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Carl Peter Turner

We study three types of theories, using supersymmetry and ideas from string theory
as tools to gain understanding of systems of more general interest.

Firstly, we introduce non-relativistic Chern-Simons-matter field theories in three di-
mensions and study their anyonic spectrum in a conformal phase. These theories have
supersymmetric completions, which in the non-relativistic case suffices to protect cer-
tain would-be BPS quantities from corrections. This allows us to compute one-loop
exact anomalous dimensions of various bound states of non-Abelian anyons, analyse
some interesting unitarity bound violations, and test some recently proposed bosoniza-
tion dualities.

Secondly, we turn on a chemical potential and break conformal invariance, putting
the theory into the regime of the Fractional Quantum Hall Effect (FQHE). This is illus-
trated in detail: the theory supports would-be BPS vortices which model the electrons
of the FQHE, and they form bag-like states with the appropriate filling fractions, Hall
conductivities, and anyonic excitations. This formalism makes possible some novel
explicit computations: an analytic calculation of the anyonic phases experienced by
Abelian quasiholes; analytic relationships to the boundary Wess-Zumino-Witten model;
and derivations of a wide class of QHE wavefunctions from a bulk field theory. We also
further test the three-dimensional bosonization dualities in this new setting. Along the
way, we accumulate new descriptions of the QHE.

Finally, we turn away from flat space and investigate a problem in (3+1)-dimensional
quantum gravity. We find that even as an effective theory, the theory has enough struc-
ture to suggest the inclusion of certain gravitational instantons in the path integral. An
explicit computation in a minimally supersymmetric case illustrates the principles at
work, and highlights the role of a hitherto unidentified scale in quantum gravity. It
also is an interesting result in itself: a non-perturbative quantum instability of a flat
supersymmetric Kaluza-Klein compactification.
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Quantum Hall Notation
For ease of reference, we collect some of the more common symbols used in Parts III-V:

N Number of electrons (vortices)

ν Filling fraction

Aµ, B Background electromagnetic gauge field and its magnetic field

µ Chemical potential

R Radius of quantum hall droplet in ground state

Bosonic Chern-Simons theory

p Rank of gauge group and number of matter flavours

k Level of non-Abelian part of the gauge group

k′ Level of the Abelian part of the gauge group

φ Bosonic field

aµ, fµν Gauge field and field strength (non-Abelian part from Part IV on)

ãµ, f̃µν Gauge field and field strength (Abelian part from Part IV on)

Matrix model

N Rank of gauge group (and hence number of electrons or vortices)

p Number of flavours

Z Complex N ×N matrix

ϕi Bosonic scalar with flavours i = 1, . . . , p

α U(N) gauge field
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PART I

Introduction





1 Context and Goals

Most of the interesting problems in theoretical physics today lie in the mysterious depths
beyond perturbation theory. There is a veritable zoo of strongly interacting phenom-
ena, challenging our understanding of even the most basic systems, like electrons in the
plane. Getting a grip on these exotic effects is one of the main enterprises in modern
physics, which explains the sustained interest in dualities that relate hard-to-understand
systems to simpler ones, as in holography.

Yet, rather remarkably, certain non-perturbative phenomena turn out to be amenable
to direct mathematical calculation. From self-dual spacetimes to vortices in the plane,
mathematical physicists have long enjoyed the particular elegance of BPS states. These
normally sit at very special points of configuration spaces, but are not simply math-
ematical curiosities. Instead, they can naturally generate significant contributions to
physical processes, and enjoy topological protection guaranteeing their stability.

Our perspective on these states is to be slightly different. In this dissertation, we will
tackle some hard problems by actively exploiting the fact that we know a lot about such
configurations. The strategy is to choose a special version of the problem which should
have a nice answer in terms of known topologically protected states, and then see what
we learn about the general case from going ahead and solving the special case. We will
explore applications of this approach to non-perturbative physics to physical problems
in both condensed matter and quantum gravity.

Strongly interacting matter holds much interest from mathematical, physical and ex-
perimental perspectives. As we shall shortly outline, we will be interested in theories
whose degrees of freedom are anyonic in nature. Firstly, we shall study conformal quan-
tum mechanics, using non-relativistic supersymmetry to constrain the spectrum of par-
ticles in a harmonic trap. Then we shall turn to quantum Hall states. Here, the magic
ingredients are vortices in Chern-Simons theories sat at a critical coupling. We will find
these topological solitons provide a convenient model for electrons in the plane: we can
draw on the understanding of such BPS states which has been accumulated by string
theorists in order to understand the behaviour of electrons in impressive detail.

Meanwhile, in quantum gravity, there are long-standing confusions about the gen-
eral question of what geometries we need to consider as quantum fluctuations of our
spacetime. This goes back to the early days of the subject, and the foundational work of
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Hawking and contemporaries. In many ways, it is not surprising that we are confused,
since we famously do not know what a full theory of quantum gravity should look like.
Yet there are concrete, low-energy questions which we are able to ask. We will ask and
answer one such question, chosen carefully according to the principles above. This will
then lead us to more friendly topological configurations, this time in the form of twisted
versions of four-dimensional space. This will clarify some of the confusion about how
and when instantons contribute, and reveal some remarkable unappreciated structure
inherent to all theories of quantum gravity.

It is worth highlighting that although we are using toy models, the problems we
will solve are capturing important physics. We will return to this point in more detail
throughout the work, and reiterate it during the conclusion in Chapter 23. Our super-
conformal quantum mechanics of anyons is exactly equivalent to a classic problem in
the field. In the context of Hall physics, we will see we are working in the same univer-
sality class as the known non-Abelian states we investigate. In the gravitational setting,
we shall see that our basic findings about the structure of the theory are insensitive to
details like matter content and background.

All that said, let us begin by taking a moment to review the wider context of both
anyonic physics in the plane and quantum gravity, and point towards the problems we
will address.

The Quantum Hall Effect and Anyonic Physics

The quantum physics of electrons in the plane is remarkably rich. Electrons in the low-
est Landau level exhibit an astonishing array of compressible and incompressible states,
the latter with both Abelian and non-Abelian topological order. The main goal in the
condensed matter section of the dissertation is to examine in a new light one of the
many striking effects to be found in these systems: the Quantum Hall Effect.

A Potted History

When a transverse magnetic field B is applied to a metal, the Lorentz force on electrons
gives rise to the classical Hall effect, which is easy to understand. Attempting to pass
a current through the sample causes electrons to move parallel to the current – but
the magnetic force proportional to v × B drives them toward one side of the sample.
This induces a voltage orthogonal to the current flow which balances this force. Taking
the ratio of the current density and induced electric field allows one to define the Hall
conductivity σH = j1/E2.
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However, samples can develop interesting behaviour as we crank up the magnetic
field: the graph of the Hall conductivity exhibits striking plateaus. Moreover, these
occur at very precisely quantized values of σH given essentially by the reciprocals of
integers. This is called the integer quantum Hall effect.

This counter-intuitive but intriguing phenomenon (which won Klaus von Klitzing the
1985 Nobel Prize) can be understood by considering the fate of localized electron states
in the metal. The interaction between the quantization of electron orbits into Landau
levels and these localized states gives rise to special phenomena when ν Landau levels
are completely filled. One can very elegantly understand the quantization of the Hall
conductivity in terms of the integer nature of a topological quantity: the Chern number
of a certain Berry-like connection over the space of electron states.

This turned out to be only the tip of the iceberg.

Figure 1.1: Hall resistance (essentially the inverse of the conductivity) is the stepped
diagonal line, given as a function of the magnetic field [8]. Filling fractions ν with
conspicuous plateaus are labelled. The integer series ν = 4, 3, 2, 1 is also labelled.

The 1998 Nobel Prize was awarded to Laughlin, Störmer and Tsui for the discov-
ery and partial phenomenological explanation of the so-called fractional quantum Hall
effect. A series of further plateaus were uncovered, corresponding to certain rational
filling fractions ν = p/q. These are visible in Figure 1. (In Laughlin’s original analysis,
he gave a series of explicit trial wavefunctions to describe the electron states at filling
ν = 1/q.)
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These states of matter have some exotic properties, including quasiholes with frac-
tional charge and anyonic statistics. To be concrete, in the ν = 1/q state, Laughlin
showed quasiholes have a charge which is 1/q times that of the electron. Later, Arovas,
Schrieffer and Wilczek used a plasma analogy for the state to justify Halperin’s conjec-
ture that the statistical phase from interchanging two quasiholes is π/q. This is to be
contrasted with the more familiar cases of bosons and fermions, which have phase 0 or
π respectively. The microscopic mechanism by which these states form is still not very
clear.

We are not yet at the bottom of the rabbit hole, however. The right way of under-
standing the many other observed states remains an open problem. One picture, due
to the work of Haldane, Halperin and others, describes the hierarchy states. In this pic-
ture, one forms Laughlin states from Laughlin quasiparticles, and then repeats this
process with the new quasiparticles. Another is the composite fermion picture, in which
we dress electrons with magnetic flux and form integer quantum Hall states from these
new composite objects.

More intriguingly, there is another possible type of state which it seems we may need
to worry about. The above theories are Abelian, in various senses. For instance: their
effective theories are Abelian Chern-Simons field theories, and the algebras describing
their quasiholes have trivial fusion rules. But there is a generalization: we must study
the predictably named non-Abelian fractional quantum Hall effect.

Certain models, developed as putative explanations of unusual states such as the
filling fraction ν = 5/2 state, have yet more incredible properties. The most iconic
property is famous for its possible applications in quantum computing: quasiholes may
have non-Abelian statistics. Interchanging a pair of identical quasiholes in such a theory
can leave one in a linearly independent state. The dream is that the particles’ memory
of how they have been braided around each other will one day provide a robust form
of quantum data storage.

The mathematics of these states is very rich, and we lack good experimental access
to systems realizing them. (Experiments to even verify we are producing these states in
the laboratory sit right on the edge of what is achievable.) As a result model-building
has dominated the quantum Hall literature, which is very fragmentary. It is filled with
different theories which are often the result of brilliant guesswork and intuition – but
the interrelations between these models are unclear and subtle.

In this dissertation, we will place these theories on a firmer footing, and work to-
wards making the patchwork into a coherent whole. We will aim to understand the
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relationships between these different theories at a deeper level – and see what else we
learn along the way.

The Perspective of This Dissertation

We will investigate the many different models of the fractional quantum Hall effect
which have emerged over the past three decades, but from a perhaps atypical perspec-
tive: that of a high-energy theorist. This will show us new ways to understand the
deep and intricate connections between several approaches to understanding quantum
Hall states: microscopic wavefunctions [9], low-energy effective Chern-Simons theories
[10, 11, 12, 13, 14] and boundary conformal theories [15, 16].

The key idea is to model the electrons as vortices, allowing us unprecedented control
over their behaviour. Pleasingly, or possibly confusingly, this means we are assembling
topologically ordered states from topologically protected ones.

We will also find ourselves in a position to offer some novel models of these theories,
presenting in Part IV both a new matrix model description of a wide class of non-Abelian
states and a new fermionic Chern-Simons-matter field theory description of the same
states.

Matrix models go back to those of Pasquier and Haldane [17] (see also [18]) to de-
scribe the compressible state at half-filling. Subsequently, Polychronakos introduced
a matrix model for the Laughlin states [19], inspired by earlier work [20]. These ele-
gantly capture the appropriate topological order of certain quantum Hall states. What
we will see can be viewed a generalization of these matrix models to a wide class of
non-Abelian quantum Hall states.

We will also see that the matrix model gives one more mathematical control over
these states, exhibiting in Part III and Appendix C an explicit analytic calculation of the
Abelian quasihole charge and statistics, circumventing the need for the plasma analogy.

The fermionic theory, meanwhile, is perhaps reminiscent of some early work on par-
tonic models of the Abelian quantum Hall effect [21, 22]. However, it appears to also
be a genuinely new model.

Along the way we will pick up some bonus facts of interest beyond condensed mat-
ter: in the investigations of edge theories in Part V, we will find these matrix models
offer an alternative description of Wess-Zumino-Witten theories. Also, the work on
bosonization in Parts II and IV leads to a generalization of certain three-dimensional
dualities which were recently proposed [23], and which are the topic of extensive cur-
rent research.
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Supersymmetry and Conformal Phases

Supersymmetry is a much beloved tool of high energy theorists. Supersymmetric field
theories are often tractable, even at strong coupling, yet remain rich enough to exhibit
a wide range of interesting dynamics.

In contrast, supersymmetric theories are much less studied in the condensed matter
community, even in the limited role of toy models for strongly coupled phenomena. In
part this is because supersymmetry typically provides analytic control for relativistic
theories at vanishing chemical potential. At finite density, where most problems of
interest in condensed matter lie, supersymmetry is usually broken and any advantage
it brings is lost.1 And of course, if supersymmetry is not broken, then most likely it is
of questionable use in understanding the real world.

There is, however, a class of theories in d = 2 + 1 dimensions which are supersym-
metric, yet non-relativistic [30]. In these theories, supersymmetry is retained even at
finite density. Moreover, the lack of anti-particles means that it is easy to isolate (say)
the bosonic sector of the theory and retain most of the power of the supersymmetry.2

Despite the vast literature on supersymmetric field theories, the quantum dynamics of
these models remains relatively unexplored. One of our achievements will be to show
that the low-energy physics of these theories is that of the fractional quantum Hall ef-
fect. This remarkable fact is what will underlie the success of the story we told above.

However, we will also find it interesting to discuss these theories at zero density, and
this will actually be our first port of call after introducing them in Part II. In this regime,
the physics will turn out to be scale-invariant, and in fact conformally symmetric. It is
natural to be curious about the spectrum of operators in such a theory – moreover, this
is equivalent to an interesting and well-known problem, namely studying the spectrum
of anyons in a harmonic trap [31, 32, 33, 34, 35].

This, then, shall be our true starting point: we will investigate the spectrum of con-
formal anyons in a harmonic trap. In doing this, we shall introduce a class of highly
symmetric theories which one can also push into a finite density phase. Investigating
this phase will then lead us on to the phenomenology of the quantum Hall effect in all
its remarkable complexity.

1There are a number of notable exceptions, including the role of supersymmetry in disorder [24], the
possibility of emergent supersymmetry [25, 26, 27, 28] and the study of supersymmetry protected phases
[29].

2This can be understood in terms of restrictions on what loop diagrams it is possible to write down
in the absence of anti-particles, and hence in the absence of pair production.
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Quantum Gravity

Probably the most famous thing about quantum gravity is the fact, mentioned above,
that we do not know what it is. Of course, the real meaning of this is that we have not
yet identified the right ultra-violet completion of quantum gravity. To put it another
way, high-energy questions, such as what happens near the centre of black holes, are
beyond us. The answers could be found in string theory [36], loop quantum gravity [37],
asymptotic safety [38], or any number of other candidates of varying complexity and
plausibility. But this leaves us some room for manoeuvre if we restrict our questions to
lower energy processes: we are allowed to ask about infra-red physics [39].

Bearing this idea in mind, let us return to the early days of quantum gravity. It was
realized long ago that one can import ideas from normal quantum field theory to for-
mulate gravity in a way at least naively amenable to quantization: the path integral
[40].

The idea is very natural for a quantum theorist. Following Feynman, the idea is to
take your classical vision of a theory – for gravity, a geometric manifold, with a metric
and connection – and define your quantum theory in terms of a sum over all possible
configurations in the classical theory. One can happily use this formalism to do many
simple computations, such as the computation of Casimir energies [41, 42] in the pres-
ence of compact directions.

Yet there is a fundamental and deeply problematic question which has long plagued
the subject: What spacetimes should we include in the gravitational path integral? This has
been an important question ever since Wheeler’s vision of spacetime foam [43] and only
became more so when gravitational instantons [44] were proposed as non-perturbative
corrections to gravitational theories over 30 years ago; and it has never really found a
satisfactory answer.

Moreover, calculating the contributions from these instantons has proved surpris-
ingly tricky, despite being studied ever since 1978 when various authors like Hawking
[44], Gibbons and Perry [45] drew attention to these corrections.

In spite of these mysteries, physicists have discussed many possible consequences
of including topologically distinct spacetimes in the path integral. However, our lack
of control over quantum gravity – especially in the high-energy regime – has been ap-
parent in the uncertainty in assessing such proposals. Perhaps the most remarkable
of these suggestions is an idea of Sidney Coleman: that summations over wormholes
could explain the values taken by the observed constants of nature, most significantly
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the cosmological constant [46, 47]. Earlier, Hawking had proposed [48] a slightly dif-
ferent mechanism, also related to wormholes, to constrain the cosmological constant.
Various other speculative mechanisms relying on summations over topologies have also
been mooted (e.g. [49]), but again rarely with precise computations to support them.

Is there something in ideas like these? It is difficult to be sure. Our progress is im-
peded by the lack of deep understanding of the theory, and the absence of any way to
check our answers. It is a real problem to have no concrete calculations to guide our
intuition, and no precise mathematical formulation of the rules of the game. Anyone
trying to go beyond the perturbative level in effective quantum gravity is to some extent
stumbling around in the dark.

A Concrete Calculation

In this dissertation, we present an attempt to improve the situation a little. Since it
would be nice to offer a clean, explicit instanton computation, we carefully choose a
theory where everything can be well-controlled.

Our concrete example lies in a minimal supergravity theory. The choice to work with
supersymmetry eliminates some unpleasant aspects of the pure gravity theory (like
high-order divergences and Casimir energies) and makes the theory amenable to ana-
lytic evaluation of various functional determinants. These nice features will allow us to
neatly compute one-loop effects around instanton backgrounds. Nonetheless, the un-
derlying physics we are investigating seems insensitive to our special choice of theory.

The other choice we get to make is what background to work in – or to put it another
way, what boundary conditions to use. It is convenient to choose a simple, flat topology
which we can deform in ways we understand. A 4d flat spacetime with one dimension
compactified is a good choice: R1,2 × S1.

We will think of this (in a happy return to (2+1)-dimensional physics!) as being de-
scribed by an effective 3d supersymmetric theory in which the radius of the circle R is
a dynamical field. We will discover that, just as that 3d theory has Dirac monopoles
[50], the full 4d theory has Kaluza-Klein monopoles [51, 52]. These are the famous
Taub-NUT spaces, special topological instantons involving twists in the circle factor S1.
These play an important role in the dynamics of the theory – they generate a potential
for the radius R.

We will evaluate this potential, overturning in particular a long-standing mistake in
Hawking and Pope’s original attempt [53] to do this calculation. Along the way we will
identify a new scale in quantum gravity, find a sensible set of rules governing instanton
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contributions, and discover the remarkable way that the gravitational theory organizes
its non-perturbative structure.
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2 The Grand Plan

The five main parts of this dissertation are described in this chapter. The four sections
on anyonic physics build on each other, but each part of the thesis aims to be fairly
independent.

We shall begin the thesis by introducing non-relativistic versions of both supersym-
metry and conformal symmetry in Part II, and studying a theory possessing both sym-
metries together.

Then we shall deform these theories, and get on to the main topic of the thesis: the
quantum Hall effect. The main characters of our work on Hall physics are a Chern-
Simons field theory and a matrix model quantum mechanics. We are going to explore
and derive a web of theories of quantum Hall physics which looks something like what
is shown in Figure 2.1.

The five circles here label the five different types of description we will investigate.
The links between them are annotated with a brief summary of the way in which we
will understand the connection and colour coded: purple edges are those which are
already established; red edges indicate new connections to the matrix model which we
offer in Parts III, IV and V; and green edges indicate other new relationships due to
bosonization as discussed in Part IV.1

These relationships are all expanded upon in the following plan of attack.

Part VI, meanwhile, deals with our particular quantum gravity problem, which we
study for the insight it offers into quantum gravity theories in general.

Part II

We have two main aims in the opening part of this thesis. One part of our motivation
is to study the classic problem of the spectrum of anyons in a harmonic trap. This is a
very nice problem, in that even for non-Abelian anyons, a portion of the spectrum can be
analytically determined. This spectrum has several rather interesting properties which
we will analyse. These range from apparent violations of a unitarity bound (which leads

1The grey edge represents a trivial further connection which arises from performing the reduction to
the edge theory and the level-rank duality in the other order.
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Figure 2.1: The web of ideas in Quantum Hall physics which we will explore.

to an interesting discussion of the role of certain non-topological solitons in the theory)
to understanding a duality between bosonic and fermionic versions of the theories we
study.

The other ambition we have for the opening chapters is to set up some of the machin-
ery of both non-relativistic field theory and bosonization which we will draw on in our
discussion of quantum Hall physics which follows on from it.

In particular, we will introduce a class of non-relativistic d = 2+1 field theories. These
theories are very special, with a very particular choice of their free couplings – they sit at
a conformal point, which is the end-point of a renormalization group flow. Moreover,
they can even be made supersymmetric, and we shall exploit this in order to make
progress with our questions about the spectrum. However, we will also see that any
supersymmetric partners always decouple from the questions we ask: supersymmetry
is relegated to playing an advisory role.

30



Part III

Here, the basic ingredients of what is to follow are introduced, and explored in the
simplest case: Laughlin physics, or from the field theoretic point of view we shall begin
from, Abelian Chern-Simons theories at finite density.

To begin, we show that adding a chemical potential to the theories of Part II leads us
to a totally new phase whose low-energy physics exhibits the phenomenology of the
Abelian fractional quantum Hall effect. Firstly, we will see that it has supersymmetric
(BPS) vortices, and then investigate these in the light of old work on the moduli space of
supersymmetric solitons – the upshot is that the dynamics of BPS vortices is governed
by the quantum Hall matrix model!

From this, much of the familiar phenomenology of the quantum Hall effect follows.
The ground state of multiple vortices is related to the Laughlin wavefunction, while
the collective excitations of vortices are chiral edge modes and quasiholes. By explicit
computation of the Berry phase, without resorting to the plasma analogy, we can even
show that quasiholes have fractional charge and spin.

We will see that this system provides a framework in which one can map the con-
nections between different approaches to the quantum Hall effect, from microscopic
many-body physics, to the long-distance effective Chern-Simons theory, to the hydro-
dynamic non-commutative description.

However, we can push these techniques beyond these Abelian theories.

Part IV

Next, we propose a matrix quantum mechanics for a class of non-Abelian quantum Hall
states. The model describes electrons which carry an internal SU(p) spin. The ground
states of the matrix model include spin-singlet generalizations of the Moore-Read and
Read-Rezayi states and, in general, lie in a class previously introduced by Blok and Wen.

How do we understand the way these matrix models arise? The work of Part III
points the way: the effective action for these states is a U(p) Chern-Simons theory. We
show how the matrix model can be derived from quantization of the vortices in this
Chern-Simons theory. Moreover, we explain how the matrix model ground states can
be reconstructed as correlation functions in the boundary Wess-Zumino-Witten (WZW)
model which comes with that Chern-Simons theory.
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We also look beyond the matrix model, and look at what the previously introduced
bosonization dualities have to say about our quantum Hall field theories as we replace
bosonic matter on one side replaced by fermionic matter on the other.

This means exploring the non-relativistic physics of these theories in the quantum
Hall regime. We will have already shown that the bosonic theory lies in a condensed
phase and admits vortices which form a non-Abelian quantum Hall state. We ask
how this same physics arises in the fermionic theory. We find that a condensed bo-
son corresponds to a fully filled Landau level of fermions, while bosonic vortices map
to fermionic holes. We confirm that the ground state of the two theories is indeed de-
scribed by the same quantum Hall wavefunction.

Part V

The links to the WZW boundary theory are much stronger than outlined above, how-
ever. We shall demonstrate that, in the large N limit, our non-Abelian matrix model
becomes the chiral WZW conformal field theory.

This represents a very non-trivial generalization of the chiral boson derivation we
saw in Part IV. WZW theories are very subtle, and we do not offer a construction of the
WZW group-valued field in terms of matrix model degrees of freedom.

Nonetheless, the identification manifests itself clearly in two ways. First, we construct
the left-moving Kac-Moody current algebra from matrix degrees of freedom. Secondly,
we compute the partition function of the matrix model in terms of Schur and Kostka
polynomials and show that, in the largeN limit, it coincides with the partition function
of the WZW model.

Part VI

The last part of this dissertation turns away from quantum Hall physics to look at in-
stanton solutions in a rather different setting: quantum gravity.2

To be concrete, we will study the quantum dynamics of N = 1 supergravity in four
dimensions with a compact spatial circle. At a direct level, what we are doing amounts

2It is amusing to note that there is another link between the quantum Hall story and our work on
quantum gravity, which can be seen by first recalling that quantum Hall states are famously quantum
ordered with what is referred to as topological order. The parallel fact is the point made by Hartnoll and
Ramirez that quantum gravity on a compact spatial circle actually exhibits another form of quantum or-
der [54] which can be understood through analysing precisely the same instantons which we investigate.
The argument is that to exhibit massless modes, or avoid confinement, the compactified theory should
have a special property. That property is quantum order, and [54] makes the case for it.
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to a quantum mechanical stability analysis of such solutions. Supersymmetry ensures
that the perturbative contributions to the Casimir energy on the circle cancel. However,
instanton contributions remain. These render this compactification on a circle unstable,
even in the presence of supersymmetry, and the background dynamically decompact-
ifies back to four dimensions.

Our interest, however, is ultimately in how the calculation (i) provides a testing ground
for some old ideas in Euclidean quantum gravity, and (ii) provides new insight into the
hidden structure of effective gravitational theories. In particular, we show that gravi-
tational instantons are associated to a new, infra-red scale which can naturally be ex-
ponentially suppressed relative to the Planck scale. This arises from the logarithmic
running of the Gauss-Bonnet term, and is generically present in any quantum gravity
theory.

There are also interesting technical details to uncover, such as the non-cancellation of
bosonic and fermionic determinants around the background of a self-dual gravitational
instanton, despite the existence of supersymmetry. It turns out that it is nonetheless
possible to complete the calculation of the superpotential capturing this instability, all
the way down to factors of

√
2 and π. We will follow this calculation in all its glorious

detail.
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PART II

Non-Relativistic Anyons





3 Introduction and Summary

The quantum mechanics of multiple, interacting anyons is a wonderfully rich problem.
It is simple to state but contains a wealth of interesting physics. Despite several decades
of interest, it remains unsolved. The purpose of this part of the thesis is to fail to solve
the harder problem of interacting non-Abelian anyons.

In this extended introduction, we will first summarize the story of Abelian anyons.
These are particles which, upon an anti-clockwise exchange, pick up a phase eiθ. We
will write θ = π/k so that the anyons are bosons when k =∞ and fermions when k = 1.
In a field theoretic language, anyons are described by a U(1) Chern-Simons theory at
level k, coupled to a non-relativistic scalar field.

We will explore the spectrum of n anyons placed in a harmonic trap. (See [31, 32] for
early work on this subject, and [33, 34, 35] for reviews.) The trap has potential

V =
ω2

2
(x2 + y2) .

To fully specify the Hamiltonian, we also need to describe any interactions between the
anyons. It turns out that the problem simplifies tremendously if the particles experience
pairwise, contact interactions [55, 56, 57, 58, 59]. The strength of these interactions is
determined by seeking a fixed point of an RG flow. However, the sign of the coupling
is arbitrary. This leaves us with two options – attractive and repulsive interactions –
exhibiting interesting and different physics.

As an aside, we should mention that when these contact interactions are turned on,
the quantum mechanics has an SO(2, 1) conformal invariance of the type first intro-
duced in [60] and subsequently explored in [61]. This conformal invariance will play
an important role in our approach, and indeed the entirety of Chapter 4 is devoted to
discussing its nature, but we will not focus on it for the rest of this introduction.

Perhaps the best way to illustrate the physics of anyons is simply to look at the spec-
trum. Low-lying states were computed numerically for n = 3 anyons with repulsive
interactions by Sporre, Verbaarschot, and Zahed [62]. Their results are shown in Fig-
ure 3. (A similar plot for n = 4 anyons can be found in [63].) The energy E is plotted
vertically and the statistical parameter θ ∈ [0, π] is plotted horizontally. The spectrum
on the far left coincides with that of free bosons; on the far right it coincides with free
fermions. In between, things are more interesting.
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Figure 3.1: Low-lying energy levels of 3 anyons in a harmonic trap. In terms of our
conventions, the plot actually shows E − ω, measured in units of ω. Taken from [62].

This plot contains some things that are easy to understand and some things that are
hard. Let’s start with the hard. The most striking feature is that there is a level crossing
of the ground state as θ is increased. Roughly speaking this occurs because the anyons
have an intrinsic angular momentum that scales as θ. As we increase θ, we increase both
the angular momentum and the energy of the state. For some value of θ, both of these
can be lowered if the particles start orbiting in the opposite direction to their intrinsic
spin. This is where the ground state level crossing occurs. A similar level crossing is
expected for all n, but little is known beyond these numerical results.

Some Simple States

In contrast, some aspects of the spectrum are fairly easy to understand. In particular,
there are a number of states whose energy varies linearly with θ. Among these is the
small-θ ground state, but not the large-θ ground state which takes over after the level
crossing. For obvious reasons, these are sometimes referred to as “linear states” [64, 65].
They persist in the spectrum of n anyons and, in all cases, their wavefunctions and
energies are known exactly. For example, in the n anyon quantum mechanics with
repulsive interactions, the ground state close to the bosonic end of the spectrum (i.e.
for suitably large k) has energy

E =

(
n+

n(n− 1)

2k

)
ω . (3.1)

Here the first term is simply the ground state energy of n particles in a two-dimensional
harmonic trap (it is 2 × 1

2
~ω for each particle, with ~ = 1). The second term can be

thought of as a correction due to the inherent angular momentum of the particles.
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The fact that some states in the spectrum have such a simple expression for their
energy strongly suggests that there is some underlying symmetry that protects them.
Indeed there is: it is supersymmetry! This is particularly surprising given that the any-
onic quantum mechanics does not have supersymmetry, but is nonetheless true. The
reasoning starts with the observation that it possible to write down a supersymmet-
ric theory of two species of anyons whose spins differ by 1/2 [30]. When restricted to
states involving just one species of anyons, this reduces to our problem of interest. Such
a statement would not be true in relativistic theories, in which particle-anti-particle pair
creation prevents other fields from decoupling at the loop level. However, the lack of
anti-particles means that it does hold in our non-relativistic theories. The supersym-
metric theory of anyons has short, BPS multiplets whose energies are fixed in terms of
their quantum numbers [66, 67]. These BPS states coincide with the “linear states” in
the anyon spectrum [1].

It’s worth explaining in more detail how this arises. For n anyons, the BPS states have
energy given by

E = (n− J )ω (3.2)

with J the total angular momentum of n anyons. One of the surprising properties of
the angular momentum of anyons is that it does not add linearly. Instead, one finds that
J ∼ n2 for large n, together with some sub-leading corrections which are more subtle
and depend, even classically, on a choice of regularization procedure [68, 69, 70]. (We
will review this in some detail later.) In the present context, a careful analysis shows
that

J = −n(n− 1)

2k

so that the BPS bound (3.2) indeed reproduces the energy spectrum (3.1).

Non-Abelian Anyons

The purpose of this part of the thesis is to rederive the above results, and extend the
discussion to non-Abelian anyons. The simplest way to construct such particles is to
couple fields to a non-Abelian Chern-Simons theory. For example, in Chapter 5, we
will consider an SU(p)k Chern-Simons theory coupled to scalar fields. Each of these
scalar fields transforms in some representation R of SU(p).

Suppose that we place n non-Abelian anyons in a harmonic trap, each labelled by
some representationRi with i = 1, . . . , n. We once again tune the contact interactions so
that the theory sits at an RG fixed point. Our goal is to understand the energy spectrum.
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We will fall short of this goal. As with Abelian anyons, there are many questions that
we are unable to answer analytically, such as those about possible level crossings in the
ground state of the system. We will, however, show that there are states in the spectrum
analogous to (3.1) whose energy can be determined exactly. We show that the energy
of these states again takes the form E = (n−J )ω but this still leaves open the problem
of determining the angular momentum J of n non-Abelian anyons. This is determined
by some simple group theory.

Suppose, for example, that we place n = 2 anyons in a trap with representations R1

and R2. The possible representations of the resulting bound states are determined by
the decomposition of the tensor productR1⊗R2. The angular momentum of the bound
state in the irreducible representation R ⊂ R1 ⊗R2 turns out to be

J = −C2(R)− C2(R2)− C2(R1)

2k
(3.3)

where C2(R) is the quadratic Casimir of the representationR. This, in turn, determines
the energy of this state using (3.2). We will see that there is a straightforward general-
ization of this result to n anyons, each of which sits in a different representation.

Our work on anyons is primarily devoted to telling the story above and providing
a number of examples. The tools we will use are those of non-relativistic field theory,
rather than non-relativistic quantum mechanics. In Chapter 4, we review the proper-
ties of field theories that enjoy a non-relativistic SO(2, 1) conformal symmetry. This
conformal extension of the Galilean symmetry is known as the Schrödinger symmetry.
The state-operator map in such theories allows us to translate the problem of the spec-
trum of anyons in a harmonic trap to the problem of computing the scaling dimension
of certain operators.

In Chapter 5, we consider a bosonic Chern-Simons matter theory. Much of this chap-
ter is devoted to proving the result (3.3) for the angular momentum of two anyons,
as well as its generalization to n anyons. We use this to determine the energy of these
states, and confirm our results with explicit one-loop computations. In Chapter 6 we re-
peat this story for fermionic Chern-Simons-matter theories, and discuss how bosoniza-
tion relates the results to those of the bosonic theory.
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4 Non-Relativistic Conformal Invariance

We wish to investigate the spectrum of non-Abelian anyons in a harmonic trap. The
most natural setting to address this problem is Chern-Simons theory, where flux at-
tachment and the associated Aharonov-Bohm effect give rise to the desired non-Abelian
statistics.

The theories we will study have a non-relativistic conformal invariance. We will de-
scribe these theories in some detail below. In this chapter, we start by reviewing some
basic aspects of conformal invariance in non-relativistic field theories, following the
seminal work of Nishida and Son [71].

For high-energy theorists, used to studying relativistic conformal field theories, some
aspects of their non-relativistic counterparts can be a little counter-intuitive. In an at-
tempt to reorient these readers, we begin by stating the blindingly obvious. First, non-
relativistic field theories, conformal or otherwise, describe the dynamics of massive
particles. Second, these theories do not have anti-particles. This means that much of
the subtlety of relativistic quantum field theory disappears. Indeed, if we choose to
focus on a sector of a non-relativistic theory with a fixed particle number, then the the-
ory reduces to quantum mechanics. Nonetheless, the field theoretic description is often
more useful and, despite the very obvious differences described above, there are ulti-
mately similarities between relativistic and non-relativistic conformal theories.

For simplicity, suppose that all particles have the same mass m. We introduce the
particle density ρ(x) and momentum density j(x), where we are working in the Schrö-
dinger picture so that field theoretic operators do not depend on time. From these we
can build the familiar conserved charges corresponding to particle number N , total
momentum P and angular momentum J :

N =

ˆ
d2x ρ(x) , P =

ˆ
d2x j(x) , J =

ˆ
d2x x× j(x) + Σ

where Σ is the spin of the fields. (For us, it will be half the fermion number.) As in any
quantum system, time evolution is implemented by the HamiltonianH . The continuity
equation then reads

i[H, ρ] +∇ · j = 0 .
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In a conformal field theory, there are three further, less familiar, generators that we can
also build from ρ and j. These are the generators of Galilean boosts G, the dilatation
operator D and the special conformal generator C, defined as

G =

ˆ
d2x x ρ(x) , D =

ˆ
d2x x · j(x) , C =

m

2

ˆ
d2x x2ρ(x) . (4.1)

To these we should add the Hamiltonian H . In a conformal field theory, these genera-
tors obey the algebra

i[D,P] = −P , i[D,G] = +G , i[D,H] = −2H , i[D,C] = +2C

i[C,P] = −G , [H,G] = −iP , [H,C] = −iD , [Pp, Gq] = −imN δpq (4.2)

with all other commutators that don’t involve J vanishing. This is sometimes referred
to as the Schrödinger algebra. The triplet of operators H , D and C form an SO(2, 1)

subgroup. The commutators [J ,P] and [J ,G] are non-zero and tell us that P and G

transform as vectors.

4.1 States and Operators

In such theories, the spectrum of the Hamiltonian is necessarily continuous. Instead,
as with their relativistic counterparts, the interesting questions lie in the spectrum of
the dilatation operator D.

We consider local operators, evaluated at the origin: O = O(x = 0). These operators
can be taken to have fixed particle number nO and angular momentum jO, defined by

[J ,O] = jOO , [N ,O] = nOO .

Unitarity restricts nO ≥ 0. This is the statement that there are no anti-particles in the
theory.

More interesting are the transformations under dilatations. We say that the operators
have scaling dimension ∆O if they obey

i[D,O] = −∆OO .

If we find one operatorO with definite scaling dimension, then the algebra (4.2) allows
us to construct an infinite tower of further operators with the same property. Both H

and P act as raising operators: [H,O] has scaling dimension ∆O + 2 and [P,O] has
scaling dimension ∆O + 1. In contrast, both C and G act as lowering operators: [C,O]

has scaling dimension ∆O − 2 while [G,O] has scaling dimension ∆O − 1.
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The spectrum ofDmust be bounded below. Indeed, a simple unitarity argument [72]
shows that

∆O ≥ 1 . (4.3)

This means that there must be operators sitting at the bottom of the tower which obey

[G,O] = [C,O] = 0 .

Such operators are called primary [71, 73]. The other operators in the tower are called
descendants; they can be constructed by acting withH and P. The full tower built in this
way is an irreducible representation of the Schrödinger algebra.

4.1.1 The State-Operator Map

One of the most beautiful aspects of relativistic conformal field theories is the state
operator map. This equates the spectrum of the dilatation operator on the plane to the
spectrum of the Hamiltonian when the theory is placed on a sphere.

There is also such a map in non-relativistic conformal field theories which, if any-
thing, is even more simple. First, the algebra: we define a modified Hamiltonian

L0 = H + C . (4.4)

For each local, primary operator O(0), we define the state |ΨO〉 = e−HO(0)|0〉. Then it
is simple to check that

L0|ΨO〉 = ∆O|ΨO〉 . (4.5)

Further, J |ΨO〉 = jO|ΨO〉 and N|ΨO〉 = nO|ΨO〉.

Now the physics: we view L0 as a new Hamiltonian, with a very simple interpreta-
tion. This follows from the definition of C in (4.1) which tells us that we have taken the
original theory, defined byH , and placed it in a harmonic trap. (We have used conven-
tions where the strength of the harmonic trap isω = 1.) The spectrum of particles in this
harmonic trap is equal to the spectrum of the dilatation operator. This was first pointed
out for field theories in [71], although the analogous statement in quantum mechanics
can be traced back to the earliest work on conformal invariance [60].

In relativistic theories, we are very used to the state-operator map holding only for
local operators. This limitation is usually thought to also hold in the non-relativistic
framework considered here. However, in Chapter 5, we will see that we can also apply
this map to certain Wilson line operators.
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The tower of descendant operators maps into a tower of higher energy states in the
trap. There are two ways to raise the energy. The first is to construct states which
sit further out in the trap. This is achieved by constructing the raising and lowering
operators

L± = H − C ± iD ⇒


[
L0, L±

]
= ±2L±[

L+, L−
]

= −4L0

from our algebra. The second way is to take a given state and make it oscillate back-
wards and forwards. This is achieved by introducing an unusual sort of complexified
momentum

P̃ = P + iG ⇒


[
L0, P̃

]
= P̃[

L0, P̃
†] = −P̃†

which is built from the momentum and boost generators of the theory. The primary
states sit at the bottom of this tower and obey L−|ΨO〉 = P̃†|ΨO〉 = 0. Acting on these
primary states with L+ and P̃ raises the energy, filling out the representation of the
Schrödinger algebra.

4.1.2 Unitarity Bounds and Anti-Particles

The algebra alone is enough to force additional constraints of positivity on the physical
states of any non-relativistic conformal theory: these are referred to as unitarity bounds.
The first result follows from considering the action of P̃ upon an arbitrary state, and is
particularly simple: ∣∣∣∣∣∣ P̃|ΨO〉 ∣∣∣∣∣∣2 ≥ 0 ⇒ nO ≥ 0 .

This is the result that the theory contains no anti-particles, which one should of course
expect in a non-relativistic theory: by definition, one works at energies much lower
than those required for anti-particles to be relevant. This simple observation will be
crucial for much of what follows. In particular, it massively reduces the number of
potential loop corrections, and means that one may safely restrict to sectors of fixed
particle number (reducing the field theory to quantum mechanics). We will return to
these points later.

The other unitarity bound is obtained by considering also L±. Assuming that we are
not in the vacuum state, so nO 6= 0, we have [72]∣∣∣∣∣∣ 2mNL+ − P̃2|ΨO〉

∣∣∣∣∣∣2 ≥ 0 ⇒ ∆O ≥ 1 . (4.6)
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Further, states that saturate this bound obey the equation

L+ |ΨO〉 =
1

2mnO
P̃2 |ΨO〉 . (4.7)

This looks, formally, like the Schrödinger equation for a free particle. (Recall that in
relativistic theories, saturation of a unitarity bound indicates that the operator is free.)
In Section 5.5, we will find that this bound is naively violated by some simple operators,
which leads to some surprising physics, and these ideas will help us come up with a
possible interpretation.

4.2 Supersymmetry

We have seen how to form an algebra with conformal symmetry in a non-relativistic
theory, but it will be extremely useful to us to look at a supersymmetric extension of
the algebra. This is called the super-Schrödinger algebra; some early papers on these
sorts of structures include [74, 30, 75].

4.2.1 The Superconformal Algebra

Firstly, we can consider two fermionic charges Q1, Q2. We will call them respectively
the kinematical and dynamic supercharges. We will take them to satisfy the algebra

{Q1, Q
†
1} =

m

2
N , {Q2, Q

†
2} = H , {Q1, Q

†
2} = P (4.8)

with other terms vanishing. (Here we complexify P = 1
2
(P1 − iP2).) The charges both

commute with H , P and N . (The possibility of the non-relativistic supersymmetry
generatorQ1 seems to have been first raised in [76] where it is also pointed out that this
generator is spontaneously broken in any vacuum with non-vanishing particle num-
ber.)

The fermionic charges form a spinor, which means they are expected to have half-
integer spin such that

[J , Q1] = −1

2
Q1 and [J , Q2] =

1

2
Q2 (4.9)

as well as a particular behaviour under Galilean boosts G = 1
2
(G1 − iG2) [30], namely

i[G,Q1] = 0 and i[G,Q2] = −Q1 .

So far we have considered the structure of the supersymmetric theory without the
conformal parts of the algebra, namely C and D. Introducing these, we find that the
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dilatation operator does not introduce anything new since

i[D,Q1] = 0 and i[D,Q2] = −Q2 ,

but the special conformal operator does:

i[C,Q1] = 0 but i[C,Q2] = S .

This third fermionic charge S is the superconformal generator of the theory. It ex-
tends the SUSY algebra with three new relations,

{S, S†} = C , {Q1, S
†} = −G , {Q2, S

†} =
i

2
(iD − J +R)

whereR is an R-charge under which the SUSY generators are charged as

[R, Q1] =
3

2
Q1 , [R, Q2] =

3

2
Q2 , [R, S] =

3

2
S .

We will see this R-charge is roughly the difference between the number of bosons and
number of fermions in the states of the supersymmetric theory. The factor of 3/2 ap-
pearing here is sometimes absorbed into the definition ofR.

The remaining non-trivial commutators between bosonic and fermionic generators
are

i[D,S] = S , i[H,S] = −Q2 , i[P, S] = −Q1 . (4.10)

4.2.2 The State-Operator Map Revisited

It is helpful to also adapt the superconformal algebra we have discussed to the situation
where the Hamiltonian is L0 = H + C as discussed above. This is easy enough; one
simply defines

Q = Q2 − iS and S = Q2 + iS . (4.11)

These obey the algebra

{Q,Q†} = L0 + (J −R) , {Q,S†} = L+, (4.12)

{S,S†} = L0 − (J −R) , {Q†,S} = L− .

Their commutators with the generators L0 and L± are given by

[L0,Q] = Q , [L0,Q†] = −Q† , [L0,S] = −S , [L0,S†] = S†,
[L+,Q] = 0 , [L−,S] = 0 , [L−,Q] = 2S , [L+,S] = −2Q . (4.13)
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∆

J −R

Q

Q1

SQ†

Q†1

S†

Figure 4.1: A generic supersymmetric multiplet, following [67].

We see that, acting on an eigenstate ofL0, the operatorsQ and S† raise the energy, while
Q† and S lower the energy. The upshot is that a superconformal primary operator gives
rise to a superconformal primary state, sitting at the bottom of a tower and obeying

L−|ΨO〉 = Q†|ΨO〉 = S|ΨO〉 = 0 . (4.14)

Representations of the super-Schrödinger algebra sit in supersymmetric multiplets, built
on these superconformal primary states [66, 67]. There is a unique trivial multiplet: the
vacuum state, which is annihilated by all supercharges and, in our theory, has quantum
numbers ∆ = n = j = r = 0.

A generic excited state sits in a long multiplet. This contains 8 primary states. The
action of the superchargesQ1,Q andS on these states is, following [67], shown in Figure
4.1.

4.2.3 Chiral Primary Operators and Another Unitarity Bound

There are also short multiplets in which the dimension of the superconformal primary
is fixed by the superconformal algebra. These are the states that interest us here. A
chiral primary operator gives rise to a chiral primary state obeying, in addition to (4.14),

[Q2,O]± = 0 ⇔ Q|ΨO〉 = 0 .

Figure 4.2: A chiral multiplet.

(The brackets on the left here are commutators or anti-
commutators according to whether O is bosonic or
fermionic. Note that the shift from Q2 on operators to
Q† acting on states works due to the factor of e−H in the
state-operator map, and the fact [H,S] ∼ Q2.) The associated multiplet contains four
primary states, as shown in the figure. Of these, one is special, denoted by the red dot;
its quantum numbers are dictated by the algebra (4.12) and satisfy

∆O = − (jO − rO) . (4.15)

We will see some simple examples of chiral primary operators shortly, when we look at
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the class of theories we are interested in.

An anti-chiral primary operator gives rise to an anti-chiral primary state which obeys,
in addition to (4.14),

[Q†2,O] = 0 ⇔ S†|ΨO〉 = 0 .

Figure 4.3: A anti-chiral multiplet.

There are again four primary states in the multi-
plet, as shown in the figure. One of these, denoted
by the red dot, obeys

∆O = + (jO − rO) . (4.16)

Finally, we note that the supersymmetric structure of the theory also introduces an
additional unitarity bound. It is easy to see from the algebra that

〈ΨO|{Q,Q†}|ΨO〉 ≥ 0

〈ΨO|{S,S†}|ΨO〉 ≥ 0

 ⇒ ∆O ≥ |jO − rO|

where this bound is saturated by (anti-)chiral primary states. The relative sign of jO−rO
depends upon whether the state is anti-chiral or chiral.

4.3 A Non-Relativistic Superconformal Action

There is a very natural class of actions which satisfy the full superconformal symme-
try described in the previous section. Starting from Chern-Simons theories coupled to
gapped, relativistic matter, one may take a non-relativistic limit in which anti-particles
decouple but particles remain. Surprisingly, supersymmetry not only survives this
limit but is enhanced to a non-relativistic superconformal (or super-Schrödinger) sym-
metry. The first construction of this type was presented in [30] for an N = 2 Abelian
Chern-Simons theory coupled to a single chiral multiplet. Subsequent generalizations
to other gauge groups, and different amounts of supersymmetry, were described in
[67, 77, 78, 79, 80].

The process of taking a non-relativistic limit is outlined in Appendix A, if the reader
is interested in seeing how this is done.

We will be specifically interested in the cases of SU(p)k, U(1)k and their U(p) prod-
ucts. The Chern-Simons action takes the familiar form

SCS = − k

4π

ˆ
d3x Tr εµνρ

(
aµ∂νaρ −

2i

3
aµaνaρ

)
. (4.17)
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Of course, we are interested in coupling this to non-relativistic matter. This will take
the form of Nf multiplets (φi, ψi), with i = 1, . . . , Nf , each consisting of a scalar field
and a fermion. Each of them transforms in some representation Ri under the gauge
group. We will denote the corresponding generators as tα[Ri] (where for SU(p) for
example α = 1, . . . , p2 − 1) and we have suppressed the matrix indices. We will often
simplify tα[Ri] → tα where the representation may be inferred from contractions. The
generators in the fundamental representation are normalized such that Tr tαtβ = δαβ .

Each field is endowed with a non-relativistic kinetic term – the key difference for
scalars is that they are first order in time; for fermions the key point is that they carry
no spinor index. For simplicity, we give each particle the same mass m. The action is
given by

S = SCS +

ˆ
dtd2x

{
iφ†iD0φi + iψ†iD0ψi −

1

2m

(
~Dφ†i ~Dφi + ~Dψ†i ~Dψi − ψ†i f12ψi

)
(4.18)

− π

mk

(
(φ†i t

αφi)(φ
†
jt
αφj) + (φ†i t

αφi)(ψ
†
jt
αψj) + 2(ψ†i t

αφi)(φ
†
jt
αψj)

)}
.

The quartic terms give rise to carefully tuned delta-function interactions between par-
ticles, as we will discuss later. Their special nature is especially clear when one writes
the Hamiltonian in complex coordinates. If one uses Gauss’s law, the Hamiltonian may
be written as

H =
2

m

ˆ
d2x |Dzφi|2 + |Dz̄ψi|2 +

π

k
(ψ†i t

αφi)(φ
†
jt
αψj) . (4.19)

In this theory, the generators of the conformal algebra are constructed from the par-
ticle density and momentum current

ρ = φ†iφi + ψ†iψi and j = − i
2

(
φ†i
~Dφi − ( ~Dφ†i )φi + ψ†i

~Dψi − ( ~Dψ†i )ψi
)

together with the spin Σ = 1
2

´
d2xψ†iψi.

The generator which will be of most interest to us is the angular momentum, which
we write as

J =

ˆ
d2x

(
φ†i (zDz − z̄Dz̄)φi + ψ†i (zDz − z̄Dz̄)ψi +

1

2
ψ†iψi

)
. (4.20)

The last term here shows we have indeed given the fermions spin +1
2
.

The supercharges are extremely simple to write down:

Q1 = i

√
m

2

ˆ
d2xφ†iψi and Q2 =

√
2

m

ˆ
d2xφ†iDz̄ψi .
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Note that since a0 is not a dynamical field, the supercharges do not specify the trans-
formation of it under the two supersymmetries; we simply choose it to make the action
invariant. This is of no consequence provided we impose Gauss’s law of course, since
this is what a0 multiplies in the action. However, subtleties to do with Gauss’s law will
return to bite us in Part III.

The kinematical supersymmetry is the simpler of the two. To be explicit, the variation
it generates with parameter

√
2/mε1 is

δ1φi = iε†1ψi , δ1ψi = −iε1φi , δ1az = 0 , δ1a
α
0 =

πi

mk′

(
ε1ψ

†tαφi − ε†1φ†tαψi
)

.

(This structure, especially for fundamental matter, is reminiscent of the Green-Schwarz
spacetime supersymmetry on the string worldsheet.)

Under the dynamical supersymmetry, the fields transform as

δ2φi = ε†2Dz̄ψi , δ2ψi = ε2Dzφi , δ2a
α
z = − iπ

k′
ε†2φ
†
i t
αψi,

δ2a
α
0 = iπ

mk′

(
ε†2 φ

†
i t
α(Dz̄ψi)− ε2 (Dzψ†i )tαφi

)
.

The numbers of bosons and fermions in this theory are individually conserved, with
the corresponding Noether charges being simply

NB =

ˆ
d2x φ†iφi and NF =

ˆ
d2x ψ†iψi . (4.21)

The total particle number is of course N = NB + NF , with the combination R =

NB− 1
2
NF then playing the role of the R-symmetry in the supersymmetry algebra. Note

that the naive U(1)R charge one would expect from the relativistic theory is mixed with
the additional Σ charge, which is possible since particle number and hence spin is con-
served in the non-relativistic theory.

One may work out the expression for the superconformal generator using the relation
[C,Q2] = −iS. It is simply

S = i

√
m

2

ˆ
d2x zφ†iψi .
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5 The Bosonic Theory

In this section we study a class of d = 2 + 1 bosonic Chern-Simons-matter theories
given simply by the bosonic sectors of the theories introduced in Section 4.3. These
will principally be SU(p)k Chern-Simons theory together withNf non-relativistic scalar
fields φi with mass m.

The action we are interested in is generally given by

S = SCS +

ˆ
dt d2x

{
iφ†iD0φi −

1

2m
~Dφ†i ~Dφi − λ(φ†i t

α[Ri]φi) (φ†jt
α[Rj]φj)

}
. (5.1)

As mentioned above, the quartic term which we previously fixed by supersymmetry
gives rise to a delta-function interaction between particles. In non-supersymmetric the-
ories, the coupling λ is marginal and is known to run logarithmically. There are two
fixed points given by [56, 57]

λ = ± π

mk

where λ > 0 fixed point is stable; the λ < 0 fixed point is unstable. In what follows, we
choose to set

λ = +
π

mk
(5.2)

agreeing with the supersymmetric choice of (4.18). In not fixing the sign of the Chern-
Simons coupling k, we still allow λ to take either sign, so this choice includes both stable
(k > 0) and unstable (k < 0) fixed points.

This fixed point also exists in the U(1) theory, where λ > 0 corresponds to repulsive
interactions between particles and λ < 0 corresponds to attractive interactions. In the
non-Abelian theory, this classification is not so simple because, for a fixed sign of λ,
interactions in channels for different irreducible representations R ⊂ R1 ⊗ R2 can be
either attractive or repulsive. (Such behaviour also holds in classical Yang-Mills the-
ory. For example, a quark and anti-quark attract in the singlet channel, but repel in the
adjoint channel.)

From what we saw in Chapter 4, it should be obvious that (5.2) exhibits an enhanced
non-relativistic conformal invariance [32]. This parallels the more familiar relativistic
situation where we find conformal theories at endpoints of RG flows.

51



The Hamiltonian of this theory is easily seen from (4.19) to be

H =
2

m

ˆ
d2x |Dzφi|2 . (5.3)

However, our interest now lies in the spectrum of non-Abelian anyons when placed in
a harmonic trap. In the present context, this means that we want the spectrum of L0 =

H + C. As we explained in Chapter 4, this is equivalent to determining the spectrum
of the dilatation operator D. It turns out that this latter formulation of the problem is
somewhat simpler to work with.

5.1 Gauge Invariant Operators

The first thing to do is to identify the operators of interest. As always, we must talk
about gauge invariant operators. A particularly simple way of seeing this is to observe
that it is required by Gauss’s law, which for our bosonic theory reads

fα12 =
2π

k

∑
i

φ†i t
αφi (5.4)

where fα12 is the non-Abelian magnetic field. The left-hand side generates gauge trans-
formations of the a field, and the right-hand side those of our matter.

In the case of an Abelian Chern-Simons theory, it is standard to dress matter with
a monopole operator eiσ, given by the exponential of the dual photon σ (here taken to
have periodicity 2π). A Chern-Simons term of level k imbues this with a charge −k.
Therefore a composite, gauge-invariant operator may be defined using Φ = e−iσ/kφ.
Notice that this has fractional monopole charge, which can necessarily be detected at
long distances, so Φ is not strictly an honest local operator.

This generalizes fairly straightforwardly to the non-Abelian case. We will construct
gauge invariant operators simply by attaching Wilson lines stretching out to infinity.
Thus we define

Φi(x) = P exp

(
i

ˆ x

∞
aα tα[Ri]

)
φi(x) . (5.5)

This all clearly requires some explanation. Φ(x) is not a local operator; it depends
on the value of the gauge field along a line stretching to infinity. Meanwhile, the state-
operator map described in the previous section is usually taken to hold only for local
operators. However, closer inspection of the argument leading to (4.5) shows that we
require only that the operator O(0) has a well defined scaling dimension. It is simple
to check that the Wilson line does not affect this property of Φ. (This isn’t too surpris-
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ing: notice thatP exp(i
´ 0

∞ a) is a covariant quantity characterized only by its endpoints,
which are invariant under dilatations centred at the origin.)

Under the state operator map, the state |Φ†i〉 describes a single anyon, transforming
in the representation Ri, sitting in a harmonic trap. The particle retains the attached
Wilson line and is entirely analogous to the correct description of a physical electron
in QED. Importantly, the SU(p)k Chern-Simons theory does not confine and so this
particle has finite energy. We will compute this energy explicitly below.

It’s worth pausing to comment that the situation differs from that in relativistic con-
formal theories, where the state-operator map is restricted to local operators. Indeed,
in the relativistic context the states are considered on a spatial sphere where there is
no option to attach a Wilson line that stretches to infinity. Instead, in Chern-Simons
theories Gauss’s law requires that charged states are accompanied by monopole op-
erators, which places further constraints on the possible electric excitations. At least
for this aspect of the physics, thinking about Chern-Simons-matter theories with rela-
tivistic conformal invariance does not appear to be a good guide to the non-relativistic
theories.

Now we can discuss the kinds of operators that we are interested in. In the n-particle
sector, we will look at operators of the form

O ∼
n∏
a=1

(∂la ∂̄maΦ†ia) (5.6)

where we have introduced (anti)-holomorphic spatial derivatives ∂ = 1
2
(∂1 − i∂2) and

∂̄ = 1
2
(∂1 + i∂2). The primary operators are those which cannot be written as a total

derivative.

Before we proceed, a comment is in order. The operators written above are not the
most general and, indeed, do not necessarily have fixed scaling dimension. This is be-
cause there’s nothing to stop these mixing with operators of the form (Φ†)n+lΦl, pos-
sibly with derivatives attached too. However, because non-relativistic theories contain
no anti-particles, these additional operators annihilate the vacuum |0〉 and so result in
the same state |O〉 under the state-operator map. Since our real interest lies in the the-
ory with the harmonic trap, for many purposes it will suffice to use (5.6) as a way to
characterize the operators.

It is not a totally trivial task to list the primary operators from (5.6). The only one that
is simple to write down has no derivatives:

Oi1...in = Φ†i1 . . .Φ
†
in

. (5.7)
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(Here ia are flavour indices. We have suppressed colour indices.) The n-particle ground
state is expected to take such a form for suitably large k; we will compute its energy
shortly.

To highlight how other primary operators arise, it will be useful to look at a simple
example. We take U(1)k with a single field φ of charge +1. (This was the case discussed
in the introduction.) To make contact with the introduction and, in particular, the nu-
merical spectrum of [62], let us look at the case n = 3. As we mentioned above, the large
k ground state is simply the state corresponding to (Φ†)3, as we will see shortly through
explicit computation. What about higher states? Any state with a single derivative can
be written as a total derivative and so is a descendant. This explains the gap between
the ground state and the first excited state seen in Figure 1. The next primary oper-
ator will contain two derivatives. There are six such operators: ∂Φ†∂Φ†Φ†, ∂Φ†∂̄Φ†Φ†,
∂̄Φ†∂̄Φ†Φ†, ∂2Φ†Φ† 2, ∂∂̄Φ†Φ† 2 and ∂̄2Φ†Φ† 2. However, four linear combinations of these
can be written as total derivatives of the form ∂(∂Φ†Φ† 2), where either derivative could
also be ∂̄. The upshot is that there are two primary states with two derivatives. This
agrees with the spectrum shown in Figure 1.

We can play a similar game with operators that contain three derivatives. It is simple
to check that one can write down 13 such operators, 10 of which turn out to be descen-
dants. The upshot is that there are 3 primary operators that contain 3 derivatives. (The
obvious pattern does not persist!) From Figure 1, we learn that one of these will become
the ground state at small k.

5.2 The Spectrum

Next comes the question that we initially set out to answer: what is the spectrum of the
states (5.6)? As we stressed in the introduction, this is a difficult and unsolved question,
even for Abelian anyons. Here we offer two approaches.

In Section 5.4 we explain how one can compute the spectrum of these operators for
Chern-Simons theory with scalars perturbatively in 1/k. We present the results only at
one-loop.

However, before we do this, there is a special class of operators for which the result
simplifies tremendously. These are the “linear states” referred to in the introduction.
They correspond to the chiral primary operators we defined in Section 4.2.3, and their
descendants. These are the operators which have no antiholomorphic derivatives,

O ∼
n∏
a=1

(∂maΦ†ia) . (5.8)
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The simplest such operator is Oi1...in in (5.7). Since these states saturate the unitarity
bound (4.15), the scaling dimension of any such operator is fixed by its angular mo-
mentum J :

∆ = n− J . (5.9)

Note that each derivative ∂ decreases the angular momentum by one. Correspond-
ingly, the dimension of a chiral operator (5.8) is given by

∆O = n+
n∑
a=1

ma − J0

where J0 is the angular momentum of Oi1...in .

5.3 Angular Momentum

From the discussion above, we learn that the dimension of Oi1...in and other chiral op-
erators (5.8) is entirely determined by the angular momentum J , which from (4.20) in
this theory is simply

J =

ˆ
d2x φ†i (zDz − z̄Dz̄)φi . (5.10)

But how do we compute this angular momentum?

The tensor product of representations ⊗nI=1Ria is decomposed into irreps. (Note that
⊗ denotes the tensor product here. However, in the presence of a Chern-Simons term
at finite level one should be careful about which representations one includes – we will
mention the role of fusion rules in this theory below.) When the operator O sits in the
representation R, its angular momentum is given by

J0 = −C2(R)−∑aC2(Ria)

2k
(5.11)

where C2 is the quadratic Casimir, defined by∑
α

tα[R]tα[R] = C2(R)1 .

Note that becauseOi1...in is built out of commuting scalar fields Φ, in the absence of any
derivatives it must transform in the fully symmetrized representation

R sym = Sym [⊗na=1Ria ] .

However, the more general operators (5.8) can transform in other representations.
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It is worth pointing out that the expression (5.11) is the difference of some expressions
which are well-known in all the physical contexts in which affine Lie algebras crop up.
The trace anomaly associated to the representation R is given by [81]

hR =
C2(R)

2k

if the underlying algebra has the level k − p, where p is the dual Coxeter number of
the group. (This is correct for what we have referred to as SU(p) with Chern-Simons
term proportional to k, due to a one-loop shift discussed in Chapter 6.) This quan-
tity appears in the energy-momentum tensor of Wess-Zumino-Witten models (where it
emerges nicely in the Sugawara construction) [82], and – most famously and relevantly
– in the context of pure Chern-Simons theory, where it plays a crucial role in correlation
functions and statistics [83], much as it shall for us.

Of course, (5.11) is just the particular definition of J which appears in our algebra. It
differs by only a central charge (or choice of regularization) from the more concise J ′ =
−C2(R)/2k = −hR which is familiar in Wess-Zumino-Witten and Chern-Simons theory.
Importantly, J ′ is the angular momentum appearing in the spin-statistics relation. (For
example, flux attachment dictates that a boson turns into a fermion in an Abelian Chern-
Simons theory at level 1 – and indeed we see here that it carries an angular momentum
J ′ = −1/2.) We will have use for this angular momentum later on, when we compare
the bosonic and fermionic theories in Section 6.2.

5.3.1 Examples

The purpose of this section is to prove the result (5.11). Before we do this, we will first
look at some examples.

Example: U(1)

We start with an Abelian gauge theory U(1)k, where representations are labelled by
charge q ∈ Z. The quadratic Casimir in this case is simply C2(q) = q2. The result (5.11)
says that the angular momentum of n anyons, each of charge 1, is given by

J = −n(n− 1)

2k
. (5.12)

This is indeed the angular momentum of n anyons. (Moreover, when substituted into
(5.9), it gives us the correct answer for the dimension of the n anyon operator; this is the
result quoted in (3.1).)

This demonstrates that the angular momentum of n anyons has the unusual property,
first discovered in [68, 69], that it scales as n2 rather than n. This fact will play an im-
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portant role in our analysis, and will help us prove the general result, so we pause here
to review the underlying classical physics. (More details can be found, for example, in
the book [33]. For a derivation in the quantum theory see, for example, [70].)

The important term is the gauge field buried in the covariant derivatives in the ex-
pression (5.10). Picking a configuration with no traditional orbital angular momentum,
we’re still left with

J = −
ˆ

d2x εpqxpaq φ
†φ .

(We work with real coordinates labelled by p, q = 1, 2 for brevity.) The gauge field is
determined by Gauss’s law (5.4). Choosing the gauge ∂pap = 0, we can solve (5.4) for
the vector field, giving

ap(x) = −2π

k
εpq∂q

ˆ
d2x′G(x− x′)ρB(x′) (5.13)

withG(x−x′) = 1
2π

log |x−x′| being the usual Green’s function for the Laplacian in the
plane. This gives the following contribution to the angular momentum:

J = −2π

k

ˆ
d2x d2x′ ρ(x)ρ(x′)xp∂pG(x− x′) .

We take the charge distribution to be a sum of delta-functions at n distinct points ra,

ρB =
n∑
a=1

δ2(x− ra(t))

and so the orbital angular momentum becomes

J = −2π

k

∑
a,b

rb ·
∂

∂rb
G(ra − rb) .

At this point we need a procedure to deal with the fact that this expression is ill-defined
when ra = rb. Any regularization which preserves antisymmetry under reflection gives
limx→x′ ∂pG(x−x′) = 0. With this choice, the sum is over pairs of particles only and we
have

J0 = −2π

k

n∑
a=1

∑
b 6=a

ra ·
∂

∂ra
G(ra − rb) = −n(n− 1)

2k
(5.14)

as promised above. Note that, in general, this is not the lowest angular momentum of
n anyons: in certain cases, one can decrease the spin by giving the individual particles
additional relative orbital angular momentum. The result (5.14) is, however, the angu-
lar momentum that one gets when adiabatically increasing the statistical parameter of
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n bosons.

Example: SU(2)k

Next, consider SU(2)k. Representations of SU(2) are labelled by a spin s ∈ 1
2
N0. Sup-

pose we consider several spins sia coming together into a final bound state of spin
S =

∑
a sia . In this case, the angular momentum is given by

J = −S(S + 1)−∑a sia(sia + 1)

k

from the standard expression for SU(2) Casimirs.

Example: SU(p)k, U(p)k

This has a simple generalization to n anyons, each of which sits in the fundamental
representation of SU(p). We have C2(p) = (p2 − 1)/p. The bound state transforms in
the nth symmetric representation of SU(p), with C2(Symn(p)) = n(p− 1)(p + n)/p. We
have

J = −n(n− 1)

2k
× p− 1

p
. (5.15)

For a more general operator, it is helpful to characterize the representation by its
highest weight, or equivalently a partition λ. (For a technical review of such matters,
see Section 18.1.) Consider a general representation of SU(p) whose Young diagram
has rows of length1 λ1 ≥ λ2 ≥ · · · ≥ λp. Such a state has a quadratic Casimir given by
the formula C2(λ) = 〈λ, λ+ 2ρ〉, where λ is the highest weight and ρ is the Weyl vector.
In particular, we have

C2(λ) =


∑p

i=1 [λ2
i + (p+ 1− 2i)λi] for U(p)∑p

i=1 [λ2
i + (p+ 1− 2i)λi]− 1

p
(
∑p

i=1 λi)
2 for SU(p)

.

This translates into the following results for n fundamental anyons brought together
into the representation λ:

J = −
∑p

i=1 [λ2
i − (2i− 1)λi]

2k
for U(p)k

and

J = −
∑p

i=1 [λ2
i − (2i− 1)λi]− n(n− 1)/p

2k
for SU(p)k .

1Note that by including the possibility of unreduced diagrams with λp 6= 0, this formula works even
for states containing factors which are SU(p) singlets. λp has the interpretation of the number of these
“baryons” in the state.
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As an aside which will be of some use later, it is pleasing to note that the above ex-
pression for J in U(p) has a nice interpretation in terms of the Young diagram of the
representation λ. We write

p∑
i=1

[
λ2
i − (2i− 1)λi

]
= 2

p∑
i=1

[
1

2
λi(λi − 1)− (i− 1)λi

]
.

Then the first term inside the brackets counts the number of pairs of boxes lying in each
row of the Young diagram; and the second subtracts off the number of pairs lying in
each column.

The striking thing about this form of the answer is that it guarantees that upon trans-
position of the Young diagram, this only changes by a sign. This suggestive fact will
give rise to a bosonization duality in the system, as we shall see later.

5.3.2 Deriving the Angular Momentum

We now return to prove the result (5.11) for the angular momentum. We insert n anyons
in various representationsRia of the groupG at level k, such that they collectively trans-
form in the irrep R ⊂ ⊗aRia .

There are two issues which we need to explain. The first is that angular momentum
of this state, inserted at the origin, is related to the quadratic CasimirC2(R). The second
is that there are some ambiguities to do with regulators, but that the correct choice of
angular momentum for our purposes is the one given above:

J = −C2(R)−∑aC2(Ria)

2k
.

It will be helpful to first develop some intuition for how this quadratic behaviour arises.
We have already seen that that pairwise contributions arise naturally from the U(1)

example, but it can be understood more clearly by considering the phase of the wave-
function for our n anyons under rotations. To see this, place each anyon at a differ-
ent distance from the origin. Now rotate the configuration by 2π. In doing this, each
anyon encircles all the others which are closer to the origin than itself, accumulating an
Aharonov-Bohm phase per pair of particles. We additionally pick up a phase due to
the inherent spin of each individual anyon. As we scale the configuration towards the
origin, these are the only phases contributing to the behaviour of the wavefunction.

This decomposition into two phases is very similar to the usual decomposition of
angular momentum into orbital and spin parts. We will find that the J arising in the
conformal (and superconformal) algebra is the one without intrinsic spins.
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We begin our computation in exactly the same way that we approached the classical
Abelian calculation. Recall that the angular momentum used in our algebra is given by
equation (5.10), reprinted here for convenience:

J =

ˆ
d2z

∑
a

φ†a(zDz − z̄Dz̄)φa .

Again, since we are going to place all particles at the origin, we can ignore the normal
orbital angular momentum terms2 φ†(z∂z − z̄∂z̄)φ. However, we will use Gauss’s law
(5.4), which relates particle density to the magnetic field fα12, in a new way: instead of
solving it for the gauge field, we will use it to eliminate the particle density. Putting
these ideas together, we obtain

J =
ik

2π

ˆ
d2z (z̄aαz̄ − zaαz )fα12

which holds when acting on any state satisfying Gauss’s law.

The reason for doing this is that this expression is now only sensitive to the Wilson
line in (5.5). Let us give this a name: pick some representation tα, and let

W (x) =

[
P exp

(
i

ˆ x

∞
aα tα

)]†
.

If Gauss’s law (5.4) holds for the object Φ = W †φ, then it is straightforward to show
that3 [

k

2π
fα12(x),W (x′)

]
= W (x′) tα δ(2)(x− x′) . (5.16)

This is enough to start computing the action of J on a state containing Wilson lines.
We take the Wilson lines to be Wa = W (za, z̄a) |t=ta , where we allow each Wa to sit in a

2This is only strictly true within any reflection-invariant regularization. Similarly, were one to inte-
grate by parts and find an expression for J which did not explicitly change sign under a reflection, this
would not hold.

3One can prove this using the commutation relation [aα1 (x), aβ2 (x′)] = − 2πi
k δαβ δ(2)(z − z′) arising

from the term− k
4π Tr εµνρaµ∂νaρ in the Chern-Simons action S CS. Notice that ikfα12/2π generates spatial

gauge transformations: for any function hα(x)[ˆ
d2x

ik

2π
fα12h

α, aβm(x′)

]
= Dmhβ(x′) .

But the Wilson line is charged only at its endpoints, and for compactly supported h it transforms at the
x end so that

[´
d2x ik

2πf
α
12h

α,W (x′)
]

= +iW (x′) tαhα(x′). Setting h to be a delta function, we obtain the
above result.
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different representation Ria whose generators are tαia . Explicitly,

J W1 ⊗ · · · ⊗Wn |0〉 =
ik

2π

ˆ
d2z (z̄aαz̄ − zaαz )fα12 W1 ⊗ · · · ⊗Wn |0〉

= i

ˆ
d2z (z̄aαz̄ − zaαz )

[
W1 ⊗ · · · ⊗Wn

] n∑
a=1

tαiaδ
(2)(z − za) |0〉

where tia is understood to act only on the ath factor of the product to the left.

Now we set x′ = 0 in (5.16) and use the complex coordinate z = x1 + ix2 = reiθ. If we
integrate over a disc of radius r, the integral reduces to a boundary term, and

1

2π

ˆ
dθ [z̄aαz̄ (z, z̄)− zaαz (z, z̄),W (0)] =

i

k
W (0) tα .

That is, evaluating this quantity around a circle gives this particular non-zero contribu-
tion if the Wilson line ends inside that circle; by contrast, it is zero if the end is outside
that circle. This shows why we need to be careful with regularization.

To regularize, let us proceed as above by smearing each Wi around progressively
smaller circles, of radius |z1| > |z2| > · · · > |zn|, and then taking the smallest one to
zero first. In this manner, we find that we get only one contribution to the result per
distinct pair (a, b). However, it is not yet clear what happens when both terms in J hit
the same Wilson line.

To address this last case, we need one final argument. The simplest line of reasoning is
that any translationally invariant regularization of terms like [az(za, z̄a),W (za, z̄a)] must
vanish if we multiply it by za and then take za → 0.4

Now we have the result

J W1 ⊗ · · · ⊗Wn |0〉 = −1

k
W1 ⊗ · · · ⊗Wn

[∑
a<b

tαia ⊗ tαib

]
|0〉

where as above, tia is understood to act only on the ath factor of the product to the left.

All that remains is to relate this to the quadratic Casimir. But notice that the product
representationR in which the particles sit has the generators Tα =

∑
tαia , and hence the

quadratic Casimir is given by

C2(R) = TαTα =
∑
a,b

tαia ⊗ tαib = 2
∑
a<b

tαia ⊗ tαib +
∑
a

C2(Ria) .

4For a more careful approach, one could complexify and work in holomorphic gauge az̄ = 0, and then
solve explicitly for az as an integral of f12. This generalizes the approach we took in Coulomb gauge for
the Abelian case.
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This completes our proof. We have

J = −C2(R)−∑aC2(Ria)

2k

as claimed.

5.3.3 OPEs and Branch Cuts

The above computation precisely measures the anomalous angular momentum J of
renormalized compound operators formed by products of Φ. There is essentially the
same as what one discovers in computing the Operator Product Expansion (OPE) of
chiral operators in a pure Chern-Simons or Wess-Zumino-Witten CFT. Suppose each
operator OR, in the representation R, has the spin J ′R = −C2(R)/2k; this is a familiar
result, mentioned above. Then if J = J ′R − J ′R1

− J ′R2
one finds the OPE

OR1(z1)OR2(z2) ∼ (z1 − z2)JOR

holds in the set of chiral operators in the theory. (Of course, the above implicitly makes
some assumptions about what one does with the index structure as the fields approach.
In general, there is a linear combination of the various possible representations.)

The anyonic nature of the underlying excitations is manifested in the fractional pow-
ers which appear here in the form of J . A particularly notable feature of these terms
is that they introduce branch cuts. One might quite reasonably ask: Which branch do I
choose? This betrays something we have not been careful about, namely where precisely
all our Wilson lines go.

In order to fix this ambiguity, one needs to specify precisely how the Wilson lines
reach out to infinity. If we rearrange them so that they intersect each other, for instance,
the resulting state may be distinct. This leads to consideration of the braid group, often
associated with models possessing affine Lie algebra structure, whose anyonic repre-
sentations we are here to study.

Note that there is a lot of richness here which we will not investigate, forming a story
famously told in [83]. We will return to some ideas related to this picture at the end of
Chapter 6, but our focus will mainly remain on simple properties of the spectrum of
the Chern-Simons-matter theory. Nonetheless, one important issue deserves mention
now: fusion rules.
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5.3.4 Fusion Rules

The most famous incarnation of the fusion rules is in the context of Wess-Zumino-
Witten theory, where at a given level k̂ they imply that all physical operators are pro-
jected onto representations with fewer than k̂ symmetrizations.5 (See, for example, the
textbook [82], for a detailed description of how the rules work.6) More specifically, the
integrable representations of the SU(p) algebra at level k̂ are those whose Young dia-
grams have at most k̂ columns.

One can show that non-integrable representations decouple from all correlation func-
tion in Wess-Zumino-Witten theory, provided one has at least one field in an integrable
representation, by a sort of integration by parts [82]. Let us quickly sketch that argu-
ment. Suppose thatEθ

−1 is a generator of an affine algebra such that (Eθ
−1)k̂+1 annihilates

the identity field I. (Here, θ is the highest root.) Then inserting (Eθ
−1)k̂+1I(z) into arbi-

trary correlation functions 〈O1(z1) · · · On(zn)〉 makes them vanish. Writing each factor
as

Eθ
−1 =

1

2πi

˛
dζ

ζ − zE
θ(ζ)

and deforming each contour to encircle the za, one finds that the correlation function
may be expressed in terms of various OPEs of the Oa operators with Eθ. Because the
location z was arbitrary, each term in the resulting expansion must vanish indepen-
dently. In particular, 〈

[
(Eθ)k+1O1

]
(z1) · · · On(zn)〉 = 0. Therefore any correlator in-

volving (Eθ
0)k+1O1 must vanish. But Eθ is in a suitable sense invertible acting upon

non-integrable representations, and so any correlator containing a non-integrable field
vanishes.

However, these principles raise themselves in Chern-Simons theory too. Pure Chern-
Simons theory on an arbitrary manifold M has an empty Hilbert space if one inserts
Wilson lines in non-integrable representations [83].

What about our theory? We have been rather cavalier in writing down objects like Φ†nai
which we are taking to transform in arbitrarily large symmetric representations. (Let us
focus on fundamental matter fields.) But these states are essentially pure Chern-Simons
states in the presence of marked endpoints where Wilson lines are attached (both at the
particle locations, and infinity). Hence something should go wrong when we study
these objects with many symmetrizations, by the usual arguments: the Hilbert space

5As we will mention again below, there is a good reason for using the distinct quantity k̂ to refer to
the level of the current algebra, since there is a one-loop shift relative to what we have been calling the
level.

6Also, a Mathematica code written by the author for computing SU(p)k fusion rules can be down-
loaded at http://blog.suchideas.com/2mBUW.
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of a Chern-Simons theory (with sources) is the space of conformal blocks of a Wess-
Zumino-Witten theory (with certain operator insertions), or the space of holomorphic
line sections of a certain bundle. In the interests of building our intuition a little, we will
make a little detour and give a more physically intuitive direct argument here, based
around the computation of J above.

It helps to discuss this at a heuristic level first. Notice that attaching Wilson lines
associates an angular momentum J ′ to each Φ, and this leads to a phase upon inter-
changing particles by a standard sort of spin-statistics principle. (There are various
ways of looking at this. For example, it may be thought of in terms of crossing branch
cuts or performing transformations of knotted Wilson lines.)

For the case of fermions, this is very familiar. An intrinsic half-integer spin leads to a
phase exp(1

2
× 2πi) when we swap the particles. An Abelian theory of bosons coupled

to Chern-Simons theory at level 1 behaves identically, as we will discuss in detail in
the next chapter. A conspicuous consequence of this is that two fermions cannot be
symmetrized together.

We, of course, are assembling Wilson lines carrying gauge charges and fractional spin
that can exist in bound states with various anomalous angular momenta. One might
wonder if somehow the basic property of fermions carries across to these more exotic
entities, and a theory at a finite level can sustain only a limited number of symmetriza-
tions of these Wilson lines before vanishing. This is indeed so; in fact, essentially one
finds that if you restrict to only symmetric representations, the theory behaves like a
parafermionic one [84, 85, 86]. Parafermions interpolate between fermions (two sym-
metric particles annihilate each other) and bosons (infinitely many particles may be
symmetrized together) in a natural way.

However, since this it is not our main focus, but more an interesting diversion, so
we will restrict ourselves to outlining a case that captures the main features of the phe-
nomenon.

Braiding in Chern-Simons Theory

The key observation is that, in SU(p) Chern-Simons theory, Wilson lines obey a simple
relation that restricts the number of distinct states which can be formed by braiding.
This should be thought of as a generalization of the idea that any pair of indices in an
SU(p) tensor can be written as a linear combination of one which is symmetrized or
antisymmetrized.
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This relation is called the skein relation. Such relations are ubiquitous in knot theory
and relate links (for us braids) which differ only in whether one line passes over or be-
neath the other. With such a prescription, one can define for instance a knot polynomial,
by reducing all knots to a base case. They take the form

α + β + γ = 0 . (5.17)

Note that in the interest of simplicity, we have not specified the framing of the above
knots. Secretly, each Wilson line has a notion of whether or not it is twisted, which may
be tracked by drawing them as ribbons rather than lines. This will be important below.

In Chern-Simons theory, we can view the skein relation as defining an equivalence
relation on the physical states of the theory: the quotient of the full braid group by the
above relation leaves one with a finite-dimensional space of potential states containing
Wilson lines connecting the given end points. Such a relation must exist if we want
a standard picture of the theory in which two fundamental Wilson lines can fall into
either symmetric or antisymmetric representations, since in such a situation, there must
be a two-dimensional Hilbert space of braids when we have Wilson lines – and hence
the three states constructed using the above diagram must be linearly dependent!

To derive values for α, β, γ, consider the symmetric and antisymmetric representa-
tions we require the pair of lines to fall into. Call these |S〉 and |A〉 respectively. Now
define the operation B which twists the two strands of the braids depicted in (5.17)
round, mapping

· · · −→ −→ −→ −→ · · ·

and so on. This is clearly the action of a rotation by π, up to issues with the framing, but
since we know the angular momentum J of the symmetric and antisymmetric states,
we know that in SU(p) with statistical parameter 1/k

B |S〉 = exp

[
πi

(
1− p
kp

)]
|S〉 and B |A〉 = − exp

[
πi

(
1 + p

kp

)]
|A〉 .

Now by the Cayley-Hamilton theorem, we know thatB2−Tr [B]B+det [B] = 0, where
both trace and determinant have simple expressions in terms of these eigenvalues. Ap-
plying the left-hand side of this equation to the braid on the left in the above sequence,
we therefore derive a linear relation of the form of (5.17)!
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The only detail remaining is to determine the framing of the above braids. We wish
to obtain (5.17) with the “blackboard” framing, in which the ribbons look flat from our
viewpoint. However, if B is implemented using a rotation by π, then the ribbons get
twisted as it maps between them. The change of framing corresponds to a rotation of
an individual Wilson line’s internal structure, which is associated with the spin J ′ of
each line.

Putting these ingredients together, and defining

q = exp

(
2πi

k

)
we obtain

−q
1−p
2p q

1+p
2p × q−

(
1−p2

2p

)
−
(
q

1−p
2p − q

1+p
2p

)
+ q

+

(
1−p2

2p

)
= 0 .

Consequently, multiplying everything by q−1/2p for convenience, we may take

α = −qp/2 , β = q1/2 − q−1/2 , γ = q−p/2 .

This is the canonical form of the skein relation in an SU(p) theory.

One may check straightforwardly that these results for α, β, γ are invariant when one
gauges the U(1) part. Thus the skein relation is only a property of the SU(p) level, as it
should be.

It is nice to perform some a simple check of this result by taking the k →∞ limit, in
which the Chern-Simons theory should decouple. In this limit, q → 1, and so the skein
relation reduces to the identity

=

which is indeed exactly what one expects in this limit!

However, our interest lies at finite k, where the effects of the Chern-Simons level are
much more interesting. Let us focus on the two-particle case again, and try to identify
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the symmetric |S〉 state. In the ,


basis, B takes the form

B = q
1−p2

2p

 0 qp

1 q
p−1

2 − q p+1
2

 .

Again, in the q → 1 limit we clearly recover the familiar (1, 1) and (1,−1) eigenstates
with the usual +1,−1 eigenvalues respectively. But something striking happens when
q
p+1

2 = −1.

At this point, the symmetric representation corresponds to the eigenvector (1,−1),
what one would naively have thought was a antisymmetric object,

|S〉 ∝ − .

What is the significance of this? Suppose we insert a pair of Wilson lines, anchored
to infinity, and consider them to fall in a symmetric representation. Then the object
is an antisymmetric function of its dangling endpoints, and in particular we take it to
vanish when those endpoints are brought together. In other words, this is a null state
in the theory, and it decouples. Thus one cannot symmetrize two Wilson lines in such a
theory. (By contrast, the antisymmetric representation at k = ∞ is actually symmetric
between its endpoints, since there are also antisymmetrized gauge indices there.)

But notice that q
p+1

2 = −q 1−(k−p)
2 , so with the identification k̂ = k − p, which we shall

see later is the right thing to do, the above describes the correct SU(p) fusion rule at
level k̂ = 1.

To derive the analogous result for higher k̂ would be a distraction, so let us leave this
and just bear in mind that on general grounds, we should restrict ourselves to states
obeying the fusion rules.

5.4 Perturbation Theory

The field theoretic approach to non-relativistic anyons comes equipped with the power-
ful methods developed for relativistic field theories. In particular, we can use Feynman
diagrams to compute quantum corrections order by order in perturbation theory.
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The diagrammatic method applies in much the same way as for relativistic theories
with one crucial difference: there are no anti-particles, not even in loops! The absence
of propagating anti-particles drastically reduces the number of diagrams, rendering the
loop computations tractable.

It also follows that, in theories with multiple flavours, one type of species does not
affect the dynamics of the other types unless it is present as an external particle. The
utility of this was shown in [1] – the supersymmetry algebra shows that the scaling di-
mensions of certain chiral operators involving only bosons are one-loop exact, a prop-
erty which then survives even when the fermions are thrown away!

Our goal in this section is to determine the one-loop corrections to the dimensions of
operators of the form (5.6). We will use this to confirm our previous, algebraic results
(5.9) and (5.11).

One-loop Corrections

The Feynman rules for (5.1) are a simple generalization of those presented in [1]. To
avoid clutter we only discuss the case with only one species of scalars living in some
representation R of the gauge group. The generalization to multiple species living in
different representations is straightforward. Colour indices will be denoted by Greek
letters ρ, σ = 1, . . . , dim(R).

Since the interactions are at most quartic, all corrections arise from pairwise dia-
grams. Thus it suffices to compute the one-loop correction to the two-anyon operator

∂n1 ∂̄m1Φ†ρ1
∂n2 ∂̄m2Φ†ρ2

. (5.18)

The one-loop corrections to (5.18) are encoded in the correlation function

〈Φσ1(p1)Φσ2(p2) ∂n1 ∂̄m1Φ†ρ1
∂n2 ∂̄m2Φ†ρ2

〉 . (5.19)

At tree level we schematically denote this correlation function by this diagram:

(ni,mi; ρi,σi)

= δρ1
σ1
δρ2
σ2

(−ip1z)
n1(−ip1z̄)

m1(−ip2z)
n2(−ip2z̄)

m2

+ δρ1
σ2
δρ2
σ1

(−ip1z)
n2(−ip1z̄)

m2(−ip2z)
n1(−ip2z̄)

m1
(5.20)

Henceforth we shall suppress the diagram labels. At one-loop order the four-point
function (5.19) is corrected by the diagrams

= − 1

2k
log

Λ

µ

(
tαρ1σ1

tαρ2σ2
+ tαρ1σ2

tαρ2σ1

)(
− i

2
P+
z

)n1+n2
(
− i

2
P+
z̄

)m1+m2

+O(Λ2)
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with P± = p1 ± p2, and

=
1

2k
log

Λ

µ

(
tαρ1σ1

tαρ2σ2
K(p1, p2) + tαρ1σ2

tαρ2σ1
K(p2, p1)

)
+O(Λ2) (5.21)

where K(p1, p2) is given by the following integral over the Feynman parameter x:

K(p1, p2) = (−i)l
ˆ 1

0

dx

{
2∏
i=1

(
P+
z

2
− (−1)ixP−z

2

)ni ∂
∂x

[
2∏
i=1

(
P+
z̄

2
− (−1)ixP−z̄

2

)mi]

− ∂

∂x

[
2∏
i=1

(
P+
z

2
− (−1)ixP−z

2

)ni] 2∏
i=1

(
P+
z̄

2
− (−1)ixP−z̄

2

)mi }
(5.22)

with l = n1 + n2 +m1 +m2.

Note that we only need the logarithmic correction to extract the contribution to the
anomalous dimension. Moreover, the results above are all one needs to evaluate the
anomalous dimension of operators of the form (5.6) at one-loop.

We remark that the operators of the form (5.6) may not have a well-defined dimen-
sion at one-loop.7 Nonetheless for a special class of such operators it is an easy task
to find operators with well-defined scaling dimensions. These are the chiral operators
discussed earlier (5.8) which only include holomorphic derivatives. Below we consider
a few examples of such operators.

Examples

As a warm-up, consider the following operator in an Abelian theory with a single
species of unit charge scalars:

On = Φ†n .

This is the n-anyon operator with no derivatives. The kinematical factor in (5.21) van-
ishes and we only have the bubble diagrams (5.21) to sum over. As was discussed earlier,
there is one such diagram for each pair, and each yields the same contribution

= −1

k
log

Λ

µ
+O(1) .

This results in the anomalous dimension

∆− n =
n(n− 1)

2k
= −J (5.23)

7As is evident from the results above, a two-anyon operator with fixed ni and mi mixes at one-loop
with operators with the same number of derivatives. Furthermore the one-loop diagrams above have
polynomial divergences which need to be removed by counter-terms with fewer derivatives.
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in agreement with (5.12).

Now consider the operator Oρ1...ρn = Φ†ρ1
. . .Φ†ρn in an SU(p) Chern-Simons theory

coupled to a single species of scalars in the fundamental representation of the gauge
group. (Note that the ρa here are the hitherto suppressed gauge group indices; there are
no flavour indices ia.) As in the previous examples the absence of derivatives implies
that we only need to evaluate the bubble diagram:

= −p− 1

2pk
log

Λ

µ

(
δρ1
σ1
δρ2
σ2

+ δρ1
σ2
δρ2
σ1

)
+O(1)

where we have used the following identity satisfied by the generators of SU(p) in the
fundamental representation

tαρ1σ1
tαρ2σ2

= δρ1
σ2
δρ2
σ1
− 1

p
δρ1
σ1
δρ2
σ2

. (5.24)

Taking the contribution from each pair into account we obtain the anomalous dimen-
sion

∆− n =
n(n− 1)(p− 1)

2pk

reproducing (5.15).

As our last example, consider the SU(p) theory with one species of scalars in the fun-
damental representation. This time we look at the operator O = Φ†[ρ1

∂Φ†ρ2
. . . ∂n−1Φ†ρn].

Contrary to the previous examples, the corrections to this operator only arise from the
gluon exchange diagrams:

=
p+ 1

2pk
log

Λ

µ
δρa[σa

δρbσb] [(−ipIz)na(−ipJz)nb − (−ipIz)nb(−ipJz)na ] +O(Λ2) .

The contribution is the same for every pair yielding the one-loop corrected dimension

∆n =
n(n+ 1)

2
− n(n− 1)

2

p+ 1

kp

and in particular the dimension of the “baryonic” operator which one forms by anti-
symmetrizing n = p fundamentals together is given by

∆p =
p(p+ 1)

2
− p2 − 1

2k
.

Evaluating the angular momentum, remembering to include a contribution of −1 per
∂ derivative, yields the same result.
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5.5 Operators at the Unitarity Bound

Let us focus for a little while on an intriguing aspect of the Abelian anyon spectrum with
a single flavour. (We will generalize the discussion to non-Abelian physics in Section
5.5.3.) There is a rather striking difference between repulsive interactions, with k > 0,
and attractive interactions, with k < 0. In both cases, the dimension of the BPS state
O ∼ Φ†n is given by

∆ = n+
n(n− 1)

2k
.

For k > 0, this is the spectrum of anyons discussed in the introduction. For k < 0, there
is a new twist to the story because, for n > |2k|, this operator appears to violate the
unitarity bound ∆ ≥ 1.8 What is going on?

5.5.1 Quantum Mechanics of Abelian Anyons

To understand why these states violate the unitarity bound, we turn to the quantum
mechanical description of the problem. Such a formulation exists because there are no
anti-particles in the action (5.1) and, moreover, the dynamics of the gauge field whose
kinetic terms are given by (4.17) is tied to that of the particles. This means that there can
be no fluctuation of particle number so, if you fix the number of bosons and fermions in
the problem, then the field theory reduces to the quantum mechanics of a finite num-
ber of degrees of freedom. A simple derivation of how to move from the field theory
language to the quantum mechanics can be found, for example, in the book [33].

Here we consider the sector with n particles. Each particle has position xαa , with p =

1, 2 the spatial index and a = 1, . . . , n labelling the particle. The quantum mechanics
Hamiltonian is

H = − 1

2m

n∑
a=1

(
∂ ap +

i

k
εpq ∂

b
q

∑
b 6=a

log |xa − xb|
)2

+
2π

mk

∑
a<b

δ2(xa − xb) . (5.25)

Here the log term arises from the gauge field which is given by (5.13); this is the term
which imposes anyonic statistics on the particles which now pick up a phase π/k when
exchanged. The delta-functions arise from the |φ|4 interactions in the Lagrangian, as
was previously highlighted. These contact interactions are repulsive for k > 0 and
attractive for k < 0. We should ultimately add to the Hamiltonian (5.25) the harmonic
potential. We’ll do this below, but it won’t be important for our immediate discussion.

8We will not worry at all about the fusion rules for our studies of Abelian theories; indeed since, they
may be defined for arbitrary k, Abelian theories must make sense in the absence of a truncation in the
available states at special values of n.
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For us, the role played by the delta-function contact interactions is key. These arise
naturally from the field theory and endow the quantum mechanics with a number of
nice features. Indeed, as we review below, they are necessary for the quantum me-
chanics to exhibit scale invariance. For now, their main purpose is to impose boundary
conditions on the wavefunction9 Ψ(xa) as anyons get close to each other. For two parti-
cles, their s-wave state has boundary condition

Ψ(x1,x2) ∼ |x1 − x2|1/k as x1 → x2 (5.26)

with a pairwise generalization to multiple particles10.

For repulsive contact interactions, i.e. k > 0, the wavefunction (5.26) vanishes as the
particles approach; it is equivalent to imposing a hard-core boundary condition.

In contrast, with an attractive contact interaction, corresponding to k < 0, the wave-
function diverges as the two particles approach. For two particles, this is not problem-
atic because the wavefunction (5.26) is normalizable as long as |k| > 1. But this diver-
gence becomes more serious when we add too many particles, as we now describe.

The wavefunction for n particles in which each pair sits in the s-wave is

Ψ0 =
∏
a<b

|xa − xb|−1/|k| . (5.27)

This corresponds to the operator (Φ†)n. (We will make the connection between oper-
ators and wavefunctions more precise below.) One can check that Ψ0 is a zero-energy
eigenstate of the Hamiltonian (5.25). As discussed in the next section, there is actually
a large degeneracy at zero-energy, so one might reasonably ask what is special about
this eigenstate. The answer is that it is the one adiabatically connected to the ground
state (5.31) in the presence of a trap breaking this degeneracy. (The connection to (Φ†)n

makes this no surprise.)

When all n particles coincide, one finds a divergence from each of the n(n − 1)/2

pairs of particles. This means that the wavefunction takes the schematic form Ψ0 ∼
r−n(n−1)/2|k| where r measures the “radial” relative distance from the coincident point.

9In this section, we will use Ψ to denote the wavefunction of bosonic anyons. It is not to be confused
with the composite operator introduced later to denote fermionic anyons.

10There is an alternative way to view these boundary conditions. One could exclude from the con-
figuration space the points where particles meet and propose a self-adjoint extension of the quantum
mechanics [55]. There are precisely two such extensions which are compatible with scale invariance,
corresponding to (5.26) with k > 0 and k < 0. We will see this again in Section 6.2.3.
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The normalization is
ˆ n∏

a=1

d2xa |Ψ0|2 ∼
ˆ

d2X

ˆ
dr r2n−3|Ψ0|2 ∼

ˆ
d2X

ˆ
dr

r2n−3

rn(n−1)/|k| (5.28)

where X is the centre of mass. We see that the norm is UV finite if and only if

2n− 3− n(n− 1)

|k| > −1 ⇐⇒ n < 2|k| .

The wavefunction is normalizable only when n < 2|k|. This, of course, coincides with
the threshold that we found from the unitarity bound.

This, then, is the answer to our puzzle: the operators (Φ†)n which violate the uni-
tarity bound correspond to wavefunctions in the quantum mechanics which are non-
normalizable. Note, in particular, that the wavefunction with n = 2|k| particles is also
(logarithmically) non-normalizable, despite the fact that the operator saturates the uni-
tarity bound. The relationship between violations of the unitarity bound and the non-
normalizability of the wavefunction was previously noted in a different context in [87].

Mapping Between Operators and Wavefunctions

We have learned that the operator (Φ†)n corresponds to a non-normalizable state for
n ≥ 2|k|. This leaves open the simple question: what is the ground state of n ≥ 2|k|
anyons in a trap? In general, there is no reason to believe that the ground state lies
in a chiral multiplet. This makes the question difficult. We can, however, answer the
simpler question: what is the lowest energy chiral state for n ≥ 2|k|?

To answer this question, we will extend the correspondence

O = (Φ†)n ←→ Ψ0 =
∏
a<b

|xa − xb|1/k

to other chiral operators. This will allow us to determine which operatorsO correspond
to normalizable wavefunctions.

To proceed, we rewrite our Hamiltonian (5.25) in a way which eliminates the delta-
functions. Indeed, there is independently good reason to do this, related to the scale
invariance of the theory. In two dimensions, the delta-function has the same scaling as
the Laplacian ∇2, which means that a Hamiltonian of the form (5.25) would appear to
be scale invariant for any coefficient of the delta-function interaction. This is mislead-
ing. Delta-functions in quantum mechanics require a regularization and this typically
breaks scale invariance, resulting in a simple example of an anomaly in a quantum me-
chanical setting [88, 89, 90]. A similar effect also arises from the log term in (5.25). For
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the choice of coefficient in front of the delta-function in (5.25), these two effects cancel.
This, of course, mimics the field theory analysis of [56, 57].

To see the cancellation explicitly, we can rewrite the Hamiltonian by introducing com-
plex coordinates za = x1

a + ix2
a for each particle. For the specific coefficient of the delta-

function interaction given in (5.25), we have

H = − 2

m

n∑
a=1

Ψ0

(
∂z̄a∂za +

1

k

∑
b6=a

∂za
z̄a − z̄b

)
Ψ−1

0 (5.29)

where Ψ0 is given in (5.27). The ∂ operators in (5.29) are understood to act on every-
thing to the right including, ultimately, the wavefunction. (Note that, as one might
expect, there is a close relationship between the form of (5.29) and (15.3), the Knizhnik-
Zamolodchikov equation, which we will use later in our analysis of correlation func-
tions in Wess-Zumino-Witten theories.)

This form of the Hamiltonian (5.29) has no delta-functions and, correspondingly, no
need for regularization: it provides a manifestly scale invariant description of the dy-
namics. Further, it is immediately clear that the wavefunction Ψ0 obeys HΨ0 = 0 as
previously claimed. It is also easy to write down a large class of eigenfunctions, given
by

Ψ = f̄(z̄1, . . . , z̄n)
∏
i<j

|za − zb|1/k (5.30)

where f̄(z̄) is an antiholomorphic function, symmetric in its arguments z̄a. We pro-
pose that this class of wavefunctions is equivalent to the set of chiral operators of the
conformal field theory, with the mapping given up to normalization by

O = ∂p1Φ† · · · ∂pnΦ† ←→ f = zp1

1 · · · zpnn + permutations .

In particular we see that descendants in the CFT, which are obtained by total derivatives,
correspond to choices of f with factors of

∑
za:

Õ = ∂O ←→ f̃ =

(
n∑
a=1

za

)
f .

Hence, if we exclude the descendants we are left to form f by symmetrizing products of
terms like (za−zb)2 which respect the bosonic properties of the particles. This provides
a useful way to describe and enumerate all chiral primaries. For example, there are no
chiral primaries with just a single derivative while, at the two derivative level, we find

O =
(
∂2Φ†Φ† − ∂Φ†∂Φ†

)
Φ† · · ·Φ† ←→ f = (z1 − z2)2 + other pairs .
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In this manner, we see that chiral primary operators arise by giving pairs of particles
extra relative angular momentum. Correspondingly, the angular momentum of chiral
primaries is spaced in even-integer steps, since we always need polynomials of even
order in z. In contrast, the angular momentum of descendants is spaced in integer
steps.

Now we can ask which of these wavefunctions lie in the Hilbert space. The diver-
gences of the chiral wavefunctions (5.30) are softer than those of Ψ0. Heuristically, this
is because the addition of (za− zb)2 factors increases the relative angular momentum of
a pair of particles, so that their wavefunction is damped where they meet. However, we
need to determine what form of f is sufficient to render the wavefunctions normalizable
as the particles converge.

Let us suppose that f is a polynomial of order 2m. The simplest criterion on the
wavefunction arises from the situation where all n particles converge to a point. In this
case, repeating the calculation (5.28), the requirement for normalizability is

2n− 3− n(n− 1)

|k| + 4m > −1 ⇐⇒ 2m > (n− 1)

(
n

2|k| − 1

)
.

This coincides with the requirement that the dimension of the corresponding operator,
which is schematically of the formO ∼ ∂2m(Φ†)n, sits strictly above the unitarity bound
∆ > 1. This agreement is reassuring but it is not the end of the story.

Suppose that we instead bring some subset of q < n particles together. Without loss
of generality, we can pick particles a = 1, . . . , q. The wavefunction (5.30) diverges as
r2mq−q(q−1)/2|k| where mq is the smallest number of relative angular momentum terms
(za − zb)

2 with a, b = 1, . . . , q that appears in the expansion of f . Clearly when we
include all particles we include all winding terms, so mn = m.

This is perhaps best illustrated with an example. Consider n = 4, with f ∼ (z1 −
z2)2(z1 − z3)2 + · · · . We see that m4 = 2 is the total number of angular momentum
terms. However, m3 = 0 because f remains of order 1 if particle 1 is separated while
particles 2, 3 and 4 are brought together. Thus the additional angular momentum in f
has not helped convergence at q = 3.

The significance of this is that there are additional constraints at each order q on the
form of f and, correspondingly, on the possible chiral operatorsO in the theory. These
constraints are equivalent to imposing that ∆ > 1 not only for the operatorO itself, but
for every ‘channel’ of O: roughly speaking, if we can express O = O1O2 then we need
∆Oi > 1 as well.
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Nonetheless, by including enough angular momentum, one may see that it is in fact
always possible to find UV-normalizable chiral states in the theory. The relative angular
momentum forms a barrier, supporting the wavefunction away from the origin so that
the wavefunction survives in the Hilbert space.

Solutions in the Trap

Finally, for completeness we observe that we can also find explicit chiral wavefunctions
in a trap. The Hamiltonian is now

L0 = H +
m

2

∑
a

|xa|2 .

It is again more convenient to express this in complex coordinates in a manner analo-
gous to (5.29). It is

L0 = Ψ̃0

[
n∑
a=1

(
− 2

m
∂z̄a −

2

mk

∑
b 6=a

1

z̄a − z̄b
+ za

)
∂za + n+

n(n− 1)

2k
+

n∑
a=1

z̄a∂z̄a

]
Ψ̃−1

0

where Ψ̃0 is the ground state wavefunction in the trap,

Ψ̃0 =
∏
a<b

|za − zj|1/k exp

(
−m

2

n∑
a=1

|za|2
)

. (5.31)

Hence writing Ψ = f̄(z̄)Ψ̃0 with f any symmetric degree d polynomial, we analytically
find a class of wavefunctions with energies

∆ = n+
n(n− 1)

2k
+ d .

Using the expression (5.12) for the angular momentum in the Abelian theory, one easily
observes that this coincides with the chiral bound (4.15).

5.5.2 Relationship to Jackiw-Pi Vortices

The result that n = 2|k|, k < 0 is a special point in the Abelian theory leads us to a tan-
talizing conjecture. Let us look at the form of Q2 ∝

´
d2xφ†Dz̄ψ in the supersymmetric

theory. One obtains from this a condition for BPS solutions to the theory, Dzφ = 0.
Classical solutions to this equation clearly make the Hamiltonian (5.3) vanish and hence
solve the equations of motion of the bosonic theory. Of course, we must supplement
this with Gauss’s law:

f12 =
2π

k
|φ|2 , Dzφ = 0 . (5.32)
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These equations are somewhat unusual: they admit non-topological but nonetheless
quantized vortex solutions with a non-trivial moduli space, named for their discovers,
Jackiw and Pi [91, 32]. The role of these solitons in the quantum theory seems to be
poorly understood; in this section we will suggest that they are related to the divergent
states analysed above. Let us begin by briefly reviewing these Jackiw-Pi vortices. (See
for instance [92, 93] for more detailed expositions.)

Solutions to the system (5.32) exist only for k < 0. An explicit form for the general
solution may be straightforwardly obtained. We decompose the scalar field as

φ =
√
ρeiχ (5.33)

where ρ = φ†φ is the matter density. The gauge field is determined by the second
equation in (5.32) to be

az = ∂zχ−
i

2
∂z log ρ . (5.34)

Substituting this into Gauss’s law constraint reveals that ρ satisfies the Liouville equa-
tion,

∇2 log ρ =
4π

k
ρ . (5.35)

The general solution to (5.35) for k < 0 can be written in terms of a holomorphic function
u(z),

ρ =
k

2π
∇2 log

(
1 + |u(z)|2

)
. (5.36)

It is illuminating to look at the axially symmetric solutions, with u(z) = (z0/z)q. These
take the form

ρ =
2|k|q2r2q

0

π

r2(q−1)

(r2q
0 + r2q)2

. (5.37)

Asymptotically, the matter density scales as ρ ∼ r−2(q+1) and normalizability requires
that q > 0. Meanwhile, at the origin, the matter density scales as ρ ∼ r2(q−1). To ensure
that the gauge field (5.34) is non-singular, the phase of χ must wind accordingly. This
requires q to be integer, with the scalar field profile given by

φ =

√
2|k|q2r2q

0

π

r(q−1)

r2q
0 + r2q

e−i(q−1)θ .

This means that, although there is no topology in the vacuum manifold supporting
these solitons, their charge is nonetheless quantized. The integral of the matter density
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is

n = N =

ˆ
d2x ρ = 2|k|q (5.38)

and the corresponding flux is
´
f = −4πq. Note that the minimal flux carried by the

vortices is twice that usually required by flux quantization. This is a well known, if
rather peculiar, feature of classical Jackiw-Pi vortices.

Although we derived (5.38) for axially symmetric solutions, it continues to hold for
the most general solution. For separated vortices, we may take

u(z) =

p∑
a=1

ca
z − za

. (5.39)

This describes p vortices at positions za, with ca providing a scale size and phase for
each vortex. (This solution needs amending as the vortices coincide.) The collective
coordinates za and ca parametrize the moduli space Mp of Jackiw-Pi vortices which
has dimension dimMp = 4p.

There is something striking about the result (5.38): setting p = 1, we see the single
vortex has n = 2|k|, which is exactly the same point where the operator (Φ†)n hits the
unitarity bound ∆ = 1! An operator at the unitarity bound should describe a single,
free excitation. It is therefore natural to conjecture that semi-classically, a suitably reg-
ularized (Φ†)n operator creates a Jackiw-Pi vortex. More precisely, one might imagine
that it is necessary to introduce a length scale to regularize the aforementioned opera-
tor, and then that this length scale would become the parameter c providing the scale
size of the vortex.

One might then hope that the quantum numbers of this operator agree with those of
the Jackiw-Pi configuration. With that in mind, let us look at the angular momentum as
defined in (5.10). Evaluating this classically gives us J = N = 2|k|pwhen evaluated on
vortices. (Note that this is linear in p, rather than quadratic.) This angular momentum
is greater than that of any chiral primary operator of the corresponding N eigenvalue.
In particular, recall that (Φ†)2|k| has J = 2|k| − 1, while including P within an operator
decreases the angular momentum. Similarly, the classical configuration has D = 0

whilst the quantum one has ∆ = 1. This argues against the conjecture.

On the other hand, it is not clear that evaluating a classical generator and comput-
ing the commutator with the quantum one are truly analogous. (For instance, due to
subtleties in the quantum theory, it is iD that has real eigenvalues, even though it is D
which is a real operator.)
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Moreover, notice that in introducing a new scale c, one necessarily ends up with a
configuration which is not scale invariant unless one also scales the parameter c – in
other words, the Jackiw-Pi vortices fill out a representation of D rather than diagonal-
izing it.

It seems possible that subtleties in going between the classical and quantum pictures
here may explain the discrepancies we are seeing.

It is worth noting that the proposal being made here is analogous to what is be-
lieved to happen in similar situations in certain relativistic theories in three and four
dimensions [94, 95]. The general idea is that one starts with a microscopic theory, and
then makes a naive guess at the structure of its IR limit: a non-trivial superconformal
field theory. However, one finds that there are operators (monopole operators in three
dimensions, mesons in four) which would apparently saturate or violate a unitarity
bound. The conclusion is that the proposed description is wrong – instead, it seems
that the moduli space of vacua contains directions associated to a free field theory.

This fits in well with the situation here. We observe that, since JP vortices have vanish-
ing Hamiltonian for arbitrary values of their moduli, they represent degenerate choices
of vacua for a givenN . So instead of thinking about the operator (Φ†)2|k| and its descen-
dants, one should think about quantizing the moduli of the Jackiw-Pi vortex instead.
Nonetheless, it seems like one should be able to find a clear correspondence between
the quantum numbers of these modes.

(Note that in [1], solitons in the presence of a harmonic trap were discussed. This is
motivated by how much easier it is to compare solitons to the extended states in the trap
than to local operators. However, these have different properties to Jackiw-Pi vortices
and seemed there not to offer any immediate insight into the problem. A proposal for
a matrix model description of these vortices was also made.)

Let us set this aside and discuss the non-Abelian analogue of the issues we have dis-
cussed.

5.5.3 Non-Abelian Generalization

In the above, we saw that the presence of attractive delta-function interactions between
Abelian anyons forces wavefunctions to diverge as particles come close. For sufficiently
many particles, this divergence becomes logarithmically non-normalizable and this
state is no longer part of the Hilbert space. The true chiral ground state requires ex-
tra orbital angular momentum, softening the divergence.
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This same behaviour also occurs in the non-Abelian theory. Roughly speaking, sym-
metrized representations have anomalous dimensions that scale as +1/k, while those
of antisymmetrized representations scale as −1/k. When k < 0, it is simple to see
that placing too many anyons together in a symmetrized representation will violate the
unitarity bound. There is now, however, an interesting question about k > 0. Perhaps
the simplest example of an operator that might violate the unitarity bound for k > 0

arises in the case of SU(p) with Nf = p different species of scalar, φi, each in the funda-
mental representation. We can then build a baryon operator without the need to add
any derivatives: B = εi1...ipΦ

i1
1 . . .Φ

ip
p . Using the methods above, the dimension of this

operator is

∆B = p− p2 − 1

2k
.

This violates the unitarity bound ∆B ≥ 1 for k < (p + 1)/2. Note that here the bound
constrains the rank of the gauge group, p. Presumably, this can once again be traced to
the non-normalizability of the quantum mechanical wavefunction.

Interestingly, however, non-relativistic theories describing the low energy dynamics
of massive relativistic theories always satisfy |k| > p due to quantum shifts of the level.
(We will discuss these issues in Chapter 6.) This means that in these theories, the baryon
B never violates the bound for any k. In fact, one can check fairly straightforwardly that
∆ > 1 for all SU(p) representations built from fundamental matter with more than one
particle, provided k > p.

It is natural to ask if the suggested connection to Jackiw-Pi vortices highlighted in
Section 5.5.2 above can be extended to the non-Abelian situation. The answer is yes. To
begin, let us write down the relevant BPS equations:

fα12 =
2π

k
φ†ρt

α
ρσφσ , Dzφρ = 0 . (5.40)

Here, α labels the generators of some unitary group, and ρ, σ label the weight vectors
in the representation whose generators are tα.

In general, much less is known about the classical solutions to the BPS equations in
non-Abelian theories (see e.g. [92, 96] for some discussions), but there is one particu-
larly simple class of solutions which we can analyse with little extra effort.

The idea is to only turn on one component of the non-Abelian object φρ. The advan-
tage in this is that φ†ρtαρσφσ will then only have components for values ofα corresponding
to Cartan elements; hence it suffices to turn on only Cartan components of the gauge
field aαz , and the awkward non-Abelian structure of the equations can be avoided.
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Concretely, let us suppose that the hA span the Cartan subalgebra of the group. Then
if µA is the weight associated to the weight vector ρwhich we have turned on, the second
equation in (5.40) becomes

∂z log φρ = iµAaAz .

Meanwhile, Gauss’s law for a purely Cartan gauge field is

2i(∂z̄a
A
z − ∂zaAz̄ ) =

2π

k
µA|φρ|2 .

Then taking the further ansatz aAz ∝ µA reduces the equations to

∂z̄∂zφρ =
π|µ|2
k
|φρ|2

which is identical to the Liouville equation (5.35) which we found in the Abelian case,
except for the dependence upon |µ|2, which is new.

It follows that the solutions obey a modified quantization condition, with

N =
2|k|q
|µ|2 , q ∈ N . (5.41)

We still require negative k.

Now clearly, if these states are to be compared with an operator in the quantum the-
ory, it should be O = (Φ†ρ)

n. This operator, of course, is in general not associated to a
single representation of the gauge group and so outside the scope of what we have dis-
cussed. However, there is one easy case which is encouraging. Suppose ρ corresponds
to a highest weight of the representation R. Then this state is a representative of the
totally symmetric product Sym[Rn].

It is now easy to compute J for the nth symmetric product of the representation R

whose highest weight is µ. (We calculated this as an example earlier.) From C2(µ) =

〈µ, µ+ 2ρ〉we have

J = −C2(nµ)− nC2(µ)

2k
= −n(n− 1) 〈µ, µ〉

2k
.

Then the unitarity bound is hit at 1 = n− J or

n = − 2k

|µ|2

in perfect agreement with (5.41).
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It is possible to generalize this to other weights, by decomposing the symmetric prod-
uct carefully into its irreps, though there seems little further insight to be gained from
this process.

Notice that again we find, as one always must, that the classical angular momentum
is J = N , whilst the quantum operator has J = N −1. (Similarly,D = 0 whilst ∆ = 1.)
Clearly the same issues as in the Abelian case are at work here. It would be nice to
understand what the true connection to these non-topological vortices is.
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6 Bosonization and The Fermionic Theory

In this section, we give another description of anyons, this time using non-relativistic
fermions as the starting point. We will couple these fermions to an SU(p)k Chern-
Simons theory. The real goal in introducing these theories is to explore the role of the
exciting bosonization dualities which have seen so much recent interest; we will postpone
discussion of these phenomena until Section 6.2, after we have outlined the fermionic
theory.

The matter consists ofNf complex, Grassmann-valued fields ψi, each transforming in
some representation Ri of SU(p). These fields have non-relativistic kinetic terms, with
the action given by

S = SCS +

ˆ
dt d2x

{
iψ†iD0ψi −

1

2m
~Dψ†i ~Dψi −

1

2m
ψ†i f

α
12 t

α[Ri]ψi

}
. (6.1)

The coupling to the non-Abelian magnetic field f12 plays an analogous role to the quar-
tic interactions in the bosonic Lagrangian (5.1). (This is particularly apparent from the
expression for f12 which Gauss’s law furnishes us with.)

Like its bosonic counterpart, this theory also exhibits conformal invariance. The vari-
ous symmetry generators can be constructed from the number density and momentum
current, which are given by

ρ = ψ†iψi and j = − i
2

(
ψ†i
~Dψi − ( ~Dψ†i )ψi

)
.

The Hamiltonian is given by

H =

ˆ
d2x

2

m
Dzψ†i Dz̄ψi .

As explained in Chapter 5, we can construct gauge invariant operators by attaching a
semi-infinite Wilson line to each particle,

Ψi(x) = P exp

(
i

ˆ x

∞
aα tα[Ri]

)
ψi(x) . (6.2)
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As before, our interest lies in the spectrum of n anyons in a trap. The most general
operator takes the form

O ∼
n∏
a=1

(∂la ∂̄maΨ†ia) (6.3)

where, again, primary operators are those which cannot be written as a total derivative.

However, the anti-commuting nature of ψi means that the simplest operators are
rather different to those in the bosonic case. Consider, for example, the situation where
we have a single species of fermion Ψ transforming in the p representation of SU(p).
Now the operator

O = Ψ†n (6.4)

is non-vanishing only for n ≤ p and transforms in the nth antisymmetric representation.
If we wish to place n > p anyons in a trap, the different operators must be dressed with
derivatives. To illustrate this, let’s revert to Abelian anyons, charged under aU(1) gauge
field. Now there is no operator of the form (6.4) with n > 1. Instead, the operator with
the lowest number of derivatives takes the form

O = Ψ† ∂Ψ† ∂̄Ψ† ∂2Ψ† ∂∂̄Ψ† . . . .

This operator has ∼ n3/2 derivatives. At large k, this is the ground state of the n anyon
system, with ∆ ∼ n3/2. However, at smaller k, the ground state is expected to undergo
level crossing.

Computing the spectrum in the fermionic case is no easier than for bosons. Once
again, there are two approaches that we can take. The first is the brute force, perturba-
tive approach, valid for large k. We describe this below in Section 6.1. However, once
again there is a class of operators whose spectrum is constrained by their angular mo-
mentum. These are of course the anti-chiral operators and have only antiholomorphic
derivatives

O =
n∏
a=1

(∂̄maΨ†ia) .

For these operators, the dimension is fixed in terms of their angular momentum as

∆ =
n

2
+ J . (6.5)

Note the opposite minus sign and factor of two compared to (5.9), which can be traced
back to (4.16), and the expression for the R-symmetry in the supersymmetric theory.
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In the context of supersymmetry, the difference is that these should be thought of as
anti-BPS states rather than BPS states.

Examples

The simplest example we can consider is a single fermionψ coupled to an AbelianU(1)k

Chern-Simons theory. The simplest anti-chiral n-particle operator is

On = Ψ† ∂̄Ψ† ∂̄2Ψ† . . . ∂̄n−1Ψ† .

This operator has n(n − 1)/2 derivatives, each of which contributes +1 to the total an-
gular momentum, and n spin 1/2 fermions. Meanwhile, the angular momentum from
the Wilson lines is given by (5.12) as for the bosonic theory. We have

J =
n(n− 1)

2
+
n

2
− n(n− 1)

2k
⇒ ∆ =

n(n+ 1)

2
− n(n− 1)

2k
. (6.6)

Notice that there is something interesting about this dimension: if we replace 1/k →
1− 1/k, then the dimensions of (6.6) trace out the same spectrum as (3.1) – the bosonic
operators (Φ†)n have the same spectrum! Indeed, by standard flux attachment consid-
erations, at k = 1, the Φ excitations are fermions and the Ψ excitations are bosons.

This can be easily understood if one repeats the quantum mechanical analysis of Sec-
tion 5.5.1: the ground state wavefunctions for fermions differ from those of bosons sim-
ply by the requirement that they be antisymmetric, and hence there is always an overall
factor like

∏
a<b(za− zb) in the wavefunction.1 This conspires with the ”1” of 1− 1/k to

leave everything unchanged. (We will explore the quantum mechanics in some detail
for the case of two anyons shortly.)

Moreover, one can easily verify that the alternative angular momentumJ ′which was
introduced in Section 5.3, in which one does not subtract off the contributions C2(Ra)

of the individual particles, agrees across the two sides up to an overall sign, since for
the bosons J ′ = −n2/2k whilst for the fermions

J ′ = n(n− 1)

2
+
n

2
− n2

2k
=
n2

2

(
1− 1

k

)
.

Note that the relative sign might not be so surprising: we know that on the bosonic
side of the duality, the operator ∂ preserves the chiral nature of the operator, whilst on
the fermionic side it is ∂̄. This might hint that the theories differ, but only by a parity
transformation.

1This can also be rewritten as εa1...anz0
a1z

1
a2 · · · zn−1

an , making contact with the form of (6.12). We will
see many more identities like this when we discuss the quantum Hall effect.
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This is the first hint of bosonization in this theory. We will discuss this at length in
Section 6.2.

In SU(p) gauge theories, the simplest operator (6.4) sits in the nth antisymmetric rep-
resentation. We have C2(Antisymn(p)) = n(p− n)(p+ 1)/p and, correspondingly,

J − n

2
=
n(n− 1)(p+ 1)

2pk
. (6.7)

Recall that for the bosonic case, when k > 0 the symmetrized representations increased
the dimension of the operator whilst antisymmetrized ones decreased it. Because of
the different sign in (6.5) relative to (5.9), this is reversed for fermions.

In the bosonic theories, we saw that certain states violate the unitarity bound. These
do not arise in the Abelian fermionic theories, nor in the non-Abelian theories with
k > 0. However, there are such states in the non-Abelian fermionic theories with k < 0,
with the baryon the obvious example.

6.1 Perturbation Theory with Fermions

Non-relativistic conformal fermions with Chern-Simons interactions can be studied
perturbatively in much the same way as the scalars in Section 5.4. Here we restrict
the analysis to one-loop order.

One-loop Corrections

Similar to the theory with scalars, all one-loop corrections to the operators of the form
(6.3) arise from pairwise diagrams. Therefore to extract the anomalous dimension of
such operators we need only to compute the logarithmic correction to the two-anyon
operator

∂n1 ∂̄m1Ψ†ρ1
∂n2 ∂̄m2Ψ†ρ2

(6.8)

with the Greek letters ρ, σ = 1, . . . , dimR denoting the colour indices. We restrict the
analysis to a single flavour of fermions living in the representationR of the gauge group
but the generalization to multiple flavours is straightforward. As in the bosonic case,
we focus on the correlation function

〈Ψσ2(p2)Ψσ1(p1) ∂n1 ∂̄m1Ψ†ρ1
∂n2 ∂̄m2Ψ†ρ2

〉 . (6.9)
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At tree level, we schematically denote this correlation function by the following dia-
gram:

= δρ1
σ1
δρ2
σ2

(−ip1z)
n1(−ip1z̄)

m1(−ip2z)
n2(−ip2z̄)

m2

− δρ1
σ2
δρ2
σ1

(−ip1z)
n2(−ip1z̄)

m2(−ip2z)
n1(−ip2z̄)

m1 .
(6.10)

The only correction this correlation function receives at one-loop arises from the gluon
exchange diagram

=
1

2k
log

Λ

µ

[ (
tαρ1σ1

tαρ2σ2
− tαρ1σ2

tαρ2σ1

)(
− i

2
P+
z

)n1+n2
(
− i

2
P+
z̄

)m1+m2

+ tαρ1σ1
tαρ2σ2

K(p1, p2)− tαρ1σ2
tαρ2σ1

K(p2, p1)

]
+O(Λ2)

(6.11)

with P± = p1 ± p2. The function K(p1, p2) is the same function (5.22) we encountered
in the perturbative study of scalars. The above diagram is sufficient to evaluate the
anomalous dimension of operators of the form (6.3) at one-loop.

Examples

Let us start by considering the U(1) theory with a single flavour of fermion. The sim-
plest operator of the form (6.3) is

On = Ψ†∂̄Ψ† . . . ∂̄n−1Ψ† . (6.12)

In the supersymmetric theory this is an anti-chiral primary operator and is therefore
one-loop exact. This holds true even in the non-supersymmetric theory and the oper-
ator is only corrected by the pairwise diagrams correcting ∂̄m1Ψ†∂̄m2Ψ† which evaluate
to

=
1

2k
log

Λ

µ
+O(Λ2) .

As this is independent of the number of derivatives mi the dimension of On is simply

∆ =
n(n+ 1)

2
− n(n− 1)

2k
(6.13)

as derived earlier, in (6.6).

Another important example is the baryon operator in SU(p) Chern-Simons theory

B = Ψ†1 . . .Ψ
†
p . (6.14)

More generally, we can consider the operators

Oρ1...ρn = Ψ†ρ1
. . .Ψ†ρn (6.15)
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with B = O1...p. The pairwise diagrams that contribute to the anomalous dimension of
these operator evaluate to

= −p+ 1

2pk
log

Λ

µ
+O(Λ2) .

The dimension of Oρ1...ρn therefore evaluates to

∆ = n+
n(n− 1)(p+ 1)

2pk
(6.16)

which is consistent with (6.7).

6.2 Bosonization Dualities

We have studied Chern-Simons theories coupled to both bosons and fermions. Yet, in
both cases, the resulting particles actually interpolate between these statistics: they are
anyons. This motivates the possibility that the theory of bosonic and fermionic theories
are actually equivalent.

One simple example of this was seen above: the bosonic and fermionic theory are
naturally interchanged under the map 1/k → 1 − 1/k. As we will soon see, this is the
tip of the iceberg.

6.2.1 Introduction to Bosonization

We have discussed how by exploiting the structure of special Chern-Simons theories,
we can calculate exact quantities even in a strongly interacting theory. Remarkably,
seems that supersymmetry really provides only an informative role in choosing the
right non-supersymmetric theory to investigate, and what calculations to do. This is a
theme we will pick up again when we turn to discuss quantum Hall physics: we will
open up a web of quantum Hall dualities, and directly derive strong results about these
theories with no supersymmetric partners in sight.

Recent years have seen great progress in our understanding of dualities in (2+1)-
dimensional quantum field theories as we have again managed to shrug off the holo-
morphic comfort blanket of supersymmetry. These developments have arisen from a
wonderfully disparate array of topics, including the study of holography, the non-Fermi
liquid state of the half-filled Landau level, and the surface physics of topological insu-
lators.

Underlying many of these results is the idea of bosonization. Roughly speaking, this
states that theories of scalars interacting with U(p)k Chern-Simons theories are equiv-
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alent to theories of fermions interacting with U(k)p Chern-Simons theories. (More pre-
cise statements will be made shortly.) These dualities were originally conjectured in the
limit of large p and k [97, 98, 99], motivated in part by their connection to higher spin
theories in AdS4 (recently reviewed in [100]). They have subsequently been subjected
to a battery of very impressive tests [101, 102, 103, 104].

Versions of these dualities are also believed to hold for finite p and k. The first ar-
guments in favour of their existence were given in [105], and the first precise dualities
were described by Aharony [23] by piecing together evidence from level-rank duali-
ties [106], known supersymmetric dualities [107, 108, 109, 110, 111, 112], and the map
between monopole and baryon operators [113].

When extrapolated to p = 1, the dualities imply relationships between Abelian gauge
theories, some of which had been previously proposed [114]. An example of such a
duality equates a theory of bosons, coupled to a Chern-Simons gauge field, to a free
fermion. (Closely related conjectures, which differ in some details, have long been a
staple of the condensed matter literature – see, for example, [115, 116, 117, 118, 119].)
Recently it was shown that these Abelian bosonization dualities can be used to derive a
whole slew of further dualities [120, 121], including the familiar bosonic particle-vortex
duality [122, 123], as well as its more novel fermionic version [124, 125, 126]. The upshot
is that there is a web of d = 2 + 1 Abelian dualities, with bosonization lying at its heart.

For this dissertation, our interest lies in the generalized class of non-Abelian versions
of the bosonization dualities. For these, it is a little too quick to say that they relateU(p)k

bosons to U(k)p fermions since there are subtleties in identifying the levels of the U(1)

factors on both sides. These subtleties were largely addressed in [23] and, more recently,
in [127]. Before proceeding, we review these results and provide a slight generalization.

Theory A

We start by describing the bosonic theory. This consists of Nf scalar fields with quartic
couplings, transforming in the fundamental representation of the gauge group

U(p)k, k′ =
U(1)k′p × SU(p)k

Zp
. (6.17)

Here k and k′pdenote the levels of theSU(p) andU(1) Chern-Simons terms respectively,
so that the action governing the gauge fields is given by

LA =
k

4π
Tr εµνρ(aµ∂νaρ −

2i

3
aµaνaρ) +

k′p

4π
εµνρãµ∂ν ãρ (6.18)
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with a the SU(p) gauge field and ã the U(1) gauge field. Regularization of each Chern-
Simons theory is required; this may be done with a small Yang-Mills term or another
technique such as dimensional regularization. We will state the dualities for both types
of regularization.

The discrete quotient in (6.17) restricts the allowed values of k′ to take the form

k′ = k + np with n ∈ Z .

A simple way to see this is to construct the u(p)-valued gauge field au(p) = a+ ã1p; the
action (6.18) becomes a Chern-Simons action for au(p) at level k, which we denote as
U(p)k, together with an Abelian Chern-Simons action for Tr au(p) at level n.

The dual of Theory A depends on the choice of Abelian Chern-Simons level k′ or,
equivalently, on n. For n = 0, 1 and∞, the duals were first proposed by Aharony [23].
More recently, Hsin and Seiberg described the dual for the choice n = −1 [127]. Al-
though not explicitly stated by the authors, the techniques of [127] allow for a straight-
forward generalization2 to any n, which we now describe.

Theory B: Yang-Mills Regularization

This consists of Nf fermionic fields, transforming under the fundamental representa-
tion of the gauge groupU(k)−p+Nf/2. TheU(1) ⊂ U(k) gauge field also interacts through
a minimal BF coupling with a further U(1)n Chern-Simons theory. The resulting action
for the gauge fields is

LB =
−p+Nf/2

4π

[
Tr εµνρ(cµ∂νcρ −

2i

3
cµcνcρ) + k εµνρc̃µ∂ν c̃ρ

]
(6.19)

+
k

2π
εµνρc̃µ∂νbρ +

n

4π
εµνρbµ∂νbρ

with c the SU(k) gauge field and c̃, b both U(1) gauge fields.

For certain values of n, we can integrate out the auxiliary gauge field b. These values
give the following dualities:

n =∞ : Nf scalars with SU(p)k ←→ Nf fermions with U(k)−p+Nf/2

n = 0 : Nf scalars with U(p)k ←→ Nf fermions with SU(k)−p+Nf/2

n = ±1 : Nf scalars with U(p)k, k±p ←→ Nf fermions with U(k)−p+Nf/2,−p∓k+Nf/2

2This generalization was also noticed by Ofer Aharony – the author is grateful to him for extensive
discussions on this issue.
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These are the dualities previously described in [23] (for n = 0, 1 and ∞) and in [127]
(for n = −1). For general n, we cannot integrate out b without generating fractional
Chern-Simons levels. In this case, the correct form of the duality is (6.19).

These dualities are essentially level-rank dualities of the underlying non-Abelian al-
gebras, dressed up with carefully chosen U(1) factors. The other visible oddities are
the Nf/2 shifts of the levels in the fermionic theories. The need for some such term is
clear for Nf = 1, where without a half-integer CS level, the fermionic theory would be
anomalous.

Theory B: The Other Regularization

However, there is one further subtlety which can arise, according to how one regular-
izes computations in the theory. If one has to compute a one-loop renormalization of
the gluon propagator as in Yang-Mills regularization, then the non-Abelian level for
SU(p) receives a finite renormalization. The quantity appearing in the dressed propa-
gator is shifted from the bare value k̂ in the Lagrangian, replacing it with k = k̂+sgn(k̂)p

[23]. If one does not wish to include such a shift in loop computations, one should use
the dressed propagator, or equivalently the theory with the non-Abelian Chern-Simons
level k instead.

A prototypical example of a regularization one might use which falls into this cate-
gory is dimensional regularization.

The theory is identical to that above, except that we and shift the levels of the non-
Abelian groups, giving a set of dualities of the following form, for positive k > 0:

Nf scalars and U(p)k̂+p,k̂+np ←→ Nf fermions and U(k̂)−k̂−p+Nf/2,−p+Nf/2 × U(1)n

In terms of the variable k = k̂ + p, they become the following instead:

Nf scalars and U(p)k,k+(n−1)p ←→ Nf fermions and U(k − p)−k+Nf/2,−p+Nf/2 × U(1)n

Again, special forms are possible for the values of n found above.

6.2.2 Non-Relativistic Limits

It is interesting to ask whether there is a non-relativistic counterpart of these dualities.
The answer will turn out to be yes, and as well as having relevance for the supercon-
formal theories we have thus far considered, evidence for the equivalence of quantum
Hall states in such pairs of theories will be covered in Chapter 14 when Nf = p.
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Of course, as we discussed earlier, to access this regime from the relativistic theories
we will need to deform both sides of the duality. To recap, this is achieved by first
turning on mass deformations so that the theories sit in a gapped phase. We then we
take the non-relativistic limit by integrating out anti-particles, leaving us in a theory
with fixed particle number.

The retreat to a non-relativistic corner of the theories throws away much of the dy-
namics that makes bosonization dualities non-trivial. Indeed, here the dualities are
souped-up version of flux attachment, which is used to transmute the statistics of parti-
cles in quantum mechanics [128]. Nonetheless, there remains a lot of interesting physics
to extract in this limit and (especially in our later discussions of Hall physics) a num-
ber of conceptual issues must be understood before we will ultimately find agreement
between the two theories.

The first thing we must do is establish what regularization convention we are ad-
hering to. In our calculations up to this point, we have not included any loop effects
renormalizing the gluon propagator as would be necessary in Yang-Mills regulariza-
tion; thus we should think of this as a non-relativistic limit of the dimensionally regu-
larized theory.3 With that in mind, we can write down the theories:

Bosonic Theory: U(p)k, k+(n−1)p coupled to Nf fundamental scalars. The bare non-
Abelian level is k̂ = k − p.

Fermionic Theory: U(k− p)−k,−p coupled toNf fundamental fermions and, through
a BF coupling, to U(1)n. The bare non-Abelian level is −p.

Note theNf/2 shift in the Chern-Simons level of the fermionic theory has gone away
again; this arises because taking the non-relativistic limit involves integrating out the
Dirac sea of filled fermionic states.

6.2.3 The Duality in Action

We need to get some feel for how these dualities manifest in our theories. To get a sense
for the role of the extraU(1) factors, and as a first check on our conventions, we will look
at the purely Abelian case p = k− p = 1 first. Then we will see the basic mechanism by
which the non-Abelian duality works.

3Note that in particular, in our conventions we would always have |k| > p, which is the inequality we
saw previously ensured that states never violate the unitarity bound for k > 0.
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The Abelian Case

Consider these theories, respectively coupled to the currents of a single boson and a
single fermion:

LB =
n+ 1

4π
a ∧ da+ aµJ

µ
B ,

LF = − 1

4π
b ∧ db+

1

2π
b ∧ dc+

n

4π
c ∧ dc+ bµJ

µ
F .

Now suppose one naively integrates out c in the theory LF ; its equation of motion is
nc = −b and hence we get

L′F = bµJ
µ
F −

(
1

1− 1
n+1

)
1

4π
b ∧ db .

Letting κ = n + 1, we learn that the bosonic theory with the inverse level 1/κ should
be dual to the fermionic theory with 1 − 1/κ, up to a parity transformation. This is
indeed what we have found, right down to the parity issue – recall that on one side of
the duality, we added ∂z derivatives, whilst on the other we added ∂z̄ derivatives. This
is our first confirmation of these dualities!

Furthermore, as we mentioned above, the spins of Φ and Ψ, as measured by J ′ (see
Section 5.3), are respectively

J ′Φ = − 1

2κ
and J ′Ψ =

1

2
− 1

2

(
1− 1

κ

)
= +

1

2κ
,

so in particular J ′Ψ = −J ′Φ.

Two Particle Abelian Wavefunctions and Spectral Flow

To get a better sense of what is going on, it is very helpful to look at the case of two
Abelian anyons in a harmonic trap, which is exactly solvable [129]. We could do this by
following the approach of Section 5.5.1, but it is helpful to instead consider the problem
from first principles.

Consider the configuration space of two identical particles in two dimensions. The
space is given by R2 × R2/Z2. Let us focus on the relative degrees of freedom, R2/Z2,
where the Z2 quotient identifies the points x ∼ −x. We can create a Hilbert space for
these particles by fibering a one-dimensional complex line over this space, so let us start
by doing this. However, it is clear that there is a singular point in this space, namely at
the origin, and as a result we have a choice as to precisely what gluing of these lines we
make: there can be monodromy around the origin.
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Concretely, if we consider a wavefunction which is section of this bundle, χ(r, θ), then
it may behave like χ(r, θ + π) = Uχ(r, θ) for some unitary operator U . We may freely
choose the operator U which sits here; each choice clearly defines a superselection rule
in the theory. Here, since the Hilbert space is one-dimensional, U = exp(iπ/k) is simply
a phase. It is, of course, the statistical phase of the particles. For bosons, 1/k = 0 and for
fermions 1/k = 1.

Suppose the particles are free, except that we put the theory in a harmonic trap. In
this case, the Hamiltonian would be

H = − ~2

2m

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(
∂

∂θ

)2
)

+
1

2
mω2r2 .

However, it is convenient to change to work with a single-valued function χ̂(r, θ) =

exp(−iθ/k)χ(r, θ), and then the Hamiltonian becomes

Ĥ = − ~2

2m

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(
∂

∂θ
+
i

k

)2
)

+
1

2
mω2r2 .

This takes exactly the form of the standard two-dimensional simple harmonic oscil-
lator, with solutions χ̂(r, θ) = exp(ilθ)Rn(r), except that the appearances of the angular
momenta l are shifted by 1/k.

This means that almost all of the spectrum of the relative degrees of freedom is im-
mediately obvious from the standard approach to the harmonic oscillator. Assuming
that |1/k| ≤ 1, the spectrum for angular momenta l 6= 0 is

E

ω
= 1 + 2q +

∣∣∣∣l +
1

k

∣∣∣∣ where q = 0, 1, 2, . . . and l = ±2,±4, . . . . (6.20)

However, the l = 0 sector is slightly subtle, since in fact there is a continuum of energy
eigenvalues associated to square-integrable wavefunctions unless one imposes more
precise boundary conditions on the behaviour at the origin. As we discussed in some
detail back in Section 5.5.1, our choice for the bosonic theory is equivalent to making
χ̂ ∼ r1/k at the origin for these wavefunctions. With this convention, the remaining
states have energy

E

ω
= 1 + 2q +

1

k
where q = 0, 1, 2, . . . for l = 0, . . . . (6.21)

Some nice features of this spectrum are now visible. Firstly, suppose we smoothly
increase 1/k from 0 to 1. We see that the resulting spectrum smoothly interpolates be-
tween the spectrum of a boson and of a fermion, where the fermion state which matches
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a boson state always has its l eigenvalue one larger. Thus the picture of flux attachment
works very neatly in this case.

Suppose we instead decreased 1/k from 0 to−1. Now something a little odd happens:
the l = 0 states described by (6.21) go the wrong way. In particular, although almost all
of them end up lining up with a free fermion state as they should, the q = 0, l = 0 state
heads down toE/ω = 0. At this point, of course, the state then becomes logarithmically
non-normalizable, and a Jackiw-Pi vortex appears. We are not going to pursue this line
of reasoning again, however.

We are really here to see what form bosonization takes from this perspective. It is
easy enough to capture. Suppose we consider fermions with a phase shift of 1/k − 1.
We can read off their spectrum from (6.20) simply by looking at odd l, as noted above.
But then the−1 within the phase shift conspires with the summation over odd integers
to produce a summation over even integers at the phase shift 1/k. In other words, we
obtain perfect agreement with a bosonic spectrum at phase shift 1/k.

We also see that the bosonic state of angular momentum l arises from a fermionic
one of angular momentum l+ 1. This ties in with what we have seen in terms of chiral
operators; the fermionic dual of Φ†Φ† was Ψ†∂Ψ†. The above shows that this extends in
an elegant way to the rest of the spectrum.

The Basic Non-Abelian Case

One can perform the same manipulations as we did for U(1) for the more general case
of

Nf bosons + U(p)k,k−p+np ←→ Nf fermions + U(k − p)−k,−p × U(1)n (6.22)

provided one is not too bothered about having a fractional U(1) level. This duality then
becomes the following:

Nf bosons + U(p)k,k−p+np ←→ Nf fermions + U(k − p)−k,−p−(k−p)/n

Conveniently, even though the U(1) level here is not necessarily an integer, substituting
it naively into our formulae gives the same answer as working in the theory with the
extra gauge fields and extending our previous analysis to cover this situation.

As we saw for the U(1) case, the fact that we have investigated chiral states on one
side and anti-chiral states on the other implies that in fact we have been looking at
the left-hand theory together with a parity inversion of the right-hand theory. This
parity inversion leaves the dimensions invariant, so we need not worry about it further
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– we will quote results from our previous work but apply them to the true pair of dual
theories. With all this in mind, let us see if we can verify the non-Abelian duality (6.22).

Let us begin on the left-hand side of (6.22). Consider a bosonic operator transform-
ing in the representation R of U(p). This has an associated Young diagram λ, and is
composed of |λ| fundamental scalars with m derivatives. Then by what we have seen,
this has the dimension

∆B = |λ|+m+

∑[
1
2
λi(λi − 1)− (i− 1)λi

]
k

+
1

2
|λ|(|λ| − 1)× 1

p

[
1

k − p+ np
− 1

k

]
.

Assume for the moment that R is such that λ has at most k̂ columns. Then we can
consider a fermionic operator in the representation R̃ associated to the Young diagram
λT , living on the right-hand side of (6.22). Firstly, notice that because of the change in
statistics and the change in representation, one can leave the derivatives in exactly the
same place without causing any problems with vanishing symmetrizations or the like.
Further, this means that the operator transforms under the SU(Nf ) global symmetry in
the same representation as the bosonic one did. But now we can compute the dimension
of this operator. We find that

∆F = |λT |+m+

∑[
1
2
λTi (λTi − 1)− (i− 1)λTi

]
−k

+
1

2
|λT |(|λT | − 1)× 1

k − p

[
1

−p− (k − p)/n −
1

−k

]
= |λ|+m+

∑[
(i− 1)λi − 1

2
λi(λi − 1)

]
−k +

1

2
|λ|(|λ| − 1)× 1− n

k(k − p+ np)

= ∆B

confirming that the dimensions of these BPS operators agree exactly!

One may easily verify that the angular momenta J ′ also agree between these two
operators. This is a consequence of the fact that the fundamental representation of
U(p) has the quadratic Casimir p and the identity

p

2(k̂ + p)
=

1

2
− k̂

2(k̂ + p)

which shows that the true spin of an isolated boson in a U(p) theory is identical to that
of a fermion in a U(k̂) theory whose bare spin is 1/2.

6.2.4 Fusion Rules and Baryons

There are some subtleties associated with operators which cannot be expressed purely
in terms of a single Young diagram λwith at most k̂ columns, however. Whenever there
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are “too many symmetrizations” on the bosonic side – more than there are colours
of fermion – we cannot write down a large enough antisymmetrization to form the
transpose of the Young diagram.

The underlying reason for these subtleties is of course the fusion rules, introduced in
Section 5.3.4.

For instance, consider a bosonic theory withSU(2) at level k̂ = 1 and only one flavour.
Then one might ask about operators of the form Sστ = ΦσΦτ . This vanishes under
antisymmetrization on σ, τ , and hence has no component which is non-vanishing under
implementation of the fusion rules. Correspondingly, the would-be dual is ΨΨ = 0. By
contrast, Tστ = Φσ∂̄Φτ is a valid operator when antisymmetrized over σ, τ ; this singlet
is then dual to Ψ∂̄Ψ 6= 0. Also, in an SU(2) theory with two flavours, one can form
Sστµν = εijεklΦ

i
σΦj

τΦ
k
µΦl

ν which does not vanish under any antisymmetrizations.

But this last example brings us back to a subtlety we had previously swept under
the rug. Recall that in Section 5.3, we allowed ourselves to include a pth row in an
SU(p) Young diagram to keep track of the number of singlets (baryons) we had formed.
This conveniently gave the correct results for the anomalous dimensions. But all p-high
columns should be removed from a diagram for an SU(p) representation, and only the
remaining, reduced diagram need have≤ k̂ columns. So we are always permitted to add
an arbitrary number of baryons without violating the fusion rules (providing we have
enough flavours to form them).

This creates a problem: what are the duals of these states? If one naively follows the
prescription above, then one immediately runs into problems. For example, consider
a product of two U(p) baryons in a bosonic theory with k̂ = 1, taking the number of
flavours to be Nf = p for convenience:

O = (εi1···ipε
ρ1···ρpΦi1

ρ1
· · ·Φip

ρp)
2 .

Then the dual description must live in a U(1) fermionic theory; but the operator Õ =

(εi1···ipΨ
i1 · · ·Ψip)2 trivially vanishes because it contains two copies of each fermion field!

(Moreover, even if it did not vanish, the dimension and angular momentum would not
agree with the above operator.) What can we do?

For inspiration, we turn back to the simple example of dual operators in the U(1)

theories discussed above: Φq is dual to Ψ∂̄Ψ · · · ∂̄q−1Ψ. (Note that, although there is
apparently noSU(1) level, by comparison to the general form of the dualities, we should
think of this as the p = k̂ = 1 case. Also note that we are using the parity-reversed
theory.) It seems like adding derivatives is the right thing to do.
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Indeed, we find

Õ = (εi1···ipΨ
i1 · · ·Ψip)(εi1···ip ∂̄Ψi1 · · · ∂̄Ψip)

has an anomalous dimension which agrees with that of O. This now involves a con-
spiracy between the number of derivatives and the group theoretic terms.

This generalizes straightforwardly. For k̂ = 1, we always have a U(1) fermionic the-
ory, and we keep adding one more derivative to every additionalSU(Nf ) baryon. When
k̂ > 1, one first forms singlets amongst the fermion flavours, then moves on to add
derivatives, and so forth.

As an example of this, consider a U(p) theory with a general k̂ > 0. Suppose that we
have Nf = p flavorus; we will suppress flavour indices for brevity, but both operators
will transform in the same way under the flavour group. Consider

O = (ερ1···ρpΦρ1 · · ·Φρp)
qk̂+r .

The dual of this operator is (up to gauge rotations)

Õ =

p∏
t=1

[
q−1∏
s=0

(εσ1···σk̂ ∂̄sΨσ1 · · · ∂̄sΨσk̂
)×

r∏
σ=1

∂̄qΨσ

]

where each term in the product over t = 1, . . . , p comes from one flavour in O. These
transform, in our extended notation for gauge group representations, as the pair of
diagrams shown here.

(6.23)
qk̂ + r

p

qp

p

k̂

r

The quantum dimensions of these operators, in the U(p)k̂+p,k̂+p ←→ U(k̂)−k̂−p,−k̂−p
theories respectively, are

∆ = (qk̂ + r)p+
p(qk̂ + r)(qk̂ + r − 1)− (qk̂ + r)p(p− 1)

2(p+ k̂)
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and

∆̃ = (qk̂ + r)p+
1

2
q(q − 1)k̂p+ rqp

+
r(q + 1)p((q + 1)p− 1) + (k̂ − r)qp(qp− 1)− qpk̂(k̂ − 1)− pr(r − 1)

−2(p+ k̂)

and a little algebra indeed verifies that ∆ = ∆̃.

A general proof that this works goes as follows: any valid operator in the bosonic
theorySU(p) with bare level k̂ takes the form of some number qk̂+r of baryons followed
by a reduced diagram µ for an integrable representation (one with at most k̂ columns).
The transpose of this diagram is not generically a valid SU(k̂) diagram, since it has too
many rows. However, this can be fixed in the following way. To begin with, ignore the q
separate p× k̂ rectangular blocks. This leaves us with are r horizontal strips of p blocks
above µT . If this has at most k̂ rows, then this is already a valid diagram. If not, take the
portion of the diagram below the k̂th row and place it at the top right of the diagram.
This is now a valid diagram: in particular, the excess height beyond k̂ was at most r.
Finally place the q large rectangles we ignored in a long row to the left of the diagram.

How much does this change the J eigenvalue of the diagram? Well, the movement
of the rectangular blocks reduces the number of box-pairs in the same column by q(q−
1)pk̂2/2 and increases the number in the same row by q(q − 1)p2k̂/2. The movement of
the c = |µ|+ pr other bits relative to these rectangles shifts the column count down by
qk̂c and the row count up by qpc. Finally, the chopping and changing of the remaining
d cells moves the counts −k̂d and pd further.

In particular, because only moves sets of cells from columns with a multiple of k̂ other
cells to rows with a multiple of p, one only shiftsJ ∼ (column pairs−row pairs)/(k̂+p)

by an integer. To be precise, suppose one labels the p× k̂ regions I = 1, 2, . . ., including
any partially occupied rectangles beyond the q filled ones. Then the movement of each
cell in the I th region shifts J → J − (I − 1).

This tells us exactly what we should include in order to make sure that the resulting
diagram does not vanish when it is built out of fermions: each cell in the I th region
should be accompanied by (I − 1) extra derivatives (on top of whatever the bosons re-
quired), which indeed then ensures that it can be safely symmetrized with otherwise
identical fermionic terms without vanishing. Then, once we are done, we are guaran-
teed to end up with an operator whose J ′ and ∆ eigenvalues agree perfectly.

However, if we now reduce the diagrams – for instance those in (6.23) – it is clear that
these diagrams are not related by something as simple as transposition as in the cases
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we initially discussed. In order to understand what is going on here, we need to know
a little more about the nature of level-rank duality.

A key fact is that it does not relate representations of the dual algebras directly by
transposition. Instead, it relates representations modulo the outer automorphisms of
the algebra. (Equivalently, this is the centre of the algebra.) Let us explain what this
means.

The outer automorphism group of SU(p) is Zp. It is generated by the basic outer au-
tomorphism operator σ which obeys σp = 1. This has an action on representations
of the algebra with (bare) level k̂ which can be nicely explained using reduced Young
diagrams. We start with a given Young diagram λ. Then σ(λ) is a second Young dia-
gram which we construct using the following procedure: first, add a row of length k̂ to
the top of λ; next remove any columns of length p to obtain a suitably reduced Young
diagram. One may easily verify that this procedure gives σp(λ) = λ for any λ.

It is self-evident that the transposition of the singlet is another singlet, and that the
orbit of a singlet under the outer automorphism group is rectangular diagrams with
the maximum number of columns, k̂. Applying this logic with p↔ k̂ shows that in fact
the pair of diagrams in (6.23) belong to dual orbits, tying this story together nicely.

In fact, it is easy to see that in general the above algorithm applied to a reduced dia-
gram λ for SU(p) gives a reduced diagram in SU(k̂) corresponding to σr(λT ).

6.2.5 Puzzles

There are some puzzles which remain, however. Here are two:

• Suppose that you have a U(1)−2 fermion theory and two flavours. What is the
U(1)2 bosonic dual of Ψ[iΨj]? It is easy to check that this has a dimension ∆ = 3

2

lower than any chiral state containing with two bosons, since for such states ∆ =

2 +m+ 1
2

where m is the number of ∂̄ insertions.

• Consider (εµνΦµ∂̄Φν)
2 in an U(2)3 theory with one flavour. This should be dual to

a U(1)−3 state, but one needs a four fermion operator with four chiral derivatives
to match, and such states always vanish.

The first sort of puzzle could potentially be addressed simply by restricting the number
of flavours to be at most the number of gauge degrees of freedom. This is reminiscent
of suggestions in the literature (motivated by other concerns) that the duality may hold
only for Nf ≤ p [127].
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However, it seems likely that the road to understanding the second puzzle is to think
more carefully about the meaning of the many operators we have been happily writing
down. We already highlighted, in Section 5.3, how non-trivial statistics and branch cuts
complicate the nature of these operators.

A possible explanation for the second point raised above, for example, would be that
the Wilson lines – which at level 1 may only fuse into baryons when brought together
in pairs – somehow require the state to be antisymmetric over any pair of indices at
infinity. Another would be that we are dismissing certain “fermion” states as neces-
sarily vanishing when they need not, since they are really anyons. This needs further
investigation.

A possible concern one might have about the duality is the following: the dimensions
of the representations we have claimed are dual to each other are drastically different.
This goes hand-in-hand with the clear fact that the global symmetry groups of the two
theories are SU(p) and SU(k̂), whose representations are unrelated to each other. In-
deed, one might simply dismiss this issue with the observation that these dimensions
are not (globally) gauge invariant observables, so who cares?

But in anyonic theories, there is a notion of dimension which is gauge invariant and
which is indeed preserved by the duality. One should count fusion channels between
anyonic fields (or more crudely, perhaps, measure the quantum dimension of anyonic
fields). Concretely, one identifies each distinct integrable representation (modulo outer
automorphisms) as a distinct species of anyon. The fusion rules then dictate how many
different anyons can be formed when two anyons are brought together, and in how
many ways [130]. These numbers, it turns out, are indeed preserved by level-rank du-
ality [82].
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PART III

Vortices as Electrons





7 Introduction and Summary

The fractional quantum Hall effect is one of the most studied topics in physics over the
past three decades. As we mentioned in the introduction, the theory rests on a beau-
tiful and intricate web of ideas involving microscopic wavefunctions [9], low-energy
effective Chern-Simons theories [10, 11, 12, 13, 14] and boundary conformal theories
[15, 16].

In this part of the thesis, we will analyse different aspects of a non-relativistic super-
symmetric model – a simple deformation of the conformal theory described up to this
point – and show that its low-energy physics is precisely that of the quantum Hall effect.
The idea is that if one throws away the fermionic matter and restricts attention to the
bosonic sector of the theory (which, as before, we will see is perfectly reasonable) then
this is an excellent toy model for exploring some of the links between these different
approaches to the quantum Hall effect.

In the rest of this introduction, we describe our model in more detail and explain what
it’s good for. It is an Abelian Chern-Simons theory, coupled to a non-relativistic bosonic
matter field. It has a supersymmetric completion with a fermionic field; however these
will play essentially no role in our discussion and are included only for completeness.
In this manner, it is an amalgamation of effective theories of [12] and [13]. The model
has vortices and these are viewed as the “electrons”. The vortices are “BPS objects”
[131]: this means that they experience no classical static forces. It also means that they
are protected by supersymmetry in a simple way which we describe in the main text.
This property allows us to perform an explicit quantization of the vortex dynamics. We
show that the ground state wavefunction of the vortices lies in the same universality
class as the Laughlin wavefunction. It has the same long range correlations, but differs
on short distance scales.

We also describe the excitations of a droplet of vortices. There are gapless, chiral
edge excitations which, we show, are governed by the usual action for a chiral boson
[132], suitably truncated due to the presence of a finite number of vortices. Finally, we
construct the quasihole excitations in this model and compute their Berry phase. This
is, of course, a famous computation for the Laughlin wavefunctions [133]. However
the usual analysis relies on the plasma analogy [9], and the (admittedly well justified)
assumption that the classical 2d plasma exhibits a screening phase. In contrast, here we
are able to perform the relevant overlap integrals analytically, at finite electron number,
to show that the quasiholes have the expected fractional charge and statistics.
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Many of the properties of vortices described above follow from the fact that their dy-
namics is governed by a quantum mechanical matrix model, which was introduced by
Polychronakos to describe quantum Hall physics [19] and further studied in a number
of works [134, 135, 136, 137]. We will show how this matrix model is related to more
familiar effective field theories of the quantum Hall effect.

This part of the dissertation is organized as follows. In Chapter 8 we introduce the
non-relativistic, supersymmetric theory. After a fairly detailed description of the sym-
metries of the theory, we discuss its two different phases and its spectrum of excitations.
Chapter 9 is devoted to a study of BPS vortices and contains the meat of Part III. We will
show that the low-energy dynamics of vortices is governed by the matrix model intro-
duced in [19]. We review a number of results about this matrix model and derive some
new ones. Finally, in Chapter 10 we look at where this all leaves us. A number of cal-
culations are relegated to appendices.

Then, equipped with a clear picture of the Abelian case, in Parts IV and V, we will
widen our scope to cover non-Abelian theories.
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8 Non-Relativistic Chern-Simons-Matter Theories

We start by introducing the d = 2 + 1 non-relativistic, supersymmetric Chern-Simons
theory which we are going to study. The theory consists of an Abelian gauge field aµ,
coupled to complex scalar field φ and a complex fermion ψ. The action is

S =

ˆ
dt d2x

{
iφ†D0φ+ iψ†D0ψ −

1

2m
Dpφ†Dpφ−

1

2m
Dpψ†Dpψ −

k′

4π
εµνρaµ∂νaρ

−µa0 +
1

2m
ψ†f12ψ −

π

mk′
(
|φ|4 − µ|φ|2 + 3|φ|2|ψ|2

)}
. (8.1)

A refresher of our conventions: the subscripts µ, ν, ρ = 0, 1, 2 run over both space and
time indices, while p = 1, 2 runs over spatial indices only. The fermion carries no spinor
index. Both φ and ψ are assigned charge 1, so the covariant derivatives read Dµφ =

∂µφ − iaµφ and similarly for ψ. The magnetic field is f12 = ∂1a2 − ∂2a1. Finally |ψ|2 =

ψ†ψ = −ψψ†.

This is almost exactly the same as the Abelian theory defined in Section 4.3, except
for the presence of the chemical potential term µa0, and its supersymmetric completion
(which is simply proportional to the conserved charge NB).

Including this new term, there are now three parameters in the Lagrangian: the
Chern-Simons level k′ ∈ N, the mass m of both bosons and fermions, and the chem-
ical potential µ. As we will see later, the chemical potential µ can be more fruitfully
thought of as a background magnetic field for vortices. (The reason for using k′ to re-
fer to the level rather than k is that the latter will be reserved for the non-Abelian level
introduced in Part IV.)

The first order kinetic terms mean that the action (8.1) describes both bosonic and
fermionic particles, but no anti-particles. The quartic potential terms correspond to
delta function contact interactions between these particles. In the condensed matter
context, the gauge field is considered to be emergent. One of its roles is to attach flux
to particles through the Gauss’s law constraint, which arises as the equation of motion
for a0,

f12 =
2π

k′
(
|φ|2 + |ψ|2 − µ

)
. (8.2)

We’ll learn more about the importance of this relation later.
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As with the superconformal theory, the action (8.1) can be constructed by starting
from a relativistic Chern-Simons theory withN = 2 supersymmetry and taking a limit
in which the anti-particles decouple, and we illustrate this procedure in Appendix A.
This supersymmetric theory with µ 6= 0 seems to not have been constructed prior to the
author’s work [6], although the bosonic sector is similar, but not identical, to a model
studied by Manton [138] which shares the same vortices as (8.1). We will describe these
vortices in some detail in Chapter 9.

8.1 Deformed Symmetries

The action (8.1), being very closely related to the superconformal theory of Section 4.3,
is invariant under a similar symmetry algebra. Importantly, however, the chemical po-
tential deformation leads to two key differences between the two cases. The first is
rather obvious, given that µ carries the dimensions of inverse length squared – the con-
formal invariance is spoiled. The second, however, is a little more subtle, and related to
the fact that magnetic fields want to replace translations with magnetic translations.

Since these subtleties will play a critical role in the following work, we will take a
moment to explain how the algebra of symmetries is altered by the deformation.

Bosonic Symmetries

Invariance under time translations gives rise to the Hamiltonian. After imposing the
new Gauss’s law constraint (8.2), this still takes the concise form

H =
2

m

ˆ
d2x |Dzφ|2 + |Dz̄ψ|2 +

π

k′
|φ|2|ψ|2 (8.3)

where z = x1 + ix2 and z̄ = x1 − ix2. Correspondingly, ∂z = 1
2
(∂1 − i∂2) and ∂z̄ =

1
2
(∂1 + i∂2).

Invariance under spatial translations gives rise to the complex momentum, P =
1
2
(P1 − iP2), which we write as

P = P̂ − µ

2

ˆ
d2x z̄f12 with P̂ =

ˆ
d2x φ†Dzφ−Dzψ†ψ . (8.4)

The P̂ contribution is the standard Noether charge for spatial translations. The second
term, proportional to the chemical potential µ, requires some explanation. As shown in
[139], it arises because a translation is necessarily accompanied by a shift of the gauge
field. (It is most natural to choose this so that, for example, δiφ = Diφ.) The presence of
the chemical potential term µa0 in the action then means that the naive Noether charge
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for translations is not gauge invariant. This is remedied by the addition of a total deriva-
tive, resulting in the improved, gauge invariant momentum above. Note, however, that
the resulting momentum P is not itself translationally invariant. We shall comment
further on this below.

A similar subtlety occurs for rotations. The conserved angular momentum is given
by

J =

ˆ
d2x

(
zφ†Dzφ+ z̄Dz̄φ† φ+ zψ†Dzψ + z̄Dz̄ψ† ψ +

1

2
ψ†ψ − µ

2
|z|2f12

)
. (8.5)

The first five terms agree with the superconformal definition (4.20), except that we have
done an integration by parts and then shifted the definition by the central charge N –
this is simply because this term will diverge in our chosen ground state. The final term
again arises as an improvement term in the Noether procedure which ensures that the
resulting angular momentum is gauge invariant [139].

The number of bosons and fermions in this model remain individually conserved as
before.

The presence of the anomalous term in the expression for the momentum (8.4) has
an interesting effect on the commutation relations. (Here we describe the quantum
commutation relations rather than classical Poisson brackets.) We find

[H, P̂ ] = −2πµ

mk′
P̂ and [H,P ] = 0 . (8.6)

So the Noether charge P is conserved, but the translationally invariant momenta P̂ †

and P̂ act as raising and lowering operators for the spectrum. Further, the conserved
momenta do not commute. We have

[P, P †] = −πµ
k′
N . (8.7)

Both (8.6) and (8.7) are similar to the commutation relations in quantum mechanics
for momenta in a magnetic field. This is because, as we will describe in more detail
below, µ acts like an effective magnetic field for vortices while Gauss’s law constrains
all excitations to carry some vortex charge.

We have of course lost the dilatation operator D, special conformal generator C and
superconformal generator S. But note that the Galilean boost symmetry is also broken
by the presence of a chemical potential (again, if one thinks of this as a background
magnetic field, this is no surprise).
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Supersymmetries

As promised, the action (8.1) is supersymmetric. We will shortly discuss how the alge-
braic structure of this supersymmetry is realised. However, firstly a few words on our
motivation in using this supersymmetry.

As we saw in Part II, the key advantage of working at this supersymmetric point
is essentially nothing to do with the fermionic content. The magic is that it will aid
our understanding of the (purely bosonic) solitonic modes in the system. For instance,
they obey first-order BPS equations; currents which are supersymmetric under the pre-
served supersymmetry are good quantum numbers for solitons; they experience no
relative forces; there are known constructions of the moduli space of solitons; and so
forth. We will revisit all of these issues along the way. For now, let us return to the
supersymmetries.

Our action (8.1) continues to enjoy two complex supersymmetries, the same kinemat-
ical and dynamical supersymmetries introduced previously:

Q1 = i

√
m

2

ˆ
d2x φ†ψ (8.8)

and

Q2 =

√
2

m

ˆ
d2x φ†Dz̄ψ . (8.9)

As previously emphasized, no transformation for a0 is intrinsically specified by these
supercharges, since it is a Lagrange multiplier for a constraint, which does no harm as
long as we allow ourselves to impose Gauss’s law. We will see the implications of this
below.

The supersymmetry algebra is almost exactly the same as for the superconformal
theory, with the subtle distinction that although {Q1, Q

†
2} still generates the transla-

tionally invariant momentum, this is no longer equal to the conserved momentum P :

{Q1, Q
†
1} =

m

2
N , {Q2, Q

†
2} = H , {Q1, Q

†
2} = P̂ . (8.10)

There is also a mild surprise in the commutators of bosonic and fermionic charges, in
particular

[H,Q1] = −2πµ

mk′
Q1 (8.11)

This means that although the kinematic supersymmetries leave the action invariant,
when µ 6= 0 they do not result in a symmetry of the spectrum. This can be traced to
the fact that Gauss’s law was required, both in the construction of the Hamiltonian (8.3)
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and in the derivation of the commutators (8.11). Other commutators follow from Jacobi
identities and give [Q2, H] = [Q1, P̂ ] = [Q†1, P̂ ] = 0 while [Q2, P̂ ] = [H,Q1].

Finally, the commutators of the angular momentum will also be important for our
story. The anomalous term in J and the change to Gauss’s law come together to leave
the results unchanged:

[J , Q1] = −1

2
Q1 and [J , Q2] =

1

2
Q2 .

The means that J is almost supersymmetric; specifically,

[J +
1

2
NF , Q2] = 0 . (8.12)

This fact will be important in Section 9.2.

8.2 The Vacuum, The Hall Phase, and Excitations

Let us now describe some basic features of the dynamics of our model. Because non-
relativistic field theories have no anti-particles, the theory decomposes into sectors la-
belled by the conserved particle numbers which, in our case, are NB and NF . To solve
the theory, we need to determine the energy spectrum in each of these sectors.

One way to organize these sectors is to start with the N = 0 Hilbert space and build
up by adding successive particles. Instead, we will take a dual perspective. Our theory
enjoys a conserved topological current,

Jµ =
1

2π
εµνρ∂νaρ . (8.13)

The associated particles are vortices. We will view these vortices as the “electrons” of
our theory.

Our theory has two translationally invariant ground states consistent with Gauss’s
law (8.2), both of which have H = 0. We call these the vacuum and the Hall Phase. They
are defined as follows:

The Vacuum: |φ|2 = µ and f12 = 0 . (8.14)

The Hall Phase: |φ|2 = 0 and f12 = −2πµ

k′
. (8.15)

The vacuum state contains no vortices,
´

d2x J0 = 0. However, the bosons have con-
densed which means that the particle number is N = ∞. In contrast, the Hall phase
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has vanishing particle number but infinite vortex number,
´

d2x J0 =∞.

We shall seek to understand what happens as we inject vortices into the vacuum. For
any finite number of vortices, the system breaks translational invariance. But, as we fill
the plane with vortices, the Hall phase emerges. In Chapter 9, we tell both the classical
and quantum versions of this story in some detail. First, however, we describe some
simple properties of excitations above each of these ground states.

The Vacuum

The key feature of the vacuum state is thatU(1) gauge symmetry is broken. This ensures
that the theory admits topological, localized vortex solutions. These vortices will be
the main focus of our work, and we postpone a more detailed discussion of them until
Chapter 9. For now, we shall just summarize their three main properties:

• Vortices are gapless. States with an arbitrary number of vortices exist withH = 0.

• Vortices have statistical phase πk′. This means that the vortices are bosons when
k′ is even and fermions when k′ is odd.

• Vortices are singlets under supersymmetry.

There are further excitations above the vacuum arising from the fundamental fields
φ and ψ. These excitations are both gapped, with an excitation energy 2πµ/mk′. These
excitations can be generated from the vacuum by using the raising operators P̂ † and
Q†1, together with the supercharges Q2 and Q†2.

The Hall Phase

The Hall phase has an unbroken U(1) gauge symmetry and the long-distance physics is
dominated by the Chern-Simons term. It is well known that such theories capture the
essential properties of the fractional quantum Hall effect. We now take the opportunity
to review this standard material (see, for example, [140, 141] for reviews).

To describe quantum Hall physics, it is not enough to specify the Lagrangian; we
need to know how electromagnetism couples to the theory.1 (Recall that the Abelian
gauge field aµ in the Lagrangian (8.1) should be thought of as an emergent, statistical
gauge field, not the electromagnetic field.) Since we wish to treat the vortices as the

1There are two, dual, descriptions of the long-wavelength quantum Hall physics in terms of Chern-
Simons theories. In one description, the Chern-Simons level is equal to ν, the filling fraction [10, 11], the
electrons are the fundamental excitations and the vortices the fractionally charged quasiparticles. Here
we are interested in the dual description, related by a particle-vortex duality transformation, where the
Chern-Simons coefficient is 1/ν and the electrons are vortices.
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Figure 8.1: Fundamental excitations

“electrons” of the theory, the background electromagnetic field Aµ must couple to the
topological current (8.13),

L Hall =
k′

4π
εµνρaµ∂νaρ + eAµJ

µ + . . . .

Here e denotes the electron charge, while . . . includes the rest of the Lagrangian (8.1),
as well as the (3+1)-dimensional Maxwell term for Aµ.

We momentarily ignore the fundamental fields φ and ψ. Integrating out aµ, the
quadratic Lagrangian for the background field is given by

L Hall = − e2

4πk′
εµνρAµ∂νAρ + . . . .

The effective action Seff[A] =
´

d3xL Hall, is now a functional of the non-dynamical,
background electromagnetic field. Its role is to tell us how the system responds to an
applied electromagnetic field through the relation 〈Jµ〉 = ∂Seff/∂Aµ. The result is a
Hall conductivity

σH =
e2

2πk′
. (8.16)

This is the response of a fractional quantum Hall fluid at filling fraction ν = 1/k′. (From
now on, we will set e = 1 for brevity.)

Let us now return to the fundamental fields φ and ψ. Each of these experiences a
magnetic field f12 = −2πµ/k′ and forms Landau levels. The usual Landau level quan-
tization results in a spectrum

ELL =
|f12|
m

(l + 1/2)
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with l = 0, 1, . . .. However, the Lagrangian (8.1) also includes extra terms which shift
the overall energy of these states. The shift is down for bosons and up for fermions, as
shown in Figure 8.1. The net result is that the energies of the Landau levels, at leading
order, are given by

E =
2πµl

mk′

 l = 0, 1, 2, . . . for φ

l = 1, 2, . . . for ψ
.

The gapped states (l ≥ 1) arising from φ have spin 1/2k′; those arising from ψ have spin
(1 + k′)/2k′. Gauss’s law (8.2) ensures that, when coupled to a background electromag-
netic field, each of these carries charge−1/k′. These are the quasiparticle excitations of
our supersymmetric quantum Hall fluid. The supercharges Q2 and Q†2 map between
the fermionic and bosonic gapped Landau levels.

The system also has an a gapless band of quasiparticles, arising from the lowest Lan-
dau level of φ. These modes are not free: they interact through the φ4 potential in (8.1).
Nonetheless, supersymmetry ensures that these states have vanishing energy at all or-
ders of perturbation theory. This is because the commutation relations for Q2 require
that any excitation with H > 0 must be paired with an excitation that differs by spin
1/2. Yet the states in lowest Landau level have no partners and must, therefore, remain
at zero energy. In essence, the theory has an infinite Witten index Tr(−1)F . If we start
from the lowest Landau level, we can build up to higher levels by acting with P̂ † and
Q†1.

Note that although we normally think of supersymmetry as protecting these states,
in fact the fermionic field ψ in the theory cannot run in any loops to shift their energy
(since there are no anti-particles, and these states have no fermions in them to begin
with).

At this point, we return to our claim that including the supersymmetric partner ψ of
φ is more a mathematical tool than an important part of our physical model. Notice that
the fermionic fields have decoupled entirely from the lowest Landau level for bosons.
If we are interested only in low-energy, lowest Landau level physics, then one might
suspect fermions are irrelevant. We will see a different (and for our purposes stronger)
version of this result below when we point out the lack of fermionic zero modes for
vortices.

Meanwhile, the presence of a gapless Landau level may appear to contradict our
claim that this system describes quantum Hall physics. After all, one of the defining
features of a quantum Hall state is that it is gapped and incompressible. We will resolve
this in Chapter 9 by studying how the Hall phase emerges from vortices when placed
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in a confining potential. We will show that, for any finite number of vortices, there
is a unique incompressible droplet of lowest angular momentum. However, in the ab-
sence of a confining potential, this droplet has zero energy edge modes and zero energy
quasihole excitations. The gapless Landau level describes these degrees of freedom for
an infinite number of BPS vortices, an interpretation recently suggested in a different
context in [142]. We will revisit this in Section 9.4 in the context of the non-commutative
approach to quantum Hall physics.

It is worth mentioning that this situation is not unusual in quantum Hall systems.
The special, ultra-local Hamiltonians (such as Haldane pseudo-potentials) commonly
used as models of quantum Hall physics also have zero energy edge modes and zero
energy quasihole excitations for finite droplets. See, for example, [143, 144] for related
discussions.
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9 A Quantum Hall Fluid of Vortices

We would like to understand how to interpolate from the vacuum to the Hall phase.
We do this by injecting vortices. These vortices are BPS which, in this context, means
that they have H = 0 and lie in a protected sector of the theory. From the form of the
Hamiltonian (8.3) and Gauss’s law (8.2), it is clear that solutions with vanishing energy,
H = 0, can be constructed by solving the equations

Dzφ = 0 and f12 =
2π

k′
(|φ|2 − µ) (9.1)

with the fermions set to zero: ψ = 0. (Abelian BPS vortices also appeared in the context
of quantum Hall physics in [145].)

The vortex equations (9.1) are well studied. Solutions are labelled by the integer
winding of the scalar field φ or, equivalently, by the magnetic flux

N = − 1

2π

ˆ
d2x f12 ∈ Z≥0 . (9.2)

In the sector with winding N , the most general solution to (9.1) has 2N real parame-
ters [146, 147]. These parameters are referred to as collective coordinates or, in the string
theory literature, moduli. When vortices are well separated, these correspond to N po-
sitions on the complex plane. The existence of these moduli reflects the fact that the
coefficient of the quartic interaction in (8.1) has been tuned to the critical value, ensur-
ing that there are neither attractive nor repulsive forces between the vortices.

Figure 9.1: Two points in the moduli space of N = 7 vortices

As vortices coalesce, they lose their individual identities and the interpretation of
these moduli changes. It is tempting to label the vortex by the point at which the Higgs
field vanishes, but this does not provide an accurate description of what the vortex
profile looks like. Instead, as we show in Section 9.4, in this regime it is better to think
of the 2N moduli as describing the edge modes of a large, incompressible fluid.
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Why do Vortices Form a Fractional Quantum Hall State?

The rest of this chapter is devoted to a detailed analysis of the quantum dynamics of
vortices. We will ultimately show that their ground state is given by the Laughlin wave-
function. But here we first provide a hand-waving argument for why we expect the
vortices to form a quantum Hall fluid.

We first note that the chemical potential term µa0, present in the Lagrangian (8.1),
can be viewed as a background magnetic field for vortices. It can be written as

−
ˆ

d3x µa0 =

ˆ
d3x Jµ[a]Aµ

where Jµ is the topological current (8.13) and

Ap = −B
2
εpqx

q with B = 2πµ . (9.3)

This means that we expect the dynamics of vortices to correspond to particles moving in
a background magnetic field. Nonetheless, it may be rather surprising that the vortices
form a Hall state because, as we have seen, there is no force between the vortices. Yet the
key physics underlying the fractional quantum Hall effect is the repulsive interactions
between electrons, opening up a gap in the partially filled Landau level.

Although there is no force between vortices, they are not point particles. Instead, they
are solitons obeying non-linear equations and, as they approach, the solutions deform.
Indeed, when the vortices are as closely packed as they can be, they form a classically
incompressible fluid as shown in the right-hand side of Figure 9.1. The scalar field φ has
anN th order zero in the centre of the disc and numerical studies show that the solution
is well approximated as a disc of magnetic flux in which φ = 0 and f12 = −2πµ/k′. This
motivated the “bag model” of vortices in [148, 149]. For us, it means that the vortex is
a droplet of what we have called the “Hall phase”.

When N vortices coalesce, the radius R of the resulting droplet can be estimated
using the flux quantization (9.2) to be

R ≈
√
k′N

πµ
. (9.4)

Now we can do a back-of-the-envelope calculation. In a magnetic field B, the number
of states per unit area in the lowest Landau level of a charge 1 particle is B/2π = µ.
In an area A = πR2 = Nk′/µ, the lowest Landau level therefore admits BA/2π = Nk′
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states. We’ve placed N vortices in this region, so the filling fraction is

ν =
1

k′
.

This, of course, is the expected filling fraction in the Hall phase with conductivity (8.16).

9.1 The Dynamics of Vortices

We now turn to a more detailed description of the dynamics of vortices. We first intro-
duce the vortex moduli space,MN . This is space of solutions to the vortex equations (9.1)
with winding number N . As we have already mentioned,

dim(MN) = 2N .

The coordinates Xa, a = 1, . . . , 2N , parametrizingMN are the collective coordinates of
vortex solutions: φ(x;X) and ap(x;X).

The standard approach to soliton dynamics is to assume that, at low energies, motion
can be modelled by restricting to the moduli space [150]. This is usually applied in rel-
ativistic theories where the action is second order in time derivatives and typically pro-
vides an accurate approximation to the real dynamics. Here we have a non-relativistic
theory, first order in time derivatives, and this results in a number of differences which
we now explain. One ultimate surprise – which we will get to in Section 9.2 – is that
there is no approximation involved in the moduli space dynamics in this system; in-
stead it is exact.

The first, and most important difference, is associated to the meaning of the space
MN . In relativistic theories,MN is the configuration space of vortices and the dynamics
is captured by geodesic motion onMN with respect to a metric gab(X). It is known that
MN is a complex manifold, with complex structure J , and the metric gab(X) is Kähler.
For completeness, we explain how to construct this metric in Appendix B.

In our non-relativistic context, it is no longer true thatMN is the configuration space
of vortices. Instead, it is the phase space. The dynamics of the vortices is described by a
quantum mechanics action of the form

S vortex =

ˆ
dt Fa(X)Ẋa (9.5)

where F(X) is a one-form overMN . Our goal is determine this one-form.
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In fact, this problem has already been solved in the literature. A model which shares
its vortex dynamics with ours was previously studied by Manton [138] and subse-
quently, in more geometric form, in [151, 152]. The main result of these papers is that
F is an object known as the symplectic potential. It has the property that

dF = Ω (9.6)

where Ω is the Kähler form onMN , compatible with the metric gab and the complex
structure J .

For a single vortex, the moduli space is simply the plane C and the Kähler form is

Ω =
πµ

2
dz ∧ dz̄ .

For N ≥ 2 vortices the Kähler form is more complicated. We describe the construction
of Ω in Appendix B. Explicit expressions are only known for well-separated vortices
[152].

The derivation of (9.6) given in [138, 151, 152] relies on a parametrization of the vortex
moduli space introduced earlier in [153]. The use of these coordinates means that the
calculation is not entirely straightforward. For this reason, in Appendix B, we present
a simpler derivation of (9.6) which does not rely on any choice of coordinates. (For a
different approach to particle dynamics appropriate for vortices, see [154].)

There are No Fermion Zero Modes

The vortices are BPS states: they are annihilated by the supercharge Q2. In the context
of first order dynamics, this means that the collective coordinates X do not transform
under Q2. In particular, there are no accompanying Grassmann collective coordinates.
Indeed, it is simple to check explicitly that there are no fermionic zero modes in the
background of the vortex.

This fits in nicely from the picture suggested by Figure 8.1: fermionic excitations are
gapped by a scale ∼ µ/m from the lowest Landau level physics of bosons, which is
where vortices live.

The upshot is that the vortices themselves are supersymmetric singlets. The role of
supersymmetry in the vortex dynamics (9.5) is to tune the vortices to have strictly van-
ishing energy, H = 0, even in the full quantum theory. But instead, we could in fact
simply focus on the bosonic sector, which is essentially what we will do from this point
onwards.
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The fact that the BPS solitons have no fermion zero modes may come as something
of a surprise. Indeed, it is rather different from what happens for BPS solitons in rela-
tivistic field theories or in string theory. It is worth pausing to explain this difference.
In more familiar relativistic theories, if a soliton is invariant under a given supercharge
Q then that supercharge will descend to the worldvolume theory, relating bosonic and
fermionic zero modes on the worldvolume. However, when we say that a soliton is
invariant under Q, we mean that the static configuration is invariant: when the soliton
moves, the supercharge Q typically acts and generates a fermionic zero mode. This
means that while Q does not act on the bosonic configuration space of the soliton, it
does act on the phase space.

In our non-relativistic theory, the statement thatQ2 annihilates the soliton is stronger:
it means that Q2 does not act on the soliton phase space. This is the reason that there
are no associated fermionic zero modes.

9.2 Introducing a Harmonic Trap

We have derived a low-energy effective action (9.5) for the vortex dynamics. However,
this dynamics is boring. The equation of motion arising from (9.5) is

ΩabẊ
b = 0 ⇒ Ẋa = 0 .

The vortices don’t move. They are pinned in place.

The lack of dynamics follows because there is no force between vortices and, in a
first order system, we don’t have the luxury of giving the vortices an initial velocity.
To get something more interesting, we impose an external force on the vortices. We
will do so by introducing a harmonic trap. We want this trap to be compatible with
supersymmetry. We can do this by choosing the new Hamiltonian

H new = H + ω

(
J +

1

2
NF
)

where J is the angular momentum (8.5), NF the fermion number operator (4.21) and
ω dictates the strength of the trap. From (8.12), we see that this Hamiltonian remains
invariant underQ2, although notQ1. When evaluated on BPS vortices, the Hamiltonian
is simply

H new = −µω
2

ˆ
d2x |z|2f12 . (9.7)

This new Hamiltonian is the angular momentum of a given BPS vortex configuration:
it preserves the BPS nature of vortices while shifting their energy. Evaluating (9.7) on a
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vortex configuration provides a functionJ (X) over the vortex moduli spaceMN which
governs the their low-energy dynamics,

S vortex =

ˆ
dt
(
Fa(X)Ẋa − ωJ (X)

)
. (9.8)

We will now look at some examples of the classical dynamics described by this action.

Classical Motion in the Trap

The harmonic trap (9.7) favours those vortex solutions that are clustered towards the
origin. The lowest energy configuration now has all vortices coincident at the origin,
as in the right-hand picture in Figure 9.1. As we have seen, the size of this coalesced
vortex is given by (9.4), so the angular momentum of this state is

J0 ≈ −
µ

2

ˆ R

0

dr 2πr3f12 =
k′N2

2
. (9.9)

This is the only static configuration. All other solutions evolve through the equation of
motion

ΩabẊ
b = ω

∂J
∂Xa

. (9.10)

In particular, a single vortex displaced a distance r �
√

1/µ from the origin, will have
angular momentum J ≈ πµr2. This vortex orbits around the origin with frequency ω.

There is something rather surprising about the moduli space approximation for this
first order dynamics: it is exact! The solutions to the equation of motion in the presence
of the trap are simply time dependent rotations of the static solutions so, for example,
φ = φ(x;X(t)), with X(t) obeying (9.10). This a property of any first order system with
a Hamiltonian, such as H = J , which acts as a symmetry generator on the moduli
space.

9.3 The Quantum Hall Matrix Model

The description of the vortex dynamics (9.8) is, unfortunately, rather abstract. ForN ≥ 2

vortices, we have only implicit definitions of the Kähler form Ω and the angular momen-
tum J on the vortex moduli space. It seems plausible that one could make progress
using the parametrization of the vortex moduli space introduced in [153]. Here, how-
ever, we take a different approach.

An alternative description of the vortex moduli space is provided by D-branes in
string theory [155]. This is analogous to the ADHM construction of the instanton mod-
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uli space. The vortex moduli spaceMN is parametrized by:

• An N ×N complex matrix Z

• A N -component complex vector ϕ

These provide N(N + 1) complex degrees of freedom. We will identify configurations
related by the U(N) action

Z → UZU † and ϕ→ Uϕ with U ∈ U(N) . (9.11)

We further require that Z and ϕ satisfy the matrix constraint1,

πµ [Z,Z†] + ϕϕ† = k′ 1N . (9.12)

This constraint is the moment map for the action (9.11) with level k′. We define the
moduli space M̃N through the symplectic quotient

M̃N =
{
Z, ϕ such that πµ[Z,Z†] + ϕϕ = k′

}
/U(N) .

This space has real dimension dim(M̃N) = 2N . The string theory construction of [155]
shows that this space is related to the vortex moduli space

M̃N
∼=MN .

These spaces are conjectured to be isomorphic as complex manifolds, and have the same
Kähler class. The author is not aware, of a direct proof of this conjecture beyond the
string theory construction provided in [155].

The matrix description provides a different parametrization of the vortex moduli
space. When the vortices are well separated, Z is approximately diagonal. The po-
sitions of the vortices are described by these N diagonal elements. (The normalization
of πµ in (9.12) is associated to the magnetic length which is of the same order as the
vortex size.) However, as the vortices approach, Z is no longer approximately diago-
nal, reflecting the fact it is better to think of the locations of the vortices as fuzzy, spread
out over a disc of radius (9.4). This feature is captured by the matrix description of the
vortex moduli space.

The moduli space M̃N inherits a natural metric through the quotient construction de-
scribed above. This does not coincide with the metric on the vortex moduli spaceMN

1As an aside: for relativistic vortices, the right-hand side of (9.12) is 2π/e2, where e2 is the gauge
coupling constant. Comparing the vortex equations (9.1) to their relativistic counterparts shows that this
becomes k′ in the non-relativistic context. The fact that this is integer valued for vortices in the Chern-
Simons theory will prove important below.
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described in Appendix B. Nonetheless, there are now a number of examples in which
computations of BPS quantities using M̃N coincide with those of computed from the
vortex moduli spaceMN because they are insensitive to the details of the metric (see,
for example, [156, 157, 158, 159]). Here we will ultimately be interested in holomorphic
wavefunctions over the vortex moduli space. Assuming the conjectured equivalence of
the spaces as complex manifolds, it will suffice to work with the matrix model descrip-
tion of the vortex moduli space.

The Matrix Model Action

It is now a simple matter to write the vortex dynamics in terms of these new fields.
We introduce a U(N) gauge field, α, on the worldline of the vortices. In the absence
of a harmonic trap, the low-energy vortex dynamics is governed by the U(N) gauged
quantum mechanics

S vortex =

ˆ
dt iπµ Tr

(
Z†D0Z

)
+ iϕ†D0ϕ− k′ Tr α (9.13)

where D0Z = ∂0Z − i[α,Z] and D0ϕ = ∂0ϕ − iαϕ. The quantum mechanical Chern-
Simons term ensures that Gauss’s law for the matrix model coincides with (9.12). This
means that this action describes the same physics as (9.5).

The action (9.13) is the quantum Hall matrix model, previously proposed as a descrip-
tion of the fractional quantum Hall effect by Polychronakos [19] and further explored in
[134, 135, 160, 161, 162, 163]. The connection to first order vortex dynamics was noted
earlier in [137].

We note in passing that we’ve used the D-brane construction of [155] in a fairly indi-
rect way to derive the quantum Hall matrix model. A more direct D-brane derivation of
the matrix model was provided previously in [164]. It would be interesting to see how
this work, or the string theory construction of [165], is related to the present set-up.

We would also like to add the harmonic trap to the matrix model. This too was ex-
plained in [19]. Spatial rotation within the matrix model acts as Z → eiθZ, with the
associated charge J = πµTr Z†Z. Adding this to the action, we get the matrix model
generalization of (9.8),

S vortex =

ˆ
dt iπµ Tr

(
Z†DtZ

)
+ iϕ†Dtϕ− k′ Tr α− ωπµ Tr

(
Z†Z

)
. (9.14)

In the rest of this chapter, we describe the properties of this matrix model. Much of
this is review of earlier work, in particular [19] and [134, 135]. However, we also make
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a number of new observations about the matrix model, most notably the computation
of the charge and statistics of quasihole excitations.

The Classical Ground State

In the presence of the harmonic trap, the classical equations of motion comprise the
constraint (9.12) and a classical equation of motion for Z:

iDtZ = ωZ . (9.15)

There is a unique time independent solution, with Ż = 0, obeying [α,Z] = ωZ. (This
equation can also be viewed as the statement that rotating the phase of Z is equivalent
to a gauge transformation.) This solution was given in [19], and takes the form

Z0 =

√
k′

πµ



0 1

0
√

2
. . .

0
√
N − 1

0


and ϕ0 =

√
k′



0

0
...

0
√
N


(9.16)

with α = ω diag(N − 1, N − 2, . . . , 2, 1, 0).

As promised, Z0 is not approximately diagonal. This reflects the fact that individual
vortices do not have well-defined positions. Nonetheless, we can reconstruct a number
of simple properties of the vortex solution from this matrix. The radius-squared of the
disc can be thought of as the maximum eigenvalue of Z†0Z0 [19]. To leading order in the
vortex number N , this gives

R2 ≈ k′N

πµ

which agrees with our the radius of the classical vortex solution (9.4). Meanwhile, the
angular momentum of a given solution is J = Tr Z†Z. The angular momentum of the
ground state is

J0 = πµ Tr
(
Z†0Z0

)
=
k′N(N − 1)

2
(9.17)

which, to leading order in 1/N , agrees with the angular momentum of the classical
vortex solution (9.9).
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The Quantum Ground State

The quantization of the matrix model (9.14) was initiated in [19] and explored in some
detail in [134] and [135]. The individual components of the matrix Z and vector ϕ are
promoted to quantum operators, with commutation relations

πµ [Zab, Z
†
cd] = δadδbc and [ϕa, ϕ

†
b] = δab .

We choose the vacuum state |0〉 such that Zab|0〉 = ϕ|0〉 = 0. However this does not,
in general, correspond to the ground state of the theory because the physical Hilbert
space must obey the quantum version of Gauss’s law (9.12). It is useful to view the trace
and traceless part of this constraint separately. The trace constraint reads

N∑
a=1

ϕaϕ
†
a = k′N ⇒

N∑
a=1

ϕ†aϕa = (k′ − 1)N . (9.18)

We now introduce k via k′ ≡ k + 1; this coincides with the value it will take in non-
Abelian theories. This means that physical states must have kN ϕ-excitations. Note
that the ordering of the original constraint has resulted in a shift k′ → k. This will
prove important below.

Meanwhile, the traceless part of the constraint (9.12) tells us that physical states must
be SU(N) ⊂ U(N) singlets. We can form such singlet operators out of Z† and ϕ† either
from baryons or from traces. The baryonic operators are

εa1···aN (ϕ†Z† p1)a1 · · · (ϕ†Z† pN )aN

where p1, . . . , pN are, necessarily distinct, integers. The trace operators are

Tr(Z† p) .

There can be complicated relations between the baryonic and trace operators; explicit
descriptions for low numbers of vortices were given in [166].

The trace constraint (9.18) means that physical states contain exactly k baryonic op-
erators. The harmonic trap endows these with an energy proportional to the number
of Z† excitations,

H = ωJ = ωπµ
N∑

a,b=1

Z†abZba .
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To minimize this energy, we must act with k baryonic operators, each with pi = i − 1.
This results in the ground state

|ground〉k =
[
εa1···aNϕ†a1

(ϕ†Z†)a2 · · · (ϕ†Z†N−1)aN
]k |0〉 . (9.19)

The angular momentum of this ground state coincides with that of the classical ground
state (9.17) up to a quantum shift k′ → k.

There is a close resemblance between these ground states and the Laughlin states [9]
for N electrons at filling fraction ν = 1/k′,

|Laughlin〉k′ =
∏
a<b

(za − zb)k
′
e−

B
4

∑
|za|2 =

[
εa1···aN z0

a1
za2 · · · zN−1

aN

]k′
e−

B
4

∑
|za|2 . (9.20)

A formal map between the states was suggested in [134]. However, this similarity can
be misleading: the operators Z† and ϕ† are very different objects from the holomorphic
position variables za. To make this connection precise, we need to be more careful about
how to relate the two. In fact, there is no canonical map. There are, however, a number
of natural ways to make the connection. Two of these, discussed in [135] (see also [161]),
are:

• We work with a coherent state representation Ẑ|Z, ϕ〉 = Z|Z, ϕ〉 and ϕ̂|Z, ϕ〉 =

ϕ|Z, ϕ〉 where, for once, we’ve used hats to denote the difference between the
quantum operator Ẑ and the classical matrix Z. We then diagonalize Z = V DV −1

with D = diag(z1, . . . , zN) and express the resulting wavefunctions as ψ(za) =

〈za|Ψ〉. Essentially, we are using the eigenvalues of Z as coordinates on the phase
space. (Non-diagonalisable matrices have zero measure.)

• Alternatively, we could decompose the complex operator matrix Ẑ = X̂ + iŶ

and subsequently work in a coherent state representation X̂|X〉 = X|X〉. This
picture has the advantage that the matrices X̂ and Ŷ are conjugate, giving us the
representation

Ẑ†ab =
1√
2

(
Xab −

∂

∂Xba

)
.

Moreover, calculations in this approach are somewhat easier because the diag-
onalization X = UXU † can be achieved by a unitary operator U . The result-
ing wavefunctions are written as ψ(xa) = 〈xa|Ψ〉. We then analytically continue
xa → za to provide holomorphic wavefunctions of the kind appropriate to de-
scribe the lowest Landau level.

Both of these approaches were described in [135]. The resulting wavefunctions differ
in detail, but share their most important properties.
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The first result of [135] is that the k′ = 1 ground state, which we have chosen to label
as |ground〉0 = |0〉, is precisely the ν = 1 Laughlin state describing a filled Landau level.
That is:

|0〉 = |Laughlin〉1 .

For k′ > 1, the map to the Laughlin wavefunction is not exact. Instead, the wavefunc-
tions agree only at large separation

|ground〉k → |Laughlin〉k′ for |za − zb| � 1/πµ .

However, the matrix model states |ground〉k differ from the Laughlin states as the par-
ticle approach: the wavefunctions still vanish as za → zb, but not with the familiar
zero-of-order m that is characteristic of the Laughlin wavefunction. Note that these
differences only become visible at separations of order the magnetic length. (Indeed,
one can obtain the so-called “X-representation” matrix model wavefunction from the
Laughlin one by acting with exponentials of derivative operators `B(∂/∂z) on the poly-
nomial part.)

As we described above, there is nothing privileged about the choice of coordinates
used above – one may try various sets of coordinates and see if there is better short-
distance agreement with the Laughlin wavefunction. However, as was found in [135,
161], there seems no obvious way to find an exact match to the Laughlin wavefunctions.

The connection to vortices sheds some light on this. Because vortices are extended
objects, there is no “correct” way to specify their positions as they approach. Corre-
spondingly, it is not obvious that their physics is captured by a wavefunction describ-
ing point particles. Instead, the important questions are those which are independent
of the choice of coordinates. The fact that the long-distance correlations in the matrix
model ground states (9.19) coincide with those of the Laughlin wavefunction suggests
that these states describe the same universality class of quantum Hall fluids. In the
rest of Part III, we show that this is indeed correct. We show that excitations of the
matrix model describe chiral edge modes and quasiholes. In particular, the latter have
charge 1/k′ and fractional statistics, in agreement with the excitations of the Laughlin
wavefunction.

9.4 Edge Modes

The classical excitations of the matrix model were described in [19]. There are edge
excitations of the droplet and there quasihole excitations although, for finiteN , there is
no clear distinction between these. There are no quasiparticle excitations which, given
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the spacetime picture in terms of vortices, is to be expected. We first study the edge
modes and show that they form a chiral boson.

The linear perturbations of the solution (9.16), consistent with the constraint (9.12),
were given in [19]. They are remarkably simple:

δlZ = (Z†0)l−1 and δlϕ = 0 with l = 1, . . . , N . (9.21)

These were interpreted in [19] as area-preserving deformations of the disc, restricted to
the first N Fourier modes.

We now show that the dynamics is that of a chiral, relativistic boson. To do this, we
write

Z(t) = Z0 +
N∑
l=1

cl(t)Z
† l−1
0

with complex coefficients cl. Plugging this ansatz into the action (9.14), we have the
following expression for the effective dynamics of cl,

S = πµ
N∑

l,p=1

ˆ
dt iTr(Z l−1

0 Z† p−1
0 ) c?l ċp +

[
Tr(α [Z† p−1

0 , Z l−1
0 ])− ωTr(Z l−1

0 Z† p−1
0 )

]
c?l cp

where we have dropped the constant contribution (9.17). We need to compute two
traces, both involving Z0 given in (9.16). The first is

πµ Tr Z l−1
0 Z† p−1

0 ≡ Θlδlp with Θl =
k′l−1

l
N(N − 1) . . . (N − l + 1) .

The second trace involves α and can be readily computed by invoking the relationship
ωZ0 = [α,Z0], to give [α,Z† p0 ] = −pωZ† p0 . The action for the perturbations can then be
written in the simple form,

S =
N∑
l=1

Θl

ˆ
dt (ic ?l ċl − ωlc ?l cl) . (9.22)

This is the action for a real, chiral boson, defined on the edge of the Hall droplet. We
parametrize the perimeter of the droplet by σ ∈ [0, 2πR) with R given by (9.4). The
continuum excitations then take the form

c(σ, t) =
1√
2π

∞∑
l=−∞

eilσ/R
√

Θl

l
cl(t) with c−l = c?l .
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Then the action (9.22) becomes

S = −
ˆ

dtdσ ∂tc ∂σc+ (ωR)∂σc ∂σc .

This is the form of the action for a chiral boson proposed in [132], now truncated to
the lowest N Fourier modes. The action describes modes propagating in one direction
around the disc with velocity v = ωR. A previous derivation of a chiral boson edge
theory from the matrix model was given in [163], albeit in a model with a different
potential.

Note that as N increases, the radius of the disc (9.4) scales as
√
N , while the number

of Fourier modes increases linearly with N . The density of modes therefore scales as
1/
√
N , confirming the existence of a continuum (1+1)-dimensional limit as N →∞.

As mentioned above, this chiral boson is very natural: it is simply the natural way to
parametrize the fluctuations of the incompressible disc formed by our quantum Hall
droplet. In Part V, we will return to study the edge theories of the more general matrix
model introduced in Part IV. However, even in that much richer theory, there is one
sector which is simply this same chiral boson.

The Non-Commutative Description Revisited

The original motivation for the quantum Hall matrix model was to provide a finite N
regularization of Susskind’s non-commutative approach to quantum Hall fluids [20].
Taking the N → ∞ limit of the matrix model, one can effectively drop the field ϕ and
the constraint (9.12) becomes

[X1, X2] = i
2πµ

k′
= i

B

k′
.

We interpret this as a non-commutative plane. Expanding the action around the state
(9.16) gives rise to a Chern-Simons theory on this non-commutative plane, with fields
multiplied using the Moyal product [20]. The perspective offered here shows that this
non-commutative theory provides a hydrodynamic description of the dynamics ofN →
∞ BPS vortices.

There is no harmonic trap introduced in the non-commutative Chern-Simons de-
scription. Because it arises from the expansion around (9.16), all perturbative excita-
tions of the theory are edge modes of an infinitely large disc, now consigned asymptot-
ically to infinity. However, these perturbation excitations are not the end of the story.
There are many other non-perturbative bulk excitations. These correspond to separat-
ing vortices or, as we will see in the next section, creating a hole in the fluid of vortices.
The non-commutative Chern-Simons theory is capturing these modes.
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However, we have already seen a different description of these modes from the per-
spective of the (2+1)-dimensional spacetime picture: they are the gapless, lowest Lan-
dau level of an interacting boson that we saw in Section 8.2. It appears that the Chern-
Simons theory on the non-commutative plane is an alternative description of this lowest
Landau level physics.

9.5 Quasiholes

Let us now return to a finite droplet of vortices. While the infinitesimal perturbations of
the droplet describe edge modes, one can also consider finite deformations. Of course,
if we make a large enough finite perturbation, then the droplet will eventually fragment
into its component vortices. However, there are deformations for which the droplet
retains its integrity, but with a hole carved out in the middle. These are the quasiholes
of the quantum Hall effect.

There is a simple classical solution describing a quasihole placed at the centre of the
vortex [19]. It arises by integrating the N th Fourier mode,

Z =

√
k′

πµ



0
√

1 + q

0
√

2 + q
. . .

0
√
N − 1 + q

√
qeiNωt 0


. (9.23)

This obeys the constraint (9.12) and equation of motion (9.15) with α = ω diag(N −
1, N − 2, . . . , 2, 1, 0) and ϕ = ϕ0.

This solution should be thought of as a deficit of magnetic field in the middle of the
Hall droplet [19] (see also [167]). In other words, it is a quasihole. Using the maximum
and minimum eigenvalues ofZ†Z as a proxy for the inner radiusR1 and the outer radius
R2 of this annulus, we find

R2
1 ≈

k′q

πµ
and R2

2 ≈
k′(N + q)

πµ

which is consistent with the magnetic flux quantization (9.2) if f12 remains constant
for R1 < r < R2. We can subject this interpretation to a further test. The angular
momentum of the matrix model solution is given by

J = πµ Tr Z†Z =
k′N2

2
+ k′Nq .
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But we can also compute the angular momentum of an annular vortex by the same kind
of calculation we used in (9.9). We find

J ≈ −µ
2

ˆ R2

R1

dr 2πr3f12 =
k′N2

2
+ k′Nq

confirming the solution (9.23) as a classical quasihole.

There are, presumably, more complicated classical solutions, describing quasiholes
displaced from the origin, rotating with frequency ω. Rather than searching for these
classical solutions, we will instead describe their quantum counterparts.

Quantum Quasiholes

We claim that the quantum state describing m quasiholes, located at complex coordi-
nates ηi, i = 1, . . . ,m, is

|η1, . . . , ηm〉k ∝
m∏
i=1

det(Z† − η†i ) |ground〉k (9.24)

where we have allowed for a normalization constant.

Let us first motivate this ansatz. Multiplying by det(Z† − η†) is equivalent to taking
one of the baryonic operators in the ground state (9.19) and replacing each occurrence
ofϕ†Z† p byϕ†Z† p(Z−η)†. Under the coherent state map of [135], where the eigenvalues
of Z are used as coordinates, this gives

|η1, . . . , ηm〉k →
∏
a

(za − η)|Laughlin〉k

which is indeed the Laughlin wavefunction for quasiholes.

As we vary the positions ηi, the resulting states |η1, . . . , ηm〉k are not linearly indepen-
dent. This reflects the fact that these holes are made from a finite number of underlying
particles. Nonetheless, for |ηi| < R, with R =

√
k′N/πµ the size of the quantum Hall

droplet (9.4), we expect the state to approximately describem localized quasiholes. This
interpretation breaks down as the quasiholes approach either each other or the edge of
the droplet. Indeed, the states degenerate and become approximately the same for any
value of |ηi| � R. We’ll see the consequences of this below.

In the presence of a harmonic trap, the states (9.24) are not energy eigenstates unless
ηi = 0. Nonetheless, it is simple to check that the time-dependent states

|eiωtη1, . . . , e
iωtηm〉k
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in which the quasiholes orbit the origin, solve the time-dependent Schrödinger equa-
tion. In what follows, we will compute the braiding of the time independent states
(9.24).

In the quantum Hall effect, the quasiholes famously have fractional charge and frac-
tional statistics. We now show this directly for the states (9.24). We follow the classic
calculation of [133] in computing the Berry phase accumulated as quasiholes move in
closed paths. However, there is a technical difference that is worth highlighting. In the
usual Laughlin wavefunction, the overlap integrals are too complicated to perform di-
rectly. Instead, one resorts to the plasma analogy [9]. This requires an assumption that
a classical 2d plasma exhibits a screening phase.

A second route to computing the braiding of quasiparticles is provided by the link to
conformal field theories [16], where it is conjectured to be equivalent to the monodromy
of conformal blocks. The primary focus has been on the richer subject of non-Abelian
quantum Hall states. Different approaches include [168] and [169, 170], the latter once
again relying on a plasma analogy. See also [171] for an alternative approach to braid-
ing.

We will now show that the matrix model construction of the quasihole states (9.24)
seems to avoid these issues and a direct attack on the problem bears fruit. We compute
the Berry phase explicitly without need of a plasma analogy.

Fractional Charge

We start by computing the charge of the quasihole under the external gauge field. To do
this, we consider a single excitation located at η = reiθ. We then adiabatically transport
the quasihole in a circle by sending θ → θ+2π. If the quasihole has charge q QH then we
expect that the wavefunction will pick up an Aharonov-Bohm phase Θ proportional to
the magnetic flux Φ enclosed in the orbit:

Θ(r) = Φq QH = πr2Bq QH = 2π2µr2 q QH (9.25)

where we’ve used the value of B = 2πµ computed in (9.3), with e the charge of a single
vortex. There is a more direct expression for Θ, arising as the Berry phase associated to
the adiabatic change of the wavefunction,

Θ(r) = −i
ˆ 2π

0

dθ k〈η|
∂

∂θ
|η〉k . (9.26)

Our task is to compute this phase. From this we extract q QH.
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Figure 9.2: The Berry phase for a single quasihole inN = 1000 vortices with k′ = 3. The
phase Θ (solid, red) and the expected phase for a particle of charge−1/k′ in the field B
(grey, dashed) are both plotted.

To do this, it will help to introduce some new notation. We define the states |Ωl〉k,
with l = 0, . . . , N − 1, via

|Ωl〉k =
[
εa1···aNϕ†a1

(ϕ†Z†)a2 · · · (ϕ†Z† l−1)al(ϕ
†Z† l+1)al+1

· · · (ϕ†Z†N)aN

]
[
εb1···bNϕ†b1(ϕ†Z†)b2 · · · (ϕ†Z†N−1)bN

]k−1

|0〉 .

Each of these is an eigenstate of angular momentum, with J = J0 +πµ(N − l). We can
expand the quasihole state (9.24) in this basis as

|η〉k ∝
N−1∑
l=0

(−η†)l|Ωl〉k .

Because the |Ωl〉k′ have different angular momenta, they are orthogonal. We write their
inner product as

k〈Ωp|Ωl〉k = λ(l; k′) δlp .

In terms of these inner products, the Berry phase (9.26) is simply written as

Θ(r) = 2πi

∑N
l=0 ilλ(l; k′) r2l∑N
l=0 λ(l; k′) r2l

.

The computation of λ(l; k′) is not straightforward. (Indeed, this is the step in the usual
calculation where one resorts to the plasma analogy.) We find the following result:

λ(l; k′) = (πµ)l−N
(
N

l

)[N−l−1∏
a=0

(k′a+ 1)

]
k〈ground|ground〉k . (9.27)

We relegate the proof of this statement to Appendix C.
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Rather remarkably, the resulting sum can be written in closed form. We find

Θ(r) = −2π2µr2

(
N

(N − 1)k′ + 1
1F1(1−N, 2−N − 1/k′, πµr2/k′)

1F1( −N, 1−N − 1/k′, πµr2/k′)

)
. (9.28)

This is the ratio of confluent hypergeometric functions of the first kind.

The result (9.28) is plotted in Figure 9.2 for N = 1000 vortices and k′ = 3. The plot
shows clearly that, for r < R, the Berry phase Θ coincides with the expected Aharonov-
Bohm phase (9.25) if the charge of the quasihole is taken to be

q QH = − 1

k′
.

This, of course, is the expected result [9, 128].

Our Berry phase computation also reveals finite size effects. The magnitude of the
Berry phase reaches a maximum of 2πN at r = R, the edge of the droplet. Outside
this disc, the Berry phase no longer increases and the picture in terms of quasiholes
breaks down. One can also use the result above to determine the size of the edge effects;
numerical plots reveal them to be small as long as k′ � N .

There is another interpretation of the quasihole state (9.24): it is an excitation of the
fundamental boson φ in the Hall phase (8.15). Now the Aharonov-Bohm phase arises
because this particle has charge 1 under the statistical gauge field with magnetic field
f12 = −2πµ/k′. This is a pleasing, dual perspective. The vortices are solitons con-
structed from φ. But, equally, we see that we can reconstruct φ as a collective excitation
of many vortices!

Fractional Statistics

Let us next consider the statistics of quasiholes as they are braided. To do this, we
consider a state with two excitations, |η1, η2〉k. It is simplest to place the first at the
origin, η1 = 0, and transport the second in a full circle. This is equivalent to exchanging
the quasiholes twice and computes double the statistical phase. Of course, there is
also a contribution from the Aharonov-Bohm phase Θ(r) described above and we must
subtract this off. The resulting statistical phase Θstat is then given by

2Θstat(r) = −i
ˆ 2π

0

dθ k〈0, η|
∂

∂θ
|0, η〉k −Θ(r)

where again η = reiθ.
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Figure 9.3: The statistical phase for a quasihole encircling a second quasihole at the
origin for N = 5000 and k′ = 3. The Berry phase Θstat (solid, red) is plotted, together
with the expected phase for a particle of statistics π/k′ (grey, dashed).

To compute the statistical phase, we need yet more inner products. We define the
states

|Ω0,l〉k =
[
εa1···aN (ϕ†Z†)a1(ϕ†Z† 2)a2 · · · (ϕ†Z† l)al(ϕ

†Z† l+2)al+1
· · · (ϕ†Z†N+1)aN

]
[
εb1···bNϕ†b1(ϕ†Z†)b2 · · · (ϕ†Z†N−1)bN

]k−1

|0〉 .

This is similar to |Ωl〉k, defined previously, except now each factor of Z† has been
increased by 1. This is the effect of placing the extra quasihole at the origin. (For more
general locations of the quasihole, we would need the obvious generalizations of these
states |Ωl′,l〉k.) The states |Ω0,l〉k are again orthogonal. This time, we find the norm is
given by

k〈Ω0,l|Ω0,l〉k
k′〈ground|ground〉k′

= (πµ)l−2N

(
N

l

)[N−l−1∏
a=0

(k′a+ 1)

]

×
[
l−1∏
a=0

(k′a+ 1)

][
N−1∏
a=l

(k′a+ 2)

]
. (9.29)

With these functions, it is straightforward to determine an expression for the statistical
phase in terms of a sum overN states. Once again, this sum has a closed form, this time
given using regularized hypergeometric functions by

2Θstat(r) =
2π2µr2

k′

(
N

2F̃2(1 + 1/k′, 1−N ; 1 + 2/k′, 2−N − 1/k′; πµr2/k′)

2F̃2( 1/k′, −N ; 2/k′, 1−N − 1/k′; πµr2/k′)

)
−Θ(r) .

We plot this for N = 5000 and k′ = 3 in Figure 9.3. All other plots with k′ � N

have similar features. We see that there is clearly an intermediate, parametrically large
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regime, in which the pair of particles are both far from the edge of the disc and far from
each other, where their exchange statistics are given by

Θstat =
π

k′
.

This is the expected result for a quasihole at filling fraction ν = 1/k′.
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10 Comments

Supersymmetry has long proven a powerful tool to understand physics at strong cou-
pling in relativistic systems. It is clear that if this power could be transported to the
non-relativistic realm, then supersymmetry could be employed to say something inter-
esting about open problems in condensed matter physics.

In this spirit, there have been a number of recent papers in which mirror symmetry
(which can be viewed as an exact particle-vortex duality in d = 2+1 interacting systems)
has been explored in the presence of external sources. This has been used to study
impurities [172, 173], non-Fermi liquids [174] and the physics of the lowest Landau
level [175]. It would be interesting to follow the fate of mirror pairs (or Seiberg duals)
under the non-relativistic limit.

Crucially, in our model, we have seen that it is possible for supersymmetry to provide
a guide to understanding toy models even if we simply disregard their SUSY comple-
tion. The line of enquiry which supersymmetry guided us to in Part III is the one which
we will continue to follow in Part IV, making very little further reference to supersym-
metry. It is essentially relegated to a purely advisory role by the non-relativistic limit.

(Indeed, at least one other principle could guide one to the theory we used: recall
that – without the chemical potential – it has conformal symmetry at this point. One
perspective is that this is slightly less natural since we are ultimately interested in a non-
conformal deformation of the theory. A more pragmatic reason is that it is typically
easier to use supersymmetry to construct and analyse these theories.)

The Laughlin physics we have described so far, of course, is just the tip of the quantum
Hall iceberg. A long-standing open problem has been how to generalize the quantum
Hall matrix model of [19] to more general filling fractions such as the Jain hierarchy.
(See [161] for an attempt.) But our perspective offers an approach. It is known that the
most general Abelian quantum Hall state can be captured by the K-matrix approach
[176], with an effective field theory given by several coupled Chern-Simons fields

L =
1

4π
KIJε

µνρaIµ∂νa
J
ρ +

1

2π
AµtIε

µνρ∂νa
I
ρ + . . . .

It is a simple matter to generalize this to a non-relativistic (and, if we wanted, super-
symmetric) theory. However, the dynamics of vortices in these theories have not been

139



well studied. A matrix model for the vortex dynamics in these theories would presum-
ably furnish a description of the most general Abelian quantum Hall states. (A matrix
model for vortices in a class of theories with product gauge groups was proposed in
[173, 177].) These are under investigation, but are not reported upon in this disserta-
tion.

Another natural generalization – and the topic of this dissertation in Parts IV and V
– is to look at vortices in non-Abelian U(p) gauge theories. These were introduced in
[155, 178]. The vortices now have an internal degree of freedom and the moduli space
is given by

πµ[Z,Z†] +

p∑
i=1

ϕiϕ
†
i = k′1N

modulo U(N) gauge transformations. Models like this have been previously discussed
in the context of quantum Hall physics in [179, 180], but with rather different interpre-
tations and approaches to those we have followed here. We would like to investigate
which quantum Hall states these models describe.

Finally, we alluded in the D-brane derivation of the matrix model, to the famous
ADHM construction [181]. This is an exact description of the moduli space of instantons
in four dimensions, and the matrix model we have discussed is, loosely speaking, one
half of the ADHM model. To be more precise, whereas we have a complex adjoint scalar
Z and a complex fundamental φ, the fields of the ADHM model are doubled up: we
have adjoint scalars Z,W and a fundamental and an antifundamental φ, φ̃. The pair
(Z,W ) transforms as a doublet under an SU(2)L, and (Z,W †) and (φ, φ̃†) are SU(2)R

doublets. Together, SU(2)L×SU(2)R/Z2
∼= SO(4) form the rotational symmetry group

of four-dimensional Euclidean space.

This raises the interesting question of whether there is a (4+1)-dimensional version of
the story we have been discussing. The answer seems to be yes: there is an appropriate
non-relativistic theory in 5 dimensions which seems to have a moduli space of instanton
solutions described by a non-relativistic matrix model based around the ADHM one.
Rather elegantly, the notion of chirality in the conventional Hall effect is then replaced
with the notion of chirality associated with the SU(2)L×SU(2)R decomposition of four
dimensional rotations – just as the kinetic terms in the matrix model (9.13) naturally dic-
tate a preferred direction of rotation under the U(1) rotation group (for a given k), here,
the kinetic terms break the SU(2)R symmetry, dictating that the left-handed symmetry
is preferred. Similarly, just as the Chern-Simons term carries a choice of sign, in the
4+1 dimensional theory, the gauge theory kinetic terms requires a choice of self-dual
or anti-self-dual configurations.
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It would be interesting to use the approach presented here to further the study of such
higher-dimensional Hall effects, a class of phenomena discussed in [182]. In particular,
there is an emergent chiral 3+1 dimensional boundary theory to find, which would be
very interesting.
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PART IV

Non-Abelian Models





11 Introduction and Summary

Up until this point, we have been exploring in detail an old matrix model for the Laugh-
lin states, introduced by Polychronakos [19], and inspired by earlier work [20]. How-
ever, the approach we have followed is far from limited to this case. Recall that the
Chern-Simons theory studied in Part III was Abelian. This suggests a natural general-
ization: we should look at non-Abelian Chern-Simons theories.

Indeed, it turns out that non-Abelian gauge groups give rise to non-Abelian statistics
for quasiholes in the quantum Hall phase. As we discuss below, pursuing this idea
leads us directly to a wide variety of interesting electron states. They are classified in a
natural and simple way by the Chern-Simons rank and level(s).

The new thing here is that the vortices which these non-Abelian theories sustain now
carry spin [155, 178]. In Chapter 14, we will explain in analogy to our preceding work
how these vortices give rise to a new, non-Abelian matrix model. However, we will
postpone this until after Chapters 12 and 13 which contain respectively discussions of
the matrix models themselves and the non-Abelian states they host.

A Class of Non-Abelian Quantum Hall States

Before we describe the role played by the matrix model, we first summarize some prop-
erties of the non-Abelian Hall states that will emerge.

The original Moore-Read state [16], and its extension to the series of Read-Rezayi
states [86], describe spin polarized electrons. There are, however, a number of promi-
nent non-Abelian Hall states in which the electrons carry an internal spin degree of
freedom [183, 184, 185]. Typically, the quantum Hall ground states are singlets under
the spin symmetry group. It is this kind of non-Abelian spin-singlet state which we shall
investigate, although as we shall see there are interesting relationships between spin-
singlet and spin-polarized states.

In the context of quantum Hall physics, the “spin” degrees of freedom can be more
general than the elementary spin of the electron. For example, in bilayer systems the
layer index plays a similar role to the spin degree of freedom and is sometimes referred
to as a “pseudospin”. In other systems, the electrons may carry more than two internal
states. This occurs, for example, in graphene where one should include both spin and
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valley degrees of freedom [186]. Here, we will consider systems in which each particle
carries some number of internal states. This will include situations in which these states
transform in a higher representation of SU(2), but also situations in which the states
transform under a generalSU(p) group. In all cases, we will refer to these internal states
simply as the “spin” degrees of freedom of the particle.

When the symmetry group isSU(2), one can construct non-Abelian spin-singlet states
starting from the familiar Abelian (m,m, n) Halperin states [187]. It is well known that
when particles carry spin s = 1

2
, only the Halperin states with m = n + 1 are spin-

singlets [188]. Apparently less well-known is the statement that for particles carrying
spin s, the (m,m, n) states, suitably interpreted, are spin-singlets when m = n + 2s.
Moreover, the presence of the spin degrees of freedom changes the universality class
of these states and, for s > 1

2
, they have non-Abelian topological order. In particular,

when the particles have spin s = 1, it is possible to rewrite these states in Pfaffian form
and they lie in the same universality class as the Moore-Read states.

When the symmetry group is SU(p), the obvious (m, . . . ,m, n . . . , n) generalization
of the Halperin states can again be used as the foundation to build non-Abelian states.
When m− n = 1, these are spin-singlets if each particle transforms in the fundamental
representation of SU(p). More generally, when m − n = k one can build spin-singlets
if each particle transforms in the kth symmetric representation of SU(p).

The states that arise in this way are not novel. They were first introduced many years
ago by Blok and Wen [183], albeit using the rather different construction of conformal
blocks in an SU(p)k WZW model. The states have filling fraction

ν =
p

k + np
(11.1)

with p and k positive integers determined by the spin group and its representation,
and n an arbitrary positive integer. For p = 1, these are simply the Laughlin states. For
p = k = 2, these are spin-singlet generalizations of the Moore-Read states. For p > 2

and k = 2, these are spin-singlet generalizations of the Read-Rezayi states.

Chern-Simons Theories and Matrix Models

The effective description of the Blok-Wen states is a non-Abelian Chern-Simons theory.
The gauge group and levels are given by

U(p)k,k+np =
U(1)(k+np)p × SU(p)k

Zp
. (11.2)
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The allowed level of the U(1) factor is strongly constrained by the fact that this is a U(p)

rather than U(1)× SU(p) theory [189].

Viewed in a certain slant of light, the Blok-Wen states are the most natural non-
Abelian quantum Hall states. Let us take a quick aside to explain this. The long-distance
physics of all non-Abelian quantum Hall states is described by some variant of non-
Abelian Chern-Simons theories. This means, of course, that Wilson lines in this the-
ory carry some representation under the non-Abelian group which, for us, is SU(p).
The corresponding “colour” degrees of freedom are then interpreted as spin degrees
of freedom of the underlying electron. This, in essence, is why non-Abelian quantum
Hall states arise naturally from particles carrying internal spin.

In contrast, if one wants to describe the long-distance physics of spin-polarized non-
Abelian Hall states, such as those of [16, 86], one must work somewhat harder. This
involves the introduction of yet further quotients of the 3d Chern-Simons theory [189]
to eliminate the spin degrees of freedom. This is the sense in which the Blok-Wen states
are particularly natural1.

Drawing on our experience from Part III, we are now in a position to guess how the
matrix model arises. The electrons in the quantum Hall system correspond to vortices
of the U(p) Chern-Simons theory. The U(N) matrix model is simply the description
of the microscopic dynamics of N of these vortices. We only offer a construction of
this matrix model for the choice n = 1 in (11.1) and (11.2); it seems likely that some
generalization is possible, however. It is to be expected that quantizing these vortices
results in the quantum Hall ground state. The matrix model provides the technology
to do this explicitly.

The novelty in non-Abelian gauge theories is that the vortices are endowed with an
internal orientation – spin degrees of freedom – as first explained in [155, 178]. We will
show that this results in the non-Abelian quantum Hall states described above. (An
earlier, somewhat orthogonal attempt to describe a quantum Hall fluid of non-Abelian
vortices was made in [180].)

Plan of Attack

Part IV is written in a somewhat different order from the preceding introduction. In
Chapter 12, we introduce the matrix model but do not explain its Chern-Simons ori-
gins. Instead, we will take the matrix model as the starting point and show that it

1Things look somewhat different when viewed from the boundary perspective. The same quotient
that appears complicated in the 3d bulk can result in a very simple boundary theory, such as the Ising
[16] or parafermion [86] conformal field theories.
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describes particles with spin moving in the lowest Landau level. We will see that, upon
quantization, the ground state lies in the same universality class as the non-Abelian
quantum Hall states previously introduced by Blok and Wen [183].

In Chapter 13, we describe in some detail the Blok-Wen wavefunctions and their con-
struction from spin generalizations of the Halperin-type states. We show, in particular,
how they describe spin-singlet generalizations of the Moore-Read [16] and Read-Rezayi
[86] states. One rather cute fact is that the Read-Rezayi states arise in this picture from
SU(p)2 Chern-Simons theory; this is related by level-rank duality to the more familiar
SU(2)p coset constructions.

In Chapter 14, we return to the origin of the matrix model. We explain how it captures
the dynamics of vortices in a Chern-Simons theory with gauge group (11.2). We then
explore what the ideas of bosonization we discussed back in Chapter 6 have to say about
these non-Abelian Chern-Simons theories. The upshot is that we will find an interesting
fermionic dual of the vortex Chern-Simons theory, in which the vortices are replaced
with baryons.

Finally, in Chapter 15, we complete the circle of ideas. We confirm that the matrix
model wavefunctions, derived from the Chern-Simons theory, can be reconstructed as
correlation functions in the boundary WZW model with algebra (11.2). In Part V, we
will make the connection between the matrix model and the WZW model more direct:
indeed, we will show how to construct the WZW currents in the matrix model, and
show that the partition functions agree as N →∞ in the matrix model.

148



12 The Quantum Hall Matrix Model

The purpose of this chapter is to study a matrix model description of non-Abelian quan-
tum Hall states. The model will describe N particles which we refer to as “electrons”.

The matrix model is a U(N) gauged quantum mechanics, with a gauge field which
we denote as α. This gauge field is coupled to an N × N complex matrix Z, together
with a set ofN -dimensional vectorsϕi which are labelled by an index i = 1, . . . , p. These
transform under the gauge symmetry as

Z → UZU † and ϕi → Uϕi for U ∈ U(N) . (12.1)

The dynamics is governed by the first-order action

S =

ˆ
dt
iB

2
Tr
(
Z†DtZ

)
+ i

p∑
i=1

ϕ†iDtϕi − (k + p) Tr α− ωB

2
Tr Z†Z (12.2)

with DtZ = ∂tZ − i[α,Z] and Dtϕi = ∂tϕi − iαϕi.

The action depends on three parameters: B, ω and k. We will see below that B is
interpreted as the background magnetic field in which the electrons move, while ω is
the strength of a harmonic trap which encourages the electrons to cluster close to the
origin. Finally k, which appears in the combination k′ ≡ k + p, is the coefficient of
the quantum mechanical Chern-Simons term. Gauge invariance requires that k is an
integer and we will further take it to be positive: k ∈ N.

In addition to the U(N) gauge symmetry, our model also enjoys an SU(p) global
symmetry, under which the ϕi rotate. When p = 1, (12.2) reduces to the action (9.14)
studied in Part III. The model with general p was previously discussed in [179], albeit
with a different interpretation from that offered here.

Getting a Feel for the Matrix Model

To gain some intuition for the physics underlying (12.2), let’s first look at the example of
a single particle. In this case N = 1 and so our matrix model is an Abelian U(1) gauge
theory, with dynamics

SN=1 =

ˆ
dt
iB

2
Z†Ż +

p∑
i=1

iϕ†iDtϕi − (k + p)α− ωB

2
Z†Z .
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In this case, theZ field decouples; the kinetic term, which is first order in time, describes
the low-energy dynamics of an electron moving in a large external magnetic field B.
When we come to the quantum theory, this will translate into the statement that the
electron lies in the lowest Landau level. The term proportional toω provides a harmonic
trap for the electron.

Meanwhile, the ϕi variables describe the internal degrees of freedom of the electron.
To see this, note that the equation of motion for α requires that

∑
i |ϕi|2 = k + p is

constant. After dividing out by U(1) gauge transformations, ϕi → eiθϕi, we see that
ϕi parametrize the space CPp−1. However, the action is first order in time derivatives,
which means thatCPp−1 should be viewed as the phase space of the system, as opposed to
the configuration space. This is important. Because the phase space has finite volume,
the quantization of ϕi will result in a finite-dimensional internal Hilbert space for the
electron. In other words, the electron carries “spin”.

As we emphasized above, this usage of the word “spin” is somewhat more general
than its standard meaning in condensed matter physics (or high energy physics for
that matter). Usually, one thinks of spin as referring to a representation of SU(2); this
corresponds to the choice p = 2 in our model. More generally, our internal degree of
freedom transforms in some representation of SU(p). The choice of representation is
determined by the parameter k. (We will show below that the electrons sit in the kth

symmetric representation of SU(p); in the case of SU(2), this means that they carry spin
j = k/2.)

We learn that the U(1) matrix model describes a particle carrying spin, restricted to
move in the lowest Landau level. The U(N) matrix model simply describes N such
particles. Roughly speaking, theN eigenvalues of the matrix Z correspond to the posi-
tions of the particles although, as we will see, there is some ambiguity in this when the
particles are close. More precisely, we can again look at the equation of motion for the
gauge field α. This results in the u(N)-valued constraint

B

2
[Z,Z†] +

p∑
i=1

ϕiϕ
†
i = (k + p)1N . (12.3)

The phase space,M, of the theory is now the space of solutions to (12.3), modulo the
gauge action (12.1). This has real dimension dimM = 2Np. Our task is to quantize this
phase space, with the harmonic potentialH = 1

2
ωB Tr Z†Z providing the Hamiltonian.
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12.1 Quantization

In this section, we study the quantization of our matrix model (12.2). The canonical
commutation relations inherited from the action (12.2) are

B

2
[Zab, Z

†
cd] = δadδbc and [ϕi a, ϕ

†
j b] = δabδij (12.4)

with a, b = 1, . . . , N and i, j = 1, . . . , p. We choose a reference state |0〉 obeying

Zab|0〉 = ϕi|0〉 = 0 .

The Hilbert space is then constructed in the usual manner by acting on |0〉with Z† and
ϕ†i .

However, we still need to take into account the U(N) gauge symmetry. This is imple-
mented by requiring that all physical states obey the quantum version of Gauss’s law
(12.3). Normal ordering the terms in the matrix commutator, this reads

B

2
: [Z,Z†] : +

p∑
i=1

ϕiϕ
†
i = (k + p)1N . (12.5)

The traceless part of this equation is interpreted as the requirement that physical states
are SU(N) singlets. Meanwhile, the trace of this constraint requires all physical states
to carry fixed charge under U(1) ⊂ U(N). Here there is an ordering issue. Using the
commutation relations (12.4), we find

N∑
a=1

p∑
i=1

ϕi aϕ
†
i a = (k + p)N ⇒

N∑
a=1

p∑
i=1

ϕ†i aϕi a = kN . (12.6)

This tells us that all physical states carry charge kN under the U(1). In other words, all
states in the physical Hilbert space contain precisely kN copies of ϕ† acting on |0〉.

The Spin of the Particle Revisited

We can now be more precise about the internal SU(p) spin carried by each particle.
Setting N = 1, the spin states of a single particle take the form

|Ωi1...ik〉 = ϕ†i1 . . . ϕ
†
ik
|0〉 .

Since each operatorϕi transforms in the fundamental of SU(p), the spin states |Ω〉 trans-
form in the kth symmetric representation. In particular, for k = 1 the electrons carry the
fundamental representation of SU(p).
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Our main focus will be on quantum Hall states which are SU(p) spin-singlets. Some
simple group theory tells us that for this to happen we must have the number of elec-
tronsN divisible by p. Indeed, we will see below that the ground states simplify in this
case.

12.2 The Ground States

We have already discussed, in Part III, the ground state of the matrix model with p = 1

(as originally constructed in [19]). We first review this example before explaining the
straightforward generalization to p > 1.

The p = 1 Ground State

When p = 1, the electrons carry no internal spin. The constraint (12.6) tells us that all
physical states have kN operators ϕ† acting on |0〉. Further, the Hamiltonian arising
from (12.2) is

H =
ωB

2
Tr Z†Z (12.7)

which simply counts the number ofZ† operators acting on |0〉. The route to constructing
the ground state is then straightforward: we need to act with kN copies of ϕ†, keeping
the number of Z† operators to a minimum. The subtleties arise from the requirement
that the physical states are invariant under SU(N) gauge transformations. Since we
only have ϕ† operators to play with, the only way to achieve this is to construct a baryon
operator of the form

εa1...aN (Z l1ϕ)†a1
. . . (Z lNϕ)†aN .

However, because ϕ is bosonic, the antisymmetrization inherent in εa1...aN causes this
operator to vanish unless all the exponents la are distinct. Because we pay an energy
cost (12.7) for each insertion of Z†, it follows that the lowest energy operator is given by

εa1...aN (Z0ϕ)†a1
(Zϕ)†a2

. . . (ZN−1ϕ)†aN .

The trace constraint then tells us that the ground state is given by

|ground〉k =
[
εa1...aN (Z0ϕ)†a1

(Zϕ)†a2
. . . (ZN−1ϕ)†aN

]k |0〉 .
The interplay between the gauge symmetry and the Hamiltonian has resulted in the
construction of a state with interesting correlations between the positions of particles,
encoded in the operator Z. This is what is increasingly apparent when one writes these
states in the more familiar language of N -particle wavefunctions, revealing their close
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relationship to the Laughlin wavefunctions. However, as we will now see, things can
get even more interesting.

Ground States with p ≥ 2

We now turn to the ground states when the electrons carry an internal spin. We an-
ticipated above that the states will take a simpler form when N is divisible by p. And,
indeed, this is the case.

N divisible by p

When N is divisible by p, there is a unique ground state. This is an SU(p) singlet. To
describe the construction of this state, we first group p creation operators ϕ†i together to
form the SU(p) baryon operator

B(r)†a1···ap = εi1···ip(Zrϕ)†i1 a1
· · · (Zrϕ)†ip ap .

This is a singlet under the SU(p) global symmetry, but transforms in the pth antisym-
metric representation of theU(N) gauge symmetry. To construct an SU(N) singlet with
the correct U(1) charge required by (12.6), we make a “baryon of baryons”. The ground
state is then

|ground〉k =
[
εa1···aNB(0)†a1...ap

B(1)†ap+1···a2p
· · · B(N/p− 1)†aN−p+1···aN

]k
|0〉 . (12.8)

This state has energy E = ωkN(N−p)
2p

. This time the requirements of the U(N) gauge
invariance have resulted in interesting correlations between both position and spin de-
grees of freedom of the electrons. We will devote the rest of this chapter and the next
to describing the structure of these states.

N ≡M (mod p)

When N is not divisible by p, the ground state is no longer a singlet under the global
SU(p) symmetry. We write N = Lp + M with L,M ∈ Z≥0. One can check that the
ground states are

|ground〉k =
k∏
l=1

[
εa1···aNB(0)†a1···apB(1)†ap+1···a2p

· · · B(r − 1)†aN−p−M+1···aN−M

(ZLϕi(l,1)
)†aN−M+1

· · · (ZLϕi(l,q))
†
aN

]
|0〉

where i(l,α), with l = 1, . . . , k and α = 1, . . . ,M are free indices labelling the degen-
erate ground states. These ground states transform in the kth-fold symmetrization of
the qth antisymmetric representation of SU(p). In terms of Young diagrams, this is the
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following representation:

(12.9)

k

M

We have already seen these objects arising in the conformal theories studied in Part
II. We’ll see in Chapters 14 and 15 why these representations are special and might be
expected to arise in quantum Hall states. In the meantime, we will primarily focus on
the states (12.8) that arise when N is divisible by p.

12.3 The Wavefunctions

The description of the ground states given above is in terms of a coherent state rep-
resentation for matrices. To make connections with the more traditional form of the
wavefunctions, we need to find a map between the creation operators Z† and the posi-
tion space representation as discussed in Part III. We first briefly review the key points
of the Abelian case, and then provide the generalization to the SU(p) matrix model.

p = 1 and the Laughlin Wavefunctions

Recall that at the formal level, there was a clear similarity between the ground state for
p = 1 theories,

|ground〉k =
[
εa1...aN (Z0ϕ)†a1

(Zϕ)†a2
. . . (ZN−1ϕ)†aN

]k |0〉 (12.10)

and the Laughlin wavefunctions at filling fraction ν = 1/m

ψLaughlin
m (za) =

∏
a<b

(za − zb)me−B
∑
|za|2/4

=
[
εa1...aN z0

a1
z1
a2
. . . zN−1

aN

]m
e−B

∑
|za|2/4 .

In Part III we described two strategies which essentially integrate out ϕ and the off-
diagonal elements of Z to transform to a wavefunction representation. For k = 0, the
wavefunctions coincided with the Slater determinant for a fully-filled Landau level

〈za |ground〉k=0 =
∏
a<b

(za − zb)e−B
∑
|za|2/4 . (12.11)

The exponential factor is the usual factor arising form the normalization of coherent
states. The single factor of the Vandermonde determinant, which is not obvious in
(12.10) when k = 0, is a Jacobian that arises in the transformation from matrix-valued
objects to their eigenvalues.
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Meanwhile, for k ≥ 1, neither representation of the wavefunction coincided with the
Laughlin state. Nonetheless, both had the property that

〈za |ground〉k → ψ
Laughlin
k+1 (za) as |za − zb| → ∞ .

In other words, the wavefunctions that arise from the matrix model coincide with the
Laughlin wavefunctions only at large distances. This ensures that the matrix model
ground state has filling fraction

ν =
1

k + 1
.

However, the matrix model state differs from the Laughlin wavefunction as particles
approach to within a magnetic length.

We reiterate that although the matrix model and Laughlin states differ in detail, this
is not a matter of concern. There is nothing privileged about the Laughlin wavefunc-
tion: it is merely a representative of a universality class of states, characterized by their
topological order – and moreover, it may be that there are other more mathematically
convenient representatives. Indeed, in Part III, we explicitly saw two things: firstly,
that the coherent state representation (12.10) reproduces the key aspects of Laughlin
physics, and secondly, that for certain calculations it offers greater analytic control.

Wavefunctions for p ≥ 2

For the case p = 1 described above, all physical states have the same dependence on
ϕ† excitations; they differ only in their Z† excitations. This is the reason that no ϕ vari-
ables were needed when writing the wavefunctions. In contrast, when p ≥ 2, different
physical states can have a different structure of ϕ†i excitations. These capture the way
the state transforms under the SU(p) symmetry.

We repeat the procedure described above, moving from coherent state representation
to wavefunction. For k = 0 the wavefunction knows nothing about the spin degrees of
freedom. This means that the k = 0 wavefunction is again given by (12.11), describing
a fully-filled Landau level with ν = 1.

However, for p ≥ 2 and k > 1, we have a new ingredient. Apart from the Vander-
monde determinant (12.11), each time that a power of a particle coordinate za appears
in the wavefunction, it is accompanied by a spin degree of freedom,

σa ∈ {1, . . . , p}
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where a = 1, . . . , N labels the particle. Concretely, a term in the wavefunction contain-
ing an operator ϕ†i a gives particle a a spin degree of freedom pointing in the i direction.

For example, when k = 1, the ath particle has a single spin degree of freedom σa.
This reflects the fact that, as we saw earlier, each particle transforms in the fundamental
representation ofSU(p). More generally, the internal state of each particle is determined
by k independent spin labels σa. As we will explain in some detail in Chapter 13, this
is to be interpreted as specifying the kth symmetric representation under SU(p). (The
symmetry simply arises from the fact that ϕ†i aϕ

†
j a = ϕ†j aϕ

†
i a.)

When N is divisible by p, the ground state wavefunction (12.8) is a an SU(p) spin-
singlet. The states have filling fraction

ν =
p

k + p
(12.12)

and have the property that

〈za |ground〉k → ψBW (za) as |za − zb| → ∞

where ψBW (za) are a class of non-Abelian wavefunctions constructed some time ago by
Blok and Wen [183]. Like many non-Abelian quantum Hall states, the explicit descrip-
tion of the wavefunctions ψBW (za) is straightforward, but somewhat fiddly. We devote
the next chapter to a more detailed description of these quantum Hall states and their
properties.
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13 The Blok-Wen States

In this chapter, we describe the Blok-Wen wavefunctions in some detail. The original
construction of [183] was in terms of conformal blocks of a SU(p) WZW model and we
will revisit this approach in Chapter 15. Here we provide an alternative, more down-
to-earth construction of the states. We start with wavefunctions carrying spin under
SU(2), moving on to the more general SU(p) case in Section 13.2.

13.1 Particles with SU(2) Spin

The simplest examples of wavefunctions describing particles with spin are due to Hal-
perin [187]. We take N particles, with N even, and split them into two groups of N/2
particles, with positions za andwa where each index now runs over a = 1, . . . , N/2. The
(m,m, n) wavefunctions are

ψ(z, w) =

N/2∏
a<b

(za − zb)m
N/2∏
c<d

(wc − wd)m
∏
a,d

(za − wd)n (13.1)

where, as throughout this chapter, we will omit the overall exponential factor common
to all wavefunctions. Counting the angular momentum of particles shows that these
states have filling fraction

ν =
2

m+ n
.

The (m,m, n) states (13.1) are really shorthand for wavefunctions with spin. As we
review below, they should be dressed with explicit spin wavefunctions. This will result
in the Blok-Wen states. These are actually a slightly more general class of states than
those that emerge from the matrix model. We will see that the matrix model gives states
with n = 1 and m = k + 1.

Usually one thinks of the Halperin states as describing spin-1
2

particles, with za andwa
labelling the positions of those which are spin-up and spin-down respectively. With this
interpretation the (n+1, n+1, n) states are spin-singlets. However, we will show that we
can also view (13.1) as describing particles with spin s > 1

2
. This is perhaps surprising

as these particles have 2s+ 1 spin states and it is not obvious how to decompose these
into two groups. We will see that, with this interpretation, the (m,m, n) states are spin-
singlets when s = (m − n)/2. Matching to the matrix model parameters, this means
s = k/2.
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Spin 1
2

The standard interpretation of (13.1) is as a wavefunction for spin-1
2

particles. To dress
the wavefunction with these spin states, it’s useful to change notation slightly and label
the positions of allN particles as za. Each particle carries a further internal spin degree
of freedom σa which takes values | ↑〉 or | ↓〉. The (m,m, n) state for m > n is then
written as

ψ(z, σ) = A
[
N∏
a<b

(za − zb)n
∏

a<b odd

(za − zb)m−n
∏

c<d even

(zc − zd)m−n | ↑↓↑↓ . . . ↑↓〉
]

(13.2)

where A stands for antisymmetrization over all particles, exchanging both positions
and spins. This wavefunction describes fermions for m odd and bosons for m even.

It is well known that only the states with m − n = 1 are spin-singlets [188]. In this
case, the wavefunction factorizes as

ψn+1,n+1,n(z, σ) =
N∏
a<b

(za − zb)n Φ(z, σ) .

This describes fermions for n even and bosons for n odd. Here the first factor takes
the familiar Laughlin-Jastrow form, while the second factor is the Slater determinant
of two fully filled Landau levels, one for the up spins and one for the down spins. The
resulting wavefunction can be written as

Φ(z, σ) = A
[ ∏
a<b odd

(za − zb)
∏

c<d even

(zc − zd) | ↑1〉| ↓2〉| ↑3〉 . . . | ↓N〉
]

or, equivalently, as

Φ(z, σ) = εa1...aN (za1za2)0(za3za4)1 . . . (zaN−1
zaN )N/2−1

×
[
| ↑a1〉| ↓a2〉| ↑a3〉| ↓a4〉 . . . | ↑aN−1

〉| ↓aN 〉
]

. (13.3)

In particular, this latter expression makes it clear that the spins are paired in singlet
states of the form | ↑a1〉| ↓a2〉 − | ↓a1〉| ↑a2〉.

Spin 1

So far, we have just reproduced the usual story. Suppose now thatm = n+ 2. We claim
that the following is a spin-singlet wavefunction for spin 1 particles,

ψn+2,n+2,n(z, σ) =
∏
a<b

(za − zb)n P
[
Φ2(z, σ)

]
. (13.4)

This is a wavefunction for fermions when n is odd and bosons when n is even.
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Our first task is to explain what this means. The factor Φ2 includes two spin states
for each particle. The tensor product of two spin 1/2 states gives 2 ⊗ 2 = 1 ⊕ 3. The
operator P projects onto the symmetric 3. (In the present case, this operation is not
required as it is implemented automatically by the form of Φ2. However, we include it
in our expression for clarity.) This means that we can interpret (13.4) as a quantum Hall
state for spin 1 particles, with the map

| ↑〉| ↑〉 = |1〉 , | ↓〉| ↓〉 = |−1〉 , | ↑〉| ↓〉 = | ↓〉| ↑〉 = |0〉 . (13.5)

We further claim that (13.4) is a spin-singlet. We will first motivate this by looking at
the kinds of terms that arise. We will subsequently provide a proof in the course of
rewriting the wavefunction in a more familiar form.

Consider two particles, labelled 1 and 2, each of which carries spin 1
2
. The spin-singlet

state is

|12〉 1
2

= |↑1〉|↓2〉 − |↓1〉|↑2〉

where the subscript 1/2 is there to remind us that this is the singlet built from two spin
1/2 particles. The simplest terms that occur in (13.4) are of the form |12〉 1

2
|12〉 1

2
. Using

the map (13.5), we have

|12〉 1
2
|12〉 1

2
= |11〉|−12〉+ |−11〉|12〉 − 2|01〉|02〉

which is indeed the singlet formed from two spin 1 states. To highlight this, we write
the above equation as

|12〉 1
2
|12〉 1

2
= |12〉1 .

The next kind of term that arises in (13.4) involves four different particles. It is the cyclic
term |12〉 1

2
|23〉 1

2
|34〉 1

2
|41〉 1

2
. We can similarly expand this in terms of spin 1 states and

again find that only combinations of singlet states appear:

|12〉 1
2
|23〉 1

2
|34〉 1

2
|41〉 1

2
= |12〉1|34〉1 − |13〉1|24〉1 + |14〉1|23〉1 .

The most general term in (13.4) has 2n particles. This too can be written as the linear
combinations of n spin 1 singlet states. Rather than demonstrate this term by term, we
will instead show that the wavefunction (13.4) has an alternative form written purely
in terms of spin 1 singlets.
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The Spin 1 Wavefunction as a Pfaffian

We will now show that the wavefunction (13.4) for spin 1 particles can be written as

Φ2(z, σ) = Pf

( |ab〉1
za − zb

)∏
a<b

(za − zb) (13.6)

with Pf(Mab) the Pfaffian of the matrix M . This is a spin-singlet version of the Moore-
Read state [16]. It is sensible because the spin 1 singlet |ab〉1 is symmetric in the two
spins, in contrast to |ab〉 1

2
which is antisymmetric.

It was noticed long ago [183, 190] that the (3, 3, 1) state is closely related to the Pfaf-
fian state. In [183] the particles were spin-1 but projected onto the m = 0 spin com-
ponent; in [190] the particles were taken to be spin 1/2 and the resulting state was not
a spin-singlet. Our result (13.6) is clearly closely related to these earlier results, both
of which are proven using the Cauchy identity. However, the proof of (13.6) requires
more sophisticated machinery which appears not to have been available at the time of
[183, 190].

The Proof:

The projective Hilbert space associated to the two spins is a Bloch sphere CP1. We
parametrize this by the inhomogeneous coordinate ζ . Formally, we then set | ↓a〉 = 1

and |↑a〉 = ζa and write Φ as the polynomial

Φ(z, ζ) =
1

2N/2
εa1...aN

[
(za1za2)0 . . . (zaN−1

zaN )N/2−1
][

(ζa1 − ζa2) . . . (ζaN−1
− ζaN )

]
.

This has the advantage that the right-hand-side can be viewed as the determinant of a
N ×N matrix ∆[z; ζ] with components given by

∆[z; ζ]a,b =

 zb−1
a 1 ≤ j ≤ N

2

ζaz
b−1
a

N
2

+ 1 ≤ j ≤ 2N
(13.7)

To show the result (13.6), we then need to prove the polynomial identity

det2∆[z; ζ]
?
= Pf

(
(ζa − ζb)2

za − zb

)∏
a<b

(za − zb) .

In fact, this identity is a special case of a more general result proven in [191]. Theorem
2.4 of this paper shows (among other things) that two matrices ∆[z; ζ] and ∆[z; η], each
defined by (13.7), obey the relation

det ∆[z; ζ] det ∆[z; η] = Pf

(
(ζb − ζa)(ηb − ηa)

zb − za

)
det(zb−1

a ) .
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Setting ζa = ηa yields the desired result. �

Higher Spin

The generalization to higher spins is now obvious. We construct the wavefunction

ψn+2s,n+2s,n(z, σ) =
∏
a<b

(za − zb)n P
[
Φ2s(z, σ)

]
(13.8)

whereP is there to remind us that the spin states for each particle are projected onto the
fully symmetrized product. This means that this is a wavefunction for particles with
spin s. Once again, the final state is a spin-singlet. This follows from some trivial group
theory. The infinitesimal action of SU(2) on the tensor product of 2s spin states is

Tα =
N∑
a=1

tαa ⊗ 1⊗ . . .⊗ 1 + symmetric

where tαa is the operator in the fundamental representation acting on the ath particle,
and α = 1, 2, 3 labels the three su(2) generators. Because P projects onto an irrep, we
have

TαP
[
Φ2s
]

= P
[∑

a

tαaΦ⊗ Φ⊗ . . .⊗ Φ

]
+ symmetric .

But each of these terms vanishes because Φ is itself a spin-singlet, which means that∑
a t

α
aΦ = 0. This ensures that (13.8) is indeed a spin-singlet.

Although (13.8) provides an explicit description of the state, it would be pleasing to
find a simple expression purely in terms of the singlets |ab〉s, analogous to the Pfaffian
(13.6) for s = 1. We have not been able to do this; it may simply not be possible due to
the entanglement structure between higher numbers of spins.

While the Halperin states (13.1) describe Abelian quantum Hall states, our spin-
singlet states (13.6) and (13.8) with spin s ≥ 1 are all non-Abelian quantum Hall states.
Indeed, it has long been known that dressing a quantum Hall state with spin degrees
of freedom can change the universality class of the state. We will see in Chapter 15 that
these states are associated to SU(2)2s WZW models.

13.2 Particles with SU(p) Spin

We now generalize these ideas to particles that carry a “spin” under the group SU(p).
This means that each particle carries an internal Hilbert space which transforms under
a particular representation of SU(p).
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The starting point is the p-component generalization of the Halperin states (13.1). We
takeN particles and split them into p groups, with positionswi a, where i = 1, . . . , p and
a = 1, . . . , N/p. Then

ψm,n(z) =

 p∏
i=1

N/p∏
a<b

(wi a − wi b)m
 p∏

i<j

N/p∏
c,d

(wi c − wj d)n
 . (13.9)

Multi-component states of this form were first discussed in [192]. More recently they
have been studied in [193] for p = 4 to describe both spin and valley indices of electrons
in graphene, and more generally in [194, 195]. The states (13.9) have filling fraction

ν =
p

pn+ (m− n)
. (13.10)

It is natural to think of these wavefunctions as describing objects with p internal states.
This corresponds to the situation where each particle sits in the fundamental repre-
sentation, p of SU(p). However, as we will see, there is also a generalization of our
previous construction in which each particle has more internal states, corresponding to
the symmetric representations of SU(p).

Fundamental Representation

We start by describing the simplest situation where the particles sit in the fundamental
representation, meaning that each carries an internal index, σa ∈ {1, 2, . . . , p}. In this
case, the wavefunctions (13.9) are spin-singlets when m = n+ 1.

To see this, note that the smallest number of particles that can form a singlet state is
p. To achieve this, the spin degrees of freedom are completely antisymmetrized into
what we have been calling a “baryon”,

Ba1...ap = εσa1 ...σap |σa1〉 . . . |σap〉 .

We can then form a spin-singlet state of type (n+ 1, n) by writing

ψn+1,n(z, σ) =
N∏
a<b

(za − zb)nΦ(p)(z, σ)

where, in analogy with (13.3), Φ(p) describes p fully filled Landau levels, one for each
type of spin,

Φ(p)(z, σ) = εa1...aN (za1 . . . zap)
0(zap+1 . . . za2p)

1 . . . (zaN−p+1
. . . zaN )N/p−1

× Ba1...apBap+1...a2p . . . BaN−p+1...aN . (13.11)
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In the language of [86, 184], this state exhibits clustering at order p. This means that the
factor Φ(p) remains non-zero if the positions of up to p particles coincide. However, it
vanishes if p + 1 or more particles coincide. We will see in Chapter 15 that this wave-
function actually describes an Abelian quantum Hall state. To generate non-Abelian
quantum Hall states, we need to look at higher representations of SU(p).

Symmetric Representations

For m > n+ 1, we can still interpret (13.9) as a spin-singlet state, but now each particle
must carry a spin in a higher representation. We define k = m − n and write the
wavefunction as

ψn+k,n(z, σ) =
N∏
a<b

(za − zb)nP
[
Φk

(p)(z, σ)
]

(13.12)

where P projects onto the symmetrized product of spin states, meaning that each par-
ticle transforms in the kth symmetric representation of SU(p). These states are all spin-
singlets, by the same argument that we gave in Section 13.1.

These states, still with n = 1, exactly reproduce the long-distance behaviour of the
matrix model ground states described in the previous chapter, with the same values of
k and p.

Relationship to Read-Rezayi States

When k = 2, our states describe particles transforming in the symmetric representation
of SU(p) with dimension 1

2
p(p+ 1). They are p-clustered states with filling fraction

ν =
p

pn+ 2
.

Both of these properties are shared by the Read-Rezayi states [86]. We will now show
that our states are spin-singlet generalizations of the Read-Rezayi states.

A particularly simple form of the Read-Rezayi state was presented in [196],

ψRRn (z) = S

 p∏
i=1

N/p∏
a<b

(wi a − wi b)2

 N∏
c<d

(zc − zd)n (13.13)

where S means that we symmetrize over all possible divisions of the particles into the
p groups, while the za factor simply means that we include all particle positions rather
than restricting to those in a specific group.
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We will show that, after projection onto a particular spin state, the Blok-Wen wave-
function (13.12) coincides with the Read-Rezayi wavefunction (13.13), i.e.

P
[
Φk

(p)(z, σ)
]
7→ S

 p∏
i=1

N/p∏
a<b

(wi a − wi b)2

 . (13.14)

The Proof:

Our first task is to explain what 7→ means in the above expression. It’s useful to first
revisit the case of the Pfaffian (13.6). There, the spin-singlet wavefunction included the
factor

|ab〉1 = |1a〉|−1b〉+ |−1a〉|1b〉 − 2|0a〉|0b〉

and we can project onto a spin-polarized state simply by replacing |ab〉1 7→ |0a〉|0b〉. This
point was also made in [183].

Unfortunately, there is no analogous procedure for SU(p) spins. There is, however, a
generalization of the projection onto the highest spin states. The states |1a〉 = |↑a〉|↑a〉
and |−1a〉 = |↓a〉|↓a〉 have the property that both fundamental spins lie in the same di-
rection. This is something which also makes sense for SU(p) spins. We therefore define
the projection 7→ in (13.13) as an operator which correlates the fundamental SU(p) spins
associated to each individual particle

N∏
a=1

|σa〉|σ′a〉 7→
N∏
a=1

δσaσ′a .

In particular, when we project the state P
[
Φ2

(p)(z, σ)
]
, we correlate the two antisym-

metrizations of spins inside the two Φ(p) factors. The projection picks out the states in
which these two spins associated to a given particle are the same. Spins associated to
different particles can be different.

Having defined the projection, we turn to the structure of the state (13.12). It is helpful
to think about collecting terms with some particular allocation of spin to each particle.
For definiteness, let us consider the term where the particle at position z(a−1)p+i ≡ wi a

is given spin i. (Here a = 1, . . . , N/p.) Now consider the polynomial in z which mul-
tiplies this spin state. It is the antisymmetrization over all ways of permuting particles
at positions wi a and wi a′ of

(w1 1 . . . wp 1)0(w1 2 . . . wp 2)1 · · · (w1N/p . . . wpN/p)
N/p−1 .
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But this is simply the product of p separate Laughlin-like factors w0
a 1w

1
a 2 · · ·wN/p−1

aN/p , and
hence the coefficient of the spin state is proportional to

p∏
a=1

N/p∏
a<b

(wai − waj) (13.15)

which is essentially half of the Read-Rezayi state. To complete the argument, notice that
whatever sign a particular spin allocation comes with, it comes with the same sign in
both copies of Φ(p). Hence overall, we obtain the square of this expression, symmetrized
over all spin allocations. The projection does indeed result in the Read-Rezayi state
(13.14). �

The Read-Rezayi states are associated to the parafermion CFT SU(2)k/U(1)k. Mean-
while, the states analysed here are associated to SU(k)2. The two are related by level-
rank duality. This means that our states include the non-Abelian anyons of the Read-
Rezayi state; for example, SU(3)2 includes the Fibonacci anyons. We will see how these
emerge in Chapter 15 when we review the connection to conformal field theory. How-
ever, the Blok-Wen spin-singlet states arise from a CFT with no quotient, and hence
contain additional anyonic degrees of freedom that are not part of the Read-Rezayi se-
quence of states.
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14 Two Chern-Simons Theories

In Chapters 12 and 13, we’ve focussed only on the properties of the matrix model (12.2).
In Section 14.1 of this chapter, we will generalize the work of Part III, and explain how
this matrix model describes the dynamics of vortices in a (2+1)-dimensional Chern-
Simons theory, but now one which is non-Abelian.

The exciting thing about our return to Chern-Simons theory is that the machinery
of bosonization which we introduced in Section 6 becomes available. This will be the
topic of Section 14.2, where we will introduce a fermionic description of quantum Hall
physics.

14.1 The Bosonic Chern-Simons Theory

Our starting point is a Chern-Simons theory with gauge group

U(p)k,k′ =
U(1)k′p × SU(p)k

Zp
. (14.1)

Recall that the Zp quotient places a strong restriction on the allowed values of k′ which
must obey

k′ − k ∈ pZ . (14.2)

We denote the U(1) gauge field as ã and the SU(p) gauge field as a. (Note the slight
switch of notation from Part III, where we denoted the U(1) field by a as there was
no SU(p) part.) As before, both are to be thought of as emergent gauge fields in the
condensed matter system. Their dynamics is governed by the Chern-Simons action

SCS = −
ˆ

d3x
k′p

4π
εµνρãµ∂ν ãρ +

k

4π
Tr εµνρ(aµ∂νaρ −

2i

3
aµaνaρ) .

To this we couple non-relativistic matter. We considerNf bosons φi, with i = 1, . . . , Nf ,
each transforming in the p of SU(p), with charge 1 under the U(1). Their action is

Smatter =

ˆ
d3x iφ†iD0φi −

1

2m
Dnφ†iDnφi −

π

mk′p
(φ†iφi)

2 − π

mk
(φ†i t

αφi)
2 .

Here the subscripts µ, ν, ρ = 0, 1, 2 are spacetime indices while n = 1, 2 is a spatial index
only. The SU(p) generators tα are in the fundamental representation.
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The coefficients of the φ4 terms – which each describe the strength of a delta-function
interaction between particles – are again “fine-tuned” to be proportional to the Chern-
Simons levels 1/k′ and 1/k. This is the by now familiar conformal, supersymmetric RG
endpoint.

The full action is then

S 3d = SCS + Smatter −
ˆ

d3x µpã0

where we’ve introduced a background charge µ. (We have not bothered to include
the µN term which would be required by supersymmetry, since it does not affect the
dynamics.) This causes the scalars to condense in the vacuum, breaking the gauge
symmetry. This symmetry breaking is complete whenever Nf ≥ p. In what follows we
will take Nf = p. There is a unique ground state of the theory given by

φai =
√
µ δai

with a = 1, . . . , p the gauge index and i = 1, . . . , p the flavour index. In this vacuum,
the gauge and flavour symmetries are broken according to the pattern

U(1) gauge × SU(p) gauge × SU(p) flavour −→ SU(p) diag . (14.3)

The low-energy physics of this broken phase is not that of a quantum Hall fluid. How-
ever, this can change in the presence of vortices: we need to once more create a Hall
droplet.

Vortices

The symmetry breaking pattern (14.3) allows for the existence of vortex excitations in
which the phase of φ winds. These have a rather nice property in this theory. The fine-
tuning of the potential term described above means that vortices lie at the “Bogomolnyi
point”; they satisfy first-order differential equations, rather than second order ones.
The vortex equations are

f̃12 =
2π

k′p

(
|φi|2 − pµ

)
, fα12 =

2π

k
φ†i t

αφi , Dzφi = 0 (14.4)

where the first and second of these equations are Gauss’s law for the Abelian and non-
Abelian gauge field respectively.

These equations coincide with the vortex equations that arise in certain non-Abelian
relativistic theories [155, 178]. Their properties have been studied in some detail over
the years (see, for example, [197, 198, 199]), especially in the case k′ = k, which is con-
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sistent with (14.2), where U(1) and SU(p) gauge fields naturally combine into a U(p)

gauge fields with the same level, meaning that Gauss’s law reads

f12 =
2π

k

(
φiφ

†
i − µ

)
.

The most striking fact about these equations is that, as with the Abelian case, they do
not have a unique solution. Instead, for N vortices the most general solution has 2pN

parameters [155]. (This is shown by index theorem techniques, generalizing previous
results for Abelian vortices [146, 147].) These parameters can be thought of as labelling
the positions and internal orientations of the N vortices. In particular, there are no
forces between vortices. They can sit anywhere on the plane.

We can pick out a unique solution by adding an external harmonic trap. We again
choose a trap which, when evaluated on vortices, is proportional to their angular mo-
mentum

V trap = −ω
ˆ

d2x
µ|z|2

2
f̃12 .

This, of course, changes the equations of motion. The previous vortex solutions now
precess around the origin. There is a unique, stationary, lowest-energy state which
occurs when all vortices coalesce at the origin to form a rotationally invariant configu-
ration.

For a large number of vortices N the solution looks like a disc of radius

R ≈
√
k′N

πµp
.

Inside this disc, the scalar fields vanish, φ ≈ 0 and Gauss’s law is satisfied by the pres-
ence of a constant magnetic flux f̃12 ≈ −2πµ/k′. The end result is that we have manu-
factured a disc shaped region, inside of which lives an unbroken Chern-Simons theory
with U(p) gauge group (14.1). We view this as a region of quantum Hall fluid.

Quantizing the Vortices

We can start with a few simple observations. Our (2+1)-dimensional theory has a back-
ground charge density µ. As we saw in Part III, from the perspective of the vortices,
this looks like an effective external magnetic field of strength

B = 2πµ .
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With this information, we can estimate the filling fraction of the quantum Hall fluid
of vortices. In an area A = πR2, the number of states in the lowest Landau level is
BA/2π = k′N/p. Since we have filled this disc with N vortices, we expect a filling
fraction

ν =
p

k′
. (14.5)

To understand the detailed properties of this Hall fluid, we must look in more detail
at the microscopic dynamics of the vortices. As we mentioned above, in the absence
of a trap, the most general solution to the vortex equations (14.4) has 2pN collective
coordinates. We think of these as parametrizing the moduli space, a manifold we call
Mp,N . Each point on the moduli space corresponds to a different solution. Again, since
the action is first-order rather than second-order in time derivatives, the moduli space
Mp,N should be thought of as the phase space of vortices rather than the configuration
space.

As with the Abelian theory discussed above, an expression for the first-order dy-
namics of these vortices appears in the literature [138]; but unfortunately we have the
same issue as before: this result is somewhat abstract and, for a large number of closely
packed vortices, not particularly useful.

Instead, we turn to a more versatile construction of the non-Abelian vortex moduli
spaceMp,N first derived in [155] using D-brane techniques. We introduce a complex
N×N matrix Z and p complexN -vectors ϕi, i = 1, . . . , p. Then the vortex moduli space
is isomorphic to the space of solutions to

B

2
[Z,Z†] +

p∑
i=1

ϕiϕ
†
i = k′p1N

with solutions identified if they are related by Z → UZU † and ϕi → Uϕi where U ∈
U(N). This, of course, is precisely the phase space of the matrix model (12.2), with the
constraint above arising as Gauss’s law (12.3). Moreover, the dynamics of the matrix
model coincides with the dynamics expected on the vortex moduli space.

Again, the phase space of the matrix model and the vortex moduli spaceMp,N are
believed to coincide as complex manifolds, with the same Kähler class – but again, the
symplectic form on the phase space inherited from the quotient construction does not
coincide with that associated to vortex dynamics. This means that the matrix model
should be used with some caution in extracting detailed properties of the vortices.
However, our interest still lies in the universality class of the quantum Hall ground
states and here the matrix model is expected to give the right answer. Indeed, we’ve
seen that the ground state of the matrix model lies in the same universality class as the
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Blok-Wen states. In the next chapter, we will confirm that these Blok-Wen states are
indeed the ground state wavefunctions associated to the Chern-Simons theory (14.1).

It is simple to check that a single vortex transforms in the kth symmetric representa-
tion of the SU(p) diag symmetry (14.10). This means that the vortex carries an internal
“spin” degree of freedom; the wavefunction will depend on both the position z and the
spin σ of each vortex. If we placeN vortices in a harmonic trap, then the representation
of the resulting ground state depends on the value of N modulo p. Writing N ≡ M

(mod p), the configuration of vortices transforms in the in the kth symmetrization of the
M th antisymmetric representation. In terms of Young diagrams, this is

(14.6)

k

M

which agrees precisely with (12.9). In particular, when N is divisible by p the ground
state is a singlet under SU(p).

There is one final subtlety. Classically, the matrix model describes the dynamics of
vortices when the U(1) and SU(p) levels are equal: k′ = k. However, as we discussed
back in Chapter 6, quantum effects lead to a shift of the level. In the 3d Chern-Simons
theory, the SU(p) level is renormalized at one-loop to k → k + p. The matrix model
captures the quantum dynamics when these shifted levels coincide. This requires

k′ = k + p

which also satisfies the requirement (14.2). This is the value that we’ve used in (12.2)
(and indeed throughout Chapter 12). In particular, we see that the filling fraction (14.5)
becomes ν = p/(k + p) in agreement with the matrix model result (12.12).

(This also finally explains why in Part III, with p = 1, we bothered to give separate
names to k and k′ = k + 1.)

14.2 Bosonization in the Hall Regime

In Chapter 6, we discussed how certain beautiful dualities of relativistic Chern-Simons-
matter theories manifested themselves in the non-relativistic spectrum of anyons. But
the theories we are now investigating are of course simple deformations of the bosonic
half of those dualities, so one might quite reasonably ask what happens to said duality.
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There are two perspectives on our work here. One is that we are providing evidence
for these bosonization dualities by studying each theory in the quantum Hall regime.
Another is that we are looking for new, dual descriptions of the quantum Hall effect.
Both seem interesting.

Let us begin by writing down the theories we shall be interested in:

Theory A: U(p)k, k+np coupled to Nf fundamental scalars.

Theory B: U(k)−p+Nf coupled to Nf fundamental fermions and, through a BF cou-
pling, to U(1)n.

They differ slightly from the pair in Chapter 6 in two respects:

• We are sticking with the Yang-Mills regularization in this section, so the apparent
renormalization of the non-Abelian levels will happen organically rather than be-
ing imposed at the point of writing down the Lagrangian. (One way of thinking
about this choice of regularization is to note that we are taking a non-relativistic
limit of a matrix model description derived for a relativistic brane theory, which
has a Yang-Mills term.)

• The shift in the Chern-Simons level of the fermionic theory now acts as Nf/2 →
Nf rather than changing Nf/2 → 0; this arises because of a different choice of
which Dirac sea we integrate out in taking the non-relativistic limit. We will see
a related difference of sign in the Lagrangian.

As we have seen, the dynamics of Theory A is particularly rich in a phase where the
gauge symmetry is fully broken so that the theory admits topological vortex solutions.
This only occurs when Nf ≥ p. Here, we will focus on the specific case Nf = p, which
is the minimal number of flavours to support such vortices, and also the case hosting
quantum Hall physics. The beauty of the above conventions is the elegance of the re-
sulting fermionic theory for this choice. The two dual theories are

Theory A: U(p)k, k+np coupled to Nf = p fundamental scalars.

Theory B: U(k)0 coupled to Nf = p fundamental fermions and, through a BF cou-
pling, to U(1)n.

We note in passing that there are few concrete tests of the bosonization dualities with
Nf > 1 and, indeed, it is thought to fail forNf suitably large [127, 200]. Here we provide
a fairly detailed test of the dualities with Nf = p.
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Our interest of course lies in the quantum Hall regime of the two dual theories. We
know that this occurs in the bosonic theory when we subject it to a chemical potential
for its U(1) factor; as we will see in some detail below, this is dual to an almost identical
deformation of the fermionic theory. We will ultimately find that both theories describe
the same quantum Hall states, but the way this arises in the two cases is rather different.

In Theory A, the emergence of quantum Hall physics involves the condensation of the
scalar field and the dynamics of the resulting vortices as discussed throughout the rest
of this dissertation. In contrast, in Theory B there is no scalar field to condense. This
immediately poses the question: what is the dual of the condensed phase, and what
excitations are dual to vortices? We will show that the fermions experience an effective
background magnetic field, and the dual of the condensed phase is a fully filled Landau
level; the vortices are dual to holes in this Landau level.

14.2.1 The Fermionic Chern-Simons Theory

Our task is to reproduce the properties of vortices described up to this point in terms
of fermions. The theory consists of Nf = p non-relativistic fermions ψi. These interact
with a U(k)0 gauge field; we denote the SU(k) part as c and the U(1) ⊂ U(k) part as c̃.
As described in the introduction, this is subsequently coupled to a further U(1)n gauge
field, b. The full action is

S =

ˆ
d3x

[
iψ†iD0ψi −

1

2m
~Dψ†i · ~Dψi − ψ†iGψi

]
+

k

2π
εµνρc̃µ∂νbρ +

n

4π
εµνρbµ∂νbρ −

µk

n
c̃0 . (14.7)

The third term in the action couples the fermions to the background magnetic field,
G = g12 + g̃121k, where g = dc − i[c, c] and g̃ = dc̃ are the non-Abelian and Abelian
field strengths respectively. This term arises from the non-relativistic limit of the Dirac
equation, in the same way as the term discussed in Part III. (Note that it comes with
the opposite sign; this simply depends on whether one integrates out particles or anti-
particles in taking the non-relativistic limit, as can be seen for instance in [77].)

Note that the duality maps the chemical potential µp of Theory A into a chemical po-
tential µk/n of Theory B. This map can be explicitly checked (at least in the Abelian case)
using the techniques of [120, 121]; for non-Abelian gauge groups considered here, the
map between chemical potentials includes a rescaling by the rank of the gauge group.
As an alternative, one can change the term in (14.7) for a chemical potential for b; in this
case it takes the simpler form−µkc̃0/n→ +µb0. The physics which follows is identical.
This allows a clearer extension to n = 0.
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Our task is to reproduce the quantum Hall physics found in the bosonic theory. The
essence of the problem becomes immediately apparent if we look at the constraints
enforced by Gauss’s law. Because the SU(k) Chern-Simons level is vanishing, the dy-
namics of the non-Abelian field c is solely governed by the Yang-Mills regulator whose
coupling is taken to be large; thus, this gauge theory is confined and only SU(k) singlets
are allowed. In contrast, the Abelian Gauss’s law arising from c̃ and b read

ψ†iψi −
µk

n
+

k

2π
db = 0 , (14.8)

k

2π
dc̃+

n

2π
db = 0 .

Now we see the difficulty. There is only one obvious, translationally invariant solution,
given by db = −(k/n)dc̃ and

Phase 1′: dc̃ = g̃12 = −2πµ

k
, 〈ψ†iψi〉 = 0 .

This provides the dual to Phase 1 of the bosonic theory. However, life is more difficult
if we want to write down the dual of Phase 2 in the bosonic theory because we can-
not simply condense the fermions to saturate the background charge. How, then, to
construct Phase 2?

To do this, we work self-consistently. Suppose the state has a constant, background
Abelian field with strength g̃12. The fermionic excitations then form Landau levels.
However, crucially, the presence of the ψ†i g̃12ψi term in the action (14.7) means that the
lowest Landau level costs zero energy.1 This means that there is a second, translation-
ally invariant ground state in which the lowest Landau level is fully filled. The density
of states in a Landau level is |g̃12|/2π and, including both flavour and colour degrees
of freedom, there are kp different fermions which we can excite. Hence the fully filled
lowest Landau level has 〈ψ†iψi〉 = kp|g̃12|/2π. The self-consistent solution to (14.8) is
then

Phase 2′: g̃12 = −2πµ

k′
, 〈ψ†iψi〉 =

µkp

k′

where k′ = k + np. We claim that this phase is dual to Phase 2 of Theory A.2

1This is a familiar fact for relativistic fermions, and the direct coupling to the field strength arises
because (14.7) is the non-relativistic limit of a relativistic theory, as we discussed in Part II. The different
sign of this direct coupling in this chapter is responsible for the different physics relative to the fermionic
Landau levels of Part III.

2One could also consider such self-consistent solutions for bosons. In this language, the condensed
Phase 2 for bosons corresponds to filling the lowest Landau level an infinite number of times, a luxury
not available for fermions. Filling a finite number of times would appear to correspond to a fractionally
filled Landau level for the fermions; it would be interesting to explore this connection further.
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14.2.2 Holes as Vortices

Our next task is to understand the excitations above Phase 2′. These are the dual to the
vortices in Theory A. Since all physical states must be SU(k) singlets, the lowest energy
excitations are baryonic holes in the lowest Landau level. In the absence of a trap, these
cost zero energy and are created by operators

Hi1...ik(~x) = εm1...mkψi1m1(~x) · · ·ψikmk(~x) (14.9)

where the colour indices range from m = 1, . . . , k and the flavour indices from i =

1, . . . , p. Gauss’s law (14.8) ensures that each hole is accompanied by a flux db = −2π

and g̃12 = 2πn/k. We will now show that these holes share the same properties as the
vortices in Theory A.

Theory B has an SU(p) flavour symmetry. In Phase 2′, this should be identified with
the SU(p) diag symmetry which emerges in Theory A:

U(p) gauge × SU(p) flavour −→ SU(p) diag . (14.10)

Since the fermionic operators in (14.9) are anti-commuting, the hole operators Hi1...ik

must transform in the kth symmetric representation of SU(p). This coincides with the
transformation of a single vortex in Theory A.

What happens as we introduce more and more baryonic holes? Clearly, we start to
construct a region that takes us back to Phase 1′. Just as it was useful to understand
Phase 1 of the bosonic theory through the lens of the vortices, here we would like to un-
derstand Phase 1′ through the lens of the holes. The first step is to notice that the holes
feel as if they are moving in a background magnetic field. This is because they carry flux
g̃12 = 2πn/k and, by the same kind of duality argument we used in the bosonic theories,
the (µk/n)c̃0 term in the action mimics a magnetic field for any magnetic excitation. The
strength of this effective magnetic field is B = 2πµ.

Meanwhile, the maximum density of holes is ρh = 〈ψ†iψi〉/k = µp/k′, because each
hole consists of k ψ excitations. This means that the holes can be packed at filling frac-
tion

ν =
ρh

B/2π
=

p

k′
.

This coincides with the filling fraction of vortices that we saw in Theory A, for instance
in equation (14.5).
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The mapping of quantum numbers and density already provides good evidence that
non-Abelian vortices map to holes in the lowest Landau level. The BPS nature of the
vortices is associated to vanishing energy of states in the lowest Landau level.

Our next task is to construct wavefunctions for these states. Since the holes created
by ψia experience a background magnetic field, wavefunctions for a single-hole are just
the familiar lowest Landau level states. In symmetric gauge, the quantum fields can be
expanded in angular momentum modes as

ψim(z, z̄) =
∞∑
q=0

zq e−B|z|
2/4 χqim (14.11)

where χqim is the creation operator for a fermion, labelled by i and m, in the qth angular
momentum state of the lowest Landau level.

We now look at states with p holes. This is trickier as we should take into account
the interaction between holes. We will proceed by neglecting this. Partial justification
comes from the fact that the SU(k) gauge interactions are strongest and we have already
taken these into account in forming the baryonic holes. Nonetheless, one may expect
some residual short range interactions which we do not have control over. The fact that
ultimately the ground state is gapped (and the agreement with the dual description)
suggests that this is valid.

To provide an energetic distinction between different hole excitations, we introduce
a harmonic trap. As in Theory A, it is simplest to take the trap to be proportional to
the angular momentum q of the holes, with the convention that Phase 2′ has vanishing
energy. For each spatial wavefunction, we have pk fermionic states ψim. Each hole is
constructed from k of these states. This means that the first p holes sit in the lowest,
q = 0, state; the next p holes sit in the q = 1 state, and so on.

What representation of SU(p) does the resulting ground state sit in? To see this, note
that we can equally well write the single hole creation operator (14.9) as

Hi1,...,ik = Symi[ψi1,1 . . . ψik, k]

where the symmetrization is over all flavour indices. Now consider the product over
two, spatially coincident holes,

Hi1,...,ikHj1,...,jk = Symi,j[ψi1,1 . . . ψik, kψj1,1 . . . ψjk, k]

where we symmetrize independently over i indices and over j indices. Clearly this state
is antisymmetric under exchange of each pair, such as (i1, j1). The upshot is that this

176



state transforms in the kth symmetrization of the antisymmetric representation or, in
terms of Young diagrams,

k

and so forth. Thus we see that the ground state of N ≡M (mod p) holes transforms in
the same representation (14.6) as the ground state of vortices.

Before writing down the many-hole wavefunction, there is one final thing we should
remember. The holes are composite fermions/bosons; they have charge k and flux
2πn/k. This means that when one hole circles another, it picks up a 2πn phase. To
reflect this, we should include the factor

∏
(za − zb)n in the wavefunction.

We’ve now described all the ingredients which go into constructing the wavefunction
for N holes. The only remaining difficulty is notational. For simplicity, we take N
divisible by p. Each hole, a = 1, . . . , N , has an associated SU(p) spin Ha which lies in
the kth symmetric representation of SU(p)

Ha(~x) = (Ha)i1...ik(~x) |σi1〉 . . . |σik〉

where, as for the vortices, |σ〉 ∈ {1, . . . , p}. The wavefunction is then given by the over-
lap

Ψ(z, σ) =
N∏
a<b

(za − zb)n 〈LLL|H†a1
(z1, z̄1) . . .H†aN (zN , z̄N) |N〉

where 〈LLL| is the ground state for Phase 2′, while |N〉 is the state with theN holes re-
moved in successive lowest angular momentum modes. To construct the explicit wave-
function now involves only Wick contractions of the creation operators χqim which ap-
pear in (14.11). Despite its simplicity, this step is a little fiddly. It is easiest to focus on
a specific colour index, say m = 1. One can check that the resulting terms in the wave-
function are precisely those that appear in Φ(z, σ) defined in (13.11). Repeating this for
each m = 1, . . . , k, we find the Blok-Wen wavefunction (13.12), where the symmetriza-
tion naturally occurs for the reasons described above.

14.2.3 Level Rank Duality

Comparing the construction of the wavefunction for holes and vortices, we see that
there is an interesting interplay the roles played by SU(k) and SU(p) on the two sides
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of the duality. This is the essence of level-rank duality. In this section, we review some
representation theory which highlights this connection.

In building the hole wavefunctions, we find that each state in the lowest Landau level
comes in pk varieties, each associated to a fermionic annihilation operator ψi,m with
i = 1, . . . , p and m = 1, . . . , k. These states naturally carry a representation of u(pk)1.
This then has a decomposition into

u(1)pk × su(k)p × su(p)k ⊂ u(pk)1 . (14.12)

The first factor, u(1)pk simply counts the number of excited fermions. The second and
third factors correspond to our gauge and flavour groups respectively. (The levels arise
because there is a truncation on the dimension of each representation, which follows
simply from the fact that we have a finite number of Grassmann operators to play with.)
Gauge invariance means that we want to restrict to SU(k) singlets. The question we
would like to ask is: which SU(p) representations then emerge?

The general decomposition (14.12) has been well studied, not least because of the
important role it plays in level-rank duality. We label representations under the left-
hand side using triplets (q, R, R̃), where q is the number of excited fermions and R and
R̃ denote the Young diagrams for the representations of su(k)p and su(p)k respectively.
Suppose that the representationR appears on the left-hand side: then it is accompanied
by R̃ = RT , or its orbit under outer automorphisms.

Recall from Chapter 6 that the outer automorphism group of SU(p)k is Zp, generated
by the basic outer automorphism operator σ which maps R̃ 7→ σ(R̃), whose Young
diagram one constructs by adding rows of length k atop the diagram and then reducing
it.

The upshot of this is that the only representations of u(1)pk× su(k)p× su(p)k that can
appear are

(
|R|+Mk (mod kp), R, σM(RT )

)
, withM = 0, 1, . . . , p−1. HereRT denotes

the transpose of the Young diagram R, and |R| is the number of boxes it contains.

For us, the above construction is particularly simple because we are interested in the
singlet representation R. These have |R| = 0, and RT is the singlet representation of
su(p). Under the action of outer automorphisms, the singlet representation is mapped
into representations which containN complete rows of k boxes, with u(1)pk chargeNk.
This means that the operators HN , with N < p, transform in the representation (14.6)
which we saw for vortices in Theory A.

The discussion above was restricted to N < p baryonic holes. Each spatially distinct
state in the lowest Landau level has pk fermionic states. This means that if we remove p
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baryons then we empty one spatial bucket, leaving the state a singlet once more. Then
we must begin again from the next bucket, and the process repeats. So for N baryonic
holes, the representation is again given by (14.6), where N ≡ M (mod p). This again
matches the representation theory of the vortices.

14.2.4 Discussion

As we are seeing, there are a bewildering number of descriptions of quantum Hall
states. Many of these are related by dualities, including level-rank dualities such as
those we have been discussing. Let us try to place our results within this wider context.

The original effective field theory for the Laughlin state is due to Zhang, Hansson
and Kivelson [10]. It consists of an Abelian Chern-Simons theory with non-integer level
set by the filling fraction. The Chern-Simons field is coupled to non-relativistic scalars
which, through the process of flux attachment, become the electrons of the system. An
alternative description was offered by Lopez and Fradkin [13], which again consists of
an Abelian Chern-Simons field at non-integer level, this time coupled to fermions. The
equivalence of these two descriptions for the long distance physics can be viewed as
a simple example of 3d bosonization, albeit restricted to the non-relativistic regime of
quantum mechanics.

The fact that the Chern-Simons level in [10, 13] is fractional means that these theories
miss aspects of the physics related to topological order. This was rectified in the work
of Wen and Zee [176], who presented an effective description of quantum Hall states in
terms of Abelian Chern-Simons theories with integer-valued levels. These are related
to the earlier papers through a kind of particle-vortex duality. In particular, the vortices
now play the role of the electrons in the system. The gauge fields are coupled to scalars
whose excitations describe the quasiholes with anyonic statistics.

This seems to be the first time that a fermionic version of the Wen-Zee class of theories
has been constructed. This is what the bosonization duality achieves. For example, we
have demonstrated that the Laughlin state at filling fraction ν = 1/(k+1) is described by
aU(k)0,−k ∼= [U(1)−k2×SU(k)0]/Zk Chern-Simons theory coupled to just a single species
of fermion. This viewpoint appears to be closely related to the partonic construction of
[21, 22].

The bosonic “Theory A” that we have described should be viewed in the same spirit
as the Wen-Zee theories, with the obvious exception that it is a non-Abelian gauge the-
ory. It is a U(p)k, k′ Chern-Simons theory whose vortices are to be thought of as the
“electrons”, now endowed with internal spin degrees of freedom. The resulting quan-
tum Hall states were previously introduced by Blok and Wen. The bosonization duality
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now tells us that the duals of these non-Abelian states can be constructed by consider-
ing SU(k) singlets, coupled to further Abelian gauge fields. This is reminiscent of the
partonic description of these states previously presented in in [201, 183].
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15 The View from Conformal Field Theory

In the previous chapter, we used vortices to construct a disc-like region of space in
which the low-energy dynamics is described by an unbroken U(p) Chern-Simons the-
ory. The microscopic dynamics of these vortices are described by the matrix model
(12.2) whose ground states lie in the same universality class as the Blok-Wen wavefunc-
tions. In this chapter, we close the circle and describe these states from the perspective
of the boundary.

Our vortex construction has presented us with a Chern-Simons theory on a manifold
with boundary, where the boundary is now the edge of the large vortex. On general
grounds, we expect this boundary to support a chiral U(p)k,k+p WZW model [83, 202].
This should manifest itself in two ways.

First, the excitations of the matrix model should coincide with the excitations of a
(suitably discretized) WZW model. We will return to this in Part V. Secondly, the
ground state wavefunction – which, as we have seen, is of the Blok-Wen type – should
arise as the correlation function in the conformal field theory [16]. This is sometimes
known as the bulk-boundary correspondence.1 This, of course, was how Blok and Wen
originally derived their wavefunctions [183]. Here we review this construction, includ-
ing the effect of the Abelian factor in the gauge group.

Let’s first review some simple properties of the WZW models. The irreducible repre-
sentations of the SU(p) Kac-Moody algebra at level k are labelled by the corresponding
representation of the SU(p) Lie algebra. The latter are well known to be described by
Young tableaux with up to p− 1 rows. The representations of SU(p)k are those Young
tableaux which have no more than k boxes in the first row.

Each irreducible representation of the Kac-Moody algebra gives rise to a primary op-
erator in the corresponding WZW model. We call these operatorsOR where R denotes
the representation. The usual candidates for quantum Hall wavefunctions are the cor-
relation functions of strings of chiral operators

〈OR(z1) . . .OR(zN)〉 (15.1)

1It can be thought of as a baby version of de Sitter holography. A review of the bulk-boundary corre-
spondence applied to quantum Hall physics can be found in the lecture notes [203].
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where OR is the “electron operator” in the CFT or, more generally, the operator associ-
ated to the particle which forms the quantum Hall state. (More precisely, these should
be thought of as conformal blocks of the non-chiral WZW theory.)

There is, however, a problem in identifying (15.1) as a wavefunction: for most choices
of OR, there is no unique answer due to monodromies in the correlation function as za
are varied. Instead, the number of conformal blocks is the number of singlets that arises
when the many copies of R are fused together. Typically this number will increase
exponentially with N . Of course, this growth of conformal blocks is precisely what’s
needed to describe non-Abelian quasiholes in a quantum Hall state, but this should only
occur for correlation functions in which quasihole operators are inserted. For a sensible
quantum Hall interpretation, we want to have a unique ground state, and this means
that (15.1) should yield a unique answer when only electron operators are inserted.

There is, fortunately, a choice of R for which (15.1) has a unique answer. We take N
to be a multiple of p and choose the representation R which is maximally symmetric.
In terms of Young diagrams, it is a single row of k boxes as in the following diagram:

R = (15.2)

k

For SU(2)k, this corresponds to the spin s = k/2 representation; for SU(p)k it is the kth

symmetric representation. This, of course, is precisely the representation carried by the
particles described by our wavefunctions (13.12).

To see that there is indeed a unique singlet when we take (15.2), we need to look at
the fusion rules once more. For SU(2)k, it is straightforward to show that the fusion of
two spin s = k/2 representations leaves only the singlet s = 0. Written in terms of the
dimension d = 2s+ 1 of the representation, this reads

(k + 1) ? (k + 1) = 1 .

For SU(3)k, one finds that the kth symmetric representation, which we denote Symk,
has fusion rules

Symk ? Symk = Symk

while

Symk ? Symk = 1
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which tells us that three copies of Symk can fuse only to the singlet. More generally, for
SU(p)k we define the representations

Yi =

k

i

which consist of k columns (the maximum number allowed by the level) and i rows.
These are precisely the representations that we saw in Section 12.2 when discussing the
ground states of the matrix model. In this notation, our maximally symmetric repre-
sentation is Y1 = Symk, while YN−1 = Symk. The Yi have the nice property that they
fuse only among themselves [204, 205] according to

Yi ? Yj = Yi+j (mod p) .

This is enough to ensure that

p︷ ︸︸ ︷
Symk ? Symk ? . . . ? Symk = 1

which tells us that (15.1) has a unique answer when R is taken to be the maximally
symmetric representation. Now our job is to compute it.

15.1 The Wavefunction as a Correlation Function

The standard tool to compute correlation functions in WZW models is a constraint
linking their spatial dependence and group transformation properties known as the
Knizhnik-Zamolodchikov (KZ) equation [206]. Usually this is employed to compute 4-
point functions but since we expect a unique solution to (15.1), we can hope to use it in
the present case to compute higher-point functions.

The KZ equation reads(
∂

∂za
− 1

k + p

N∑
b 6=a

Tαa ⊗ Tαb
za − zb

)
〈OR(z1) . . .OR(zN)〉 = 0 (15.3)

where Tα is the Hermitian generator for the k-th symmetric representation. These obey
the SU(p) algebra [Tα, T β] = ifαβγT γ , with the normalization fαγδfβγδ = 2p δαβ , where
p appears in its role as the dual Coxeter number of SU(p). (As promised, the structure
of the Hamiltonian (5.29) governing the quantum mechanics of superconformal anyons
is seen to be echoed here.)
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Solving the Knizhnik-Zamolodchikov Equation

We will now show that the KZ equation (15.3) is solved by

〈OR(z1) . . .OR(zN)〉 =
N∏
a<b

(za − zb)−k/p P
[
Φk

(p)(z, σ)
]

(15.4)

with Φ(p) is defined in (13.11).

It will be useful to first rewrite our ansatz in a slightly more concrete form. As dis-
cussed in the run up to (13.15), it’s simple to check that, up to an unimportant normal-
ization,

P
[
Φk

(p)(z, σ)
]

=

[
A

∏
1≤a<b≤N/p

(za − zb)|σ1〉 . . . |σ1〉 ⊗
∏

N/p<a<b≤2N/p

(za − zb)|σ2〉 . . . |σ2〉

⊗ . . . . . .⊗
∏

(p−1)N/p<a<b≤N

(za − zb) |σp〉 . . . |σp〉
]k

. (15.5)

Here we have placed the first N/p particles in the same spin state, the next N/p in a
different spin state and so on. The A symbol means that we then antisymmetrize over
all particles.

The generators Tα in (15.3) can be viewed as acting symmetrically on what were orig-
inally k distinct fundamental factors,

Tα =

k︷ ︸︸ ︷
tα ⊗ 1⊗ · · · ⊗ 1 + symmetric permutations

with tα the generator in the fundamental representation. The normalization in the
KZ equation ensures that we have tαijtαkl = δilδjk − 1

p
δijδkl, where the group indices

i, j, k, l = 1, . . . , p. This means that if the operator Tαa ⊗Tαb acts on a state where particles
a and b have the same spin, this tensor product returns the same spin state multiplied
by a factor (1−1/p). By contrast, if the two particles have different spins, it returns a su-
perposition of the same state with a factor−1/p, and a state with the particles swapped
with no factor.

We’ll start by considering the action of the non-derivative part of the KZ operator on
P [Φk

(p)]. Expanding out (15.5) will result in a slew of terms, each of them containing
k factors. Let’s look at one of these terms – call it X . We’re going to figure out the
coefficient in front ofX after the action of the T ⊗ T term in the KZ operator. There are
two contributions. One arises when T ⊗T acts onX itself. The other arises from T ⊗T
hitting other terms in the expansion of P [Φk

(p)] so that they are mapped intoX . We deal
with these in turn.
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Let’s first look at the action of T ⊗ T on X . Suppose that particle a has the same spin
as particle b in db of the k factors. Then acting with T ⊗ T will, among other things,
return X with a coefficient

− 1

k + p

N∑
b 6=a

kdb(1− 1/p)− k(k − db)/p
za − zb

= − 1

k + p

N∑
b6=a

kdb − k2/p

za − zb
. (15.6)

This is our first result.

Now let’s see how we can get terms proportional toX by the action of T ⊗T on some
other term Y . This can occur only if Y differs from X by swapping the spins of i and j
in just one factor. Suppose that, within Y , particle i has spin a and particle j has spin
b 6= a. Then the T ⊗ T term in the KZ operator will map Y to X with coefficient

+
1

k + p

1

za − zb
∏

(d 6=a|i)

zb − zd
za − zd

∏
(d 6=b|j)

za − zd
zb − zd

where the notation (d 6= a|i) means that we take the product over all particles d 6= a

which carry spin i. Something nice now happens when this expression is summed over
all particles j which carry spin b; the terms combine to give

+
1

k + p

− ∑
(d 6=a|i)

1

za − zd
+
∑
(d|i)

1

za − zd

 . (15.7)

This is our second result.

The total coefficient multiplying the termX after the action of T ⊗T is then given by
the sum of (15.6) and (15.7). It is

∑
b6=a

k/p− db
za − zb

. (15.8)

The key point is that this coefficient is precisely cancelled by the derivative term in
the KZ equation, since (za − zb) appears with the power −k/p + db in the correlation
function (15.4). Note that the actual coefficient of a given term X typically includes, in
addition to (15.8), a symmetry factor to account for the fact that X may appear many
times in the original expansion of P [Φk

(p)]. This is not relevant for our final result; the
same symmetry factor appears every time X arises. This concludes our proof that the
correlation function (15.4) indeed solves the KZ equation (15.3).
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The Full Wavefunction

The solution to the KZ equation ensures that our wavefunction (13.12) can be written
as the product

ψn+k,n(z, σ) =
N∏
a<b

(za − zb)n+k/p 〈OR(z1) . . .OR(zN)〉 e−
∑
a |za|2/4`2B (15.9)

where, for once, we’ve restored the exponential factor common to all lowest Landau
level wavefunctions. The first factor is, of course, a Laughlin wavefunction and can be
expressed as a correlation function for a free compact boson. The fractional exponent
is unusual, but has been seen before in constructing Halperin wavefunctions from a
CFT [16, 207] where the same factorization into “spin” degrees of freedom, captured by
〈OR(z1) . . .OR(zN)〉, and “charge” degrees of freedom captured by the Laughlin wave-
function also occurs.

The full wavefunction can be written as a correlation function in the WZW model
with algebra

U(p)k,k+np =
U(1)(k+np)p × SU(p)k

Zp
. (15.10)

Note that our matrix model describes the Blok-Wen states with n = 1. Happily, in that
case, the WZW model (15.10) indeed arises as the description of the boundary dynamics
of the Chern-Simons theory with gauge group (14.1).

The U(1) part is described by a compact chiral boson φ and the correlation function

〈
N∏
a=1

ei
√

(k+np)/pφ(zi) e−
´

d2z′
√

(k+np)/p φ(z′)/2π`2B〉 =
N∏
a<b

(za − zb)n+k/p e−
∑
a |za|2/4`2B

gives the Laughlin part of the wavefunction (15.9) in the usual manner [16].

Quasiholes as Non-Abelian Anyons

The presence of the SU(p)k factor ensures that our quantum Hall states have non-
Abelian anyons for k > 1. These quasiholes are associated to primary operators in
the WZW conformal field theory and their properties are expected to be determined
by the fusion rules and braiding inherited from the CFT. Although this story is well
known (see, for example, [130]), we pause here to point out a few of the more promi-
nent examples.

An Example: Ising Anyons

Ising anyons are well known to appear in the Moore-Read state which is associated to
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the SU(2)2 WZW model [208]. The primary operators carry spin s = 0, 1/2 and 1. We
denote these representations using their dimension d = 2s + 1. As we saw above, we
identify the electron with the spin 1, or d = 3 representation. The d = 2 primary is
then identified with the quasihole, with the corresponding fusion rules given by

2 ? 2 = 1⊕ 3 , 2 ? 3 = 2 , 3 ? 3 = 1 .

These are the fusion rules for Ising anyons.

Another Example: Fibonacci Anyons

Fibonacci anyons are known to arise as the quasiholes in the Z3 parafermionic Read-
Rezayi state. This is governed by the coset model SU(2)3/U(1). As we have seen above,
these states arise in our construction as the SU(3)2 WZW model. This is related to the
parafermion CFT through level-rank duality and a quotient. The anyon is associated to
the primary operator which transforms in the adjoint representation 8 of SU(3). It is
simple to compute the fusion rules in SU(3)2 to find

8 ? 8 = 1⊕ 8 .

This is indeed the fusion rule for Fibonacci anyons. A nice review of these objects can
be found in [209].

It remains an open problem to identify these anyonic states directly within the matrix
model. For the Laughlin states, we have already seen that the matrix model provides
a construction of quasihole states which are analytically more tractable than the tra-
ditional approach. It seems plausible that the matrix model may also prove useful in
understanding the properties of non-Abelian anyons. This is certainly something to
return to in the future.
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PART V

Edge Theories





16 Introduction

In this part of the dissertation, our goal is to describe in much more detail how our
simple quantum mechanical matrix model is related to the chiral WZW conformal field
theory in d = 1 + 1 dimensions.

Recall that the matrix model consists of a U(N) gauge field α coupled to a complex
adjoint scalar Z and p fundamental scalars ϕi, i = 1, . . . , p. We will choose units such
that B = 2 for simplicity, so the first order action is

S =

ˆ
dt

[
i Tr

(
Z†DtZ

)
+ i

p∑
i=1

ϕ†iDtϕi − (k + p) Trα− ω Tr Z†Z

]
. (16.1)

The covariant derivatives areDtZ = ∂tZ− i[α,Z] andDtϕi = ∂tϕi− iαϕi and Tr denotes
the trace over U(N) gauge indices. Here and in the following k is a positive integer.

In addition to the U(N) gauge symmetry, the quantum mechanics has an SU(p)

global symmetry. We will show that, in the large N limit, this matrix model captures
the physics of the SU(p)k WZW conformal field theory. Specifically, we demonstrate
the following two results:

• The left-moving ŝu(p) affine Lie algebra at level k can be constructed from the
quantum mechanical operators Z and ϕi.

• The partition function of the matrix model can be computed exactly, for allN , as a
function of both temperature and chemical potentials for theSU(p) global symme-
try. The result (18.19) is an expansion in Schur polynomials and Kostka polynomials
(both of which will be defined below). In the large N limit, the partition function
is proportional to the partition function of the chiral SU(p)k WZW model.

This second property requires some elaboration as the matrix model partition function
depends in a rather delicate way on how we take the large N limit. To recover the
chiral WZW partition function – also known as the vacuum character – one should set
N divisible by p and subsequently take the large N limit.

One can also ask what happens if we take the largeN limit whenN ≡M (mod p). In
this case, we show that the quantum mechanics partition function is equal to the char-
acter of the WZW model associated to a primary in a representation which is perhaps
best described as the “k-fold symmetrization of the M th antisymmetric representation
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of SU(p)”. In terms of Young diagrams, this representation is the (by now extremely
familiar) rectangular diagram depicted here:

(16.2)

k

M

Relationship to Chern-Simons Theory

The connection between the matrix model (16.1) and the WZW model is of course not
coincidental; as we have discussed, both are related to Chern-Simons theories. Before
we derive the results above, let us first recall why they are not unexpected.

We have already established that the matrix model (16.1) describes the dynamics of
vortices in a (2+1)-dimensional Chern-Simons theory, coupled to non-relativistic mat-
ter. This Chern-Simons theory has gauge group and levels

U(p)k,k′ =
U(1)k′p × SU(p)k

Zp
(16.3)

where k′ = k + p.

The vortices sit in a harmonic trap which forces them to cluster around the origin,
where they form a droplet of size ∼

√
N . Outside this region, the gauge group U(p) is

broken; inside it is unbroken.

The upshot is that the solitonic vortex provides a way to engineer Chern-Simons the-
ory on a manifold with boundary, where the role of the boundary is played by the edge
of the vortex. It is well known that the gapless excitations of the Chern-Simons theory
are chiral edge modes, described by a WZW model with algebra U(p)k,k′ [83, 202]. The
advantage of the present set-up is that we can identify the microscopic origin of these
edge modes as the excitations of the vortices. These excitations are captured by the
matrix model (16.1).

The vortex perspective also provides a way to understand the delicate manner in
which we should take the large N limit. One of the other facts explored in Part IV was
that the vortices have a unique, SU(p) singlet, ground state only whenN is divisible by
p. As we described above, with this restriction in place, the largeN limit of the partition
function coincides with the partition function of the WZW model.

192



In contrast, when N ≡ M (mod p), the ground state of the vortices is not unique;
rather, it transforms in the representation (16.2). This explains why taking the large
N limit keeping N ≡ M (mod p) results in the character of the Kac-Moody algebra
associated to this representation.

Relationship to the Quantum Hall Effect

Of course, our original interest in the matrix model (16.1) was through its connection
to the quantum Hall effect.

As we have already briefly outlined, there is a deep connection between the bulk
properties of quantum Hall states and the d = 1 + 1 conformal field theory which de-
scribes the dynamics of the edge modes. This connection was first highlighted in [16]
where it was shown that the bulk wavefunction can be reconstructed as a CFT corre-
lation function. This relationship was subsequently used to derive several interesting
non-Abelian quantum Hall states [16, 86, 184].

However, one can also go the other way. Starting from a quantum Hall wavefunction,
one can enumerate its full set of excitations. These can then be matched to the excita-
tions of the boundary conformal field theory. This was first done by Wen for Abelian
quantum Hall states [15, 210] and later extended to a number of paired, non-Abelian
quantum Hall states in [143].

The connection between the matrix model (16.1) and the WZW model highlighted
here falls naturally into this larger quantum Hall narrative. Indeed, we have already
seen that the Blok-Wen states – which are the ground states of our matrix model – can
be reconstructed from correlation functions in the U(p)k,k′ WZW model. The results of
this part can be thought of as a derivation of the converse story: the excitations of the
matrix model coincide with those of the boundary CFT.

The excitations arising from the p = 1 matrix model were previously shown to co-
incide with those of a chiral boson. For p ≥ 2, the story is much richer as the parti-
tion function now depends on both temperature and chemical potentials for the SU(p)

flavour symmetry. Nonetheless, our results show that the excitations above the quan-
tum Hall state do coincide with those of the boundary conformal field theory.

The Plan of Action

This part contains two main results. In Chapter 17 we construct the Kac-Moody current
algebra from the quantum mechanics. In Chapter 18 we compute the partition function
of the matrix model and explain how to take the large N limit.
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The computation of the partition function involves a number of results from the the-
ory of symmetric functions. In the interests of keeping this work self-contained, in
Section 18.1 there is a review of the properties of Schur, Hall-Littlewood and Kostka
polynomials, which are the lead characters in our story. Appendix E contains further
details about Kostka polynomials. Other appendices describe our conventions for affine
Lie algebras and the details of the current algebra computation.
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17 The Current Algebra

Our aim in this chapter is to explain how the N → ∞ limit of the matrix model (16.1)
is related to the d = 1 + 1 WZW conformal field theory. The smoking gun for the
emergence of a WZW model is, of course, a current algebra. In this chapter we will
show how to construct such an algebra from the matrix model degrees of freedom Z

and ϕi.

The key point is that the U(N) gauge symmetry ensures that Z and ϕ are not inde-
pendent. In particular, Gauss’s law of the matrix model (16.1) constrains the degrees of
freedom to obey

[Z,Z†] +

p∑
i=1

ϕiϕ
†
i = (k + p)1N . (17.1)

We’ll see that the current algebra arises, in part, due to these constraints.

Both the classical and quantum matrix models exhibit the Kac-Moody algebra. The
difference between the two appears only to be a shift of the level. We will prove that
the classical matrix model has an ŝu(p) algebra at level k + p. In the quantum theory
we find level k. However, the extra complications in the quantum theory mean that
the proof of the existence of the algebra relies on two conjectured identities which we
present below.

This shift of the level can already be seen in the quantum version of the constraint
equation (17.1). In the quantum theory, the individual matrix and vector entries Zab
and ϕi a become operators, obeying the canonical commutation relations

[Zab, Z
†
cd] = δadδbc and [ϕi a, ϕ

†
j b] = δabδij . (17.2)

We choose a reference state |0〉 obeyingZab|0〉 = ϕi a|0〉 = 0 and construct a Hilbert space
by acting with Z†ab and ϕ†i a. The quantum version of Gauss’s law (17.1) is interpreted as
the requirement that physical states are SU(N) singlets; this can be written in normal
ordered form as

: [Z,Z†] : +

p∑
i=1

ϕiϕ
†
i = (k + p)1N . (17.3)
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Here the : : determines the order in which operators appear – with Z moved to the
right – but not the way that U(N) group indices are contracted; this is determined by
the matrix commutator [ , ]. Meanwhile, the level determines the charge under U(1) ⊂
U(N) that physical states must carry. Taking the trace of Gauss’s law, and using the
commutation relations (17.2), gives

N∑
a=1

p∑
i=1

ϕi aϕ
†
i a = (k + p)N ⇒

N∑
a=1

p∑
i=1

ϕ†i aϕi a = kN . (17.4)

We will see below that a similar normal ordering issue shifts the level of the Kac-Moody
algebra.

17.1 The Currents

It is straightforward to construct generators of the positive graded current algebra in the
matrix model. The problem factorizes into U(1) and SU(p) parts. The U(1) currents are
simply

J̃m = Tr Zm

while the SU(p) adjoint-valued currents are

J̃m
ij = i

(
ϕ†iZ

mϕj −
1

p
δij ϕ

†
kZ

mϕk

)
.

Here i, j, k = 1, . . . , p are flavour indices, while m ≥ 0 denotes the grading.

It is simple to show that the commutators (17.2) imply that these currents give a rep-
resentation of half of the Kac-Moody algebra,

[J̃m
ij , J̃ n

kl] = i
(
δilJ̃m+n

kj − δkjJ̃m+n
il

)
(17.5)

while [J̃m, J̃ n] = [J̃m,J n
ij ] = 0. This holds for any N . This same expression holds in

both the quantum theory and the classical theory where, in the latter, the commutation
relations (17.2) should be replaced by classical Poisson brackets.

While the result (17.5) is heartening, our interest really lies in the full Kac-Moody
algebra and, in particular, the central extension term. Here we will see the difference
between classical and quantum theories.

The central charge of the U(1) current is harder to pin down due to a possible rescal-
ing. For this reason, we focus on the SU(p) currents. Here too there is a normaliza-
tion issue, but one that will turn out to be uniquely fixed. To this end, we rescale the
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positive-graded currents

Jm
ij =

(
(k + p)N

p

)−m/2
J̃m
ij m ≥ 0 .

Note that these still obey the algebra (17.5) since the overall scaling is a power of m.
We will see that only these rescaled currents will give rise to the full Kac-Moody alge-
bra. (One can compare this to the normalization of the Abelian Fourier modes back in
Section 9.4.) We then define the negative graded currents as

Jm
ij = J |m| †ji m < 0

and similarly for J̃ . These too obey the graded Lie algebra (17.5) if we restrict tom,n <
0.

Of course, the central term only arises when we consider mixed commutators of the
form [Jm

ij ,J −nkl ] withm,n > 0. These are trickier to compute because now the constraint
(17.1) comes into play. However, things simplify somewhat in the N → ∞ limit. We
will show that the currents obey the Kac-Moody algebra

[Jm
ij ,J n

kl] ∼ i(δilJm+n
kj − δkjJm+n

il ) + km δm+n,0

(
δjkδil −

1

p
δijδkl

)
. (17.6)

Here ∼ means up to 1/N corrections. Moreover, the operators in this equation should
act on states that are constructed from the vacuum |0〉 by acting with fewer than O(N)

creation operators.

The rest of this chapter is devoted to the derivation of (17.6). (We also show this
structure arises perturbatively, in a sense made clear in the appendix, in the Poisson
brackets of the classical theory. In that setting we obtain an algebra at the unshifted
level k + p.)

17.2 Deriving the Kac-Moody Algebra

The novelty in deriving (17.6) arises from the commutator [Z,Z†] terms between cur-
rents travelling in opposite directions. We take m,n > 0 and look at

[J̃m
ij , J̃ −nkl ] = [ϕ†iZ

mϕj, ϕ
†
kZ
†nϕl]

= δjkϕ
†
iZ

mZ†nϕl − δilϕ†kZ†nZmϕj + ϕ†iaϕ
†
kb[Z

m
ac, Z

†n
bd ]ϕjcϕld

= δjkϕ
†
i [Z

m, Z†n]ϕl + δjkϕ
†
iZ
†nZmϕl

−δilϕ†kZ†nZmϕj + ϕ†iaϕ
†
kb[Z

m
ac, Z

†n
bd ]ϕjcϕld (17.7)
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where all U(N) group indices are contracted in the obvious manner, apart from in the
final term, where we’ve written them explicitly.

Our first goal is to simplify the two commutators in this expression. We deal with
them in turn. For the first, we write

[Zm, Z†n] =
m−1∑
r=0

n−1∑
s=0

ZrZ†s[Z,Z†]Z†n−1−sZm−1−r . (17.8)

We’re going to replace the factor [Z,Z†] appearing here with some combination of ϕiϕ†i
using Gauss’s law (17.3). However, Gauss’s law is not an identity between operators;
instead it holds only when evaluated on physical states |phys〉. If we don’t include the
normal ordering in (17.3), then the constraint is written as(

[Z,Z†] + ϕiϕ
†
i

)
|phys〉 = (k + p+N)|phys〉 . (17.9)

To this end, we consider the operator ϕ†i [Zm, Z†n]ϕl acting on a physical state. Then,
after some manipulation, we can use (17.9) to write

ϕ†i [Z
m, Z†n]ϕl|phys〉 =

m−1∑
r=0

n−1∑
s=0

ϕ†iZ
rZ†s[Z,Z†]Z†n−1−sZm−1−rϕl|phys〉

=
m−1∑
r=0

n−1∑
s=0

ϕ†iZ
rZ†s(k + p− ϕi′ϕ†i′)Z†n−1−sZm−1−rϕl|phys〉

= −
m−1∑
r=0

n−1∑
s=0

ϕ†iZ
rZ†sϕi′ϕ

†
i′Z
†n−1−sZm−1−rϕl|phys〉 (17.10)

+(k + p)n
m−1∑
r=0

ϕ†iZ
rZ†n−1Zm−1−rϕl|phys〉 .

This term above proportional to (k + p)n is key: it will become the central term in the
algebra. We’ll come back to this shortly. Meanwhile, the first term combines nicely with
the second commutator in (17.7). Using the expansion (17.8), it can be written as

ϕ†iaϕ
†
kb[Z

m
ac, Z

†n
bd ]ϕjcϕld = ϕ†iaϕ

†
kb

(
m−1∑
r=0

n−1∑
s=0

(ZrZ†s)ad(Z
†n−1−sZm−1−r)bc

)
ϕjcϕld

=
m−1∑
r=0

n−1∑
s=0

(ϕ†iZ
rZ†sϕl)(ϕ

†
kZ
†n−1−sZm−1−rϕj) + δkl

(
· · ·
)

where the term proportional to δkl arises from commuting ϕ†kb past ϕld. It can be ne-
glected simply because we are ultimately interested in the kl-traceless part of this ex-
pression.
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The four-ϕ term above is very close to that appearing in (17.10); it differs only in its
U(p) indices and overall sign. Adding the two together gives

Θ =
m−1∑
r=0

n−1∑
s=0

[
(ϕ†iZ

rZ†sϕl)(ϕ
†
kZ
†n−1−sZm−1−rϕj)

−δjk (ϕ†iZ
rZ†sϕi′)(ϕ

†
i′Z
†n−1−sZm−1−rϕl)

]
.

We can manipulate the index structure to exploit this similarity: we separate the two
double sums into their trace and traceless parts with respect to δil, δjk, δii′ and δi′l. Doing
this we find that the products of traces cancel between the two pairs, as do half of the
trace-traceless terms, leaving only traceless-traceless terms which we neglect on the
grounds that they are subleading in the large N limit. We’re left with

Θ ∼ 1

p

m−1∑
r=0

n−1∑
s=0

[
δil(ϕ

†
i′Z

rZ†sϕi′)(ϕ
†
kZ
†n−1−sZm−1−rϕj)

− δjk(ϕ†i′ZrZ†sϕi′)(ϕ
†
iZ
†n−1−sZm−1−rϕl)

]
.

The first term above and the third term in (17.7) are both proportional to δil; similarly,
the second term above and the second term in (17.7) are both proportional to δjk. In
each case, the two terms combine together in the large N limit. This follows from the
following identity:

Identity 1: For m ≥ n,

ϕ†iZ
†nZmϕl −

1

p

m−1∑
r=0

n−1∑
s=0

(ϕ†i′Z
rZ†sϕi′)(ϕ

†
iZ
†n−1−sZm−1−rϕl) ∼

(
(k + p)N

p

)n
ϕ†iZ

m−nϕl

where∼ again means up to 1/N corrections. Further, we are neglecting a trace, propor-
tional to δil on both sides. A similar expression holds when n > m.

The proof of this identity in the classical theory is already somewhat involved, so we
relegate it to Appendix D. The additional commutators (17.2) make it much more chal-
lenging in the quantum case, and so no proof is included, though it has been checked
for small n and m. In what follows, we will make the natural assumption that this
identity generalizes directly to the quantum case.

It remains only to discuss the second term in (17.10); this is our central term. We again
decompose it into the trace and traceless components with respect to the i, l indices. At
large N , the traceless component is subleading; we have

(k + p)nδjk

m−1∑
r=0

ϕ†iZ
rZ†n−1Zr−1−rϕl ∼

(k + p)n

p
δjkδil

m−1∑
r=0

ϕ†i′Z
rZ†n−1Zm−1−rϕi′ .
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To proceed, we need a second large N identity. This time the identity takes a different
form in the classical and quantum theories. Evaluated on classical matrices, the identity
reads

Identity 2 (Classical Version): For m ≥ n,

m−1∑
r=0

ϕ†i′Z
rZ†n−1Zm−1−rϕi′ ∼ p

(
(k + p)N

p

)n
δmn .

We present a proof of this identity in Appendix D.

Meanwhile, in the quantum theory there is an extra term which arises due to the shift
k + p→ k seen in (17.4). The corresponding large N identity now reads as follows:

Identity 2 (Quantum Version): For m ≥ n,

m−1∑
r=0

ϕ†i′Z
rZ†n−1Zm−1−rϕi′ ∼ p

(
(k + p)N

p

)n(
1− p

k + p

)
δmn .

We will not offer a general proof of this result in the quantum theory. Nonetheless, as
before the existence of the new factor can be checked straightforwardly in a number of
simple examples.

Putting all of this together, we arrive at our final result. In the large N limit, up to
terms proportional to δij and δkl, we have

[ϕ†iZ
mϕj, ϕ

†
kZ
†nϕl] ∼

(
(k + p)N

p

)n [
δjkϕ

†
iZ

m−nϕl − δilϕ†kZm−nϕj + kn δmn δjkδil

]
.

Written in terms of currents, this is equivalent to the Kac-Moody algebra (17.6).
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18 The Partition Function

In this chapter, we recapitulate from [5] the computation of the partition function of
the matrix model. In the limit of large particle number, N → ∞, we will show that
this partition function is proportional to a character of the chiral Âp−1 current algebra
at level k (17.6).

There is a well-established machinery for solving matrix models in theN →∞ limit;
the usual route is through the path integral which, at largeN , can typically be evaluated
by finding an appropriate saddle point for the Wilson lines arising from the gauge field
α. Here we will do better and compute the partition function exactly for all values of
N . The resulting formula for the partition function, given in equation (18.19), can then
be analysed directly in the large N limit. However, the nature of this limit is subtle; in
particular, it depends on the value of N modulo p, and does not seem to have a direct
interpretation in terms of a saddle point of the original matrix integral.1

In fact, our formula for the partition function of the matrix model can be related
[211, 212, 213] to the partition function of a certain integrable lattice model in two di-
mensions which gives rise to conformal field theory with affine Lie algebra symmetry
in the continuum limit. This limit has been studied in detail in [211], and the results
therein lead to a closed formula for the largeN limit of the matrix model partition func-
tion as an affine character.

Our partition function will depend on both the (inverse) temperature β and the chem-
ical potentials µi for the U(1) Cartan elements of the SU(p) global symmetry. Including
these chemical potentials, the Hamiltonian for the matrix model (16.1) is

H = ω TrZ†Z −
p∑
i=1

µiϕ
†
iϕi . (18.1)

1If one tries to take the standard largeN approach, the hurdle is to find a correct way to implement the
level constraint (17.4). One can show that integrating out the fundamental matter ϕi results in a Wilson
line for the SU(N) gauge field α which sits in the kN th symmetric representation [179]. Because this
representation scales with N , it shifts the saddle point in a complicated manner, which seems to make
the process much harder. It would be interesting to investigate how to evaluate the partition function
using large N techniques.

201



The Hamiltonian is trivial: it counts the number of Z† and ϕ†i excitations, weighting
them by ω and µi respectively. Evaluated on any physical state, the Hamiltonian gives

H|phys〉 =

(
ω∆−

p∑
i=1

µiJi

)
|phys〉

where the quantum numbers ∆ and Ji are integers labelling each state.

Our interest is in the partition function

Z(q, xi) = TrH e−βH = TrH q∆

p∏
i=1

xJii

where Tr is the trace over all states in the physical Hilbert space H, and we define q =

e−βω and xi = eβµi .

All the complexity in the problem lies not in the Hamiltonian, but instead in the non-
trivial structure of the physical Hilbert space originating in the constraints imposed by
the U(N) gauge symmetry. Our strategy is to first enumerate all gauge non-invariant
states and only later project onto the gauge invariant subset. With this in mind, we
introduce further fugacities for each Cartan element of the gauge symmetry, U(1)N ⊂
U(N). We call these fugacities ωa with a = 1, . . . , N .

If we ignore the restrictions of gauge invariance, then the Hilbert space is simple to
define: it consists of any number of Z†ab or ϕ†a i operators acting on |0〉. Let’s deal with
each species of operator in turn. The Z operators lie in the adjoint representation of
U(N) and are singlets under SU(p). They carry quantum numbers of ω+1

a ω−1
b (for some

a 6= b) and ∆ = 1. Taking the trace over states of the form Z† r|0〉 for all possible r gives
the contribution to the partition function of the form

ZZ =
N∏

a,b=1

1

1− qωa/ωb
. (18.2)

Meanwhile, the ϕ operators transform in the fundamental of both U(N) and SU(p).
This means that they come with a factor ω+1

a x+1
i for some a and i. They have ∆ = 0.

Taking the trace over states of the form ϕ† r|0〉 gives the contribution to the partition
function

Zϕ =
N∏
a=1

p∏
i=1

1

1− ωaxi
. (18.3)

We now impose the requirements of gauge invariance. The physical states making up
H must be SU(N) singlets. Further, the level constraint (17.4) requires that they carry
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charge k under the U(1) centre of U(N) but are singlets under SU(N) ⊂ U(N). This
can be imposed by contour integration, giving us the expression

Z(q, xi) =
1

N !

(
N∏
a=1

1

2πi

˛
dωa
ωk+1
a

)∏
b 6=c

(
1− ωb

ωc

)
ZZ Zϕ (18.4)

where the contour of integration is the unit circle in the complex plane for each inte-
gration variable. Here the product factor arises from the Haar measure on the group
manifold of U(N). The factor of ωk+1 in the denominator ensures that the only contri-
butions we pick up in the contour integral are those with correct overall charge.

Our strategy for evaluating the partition function will be to expand the integrand of
(18.4) in a suitable basis of polynomials. The integration variables wa and the fugacities
xi are invariant under permutations corresponding to the Weyl groups of U(N) and
SU(p) respectively. This means that the partition function can be expanded in terms of
symmetric polynomials. Before proceeding we pause to review some elementary facts
about these functions.

18.1 A Digression on Symmetric Functions

In this section we review some standard facts about symmetric functions. For further
details and proofs of the statements reviewed below see [214]. As symmetric functions
are labelled by partitions we will begin by reviewing basic features of the latter.

A partition λ is a non-increasing sequence of non-negative integers,

λ1 ≥ λ2 ≥ λ3 . . . ≥ λ`(λ) > λ`(λ)+1 = 0 .

The number `(λ) of non-zero elements in the sequence is called the length of the parti-
tion. The sum of all the elements, |λ| = ∑i≥1 λi, is called the weight of the partition. We
will write P for the set of all partitions.

The multiplicity mj(λ) of the positive integer j is the number of times that j appears
in the partition λ; i.e.

mj(λ) = |{i ≥ 1 : λi = j}| .

We can specify a partition either by listing its non-zero parts, λ = (λ1, λ2, . . . , λ`(λ)) or
by specifying multiplicities. For example the partition (7, 5, 5, 3, 3) can alternatively be
written as (71, 52, 32) where the exponent of each entry indicates its multiplicity. We
will use this notation extensively below.
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A partition λ can be represented graphically by a Young diagram Y(λ). This is an array
of boxes where the ith row contains λi boxes. Each row is aligned so that the left-most
boxes sit under each other. For example, the Young diagram for the partition (71, 52, 32)

looks like this:

Concretely the set Y(λ) contains boxes x = (r, s) labelled by their coordinate r and s

specifying the row and column respectively of the diagram relative to the top left hand
corner of the diagram. The Young diagram Y(λ) therefore contains boxes x = (r, s)

with r = 1, . . . , `(λ) and, for each value of r, s = 1, . . . , λr.

The transpose λT of the partition λ is obtained by interchanging the rows and columns
of the Young diagram Y(λ). Explicitly the non-zero parts of λT are

λTi = |{j ≥ 1 : λj ≥ i}|

for i = 1, . . . , `(λT ) = λ1. For example, (71, 52, 32)T = (53, 32, 12). Finally, we also define
the function n : P → Z≥0 by

n[λ] =
∑
i≥1

(i− 1)λi .

We now turn to symmetric functions. LetX = {x1, . . . , xn} denote a set of n variables.
A symmetric function f(X) = f(x1, x2, . . . , xn) is any polynomial of the xi invariant
under the action of the permutation group Sn acting on the variables X , so

f
(
xσ(1), xσ(2), . . . , xσ(n)

)
= f(x1, x2, . . . , xn) ∀σ ∈ Sn .

We will frequently use the shorthand notation σ{g(X)} = g(xσ(1), xσ(2), . . . , xσ(n)) for
the action of a permutation σ ∈ Sn on an arbitrary function g(X).

The set of all symmetric polynomials forms a vector space. Though it is infinite-
dimensional, it is naturally written as a direct sum of vector subspaces of finite dimen-
sion corresponding to symmetric polynomials of fixed degree. The basis vectors are
labelled by partitions µ ∈ P with at most n parts: `(µ) ≤ n. In particular, one possible
choice of basis vectors are monomial symmetric functions, given by

mµ(X) =
∑

σ∈Sn/Sµn

σ {xµ1

1 x
µ2

2 . . . xµnn } . (18.5)
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Here Sµn denotes the stabilizer of the monomial Xµ = xµ1

1 x
µ2

2 . . . xµnn in Sn and thus
the sum is taken over distinct permutations σ{Xµ} = xµ1

σ(1)x
µ2

σ(2) . . . x
µn
σ(n) of the mono-

mial Xµ. The degree of the monomial symmetric function mµ(X) corresponds to the
weight |µ| of the permutation µ. One can easily define an inner product on the space
of symmetric functions with respect to which the monomial symmetric functions form
an orthonormal basis:

〈mλ,mµ〉 ≡
1

n!

(
n∏
i=1

1

2πi

˛
C

dxi
xi

)
mλ (X) mµ

(
X−1

)
= δλ,µ .

Here the contour of integration is the unit circle C in the complex xi-plane for i =

1, 2, . . . , n and X−1 denotes the n variables {x−1
1 , x−1

2 , . . . , x−1
n }.

Another possible set of basis vectors for the space of symmetric functions of n vari-
ables is provided by the Schur functions. For each partition µ ∈ P , we define the Schur
function

sµ(X) =
∑
σ∈Sn

σ

xµ1

1 x
µ2

2 . . . xµnn
∏
i>j

1(
1− xi

xj

)
 .

Although not immediately apparent from this definition, the Schur function sµ(X),
like the monomial symmetric function mµ(X), is a polynomial in the variables X of
degree |µ|. The significance of the Schur functions for our problem lies in their close re-
lation to the representation theory of the Lie algebra u(n). The finite-dimensional, irre-
ducible representations of u(n) are inherited from those of its complexification gl(n,C).
Each such representation is labelled by a partition λ of length `(λ) ≤ n. Equivalently,
the representation is labelled by the Young diagram Y(λ). As discussed in more detail
below, the Schur function sλ(X), evaluated on the n variables X = {x1, . . . , xn} is es-
sentially the character of the corresponding representation Rλ. This correspondence is
a consequence of the famous Schur-Weyl duality between the representation theory of
u(n) and that of the permutation group.

Like the monomial symmetric functions discussed above, the Schur functions pro-
vide a basis for the vector space of symmetric functions. Indeed one can construct a
“matrix” K giving the explicit linear transformation between these two bases by writ-
ing

sλ (X) =
∑
µ

Kλ,µmµ (X) . (18.6)

Here Kλ,µ is zero unless |λ| = |µ|. The non-vanishing entries of Kλ,µ are all positive
integers, known as Kostka numbers. Thinking of sλ as the character of Rλ, each mono-
mial in the Schur polynomial corresponds to a weight of the representation and the
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corresponding coefficient is simply the multiplicity of this weight. More precisely, each
monomial symmetric functionmµ appearing on the RHS of (18.6) corresponds to a fam-
ily of gl(n,C) weights related by the action of the Weyl group. The Kostka numberKλ,µ

is precisely the common multiplicity of these weights in Rλ.

The Kostka numbers also have a second interpretation in the representation theory of
u(n) which will be important below. Let nj denote the jth symmetric power of the fun-
damental representation. ThenKλ,µ is the multiplicity of the irreducible representation
Rλ in the decomposition of the tensor product

T (µ) = nµ1 ⊗ nµ2 ⊗ . . .⊗ nµ`(µ) . (18.7)

The Schur functions form a complete basis for the symmetric functions in n variables.
They are orthonormal with respect to a modified inner product 〈 , 〉S defined by

〈sλ, sµ〉S ≡
1

n!

(
n∏
i=1

1

2πi

˛
C

dxi
xi

) ∏
i 6=j

(
1− xi

xj

)
sλ (X) sµ

(
X−1

)
= δλ,µ . (18.8)

In the group theoretic context described above, this relation is just the familiar orthog-
onality of U(n) characters with respect to integration over the group manifold with the
Haar measure. The completeness of the Schur functions as a basis is expressed by the
Cauchy identity. For any two sets of variablesX = {x1, . . . , xn} and Y = {y1, . . . , ym}we
have

n∏
i=1

m∏
j=1

1

1− xiyj
=

∑
λ

sλ(X)sλ(Y ) . (18.9)

The sum on the right-hand side can be taken over all partitions λ as the product of Schur
functions in the summand will vanish identically for `(λ) > min{n,m}.

As stated above, our goal will be to evaluate the matrix model partition function by
expanding the integrand of (18.4) in terms of symmetric functions. Because of the pres-
ence in this integrand of the Haar measure factor, together with the adjoint partition
function ZZ , it will be convenient to introduce yet another inner product 〈 , 〉P on the
space of symmetric functions depending on an arbitrary complex parameter q. For any
two symmetric functions f(X) and g(X) we define

〈f, g〉P ≡ 1

n!

(
n∏
i=1

1

2πi

˛
C

dxi
xi

) ∏
i 6=j

(
1− xi

xj

)
∏

i 6=j

(
1− q xi

xj

) f (X) g
(
X−1

)
. (18.10)

Note that our new inner product reduces to 〈 , 〉S in the special case q = 0. Can we find a
new set of basis functions, generalizing the Schur functions, which are orthogonal with
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respect to new measure with q 6= 0? In fact the Hall-Littlewood polynomials have exactly
this property. Moreover, many of the properties of the Schur polynomials discussed
above are generalized in a nice way. For each partition λ ∈ P we define

Pλ(X; q) =
1

Nλ
∑
σ∈Sn

σ

xλ1
1 x

λ2
2 . . . xλnn

∏
i>j

(
1− q xi

xj

)
(

1− xi
xj

)
 . (18.11)

The normalization factor is given by

Nλ =
ϕn−`(λ)

∏
j≥1 ϕmj(λ)

(1− q)n

where

ϕm =
m∏
j=1

(
1− qj

)
andmj(λ) denotes the multiplicity of the positive integer j in the partition λ as defined
above. As before, Pλ(X; q), is a homogeneous polynomial in the variables X of degree
|λ|. It is useful to rewrite the definition (18.11) as

Pλ(X; q) =
∑

σ∈Sn/Sλn

σ

xλ1
1 x

λ2
2 . . . xλnn

∏
λi<λj

(
1− q xi

xj

)
(

1− xi
xj

)
 (18.12)

where the sum is over distinct permutations of the monomial Xλ = xλ1
1 x

λ2
2 . . . xλnn .

As already mentioned, we have the orthogonality property

〈Pλ, Pµ〉P =
1

Nλ
δλ,µ . (18.13)

An even more striking fact is that, with the given normalization, each term in Pλ(X; q)

is itself a polynomial in the parameter q with integer coefficients. One might instead
choose to normalize these functions to achieve orthonormality with respect to the inner
product 〈 , 〉P ; however then the basis functions would no longer be polynomial in q.

The completeness of the resulting basis is expressed in a generalization of the Cauchy
identity. As before we consider two sets of variables, called X = {x1, . . . , xn} and Y =

{y1, . . . , ym}. We now have

n∏
i=1

m∏
j=1

1− qxiyj
1− xiyj

=
∑
λ

bλ(q)Pλ(X; q)Pλ(Y ; q) (18.14)
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where bλ(q) =
∏

j≥1 ϕmj(λ)(q). From the definition (18.11), the Hall-Littlewood poly-
nomial Pλ(X; q) reduces to the Schur function sλ(X) for q = 0. On setting q = 1 in
the definition, we also find Pλ(X, 1) = mλ(X) where mµ is the monomial symmetric
function defined in (18.5) above. Again we can find a “matrix” describing the change
of basis from Schur to Hall-Littlewood. Relation (18.6) is now generalized to

sλ (X) =
∑
µ

Kλ,µ(q)Pµ (X; q) . (18.15)

For each choice of λ, µ ∈ P , the matrix elements Kλ,µ(q) are polynomials in the param-
eter q. They are known as Kostka polynomials (see e.g. Chapter III.6 of [214]) and they
will play a central role in our evaluation of the partition function. An explicit combi-
natoric formula for the Kostka polynomials due to Kirillov and Reshetikhin is given in
Appendix E. Here we will list some of their main features2:

• They are polynomials in q of degree n[µ] − n[λ] with leading coefficient equal to
unity.

• All non-zero coefficients are positive integers.

• Kλ,µ(q) = 0 unless |λ| = |µ|.

• They reduce to the Kostka numbers for q = 1: Kλ,µ(1) = Kλ,µ for all partitions λ
and µ.

• Kλ,µ(0) = δµ,ν .

These properties ensure that the Kostka polynomials can be regarded as a graded gen-
eralization of the Kostka numbers. As the Kostka numbers Kλ,µ count the number of
occurrences of the representation Rλ in the tensor product T (µ) defined in (18.7), the
corresponding Kostka polynomialKλ,µ(q) receives a contribution q∆ for some ∆ ∈ Z≥0,
for each such occurrence. Hence as we vary the partition λ, the Kostka polynomial as-
signs an integer-valued “energy” ∆(λ, µ) to each irreducible component of the tensor
product T (µ). It is useful to think of the representation space of T (µ) as the Hilbert
space of a spin chain with `(µ) sites with a u(n) spin in the representation nµi at the
ith site. Remarkably, the energy ∆ precisely corresponds to one of the Hamiltonians of
the Heisenberg spin chain with these spins. In fact ∆ is essentially the lattice momen-
tum for a spin chain with periodic boundary conditions. The Bethe ansatz solution of
this system provides an efficient combinatoric description of the corresponding Kostka
polynomials and leads directly to the explicit formulae given in Appendix E.

2The last two listed properties follow easily from the definition (18.15) and the third follows from the
invertibility of the change of basis proven in [214] (see Eqn (2.6) in Chapter III of this reference). The first
two properties are highly non-trivial and were first proven in [215].
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To evaluate the partition function we will need one more class of symmetric functions
known as3 Modified Hall-Littlewood polynomials [216, 217] Q′µ(X; q). For our purposes,
this polynomial is defined by the formula

Q′µ(X; q) =
∑
λ

Kλ,µ(q)sλ (X) . (18.16)

Importantly, this definition yields a non-zero answer for partitions µ of any length.4

Thus, unlike the other symmetric functions defined above, Q′µ(X; q) does not vanish
identically5 for partitions with `(µ) > n.

As discussed above, each Schur function sλ is the character of a u(n) representation
Rλ. Meanwhile, the Kostka polynomial Kλ,µ(q) is non-zero only for irreducible repre-
sentations Rλ occurring in the tensor product T (µ) defined in (18.7). Further, for each
λ, Kλ,µ(q) receives a contribution q∆ for each occurrence of the irrep Rλ in T (µ) where
∆ is the appropriate spin chain Hamiltonian. Putting these facts together we learn that
Q′(X; q) has a natural interpretation as the partition function of a spin chain defined on
the tensor product space T (µ).

Using the properties of the Schur functions and Kostka polynomials, we see that
Q′µ(X; q) is a homogeneous polynomial in the variables X = {x1, . . . , xn} of degree |µ|.
Moreover the coefficients are themselves polynomials in q with positive integer coeffi-
cients. The polynomial Q′µ has the following key property: it is adjoint to the ordinary
Hall-Littlewood polynomials Pµ with respect to the inner product 〈 , 〉S for Schur func-
tions [217]. For any two sets of variables X = {x1, . . . , xn} and Y = {y1, . . . , ym} we
have

n∏
i=1

m∏
j=1

1

1− xiyj
=

∑
λ

sλ(X)sλ(Y )

=
∑
λ,ρ

Kλ,ρ(q)Pρ(Y ; q) sλ(X)

=
∑
ρ

Q′ρ(X; q)Pρ(Y ; q) (18.17)

using (18.15) and (18.16). The final sum on the RHS can be taken over all partitions ρ
but the summand will vanish unless `(ρ) ≤ m.

3These are also sometimes referred to as Milne polynomials in the mathematical literature.
4This follows because, although the RHS of (18.16) vanishes identically for partitions λ of length

greater than n, there is no such constraint for the partition µ appearing in the Kostka polynomialKλ,µ(t).
Indeed we evaluate several examples of this type in the following using the combinatorial algorithm of
Appendix E.

5Note that in some references the definition of the modified Hall-Littlewood polynomial in n variables
is nevertheless restricted to the case `(µ) ≤ n.
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18.2 Back to the Partition Function

We are now ready to compute the partition function Z defined in (18.4). The partition
function is symmetric in the u(p) fugacities X = {x1, x2, . . . , xp} so we can expand it
in terms of Schur functions. As each Schur function corresponds to the character of
a finite-dimensional irreducible representation of U(p), the resulting expansion deter-
mines the multiplets of the SU(p) ⊂ U(p) global symmetry present in the matrix model
spectrum. The integrand of the partition function is also a symmetric function of the
U(N) fugacities Ω = {ω1 . . . , ωN} and we may thus expand it in terms of a suitable set
of basis functions.

To proceed to the answer by the shortest path, we will use the Cauchy identity in the
form (18.17) to expand the factor of the integrand corresponding to the fundamental-
valued fields as

Zϕ =
N∏
a=1

p∏
i=1

1

1− ωaxi
=
∑
λ

Q′λ(X; q)Pλ(Ω; q) .

In contrast, the corresponding factor ZZ for the adjoint-valued field will be left unex-
panded as part of the integration measure. For the next step, we use the definition of
the Hall polynomials in its second form (18.12) to write

1∏N
a=1 ω

k
a

= P(kN )

(
Ω−1; q

)
where, as above, (kN) denotes the partition with N non-zero parts each equal to k. The
resulting integral over the variables Ω can then be written, using (18.13), as an inner
product

Z =
∑
λ

Q′λ(X; q) × 1

N !

(
N∏
a=1

1

2πi

˛
C

dωa
ωa

) ∏
a6=b

(
1− ωa

ωb

)
∏

a,b

(
1− q ωa

ωb

) Pλ (Ω; q) P(kN )

(
Ω−1; q

)
=

∑
λ

Q′λ(X; q) × 1

(1− q)N 〈Pλ, P(kN )〉P (18.18)

=
1

ϕN(q)
Q′(kN )(X; q) .

Thus our final result for the partition function of the matrix model is

Z =
N∏
j=1

1

(1− qj)
∑
λ

Kλ,(kN )(q) sλ(X) (18.19)

where the sum on the right-hand side runs over all partitions λ ∈ P . However, as
explained above the summand vanishes unless we have |λ| = |(kN)| = kN and `(λ) ≤ p.
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Ground State Energy

Our result for the partition function (18.19) holds for all positive integral values of the
level, k, the rank p of the global symmetry and the particle numberN . In the remainder
of this section we will extract the ground state energy E0(k, p,N), which simply corre-
sponds to the leading power of q appearing in the expansion of the partition function
for |q| � 1, and compare it with our expectations based on the analysis of the ground
state from Part IV.

We begin with the Abelian case p = 1. In this case there is only one partition λ = (kN)

which satisfies the conditions |λ| = kN , and `(λ) ≤ 1. In this special case, the formulae
for the Kostka polynomial given in Appendix E simplify, giving6

K(kN),(kN )(q) = qn[(k
N )]

where, as above, n[µ] =
∑

i≥1(i− 1)µi. Thus the partition function for p = 1 reads

Zp=1 = xkNq
k
2
N(N−1)

N∏
j=1

1

(1− qj) (18.20)

where x = x1 acts as a fugacity for the U(1) charge which is fixed by the D-term con-
straint. The ground state energy,

E0(k, 1, N) =
k

2
N(N − 1) ,

agrees with the identification of the ground state given in Part IV. The remaining factor
in (18.20) is a plethystic exponential accounting for excitations corresponding to all pos-
sible products of the N independent single-trace operators Tr(Z l) with l = 1, 2, . . . , N .
This partition function for the p = 1 matrix model was previously computed in [163].

The partition function for general p ≥ 1 is somewhat richer; it also depends on the
fugacities xi for the SU(p) Cartan elements. To understand the form of this partition
function, we start by recalling that the Kostka polynomialKλ,(kN )(q) specializes for q = 1

to the Kostka number Kλ,(kN ). This in turn coincides with the multiplicity of the irre-
ducible representation of u(p) specified by the partition λ in the tensor product

TN = pk ⊗ pk ⊗ . . .⊗ pk

ofN copies of the kth symmetric power of the fundamental representation p. The corre-
sponding Kostka polynomial is a gradation of the Kostka number where each power of
q appears with a non-negative integer coefficient. As the Kostka polynomial Kλ,(kN )(q)

6Here we see explicitly that Kλ,µ(t) can be non-zero when `(µ) > `(λ) as mentioned above.
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appears in (18.19) multiplied by the corresponding Schur function sλ(X), we deduce
that the full spectrum of the matrix model transforms in the reducible u(p) represen-
tation TN . More precisely, the overall prefactor of

∏N
j=1(1 − qj)−1 means we actually

have an infinite number of copies of this representation. The additional information
contained in the partition function is the energy of each irreducible component in the
tensor product.

To go further we will need to use the combinatoric description of the Kostka polyno-
mials given in Appendix E. We will start with the easiest case k = 1 where an explicit
formula is available. Here we have

Kλ,(1N )(q) = qn[λ
T ]
∏N

j=1 (1− qj)
H(q)

where H(q) is the hook-length polynomial given by

H(q) =
∏

x∈Y(λ)

(
1− qh(x)

)
.

Here the product is over the boxes x = (r, s) of the Young diagram Y(λ) corresponding
to the partition λ and h(x) = λr + λTs − r − s + 1 > 0 is the length of the hook passing
through box x.

As we described above, λT denotes the transpose of the partition λ, obtained by in-
terchanging the rows and columns of the Young diagram Y(λ). Explicitly the non-zero
parts of λT are

λTi = |{j ≥ 1 : λj ≥ i}|

for i = 1, . . . , `(λT ) = λ1. To find the ground state energy of the model we must there-
fore minimize the quantity

n
[
λT
]

=
∑
i≥1

(i− 1)λTi

as we vary λ over partitions with |λ| = N and `(λ) ≤ p. These restrictions correspond
to demanding that |λT | = |λ| = N and that λTi ≤ p for all i ≥ 1. WritingN = Lp+M for
non-negative integers L andM < p, the minimum occurs for the partition λT0 = (pL,M)

corresponding to

λ0 =
(
(L+ 1)M , Lp−M

)
.
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Thus the leading term in the partition sum for |q| � 1 is

Z ' qE0(N) s((L+1)M ,Lp−M ) (x1, . . . , xp)

with vacuum energy

E0(1, p,N) = n
[
(pL,M)

]
=

1

2
L(L− 1)p+ LM

for N = Lp + M . The Schur polynomial corresponds to the representation of U(p) '
U(1)× SU(p) with U(1) charge N , which coincides with the M th antisymmetric power
of the fundamental. Again, this yields complete agreement with the properties of the
ground state discussed in Part IV.

Although the formulae for the Kostka polynomials are more complicated, the gener-
alization of this analysis to k > 1 is straightforward. As we discuss in Appendix E, the
minimum energy is obtained for the partition

λ0 =
(
(kL+ k)M , (kL)p−M

)
and takes the value

E0(k, p,N) =
k

2
L(L− 1)p+ kLM

for N = Lp + M . The resulting ground state has U(1) charge kN and transforms in
an irreducible representation of SU(p) corresponding to a k-fold symmetrization of the
M th antisymmetric power of the fundamental representation. This is the representation
(16.2) that we mentioned in the introduction; it is in agreement with the results of Part
IV.

18.3 The Continuum Limit

In this section we will investigate the N →∞ limit of the partition function (18.19). As
we have just seen, the ground state energy and its quantum numbers under the global
U(p) symmetry depend sensitively on the value of N modulo p. This means that in
order to get a sensible limit, we must hold this value fixed as N →∞. Setting

N = Lp+M

for non-negative integers M < p and L, we therefore take the limit L→∞with M and
p held fixed.
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It is also convenient to factorize the partition function as

Z = qE0wkN/pẐ

where

E0 = E0(k, p,N) =
k

2
L(L− 1)p+ kLM

is the ground state energy and w = x1x2 . . . xp is the fugacity for the u(1) centre of u(p).
The reduced partition function

Ẑ =
N∏
j=1

1

(1− qj) q
−E0

∑
λ

Kλ,(kN )(q)w
−kN/psλ(X) (18.21)

thus encodes the energies and u(1) charges of the states in the spectrum relative to those
of the ground state. As we will see, it is Ẑ rather than the original partition function
which has a non-singularN →∞ limit. The main result of this section is (18.30) which
says (roughly) that

lim
N→∞

Ẑ =
∞∏
j=1

1

(1− qj) χRk,M (q;X) . (18.22)

Here the “roughly” refers to a slight notational subtlety regarding the difference be-
tween the U(p) fugacities labelled byX and the SU(p) fugacities; this will be explained
below. The key part of the result is that χRk,M denotes the character of the Âp affine Lie
algebra at level k associated to the representation Rk,M of SU(p). When M = 0, so N
is divisible by p, this is the vacuum character which coincides with the partition func-
tion of the WZW model. Meanwhile, for M 6= 0, Rk,M is the k-fold symmetrization of
the M th antisymmetric representation, namely (16.2). The remainder of this section is
devoted to the derivation of (18.22).

As discussed above, each Schur function sλ(X) appearing in the sum on the RHS of
(18.21) is the character of the irreducible representation of u(p) corresponding to the
partition λ. In the following it will be convenient to decompose the global symmetry as
u(p) ' u(1) ⊕ su(p). Recall that the finite-dimensional, irreducible representations of
su(p) are in one-to-one correspondence with Young diagrams having at most p−1 rows
or, equivalently with partitions λ̃ having `(λ̃) < p. In contrast, representations of u(p)

correspond to diagrams with at most p rows or to partitions λ with `(λ) ≤ p. Given
an irreducible representation of u(p), we obtain a unique irreducible representation
of su(p) by removing all columns of height p from the corresponding Young diagram.
Similarly, for any partition λwith `(λ) ≤ pwe may find a unique partition λ̃with `(λ̃) <

p such that λi = λ̃i + Q with i = 1, . . . , p for some non-negative integer Q. In the

214



following we will abbreviate this relation as

λ = λ̃+ (Qp) . (18.23)

The Kostka polynomial Kλ,(kN )(q) is only non-zero if |λ| = |(kN)| = kLp + kM . Given
any partition λ̃with `(λ̃) < p and |λ̃| ≤ kN , we may find a unique partition λ = λ̃+(Qp)

obeying this constraint if and only if |λ̃| − kM is divisible by p, in which case we set

Q = Q(λ̃) = kL− 1

p

(
|λ̃| − kM

)
. (18.24)

As the Schur function sλ(X) is a homogeneous polynomial of degree |λ| in the vari-
ables X = {x1, x2, . . . , xp}, we may write

sλ(X) = w|λ|/psλ̃(X̃)

where

X̃ = X/w1/p = {x1w
−1/p, . . . , xpw

−1/p} . (18.25)

In particular note that, by construction, x̃1x̃2 . . . x̃p = 1, which implies sλ(X̃) = sλ̃(X̃).
Using the above results, we can trade the sum over all partitions λ appearing in (18.21)
for a sum over λ̃ of length `(λ̃) < p. This gives

Ẑ =
N∏
j=1

1

(1− qj) q
−E0

∑
λ̃, `(λ̃)<p

Kλ̃+(Q(λ̃)p),(kN )(q) sλ̃(X̃) (18.26)

where Q(λ̃) is a non-negative integer given by (18.24) when |λ̃| ≡ kM (mod p) and
|λ̃| ≤ kN , and is set to zero otherwise.

It will also be useful to make the relation between Schur functions and the charac-
ters of the simple Lie algebra su(p) and its complexification Ap−1 = sl(p,C) more ex-
plicit (see Appendix F for the Lie algebra conventions we are using here). The finite-
dimensional irreducible representations of Ap−1 are of course labelled by dominant in-
tegral weights Λ ∈ L+

W . Each such Λ has an expansion in terms of the fundamental
weights {Λ(1), . . . ,Λ(p−1)}. We write

Λ =

p−1∑
j=1

ψjΛ(j)

with coefficients ψj ∈ Z≥0 known as Dynkin labels. Let RΛ denote the corresponding
Ap−1 representation with representation space VΛ. The character of RΛ is a function
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of variables Z = {z1, . . . , zp−1} which encodes the weights of this representation or,
equivalently, the eigenvalues of the matricesRΛ(hi) representing the Cartan subalgebra
generators hi with i = 1, . . . , p− 1 in the Chevalley basis. Explicitly we define

χΛ(Z) = TrVΛ

[
p−1∏
j=1

z
RΛ(hj)
j

]
.

As mentioned above irreducible representations of su(p) can also be labelled by parti-
tions λ̃ with `(λ̃) < p. For each dominant integral weight Λ ∈ L+

W , the corresponding
partition λ̃(Λ) has parts λ̃i =

∑p−1
j=i ψj . The character of RΛ can then be related to the

Schur function of the partition λ̃(Λ):

χΛ(Z) = sλ̃(Λ)(X̃)

where the variables X̃ = {x̃1, . . . , x̃p}, obeying x̃1x̃2 . . . x̃p = 1, are related to Z =

{z1, . . . , zp−1} by

z1 = x̃1

z2 = x̃1x̃2

...

zp−1 = x̃1x̃2 . . . x̃p−1 . (18.27)

Irreducible representations RΛ of Ap−1 are further classified by the congruence class of
the corresponding highest weight Λ, given in terms of the Dynkin labels by the value
P(Λ) of ψ1 + 2ψ2 + . . . (p − 1)ψp−1 modulo p. Equivalently P(Λ) is equal modulo p to
the weight |λ̃| of the partition λ̃ corresponding to Λ or to the number of boxes in the
corresponding Young diagram. We denote by L+

W (P) the subset of the positive weight
lattice L+

W corresponding to positive weights in Pth congruence class.

The above results mean that we can rewrite the sum over partitions λ̃ appearing in
the reduced partition function (18.26) as a sum over dominant integral weights Λ of
Ap−1 in the congruence class P(Λ) = kM mod p. Our final rewriting of the reduced
partition function is

Ẑ =
N∏
j=1

1

(1− qj)
∑

Λ∈L+
W (kM)

KΛ(q)χΛ(Z) . (18.28)

Here

KΛ(q) = q−E0(k,p,N)Kλ(Λ),(kN )(q)
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and

λ(Λ) = λ̃(Λ) + (Q(Λ)p)

where

Q(Λ) = max

{
0, kL− 1

p

(
|λ̃(Λ)| − kM

)}
.

We will now switch gears and consider something seemingly quite unrelated to the
above discussion; the representation theory of the affine Lie algebra Âp−1. (Again, see
Appendix F for conventions.) We work in a Chevalley basis with generators {hi, ei, f i}
where the index i now runs from zero to p − 1. A complete basis also includes the
derivation or grading operator L0 associated with the imaginary root.

The weights of any representation of Âp−1 lie in the affine weight lattice, whose basis
vectors are the fundamental weights Λ̂(j) with j = 0, 1, . . . , p − 1. The integrable repre-
sentations of Âp−1 are labelled by a highest weight

Λ̂ =
∑

ψ̂jΛ̂(j)

whose p Dynkin labels {ψ̂j} are non-negative integers. Each integrable representation
has a definite level which is a non-negative integer given by the sum of the Dynkin
indices,

k = ψ̂0 + ψ̂1 + . . .+ ψ̂p−1 .

The resulting representationsRΛ̂ are the affine analogues of the finite-dimensional ir-
reducible representationsRΛ of the simple Lie algebraAp−1 discussed above. We denote
the corresponding representation spaceVΛ̂. The characterχΛ̂(q;Z) of the representation
RΛ̂ is a function of the variables q and Z = {z1, . . . , zp−1}which encodes the weights of
the representation or, equivalently, the eigenvalues of the representatives of the Cartan
generators hi, for i = 1, . . . p − 1 of the global subalgebra Ap−1 ⊂ Âp−1 together with
those of the derivation L0 acting in VΛ̂. Explicitly we define

χΛ̂(q;Z) = TrVΛ̂

[
q−RΛ̂(L0)

p−1∏
j=1

z
RΛ̂(hj)

j

]
.

Any representation of Âp−1 must also provide a representation of the global subalgebra
Ap−1. Thus the affine character must have an expansion in terms of Ap−1 characters of
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the form

χΛ̂(q;Z) =
∑

Λ∈L+
W

bΛ
Λ̂
(q)χΛ(Z) .

The coefficients bΛ
Λ̂
(q) are polynomials in q with non-negative integral coefficients. They

are known as the branching functions for the embedding of Ap−1 in Âp−1. Another way
to characterize them is to pick out only those vectors in the representation space VΛ̂

which are highest weight with respect to the global generators. Thus we define, for
each dominant integral weight Λ ofAp−1 with Λ =

∑p−1
i=1 ψ

iΛ(i), the following subspace:

VΛ
Λ̂

= {|λ̂〉 ∈ VΛ̂ : hi|ψ̂〉 = ψi|ψ̂〉, ei|ψ̂〉 = 0 i = 1, . . . , p− 1} .

Then we have

bΛ
Λ̂
(q) = TrVΛ

Λ̂

[
q−RΛ̂(L0)

]
.

Remarkably a relation between the large N = Lp + M limit (with fixed M and p) of
the object KΛ(q) defined in (18.28) above and a particular affine branching function of
Âp−1 is obtained in [211], proving an earlier conjecture of [218]. In particular, we must
consider the integrable representation RΛ̂ with Λ̂ = kΛ(M). The primary states in the
representation (i.e. those with the lowest L0 eigenvalue) transform in the Ap−1 repre-
sentation with Λ0 = kΛ(M); this corresponds to the k-fold symmetrization of the M th

antisymmetric power of the fundamental representation. This is indeed the expected
representation (16.2) for the ground state of the model. This representation has con-
gruence class P(Λ0) ≡ kM (mod p) and the remaining dominant integral weights Λ for
which bΛ

Λ̂
(q) is non-zero necessarily lie in the same congruence class. Corollary 4.8 of

[211] states that, for all Λ ∈ L+
W (kM), we have

lim
N→∞

KΛ(q) = bΛ
kΛ(M)

(q) . (18.29)

This result has its origin [212] in the relation between the Kostka polynomials and the
partition function of an integrable Ap−1 spin chain to which we alluded above. Un-
der favourable conditions, the relevant spin chain is believed to go over to the SU(p)

Wess-Zumino-Witten model in the continuum limit [219, 220]. Kostka polynomials also
appear [213] in the partition function of the so-called RSOS models, which yield coset
conformal field theories with affine Lie algebra symmetry in the continuum limit.

Incorporating the above limit in the reduced partition function as given in (18.28) we
reach our final result

lim
N→∞

Ẑ =
∞∏
j=1

1

(1− qj) χkΛ(M)
(q;Z) (18.30)
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where the variables Z = {z1, . . . , zp−1} are related to the su(p) fugacities of the matrix
model by equations (18.25) and (18.27). The prefactor encoding the excitation spectrum
of the u(1) sector of the model precisely corresponds to the partition function of a chiral
boson.
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PART VI

Quantum Supergravity





19 Introduction and Summary

The purpose of this part of the dissertation is to study four-dimensional N = 1 su-
pergravity compactified on a spatial circle. We will see that this background is quan-
tum mechanically unstable: the circle dynamically expands and the ground state is
Minkowski space with all three spatial dimensions non-compact. To see this, we need
to explore the non-perturbative physics of gravity.

Quantum mechanical instabilities of Kaluza-Klein compactifications have a long his-
tory. In the absence of supersymmetry, a Casimir force is generated perturbatively with
a competition between bosonic fields, which cause the circle to contract, and fermionic
fields which cause the circle to expand [41, 42]. More scary instabilities lurk at the
non-perturbative level, with space teetering on the brink of tunnelling into a bubble of
nothing [221].

The existence of supersymmetry removes both instabilities described above.1 But
another remains. As we show in some detail, a Casimir force is now generated by grav-
itational instantons. This results in a superpotential which schematically takes the form

W ∼ exp

(
− πR

2

4GN

− iσ
)

(19.1)

where R is the radius of the spatial circle and σ is dual to the Kaluza-Klein photon,
dσ ∼ ?F . The existence of the superpotential (19.1) was first proposed in [222] on the
basis of fermion zero mode counting. It is also closely related to the superpotentials
arising from D6-brane instantons wrapping G2-holonomy manifolds described in [223].
Our goal is to develop the full quantum supergravity computation which results in
(19.1).

One motivation for performing the instanton calculation in some detail is thatN = 1

supergravity offers a testing ground in which some of the old ideas of Euclidean quan-
tum gravity can be explored, but where many of the accompanying difficulties do not
arise. It thus provides an opportunity for precision Euclidean quantum gravity. Indeed,
as we will see, it is possible to compute the numerical prefactor in (19.1). In doing these
calculations, we will meet a number of issues that seem surprising and well worth high-
lighting.

1As such, unlike in the quantum Hall parts of this dissertation, the dynamical role of supersymmetry
is non-trivial. Nonetheless, the careful reader will observe that the general points we will make (about
extra scales, instanton selection rules, and so on) do not seem to depend on this supersymmetry.
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The Scale of Gravitational Instantons

The natural energy scale associated to any quantum gravity effect is usually thought
to lie far in the ultra-violet: it might be the Planck scale, the string scale or something
still more exotic. However, in situations where gravitational instantons play a role, this
is not the only scale of importance. The partition function for quantum gravity comes
equipped with a hidden infra-red scale, Λgrav. This arises through dimensional trans-
mutation from the logarithmic running of the coefficientα(µ) of the Gauss-Bonnet term,

Λgrav = µ exp

(
−α(µ)

2α1

)
.

Hereα1 is an appropriate beta-function for the Gauss-Bonnet term. Of course, gravity is
not a renormalizable theory and so, in some sense, includes an infinite number of extra
scales associated to the higher-derivative operators. These are all ultra-violet scales,
naturally of order of the Planck mass or other UV cut-off. In contrast, the scale Λgrav is
distinguished by the fact that, like its Yang-Mills counterpart ΛQCD, it can be naturally
exponentially suppressed relative to the Planck scale.

The Gauss-Bonnet term is topological and the scale Λgrav plays no role in perturbative
physics around flat space. However, it becomes important when summing over grav-
itational instantons with non-trivial topology. Moreover, in supersymmetric theories,
Λgrav is naturally complex, with the phase supplied by the gravitational theta angle. The
complexified Λgrav lives in a chiral multiplet and, indeed, we will see that it provides
(part of) the pre-factor for the superpotential (19.1). A discussion of this new scale can
be found in Section 21.1 and 21.5.

Summing over Topologies

One conceptual issue that arises in our computation is the question of what topologies
we should include in the path integral. We are interested in physics onM∼= R1,2×S1. In
Euclidean space, this manifold has boundary ∂M∼= S2×S1. However, the gravitational
instantons that we meet have boundaries with different topologies. They are the multi-
Taub-NUT spaces, whose boundary is isomorphic to the Lens space Lk in which the S1

is non-trivially fibered over the S2 with winding k. In Section 22.1, it is argued that we
should, nonetheless, include these in the path integral. The superpotential (19.1) arises
from the simplest Taub-NUT space in which the S1 winds once around S2.

There are further gravitational instantons whose boundary has the topology of S1

fibered over RP2 ∼= S2/Z2. The Atiyah-Hitchin manifold falls in this class and has the
right number of zero modes to contribute to the superpotential. However, the principles
put forward in Section 22.1 will lead us to conclude that this class of solutions should
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be discarded.

One-Loop Determinants

The final issue to highlight is of a more technical nature. In any instanton calculation,
one should compute the one-loop determinants around the background of the classi-
cal solution. In supersymmetric theories, there is a pairing between the bosonic and
fermionic non-zero modes and, correspondingly, a naive expectation that these de-
terminants should cancel. However, for non-compact spaces such as Taub-NUT, the
spectrum of operators is continuous and although the range of bosonic and fermionic
eigenvalues coincides, their densities need not. As we shall see, the resulting determi-
nants in Taub-NUT indeed do not cancel but, nonetheless, are computable. They are
closely related to the boundary terms that appear in index theory. These determinants
are computed in Section 22.2.

The one-loop determinants contribute to the pre-factor of (19.1). Ignoring numerical
factors, the superpotential is more precisely given by

W ∼ Λ41/24
grav R−7/24 exp

(
− πR

2

4GN

− iσ
)

.

The presence of a power ofR in the pre-factor appears to be in tension with the expected
holomorphic nature of the superpotential. We will, however, find that there is a one-
loop correction to the complex structure relating R and σ and that the superpotential
above is indeed holomorphic as expected. This discussion can be found in Section 21.4.

The Plan

We begin in Chapter 20 by describing a few simple classical aspects ofN = 1 supergrav-
ity and its Kaluza-Klein compactification to three dimensions. Chapter 21 is devoted to
perturbative aspects. It begins with a summary of the most important results, includ-
ing the one-loop divergences that give rise to the new scale Λgrav, as well as the finite
renormalization of the kinetic terms. The remainder of Chapter 21 describes these cal-
culations in more detail. Chapter 22 covers the instanton computation. Again it starts
with a summary, focussing in particular on the gravitational instantons of interest and
a discussion of the kind of asymptotic boundaries that we should admit. The majority
of Chapter 22 is concerned with the computation of the one-loop determinants around
the background of Taub-NUT.

Reading Chapter 20, Section 21.1 and Section 22.1, together with the ultimate punch-
line, should give the reader the conceptual aspects of the work whilst avoiding the meat
of the calculations.
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20 Classical Aspects

We work with N = 1 supergravity in d = 3 + 1 dimensions, focussing on the minimal
theory containing only a graviton and gravitino. The bulk four-dimensional action is
given by

S =
M2

pl

2

ˆ
d4x
√−g

(
R(4) + ψ̄µγ

µνρDνψρ
)

. (20.1)

We use the notation of the (reduced) Planck massM2
pl = 1/8πGN instead of the Newton

constant GN . Here R(4) is the 4d Ricci scalar, with the subscript to distinguish it from
its 3d counterpart that we will introduce shortly. There is also the standard Gibbons-
Hawking boundary term which we have not written explicitly.

The action is to be thought of as a functional of the Majorana gravitino ψµ and the
vierbein eaµ where µ, ν = 0, 1, 2, 3 are spacetime indices and a, b = 0, 1, 2, 3 are tangent
space indices. Here we follow the standard notation of suppressing the spinor indices
on the gravitino, whose covariant derivative is given by

Dνψρ = ∂νψρ +
1

4
ω̂abνγ

abψρ .

In this formalism, the spin connection ω̂abµ that appears in the covariant derivative dif-
fers from the purely geometric spin connection by the addition of a gravitino torsion
term: ω̂abµ = ωabµ(e) +Habµ with

Habµ = −1

4
eνae

ρ
b

(
ψ̄µγρψν − ψ̄νγµψρ − ψ̄ργνψµ

)
.

The action is, of course, invariant under diffeomorphisms and local supersymmetry
transformations. The latter act as δeaµ = 1

2
ε̄γaψµ and δψµ = Dµε.

The classical theory also enjoys a U(1)R symmetry which acts by axial rotations on ψ.
As we describe in more detail in Chapters 21 and 22, this U(1)R symmetry is anoma-
lous in the quantum theory. (Although, as we will see, it mixes with a U(1)J bosonic
symmetry that will be described shortly and a combination of the two survives.)

20.1 Reduction on a Circle

More specifically, our interest lies in the dynamics of N = 1 supergravity when com-
pactified on a manifoldM∼= R1,2×S1. We denote the physical radius of the circle asR.

227



We choose the spin structure such that the fermions are periodic around the compact
direction and supersymmetry is preserved.

At distances larger than the compactification scale R, the dynamics is effectively
three-dimensional. The metric degrees of freedom are parametrized by the familiar
Kaluza-Klein ansatz,

ds2
(4) =

L2

R2
ds2

(3) +
R2

L2

(
dz + Aidx

i
)2 (20.2)

where z ∈ [0, 2πL) is the periodic coordinate. Here R, Ai and the 3d metric g(3)
ij are

dynamical degrees of freedom, while L is a fixed, fiducial scale. It is natural to pick
coordinates such that R(x) → L asymptotically and we will eventually do so but, for
now, we leave L arbitrary.

Evaluated on this background, the Einstein-Hilbert action becomes

Seff =
M2

pl

2

ˆ
d4x
√−gR(4)

=
M3

2

ˆ
d3x

√
−g(3)

[
R(3) − 2

(
∂R

R

)2

− 1

4

R4

L4
FijF

ij

]

with M3 = 2πLM2
pl the 3d Planck scale and Fij = ∂iAj − ∂jAi the graviphoton field

strength.

In three dimensions, it is often useful to dualize the gauge field in favour of a periodic
scalar σ. This is particularly true if we are interested in instanton physics [50]. The dual
photon can be viewed as Lagrange multiplier which imposes the Bianchi identity,

Lσ =
σ

4πL
εijkDiFjk . (20.3)

With the magnetic charge quantized in integral units, σ has periodicity 2π. Integrating
out the field strength, we can write the low-energy effective action in dual form,

Seff =

ˆ
d3x

√
−g(3)

[
M3

2
R(3) −M3

(
∂R

R

)2

− 1

M3

L2

R4

(
∂σ

2π

)2
]

. (20.4)

This action enjoys a new U(1)J symmetry which acts by shifting the dual photon: σ →
σ+c. All other fields are left invariant under this symmetry. The symmetry is preserved
in perturbation theory but, as we will see in Chapter 22, is broken by instanton effects.

Our goal is to determine the quantum corrections to the effective action (20.4). We
describe perturbative corrections in Chapter 21 and instanton corrections in Chapter
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22.

Fermions

This bosonic effective action has a fermionic counterpart which is dictated by super-
symmetry. Let us work for now with a Majorana basis of 4d gamma matrices,

γi =

 0 γi3d

γi3d 0

 i = 0, 1, 2 , γz =

 1 0

0 −1

 (20.5)

with γi3d = (iσ2, σ3, σ1). Upon dimensional reduction, the 4d Majorana gravitino ψµ

decomposes into a 3d spin-3/2 Dirac fermion λi and 3d spin-1/2 Dirac fermion χ. To
perform this reduction, it’s simplest to work with the frame index, so that ψa = eµaψµ.
Further, to make life easy for ourselves, we restrict to the flat background R1,2×S1 with
metric (20.2) and make the spinor ansatz

ψi =

 Reλi + (γ3d)i Imχ

Imλi + (γ3d)i Reχ

 and ψz =

 Reχ

Imχ

 . (20.6)

The gravitino kinetic term in (20.1) then becomes

S fermions =

ˆ
d4x
√−g

M2
pl

2
ψ̄µγ

µνρ∂νψρ

=

ˆ
d3x

√
−g(3)

M3L

R

(
1

2
λ̄iε

ijk∂iλk − χ̄/∂χ
)

. (20.7)

After dividing out by local supersymmetry transformations, the spin-3/2 fermion λi

carries no propagating degrees of freedom. (This is the supersymmetric analogue of
the statement that the 3d metric carries no propagating degrees of freedom.) In con-
trast, the spin-1/2 fermion χ carries two propagating degrees of freedom; these are the
supersymmetric partners of R and σ. We will postpone a more detailed discussion of
how supersymmetry relates R, σ and χ to Sections 21.4 and 22.4.

20.2 Topological Terms

In addition to the Einstein-Hilbert action, there are two topological terms that will play
a role in our story. Both are higher derivative terms, with dimensionless coefficients.
They are the Gauss-Bonnet term

Sα =
α

32π2

ˆ
d4x
√
g ?R?

µνρσRµνρσ (20.8)
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which integrates to the Euler characteristic of the manifold, and the Pontryagin class

Sθ =
θ

16π2

ˆ
d4x
√−g ?RµνρσRµνρσ . (20.9)

If we care only about perturbative physics on R3×S1, then we can neglect these terms.
However, when we start to sum over manifolds of different topology, they become im-
portant.

Usually, when working in an effective field theory, we keep all relevant and marginal
terms in the action, neglecting only the irrelevant operators on the grounds that they
are suppressed by some high mass scale. In the present case, there are two further four-
derivative terms which come with dimensionless coefficients: R2 and RµνRµν . How-
ever, both can be absorbed into the Einstein-Hilbert term through a redefinition of the
metric [224]. For this reason, we need only consider Sα and Sθ above.

In supergravity, the Gauss-Bonnet (20.8) and Pontryagin (20.9) terms can be written
as an F-term [225, 226] (using the so-called “chiral projection operator”). This, in turn,
means that the two coupling constants α and θ combine into the complex coupling

τgrav = α + 2iθ (20.10)

which naturally lives in a chiral multiplet. We will see later that τgrav appears in the
instanton generated superpotential.

230



21 Perturbative Aspects

In this chapter we describe the results of quantum fluctuations of the graviton and grav-
itino around the background R1,2×S1. There are two kinds of effects: those from diver-
gences that arise already in four dimensions; and finite corrections to the low-energy
effective action which are suppressed by the dimensionless combination 1/M2

plR
2.

21.1 Summary

We open this chapter by summarizing the main results. The remainder of the chapter
contains details of the computations.

Finite Corrections

Finite corrections to the effective action occur when the theory is compactified on R1,2×
S1 and arise due to loops wrapping the spatial circle. The results depend on R, the
radius of the circle and so are non-local from the four-dimensional perspective. For this
reason, they are not sensitive to the ultra-violet details of the theory and can therefore
be reliably calculated.

These finite corrections were first computed in the Kaluza-Klein context in [41, 42],
where they manifested themselves as a Casimir force, causing the Kaluza-Klein circle
to either shrink or expand. (The analogous calculation was performed earlier in the
thermal context [227].) The effective 3d potential is given by1

Veff = −NB −NF

720π

L3

R6
. (21.1)

HereNB is the number of massless bosonic degrees of freedom; these make the Kaluza-
Klein circle contract. NF the number of massless fermionic degrees of freedom; these
make the circle expand. Of course, in supersymmetric theories NB = NF and Kaluza-
Klein compactifications are perturbatively stable. The presence of fermions with pe-
riodic boundary conditions means that the bubble-of-nothing instability is absent in
this theory [221], but other gravitational instantons, discussed in Chapter 22, will con-
tribute.

1The standard Casimir potential in four dimensions scales as 1/R3. The 1/R6 scaling seen here arises
after a Weyl transformation to the 3d Einstein frame.
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Although the perturbative potential vanishes, there are still finite one-loop effects
of interest. These renormalize the kinetic terms in the effective action (20.4). Much of
this chapter is devoted to computing these effects; we will show that the low-energy
effective action becomes

Leff =
1

2

(
M3 +

5

16π

L

R2

)
R(3) −

(
M3 −

1

6π

L

R2

)(
∂R

R

)2

−
(
M3 +

11

24π

L

R2

)−1
L2

R4

(
∂σ

2π

)2

. (21.2)

This is the one-loop effective action. One should certainly expect that there will be fur-
ther corrections, both from higher-loops and from non-perturbative effects. Nonethe-
less, this will suffice for our purposes. The most important fact that we will need is the
observation that the renormalization of the R and σ kinetic terms come with different
coefficients. This will prove important later when we reconcile this with supersymme-
try: it results in a one-loop shift in the complex structure and meansR and σ sit together
in a chiral multiplet with lowest component

S = 2π2M2
plR

2 +
7

48
log(M2

plR
2) + iσ .

The log term above arises from the one-loop correction. This will be described in Section
21.4.

Anomalies and One-Loop Divergences

It is well known that the S-matrix is one-loop finite in pure Einstein gravity [224] and
two-loop finite in pure N = 1 supergravity [228, 229]. Nonetheless, these theories do
suffer from divergences at one-loop which, while not appearing in the S-matrix, can
affect the physics. As we review, these divergences are related to anomalies.

For our purposes, the most important one-loop divergence is associated to the Gauss-
Bonnet term (20.8). This, of course, is a total derivative in four-dimensions but will be
important when we come to discuss gravitational instanton physics. The coefficient α
is dimensionless and runs logarithmically at one-loop [224] as

α(µ) = α0 − α1 log

(
M2

UV
µ2

)
(21.3)

where α0 is the coupling at the UV cut-off which we denote as MUV. In general, for a
theory with Ns free massless spin-s fields, the beta-function is given by [230, 231, 232,
233]

α1 =
1

48 · 15

(
848N2 − 233N3/2 − 52N1 + 7N1/2 + 4N0

)
.
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The computation leading to this result is closely related to the trace anomaly for mass-
less fields in fixed, curved spacetime. Indeed, for spins s ≤ 1, the coefficients above
are the same as c − a of the trace anomaly. The running coupling α(µ) results in an
RG-invariant scale,

Λgrav = µ exp

(
−α(µ)

2α1

)
. (21.4)

For the pure supergravity theory that is our focus here, we have N0 = N1/2 = N1 = 0

while N3/2 = N2 = 1 which gives α1 = 41/48.

In the original discussions of Euclidean quantum gravity, the suggestion seems to
have been that Λgrav (or sometimes µ) should be identified with the Planck scale. (See,
for example, [40].) In contrast, here we view Λgrav as a new scale which emerges in
quantum gravity through dimensional transmutation; it dictates the length at which
topological fluctuations are unsuppressed by the Gauss-Bonnet term. Like its counter-
part Λ QCD in Yang-Mills theory, Λgrav can naturally be exponentially smaller than the
Planck scale. As we will see shortly, like its Yang-Mills counterpart, it provides the scale
at which instanton effects become important.

In the previous chapter, we saw that α sits in a background chiral multiplet with the
gravitational theta-term θ. These combine into the complex coupling τgrav = α + 2iθ.
This means that the scale Λgrav = µe−τ/2α1 is also naturally complex in supergravity and
sits in a chiral multiplet.

There is one further one-loop divergence that will play a role in our story. This is re-
sponsible for the axial anomaly for the U(1)R symmetry with current Jµ5 = iψ̄νγ

νµργ5ψρ.
In general, the anomaly is given by [234, 235, 231, 232]

∇µJ
µ
5 =

1

24 · 16π2

(
21N3/2 −N1/2

)
?RµνρσRµνρσ . (21.5)

For us, N1/2 = 0 and N3/2 = 1. As usual, the anomaly can be compensated by shifts on
the gravitational theta angle which means that we should view Λgrav as carrying U(1)R

charge.

21.2 One-Loop Determinants

In this section, we find the determinants arising from one-loop fluctuations of the gravi-
ton, the gravitino and their ghosts. This material is standard fare but, since we will need
this for a number of subsequent calculations, we take the time to go through it in some
detail.
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The Graviton and its Ghost

Throughout this part of the dissertation, we use the background field method. We work
in Euclidean space and write the metric as a background gµν , which is taken to obey the
Einstein equations, with a fluctuation hµν ,

gµν → gµν + hµν .

From now on, all covariant derivatives and curvatures are to be thought of with respect
to the background. It is useful to further decompose the fluctuations into the trace
h = gµνhµν and traceless parts h̄µν = hµν − 1

4
gµνh.

We expand the Einstein-Hilbert action to quadratic order in hµν following, for exam-
ple, [236]. The residual gauge freedom hµν → hµν +∇µξν +∇νξµ is fixed by imposing
the condition

∇µ

(
hµν −

1

2
gµνh

)
= 0 .

The resulting Faddeev-Popov determinants are exponentiated in the usual fashion via
the introduction of ghosts which, in this context, are anti-commuting complex vectors.

The Einstein-Hilbert action is, famously, unbounded below. In the present context,
this shows up in the negative-definite operator∇2 for the trace fluctuations h. We follow
the prescription of [236] and rotate the contour to integrate over imaginary conformal
factors so that we work with the positive definite operator

∆0 = −∇2 . (21.6)

For the ghosts and traceless fluctuations, no such rotation is necessary. The operators
for these other fields are most conveniently written using tangent space indices. This
means, for example, that we write the metric fluctuation as hab = eµae

ν
bhµν = eµ(a δeb)µ.

(Note that the asymmetric components of eaµ are non-propagating.) The fluctuation
operator for the symmetric, traceless spin-2 field h̄ab and is given by

(∆2)ab;cd = −1

4
ηacηbd∇2 +

(
1

4
ηacηbdR−

1

2
ηacRbd −

1

2
Racbd

)
. (21.7)

Meanwhile the fluctuation operator for the spin-1 ghosts takes the form

(∆1)a;b = −ηab∇2 −Rab . (21.8)

Note that in each of (21.6), (21.7) and (21.8), the subscript on ∆s labels the spin of the
field and therefore determines the appropriate Laplacian∇2. Integrating out the gravi-
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ton and its ghost at one-loop then results in the determinant factor

ΓB =
det ∆1

det1/2 ∆2 det1/2 ∆0

. (21.9)

The Gravitino and its Ghost

The quantization of the spin-3/2 fermion was described in [237, 238]. (See also [230].)
We again need to fix the redundancy of local supersymmetry transformations. The
standard choice is γµψµ = 0. After gauge fixing, the kinetic term for the gravitino reads

L gravitino =
i

2
ψ̄a
(
γb /Dγa

)
ψb .

In computing the one-loop determinants, it is somewhat simpler to work with the
squares of Dirac operators. For the spin-3/2 gravitino, this is given by

(
∆3/2

)
a;b

= (γc /Dγa) (γb /Dγc) = −ηab∇2 − 1

2
Rcdabγ

[cγd] +Rab (21.10)

where we have left the Dirac spinor indices implicit in this expression. Meanwhile, the
gravitino is accompanied by three commuting, spin-1/2 Majorana ghosts. These come
with the simple Dirac operator i/D which, after squaring, becomes

∆1/2 = (i/D)2 = −∇2 +
1

4
R . (21.11)

Integrating out the gravitino and its ghosts then gives rise to the one-loop determinants

ΓF =
det1/4∆3/2

det3/4∆1/2

. (21.12)

The One-Loop Effective Action

Each of the one-loop fluctuation operators introduced above takes the form

∆s = −∇2 − Es

where, for each spin s = 0, 1
2
, 1, 3

2
, 2, the operator includes a spin-dependent term Es,

linear in the curvature Rabcd and is given, respectively, in (21.6), (21.11), (21.8), (21.10)
and (21.7). Of course, the Laplacian ∇2 also hides a spin structure since acting on the
spin s field,

∇µ = ∂µ +
1

2
ωabµt

ab
(s)

where tab(s) are the spin-sLorentz generators (or, in Euclidean space, rotation generators).
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The one-loop determinants from gravitons (21.9) and gravitinos (21.12) can be expo-
nentiated to give the one-loop contribution to the effective action. This can be written
as

S 1-loop = −
2∑
s=0

ζs log det ∆s (21.13)

where the coefficients ζs are the exponents of the various operators, given by

ζs =

(
−1

2
,−3

4
,+1,+

1

4
,−1

2

)
s = 0,

1

2
, 1,

3

2
, 2 .

The number of off-shell degrees of freedom of a spin-s field are ds = (1, 4, 4, 16, 9).
(Recall that the spin-2 operator acts on the traceless part of symmetric tensors which is
why d2 = 9.) Note that ~ζ · ~d = 0. This, of course, is the manifestation of supersymmetry
in the guise of an equal number of bosonic and fermionic off-shell degrees of freedom.

In the rest of this chapter, we will compute various terms in the expansion of (21.13).
We will also return to compute the ratio of determinants ΓBΓF in Section 22.2 in a self-
dual background where, as we show, considerable simplifications occur.

21.3 Two-Derivative Effective Action

Let us begin by computing the finite corrections to the low-energy effective that we pre-
viewed in (21.2). Specifically, we will evaluate the one-loop effective action (21.13) in a
gradient expansion around the flat background R3 × S1, keeping only terms with two
derivatives or fewer. As we will see, supersymmetry means that many of the contribu-
tions vanish.

We take the flat metric to be given by (20.2) with Ai = 0 and R constant. We denote
this metric as ĝµν and the associated Laplacian as ∇̂2. Each of the terms in the low-
energy effective action can then be expanded as

log det ∆s = Tr log[−∇̂2] + Tr log[1− ∇̂−2(∆s + ∇̂2)]

≈ Tr log[−∇̂2] + Tr (−∇̂−2)(∆s + ∇̂2) (21.14)

−1

2
Tr (−∇̂−2)(∆s + ∇̂2)(−∇̂−2)(∆s + ∇̂2) + . . .

where higher order terms do not contribute to the two-derivative effective action. The
leading term above, involving only the flat Laplacian ∇̂2, gives the perturbative contri-
bution to the Casimir energy advertized previously in (21.1). For us, supersymmetry
ensures it vanishes after summing over all spins. (This is due to the relation ~ζ · ~d = 0.)
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Subsequent terms in the expansion also enjoy cancellations. To see this, let us first
look at the second term, Tr (−∇̂−2)(∆s + ∇̂2). Expanding the Laplacian, the general
fluctuation operator can be written as

∆s = −gµν∂µ∂ν −
1

2
gµν{∂µ, ωabνtab(s)} −

1

4
ωabµω

µ
cd t

ab
(s)t

cd
(s) + gµρΓνµρ∇ν − Es . (21.15)

The sum over different spins s = 0, . . . , 2 will mean that any term which doesn’t have
an explicit spin dependence will vanish. That immediately kills the ∂2 term and the
term with the Christoffel symbol. The term linear in tab(s) vanishes as soon as the trace
over spin indices is taken. This leaves us with

2∑
s=0

ζs Tr (−∇̂−2)(∆s + ∇̂2) =
2∑
s=0

ζs Tr (−∇̂−2)

[
−1

4
ωabµω

µ
ab t

ab
(s)t

cd
(s) − Es

]
.

Here the trace Tr should be taken over both spin and momentum quantum numbers.
We deal with the spin trace first. We have

tr spin[tab(s)t
cd
(s)] = as(−δacδbd + δbcδad) (21.16)

where the coefficients as are related to the Casimirs of the representation of the Lorentz
group2 and are given by

as = (0, 1, 2, 12, 12) .

Meanwhile, the trace over spin indices of Es is proportional to the Ricci scalar of the
background:

tr spin Es = −bsR with bs = (0, 1,−1, 4, 6) (21.17)

This allows us to express the contribution to the one-loop effective action in terms of
traces over momentum states only.

2∑
s=0

ζs Tr (−∇̂−2)(∆s + ∇̂2) =
1

2
(~a · ~ζ) Tr [−∇̂−2ωabcω

abc] + (~b · ~ζ) Tr [−∇̂−2R] . (21.18)

We will come back and perform these momentum integrals shortly. But first, we also
need to include the contributions from the third term in (21.14):

X3 = −1

2

2∑
s=0

ζs Tr (−∇̂−2)(∆s + ∇̂2)(−∇̂−2)(∆s + ∇̂2) .

2The irreducible representation (j1, j2) has dimension d = (2j1 + 1)(2j2 + 1) and the appropriate
group theory gives a = d/3[(j1(j1 + 1) + j2(j2 + 1)]. (See, for example, [231, 232].)
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Once again, any term linear in tab(s) upon taking the trace over spin indices, while any
term without a spin structure vanishes after summing over different spins due to su-
persymmetry. After the dust settles, we find that just two terms are relevant,

X3 = −
2∑
s=0

Tr

[
1

2
(−∇̂−2)tab(s)ωab

µ∂µ(−∇̂−2)tcd(s)ωcd
ν∂ν + (−∇̂−2)Es(−∇̂−2) (g − ĝ)µν ∂µ∂ν

]
≈ (~a · ~ζ) Tr

[
(−∇̂−2)2ωab

µωabν∂µ∂ν

]
+ (~b · ~ζ) Tr

[
(−∇̂−2)2R∆gµν∂µ∂ν

]
(21.19)

with ∆gµν = gµν − ĝµν . To reach the second line, we move derivatives past some of the
fields; this is allowed since it only makes a difference to higher derivative terms in the
effective action.

The remaining traces in (21.18) and (21.19) are over momentum. Since we are working
on R3 × S1, this involves both an integral and a discrete sum3 for the momentum k4 =

n/L, with n ∈ Z, for modes on S1:

Tr −→ 1

2πL

∑
n

ˆ
d3k

(2π)3
.

With this, the expressions (21.18) and (21.19) for the one-loop contribution to the two-
derivative effective action combine to become

S 1-loop = − 1

2πL

∑
n

ˆ
d3k

(2π)3

{
(~a · ~ζ)

[
ωabcω

abc

2ĝµνkµkν
− ωab

µωabνkµkν
(ĝµνkµkν)2

]
(21.20)

+ (~b · ~ζ)

[
1

ĝµνkµkν
− ∆gµνkµkν

(ĝµνkµkν)2

]
R
}

.

These integrals suffer both quadratic and logarithmic divergences which we need to
tame. Our method of choice is Pauli-Villars regularization.

Pauli-Villars Regularization

Pauli-Villars offers perhaps the most straightforward method of regularization. We
start by providing all of our original fields with a small mass m. This will act as an
infra-red cut-off and ultimately we send m → 0. (In practice, this means that we need
only replace k2 → k2 +m2 in the denominator of integrals.)

The UV divergences are tamed by introducing very heavy ghost particles with mass
MUV. We will ultimately take MUV → ∞. Introducing one such field is enough to
remove logarithmic divergences, but we also have a quadratic divergence to deal with.
This requires the introduction of two further fields; a physical field with mass-squared

3Strictly speaking, to compute the Wilsonian effective action we should drop the n = 0 zero-mode in
the sum. These terms can be interpreted as counterterms for the 3d theory.
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γM2
UV and a ghost with mass-squared (γ−1)M2

UV+m2 where γ is an arbitrary parameter
on which no physical quantity should depend. The upshot is that the integrands in
(21.20) are replaced by their regulated form such as

1

ĝµνkµkν
→
[

1

ĝµνkµkν +m2

]
PV

where we introduce the notation

[
f(m2)

]
PV = f(m2)− f(M2

UV) + f(γM2
UV)− f((γ − 1)M2

UV +m2) . (21.21)

Our goal is to now evaluate the integrals (21.20) using this regularization procedure.

Extracting the Divergent Piece

Before we proceed, it will help to better understand the origin of the divergent pieces
and, more importantly, the finite pieces. Because the divergences arise from the UV, it
should come as no surprise to learn that they are the same regardless of whether we
work onR4 or R3×S1. In contrast, the finite terms that we seek are proportional to 1/R2

and are only present when we are on the circle. For this reason, it is useful to write

1

2πL

∑
n

d3k

(2π)3
=

ˆ
d4k

(2π)4
+

 1

2πL

∑
k4=n/L

ˆ
d3k

(2π)3
−
ˆ

d4k

(2π)4

 .

All divergences are contained in the first term. Meanwhile, we will see that the second
term, which captures the difference between physics on the circle and in the plane,
contains only finite pieces.

As it stands, the integrands in (21.20) are not quite rotationally invariant, even when
integrated over R4. This is because the background flat metric gives

ĝµνkµkν = (R2/L2)k2 + (L2/R2)k2
4 .

To proceed, we rescale the 3-momentum k→ (R2/L2)k. Then, the integrand in (21.20)
becomes isotropic. On grounds of rotational invariance, the divergent piece of the one-
loop effective action, arising from integrating over

´
d4k, is then given by

S divergent = −L
4

R2

ˆ
d4k

(2π)4

{
(~a · ~ζ)

[
1

2(k2 +m2)
− k2

4(k2 +m2)2

]
PV
ωabcω

abc

+ (~b · ~ζ)

[
1

k2 +m2
− ĝµν∆g

µνk2

4(k2 +m2)2

]
PV
R
}

(21.22)

where the factor of L4/R4 arises from the aforementioned rescaling of the momentum
and is identified as

√
ĝ.
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The regulated integrals in the above expression are easily computed. They are given
by

ˆ
d4k

(2π)4

[
1

k2 + µ2

]
PV

= − 1

16π2

[
m2 logm2

]
PV

and
ˆ

d4k

(2π)4

[
k2

(k2 + µ2)2

]
PV

= − 1

8π2

[
m2 logm2

]
PV .

We see that the ω2 terms in (21.22) cancel. (This is perhaps rather surprising; if you
consider the unregulated integrands with m2 = 0 then the two terms appear to differ
by a factor of 2. But, of course, such unregulated integrals are ill-defined. The same
cancelling factor of 2 can also be seen in dimensional regularization as discussed, for
example, in [239].)

The term proportional toR in (21.22) does not vanish. Instead, it gives

S divergent =
~b · ~ζ
16π2

[
m2 logm2

]
PV

(
1− 1

2
ĝµν∆g

µν

)√
ĝR

= − 15

64π2

[
m2 logm2

]
PV
√
gR (21.23)

where the ∆g term acts simply to change the fiducial metric
√
ĝ into the background

metric √g (to the order at which we are working). This term is divergent but can be
absorbed through a renormalization of Newton’s constant. As we will see later, it agrees
with the divergence computed using heat kernel methods.

Extracting the Finite Pieces

As described above, the finite terms in the effective action (21.20) arise from the differ-
ence between physics on the circle and physics on the plane.

S finite = −
[

1

2πL

∑
n

ˆ
d3k

(2π)3
−
ˆ

d4k

(2π)4

] {
(~a · ~ζ)

[
ωabcω

abc

2ĝµνkµkν
− ωab

µωabνkµkν
(ĝµνkµkν)2

]
+ (~b · ~ζ)

[
1

ĝµνkµkν
− ∆gµνkµkν

(ĝµνkµkν)2

]
R
}

.

We again rescale the 3-momentum k → (R2/L2)k. Isotropy and parity ensure that the
terms with kµkν in the numerator are once again diagonal, but we now have to treat the
R3 and S1 components separately. The relevant integrals are

1

2πL

(∑
n

−
ˆ

dn

)
L4

R4

ˆ
d3k

(2π)3

[
1

(n/L)2 + k2 +m2

]
PV
−→ 1

48π2

L2

R4
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and

1

2πL

(∑
n

−
ˆ

dn

)
L4

R4

ˆ
d3k

(2π)3

[
k2

((n/L)2 + k2 +m2)2

]
PV
−→ 1

32π2

L2

R4

and

1

2πL

(∑
n

−
ˆ

dn

)
L4

R4

ˆ
d3k

(2π)3

[
(n/L)2

((n/L)2 + k2 +m2)2

]
PV
−→ − 1

96π2

L2

R4

where −→means that we have dropped terms which vanish as we remove the regula-
tors, m2 → 0 and M2 → ∞. This leaves behind only finite contributions as promised.
The final result is

S finite = −
ˆ

d4x
√
g

1

48π2

1

R2

{
(~a · ~ζ)ωab4ω

ab4 + (~b · ~ζ)R
}

where, as in the divergent case, the role of the ∆g terms is to ensure that the R that
appears here is now the dynamical field rather than the fixed, asymptotic value of ĝ.
Substituting the three-dimensional expressions for ω andRwe have

S finite = −
ˆ

d3x
√
g(3)

1

24π

L

R2

{
(~a · ~ζ)

[
2

(
∂R

R

)2

+
1

4

R4

L4
F 2

]

+ (~b · ~ζ)

[
R(3) + 2

(
∂R

R

)2

+
1

4

R4

L4
F 2 − 2∇2 logR

]}
.

We now integrate the last term by parts, discarding the total derivative, leaving us with

S finite = −
ˆ

d3x
√
g(3)

1

24π

L

R2

{
(~b · ~ζ)R(3) + 2(~a−~b) · ~ζ

(
∂R

R

)2

+
1

4
(~a+~b) · ~ζ R

4

L4
F 2

}
.

Note that the finite renormalizations to the scalar R and field strength F are different.
This will prove important shortly since it can be interpreted as a one-loop correction to
the complex structure. Putting this together with the tree-level contributions, we find
that the one-loop effective action in Euclidean space is given by

Seff =

ˆ
d3x
√
g(3)

{
1

2

(
M3 +

5

16π

L

R2

)
R(3) +

(
M3 −

1

6π

L

R2

)(
∂R

R

)2

+
1

2

(
M3 +

11

24π

L

R2

)
1

4

R4

L4
F 2

}
.
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It remains only to rotate back to Lorentzian signature and to subsequently dualize the
photon in favour of the periodic scalar σ. The result is the effective action

Seff =

ˆ
d3x
√
−g(3)

{
1

2

(
M3 +

5

16π

L

R2

)
R(3) −

(
M3 −

1

6π

L

R2

)(
∂R

R

)2

−
(
M3 +

11

24π

L

R2

)−1
L2

R4

(
∂σ

2π

)2
}

(21.24)

as previously advertized in (21.2).

21.4 Supersymmetry and the Complex Structure

We now describe how the low-energy effective action is consistent with supersymme-
try. After dimensional reduction, the propagating bosonic fields R and σ lie in a chiral
multiplet [222]. (The most general form of the 3d supergravity action with chiral mul-
tiplets was presented in [240].) The lowest component of the chiral multiplet is given
by

S = 2π2M2
plR

2 + iσ (21.25)

and the classical action (20.4) for this complex scalar takes the form

S = −M3

ˆ
d3x

√
−g(3)

1

(S + S†)2
∂S∂S† (21.26)

which is derived from the classical Kähler potential

K = − log(S + S†) . (21.27)

The presence of the Planck mass Mpl in the complex structure (21.25) means that this
chiral multiplet does not survive the rigid limit in which gravity is decoupled. (The
distinction between rigid and gravitational theories was stressed, in particular, in [241].)
This, in turn, means that we cannot use the fact thatR sits in a chiral multiplet to restrict
the way it appears in superpotentials when rigid supersymmetric gauge theories are
compactified on a circle as in [242, 243]4.

One-Loop Corrected Complex Structure

As we have just seen, the kinetic terms are corrected at one-loop. This in principle
affects both the complex structure and Kähler potential. For our present purposes, we
are only concerned with the shift to the complex structure.

4Thanks to N. Seiberg for discussions on these issues.
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The renormalization of the complex structure can be seen from the fact that the (∂R)2

and (∂σ)2 terms pick up different 1/R2 corrections in (21.24). (Strictly speaking, we
should first perform a conformal transformation so that we are working in the Einstein
frame, but this only affects the complex structure at order 1/R4 and so can be neglected
at one-loop order.) It is simple to check that the one-loop corrected complex structure
is given by

S = 2π2M2
plR

2 +
7

48
log(M2

plR
2) + iσ . (21.28)

(Tracing the origin of this shift, we see that it depends on the ~a coefficients defined in
(21.16), but is independent of the~b coefficients defined in (21.17).) We will have use for
this later when we compute the instanton-generated superpotential.

21.5 Divergences and the Heat Kernel

The gradient expansion employed in Section 21.3 is the simplest approach for comput-
ing the effective action at the two derivative level. However, it becomes increasingly
cumbersome as we look to higher derivatives. In particular, as described at the be-
ginning of Chapter 21, we are interested in computing the logarithmic running of the
coefficient of the Gauss-Bonnet term. For this, we turn to the heat kernel method. The
results of this section are not new but, for completeness, we describe the essence of
the computation. Further details can be found in the original paper [231, 232]. A clear
review of heat kernel methods can be found in [244].

The heat kernel approach starts by writing the one-loop effective action (21.13) as

S 1-loop = −
2∑
s=0

ζs log det ∆s =
2∑
s=0

ζs

ˆ
dt

t
Tr
[
e−t(∆s+m2)

]
PV

which is true up to an (infinite) constant which we can safely ignore. Ultra-violet diver-
gences show up in the t→ 0+ limit of the integral. The standard expansion gives5

Tr
[
e−t∆s

]
∼ t−2B0 + t−1B2 +B4 +O(t)

where the Schwinger-DeWitt coefficientsBk are geometric quantities, constructed from
the data in the operator ∆s = −∇2−Es, with∇µ = ∂µ+ 1

2
ωabµt

ab
(s). The leading divergence

is simply the cosmological constant term,

B0(∆s) =
1

16π2

ˆ
d4x
√
g tr 1 .

5On manifolds with boundary, further terms may arise in the heat kernel approach. These can give
rise, for example, to renormalization of the coefficient of the Gibbons-Hawking term. Here we focus only
on bulk divergences.
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This vanishes when we sum over the spins s = 0, 1/2, 1, 3/2, 2 by virtue of supersym-
metry, which guarantees ~ζ · ~d = 0 as we saw above. The quadratic divergences are
contained in the B2 coefficient which is given by

B2(∆s) =
1

16π2

ˆ
d4x
√
g tr

(
Es +

1

6
R
)

.

Here, theR/6 term contains no spin dependence and once again cancels due to super-
symmetry. The trace of Es is given in (21.17), leaving us with

∑
s

ζsB2(∆s) = −
~b · ~ζ
16π2

ˆ
d4x
√
g R .

This is the renormalization of Newton’s constant. One can easily check that it agrees
with the quadratic divergence (21.23) that we computed using the gradient expansion
previously.

For our purposes, the most important quantities are the logarithmic divergences con-
tained in B4. This is given by

B4(∆s) =
1

16π2

ˆ
d4x
√
g tr

(
1

6
∇2Es +

1

6
REs +

1

2
E2
s +

1

72
R2 − 1

180
RµνRµν

+
1

180
RµνρσRµνρσ +

1

48
tab(s)Rabµνt

cd
(s)R µν

cd

)
. (21.29)

The story is, by now, familiar. Any terms without spin dependence vanish due to su-
persymmetry. The ∇2Es term survives, but results in divergences for ∇2R which is a
total derivative and vanishes on the backgrounds we are interested in. For this reason,
we ignore this term. Meanwhile, the REs term results in a logarithmic divergence to
R2. Both R2 terms and RµνRµν terms can be absorbed into the Einstein-Hilbert action
through a field redefinition [224]. Indeed, this is the heart of the statement that the
S-matrix of pure Einstein-Hilbert gravity is one-loop finite.

The upshot of this is that the only terms that we care about are those that give rise
to logarithmic divergences forRµνρσRµνρσ. This receives contributions fromE2

s and the
last, tRtR term. In particular,

tr(E2
s ) = csRµνρσRµνρσ + . . . with cs = (0, 0, 0, 2, 3) .

Putting this together with (21.16), we have

2∑
s=0

ζsB4(∆s) =
1

32π2

ˆ
d4x
√
g

(
~c− 1

12
~a

)
· ~ζ (RµνρσRµνρσ + . . .) .
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The same field redefinitions of the metric that we described above allow us to massage
the . . . terms above so that they become the Gauss-Bonnet term, with the integral given
by the Euler character

χ =
1

32π2

ˆ
d4x
√
g
(
RµνρσRµνρσ − 4RµνRµν +R2

)
.

The one-loop effective action therefore contains the logarithmically divergent term

S one-loop = −41

48
log(µ2/m2)χ (21.30)

where, in the Pauli-Villars scheme (21.21), µ2 = γ−1
γ
M2

UV. This is the origin of the run-
ning of the Gauss-Bonnet coefficient described in (21.3).

We note that the interpretation of this “running” as a scale-dependent coupling con-
stant comes with a caveat. In gauge theories, the running coupling g2(µ) tells us how
the strength of local interactions varies with the energy scale of the process. But, in
the gravitational context, there is no local process associated to the Gauss-Bonnet term.
Instead, it knows only about the global properties of the space. The real physics in this
running coupling is the emergence of the infra-red scale Λgrav defined in (21.4) which
tells us characteristic scale at which manifolds with different topologies contribute to
the path integral.
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22 Non-Perturbative Aspects

In this chapter we describe the instanton corrections to the low-energy effective action.
We will show that they generate a superpotential term for the chiral multiplet S. The
techniques of gravitational instanton computations were pioneered in the late 1970s [44,
53, 245] and much of this chapter is devoted to reviewing and extending this machinery.
We must start, however, with a brief introduction to gravitational instantons and the
role they play in N = 1 supergravity.

22.1 Gravitational Instantons

Gravitational instantons are saddle points of the four-dimensional path integral. In
supersymmetric theories, we can restrict attention to (anti)-self-dual solutions to the
Einstein equations satisfying

Rµνρσ = ±?Rµνρσ . (22.1)

Such backgrounds preserve half of the supersymmetry. This means that supersymme-
try transformations generate only two fermionic Goldstino zero modes, which is the
right number to contribute towards a superpotential in N = 1 theories [246]. The self-
duality requirement (22.1) is a necessary, but not sufficient, condition for instantons to
contribute to the superpotential; there may also be further fermionic zero modes which
do not arise from broken supersymmetry which we describe below.

For theories on R3×S1, the gravitational instantons are Kaluza-Klein monopoles [51,
52] which in the present context are perhaps best referred to as “Kaluza-Klein instan-
tons”. From the low-energy 3d perspective, these solutions look like Dirac monopoles
and the calculation can be thought of as a gravitational completion of Polyakov’s fa-
mous computation [50]. The contribution of these “Kaluza-Klein instantons” has been
discussed previously in the non-supersymmetric context in [247] and, more recently, in
[54].

The simplest class of gravitational instantons are the multi-Taub-NUT metrics [44],

ds2 = U(x)dx · dx + U(x)−1 (dz + A · dx)2 (22.2)
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with

U(x) = 1 +
L

2

k∑
a=1

1

|x−Xa|
and ∇×A = ±∇U .

The metric is smooth when z ∈ [0, 2πL) and the Xa are distinct. For∇×A = ±∇U , the
Riemann tensor obeysRµνρσ = ∓?Rµνρσ.

The Taub-NUT metric takes the same form as our Kaluza-Klein ansatz (20.2) with
U = L2/R2. However, because U → 1 asymptotically, it means that we have made a
coordinate choice in which the fiducial length L is taken to be the physical asymptotic
length of the circle: R(x)→ L.

One might wonder about the relevance of Taub-NUT spaces to the Euclidean path
integral. Ultimately, we are of course interested in physics on R1,2 × S1 and, after a
Wick rotation, the boundary of space is S2 × S1. Yet for k 6= 0, the boundary of the
manifold is the S1 is fibered non-trivially over the S2. For example, with k = 1, the
boundary is topologically S3. The question at hand is whether we should sum over
these different boundary conditions in the path integral.

A similar question arises in gauge theories in flat space, where the issue is whether
one should sum over topologically non-trivial bundles at infinity. Here the answer is
certainly yes: a trivial gauge bundle can be smoothly deformed into an instanton-anti-
instanton pair which are subsequently moved far apart. Such configurations certainly
contribute to the path integral but locality and cluster decomposition then requires us
to also sum over individual instanton bundles. (See, for example, [241] for a recent dis-
cussion of this topic.) However, these same arguments also hold in the present case:
we can equally well locally nucleate a NUT-anti-NUT pair which can then be moved
far apart. This suggests that should sum over all asymptotic windings. (There is, ad-
mittedly, one loophole which is the lack of local observables in a theory of gravity but
this does not seem to be a serious objection to the argument.)

Another way to motivate including non-trivial S1 bundles is to consider a parallel to
a more familiar story with gauge theory instantons. There, one imposes ‘initial’ and
‘final’ conditions in Euclidean time and boundary conditions at spatial infinity which
require local decay everywhere, but allow for non-trivial global behaviour of the solu-
tion. For us, where the distinction between initial and boundary conditions is blurred,
the obvious analogy is to consider ‘initial’ and ‘final’ surfaces which are asymptotically
flat hemispheres of S2 with a (necessarily trivial) S1 bundle, and require them to be
glued in a locally smooth, flat manner. The non-trivial global behaviour now arises
due to the possibility of this gluing creating a non-trivial bundle of S1 over the S2.
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We conclude that, despite the different boundary conditions, we should be summing
over Taub-NUT configurations to determine the low-energy physics on R1,2 × S1. We
would reach the same conclusion by considering the low-energy world where we would
expect to sum over different Dirac monopole configurations provided they have a suit-
able microscopic completion [50]. (We would also reach the same conclusion in the very
high-energy world of string theory, where these Taub-NUT instantons can be viewed
as D6-brane instantons wrapping manifolds of G2-holonomy [223]. )

The multi-Taub-NUT solution (22.2) enjoys 3k bosonic zero modes, parametrized by
the centres Xa, and 2k spin-3/2 fermionic zero modes [53]1. Although this result is
well known, we will provide a slightly different derivation of the index theorem for the
fermionic zero modes in Section 22.3 en route to calculating the one-loop determinants.
For now, we merely note that only the k = 1 Taub-NUT solution, with two fermionic
zero modes, can contribute to the superpotential [222].

The Action

The Einstein-Hilbert action evaluated on the Taub-NUT space with charge k = 1 is,
after subtracting appropriate counterterms, given by [245, 249],

STN = 2π2M2
plR

2

where R here is interpreted as the asymptotic radius of the circle. (In the coordinates
(22.2), we could just as well have writtenSTN = 2π2M2

plL
2.) However, there are a number

of further contributions to the action. The first comes from the dual 3d photon which,
as first observed by Polyakov, acts as a chemical potential for the topological instanton
charge [50]. This follows from the coupling (20.3): the 3d field strength arising from the
metric (22.2) has charge

´
S2 F = 2πL, which ensures that the single Taub-NUT instanton

also comes with a factor of

S = 2π2M2
plR

2 + iσ .

This coincides with the classical complex structure (21.25). Of course, this had to be
the case since the superpotential will come with the factor W ∼ e−S . Turning this
observation on its head, it could be viewed as a particularly simple derivation of the
action of Taub-NUT, a subject which has previously enjoyed some controversy before
the definitive analysis of [249].

1For Yang-Mills instantons, the number of zero modes can be simply determined by integrating the
anomaly. In the present case there is a mismatch between the integrated anomaly (21.5) and the number
of zero modes due to the presence of boundary terms. These are known as eta-invariants [248] and
will also play a role when we come to discuss the one-loop determinants around the background of the
gravitational instanton.
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Further contributions come from the total derivative terms: these are the Gauss-
Bonnet term (20.8) and the Pontryagin term (20.9). For Taub-NUT, the integral of the
Gauss-Bonnet term gives the Euler character,

χ =
1

32π2

ˆ
d4x
√
g ?R?

µνρσRµνρσ = 1 .

(There is no boundary contribution.) This means that the Taub-NUT instanton will
contribute to the superpotential in the form

W ∼ e−Se−τgrav . (22.3)

This is the promised superpotential (19.1). Here τgrav is given by (20.10) and, like S, is
naturally complex and lives is the lowest component of a chiral multiplet. This super-
potential drives the moduli S to large values, decompactifying the Kaluza-Klein circle.

The Computation

The rest of this chapter is devoted to understanding more fully the computations in-
volved in deriving (22.3). The key extra ingredient is the evaluation of the one-loop
determinants around the background of Taub-NUT. We will find that, despite the exis-
tence of supersymmetry, these determinants do not cancel. Instead, after removing the
zero-modes, the determinants are computed to be (up to a numerical constant)

dets ∼ µ41/24R−7/24

where µ is the UV cut-off. This provides the prefactor to the superpotential (22.3) which
becomes

W ∼ µ41/24R−7/24e−Se−τgrav .

Now we can see how all the pieces fit together. As we explained in Chapter 21, the
Gauss-Bonnet coupling τgrav runs at one-loop and so depends on µ. This combines with
the µ41/24 factor that arises from the determinant and whose exponent agrees with the
beta-function for τgrav. Together they give the RG-invariant scale Λgrav defined in (21.4).
Meanwhile, the factor of R−7/24 coming from the determinants can be exponentiated
and has the right coefficient to shift the chiral multiplet S to its one-loop corrected value
given in (21.28). The net result is that the superpotential takes the simple form

W ∼ Λ41/24
grav e−S

where the ∼ is hiding a numerical coefficient and factors of Mpl which ensure that the
dimensions work out.
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However, before diving into the detail of these computations, let us make a few gen-
eral comments on these instanton effects.

Relation to Three-Dimensional Gauge Theories

There is a close analogy between our gravitational computation and the quantum dy-
namics of N = 1 SU(2) Yang-Mills theory compactified on R1,2 × S1. In both cases,
the low-energy physics comprises a U(1) gauge field and a neutral scalar, with the only
difference classically lying in the form of the Kähler potential (21.27).

In the case of Yang-Mills theory, there are two contributions to the low-energy effec-
tive action. The first, considered long ago in [250], arises from monopoles in the three-
dimensional effective gauge theory and results in a run-away potential on the Coulomb
branch, parametrized by the chiral multiplet Φ. The second contribution is inherently
four-dimensional in origin; it arises from monopoles twisted around the spatial S1,
sometimes known as calarons. This second contribution carries the quantum numbers
of a four-dimensional instanton, e2πiτYM with τYM = 2π/θYM + 4πi/g2

YM. The net result is
the superpotential [242, 243],

WYM ∼ e−Φ + e+Φe2πiτYM .

The gravitational instanton contribution (22.3) is analogous to the second term above2.
Both are associated to physics in four dimensions that does not strictly have a coun-
terpart in three dimensions. Both also drive the moduli to the region where the heavy
states – whether W-bosons or Kaluza-Klein modes – become light. In the Yang-Mills
case, this is the strongly coupled region and the W-bosons do not ultimately become
massless; in the gravitational case, this is the weakly coupled region and the Kaluza-
Klein modes do become massless.

Of course, in the Yang-Mills case the first term stabilizes the Coulomb branch scalar
and the theory on S1 has two, isolated vacua. There seems to be no analogue of the first
term in the gravitational context. The reason is simply that the strict three-dimensional
theory is U(1) and not SU(2) and the former has no microscopic monopoles of its own.

Other Topologies and Moduli Fixing

The Taub-NUT metrics (22.2) are not the only self-dual gravitational instantons which
asymptote to a space with one compact direction. For our purposes, the other relevant
instanton is the Atiyah-Hitchin manifold MAH . This admits a smooth hyperKähler
metric with isometry group SO(3), as opposed to the SO(3) × U(1) isometry of Taub-

2Thanks to N. Seiberg for discussions on this issue.
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NUT [251]. This means that the Kaluza-Klein modes around the asymptotic S1 are
excited in this solution.

The Atiyah-Hitchin manifold has 3 bosonic zero modes and 2 fermionic zero modes,
the right number to contribute to the superpotential3. Let us first proceed naively and
ask what would happen if we were to admit Atiyah-Hitchin as a contribution to the
path integral. While Taub-NUT has winding, or magnetic charge, 1, Atiyah-Hitchin
has winding number −4. (See, for example, [242].) By supersymmetry, this means that
its complexified action should be SAH = −4S. The minus sign is important here. It
is related to the fact that, viewed as a soliton, Atiyah-Hitchin has negative mass. As
explained in [54], it follows from the breaking of the U(1) isometry, and the fact that
spatial kinetic terms act like a negative mass in gravity. (It is also related to the fact
that M-theory compactified on Atiyah-Hitchin reduces to type IIA string theory in the
presence of an orientifold O6-plane [253, 254] and orientifolds have negative tension.)
Including contributions from both Taub-NUT and Atiyah-Hitchin would give rise to
the superpotential

W ∼ e−Se−τgrav + e+4Se−τgrav .

The theory appears to now have a ground state with the radius R fixed at some value
(albeit at the Planck scale where the analysis is not trustworthy). The presence of the
Atiyah-Hitchin manifold here is reminiscent of the role orientifolds play in more com-
plicated models of moduli stabilization [255].

Nonetheless, there is reason to doubt that we should include MAH as a saddle in
the path integral. This is because the asymptotic structure of MAH is given by a S1

bundle over RP2 ∼= S2/Z2 rather than a bundle over S2. It is not clear whether such an
asymptotic change of topology should be allowed in the sum over geometries.

Of course, we have just argued that we should be summing over different asymptotic
S1 bundles and we could try to repeat the nucleation argument that we made above
for NUTs. Now the object that lies at the centre of Atiyah-Hitchin is a “bolt”, a 2-cycle
with topology RP2 and size∼ R. The non-local nature makes it less clear whether bolts
and anti-bolts can be smoothly nucleated from the vacuum. Furthermore, the “gluing”
argument that we presented above suggests that we should not include Atiyah-Hitchin
in the path integral.

While we do not yet know the complete rules for performing the path integral over
manifolds we different topology, these arguments suggest that it is at the very least

3The double cover of Atiyah-Hitchin also admits a smooth hyperKähler metric, but this space has
6 bosonic zero modes and 4 fermionic zero modes so cannot contribute to the superpotential. (The 6
bosonic zero modes consist of 3 translations and 3 deformations described in [252].)
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consistent (and probably required) to only include S1 bundles over S2 in the path inte-
gral. This means that we do not sum over discrete quotients of the asymptotic S2 and
ignore the contribution from Atiyah-Hitchin. The same conclusion was reached in [54].
Henceforth, we proceed under this assumption.

It is pleasing to note that our justifications for these choices are well motivated phys-
ically, and that they seem to chime together well. Along with the fact that the rest of
this computation works out nicely, this seems to suggest that these are the right sort of
criteria to apply.

22.2 Determinants Again

In Section 21.2 we computed the ratio of determinants arising from one-loop fluctua-
tions around a general background. They are

Γ =
det ∆1 det1/4 ∆3/2

det1/2 ∆2 det1/2 ∆0 det3/4 ∆1/2

(22.4)

where ∆s is the Laplacian-type operator acting on a field of spin s. The definitions of
each of them can be found in Section 21.2. The purpose of this section is to compute
this ratio of determinants explicitly in the Taub-NUT background. We will find that,
despite the existence of supersymmetry, the bosonic and fermionic determinants do
not cancel. Nonetheless, there is sufficient simplification that the ratio can be evaluated
exactly.

Determinants in an Anti-Self-Dual Background

We start by finding a simplified expression for the ratio of determinants in an anti-self-
dual background obeying Rµνρσ = −?Rµνρσ. The key observation is that the self-dual
part of the spin connection is flat. This means that it is possible to choose coordinates
such that

ω µ
ab = −1

2
εabcd ω

cdµ (22.5)

and moreover, the coordinates in which we have written the Taub-NUT metric (22.2)
have this property.

To see the implications of this, it is useful to change from the Majorana basis of gamma
matrices introduced in (20.5) to a chiral basis. In Euclidean space, these are given by

γa =

 0 σa

σ̄a 0

 a = 1, 2, 3, 4 and γ5 =

 1 0

0 −1
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with σa = (1, ~σ) and σ̄a = (1,−~σ). In such a basis, Dirac spinors decompose in the
familiar left-handed (undotted) and right-handed (dotted) chiral spinors,

ψ =

 χα

λ̄α̇

 . (22.6)

In what follows, we work with this chiral decomposition, using indicesα, α̇ = 1, 2. (This
contrasts with our earlier work with 4d Majorana spinors.) The utility of this is that the
spin connection acting on right-handed spinors is 1

2
ωabµσ̄

ab
α̇β̇

where σ̄ab = 1
2
σ̄[aσb] is self-

dual and so, in the coordinates in which (22.5) holds, vanishes when contracted with
the spin connection. Meanwhile, the spin connection acting on left-handed spinors
involves ωabµσabαβ and does not vanish since σab = 1

2
σ[aσ̄b] is anti-self-dual. This means

that the chiral Dirac operator acting on left-handed fermions – which we call σ̄µ∇+
µ –

includes a spin connection, but the chiral operator acting on right-handed fermions
– which we call σµ∇−µ – does not. (Of course, both of these covariant derivatives do
contain Levi-Civita connections when acting on objects which also carry vector indices.)

We will show that each of the operators ∆s has a natural decomposition into operators
that act on left-handed or right-handed spinors. This is simplest to see for the spin
s = 1/2 operator, where we have

∆1/2 = (i/D)2 =

 −σµ∇−µ σ̄ν∇+
ν 0

0 −σ̄µ∇+
µσ

ν∇−ν

 ≡
 ∆1/2 + 0

0 ∆1/2−

 .

Moreover, the self-duality of the spin connection means that the operator on right-
handed fermions simplifies yet further. It is given by

∆1/2− = ∆0 12 ⇒ det ∆1/2− = (det ∆0)2 .

To perform a similar decomposition for higher spin operators, we need to work a little
harder. We start with ∆1 defined in (21.8). A self-dual background hasRµν = 0, so the
operator involves only the Laplacian acting on vectors. To decompose this in terms of
spinors, we use the fact that the background admits two, orthogonal, covariantly con-
stant (and, in fact, actually constant) right-handed spinors, ξα̇(i). These obey the simple
equation

∇−µ ξ(i) = 0 i = 1, 2

where, in the coordinates in which (22.5) holds,∇−µ ξ(i) ≡ ∂µξ(i).

The constant spinors ξ(i) allow us to decompose any (complexified) field so that the
dynamical degrees of freedom live in irreducible representations of su(2)L ⊂ so(4). We
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first demonstrate this with the vector field Aa which we write it in the usual bi-spinor
form as Aαα̇ = Aa(σ

a)αα̇. The existence of the pair of constant spinors ξα̇ allows us to
write a general complex vector in this background as

Aαα̇ =
2∑
i=1

aα(i)ξ
α̇
(i)

where the dynamical degrees of freedom are now the two left-handed spinors a(i).
When sandwiched between two such vectors, ∆1 reads

Ã† a(∆1)a;bA
b =

2∑
i=1

ξ†(i)ξ(i) (ã†(i)∇2a(i))

where we are exploiting the fact that the ξ(i) with i = 1, 2 are orthogonal to eliminate
the cross-terms. The upshot of this argument is that in a self-dual background, we can
write

det ∆1 = (det ∆1/2 +)2 .

We can now move on to discuss ∆3/2 defined in (21.10). This involves a new element
since the Riemann tensor now appears. We make use of the fact that, after replacing
the spatial indices with bi-spinors, an anti-self-dual Riemann tensor can be written as

Rαα̇ ββ̇ γγ̇ δδ̇ = Cαβγδ εα̇β̇ εγ̇δ̇

where Cαβγδ is the totally symmetric, anti-self-dual Weyl tensor. As in the spin-1/2 case,
the ∆3/2 operator naturally decomposes into left and right-moving parts,

det ∆3/2 = det ∆3/2− det ∆3/2 + .

To get more of a handle on these determinants, we again decompose a spin-3/2 fermion
in terms of the covariantly constant spinors ξ(i). We have to treat the left and right-
moving pieces somewhat differently. A general, complex right-handed spinor can be
decomposed as

ψαα̇β̇ ≡ (σµ)αα̇ψβ̇µ = fα(1)ξ
α̇
(1)ξ

β̇
(1) + fα(2)ξ

α̇
(1)ξ

β̇
(2) + fα(3)ξ

α̇
(2)ξ

β̇
(1) + fα(4)ξ

α̇
(2)ξ

β̇
(2) .

The 8 dynamical degrees of freedom are now contained in four, left-moving spinors
f(i), i = 1, 2, 3, 4. Perhaps unsurprisingly, the Riemann tensor does not act on this part
of ψ. The same kind of argument that we used for ∆1 shows that ∆3/2− does not mix
the different f(i), and we find

det ∆3/2− = (det ∆1/2 +)4 .
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The decomposition of the left-handed spin-3/2 field involves a new ingredient. We
write

ψαα̇β ≡ (σµ)αα̇ψβµ =
2∑
i=1

Fαβ
(i) ξ

α̇
(i) + φ(i)ε

αβξα̇(i) . (22.7)

Now the dynamical degrees of freedom are contained in two scalars φ(i) and two, sym-
metric tensors Fαβ

(i) . The Riemann tensor does not affect the scalar fields φ(i); these
merely contribute a factor of (det ∆0)2 to det ∆3/2 +. However, the Riemann tensor does
affect the operators acting on the symmetric tensors F(i). To see how, we look at the
contraction

(σ̄a)α̇α
(
∆3/2 +

)
aγ;b

δ (σb)ββ̇ = σ̄a α̇α
(
−ηabδδγ∇2 − 1

2
Rcdabσ

c
γγ̇σ̄

d γ̇δ

)
σb
ββ̇

= −2δα̇
β̇
δαβ δ

δ
γ∇2 − 1

2
Cγ δα β δγ̇γ̇ δα̇β̇

≡ 2δα̇
β̇

∆C
α
γ; β

δ

where we define a new operator ∆C which acts on anti-self-dual 2-forms (which trans-
form in the (1, 0) representation of SO(4) rotations) and involves the Weyl tensor:

(∆C)αβ γδ = −δαγ δβδ∇2 − 1

2
Cαβ

γδ .

Our expression for the left-moving spin-3/2 determinant is then

det ∆3/2 + = (det ∆C)2 (det ∆0)2 .

The same operator ∆C also shows up in the determinant of ∆2. The traceless part of the
metric is decomposed as

h̄αα̇ ββ̇ = Hαβ
(1)ξ

α̇
(1)ξ

β̇
(1) +Hαβ

(2)ξ
(α̇
(1)ξ

β̇)
(2) +Hαβ

(3)ξ
α̇
(2)ξ

β̇
(2) (22.8)

where the nine dynamical degrees of freedom are now contained in three symmetric
tensors, Hαβ

(i) , with i = 1, 2, 3. The Laplacian operator ∆2 is defined in (21.7) and also
contains a Riemann tensor term. To understand its action on the H(i), we again look at
the contraction

σ̄a α̇ασ̄b β̇β(∆2)ab;cdσ
(c
γγ̇σ

d)

δδ̇
= σ̄a α̇ασ̄b β̇β

(
−1

4
ηacηbd∇2 − 1

2
Racbd

)
σ

(c
γγ̇σ

d)

δδ̇

=
1

2

[
−δαγ δβδ δα̇γ̇ δβ̇δ̇ ∇

2 − 1

2
Rαα̇

γγ̇
ββ̇

δδ̇ + (γγ̇ ↔ δδ̇)

]
=

1

2
δα̇γ̇ δ

β̇

δ̇
(∆C)αβ γδ

where, at each step, one should understood these operators to be acting on suitably
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symmetrized objects. This means that we have

det ∆2 = (det ∆C)3 =
(det ∆3/2 +)3/2

(det ∆0)3
.

Putting all this together, we find that the ratio of determinants (22.4) in an anti-self-dual
background can be written as

Γ =

(
det ∆3/2 +

det ∆3/2 −

)−1/2(det ∆1/2 +

det ∆1/2 −

)+1/4

. (22.9)

The determinants take the form of ratios of chiral Dirac operators. This is characteristic
of instanton computations in supersymmetric theories. Indeed, since the spectrum of
non-vanishing eigenvalues of ∆s+ (with s = 1/2, 3/2) is identical to the spectrum of
∆s− one might naively think that these determinants cancel. (This was the conclusion
reached in [53] based on an explicit bijection between the bosonic and fermionic eigen-
functions in of the operators in (22.4).) However, this is too quick. The spectra of both
∆s+ and ∆s− contain a continuum of scattering states, and while the range of eigenval-
ues of the two operators coincide, their densities are not necessarily the same. Below
we will compute Γ in a multi-Taub-NUT background and show that it is non-trivial.

The non-cancellation of determinants around self-dual backgrounds has precedent.
It occurs in three-dimensional supersymmetric gauge theories where the instantons are
’t Hooft-Polyakov monopoles [256, 257]. (The spectral asymmetry of the Dirac opera-
tors had been appreciated earlier in the renormalization of monopole states in four-
dimensional gauge theories [258].) The non-cancellation of determinants also arises
in supersymmetric quantum mechanics where the instantons are kinks [259]. (Again,
the first appearance of this can be traced to the mass renormalization of kinks in two
dimensional theories [260]; a detailed review of these effects can be found in [261].)

Finally, we mention that closely related results have been seen recently in the compu-
tation of the elliptic genus in non-compact sigma-models, where the non-cancellation
of a continuum of scattering states results in a holomorphic anomaly [262, 263]. This
effect also occurs for Taub-NUT sigma-models [264]. It would be interesting to see if
there is any deeper relationship between these two effects.

Evaluating the Determinants

We now turn to the task of evaluating the determinants explicitly. This is possible be-
cause there is a close relationship between the ratio of determinants in (22.9) and the
(regularized) index for the appropriate Dirac operator [256]. To see this we first define
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the regularized ratio

D(m2) =
det ∆+ +m2

det ∆− +m2
. (22.10)

This expression could apply to either s = 1/2 or s = 3/2 operators. Here m2 plays the
role of an infra-red regulator; its presence will allow us to easily extract the zero modes
from the determinants later. Now consider

I(m2) =
∂ logD

∂ logm2
= Tr

[
m2

∆+ +m2
− m2

∆− +m2

]
.

This is the regularized index of the Dirac operator. The index itself is given by

I = lim
m2→0

I(m2)

and counts n+ − n− where n± is the number of zero modes of ∆±.

In what follows, we want to treat both s = 1/2 and s = 3/2 operators at once. We
can do this at the expense of introducing some new notation. We return to the original
4-component spinor notation, with the Dirac operator written as γ̂ ·∇. For the spin-1/2
field, we simply choose γ̂µ = γµ. But, for the spin-3/2 field, the Dirac operator in (20.1)
means we should pick (γ̂µ)ρσ = −1

2
γσγ

µγρ, where the additional indices are contracted
with the spacetime indices of ψµ.

For both cases, we have {γ̂a, γ̂b} = 2δab, and γ̂5 = γ̂1γ̂2γ̂3γ̂4 = γ5 so that {γ̂5, γ̂a} = 0.
We should also bear in mind that the Lorentz generators tab are different for the two
spins.

With this new notation, we can write the regularized index as

I(m2) = Tr

[
γ̂5 m2

−(γ̂ · ∇)2 +m2

]
.

We now split this expression for I(m2) into two terms. One of these will be somewhat
subtle and we should be careful in proceeding. Wary of this, we will work with a form
of zeta-function regularization. This means first introducing a new parameter z and
replacing the expression in square brackets above with

γ̂5 m2

(−(γ̂ · ∇)2 +m2)1+z = γ̂5 1

(−(γ̂ · ∇)2 +m2)z
+ γ̂5 (γ̂ · ∇)2

(−(γ̂ · ∇)2 +m2)1+z . (22.11)

We will ultimately set z = 0. The first term above naively looks like it reduces to γ̂5

when we set z = 0. But this is too hasty: it ignores the presence of the anomaly. To see
this, we use the same heat kernel techniques that we employed in Section 21.5. Taking
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the trace, the first term above reads

Tr

[
γ̂5 1

(−(γ̂ · ∇)2 +m2)z

]
= Tr

[
γ̂5 1

Γ(z)

ˆ ∞
0

dt

t1−z
e−(−(γ̂·∇)2+m2)t

]
.

This is the same kind of integral that we saw in Section 21.5. Up to terms which vanish
as z → 0, the result is very almost the expression B4 given in (21.29); the only differ-
ence is the presence of γ̂5 in the spinor trace. This kills most of the terms and changes
RµνρσRµνρσ expression in (21.29) into ∗RµνρσRµνρσ. The end result is

lim
z→0

Tr

[
γ̂5 1

(−(γ̂ · ∇)2 +m2)z

]
=

αs
24 · 16π2

ˆ
d4x
√
g ?RµνρσRµνρσ .

This is the promised contribution from the axial anomaly. The coefficient αs depends
on the spin of the operator and is given by4

α1/2 = 1 and α3/2 = −20 .

We now turn to the second term in (22.11). This term is less delicate and we can happily
set z = 0 from the beginning without repercussion. (We will, however, still implicitly
use zeta-function regularization later when we come to evaluate it.) This term is, in
fact, a total derivative, and the full regularized index takes the form

I(m2) =
αs

24 · 16π2

ˆ
d4x
√
g ?RµνρσRµνρσ +

ˆ
dSµ
√
g bdy J

µ (22.12)

where√g bdy is the square-root of the induced metric on the boundary and the current
Jµ is defined by

Jµ = lim
y→x

1

2
tr 〈y| γ̂5γ̂µ

γ̂ · ∇
(−(γ̂ · ∇)2 +m2)

|x〉 . (22.13)

The two contributions in (22.12) are typical for index theorems on manifolds with bound-
ary. (See, for example, [265], for a discussion of index theorems for gravitational instan-
tons. A similar structure is also seen in index theorems for Yang-Mills-Dirac operators
on R3 × S1 [266].)

So far our discussion has been for a general anti-self-dual metric. At this point we
restrict to the multi-Taub NUT spaces of interest, with metric given in (22.2). They have
Pontryagin class

1

16π2

ˆ
d4x
√
g ?RµνρσRµνρσ = −2k . (22.14)

4In the expression for the axial anomaly (21.5), the spin-3/2 and spin-1/2 contributions differ by a
factor of −21. This is because, in computing the physical anomaly, the factor of −21 includes the contri-
bution from three spin-1/2 ghosts. These have different chiral charges and change the α3/2 = −20 that
arises in the present computation into the −21 that appears in (21.5).
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To compute the boundary in (22.12), we use some standard machinery [267]. The cur-
rent is a local response to a nearby (as x→ y) excitation and its flux through the bound-
ary can be computed using only the asymptotic form of the metric (22.2). Since the
volume scales as r2, anything decaying as 1/r3 or faster in the current vanishes. Ac-
cordingly, if we expand the covariant derivatives as∇µ = ∂µ + 1

2
tabωabµ, we have

Jµ =
1

2
tr 〈x| γ̂5γ̂µγ̂ν

(
∂ν +

1

2
ωabνt

ab

)[
1

(−∆0 +m2)

+
1

(−∆0 +m2)
ωab

ρtab∂ρ
1

(−∆0 +m2)
+ . . .

]
|x〉 .

The leading terms vanish using tr γ̂5γ̂aγ̂b = 0. Keeping only terms which survive
asymptotically, we find

Jµ −→ 1

2
tr
[
γ̂5γ̂µγ̂νtab

]
ωab

ρ 〈x|
[

1

2

gνρ
(−∂2 +m2)

+
∂ν∂ρ

(−∂2 +m2)2

]
|x〉 .

The overall coefficient is determined by the trace of gamma matrices. It differs for spin-
1/2 and spin-3/2:

1

2
tr
[
γ̂5γ̂µγ̂νtab

]
= βsε

µνab with β1/2 = 1 and β3/2 = 4 .

Using the self-duality of the spin connection (22.5), we can then write

Jµ −→ −βs ωµνρ 〈x|
[

gνρ
(−∂2 +m2)

+
2∂ν∂ρ

(−∂2 +m2)2

]
|x〉

= −βs ωµνρg−1/2 1

2πL

∑
n

ˆ
d3k

(2π)3

[
gνρ

(k2 +m2)
− 2kνkρ

(k2 +m2)2

]

where we have introduced a Fourier basis to integrate over the 4d momenta kµ =

(k, n/L). Our interest is in the outward flux, J i where we will take i = 1, 2, 3 to be
a tangent space index for simplicity. Asymptotically, the metric is locally flat and we
have k2 = k2 + n2/L2. Using the explicit form of the spin connection, one finds that
only the ν, ρ = 4 components contribute, and the relevant current is given by

J i −→ −βs
2

(∂i logU)
1

2πL

∑
n

ˆ
d3k

(2π)3

[
1

(k2 + n2/L2 +m2)
− 2

(k2 + n2/L2 +m2)2

n2

L2

]

= +
βs
2
∂i

(
1 +

Lk

2|x|

)
1

8π2L

∑
n

[(
n2

L2
+m2

)1/2

+

(
n2

L2
+m2

)−1/2
n2

L2

]

= − βsk

32π2L

xi

|x|3
∑
n

[(
n2 +m2L2

)1/2
+
(
n2 +m2L2

)−1/2
n2
]

260



where we have taken the liberty of regularizing the linearly divergent term that appears
in going from the first to the second line. Finally, we need the fact that the asymptotic
flux is given by

ˆ
dSi
√
g bdy

xi

|x|3 = 8π2L .

Putting this together with the Taub-NUT Pontryagin class (22.14), the regularized index
(22.12) can be written as

I(m2) = −αsk
12
− βsk

4

∑
n∈Z

[(
n2 +m2L2

)1/2
+
(
n2 +m2L2

)−1/2
n2
]

. (22.15)

The Index

Let us pause to compute the index of the Dirac operator in the multi-Taub-NUT back-
grounds. As we saw previously, the index is given by I(m2 = 0). In this limit, the sum
above reduces to 4ζ(−1) = −1/3. (The sum is over both positive and negative integers
which gives a factor of 2.) Combined with the contribution from the Pontryagin class,
we find

I = − k

12
+

k

12
= 0 for spin-1/2

and

I = +
20k

12
+

4k

12
= 2k for spin-3/2 .

This agrees with the results of [265]. This also confirms a statement that we made ear-
lier: if we are interested in contributions to the superpotential, only the single Taub-
NUT, with k = 1, will play a role. Nonetheless, for completeness we will compute the
determinants around an arbitrary multi-Taub-NUT background.

It is instructive to return to the decomposition of spin-3/2 fermions in a self-dual
background (22.7). We see that the degrees of freedom include two anti-self-dual two-
forms, Fαβ , transforming in the (1, 0) representation of SO(4). These are the objects
that carry the zero modes. The same objects appear in the decomposition of the metric
(22.8) which contains three anti-self-dual two-forms Hαβ . This is the reason why the
metric (22.2) has 3k bosonic zero modes. These are identified with the positions Xa of
the NUTs.

Back to the Determinants

We now return to the task of computing the determinants. The sums in our expression
(22.15) for I(m2) are divergent. Although we have used zeta-function regularization
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in the derivation of the first term in (22.15), at this stage it is important that we return
to Pauli-Villars regularization so that we can correctly match the finite terms with our
one-loop counterterm (21.30). We have

logD(m2)− logD0 =

ˆ 1

0

dλ

λ

[
I(λm2)

]
PV

= −βsk
4

∑
n

[
2
√
n2 +m2L2 − 2|n| − 4|n| log

(
1

2
+

1

2

√
1 +

m2L2

n2

)]
PV

where logD0 = limλ→0 [logD(λm2)]PV is the logarithmic ratio of determinants in the
limit in which all four fields in the Pauli-Villars regulator become massless. The equality
on the second line follows after noting that anym2-independent piece in I(m2) vanishes
in the Pauli-Villars regulator.

The sum above is now finite for each Pauli-Villars field individually. In the limit
m2 → 0, the sum vanishes which means that it receives no contributions from the
original field. But it still receives contributions from the three additional terms in
the regularization (21.21). Each of these has a large mass given by MUV (or γMUV or
(γ − 1)MUV +m2) and we are interested in the asymptotic form of the sum in the limit
MUV →∞. We find that

ˆ 1

0

dλ

λ

[
I(λm2)

]
PV −→

βs
12

[
log(µ2R2) + C ′

]
where µ2 = (γ − 1)M2

UV/γ is the appropriate Pauli-Villars scale. The same quantity
appeared in the one-loop counterterm (21.30). The constant is given by C ′ = − log 4 +

1− 24ζ ′(−1).

The quantity logD0 = limλ→0 [logD(λm2)]PV is dominated by the zero modes. As we
saw above, there are I = 0 zero-modes for spin-1/2 operators and I = 2k zero modes
for spin-3/2. We have

D0 =
(λm2)I(λγM2

UV)I

(λM2
UV)I(λ(γ − 1)M2

UV + λm2)I
−→

(
m2

µ2

)I
.

We now have everything that we need to compute the one-loop determinants (22.9)
about the k-centred Taub-NUT background. In the limit m2 → 0, the determinants
take the form

Γ =

(
det ∆3/2 +

det ∆3/2 −

)−1/2(det ∆1/2 +

det ∆1/2 −

)+1/4

= m−2k Γ′
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which reflects the fact that 2k zero modes are carried by ∆3/2 +. The truncated determi-
nants Γ′ are given by

Γ′ = (µ2)41k/48

(
R2

A

)−7k/48

(22.16)

where the constant numerical factor is

A = 4e24ζ′(−1)−1 .

We have seen the numbers that appear in (22.16) before! The fraction 41/48 appeared
as the beta-function for the running Gauss-Bonnet coupling (21.30). This is not a coin-
cidence. The fraction 7/48 appeared in the one-loop shifted complex structure (21.28).
This is not a coincidence either.

22.3 Zero Modes and Jacobians

In any instanton computation, one should isolate the zero modes and replace their con-
tribution to the path integral with a normal integration over the associated collective
coordinates. In doing so, we pick up a Jacobian factor for our troubles. For gravitational
instantons, this procedure was described in [45].

Bosonic Zero Modes

We restrict our attention to the Taub-NUT metric (22.2) with k = 1. This metric has three
collective coordinates which are identified with the position X of the nut. The three
corresponding zero modes arise from translations and suitably gauge-fixed versions of
them can be conveniently constructed by taking the Lie derivative of the metric along
one of the three vector fields ∂/∂xi, i = 1, 2, 3,

h(i)
µν = Ligµν = 2∇µ∇νx

(i) .

These zero modes are pure gauge. However, they arise from large gauge transforma-
tions which do not die off sufficiently fast at infinity and so should be thought of as
physical. To see that they satisfy the transverse trace-free gauge condition, we use the
facts that in our background we have

∇2x(i) = gµνΓiµν = 0

and also that we can commute certain derivatives through each other since Rµν = 0.
Taking these together, one finds

∇µ
(
∇µ∇νx

(i)
)

= ∇ν∇2x(i) = 0 , gµν
(
∇µ∇νx

(i)
)

= ∇2x(i) = 0 .
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To compute the Jacobian, we need an inner product between the modes. This is inher-
ited from the action and is given by,

M2
pl

2

ˆ
d4x
√
g

1

2
h(i)
µνh

(j)µν = M2
pl

ˆ
d4x
√
g
(
∇µ∇νx

(i)
) (
∇µ∇νx(j)

)
= M2

pl

ˆ
dSµ
√
g bdy

(
∇µ∇νx

(i)
) (
∇νx(j)

)
= 2πM2

plL

ˆ
d2x eµk

xk

r
r2
(
−Γiµν

) (
gνj
)

= πM2
plL

ˆ
d2x

xk

r
r2
(
−δij∂k − δik∂j + δjk∂

i
)
U

= 2π2M2
plL

2 δij

which we recognize as the Taub-NUT action, STN = 2π2M2
plL

2. The upshot is that the
integral over the three bosonic collective coordinates comes with the measure

ˆ
dµB =

ˆ
d3X

(2π)3/2
S

3/2
TN . (22.17)

Fermionic Zero Modes

As we saw above, the gravitino has two zero modes in the k = 1 Taub-NUT background.
These are Goldstino modes, arising from broken supersymmetry but, like their bosonic
counterparts, are physical as they arise from large gauge transformations of the form
ψµ = ∇µε. The ε parameter satisfies the gauge fixing condition

γµψµ = /Dε = 0 .

The gravitino introduced in the original action (20.1) is a Majorana fermion. However,
there is no Majorana condition in Euclidean space and, for this reason, it is simplest to
work with a two component Weyl spinor formalism where

ψµ =

 ψµα

ψ̄ α̇
µ

 .

The zero mode for this two-component spinor is then ψµα = ∇µεα, α = 1, 2, and the
zero mode equation reduces to

σ̄µ∇µε = −iσi ∂i
(
U1/2ε

)
U

= 0

which has normalizable solutions of the form

ε =
1

U1/2
ξ
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for any constant spinor ξα. (These are not to be confused with the right-handed spinors
ξα̇ introduced at the beginning of Section 22.2 which are associated to the unbroken
supersymmetry. In contrast, the left-handed spinors ξα are associated to the broken
supersymmetry.)

The fermionic zero modes are accompanied by the measure
ˆ

dµF =

ˆ
d2ξ J −1

F .

The fermionic Jacobian, JF , is given by the overlap of zero modes,

JF =
M2

pl

2

ˆ
d4xd2ξ

√
g (∇µε)α (∇µε)α

=
M2

pl

2

ˆ
dSµd2ξ

√
g bdy ε

α (∇µε)α

= πM2
plL

ˆ
d2x xi r (∂iU

−1/2) =
1

2
STN

where, in the last line, we use the normalization
´

d2ξ ξ2 = 1.

Putting this together with the bosonic measure (22.17), we find that the integration
over all collective coordinates is accompanied by the Jacobian factor

ˆ
dµBdµF =

ˆ
d3X

(2π)3/2

ˆ
d2ξ 2S

1/2
TN . (22.18)

22.4 Computing the Superpotential

We now have all the ingredients necessary to compute the instanton-generated super-
potential. We start by computing the two-point function of the 3d spin-1/2 fermion χ
which arises under dimensional reduction (20.6) from ψ4. As we have just seen, in the
background of Taub-NUT we can turn on a fermionic zero mode. For χ, this is given
by

χα =
1

2
ωab4

(
σabξ

)
α

=
∂iU

U3/2

(
σi4ξ

)
α

.

Far from the NUT itself, the zero mode becomes

χα → πLSF (x−X) βα ξβ

where SF (x) = γi3dxi/4πx
3 is the flat-space propagator. This form will suffice for our in-

stanton computation. Using our results for the action (22.3), the one-loop determinants
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(22.16) and the measure (22.18), we have the two-point function

〈χα(x)χβ(y)〉 =

ˆ
d3X

(2π)3/2

ˆ
d2ξ 2S

1/2
TN µ41/24

(
R2

A

)−7/48

e−2π2M2
plR

2+iσe−τ
?
grav

× π2L2SF (x−X) γα ξγ SF (y −X) δβ ξδ .

Let’s firstly explain why the various fractions that appear in the determinants are not
coincidental. The power of the Pauli-Villars scale µ41/24 combines with the e−τ?grav factor
to give rise to the RG-invariant scale that we introduced in (21.4),

(Λ?
grav)41/24 = µ41/24e−α(µ)+2iθ .

As we explained in Chapter 20, the complexified Λgrav sits in a chiral multiplet and so
can appear in the superpotential. Meanwhile, the power of (R2)−7/48 combines with
the instanton action to give e−S? where S is the one-loop corrected complex structure
introduced in (21.28),

S = 2π2M2
plR

2 +
7

48
log(M2

plR
2) + iσ .

Once again, S is the lowest component of a chiral multiplet and so can naturally appear
in a superpotential. (There are further powers of R buried in the factor S1/2

TN in the two-
point function but, as we will now see, these do not appear in the superpotential.)

Continuing with the computation, we have

〈χα(x)χβ(y)〉 =
A7/48

2(2π)3/2

(
Λ?

grav

Mpl

)41/24

S
3/2
TN e−S

?

ˆ
d3X SF (x−X)αγSF (y −X)βδε

γδ .

We want to write down a low-energy effective action forχwhich captures this two-point
vertex. This can be simply done if the kinetic term (20.7) around a flat background is
supplemented by the interaction term

Sχ =

ˆ
d3x

√
−g(3) M3

[
χ̄/∂χ+

M3A
7/48

4(2π)3/2

(
Λgrav

Mpl

)41/24

S
3/2
TN e−S χχ+ h.c.

]
(22.19)

where we are now working in the choice of coordinates of (22.2) such that R(x) → L

asymptotically. We would like to determine the supersymmetric completion of this
interaction term.

Supersymmetric Effective Action

The spin-1/2 fermion χ is related to the superpartner of our complex scalar S defined
classically by (21.25). However, there is an important normalization that must be de-
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termined. We denote by Ψ the spin-1/2 Dirac fermion that sits in the chiral multiplet
with S. By supersymmetry, the kinetic term for Ψ must agree with that of S in (21.26),
namely

SΨ = M3

ˆ
d3x

√
−g(3)

1

(S + S†)2
Ψ̄/DΨ .

Restricting to a flat background, and comparing to (20.7), we learn that the correctly
normalized superpartner of S is given by

Ψ = 2πM3Rχ .

The instanton-generated ΨΨ vertex in the low-energy effective action arises from a su-
perpotential. The general form involves a number of terms. (See, for example, [268]
for the general form in four-dimensions, or [240] for the three-dimensional effective ac-
tion.) However, to the order that we’re working, only the leading term contributes and
the fermionic part of the action should take the form

SΨ =

ˆ
d3x
√
g(3) M3

[
(∂∂̄K) Ψ̄ /DΨ +

1

2
(eK/2∂∂W) ΨΨ + h.c.

]
(22.20)

where for the purposes of this calculation it suffices to use the classical Kähler potential
K = − log(S+S†) defined in (21.27). Comparing the two expressions (22.19) and (22.20),
we find that the superpotential is given by

W = CM3

(
Λgrav

Mpl

)41/24

e−S

with the overall constant

C =

(
4e24ζ′(−1)−1

)7/48

2(4π)3/2
.

Note that the superpotential is not invariant under the U(1)J symmetry which shifts
the dual photon. Further, the Yukawa vertex in (22.20) explicitly breaks the U(1)R sym-
metry under which the gravitino is charged; this is a manifestation of the axial anomaly
(21.5). However, a combination of the U(1)J and U(1)R symmetries survives.

The Potential

The supersymmetric completion of the Yukawa term is a potential for the chiral multi-
plet. In three-dimensional supergravity, this is given by (see, for example, [240, 222])

V = M3 e
K
(
(∂∂̄K)−1 |DW|2 − 4|W|2

)
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with DW = ∂W + (∂K)W . This potential includes some critical points at S ∼ O(1).
They are not to be trusted as they lie outside the semi-classical regime of large S where
we performed our calculation. Instead, at large S , the potential is dominated by the
|W ′|2 term and takes the runaway form

V ∼M3
3 (RΛgrav)41/24 exp

(
−4π2M2

plR
2
)

.

We learn that the Kaluza-Klein compactification of N = 1 supergravity on R3 × S1 is
not a ground state of the theory. This instanton-generated potential causes the circle to
decompactify to large radius R.
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PART VII

Conclusion





23 Summary

Throughout this dissertation, we have been interested in pursuing precision in the com-
plicated world of non-perturbative quantum dynamics. Both in condensed matter or
quantum gravity, the difficulty of the problems we must deal with means physics has
often proceeded heuristically. Yet by cleverly constructing toy models (Chern-Simons-
matter theories on the one hand, minimal supergravity models on the other) and mak-
ing use of the sophisticated mathematical machinery of theoretical physics, we can
make real inroads into these theories.

One of the key guiding principles is to exploit supersymmetry to tell us what theo-
ries to look at. In the non-relativistic context of anyon physics and the quantum Hall
effect, this simply meant choosing parameters cleverly. This allowed us to exploit our
knowledge of superconformal algebras on the one hand, and supersymmetric solitons
in the form of vortices on the other. In the very much relativistic context of quantum
gravity, supersymmetry really meant adding in some fermions to our problem. This
exposed the effects we were interested in, and rendered even non-perturbative calcula-
tions tractable – again, knowledge of supersymmetric solitons proved to be very useful.

Importantly, in neither case do we end up very far from the physics we were looking
for, despite the move to more tractable models. It is very clear from all of our concrete
results in non-relativistic theories that we are working at the very least in the same
universality class as one would normally elect to. Over in the world of quantum grav-
ity, the existence and role of Λgrav is independent of the presence of supersymmetry;
equally supersymmetry did not have much to say about the choice of which manifolds
to include in the path integral.

In both settings, the most obvious thing gained the ability to do an impressive amount
of direct calculation: analytically computing anomalous dimensions, quasihole prop-
erties, exactly evaluating partition functions, calculating effective potentials, and so on.
Perhaps more significant, though, are the consequences of being able to work through
the details: we learn about the way bosonization works; we see how to phrase the re-
lation between microscopic Hall wavefunctions and Wess-Zumino-Witten current al-
gebras; we discover new equivalent models of the QHE; we can test how sensible our
ideas about quantum gravity actually are, identify and isolate new quantities of inter-
est, and make sure we have the right dependence on all parameters of our theory; and
so on.
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So at a high level, one take-home message of this work is that it is still worth taking
the time to identify good, solvable models exhibiting effects we are interested in – and
solving them. You never know what you will find along the way. This approach is of
course one lying at the heart of theoretical physics. But crucially, by importing new
advances in other areas (like supersymmetric solitons) into the problems we face, the
number of models which are solvable can be extended. It is easy to miss the conse-
quences of an advance in one field for another, but every time we miss such a synergy
we simply make life harder for ourselves.

Having looked at the general messages of the dissertation, let us review the more
specific ideas presented in the various parts of the dissertation, and assess their signif-
icance.

Anyons and Quantum Hall Physics

Here is an executive summary of some of the computational achievements in Parts II-V:

• The ideas of supersymmetry, brought to non-relativistic field theory, have sur-
prising power. This holds even if we throw away the supersymmetric partners in
the field theory.

• We can compute the chiral part of the spectrum of non-relativistic superconformal
field theories, and see how bosonization is implemented in such a setting.

• We can model the quantum Hall effect using matrix models – even in a wide class
of non-Abelian states.

• These matrix models afford better control over these states than previous ap-
proaches. We are able to analyse them in remarkable detail:

– In the Abelian models at least we may calculate quasihole charges and statis-
tics analytically.

– We can directly link microscopic electron wavefunctions to Chern-Simons
theory by quantizing Chern-Simons vortices.

– We can see how in detail a truncation of Wess-Zumino-Witten theory emerges
from the quantum mechanics of many electrons.

• We can also exploit bosonization dualities to generate new theories of quantum
Hall states. In particular, we can construct a fermionic parton-like field theory.
This gives a different perspective on the structure of the wavefunction.

As we will outline in Chapter 24, this suggests several natural avenues to pursue. But
it is worth taking a moment to reflect on what has been achieved already and how it
might help with such future work.
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Exact calculations in strongly coupled systems are few and far between. It is pleas-
ing that emergent properties of a subtle many-body system (the excitations of a vortex
droplet) can be calculated from first principles. Of course, as we will outline below
the dream is to use this to model and explain more complicated phenomena, either by
investigating the models we have in more detail, or by deforming them in interesting
ways. If we can do this in a clever way, perhaps we will begin untangling some of the
issues described below by direct calculations.

Complementary to this, broadening the collection of models we have for these states
makes it easier to see how to deform the idealized quantum Hall states we typically
study. It also offers potential insight into the formation of these states: we see a differ-
ent emergent gauge symmetry, for instance, in the dual fermion version of the Chern-
Simons theory.

Progress in systematizing the complicated picture of theories and probing the depth
and nature of their interrelations is itself very helpful. Knowing for instance how to
construct currents for large numbers of particles which can be directly modelled with
Wess-Zumino-Witten theories gives a clear picture of how to use results about the latter
to understand the microscopic state.

In general, we have attempted to enrich the toolbox of theoreticians studying anyonic
and quantum Hall physics, using ideas borrowed from high-energy theory. Hopefully
this will inform future efforts to explore these remarkable phenomena.

Quantum Gravity

Meanwhile, in Part VI, we explored the world of effective quantum gravity. We have
already highlighted the main points, but let us reiterate them briefly to see where we
stand:

• Generically1, there is a logarithmic running of the Gauss-Bonnet term in the Wilso-
nian action of quantum gravity theories. This causes dimensional transmutation,
and leads to a new scale Λgrav associated with the contributions of topologically
distinct spacetimes. It can naturally be parametrically separated from ultra-violet
scales like the Planck scale.

• There are settings where this scale dictates the physics, such as the quantum in-
stability of R1,2 × S1, which we saw arises from instantons.

1Meaning without very specific matter content, as with lots of supersymmetry – more than N = 1 –
at low energies.
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• There are several reasonable physical principles which guide our choice of what
instantons to consider in this computation, and they seem to agree: nucleation
of instanton-anti-instanton pairs; imposition of ’initial’ and ’final topologies’ at
infinity; analysis of the 3d effective theory; and string theory models of the ultra-
violet completion.

• It is possible to evaluate subtle non-cancelling one-loop determinants in self-dual
backgrounds using the power of supersymmetry. This relies on the very neat
organization of the fields in a twistor-like manner into their spinor irreps.

It is surprisingly satisfying to see that all the various moving parts of this calculation –
one-loop divergences around flat space, corrections to complex structures, selection of
instantons, determinant calculations in instanton backgrounds, and so on – fit together
to give a consistent picture. This seems a very good sanity check on the computation.
But more importantly, it is a sanity check on the ideas we are applying to the theory.

It seems clear in light of this computation that we can ask a straightforward question
of an effective gravity theory and get a reasonable answer, which is heartening. It also
seems clear that we must appreciate the role of Λgrav in such computations, which is
interesting. And it seems believable that we have obtained a good rationale for identi-
fying which instantons contribute to the path integral here, which is exciting.

Given how few and far between detailed computations are in this field, it is comfort-
ing to find that they can be done – and intriguing that we can learn new things by doing
them.
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24 Outlook

As mentioned above, the general strategy advocated in this dissertation – solving spe-
cial cases or toy models – is one familiar to all physicists. But again it is worth empha-
sizing that none of the progress in the Hall effect would have been possible without
the insights about matrix models which are credited to string theory; and it was a set
of computations in flat space gauge theories which we have adapted to the context of
non-perturbative quantum gravity.

The outlook for this kind of approach to physics is good. There is a lot of conversation
between condensed matter theorists, string theorists, numerical relativists, higher-spin
gravity theorists, mathematical physicists, geometers and so on, particularly in light of
ideas like the AdS/CFT correspondence which have driven inter-disciplinary collabo-
rations. It is good that we exploit this not simply to work on projects in the intersection
of these areas, but to import techniques wholesale from one area into another. The
progress in bosonization dualities is also very much of this nature, with a basic idea
from condensed matter driving progress in various other areas like large N gauge the-
ories studied by string theorists.

But let us focus on offering up some suggestions for future work in light of the specific
results we have obtained in anyonic physics and in quantum gravity:

Anyons and the Quantum Hall Effect

Indeed, there are a great many things which one might hope to do, particularly using
our new approaches to the quantum Hall effect. Here are just a few ideas and sugges-
tions:

• There are still loose ends in the ongoing research reported at the end of Part II; it
is clear that bosonization is essentially working as it should, but there are a few
details to straighten out. It would be interesting to see if there are unanswered
questions about the relativistic dualities which can be tested in the playground of
the non-relativistic section.

• We could try and understand more of the phenomenology of the quantum Hall
effect from our microscopic models. For example:
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– Magnetoroton modes are surprisingly universal and even quantitatively ro-
bust, and so may be within grasp of our models; reproducing the distinctive
Bessel function-like dispersion relation would be exciting [269].

– It would be nice to understand the role of different effective trapping poten-
tials in the energetics of our models; analysis of hard confinement, for exam-
ple, has shown that this can make qualitative differences to the energetics of
quasiholes [270].

– It may be possible to deform our theory slightly away from the supersym-
metric point and understand what other effects electron interactions can have
on our theory. This might provide some additional insight into these states.

– These models could be amenable to adding impurities. If we can do this and
retain our control, we could get a handle on some interesting aspects of more
realistic Hall physics. (In some supersymmetric theories, impurities can be
well understood, as in [173].)

• It would also be interesting to assess the entanglement structure of our Hall states,
and possibly compute things like entanglement entropies. Calculating these quan-
tities has proved very productive elsewhere in theoretical physics, and it would
be very useful to have a highly non-trivial model in which we could, say, compute
them exactly.

• Another project, mentioned at the end of Part III and already under way, is the
analysis of product gauge groups. Understanding K-matrix theories and hope-
fully ultimately the hierarchy in a new way would be fascinating. String theory
literature again offers a suggestion of where to look: quiver gauge theories. The
author has already made some progress using these models as inspiration.

• The other idea mentioned at the end of Part III, of exploring (4+1)-dimensional
quantum Hall states, certainly also seems to be interesting. The author is also
pursuing this line of interest.

• Along we the way, we pointed various possible projects such as those on bosoniza-
tion mentioned in Section 14.2.4, and earlier suggestions about mirror symme-
try in Chapter 10. On top of this, it would be interesting to understand to what
extent the bosonization dualities we have discussed underlie more general non-
Abelian dualities in d = 2 + 1 dimensions. For example, are they related to
other approaches such as [80, 271]? Can they be used as building blocks to de-
rive non-Abelian particle-vortex dualities, or their supersymmetric counterparts
constructed in [272, 273]?

• A more ambitious goal would be to try and find ways to extend these models to
cover the transitions between Hall plateaus. This is a real challenge, since we do
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not have any real understanding of what guiding principles are available in con-
structing effective models, and from experimental data this physics seems less
universal than that in the middle of the plateau. Yet perhaps the K-matrix ap-
proach, with its connections to hierarchy physics, will unlock some of the secrets
of these poorly understood states.

• Finally, one last hard problem: giving models of the microscopic mechanisms
by which certain Hall states are preferred. Again, messy, small-scale physics is
clearly important here – but our model is remarkably powerful in connecting
smaller scales to larger ones, so perhaps it is possible to deform the model to
simulate this and unpick the remarkable structure of Figure 1, with which this
dissertation began.

Quantum Gravity

Over in the quantum gravity picture, there are also now some definite questions to ask.
Two of the most obvious first:

• Where does Λgrav crop up?

• What is the value of Λgrav in our universe?

It would be especially intriguing if Λgrav �Mpl, so that there was an additional scale
present in our universe at observable energy scales which we had simply missed. The
reason for us missing it, of course, is that it contributes only to subtle non-perturbative
gravitational effects, and we still don’t know exactly what they are.

(At the risk of indulging ourselves, one might point out that we made reference to
the rather speculative work of authors like Coleman and Carlip in the introduction
on issues such as the cosmological constant problem. It seems certain that our work
should at least have something to say about ideas such as summation over wormholes
and bubbling universes. It is also tempting to speculate about the possibility that having
a new low energy scale Λgrav might help explain certain other mysterious low-energy
scales which we have observed: the cosmological constant and the Higgs mass, for
example.)

If we want to search for this scale in our universe, of course, one issue which should
be addressed is exactly what is robust when we remove the comfort blanket of super-
symmetry. Certainly the basic argument that it appears in summations over distinct
topologies is clear: the logarithmic running is present in generic gravitational theories,
and it always contributes a factor dependent upon the Euler characteristic of the man-
ifold. But is this swamped by other terms without the protection of supersymmetry?
There is no particular reason to expect so, but we should certainly check.
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It would be nice to take our principles for identifying instantons and formulate them
in a very mathematical way (perhaps in the language of gluing manifolds together),
and then to try and classify the contributions to key universes of direct interest to us.
This is made more difficult, but also more interesting, by how poorly understood the
classification of 4-manifolds is.

It might also prove interesting to pick some simple variations of the problem we have
tackled (perhaps compactifying more dimensions, for instance) and see if and how the
story changes. What aspects of the instability are generic, for example, and which de-
pend on dimension and so forth?

Additionally, one might ask whether our scale has any role to play in holography,
where non-perturbative effects such as black hole formation in the bulk theory are well-
known to be significant. If so, what is the role of the scale in the boundary theory?

Finally, one last idea which might prove interesting is trying to understand our new
scale and our rules about instantons in the context of candidate ultra-violet completions
of quantum gravity. For instance, what sets the scale of Λgrav in string theory? If we
can identify observable quantities dependent on Λgrav, can this be a test of potential
quantum gravity models?

Perhaps having a good example to glance back at will eventually shed some more
light on this subtle but fundamental area of physics.
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PART VIII

Appendices





A Non-Relativistic Limits

Lagrangian such as (4.18) and (8.1) can be derived by starting from a relativistic Chern-
Simons-matter theory, with N = 2 supersymmetry, and taking a limit in which anti-
particles decouple [30]. A number of other non-relativistic theories with different gauge
groups, and more supersymmetry, have been constructed in this manner [77, 78, 79, 67].

In this appendix, we review this non-relativistic limit. We construct a more general
theory than that of [30], with gauge groupU(Nc) andNf matter multiplets transforming
in the fundamental representation of the gauge group. (For simplicity, we do not give
different levels to theU(1) and SU(Nc) parts, but it is hopefully clear that it generalizes.)
We also show how the chemical potential term µ can arise in this limit.

We restrict our attention to the bosonic fields and, only at the end, describe the gen-
eralization to the fermions. The bosonic Lagrangian for the N = 2 supersymmetric
U(Nc) Yang-Mills Chern-Simons theory is

S rel = −
ˆ

d3x
1

4e2
Tr (fµνf

µν) +
k

4π
εµνρ Tr (aµ∂νaρ −

2i

3
aµaνaρ) +

1

2e2
Tr (Dµσ)2

+

Nf∑
i=1

|Dµφi|2 + φ†iσ
2φi +

e2

2
Tr
(∑

i

φiφ
†
i −

kσ

2π
− v2

)2

. (A.1)

Here σ is the real, adjoint scalar which accompanies aµ in the vector multiplet, while
φi are fundamental scalars that live in chiral multiplets. We have included a Fayet-
Iliopoulos term v2, but not real masses for the φi. This can be done and results in dif-
ferent inertial masses in the non-relativistic limit.

Before proceeding, it’s useful to perform some simple dimensional analysis. We work
with ~ = 1. This, of course relates energy to inverse time scales. However, as we are
ultimately interested in non-relativistic physics, we retain the speed of light c. This
means that we have two dimensionful quantities, length L and time T .

The factors of c in (A.1) are currently hidden in the notation. The measure is

d3x = c dt d2x (A.2)

while the derivatives are

|Dµφ|2 = − 1

c2
|Dtφ|2 + |Dpφ|2
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with p = 1, 2 indexing spatial directions. Similarly, a0 = at/c. The action is dimension-
less. The other fields have dimensions [at] = T−1 and [aα] = [σ] = L−1 and [φ] = L−1/2.
The parameters have dimension [k] = 0 and [e2] = [v2] = L−1.

We first take the infra-red limit, e2 → ∞, to remove the Yang-Mills term. This also
imposes the D-term as a constraint:

kσ

2π
=
∑
i

φiφ
†
i − v2 . (A.3)

Using this to integrate out the adjoint scalar σ, the scalar potential terms in (A.1) become

V =

(
2π

k

)2∑
i

Tr φiφ
†
i

(∑
φjφ

†
j − v2

)2

. (A.4)

This kind of sextic potential is standard in supersymmetric Chern-Simons theories. The
next step is to take the non-relativistic limit by discarding anti-particle excitations. To
this end, we make the ansatz

φi(x, t) =
1√
2mc

φ̃i(x, t)e
−imc2t . (A.5)

Here m is the mass of φ, which we read off from the quadratic term in the potential
(A.4). It takes the value

m =
2πv2

kc
.

The key point of the non-relativistic limit is that φ̃ varies much more slowly that the
frequencies mc2 set by the mass gap. In particular, this means that the ansatz (A.5)
prohibits anti-particle excitations which scale as e+imc2t. Plugging the ansatz (A.5) into
the kinetic terms gives, after an integration by parts,

1

c2
|Dtφ|2 =

1

2mc

(
1

c2
|Dtφ̃|2 + 2imφ̃†Dtφ̃+m2c2|φ̃|2

)
.

The overall factor of 1/c is cancelled by the factor of c in the measure (A.2). The third
term, m2c2|φ̃|2 is designed to cancel the quadratic term in the potential. We now take
the non-relativistic limit c→∞. In doing so, we’re left only with the term linear in time
derivatives. We can repeat this for all other terms in the action. In particular, taking a
similar scaling of the potential (A.4) leaves us only with the quartic coupling

V = − π

kmc

∑
ij

(φ̃jφ̃i)(φ̃
†
i φ̃j) .
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The same scaling can be applied to the fermions in the original N = 2 theory. The end
result is a U(Nc) Chern-Simons theory, coupled to Nf fundamental matter multiplets.
To describe it, we revert to the notation φ̃→ φ. The final non-relativistic action is

S =

ˆ
dt d2x

Nf∑
i=1

iφ†iDtφi + iψ†iDtψi −
k

4π
Tr εµνρ(aµ∂νaρ −

2i

3
aµaνaρ)

− 1

2m

Nf∑
i=1

(
Dpφ†iDpφi +Dpψ†iDpψi + ψ†i f12ψi

)
− π

mk

∑
i,j

[
(φ†jφi)(φ

†
iφj)− (φ†jψi)(ψ

†
iφj) + 2(φ†iφj)(ψ

†
jψi)

]
(A.6)

which agrees with (4.18). For U(1) with Nf = 1, this is also the action (8.1) when the
chemical potential µ = 0. (We have used the notation ∂t rather than ∂0 in this appendix.)

As highlighted in Part II, the action (A.6) is invariant under superconformal transfor-
mations [30, 66].

Adding a Chemical Potential

The action (8.1) also includes a chemical potential µ which plays a crucial role in our
quantum Hall story. It is straightforward to add an analogous to term to the relativistic
Lagrangian (A.1). It is

Lµ = µTr (a0 − σ) . (A.7)

Obviously this breaks d = 2 + 1 Lorentz invariance. It preserves two of the four su-
percharges. Indeed, such terms are well known in the context of quantum mechanics
models with N = (0, 2) supersymmetry and were first introduced in [274]. In taking
the infra-red limit, the σ term in (A.7) gets replaced by

∑
φiφ

†
i through the constraint

(A.3). The resulting interaction terms of the non-relativistic theory are

V =
π

mk

∑
i,j

[
(φ†jφi)(φ

†
iφj)− µφ†iφi − (φ†jψi)(ψ

†
iφj) + 2(φ†iφj)(ψ

†
jψi)

]
.

Despite the fact that the relativistic theory with the deformation (A.7) preserves only
one complex supercharge, both supercharges (8.8) and (8.9) are recovered after taking
the non-relativistic limit. However, as we have seen, only Q2 remains a symmetry of
the spectrum.
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B The Geometry of the Vortex Moduli Space

In this appendix, we review a few basic facts about the geometry of the vortex moduli
space. Suppose that we have at our disposal the most general solution to the vortex
equation with winding N ,

φ(x;X) and az(x;X) .

We define 2N zero modes (δaφ, δaaz) to be the infinitesimal deformations which take us
from one solution to another:

δaφ =
∂φ

∂Xa
+ iαaφ and δaaz =

∂az
∂Xa

+ ∂zαa . (B.1)

Here αa(x;X) is an accompanying gauge transformation. By construction, these zero
modes solve the linearized versions of the vortex equations (9.1) for any choice ofα(x,X).
This ambiguity is fixed by further requiring that the zero modes obey the background
gauge condition,

∂z δaaz + ∂z̄ δaaz̄ =
2π

k′
(
iφδaφ

† − iφ†δaφ
)

. (B.2)

The metric on the vortex moduli spaceMN is constructed by taking the overlap of the
zero modes

gab =

ˆ
d2x

k′

π
(δaaz̄ δbaz + δaaz δbaz̄) +

(
δaφ

† δbφ+ δaφ δbφ
†) . (B.3)

In relativistic theories, this metric plays an important role: the low-energy dynamics
of the vortices is described by a sigma-model on MN with metric gab. The metric is
known to be free of singularities. It is also Kähler, inheriting its complex structure from
the natural action of complex conjugation on the fields. The associated Kähler form is

Ωab = i

ˆ
d2x

k′

π
(δaaz̄ δbaz − δaaz δbaz̄) +

(
δaφ

† δbφ− δaφ δbφ†
)

. (B.4)

We now show that this Kähler form governs the first order dynamics of vortices in our
model. We will prove that the effective action for vortices is given by

S vortex =

ˆ
dt Fa(X)Ẋa with dF = Ω .

This result was previously derived in [138, 151, 152].
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We work in the usual spirit of the moduli space: we promote the collective coordi-
nates of the static solutions to be time dependent: Xa(t). We then substitute this time-
dependent ansatz into the kinetic terms of the action (8.1). This results in an effective
vortex action,

S =

ˆ
d3x

ik′

2π
(az̄ȧz − azȧz̄) +

i

2

(
φ†φ̇− φ̇†φ

)
≡
ˆ

dtFa(X)Ẋa (B.5)

with

Fa(X) =
i

2

ˆ
d2x

k′

π

(
az̄
∂az
∂Xa

− ∂az̄
∂Xa

az

)
+

(
φ†

∂φ

∂Xa
− ∂φ†

∂Xa
φ

)
.

Note that the kinetic terms in (B.5) contain time derivatives rather than covariant time
derivatives. This is because the a0 terms in (8.1) multiply Gauss’s law and so necessar-
ily vanish. Correspondingly, the expression for Fa above contains partial derivatives of
fields which differ from the zero modes defined in (B.1) as they are missing the contri-
bution from the gauge transformation αa(x;X).

The 2-form Ω̃ = dF is

Ω̃ab =
∂Fa
∂Xb

− ∂Fb
∂Xa

= i

ˆ
d2x

k′

π

(
∂az̄
∂Xa

∂az
∂Xb

− ∂az
∂Xa

∂az̄
∂Xb

)
+

(
∂φ†

∂Xa

∂φ

∂Xb
− ∂φ

∂Xa

∂φ†

∂Xb

)
.

Our goal is to show that Ω̃ab = Ωab, the Kähler form defined in (B.4). The expressions
look similar. They differ because the expression for Ωab includes extra contributions
from the gauge fixing terms. We now show that these terms vanish.

The proof is very similar to that given recently in [275] in the context of first order
motion on the instanton moduli space. We take the difference

Ωab − Ω̃ab = i

ˆ
d2x

k′

π

(
∂az̄
∂Xa

∂zαb −
∂az
∂Xa

∂z̄αb

)
+

(
i
∂φ†

∂Aa
αbφ+ iφ†αa

∂φ

∂Xa

)
− (a↔ b)

= −
ˆ

d2x αb
∂

∂Xa

(
− k

′

2π
f12 + φ†φ

)
− (a↔ b)

where we have integrated by parts to get to the second line. But the term in brackets
vanishes, courtesy of Gauss’s law (9.1). We learn that dF = Ω, the Kähler form, as ad-
vertized. Note that the proof above did not need us to use the background gauge fixing
condition (B.2). While the metric (B.3) is sensitive to the background gauge condition,
the Kähler form (B.4) is not.
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C Overlap of Matrix Model States

Our derivation of the fractional charge and statistics of quasiholes relied on expres-
sions for the norms of matrix model states given in (9.27) and (9.29). These results have
been derived previously, most notably in the context of the Calogero-Sutherland-Moser
model. Because these results are stated in a slightly different language, we use this ap-
pendix to explain the connection.

The quantum Hall matrix model is well known to be equivalent to the bosonic inte-
grable Calogero-Sutherland-Moser model [19, 276]. This describes identical particles in
one spatial dimension, placed in a harmonic trap and interacting via a specific inverse-
square potential. To see the connection we begin, following [136], by working with a
coherent state representation of all matrix model states. Firstly, expandZ = X+iY into
Hermitian and anti-Hermitian parts, and let the overcomplete states |X,φ〉 be defined
by

X̂ |X,φ〉 = X |X,φ〉 , ϕ̂ |X,φ〉 = φ |X,φ〉

together with the normalization
ˆ
e−φ̄φdφdφ̄

∏
a,b

dXab |X,φ〉 〈X,φ| ≡ 1

where we have added hats to emphasize which symbols denote the quantum operators.
With respect to these states, we can write all states in terms of a wavefunction by taking
inner products with 〈X,φ|. This in turn gives us a way to compute the inner products
of matrix model states by computing integrals overX,φ. In what follows, we work with
the convention πµ = 1.

On these wavefunctions, Z† has the representation

Z†ab ≡
1√
2

(
Xab −

∂

∂Xba

)
analogous to the raising operator of the more familiar Hermite polynomials. Hence,
up to an overall normalization, the states we are interested in all have wavefunctions of
the form

Φf (X,φ) = f(Z†)
[
εa1···aN φ̄a1(φ̄X)a2 · · · (φ̄XN−1)aN

]k
e−

1
2

TrX2
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where f is some homogeneous, gauge-invariant polynomial. Specifically, we have the
following correspondence:

|ground〉k : f(B) = 1

|Ωl〉k : f(B) = Ba1

[a1
Ba2

a2
· · ·BaN−l

aN−l]

|Ω0,l〉k : f(B) = detB ·Ba1

[a1
Ba2

a2
· · ·BaN−l

aN−l]

At given N, k′, we will denote the state with a given choice of f simply by |f〉.

One can evaluate the action of f on the state to obtain instead

Φf (X,φ) = f̃(X)
[
εa1···aN φ̄a1(φ̄X)a2 . . . (φ̄X

N−1)aN
]k
e−

1
2

TrX2

where at leading order f̃(B) ∼ 2(deg f)/2f(B).

Now the relationship to the states of the Calogero model is seen by performing a
change of variables: diagonalize X via X = UDU−1, where Dab = xaδab. Defining the
Vandermonde determinant

∆ = εa1···aNx0
a1
· · ·xN−1

aN
=
∏
a<b

(xa − xb)

one sees that the wavefunction becomes

Φf (X,φ) = f̃(D) ·∆k e−
1
2
x2 ·∏a(φ̄U)ka

Note that f̃(D) ≡ f̃(x) is simply a polynomial in x, whose leading behaviour we can
determine from f . Also, we can see that U, φ have decoupled from x.

Hence, taking account of the Jacobian ∆2 for our change of variables, at a given N, k′

all inner products satisfy

〈f |g〉 = cN,k

ˆ
dNx e−x

2

∆2k′ f̃(x)g̃(x) (C.1)

where cN,k is a calculable constant which we do not need for our computation.

As is shown in detail in [136], the key observation now is that the action of the matrix
model HamiltonianH on our wavefunctions is given byH ≡ ∆−1H Cal∆, whereH Cal is
the Hamiltonian of the Calogero model at statistical parameter k′. But the eigenstates of
the Calogero model are known; they correspond precisely to the Hi-Jack polynomials,
the multi-variable generalizations of the Hermite polynomials which are orthogonal
with respect to the measure in (C.1). These are labelled by partitions λ.
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One may readily check that in fact f̃ , g̃ in equation (C.1) must be multiples of the
generalized Hermite polynomials discussed in Section 3 of [277]. But now we can refer
to Proposition 3.7 of that paper which is readily unpacked to give the ratios between
the norms of general states. Concretely, their Hλ(x) have leading term

Hλ(x) ∼ 2|λ|
(xλ1

1 x
λ2
2 · · ·xλNN + distinct permutations)

number of distinct permutations

and norms
´
H2
λ(x) dµ(x)´

dµ(x)
= 2|λ|

∏
(c,d)∈λ

(k′ lλ(c, d) + (aλ(c, d) + 1))(k′(lλ(c, d) + 1) + aλ(c, d))

k′(N − (c− 1)) + (d− 1)
.

Here, |λ| =
∑

a λa is the number of cells in the corresponding Young diagram, and
aλ(c, d) and lλ(c, d) are respectively the arm and leg length of the cell with coordinates
(c, d) in that diagram.

All that remains is to work out what choice of λ and normalization correspond to the
examples of f given above for the matrix model states. It is easily found that

|ground〉k : f̃ = H(0,0,...,0)

|Ωl〉k : f̃ = 2(N−l)/2(N
l

)
H(1,1,...,1,0,0,...,0)

|Ω0,l〉k : f̃ = 2(2N−l)/2(N
l

)
H(2,2,...,2,1,1,...,1)

where there are N − l instances of 1 (resp. 2) in the second (resp. third) partition and
then (9.27) and (9.29) both follow on evaluating the above product.

It is hopefully clear how this generalizes to arbitrary states in the matrix model, es-
pecially if one realizes the close relationship between the partition λ and the original
definition of the matrix model states |Ωl〉k and |Ω0,l〉k.
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D Proofs of Two Classical Identities

In this appendix we prove the two classical identities that we used to exhibit the exis-
tence of a Kac-Moody algebra. We work in units with B = 2. Assuming m ≥ n, they
are

Identity 1:

ϕ†iZ
†nZmϕl −

1

p

m−1∑
r=0

n−1∑
s=0

(ϕ†i′Z
rZ†sϕi′)(ϕ

†
iZ
†n−1−sZm−1−rϕl)− δil(· · · )

∼
(
kN

p

)n
ϕ†iZ

m−nϕl − δil(· · · ) (D.1)

Identity 2 (Classical Version):

m−1∑
r=0

ϕ†i′Z
rZ†n−1Zm−1−rϕi′ ∼ p

(
(k + p)N

p

)n
δmn (D.2)

where ∼ means up to 1/N corrections and, in the first identity, we subtract off the il
trace on both sides.

The phrase “up to order 1/N corrections” implicitly includes a restriction on the kind
of classical solutions on which we should evaluate these expressions. Roughly speak-
ing, the solutions shouldn’t deviate by O(N) from the ground state. We start by de-
scribing in more detail what this means.

For the p = 1 matrix model, the ground state was given in Part III (and in [19])

Z = Z0(N) ≡
√
k



0 1

0
√

2
. . .

0
√
N − 1

0


and ϕ = ϕ0(N) ≡

√
k



0

0
...

0
√
N


together with α = (ω2/B) diag(N − 1, N − 2, . . . , 2, 1, 0).

It is simple to embed these solutions in the more general matrix model. The number
of ground states now depends on the value of N modulo p. It is simplest when N is
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divisible by p. In this case there is a unique ground state which takes the block diagonal
form

Z = Z0(N/p)⊗ 1p , ϕ = ϕ0(N/p)⊗ 1p (D.3)

where we’ve written the ϕi (with i = 1, . . . , p) as an N × p matrix, denoted by ϕ.

IfN is not divisible by p then there are multiple classical ground states, transforming
in the representation (16.2), as we established earlier. For example, if N ≡ 1 (mod p)

then each of the blocks has Z0((N − 1)/p), except for one which has Z0((N + p− 1)/N).
There are p such choices; these ground states transform in the p of the SU(p) global
symmetry. Similarly, if N ≡ q (mod p) then there are

(
p
q

)
ground states, transforming

in the qth antisymmetric representation of SU(p).

In what follows, we will assume that N is divisible by p. Now we can make our
statement about O(1/N) corrections more precise. We should treat ϕ ∼ O(N1/2) and
Z ∼ O(N1/2), since in the ground state the largest components of either scale like the
square root of N , and even when contracting indices there is only one non-zero entry
per row or column. (This is important to check because there are O(N) components,
which could upset our counting.) We will evaluate the identities on states which differ
from the ground state by O(1) when measured naturally by the norm squared of δZ
and δφ. It is important that these states still satisfy Gauss’s law (17.1).

These restrictions make it fairly straightforward to prove the classical version of Iden-
tity 2. Consider a linear expansion of the left-hand side around the ground state in pow-
ers of N1/2; we obtain the zeroth order term plus something we can bound by εNn−1/2.
If we decide to neglect terms of this order, we can simply substitute the expression for
the ground state into the left hand side. It is trivial to check that Z†ϕi = 0, and hence
the only contribution is from ϕ†iZ

†n−1Zm−1ϕi.

Next, observe that

Z†mZmϕi = (k + p)m
(N/p− 1)!

(N/p− 1−m)!
ϕi ∼

(
(k + p)N

p

)m
ϕi .

Upon using Z†ϕi = 0 once more, the δnm factor in (D.2) follows. The final ingredient is
to observe ϕ†iϕi = kN , completing the proof of (D.2).

Identity 1 is a little harder to prove. Let us start by rewriting it slightly:

ϕ†iZ
†nZn+mϕl −

1

p

n+m−1∑
r=0

n−1∑
s=0

(ϕ†i′Z
rZ†sϕi′)(ϕ

†
iZ
†n−1−sZn+m−1−rϕl) ∼′

(
(k + p)N

p

)n
ϕ†iZ

mϕl
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where for brevity the prime ′ denotes (asymptotic) equality of the il-traceless parts. We
will proceed by firstly showing that only one term in the double sum contributes at
leading order, namely that obtained at r = s = 0, reducing the problem to proving

ϕ†iZ
†nZn+mϕl −

kN

p
(ϕ†iZ

†n−1Zn+m−1ϕl) ∼′
(

(k + p)N

p

)n
ϕ†iZ

mϕl .

Then we will inductively demonstrate that

ϕ†iZ
†nZn+mϕl ∼′ (n+ 1)

(
(k + p)N

p

)n
ϕ†iZ

mϕl (D.4)

from which the original identity follows immediately.

So to begin, let us estimate the size of the terms we wish to keep. The traceless part
of the right-hand side vanishes in the ground state, so we must sacrifice at least one
term for something of order ε; this is then generically non-vanishing. Therefore, the
right-hand side is of order O(εNn+(m+1)/2).

We can now consider a single term of the double sum at general (r, s). The traceless
part of the second bracket, (ϕ†iZ

†n−1−sZn+m−1−rϕl), vanishes in the ground state, and
hence is at most order O(εNn+(m−r−s−1)/2). Thus the first bracket must be at least of
order O(N1+(r+s)/2). But this N -scaling is only possible if all terms in the first bracket
come from the ground state, when this term vanishes by the observations above – except
for r = s = 0.

This leaves us only with deriving (D.4). We will induct on n to establish this; note
that the case n = 0 is trivial. Write

ϕ†iZ
†nZn+mϕl =′ ϕ†iZ

mZ†nZnϕl − ϕ†i [Zm, Z†n]Znϕl

The first term is simple to handle. Since at leading order ϕ†iZm = 0, we can safely make
the approximation Z†nZnϕi ∼ ((k + p)N/p)nϕi.

The second term can be expanded into a double sum, and simplified slightly using
the asymptotic version of Gauss’s law, [Z,Z†] ∼ −ϕϕ†. Then almost all terms can be
shown to be subleading, using the ideas above, except for the one where we have the
ϕϕ† appearing at the far left. Hence

ϕ†iZ
†nZn+mϕl ∼′

(
(k + p)N

p

)n
ϕ†iZ

mϕl + ϕ†iϕjϕ
†
jZ
†n−1Zm−1Znϕl

∼′
(

(k + p)N

p

)n
ϕ†iZ

mϕl +

(
(k + p)N

p

)
ϕ†iZ

†n−1Zn−1+mϕl
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where we have also used the trick of separating the ij and jl traces out, discarding
more irrelevant terms. Finally, applying the inductive hypothesis to the second term,
we establish (D.4), and hence identity 1.
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E Kostka Polynomials

In this appendix we give an explicit description of the Kostka polynomial Kλ,µ(q) due
to Kirillov and Reshetikhin [278].

Given λ, µ ∈ P , we define a sequence of partitions ν(K) with K = 0, 1, 2, . . . , `(λ)− 1

with ν(0) = µ and

|ν(K)| =
∑

j≥K+1

λj . (E.1)

For each such sequence we define the vacancy numbers

P(K)
n =

∑
j≥1

[
min{n, ν(K+1)

j } − 2 min{n, ν(K)
j }+ min{n, ν(K−1)

j }
]

for all positive integers n and K = 0, 1, 2, . . . , `(λ) − 1 with the understanding that
ν(`(λ)) ≡ 0. An admissible configuration, {ν} is any such sequence of partitions with non-
negative vacancy numbers, i.e.

P(K)
n ≥ 0

for all values of n and K. The charge c({ν}) of an admissible configuration is defined as

c ({ν}) = n[µ] +

`(λ)−1∑
K=1

(
M
[
ν(K), ν(K)

]
− M

[
ν(K), ν(K−1)

])
where, for any two partitions ρ, κ ∈ P , we define the function M : P × P → Z≥0 by

M [ρ, κ] =
∑
i,j≥1

min{ρi, κj} .

Finally the Kostka polynomial can be defined as a sum over all admissible configu-
rations; explicitly,

Kλ,µ(q) =
∑
{ν}

qc[{ν}]
`(λ)−1∏
K=1

∏
n≥1

 P(K)
n +mn

(
ν(K)

)
mn

(
ν(K)

)

q
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where we define the q-binomial coefficient m

n


q

=
ϕm(q)

ϕn(q)ϕm−n(q)

and, as in the text, we have ϕn(q) =
∏n

j=1(1− qj).

Ground State Energy

As in the text we setµ = (kN) and look for the ground state by searching for the partition
λ, satisfying |λ| = kN and `(λ) ≤ p, such that Kλ,(k)N (q) yields the leading term in the
q expansion for |q| � 1. The general formula given above can be simplified [278] in the
case k = 1 where µ = (1N). We find

Kλ,(1N )(q) = qn[λ
T ]
∏N

j=1 (1− qj)
H(q)

where H(q) is the hook-length polynomial given by

H(q) =
∏

x∈Y(λ)

(
1− qh(x)

)
.

Here the product is over the boxes x = (r, s) of the Young diagram Y(λ) corresponding
to the partition λ and h(x) = λr + λTs − r − s + 1 > 0 is the length of the hook passing
through box x.

As explained in the text, the minimum for the case k = 1 is attained for the partition
λ0 = ((L+1)M , Lp−M) whereN = Lp+M for non-negative integers L andM < pwhich
gives a ground state energy

E0(1, p,N) =
1

2
L(L− 1)p+ LM .

It is instructive to reproduce this result from the general formula given above in the case
µ = (1N) and λ = λ0. According to the recipe we must find a sequence of partitions
ν(K) for K = 0, 1, 2, . . . , `(λ0)− 1 = p− 1 with ν(0) = µ = (1N) and

|ν(K)| =
∑

j≥K+1

(λ0)j =

 (M −K)(L+ 1) + L(P −M) 0 ≤ K ≤M

L(p−K) M + 1 ≤ K ≤ p− 1

with non-negative occupation numbers which minimizes the charge c({ν}). It not hard
to see that this is achieved by maximizing the number of parts in each partition ν(K).
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Thus we set

ν(K) =


(
1((M−K)(L+1)+L(P−M))

)
0 ≤ K ≤M(

1(L(p−K))
)

M + 1 ≤ K ≤ p− 1
.

One may then check that the corresponding occupation numbers are non-negative and
that

c ({ν}) = E0(1, p,N) =
1

2
L(L− 1)p+ LM .

The above configuration has a straightforward generalization to k ≥ 1. As in the text
we set

λ0 = ((kL+ k)M , (kL)p−M)

and one simply scales each partition ν(K) in the configuration by a factor of k setting

ν(K) =


(
k((M−K)(L+1)+L(P−M))

)
0 ≤ K ≤M(

k(L(p−K))
)

M + 1 ≤ K ≤ p− 1
.

The vacancy numbers are remain non-negative and the charge of the configuration
scales linearly with k. Thus the new ground state energy is

c ({ν}) = E0(k, p,N) =
k

2
L(L− 1)p+ kLM

which is the result stated in the main text.
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F Affine Lie Algebra Conventions

Here we give our conventions for the simple Lie algebra Ap−1 = sl(p,C) and its Affine
counterpart Âp−1.

ForAp−1, we work in a Chevalley basis with generators {hi, ei, f i; i = 1, . . . p−1}with
brackets

[hi, hj] = 0 , [hi, ej] = Ajie
j , [hi, f j] = −Ajif j , [ei, f j] = δijh

i

where Aij is the Ap−1 Cartan matrix. Weights of each irreducible representation lie in
the weight lattice

LW = SpanZ{Λ(i), i = 1, . . . , p− 1}

whose basis vectors are the fundamental weights Λ(i). Finite-dimensional, irreducible
representationsRΛ are labelled by a highest weight Λ, lying in the positive weight lattice

L+
W = SpanZ≥0

{Λ(i), i = 1, . . . , p− 1} .

We denote the corresponding representation space VΛ. For each weight of RΛ there is
an element

Ψ =

p−1∑
i=1

ψiΛ(i) (F.1)

of LW with Dynkin labels ψi ∈ Z. We then have a basis vector |Ψ〉 of VΛ which is a
simultaneous eigenvector of the Cartan generators satisfying

RΛ

(
hi
)
|Ψ〉 = ψi|Ψ〉

for i = 1, . . . , p− 1.

For the affine Lie algebra Âp−1 we have Chevalley generators {hi, ei, f i; i = 0, . . . p−1}
with brackets

[hi, hj] = 0 , [hi, ej] = Âjie
j , [hi, f j] = −Âjiej , [ei, f j] = δijh

i
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where Âij is the affine Cartan matrix. The basis elements with i > 0 generate an Ap−1

subalgebra. Weights of an integrable representation have an expansion

Ψ̂ =

p−1∑
i=0

ψ̂iΛ̂(i) + nδ (F.2)

for integers ψ̂i and n where δ is the imaginary root. The fundamental weights of Âp−1

can be written as

Λ̂(i) = Λ̂(0) + Λ(i)

for i > 0, where Λ(i) are fundamental weights of the global Ap−1 subalgebra.

The integrable representations RΛ̂ of Âp−1 are characterized by a highest weight Λ̂

with non-negative Dynkin labels, and have the representation space VΛ̂. Each weight
of RΛ̂ has an expansion of the form (F.2). The corresponding basis vector |Ψ̂〉 of VΛ̂ is a
simultaneous eigenvector of the Cartan generators, with

RΛ̂

(
hi
)
|Ψ̂〉 = ψ̂i|Ψ̂〉

for i = 1, . . . , p− 1, and the derivation or grading operator, with

−RΛ̂ (L0) |Ψ̂〉 = n|Ψ̂〉 .
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polynomials in representation theory, Séminaire Lotharingien de Combinatoire 32, p. 38
(1994).

[217] A. N. Kirillov, New combinatorial formula for Modified Hall-Littlewood Polynomials, Contemp.
Math. 254, pp. 283 (1998), math/9803006.

[218] A. N. Kirillov, Dilogarithm identities, Prog. Theor. Phys. Suppl. 118, p. 61 (1995), hep-
th/9408113.

[219] I. Affleck, Universal Term in the Free Energy at a Critical Point and the Conformal Anomaly,
Phys. Rev. Lett. 56, p. 746 (1986).

[220] I. Affleck and F. D. M. Haldane, Critical Theory of Quantum Spin Chains, Phys. Rev. B 36, p.
5291 (1987).

[221] E. Witten, Instability of the Kaluza-Klein Vacuum, Nucl. Phys. B 195, p. 481 (1982).

[222] T. W. Grimm and R. Savelli, Gravitational Instantons and Fluxes from M/F-theory on Calabi-
Yau fourfolds, Phys. Rev. D 85, p. 026003 (2012), 1109.3191.

[223] J. A. Harvey and G. W. Moore, Superpotentials and membrane instantons (1999), hep-
th/9907026.

[224] G. ’t Hooft and M. J. G. Veltman, One loop divergencies in the theory of gravitation, Annales
Poincare Phys. Theor. A 20, p. 69 (1974).

[225] P. K. Townsend and P. van Nieuwenhuizen, Anomalies, Topological Invariants and the Gauss-
Bonnet Theorem in Supergravity, Phys. Rev. D 19, p. 3592 (1979).

[226] S. Ferrara, S. Sabharwal and M. Villasante, Curvatures and Gauss-Bonnet Theorem in New
Minimal Supergravity, Phys. Lett. B 205, p. 302 (1988).

[227] D. J. Gross, M. J. Perry and L. G. Yaffe, Instability of Flat Space at Finite Temperature, Phys.
Rev. D 25, p. 330 (1982).

[228] M. T. Grisaru, P. van Nieuwenhuizen and J. A. M. Vermaseren, One Loop Renormalizability
of Pure Supergravity and of Maxwell-Einstein Theory in Extended Supergravity, Phys. Rev. Lett.
37, p. 1662 (1976).

[229] S. Deser, J. H. Kay and K. S. Stelle, Renormalizability Properties of Supergravity, Phys. Rev.
Lett. 38, p. 527 (1977).

[230] M. Perry, Anomalies in Supergravity, Nucl. Phys. B 132, p. 114 (1978).

[231] S. M. Christensen and M. J. Duff, Axial and Conformal Anomalies for Arbitrary Spin in Gravity
and Supergravity, Phys. Lett. B 76, p. 571 (1978).

312

https://arxiv.org/pdf/hep-th/9505083.pdf
https://arxiv.org/pdf/math/9803006.pdf
https://arxiv.org/pdf/hep-th/9408113.pdf
https://arxiv.org/pdf/hep-th/9408113.pdf
https://arxiv.org/pdf/1109.3191.pdf
https://arxiv.org/pdf/hep-th/9907026.pdf
https://arxiv.org/pdf/hep-th/9907026.pdf


[232] S. M. Christensen and M. J. Duff, New Gravitational Index Theorems and Supertheorems, Nucl.
Phys. B 154, p. 301 (1979).

[233] T. Yoneya, Background Metric in Supergravity Theories, Phys. Rev. D 17, p. 2567 (1978).

[234] R. Delbourgo and A. Salam, The gravitational correction to PCAC, Phys. Lett. B 40, p. 381
(1972).

[235] T. Eguchi and P. G. O. Freund, Quantum Gravity and World Topology, Phys. Rev. Lett. 37, p.
1251 (1976).

[236] G. W. Gibbons, S. W. Hawking and M. J. Perry, Path Integrals and the Indefiniteness of the
Gravitational Action, Nucl. Phys. B 138, p. 141 (1978).

[237] N. K. Nielsen, Ghost Counting in Supergravity, Nucl. Phys. B 140, p. 499 (1978).

[238] R. E. Kallosh, Modified Feynman Rules in Supergravity, Nucl. Phys. B 141, p. 141 (1978).

[239] T. Varin, D. Davesne, M. Oertel and M. Urban, How to preserve symmetries with cut-off reg-
ularized integrals?, Nucl. Phys. A 791, p. 422 (2007), hep-ph/0611220.

[240] B. de Wit, H. Nicolai and H. Samtleben, Gauged supergravities in three-dimensions: A
Panoramic overview, PoS 2003, p. 016 (2003), hep-th/0403014.

[241] N. Seiberg, Modifying the Sum Over Topological Sectors and Constraints on Supergravity, JHEP
1007, p. 070 (2010), 1005.0002.

[242] N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, in The
mathematical beauty of physics: A memorial volume for Claude Itzykson. Proceedings, Conference,
Saclay, France, June 5-7, 1996, pp. 333–366 (1996), hep-th/9607163.

[243] O. Aharony, A. Hanany, K. A. Intriligator, N. Seiberg and M. J. Strassler, Aspects of N=2
supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499, p. 67 (1997), hep-
th/9703110.

[244] D. V. Vassilevich, Heat kernel expansion: User’s manual, Phys. Rept. 388, p. 279 (2003), hep-
th/0306138.

[245] G. W. Gibbons and M. J. Perry, New Gravitational Instantons and Their Interactions, Phys.
Rev. D 22, p. 313 (1980).

[246] E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys. B 188, p. 513 (1981).

[247] D. J. Gross, Is Quantum Gravity Unpredictable?, Nucl. Phys. B 236, p. 349 (1984).

[248] T. Eguchi, P. B. Gilkey and A. J. Hanson, Gravitation, Gauge Theories and Differential Geom-
etry, Phys. Rept. 66, p. 213 (1980).

[249] R. Emparan, C. V. Johnson and R. C. Myers, Surface terms as counterterms in the AdS / CFT
correspondence, Phys. Rev. D 60, p. 104001 (1999), hep-th/9903238.

[250] I. Affleck, J. A. Harvey and E. Witten, Instantons and (Super)Symmetry Breaking in (2+1)-
Dimensions, Nucl. Phys. B 206, p. 413 (1982).

[251] M. F. Atiyah and N. Hitchin, The Geometry And Dynamics Of Magnetic Monopoles, Princeton
Univ. Press, Princeton, NJ (1988).

313

https://arxiv.org/pdf/hep-ph/0611220.pdf
https://arxiv.org/pdf/hep-th/0403014.pdf
https://arxiv.org/pdf/1005.0002.pdf
https://arxiv.org/pdf/hep-th/9607163.pdf
https://arxiv.org/pdf/hep-th/9703110.pdf
https://arxiv.org/pdf/hep-th/9703110.pdf
https://arxiv.org/pdf/hep-th/0306138.pdf
https://arxiv.org/pdf/hep-th/0306138.pdf
https://arxiv.org/pdf/hep-th/9903238.pdf


[252] A. S. Dancer, Nahm’s equations and hyperKahler geometry, Commun. Math. Phys. 158, p. 545
(1993).

[253] N. Seiberg, IR dynamics on branes and space-time geometry, Phys. Lett. B 384, p. 81 (1996),
hep-th/9606017.

[254] A. Sen, Dynamics of multiple Kaluza-Klein monopoles in M and string theory, Adv. Theor.
Math. Phys. 1, p. 115 (1998), hep-th/9707042.

[255] S. Kachru, R. Kallosh, A. D. Linde and S. P. Trivedi, De Sitter vacua in string theory, Phys.
Rev. D 68, p. 046005 (2003), hep-th/0301240.

[256] N. Dorey, V. V. Khoze, M. P. Mattis, D. Tong and S. Vandoren, Instantons, three-dimensional
gauge theory, and the Atiyah-Hitchin manifold, Nucl. Phys. B 502, p. 59 (1997), hep-
th/9703228.

[257] N. Dorey, D. Tong and S. Vandoren, Instanton effects in three-dimensional supersymmetric
gauge theories with matter, JHEP 9804, p. 005 (1998), hep-th/9803065.

[258] R. K. Kaul, Monopole Mass in Supersymmetric Gauge Theories, Phys. Lett. B 143, p. 427 (1984).

[259] C. Pedder, J. Sonner and D. Tong, The Geometric Phase in Supersymmetric Quantum Mechan-
ics, Phys. Rev. D 77, p. 025009 (2008), 0709.0731.

[260] N. Dorey, The BPS spectra of two-dimensional supersymmetric gauge theories with twisted mass
terms, JHEP 9811, p. 005 (1998), hep-th/9806056.

[261] A. Rebhan, P. van Nieuwenhuizen and R. Wimmer, Quantum corrections to solitons and BPS
saturation (2009), 0902.1904.

[262] J. Troost, The non-compact elliptic genus: mock or modular, JHEP 1006, p. 104 (2010),
1004.3649.

[263] S. Murthy, A holomorphic anomaly in the elliptic genus, JHEP 1406, p. 165 (2014), 1311.0918.

[264] J. A. Harvey, S. Lee and S. Murthy, Elliptic genera of ALE and ALF manifolds from gauged
linear sigma models (2014), 1406.6342.

[265] G. W. Gibbons, C. N. Pope and H. Romer, Index Theorem Boundary Terms for Gravitational
Instantons, Nucl. Phys. B 157, p. 377 (1979).

[266] E. Poppitz and M. Unsal, Index theorem for topological excitations onR3×S1 and Chern-Simons
theory, JHEP 0903, p. 027 (2009), 0812.2085.

[267] E. J. Weinberg, Parameter Counting for Multi-Monopole Solutions, Phys. Rev. D 20, p. 936
(1979).

[268] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton Univ. Press, Princeton,
NJ (1992).

[269] S. Golkar, D. X. Nguyen, M. M. Roberts and D. T. Son, A Higher-Spin Theory of the Magneto-
Rotons (2016), 1602.08499.

[270] R. Fern and S. H. Simon, Quantum Hall Edges with Hard Confinement: Exact Solution beyond
Luttinger Liquid (2016), 1606.07441.

314

https://arxiv.org/pdf/hep-th/9606017.pdf
https://arxiv.org/pdf/hep-th/9707042.pdf
https://arxiv.org/pdf/hep-th/0301240.pdf
https://arxiv.org/pdf/hep-th/9703228.pdf
https://arxiv.org/pdf/hep-th/9703228.pdf
https://arxiv.org/pdf/hep-th/9803065.pdf
https://arxiv.org/pdf/0709.0731.pdf
https://arxiv.org/pdf/hep-th/9806056.pdf
https://arxiv.org/pdf/0902.1904.pdf
https://arxiv.org/pdf/1004.3649.pdf
https://arxiv.org/pdf/1311.0918.pdf
https://arxiv.org/pdf/1406.6342.pdf
https://arxiv.org/pdf/0812.2085.pdf
https://arxiv.org/pdf/1602.08499.pdf
https://arxiv.org/pdf/1606.07441.pdf


[271] J. C. L. Guillo, E. Moreno, C. Nunez and F. A. Schaposnik, On three-dimensional bosoniza-
tion, Phys. Lett. B 409, p. 257 (1997), hep-th/9703048.

[272] K. A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys.
Lett. B 387, p. 513 (1996), hep-th/9607207.

[273] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles, and three-dimensional gauge
dynamics, Nucl. Phys. B 492, p. 152 (1997), hep-th/9611230.

[274] T. Banks, N. Seiberg and E. Silverstein, Zero and one-dimensional probes with N=8 supersym-
metry, Phys. Lett. B 401, p. 30 (1997), hep-th/9703052.

[275] N. Dorey and A. Singleton, Instantons, Integrability and Discrete Light-Cone Quantisation
(2014), 1412.5178.

[276] A. P. Polychronakos, Physics and Mathematics of Calogero particles, J. Phys. A 39, p. 12793
(2006), hep-th/0607033.

[277] T. H. Baker and P. J. Forrester, The Calogero-Sutherland model and generalized classical poly-
nomials, Commun. Math. Phys. 188, p. 175 (1997), solv-int/9608004.

[278] A. N. Kirillov and N. Y. Reshetikhin, The Bethe Ansatz and the Combinatorics of Young
Tableaux, Journal of Soviet Mathematics 41, pp. 925 (1988).

[279] R. Jackiw and S. Y. Pi, Erratum: Classical and quantal nonrelativistic Chern-Simons theory,
Phys. Rev. D 48, p. 3929 (1993).

[280] C. Chou, Erratum: The Multi - anyon spectra and wave functions, Phys. Rev. D 45, p. 1433
(1992).

315

https://arxiv.org/pdf/hep-th/9703048.pdf
https://arxiv.org/pdf/hep-th/9607207.pdf
https://arxiv.org/pdf/hep-th/9611230.pdf
https://arxiv.org/pdf/hep-th/9703052.pdf
https://arxiv.org/pdf/1412.5178.pdf
https://arxiv.org/pdf/hep-th/0607033.pdf
https://arxiv.org/pdf/solv-int/9608004.pdf

	I Introduction
	Context and Goals
	The Grand Plan

	II Non-Relativistic Anyons
	Introduction and Summary
	Non-Relativistic Conformal Invariance
	States and Operators
	The State-Operator Map
	Unitarity Bounds and Anti-Particles

	Supersymmetry
	The Superconformal Algebra
	The State-Operator Map Revisited
	Chiral Primary Operators and Another Unitarity Bound

	A Non-Relativistic Superconformal Action

	The Bosonic Theory
	Gauge Invariant Operators
	The Spectrum
	Angular Momentum
	Examples
	Deriving the Angular Momentum
	OPEs and Branch Cuts
	Fusion Rules

	Perturbation Theory
	Operators at the Unitarity Bound
	Quantum Mechanics of Abelian Anyons
	Relationship to Jackiw-Pi Vortices
	Non-Abelian Generalization


	Bosonization and The Fermionic Theory
	Perturbation Theory with Fermions
	Bosonization Dualities
	Introduction to Bosonization
	Non-Relativistic Limits
	The Duality in Action
	Fusion Rules and Baryons
	Puzzles



	III Vortices as Electrons
	Introduction and Summary
	Non-Relativistic Chern-Simons-Matter Theories
	Deformed Symmetries
	The Vacuum, The Hall Phase, and Excitations

	A Quantum Hall Fluid of Vortices
	The Dynamics of Vortices
	Introducing a Harmonic Trap
	The Quantum Hall Matrix Model
	Edge Modes
	Quasiholes

	Comments

	IV Non-Abelian Models
	Introduction and Summary
	The Quantum Hall Matrix Model
	Quantization
	The Ground States
	The Wavefunctions

	The Blok-Wen States
	Particles with SU(2) Spin
	Particles with SU(p) Spin

	Two Chern-Simons Theories
	The Bosonic Chern-Simons Theory
	Bosonization in the Hall Regime
	The Fermionic Chern-Simons Theory
	Holes as Vortices
	Level Rank Duality
	Discussion


	The View from Conformal Field Theory
	The Wavefunction as a Correlation Function


	V Edge Theories
	Introduction
	The Current Algebra
	The Currents
	Deriving the Kac-Moody Algebra

	The Partition Function
	A Digression on Symmetric Functions
	Back to the Partition Function
	The Continuum Limit


	VI Quantum Supergravity
	Introduction and Summary
	Classical Aspects
	Reduction on a Circle
	Topological Terms

	Perturbative Aspects
	Summary
	One-Loop Determinants
	Two-Derivative Effective Action
	Supersymmetry and the Complex Structure
	Divergences and the Heat Kernel

	Non-Perturbative Aspects
	Gravitational Instantons
	Determinants Again
	Zero Modes and Jacobians
	Computing the Superpotential


	VII Conclusion
	Summary
	Outlook

	VIII Appendices
	Non-Relativistic Limits
	The Geometry of the Vortex Moduli Space
	Overlap of Matrix Model States
	Proofs of Two Classical Identities
	Kostka Polynomials
	Affine Lie Algebra Conventions


