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We find necessary and sufficient conditions for a local geodesic flow of an affine connection on a surface
to admit a linear first integral. The conditions are expressed in terms of two scalar invariants of differential
orders 3 and 4 in the connection. We use this result to find explicit obstructions to the existence of a
Hamiltonian formulation of Dubrovin–Novikov type for a given one-dimensional system of hydrodynamic
type. We give several examples including Zoll connections, and Hamiltonian systems arising from two-
dimensional Frobenius manifolds.
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1. Introduction

The existence of a first integral of a geodesic flow of an affine connection puts restrictions on the form
of the connection. A generic connection admits no first integrals. If the connection arises from a metric,
and the first integral is linear in velocities, then the metric admits a one-parameter group of isometries
generated by a Killing vector field. Characterizing metrics which admit Killing vectors by local tensor
obstructions is a classical problem which goes back at least to Darboux [1], and can be solved completely
in two dimensions. The analogous characterization of non-metric affine connections has not been carried
over in full.1 It is given in Theorem 1.1, where we construct two invariant scalar obstructions to the
existence of a linear first integral. A non-metric connection can (unlike a Levi–Civita connection) admit
precisely two independent linear local first integrals. This case will also be characterized by a tensor
obstruction.

As an application of our results we shall, in Section 3, characterize one-dimensional systems of
hydrodynamic type which admit a Hamiltonian formulation of the Dubrovin–Novikov type [4]. The
existence of such formulation leads to an over-determined system of PDEs, and we shall show (Theo-
rem 1.2) that this system is equivalent to a condition that a certain non-metric affine connection admits
a linear first integral. This, together with Theorem 1.1 will lead to a characterization of Hamiltonian, bi-
Hamiltonian and tri-Hamiltonian systems of hydrodynamic type. In Section 4 we shall give examples of

1 The remarkable exception is the paper of Levine [2] and its extension [3] where the necessary condition for the existence of a
first integral was found, albeit not in a form involving the Schouten and Cotton tensors. The sufficient conditions found in [2] are
not all independent. Levine gives seven tensor conditions, where in fact two scalar conditions suffice.
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2 F. CONTATTO AND M. DUNAJSKI

connections resulting from hydrodynamic type systems. In particular we shall show that systems arising
from two-dimensional Frobenius manifolds are tri-Hamiltonian.

In the remaining part of the Introduction we shall state our main results. Let ∇ be a torsion-free affine
connection of differentiability class C4 on a simply connected orientable surface � (so we require the
transition functions of � to be of class at least C6). A curve γ : R → � is an affinely parameterized
geodesic if ∇γ̇ γ̇ = 0, or equivalently if

Ẍa + �a
bcẊ

bẊc = 0, a, b, c = 1, 2, (1.1)

where Xa = Xa(τ ) is the curve γ expressed in local coordinates Xa on an open set U ⊂ �, τ is an affine
parameter, �c

ab are the Christoffel symbols of ∇ and we use the summation convention. A linear function
on T� given by κ = Ka(X)Ẋa is called a first integral if dκ/dτ = 0 when (1.1) holds, or equivalently if

∇(aKb) = 0. (1.2)

The following Theorem gives local necessary and sufficient conditions for a connection to admit one, two
or three linearly independent solutions to the Killing equation (1.2). The necessary conditions involve
vanishing of obstructions IN and T given by (2.7) and (2.11)—for these to make sense the connection
needs to be at least three times differentiable.

Theorem 1.1 The necessary condition for a C4 torsion-free affine connection ∇ on a surface � to admit
a linear first integral is the vanishing, on �, of invariants IN and IS given by (2.7) and (2.9), respectively.
For any point p ∈ � there exists a neighbourhood U ⊂ � of p such that conditions IN = IS = 0 on U
are sufficient for the existence of a first integral on U. There exist precisely two independent linear first
integrals on U if and only if the tensor T given by (2.11) vanishes and the skew part of the Ricci tensor
of ∇ is non-zero on U. There exist three independent first integrals on U if and only if the connection is
projectively flat and its Ricci tensor is symmetric.

This Theorem will be established by constructing (Proposition 2.1) a prolongation connection D on
a rank-three vector bundle �1(�) ⊕ �2(�) for the over-determined system (1.2), and restricting the
holonomy of its curvature when one, two or three parallel sections exist. In Proposition 2.2 we shall find
all local normal forms of connections from Theorem 1.1 which admit precisely two linear first integrals.

Finally we shall consider one-dimensional systems of hydrodynamic type. Any such system with two
dependent variables (X1, X2) and two independent variables (x, t) can be written in the so-called Riemann
invariants as

∂X1

∂t
= λ1(X1, X2)

∂X1

∂x
,

∂X2

∂t
= λ2(X1, X2)

∂X2

∂x
, (1.3)

where λ1 �= λ2 at a generic point. This system admits a Hamiltonian formulation of the Dubrovin–Novikov
type, if it can be written as

∂Xa

∂t
= 
ab δH

δXb
, (1.4)
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where H[X1, X2] = ∫
R
H(X1, X2)dx is the Hamiltonian of hydrodynamic type, and the Poisson structure

on the space of maps Map(R, U) is given by


ab = gab ∂

∂x
+ bab

c

∂Xc

∂x
.

The Jacobi identity imposes severe constraints on g(Xa) and b(Xa)—see Section 3 for details. We shall
prove

Theorem 1.2 The hydrodynamic type system (1.3) admits one, two or three Hamiltonian formulations
with hydrodynamic Hamiltonians if and only if the affine torsion-free connection ∇ defined by its non-zero
components

�1
11 = ∂1 ln A − 2B, �2

22 = ∂2 ln B − 2A, �1
12 = −

(1

2
∂2 ln A + A

)
, �2

12 = −
(1

2
∂1 ln B + B

)
,

where A = ∂2λ
1

λ2 − λ1
, B = ∂1λ

2

λ1 − λ2
and ∂a = ∂/∂Xa (1.5)

admits one, two or three independent linear first integrals, respectively.

This Theorem, together with Theorem 1.1 leads to explicit obstructions for the existence of a
Hamiltonian formulation (1.4).

2. Killing operator for affine connection

Given an affine connection ∇ on a surface �, its curvature is defined by

[∇a, ∇b]Xc = Rab
c

dXd .

In two dimensions the projective Weyl tensor vanishes, and the curvature can be uniquely decomposed
as

Rab
c

d = δa
cPbd − δb

cPad + Babδd
c, (2.1)

where Pab is the Schouten tensor related to the Ricci tensor Rab = Rca
c

b of ∇ by Pab = (2/3)Rab+(1/3)Rba

and Bab = Pba − Pab = −2P[ab]. We shall assume that � is orientable, and choose a volume form εab on
�. We shall also introduce εab such that εabεcb = δa

c . These skew-symmetric tensors are used to raise and
lower indices according to V a = εabVb and Va = εbaV b. Then

∇aεbc = θaεbc,

where θa = (1/2)εbc∇aεbc. Set β = Babε
ab.
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Proposition 2.1 There is a one-to-one correspondence between solutions to the Killing equations (1.2),
and parallel sections of the prolongation connection D on a rank-three vector bundle E = �1(�) ⊕
�2(�) → � defined by

Da

(
Kb

μ

)
=
( ∇aKb − εabμ

∇aμ −
(

Pb
a + 1

2βδb
a

)
Kb + μθa

)
. (2.2)

Proof. Dropping the symmetrization in (1.2) implies the existence of μ such that ∇aKb = μεab. Differenti-
ating this equation covariantly, skew-symmetrizing over all indices and using the curvature decomposition
(2.1) together with the Bianchi identity yields the statement of the Proposition. �

The connection D is related to the standard tractor connection in projective differential geometry (see
e.g. [6]). In the proof of Theorem 1.1 we shall find the integrability conditions for the existence of parallel
sections of this connection. This will lead to a set of invariants of an affine connection ∇.

Proof of Theorem 1.1. The integrability conditions (∇a∇b −∇b∇a)μ = 0 give the algebraic condition

FaKa + βμ = 0, where Fa = 1

3
εab(Lb − εcd∇bBcd) (2.3)

and Lb ≡ εcd∇cPdb is the Cotton tensor of ∇. Geometrically the condition (2.3) means that the curvature
of D has rank at most one, and annihilates a parallel section of D. Applying ∇a to the condition (2.3),
and using the vanishing of (2.2) leads to two more algebraic conditions

Ma
bKb + Naμ = 0, (2.4)

where

Ma
b = ∇aFb +

(
Pb

a + 1

2
δb

aβ
)
β, Na = −Fa + ∇aβ − βθa.

Multiplying the equation (2.3) by 2θa, and adding the resulting expression to (2.4) results in Ma
b →

Ma
b + 2θaFb and Na → Na + 2θaβ. We can use this freedom to get rid of θ a from the expressions for M

and N . This yields

Ma
b = 1

3
εbcεde(∇aYdec − ∇a∇cBde) + β Pb

a + 1

2
β2δb

a, Na = −Fa + εbc∇aBbc, (2.5)

where Ycdb = ∇[cPd]b. Therefore a parallel section � ≡ (K1, K2, μ)T of D must satisfy a system of three
linear algebraic equations which we write in a matrix form as

M� ≡
⎛
⎝ F1 F2 β

M1
1 M1

2 N1

M2
1 M2

2 N2

⎞
⎠
⎛
⎝ K1

K2

μ

⎞
⎠ = 0. (2.6)
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A necessary condition for the existence of a non-zero parallel section � is therefore the vanishing of the
determinant of the matrix M. This gives the first obstruction which we write as a vanishing of the relative
scalar invariant

IN = εcdε
beMe

c
(

NbFd − 1

2
βMb

d
)

. (2.7)

This invariant has weight −5: if we replace εab by ef εab, where f : � → R, then IN → e−5f IN . Thus
IN ⊗ (εabdXa ∧ dXb)⊗5 is an invariant. The vanishing of IN is not sufficient for the existence of a non-zero
parallel section. To assure sufficiency assume that IN = 0. Rewrite (2.3) and (2.4) as

Vα�α = 0, (DaVα)�α = 0, α = 1, . . . , 3,

where V = (F1, F2, β) in the formula above is a section of the dual bundle E∗, and Da is the dual
connection inherited from (2.2). We continue differentiating, and adding the linear equations on �. The
Frobenius theorem tells us that the process terminates once a differentiation does not add any additional
independent equations, as then the rank of the matrix of equations on � stabilizes and does not grow.
The space of parallel sections of D has dimension equal to 3 (the rank of the bundle E) minus the number
of independent equations on �. Therefore the sufficient condition for the existence of a Killing form
assuming that IN = 0 is

rank

⎛
⎜⎜⎜⎜⎜⎜⎝

V
D1V
D2V

D1D1V
D(1D2)V
D2D2V

⎞
⎟⎟⎟⎟⎟⎟⎠

< 3. (2.8)

If IN = 0 and V �= 0, then

cV + c1D1V + c2D2V = 0,

where (c, c1, c2) are some functions on U, and (c1, c2) are not both zero. This implies that the term
D(1D2)V in (2.8) is a linear combination of all other terms, and can be disregarded. Now, suppose that
D1V = 0. Then (2.8) becomes det(V , D2V , D2D2V) = 0. Equivalently, if D2V = 0 then (2.8) becomes
det(V , D1V , D1D1V) = 0. We conclude that (2.8) is equivalent to

Is = Wabc ≡ det(V , DaV , D(bDc)V) = 0 (2.9)

as it is easy to show that the condition above implies (2.8). In fact vanishing of Wabc gives just one
independent condition: If c2 �= 0, then the sufficient condition is W111 = 0, and if c1 �= 0, then it is
W222 = 0. The explicit tensor form of the obstruction W is

Wacd = FbMa
bV(cd) − FbUb

(cd)Na + βMabUb
(cd), where (2.10)
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Ub
ca = εbdεef [1

3
(∇c∇aYefd − ∇c∇a∇dBef ) + ∇c(Bef Pda)]

+ 1

2
εef εgh∇c(Bef Bgh)δ

b
a + εbdNa(Pdc + 1

2
βεcd) and

Vca = −Mac − 1

3
εde(∇c∇dPea − ∇c∇aBde).

We shall now consider the case when there exist precisely two independent solutions to the Killing
equation (1.2) (note that this situation does not arise if ∇ is a Levi–Civita connection of some metric, as
then the number of Killing vectors can be 0, 1 or 3 - the last case being projectively flat). Therefore the
rank of the matrix M in (2.6) is equal to one. We find that this can happens if and only if β �= 0 and

Ta
b = 0, where Ta

b ≡ NaFb − βMa
b. (2.11)

This condition guarantees the vanishing of all two-by-two minors of M.
Finally, there exist three independent parallel sections of D iff the curvature of D vanishes, or equiv-

alently if the matrix M vanishes. This condition is equivalent to the projective flatness of the connection
∇ together with the condition β = 0. �

Remarks

• If the connection ∇ is special (i.e. the Ricci tensor is symmetric, or equivalently β = 0) then
IN = −3−3ν5, where

ν5 ≡ LaLb∇aLb

is the Liouville projective invariant [7, 8], and the indices are rised with a parallel volume form. Note
that, unlike ν5, the obstruction IN is not invariant under the projective changes of connection (see
equation (3.4) in Section 3). The sufficient condition (2.9) is then equivalent to the vanishing of the
invariant w1 constructed by Liouville for second order ODEs in [7].

• Theorem 1.1 generalizes a well known characterization of metrics which admit a Killing vector as
those with functionally dependent scalar invariants. See [9] or [10] where a 3 by 3 matrix analogous
to M has been constructed. In this case N = −F = 1

3 ∗ dR, where R is the scalar curvature, and ∗ is
the Hodge operator of the metric g. The invariant (2.7) reduces to2

IN := ∗ 1

432
dR ∧ d(|∇R|2).

• Any affine connection ∇ on � corresponds to a family of neutral signature anti-self-dual Einstein
metrics on a certain rank-two affine bundle M → �, given by [11]

G = (
dξa − (

�c
abξc − �ξaξb − �−1Pba

)
dXb

)� dXa,

2 The prolongation procedure in [10] has been carried over in the Riemannian case. The additional subtlety in the Lorentzian
signature arises if ∇R is a non-zero null vector. We claim that no non-zero Killing vectors exist in this case. To see it, assume that
a Lorentzian metric admits a Killing vector K . If K is null, then the metric is flat with R = 0. Otherwise it can locally be put in the
form dY2 − f (Y)2dX2 for some f = f (Y). Imposing the condition |∇R|2 ≡ 0 leads to R = const.
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where ξa are local coordinates on the fibres of M, and −24� is the Ricci scalar. These metrics admit
a linear first integral iff ∇ admits a projective vector field.

In the metric case, a Levi–Civita connection cannot admit precisely two local linear first integrals, as β

(which is proportional to the skew part of the Ricci tensor) vanishes. In the following Proposition we shall
explicitly find all local normal forms of non-metric affine connections which admit two first integrals.

Proposition 2.2 Let ∇ be an affine connection on a surface � which admits exactly two non-proportional
linear first integrals which are independent at some point p ∈ �. Local coordinates (X, Y) can be chosen
on an open set U ⊂ � containing p such that

�1
12 = �1

21 = c

2
, �2

11 = PX

Q
, �2

12 = �2
21 = PY + QX − cP

2Q
, �2

22 = QY

Q
, (2.12)

and all other components vanish, where c is a constant equal to 0 or 1, and (P, Q) are arbitrary functions
of (X, Y).

Proof. Let the one-forms K and L be two solutions to the Killing equation. If K is closed, then there
exist local coordinates (X , Y) on U such that K = dX, and the corresponding first integral is Ẋ. Therefore
Ẍ = 0 and the connection components �1

ab vanish. Let the second solution of the Killing equation be of
the form L = PdX + QdY for some functions (P, Q). Imposing

d

dτ
(PẊ + QẎ) = 0

yields the non-zero components of the connection given by (2.12) with c = 0. If dK �= 0, then coordinates
(X, Y) can be chosen so that K = eY dX . The condition d/dτ(eY Ẋ) = 0 gives �1

12 = 1/2. Imposing the
existence of the second integral (PẊ + QẎ) yields the connection (2.12) with c = 1. �

Note that in both cases the ODEs for the unparameterized geodesics also admit a first integral,
given by e−cY (P + Y ′Q), where ′ = d/dX . Conversely if a second order ODE cubic in Y ′ representing
projective equivalence class [∇] of affine connections admits a first integral linear in Y ′, then [∇] contains a
connection of the form (2.12) with c = 0. To see it consider a second order ODE of the form (P+Y ′Q)′ = 0,
where (P, Q) are arbitrary functions of (X , Y) and write it in the form

Y ′′ = �1
22(Y

′)3 + (2�1
12 − �2

22)(Y
′)2 + (�1

11 − 2�2
12)Y

′ − �2
11. (2.13)

Equation (2.13) arises from eliminating the affine parameter τ between the two ODEs (1.1). Thus its
integral curves are unparameterized geodesics of the affine connection ∇.

3. Hamiltonian systems of hydrodynamic type

An n-component (1+1) system of hydrodynamic type has the form ∂tua = va
b(u)∂xub, where ua = ua(x, t)

and a, b = 1, . . . , n. From now on we shall assume that n = 2 and that the matrix v is diagonalizable
at some point with distinct eigenvalues, in which case there always exists (in a neighbourhood of this
point) two distinct functions (called the Riemann invariants) X1 and X2 of (u1, u2) such that the system is
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diagonal, i.e. takes the form (1.3) for some λa(Xb) and can be linearized by a hodograph transformation
interchanging dependent (X1, X2) and independent (x, t) coordinates.

The hydrodynamic type system is said to admit a local Hamiltonian formulation with a Hamiltonian
of hydrodynamic type [4, 12], if there exists a functional H[X1, X2] = ∫

R
H(X1, X2)dx, where the density

H does not depend on the derivatives of Xa and such that (1.4) holds for some functions gab(X) and
bab

c (X). If the matrix gab is non-degenerate, then the Poisson bracket

{F, G} =
∫

R

δF

δXa

(
gab ∂

∂x
+ bab

c

∂Xc

∂x

) δG

δXb
dx

is skew-symmetric if gab is symmetric and the metric g = gabdXadXb, where gabgbc = δa
c is parallel with

respect to the connection with Christoffel symbols γ c
ab defined by bab

c = −gadγ b
dc. The Jacobi identity

then holds iff the metric g is flat, and the connection defined by γ c
ab is torsion-free. The hydrodynamic type

systems which admit a Hamiltonian of hydrodynamic type possess infinitely many Poisson commuting
first integrals, and are integrable in the Arnold–Liouville sense [13].

Proof of Theorem 1.2. It was shown in [4] that a hydrodynamic type system in Riemann invariants is
Hamiltonian in the sense defined above if and only if there exists a flat diagonal metric

g = k−1d(X1)2 + f −1d(X2)2 (3.1)

on a surface U with local coordinates (X1, X2) such that

∂2k + 2Ak = 0, ∂1f + 2Bf = 0, (3.2)

where f , k are functions of (X1, X2), and (A, B) are given by (1.5). Flatness of the metric g yields

(∂2A + A2)f + (∂1B + B2)k + 1

2
A∂2f + 1

2
B∂1k = 0. (3.3)

We verify that equations (3.2) and (3.3) are equivalent to the Killing equations (1.2) for an affine torsion-
free connection ∇ on U defined by (1.5) where K1 = Af , K2 = Bk. �

Computing the relative invariants IN and IS gives explicit but complicated (albeit perfectly manageable
by MAPLE) obstructions given in terms of (λ1, λ2) and their derivatives of order up to 6. These obstruc-
tions, together with the tensor (2.11) and the Cotton tensor of ∇ characterize Hamiltonian, bi-Hamiltonian
and tri-Hamiltonian systems of hydrodynamic type. The tri-Hamiltonian systems have been previously
characterized by Ferapontov in [12] in terms of two differential forms he called ω and 
. We shall now
show how Ferapontov’s formalism relates to our connection (1.5). We shall find that 
 is proportional to
the skew-symmetric part of the Ricci tensor of ∇, and ω is the volume form of the (generically) unique
Lorentzian metric on U which shares its unparameterized geodesics with ∇.

We say that a symmetric affine connection ∇ is metric, iff it is the Levi–Civita connection of some
(pseudo)-Riemannian metric. An affine connection ∇ is metrizable iff it shares its unparameterized
geodesic with some metric connection. Thus in the metrizable case there exists a one-form ϒ and a
metric h such that the Levi–Civita connection of h is given by

�a
bc + δa

bϒc + δa
c ϒb, (3.4)
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where �a
bc are the Christoffel symbols of ∇. Not all affine connections on a surface are metrizable. The

necessary and sufficient conditions for metrizability have been found in [8].

Proposition 3.1 The connection (1.5) from Theorem 1.2 is generically not metric but is metrizable by
the metric

h = AB(dX1) � (dX2). (3.5)

Proof. The connection is generically not metric, as its Ricci tensor Rab is in general not symmetric. The
skew part of Rab is given by

(R21 − R12)dX1 ∧ dX2 = 3dϒ , where ϒ =
(1

2
∂1 ln B + B

)
dX1 +

(1

2
∂2 ln A + A

)
dX2. (3.6)

The unparameterized geodesics of this connection are integral curves of a second order ODE

Y ′′ = (∂XZ)Y ′ − (∂Y Z)(Y ′)2, where Z = ln (AB), (3.7)

and (X1, X2) = (X , Y). The ODE (3.7) is also the equation for unparameterized geodesics of the pseudo-
Riemannian metric (3.5) (it can be found directly by solving the metricity equations as in [14]). The
Levi–Civita connection of h is given by (3.4), where ϒ is given by (3.6). Therefore ∇ is projectively
equivalent to a metric connection. �

Remarks

• The pseudo-Riemannian metric (3.5) depends only on the product AB, so the transformation (A → γ A,
B → γ −1B), where γ = γ (Xa) is a non-vanishing function, does not change unparameterized
geodesics. It corresponds to a projective change of connection (3.4) by a one-form

ϒ =
(
(1 − γ −1)B + 1

2
∂1 ln γ

)
dX1 +

(
(1 − γ )A − 1

2
∂2 ln γ

)
dX2.

This transformation can be used to set R[ab] to zero, but it does not preserve (1.3).

• As the Ricci tensor Rab is in general not symmetric, the connection (1.5) does not admit a volume
form on � which is parallel w.r.t ∇. Therefore the Killing equations (1.2) do not imply the existence
of a Killing vector for the metric h.

• The two-form 
 in Theorem 9 of [12] equals 2dϒ , while ω in [12] is given by the volume form of
h. In the tri-Hamiltonian case the connection ∇ is projectively flat. Equivalently the metric (3.5) has
constant Gaussian curvature, i.e.

(AB)−1∂1∂2 ln (AB) = const. (3.8)

This is the Liouville equation from Section 5 in [12].

• If n ≥ 3, there is always a discrepancy between the number of equation for a Killing tensor of any
given rank and a number of conditions for a HT system to admit a Hamiltonian formulation. Therefore
Theorem 1.2 does not generalize to higher dimensions in any straightforward way.
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4. Examples

In the examples below we set X1 = X , X2 = Y .

Example 1

Consider an affine connection (1.5) corresponding to a system of hydrodynamic type with

A = cX + Y , B = X + cY , where c = const.

This connection admits a parallel volume form iff c = 0 or c = 1. If c = 0 then the connection is
projectively flat, and so the system of hydrodynamic type is tri-hamiltonian. Calculating the obstruction
(2.11) yields

T = 8c2(c2 − 9)

9(cX + Y)3(X + cY)3

(
dY ⊗ ∂Y − dX ⊗ ∂X + X + cY

cX + Y
dY ⊗ ∂X − cX + Y

X + cY
dX ⊗ ∂Y

)
.

Therefore, if c = 3 or c = −3 then the connection admits precisely two linear first integrals, so the
system is bi-Hamiltonian. Finally for any c not equal to 0, ±3 the system admits a unique Hamiltonian.

Example 2

One-dimensional non-linear elastic medium is governed by the system of PDEs [15, 16]

ut = h2(v)vx, vt = ux,

where h(v) is a function characterizing the type of fluid. This system is Hamiltonian with H = u2/2+F(v),
where F ′′ = h2. We find the Riemann invariants (X, Y) such that

u = X + Y , v = G(X − Y), where G′h(G) = 1 and λ1 = −λ2 = 1

G′ .

Therefore A = −B = −G′′/(2G′) and we find β = 0 and so the Ricci tensor of the associated connec-
tion (1.5) is symmetric. In particular, Theorem 1.1 implies that the system cannot admit precisely two
Hamiltonian structures.

The projective flatness (3.8) of the connection (1.5) reduces to (ln A2)′′ = const.A2 which can be
solved explicitly, and leads to a four-parameter family of tri-Hamiltonian systems. The singular solution
A = 1/(2z) corresponds to the Toda equation vtt = (ln v)xx.

Example 3

We consider the system of hydrodynamic type (1.3) with

λ1 = −λ2 = (X − Y)n(X + Y)m.

Examining the conditions of Theorem 1.1 for the resulting connection (1.5) we find that this system is
always bi-Hamiltonian. It is tri-Hamiltonian iff nm(n2 − m2) = 0.
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Example 4. Frobenius manifolds

In this example we shall consider Hamiltonian systems of hydrodynamic type which arise from two-
dimensional Frobenius manifolds. Recall [17, 18] that � is a two-dimensional Frobenius manifold if
the tangent space to � at each point admits a structure of a commutative algebra A with a unity e, and
symmetric tensors fields C ∈ C∞(Sym3(T ∗�)) and η ∈ C∞(Sym2(T ∗�)) such that locally, in U ⊂ �,
there exist a coordinate system ua = (u, v) and a function F : U → R where

C = ∂3F

∂ua∂ub∂uc
duadubduc, e = ∂

∂u1
, η = ∂3F

∂u1∂ua∂ub
duadub.

The non-degenerate symmetric form η is a flat (pseudo) Riemannian metric with constant coefficients on
� such that e is covariantly constant, and Ca

bc := ηadCbcd are the structure constants for A. Moreover
there exists an Euler vector field E such that LEe = −e, and LEC = (m + 3)C, LEη = (m + 2)η for
some constant m.

In dimensions higher that two the function F must satisfy a non-linear PDE resulting from the
associativity conditions. In two dimensions the associativity always holds, and F can be found only from
the homogeneity condition. If we assume that the identity vector field e is null with respect to the metric
η, then we can set η = du � dv, and find [17, 18] that F(u, v) = 1

2 u2v + f (v), where f (which we assume
not to be zero) is given by one of the four expressions

f = vk , k �= 0, 2, f = v2 ln v, f = ln v, f = e2v.

In all cases the corresponding Hamiltonian system of hydrodynamic type is

ut = f ′′′(v)vx, vt = ux. (4.1)

The characteristic velocities are λ1 = −λ2 = λ ≡ √
f ′′′(v), and the Riemann invariants Xa = (X, Y) are

X = u +
∫ √

f ′′′(v)dv, Y = u −
∫ √

f ′′′(v)dv.

The corresponding affine connection (1.5) is projectively flat (the Cotton tensor ∇[aPb]c vanishes), and
special (the Ricci tensor is symmetric). Therefore Theorem 1.1 implies that the system (4.1) is tri-
Hamiltonian. The corresponding three-parameter family of flat metrics (3.1) is

g(c1, c2, c3) = λ−1
( dX2

c1 + c2X + c3X2
− dY 2

c1 + c2Y + c3Y 2

)
, λ ≡ √

f ′′′(v), (4.2)

where (c1, c2, c3) are arbitrary constants not all zero. We find that η ≡ g(1, 0, 0) is the flat metric in the
definition of the Frobenius manifold. The second metric I ≡ g(0, 1, 0) is the so-called intersection form
(see [17]). The third metric is J ≡ g(0, 0, 1). It can be constructed directly from η and I as Jab = IacIbdη

cd

in agreement with [5, 19]. It would be interesting to analyse the existence of Hamiltonians for HT type
systems arising from submanifolds of Frobenius manifolds [20].
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Example 5. Zoll connections

Recall that a Riemannian metric h on a surface � is Zoll if all geodesics are simple closed curves of equal
length. A two-dimensional sphere admits a family of axisymmetric Zoll metrics given by

h = (F(X) − 1)2dX2 + sin2 XdY 2, (4.3)

where (X, Y) are spherical polar coordinates on � = S2, and F : [0, π ] → [0, 1] is any function such that
F(0) = F(π) = 0 and F(π −X) = −F(X). A projective structure [∇] on � is Zoll if its unparameterized
geodesics are simple closed curves. The general projective structure admitting a projective vector field,
and close to the flat structure of the round sphere is given by the second order ODE [21]

Y ′′ = A3(Y
′)3 + A2(Y

′)2 + A1Y ′, where (4.4)

A1 = F ′

F − 1
− 2 cot X , A2 = H ′ sin X cos X − 2H

cos X(F − 1)
, A3 = − (H2 + 1) sin X cos X

(F − 1)2
,

where F = F(X) is as before, and H = H(X) satisfies H(0) = H(π) = H(π/2) = 0 and H(π − X) =
H(X). The metric case (4.3) arises if H = 0. A general connection ∇ in this projective class with β �= 0
will not admit even a single first integral. We use Theorem 1.1 together with (2.13) to verify that the
following choice of the representative connection

�1
11 = A1, �1

22 = A3, �1
12 = �1

21 = 1

2
A2 (4.5)

admits a first integral for any F and H. To find a (necessarily non-metric) Zoll connection with precisely
two linear first integrals we use Proposition (2.2) and match the connection (4.5) with the connection
(2.12) (with the roles of X and Y reversed). This, for any given H, leads to a one-parameter family of
examples

F = 1 + c(H2 + 1) cot X

which does not satisfy the boundary conditions. The existence of a non-metric Zoll structure on S2 with
precisely two first integrals is an interesting open problem.
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