vation constraint through the use of a Lagrange multiplier
(see Vasil et al. 2013). In the incompressible case, the con-

served quantity is ρ and in the anelastic case it is ρ/P
1/γ

.
One may suppose that there is a steady state back-

ground flow and consider perturbations to the particle po-
sitions such that r → r+ ξ, where ξ is the Lagrangian dis-
placement, related to the Eulerian velocity perturbation via

u′ =
∂ξ

∂t
+ u · ∇ξ. (122)

When substituted into (120), the action integral is quadratic
in the perturbations, on account of it being stationary in the
background state. Thus the action converts into

S [ξ] =
∫

L(ξ, ∂ξ/∂t,∇ξ)d3rdt, (123)

(see Ogilvie 2016, Goldreich et al. 1987 for specific evalua-
tions). Wave-action conservation follows by noting that the

background is independent of y and so expresses transla-
tional symmetry in that direction. Noether’s theorem then
yields a wave-action conservation law

∂(ρQ)

∂t
+∇ · J = 0, (124)

(see Goldreich et al. 1987), where the wave-action density is

ρQ =
∂L

∂(∂ξ/∂t)
· ∂ξ
∂y

, (125)

and the wave-action density flux is

J =
∂L

∂(∂ξ/∂r)
· ∂ξ
∂y

− Ley. (126)

The scalar products in these equations are between the two
occurrences of ξ.

One may also obtain an energy conservation law for
perturbations by replacing ∂ξ/∂y by ∂ξ/∂t in (125) and
(126) and then adding −L to (125) while removing the term
∝ ey from (126). This is useful for discussing disturbances
that do not depend on y. However, for the sake of brevity
we shall focus here on the conservation of wave action.

Alternatively, we can derive conservation laws from
the equations governing the linear perturbations in the
Lagrangian formulation (see eg. Lynden-Bell and Ostriker
1967). Note that the wave-action conservation law may be
rescaled so as to represent the conservation of y-momentum
(and then angular momentum) through an additional mul-
tiplication by R0 (the radial location of the shearing box in
the disc). This scaling can be determined by incorporating
an external forcing potential into the linearized equations
of motion and considering the consequent injection of en-
ergy and momentum in the modified conservation laws. In
this way −ρQ can be interpreted as the wave y-momentum
density.

Wave-action conservation can tell us how the amplitude
of a wave varies as it propagates through a variable back-
ground, by computing the ‘instantaneous’ wave’s properties
in the local limit. As an illustrative example we consider
the anelastic model governed by equations (90), (92) and
(94) and also the compressible model governed by (105),
(106) and (107) allowing for the incorporation of vertical
stratification if needed, all with no cooling. Extension to the
incompressible case follows by taking the limit γ → ∞.

We determine the relevant conservation law for wave
action by first averaging over the y direction. Then

Q =

〈

∂ξ

∂t
· ∂ξ
∂y

+ uy
∂ξ

∂y
· ∂ξ
∂y

− Ω0ez ·
(

∂ξ

∂y
× ξ

)〉

(127)

and

J =

〈

P ′ ∂ξ

∂y

〉

, (128)

where the angle brackets denote an integral mean over the y
domain under the assumption that periodic boundary con-
ditions apply. By integrating (124) over the volume of the
box V , given that fresh wave-action density cannot enter
through the boundaries, one discovers that the total inte-
grated wave-action density,

∫

V

ρQd3r, (129)
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is a constant, which simply expresses conservation of the to-
tal angular momentum associated with the disturbance. It
must be stressed that when the background’s variation is
retained in an inconsistent manner, the correct action con-
servation cannot be obtained.

We next apply expression (129) to the question of insta-
bility. It is clear that if a small disturbance ξ is to grow (i.e.
there exists an instability), the wave-action density must
change sign somewhere in the domain V : the only way a
disturbance can grow exponentially somewhere in the box
is if there is a cancellation with an exponentially grow-
ing disturbance with the opposite sign of wave action den-
sity elsewhere. This is precisely the mechanism that drives
corotation-type instabilities (Papaloizou & Pringle 1984),
which work via the interaction of disturbances with opposite
signs of angular momentum. To understand these instabil-
ities a global treatment is usually required (though see the
slender torus models of Goldreich et al. 1986, Narayan et
al. 1987, and Latter and Balbus 2009).

On the other hand, Eq. (129) tells us highly localised
disturbances with wave-action density of a well defined sign
cannot grow while they propagate. This precludes instabil-
ities of the type explored in the previous subsection. Note
that this principle allows velocity amplitudes to increase as
the wave enters a low density region, but it is incorrect to
view this as localised exponential growth (and hence insta-
bility). For perturbations such as these, which vary harmon-
ically in time, the amplitude of a propagating wave packet is
governed by ∇·J = 0, with a further time average applied to
J. Its properties can be determined, apart from a constant
amplitude, in the local limit for which variations in the back-
ground variables are neglected. Then the above equation
constrains, and may completely determine, the variation of
the amplitude as it propagates.

7 CONCLUSION

In this paper we start from a fully global and fully compress-
ible disk and derive a sequence of local shearing box models
that describe small regions of the disk under various assump-
tions. These approximations are consistent with the original
equations via a well defined ordering scheme and satisfy key
conservation laws (energy, potential vorticity, entropy, etc).
We stress that one must be careful in deriving local models:
various terms and background gradients cannot be thrown
in or removed arbitrarily. Spurious instabilities or other un-
desirable features may arise.

Slow phenomena on short scales can be described by
incompressible or Boussinesq equations, the two models only
differing in the relative sizes of the fractional density and
pressure perturbations. We show how vertical shear may be
incorporated in both, but that only the Boussinesq system
involves a background gradient in entropy.

We reiterate the problems inherent in anelastic models;
commonly used versions of these equations fail to conserve
energy. When ad hoc adjustments are made, conservation is
assured only in special cases, such as isothermality, which
precludes the treatment of convection. A set of conserva-
tive anelastic equations is derived that permits diabatic-

ity, but restricts the characteristic length scale of phenom-
ena, though not the domain over which the phenomena can
range. Admittedly, the restriction to small-scales, necessi-
tated by the strong shear in a thin Keplerian disc, is a strong
imposition, but it does illustrate the challenges posed by the
anelastic approximation. Applications of this conservative
set include magnetorotational or convective turbulence lo-
calised to certain layers, or the propagation and refraction
of wave packets upward in the disc.

We derive two forms of compressible model, one in
which the characteristic length scales are much less than
the scale height (the ‘small compressible shearing box’) and
one in which they are of order the scale height (the ‘large’
or vertically stratified box). Emphasis is put on the prob-
lems that arise when the background gradients are included
in the former, especially the generation of spurious acoustic
overstabilities. We discuss how these relate to the breaking
of wave-action conservation: in particular, if wave action is
properly conserved in the model, localised disturbances with
a well defined sign for the associated action density do not
undergo such overstabilities.

Finally, we point out that in a typical hydrodynamical
cascade, as energy tumbles to smaller and smaller scales,
the flow becomes more and more incompressible and ro-
tation and shear less and less important. Ultimately, on
some scale above the viscous dissipation length, the flow
may be approximated within a non-shearing incompressible
local model. This should be kept in mind when studying
the microscales in discs, such as the interactions between
dust and turbulent eddies. If the fluid is sufficiently ionised,
and a similar cascade is functioning, then any imposed mag-
netic field (no matter how weak) will ultimately dominate
on some small scale. In this case, the flow can be modelled
by the equations of reduced MHD (Biskamp 1993), and in-
deed recent simulations of the MRI show evidence of this
regime (Zhdankin et al. 2017).

The derivations in this paper were purely hydrody-
namic, as the main issues and problems issue from the ther-
modynamics, but it is straightforward to generalise these
derivations to MHD: the induction equation and Lorentz
force pose no additional complications. On the other hand,
it is extremely difficult to extend the ‘locality’ of the shear-
ing box, either by including higher order terms arising from
the disc’s cylindrical geometry (Pessah and Psaltis 2005),
or by relaxing the assumption that z . HZ (McNally and
Pessah 2015). The former case seeds spurious modes on arbi-
trarily small-scales, while the latter encounters conservation
difficulties, as pointed out in detail by McNally and Pessah
(2015). In an interesting contrast, the local manifestation of
global phenomena such as warps and eccentricities can be
described consistently in a suitably modified shearing box
(Ogilvie & Latter 2013, Ogilvie & Barker 2014).

Though it is possible to generalise the shearing box to
relativistic flow (Heinemann, private communication) one
must be careful with the radial boundary conditions. Shear-
ing periodic boundaries, as employed in numerical realisa-
tions (Riquelme et al. 2012, Hoshino 2013, 2015), are incon-
sistent with Lorentz invariance (see Peters 1983), and pro-
duce spurious effects such as ‘run-away’ particles (Kimura
et al. 2016). The infinite relativistic shearing sheet, however,
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may offer a useful platform to undertake purely theoretical
work.

Finally, as is well known, two-dimensional razor-thin
or vertically integrated shearing boxes cannot be rigorously
derived from three-dimensional equations on account of the
quadratic velocity nonlinearity in the momentum equation.
However, if it is assumed that the planar velocities exhibit
little to no vertical variation, and that phenomena possesses
planar scales much greater than HZ , it is possible to well-
motivate two-dimensional vertically integrated shearing box
equations (e.g. Shu and Stewart 1985, Stehle and Spruit
1999): a 2D incompressible model from the classical anelas-
tic equations, and a 2D compressible model from the large
compressible box.

We finish by stressing the continuing value of the lo-
cal shearing box model in understanding disc phenomena.
On account of its simpler geometry, problems are analyti-
cally and numerically easier; they hence permit researchers
to disentangle the salient physical effects and their relation-
ships, and hence make real progress in our understanding.
The resolution obtained in numerical simulations is also an
advantage local models wield over global set-ups, where typ-
ically one is more concerned with obtaining a reasonable
scale separation between radius and the vertical scale height,
rather than between the input and dissipation scales in tur-
bulence. In fact, only in local models can any kind of tur-
bulent inertial range be simulated adequately; at present
‘turbulence’ in global models resembles more a monoscale
chaotic flow. Of course, local models have their deficien-
cies, some of them outlined in Umurhan and Regev (2008),
though we feel most of their criticisms are overstated. For in-
stance, problems issuing from symmetries, boundary condi-
tions, and enhanced fluctuations can be ameliorated by sim-
ply varying the boundary conditions and/or taking bigger
boxes (admittedly certain problems do pose special difficul-
ties on this count; e.g. Fromang et al. 2013). Global models
also struggle with boundary conditions, which are often am-
biguous, unrealistic, or numerically problematic. No model
is perfect, and each has its strengths and weaknesses. If we
are alert to these, shearing boxes remain valuable tools in
helping us understand the complicated astrophysical flows
around planets, stars, and black holes.

ACKNOWLEDGEMENTS

The authors thanks the anonymous reviewer for a set of
helpful comments that improved the presentation of the
material, and Tobias Heinemann for generously reading
through a previous draft. HNL is partly funded by STFC
grant ST/L000636/1.

REFERENCES

Bannon, P. R., 1996. JAtS, 53, 3618.
Barker, A. J., Latter, H. N., 2015. MNRAS, 450, 21.
Barranco, J. A., Marcus, P. S., 2005. ApJ, 623, 1157.

Barranco, J. A., Marcus, P. S., 2006. JCoPh, 219, 21.
Bate, M.R., Ogilvie, G.I., Lubow, S.H., Pringle, J.E., 2002. MN-

RAS, 332, 575.

Biskamp, D., 1993. Nonlinear magnetohydrodynamics. CUP,
Cambridge.

Brown, B. P., Vasil, G. M., Zweibel, E. G., 2012. ApJ, 756, 109.
Durran, D.R., 1989. JAtS, 46, 1453.
Hawley, J. F., Gammie, C. F., Balbus, S. A., 1995. ApJ, 440, 742.
Haynes, P. H., McIntyre, M. E., 1987. JAtS, 44, 828.
Fleming, T., Stone, J.M., 2003. ApJ, 585, 908.
Fricke K., 1968, Z. Astrophys., 68, 317.
Fromang, S., Latter, H., Lesur, G., Ogilvie, G.I., 2013, AA, 552,

71.
Goldreich, P., Lynden-Bell, D., 1965. MNRAS, 130, 125.
Goldreich P., Schubert G., 1967. ApJ, 150, 571.
Goldreich, P., Goodman, J., Narayan, R., 1986. MNRAS, 221,

339.

Goldreich, P., Narayan, R., Goodman, J., 1987. MNRAS, 228, 1.
Gough, D. O., 1969. JAtS, 26, 448.
Hoshino, M., 2013. ApJ, 773, 118.
Hoshino, M., 2015. PRL, 114, 1101.
Kimura, S. S., Toma, K., Suzuki, T. K., Inutsuka S., 2016. ApJ,

822, 88.
Latter, H. N., Balbus, S. A., 2009. MNRAS, 399, 1058.
Lesaffre, P., Balbus, S. A., Latter, H., 2009. MNRAS, 396, 779.
Lin, M-K., Youdin, A.N., ApJ, 811, 17.
Lynden-Bell, D.; Ostriker, J. P., 1967, MNRAS, 136, 293.
McNally, C.P., Pessah, M.E., 2015. ApJ, 811, 121.
Müller, P., 1995. Rev. Geophys., 33, 67.

Narayan, R., Goldreich, P., Goodman, J., MNRAS, 1987, 228, 1.
Nelson, R.P., Gressel, O., Umurhan, O.M., 2013. MNRAS, 435,

2610.
Ogilvie, G.I., 2016. J. Plasma Phys., 82, 205820301.
Ogilvie, G.I., Latter, H.N., 2013, MNRAS, 433, 2403.
Ogilvie, G.I., Barker, A.J., 2014, MNRAS, 455, 2621.
Ogura, Y., Phillips, N. A., 1962, JAtS, 19, 173.
Papaloizou, J.C.B., Pringle, J. E., 1984, MNRAS, 208, 721
Pessah, M.E., Psaltis, D., 2005. ApJ, 628, 879.
Peters, P. C., 1983. Am. J. Phys., 51, 791.
Riquelme, M. A., Quataert, E., Sharma, P., Spitkovsky, A., 2012.

ApJ, 755, 50.
Shu, F. H., Stewart, G. R., 1985. Icarus, 62, 360.

Spiegel, E. A., Veronis, G., 1960. ApJ, 131, 442.
Stehle, R., Spruit, H. C., 1999. MNRAS, 304, 674.
Stone, J. M., Balbus, S. A., 1996. ApJ, 464, 364.
Wisdom, J., Tremaine, S., 1988. AJ, 95, 925.
Umurhan, O. M., Regev, O., 2004. AA, 427, 855.
Umurhan, O. M., Regev, O., 2008. AA, 481, 21.
Vasil, G. M., Lecoanet, D., Brown, B.. P., Wood, T. S., Zweibel,

E. G., 2013. ApJ, 773, 169.
Zhdankin, V., Walker, J., Boldyrev, S., Lesur, G., 2017. MNRAS,

467, 3620.

APPENDIX A: ENERGY CONSERVATION
WITH VERTICAL SHEAR

The origin of the energy source term on the right hand of
(37) can be understood more generally by considering the
basic equation of motion (2). From this we may obtain with-
out assuming ∇ · u = 0,

∂t(ρ(
1

2
u2 + Φ)) +∇ ·

[

( 1
2
u2 + h+ Φ)ρu

]

= −P

ρ

Dρ

Dt
, (A1)

where now we have h = P/ρ. If ρ were constant (A1) would
express conservation of energy. But in order to be consistent
with qZ 6= 0, this cannot be case and the rate of doing PdV
work provides a source.
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Given that ρ′ is small, to lowest order in ǫ, we may
set Dρ/Dt = u · ∇ρ. We also replace P by P − P 0 thus
measuring it relative to the constant value in the centre of
the box. In addition, to lowest order in ǫ we neglect P ′ and
ρ′. We can then set ρ = ρ and P = P − P 0 and perform a
first order Taylor expansion about the centre of the box to
obtain the latter quantity and hence the rate of doing PdV
work. To first order in ǫ, we obtain

∂t(ρ(
1

2
u2 + Φ)) +∇ ·

[

( 1
2
u2 + h+Φ)ρu

]

= −u · (∇ρ)0
ρ0

(

(∂RP )0x+ (∂ZP )0z
)

. (A2)

After some manipulations and use of (19) this can be written
as

∂t(ρ(
1

2
ρu2 +Φ)) +∇ ·

[

( 1
2
u2 + h+ Φ+Q)ρu

]

= −2ρ
0
Ω2

0qZz ux +Qρ∇ · u (A3)

where

Q =
(∂Rρ)0(∂RP )0x

2 + (∂Zρ)0(∂ZP )0z
2 + 2(∂Rρ)0(∂ZP )0zx

2ρρ
0

.

(A4)
When ∇ · u is neglected, the source terms in (37) and (A3)
are seen to be identical.

APPENDIX B: POTENTIAL VORTICITY
CONSERVATION IN GENERAL BOUSSINESQ
SYSTEMS

In Section 3 we derived conservation laws in the more
straightforward case of vertical stratification. Now we exam-
ine the general barotropic case, for which N2

RH
2

R = N2

ZH
2

Z

and qZ = 0. We introduce the convenient ‘total’ buoyancy
variable θs = HZρ

′/ρ
0
+z+xHZ/HR, which transforms the

entropy equation into Dθs/Dt = 0. Next we take the curl of
(53) and obtain an equation for the vorticity in the shearing
box:

Dω

Dt
= ω · ∇u−N2

Z∇θs × (ez + exHZ/HR) . (B1)

We now take the inner product of (B1) and ∇θs, which gives

∇θs ·
Dω

Dt
= ∇θs · [(ω · ∇)u] . (B2)

The gradient of the entropy equation is

D∇θs
Dt

= −(∇u) · ∇θs. (B3)

Finally, we examine the total derivative of ∇θs · ω, and see
that

D(∇θs · ω)

Dt
= 0 (B4)

The final result is:

∂Θ

∂t
+∇ · (Θu) = 0, (B5)

where the conserved quantity is Θ = ∇θs ·ω. This we regard
as the potential vorticity in the Boussinesq shearing box for
a barotropic flow with general stratification.
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