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RANDOM WALKS ON THE RANDOM GRAPH

BY NATHANAËL BERESTYCKI1, EYAL LUBETZKY2, YUVAL PERES AND

ALLAN SLY

University of Cambridge, New York University, One Microsoft Way and
University of California, Berkeley

We study random walks on the giant component of the Erdős–Rényi
random graph G(n,p) where p = λ/n for λ > 1 fixed. The mixing time
from a worst starting point was shown by Fountoulakis and Reed, and in-
dependently by Benjamini, Kozma and Wormald, to have order log2 n. We
prove that starting from a uniform vertex (equivalently, from a fixed ver-
tex conditioned to belong to the giant) both accelerates mixing to O(logn)

and concentrates it (the cutoff phenomenon occurs): the typical mixing is at
(νd)−1 logn ± (logn)1/2+o(1), where ν and d are the speed of random walk
and dimension of harmonic measure on a Poisson(λ)-Galton–Watson tree.
Analogous results are given for graphs with prescribed degree sequences,
where cutoff is shown both for the simple and for the nonbacktracking ran-
dom walk.

1. Introduction. The time it takes random walk to approach its stationary
distribution on a graph is a gauge for an array of properties of the underlying ge-
ometry: it reflects the histogram of distances between vertices, both typical and
extremal (radius and diameter); it is affected by local traps (e.g., escaping from a
bad starting position) as well as by global bottlenecks (sparse cuts between large
sets); and it is closely related to the Cheeger constant and expansion of the graph.
In this work, we study random walk on the giant component C1 of the classical
Erdős–Rényi random graph G(n,p), and build on recent advances in our under-
standing of its geometry on one hand, and random walks on trees and on random
regular graphs on the other, to provide sharp results on mixing on C1 and on the
related model of a random graph with a prescribed degree sequences.

The Erdős–Rényi random graph G(n,p) is the graph on n vertices where each of
the
(n
2

)
possible edges appears independently with probability p. In their celebrated

papers from the 1960s, Erdős and Rényi discovered the so-called “double jump”
in the size of C1, the largest component in this graph: taking p = λ/n with λ fixed,
at λ < 1 it is with high probability (w.h.p.) logarithmic in n; at λ = 1 it is of order
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n2/3 in expectation; and at λ > 1, it is w.h.p. linear (a “giant component”). Of
these facts, the critical behavior was fully established only much later by Bollobás
[7] and Łuczak [23], and extends to the critical window p = (1 ± ε)/n for ε =
O(n−1/3) as discovered in [7].

An important notion for the rate of convergence of a Markov chain to station-
arity is its (worst-case) total-variation mixing time: for a transition kernel P on a
state-space � with a stationary distribution π , recall ‖μ−ν‖TV = supA⊂�[μ(A)−
ν(A)] and write

tMIX(ε) = min
{
t : dTV(t) < ε

}
where dTV(t) = max

x

∥∥P t(x, ·) − π
∥∥

TV;

let t
(x)
MIX(ε) and d

(x)
TV (t) be the analogs from a fixed (rather than worst-case) ini-

tial state x. The effect of the threshold parameter 0 < ε < 1 is addressed by the
cutoff phenomenon, a sharp transition from dTV(t) ≈ 1 to dTV(t) ≈ 0, whereby
tMIX(ε) = (1 + o(1))tMIX(ε′) for any fixed 0 < ε, ε′ < 1 [making tMIX(ε) asymptot-
ically independent of this ε].

In recent years, the understanding of the geometry of C1 and techniques for
Markov chain analysis became sufficiently developed to give the typical order of
the mixing time of random walk, which transitions from n in the critical window
([26]) to log2 n at p = λ

n
on for λ > 1 fixed ([5, 16]) through the interpolating order

ε−3 log2(ε3n) when p = 1+ε
n

for n−1/3 � ε � 1 ([11]). Of these facts, the lower
bound of log2 n on the mixing time in the supercritical regime (λ > 1) is easy to
see, as C1 w.h.p. contains a path of c logn degree-2 vertices for a suitable fixed
c > 0 [escaping this path when started at its midpoint would require ( c

2 logn)2

steps in expectation]. The two works that independently obtained a matching log2 n

upper bound used very different approaches: Fountoulakis and Reed [16] relied
on a powerful estimate from [15] on mixing in terms of the conductance profile
(following Lovász–Kannan [21]), while Benjamini, Kozma and Wormald [5] used
a novel decomposition theorem of C1 as a “decorated expander.”

As the lower bound was based on having the initial vertex v1 be part of a rare
bottleneck (a path of length c logn), one may ask what t

(v1)
MIX is for a typical v1.

Fountoulakis and Reed [16] conjectured that if v1 is not part of a bottleneck, the
mixing time is accelerated to O(logn). This is indeed the case for almost every
initial vertex v1, and moreover t

(v1)
MIX (ε) then concentrates on c0 logn for c0 inde-

pendent of ε (cutoff occurs).

THEOREM 1. Let C1 denote the giant component of the random graph
G(n,p = λ/n) for λ > 1 fixed, and let ν and d denote the speed of random walk
and the dimension of harmonic measure on a Poisson(λ)-Galton–Watson tree, re-
spectively. For any 0 < ε < 1 fixed, w.h.p. the random walk from a uniformly cho-
sen vertex v1 ∈ C1 satisfies

(1.1)
∣∣t (v1)

MIX (ε) − (νd)−1 logn
∣∣≤ log1/2+o(1) n.



458 BERESTYCKI, LUBETZKY, PERES AND SLY

FIG. 1. Total-variation distance to stationarity from typical/worst initial vertices (marked red/blue)
on the giant component of G(n,p = 2

n ).

In particular, w.h.p. the random walk from v1 has cutoff with a log1/2+o(1) n win-
dow.

Before we examine the roles of ν and d in this result, it is helpful to place it in
the context of the structure theorem for C1, recently given in [11] (see Theorem 3.3
below): a contiguous model for C1 is given by (i) choosing a kernel uniformly
over graphs on degrees i.i.d. Poisson truncated to be at least 3; (ii) subdividing
every edges via i.i.d. geometric variables; and (iii) hanging i.i.d. Poisson Galton–
Watson (GW) trees on every vertex. Observe that steps (ii) and (iii) introduce i.i.d.
delays with an exponential tail for the random walk; thus, starting the walk from a
uniform vertex (rather than on a long path or a tall tree) would essentially eliminate
all but the typical O(1)-delays, and it should rapidly mix on the kernel (w.h.p. an
expander) in time O(logn); see Figure 1.

It is well known (see [8, 13, 18, 28]) that D̄, the average distance between
two vertices in C1, is logλ n + OP(1), analogous to the fact that D̄ = logd−1 n +
OP(1) in G(n, d), the uniform d-regular graph on n vertices3 [both are locally-tree-
like: G(n, d) resembles a d-regular tree while G(n,p) resembles a Poisson(λ)-GW
tree]. It is then natural to expect that t

(v1)
MIX coincides with the time it takes the walk

to reach this typical distance from its origin v1, which would be ν−1D̄ for a random
walk on a Poisson(λ)-GW tree.

3Here, OP(1) denotes a random variable that is bounded in probability.
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Supporting evidence for this on the random 3-regular graph G(n,3) was given
in [6], where it was shown that the distance of the walk from v1 after t = c logn

steps is w.h.p. (1+o(1))(νt ∧ D̄), with ν = 1
3 being the speed of random walk on a

binary tree. Durrett [13], Section 6, conjectured that reaching the correct distance
from v1 indicates mixing, namely that tMIX(1

4) ∼ 2ν−1D̄ for the lazy (hence the
extra factor of 2) random walk on G(n,3). This was confirmed in [22], and indeed
on G(n, d) the simple random walk has tMIX(ε) = d

d−2 logd−1 n + O(
√

logn), that
is, there is cutoff at ν−1D̄ with an O(

√
logn) window (in particular, random walk

has cutoff on almost every d-regular; prior to the work [22] cutoff was confirmed
almost exclusively on graphs with unbounded degree).

However, Theorem 1 shows that tMIX ∼ (νd)−1 logn versus the ν−1 logλ n steps
needed for the distance from v1 to reach its typical value (and stabilize there;
see Corollary 3.4). As it turns out, the “dimension drop” of harmonic measure
(whereby d < logEZ unless the offspring distribution Z is a constant), discov-
ered in [24], plays a crucial role here, and stands behind this slowdown factor of
(d/ logλ)−1 > 1. Indeed, while generation k of the GW-tree has size about (EZ)k ,
random walk at distance k from the root concentrates on an exponentially small
subset of size about exp(dk) (see Figures 2 and 3). Hence, (νd)−1 logn is cer-
tainly a lower bound on tMIX (the factor ν−1 translates time to the distance k from
the root), and Theorem 1 shows this bound is tight on G(n,p).

The same phenomenon occurs more generally in a random walk on a random
graph with a degree distribution (pk)

∞
k=1, generated by first sampling the degree of

each vertex v via an i.i.d. random variable Dv with P(Dv = k) = pk conditioned
on
∑

v Dv being even, then choosing the graph uniformly over all graphs with
these prescribed degrees.

THEOREM 2. Let G be a random graph with degree distribution (pk)
∞
k=1, such

that for some fixed δ > 0, the random variable Z given by P(Z = k − 1) ∝ kpk

FIG. 2. Mixing in total-variation versus distance from the origin (rescaled to [0,1]). On left: ran-
dom walk on a random regular graph mixes once its distance from the origin reaches the typical
distance D̄. On right: the analog on a random nonregular graph, where mixing is further delayed
due to the dimension drop of harmonic measure.
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FIG. 3. Harmonic measure on the first 7 generations of a GW-tree with offspring distribution
P(Z = 1) = P(Z = 3) = 1

2 .

satisfies

(1.2) P(Z > �n) = o(1/n) for �n := exp
[
(logn)1/2−δ],

and let t	 = (νd)−1 logn, where ν and d are the speed of random walk and dimen-
sion of harmonic measure on a Galton–Watson tree with offspring distribution Z:

(i) Set wn = √
logn(log logn)3. If p2 < 1 − δ and 1 + δ < EZ < K for an abso-

lute constant K , then w.h.p. on the event that v1 is in the largest component of
G,

d
(v1)
TV (t	 − wn) > 1 − ε, whereas d

(v1)
TV (t	 + wn) < ε.

(ii) Set wn = √
logn. If Z ≥ 2 and EZ < K for some absolute constants K , then

for any ε > 0 there exists some γ > 0 such that, with probability at least 1 −
ε − o(1),

d
(v1)
TV (t	 − γwn) > 1 − ε, whereas d

(v1)
TV (t	 + γwn) < ε.

Condition (1.2) is weaker than requiring Z to have finite exponential moments.
The intuition behind these results is better seen for the nonbacktracking (as

opposed to simple) random walk (NBRW), which, upon arriving to a vertex v

from some other vertex u, moves to a uniformly chosen neighbor w �= u (for-
mally, this is a Markov chain whose state-space is the set of directed edges in the
graph). This walk has speed ν = 1 on a GW-tree (as it never backtracks toward
the root), and on G(n,3) it was shown in [22] to satisfy |tMIX(ε) − log2 n| < C(ε)

for any fixed 0 < ε < 1 w.h.p.—indeed, cutoff [with an O(1)-window] occurs
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once the distance from the origin reaches the average graph distance. If we in-
stead take a random graph on 2n/3 vertices of degree 2 and n/3 vertices of de-
gree 4, this corresponds to a GW-tree with an offspring distribution P(Z = 1) =
P(Z = 3) = 1

2 ; since its kth generation grows as 2k , the distance between two
typical vertices is again asymptotically log2 n. However, the probability that the
NBRW follows a given path v1, v2, . . . , vk is

∏
1/Zi (with Zi denoting the number

of children of vi ); setting d = E logZ = log
√

3 < log 2, observe that
∑

i<k logZi

concentrates around kd by CLT, and hence k ∼ d−1 logn is a lower bound on
mixing. (More generally, by Jensen’s inequality d = E logZ < logEZ unless Z is
constant.)

This straightforward description of harmonic measure for the NBRW allows one
to directly control the location of this walk in the random graph. Consequently, by
adding a few ingredients to the approach originally used in [22], we were able to
extend the NBRW analysis of that work to the nonregular setting (Theorems 4.1–
4.2; similar results for the NBRW were independently obtained in [4]; see Sec-
tion 4 for further details).

However, the harmonic measure for the simple random walk (SRW) remains
mysterious, and there is no explicit formula for d even for very simple offspring
distributions (see Figure 3). Formally, let T be an infinite GW-tree rooted at ρ

with offspring distribution Z. Under our assumptions, the random walk (Xt) is
transient, so its loop-erasure defines a unique ray ξ . Denoting graph distance by
dist(·, ·), let ν be the asymptotic speed of the walk (well defined for almost every
tree; see [24], Section 3) given by

(1.3) ν
a.s.= lim

t→∞
1

t
dist(Xt , ρ).

Let PT denote the conditional probability given T , and set

(1.4) WT (v) = − logPT (v ∈ ξ).

Consider the metric d(ξ, η) = exp(−|ξ ∧ η|) on all rays ∂T , where ξ ∧ η is the
longest common prefix of ξ and η. It was shown in [24] that in the joint probability
space of a GW-tree and SRW on it,

(1.5) WT (ξt )/t
a.s.−→ d,

where d is nonrandom and is the Hausdorff dimension of harmonic measure in
the above metric. Building on the results of [9, 24, 25], we establish the following
refinement of (1.5), which plays a central role in our proof and seems to be of
independent interest.

PROPOSITION 3. Let T be a Galton–Watson tree, conditioned to survive,
whose offspring variable Z satisfies 1 < EZ < ∞. For every ε > 0, there exists
δ > 0 so that, for all t ,

(1.6) P
(∣∣WT (ξt ) − dt

∣∣> δ
√

t
)
< ε.
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Indeed, the upper bound on tMIX will hinge on showing that w.h.p. at a suitable
time t = (νd)−1 logn + O(

√
logn) the L2-distance of SRW from equilibrium is

exp(O(
√

logn))—a term that originates from the O(
√

t)-fluctuations of WT (ξt )

as per Proposition 3.

Organization and notation. In Section 2, we will establish Proposition 3 along
with several other estimates for random walk on GW-trees, building on the works
of [9, 24, 25]. Section 3 studies SRW on random graphs and contains the proofs of
Theorem 1 and 2, while Section 4 is devoted to the analysis of the NBRW.

Throughout the paper, a sequence of events An is said to hold with high proba-
bility (w.h.p.) if P(An) → 1 as n → ∞. We use the notation f � g and f � g to
abbreviate f = o(g) and f = O(g), respectively (as well as their converse forms),
and f � g to denote f � g � f . Finally, in the context of an offspring distribution
Z with EZ > 1, we say that T is a GW∗-tree to refer to the corresponding GW-tree
conditioned on survival.

2. Random walk estimates on Galton–Watson trees. Let T be an infinite
tree, rooted at some vertex ρ, on which random walk is transient. In what follows,
we will always use (Xt) to denote SRW on T and let the random variable ξ ∈ ∂T

denote its limit, that is, the unique ray that (Xt) visits i.o., or equivalently, the
loop-erased trace of (Xt)

∞
t=0. For any vertex v ∈ T other than the root, we let v−

denote its parent in T , and let θT (v) denote the incoming flow at v relative to its
parent corresponding to harmonic measure:

(2.1) θT (v) = PT

(
v ∈ ξ | v− ∈ ξ

)
,

so that if (v0 = ρ, v1, . . . , vk = v) is a shortest path in T then PT (v ∈ ξ) =∏k
i=1 θT (vi).
Our goal in this section is to establish Proposition 3 as well as the next two

estimates, in each of which the underlying offspring distribution Z is assumed to
have EZ > 1.

DEFINITION (Hitting measure). For a tree T rooted at ρ and an integer R, let
TR denote the tree induced on {v : dist(ρ, v) ≤ R}. For v ∈ TR , let θ̃TR

(v) denote
the probability that SRW from ρ first hits level R of T at a descendant of v.

LEMMA 2.1. Let T be a GW∗-tree rooted at ρ. There exists some c > 0 (de-
pending only on the law of Z) so that for every R > 0 the following holds. With
GW∗-probability at least 1 − exp(−cR), every child v of ρ satisfies∣∣θT (v) − θ̃TR

(v)
∣∣≤ exp(−cR),(2.2) ∣∣log θT (v) − log θ̃TR

(v)
∣∣≤ exp(−cR).(2.3)
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LEMMA 2.2. Let T be a GW∗-tree. There exists c > 0 such that, for all
R, t > 0,

P
(
dist(Xt , ξ) > R

)≤ exp(−cR).

2.1. Proof of Lemma 2.1. Let Z1 be the degree of ρ, and denote the children
of ρ as v1, v2, . . . , vZ1 . We will show that (2.2)–(2.3) hold for v = v1 except with
probability exp(−cR), and the desired statement will follow from a union over the
children of ρ and averaging over Z1 [multiplying said probability by the expecta-
tion of Z1 w.r.t. GW∗, which is O(1)].

Let Li be the set of leaves of the depth-(R − 1) subtree of vi [i.e., descen-
dants of vi at distance (R − 1) from it] and let τ = min{t : Xt ∈ ⋃Li} be the
hitting time of SRW to level R of T , so that θ̃TR

(v) = PT (Xτ ∈ L1). Now let B =⋃
k>0{Xτ+k = ρ} denote the event that Xt revisits ρ = v− after time τ . Clearly, on

the event Bc, we have ξ1 = v iff Xτ ∈ L1, and so∣∣θT (v) − θ̃TR
(v)
∣∣≤ PT (B).(2.4)

Estimating PT (B) follows from the following result in [9], p. 21, which was ob-
tained as a corollary of a powerful lemma of Grimmett and Kesten [17] (cf. [9],
Lemma 2.2).

LEMMA 2.3. There exist c,α > 0 such that the following holds. Let T be a
GW∗-tree and let R ≥ 1. With probability at least 1 − exp(−cR), every depth-R
vertex x satisfies that the ray P from the root to x has at least αR vertices v such
that Pv(τ

+
P = ∞) > c, where τ+

P denotes the return time of RW to the ray P .

By this lemma, there is a measurable set A of GW∗-trees such that P(A) ≤
exp(−cR) and for every T /∈ A, every z ∈⋃Li satisfies the following: there are
at least αR vertices on its path to ρ so that the SRW from such a vertex y has a
probability q > 0 of escaping to ∞ never again visiting its parent y−. In particu-
lar,

PT (B)1T /∈A ≤ (1 − q)αR ≤ exp
(−c′R

)
for some c′ > 0, which we take to be at most c/2. This establishes (2.2).

It remains to show (2.3). Let γT be the probability that SRW on T does not
revisit the root beyond time 0, and notice that by definition, for every i,

θT (vi) ∧ θ̃TR
(vi) ≥ γi/Z1,

where γi is the copy of γT corresponding to the subtree rooted at vi . By [24],
Lemma 9.1,

E[1/γ ] ≤ 1

1 −E[1/Z] = O(1).
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Define the event

Ã =A∪ {γ1 < e− 1
2 c′R}∪ {Z1 > e

1
4 c′R},

and observe that P(Ã) = O(e− 1
4 c′R) by Markov’s inequality.

On the event Ãc,

∣∣log θT (v) − log θ̃TR
(v)
∣∣≤ |θT (v) − θ̃TR

(v)|
θT (v) ∧ θ̃TR

(v)
≤ PT (B)

γ1/Z1
≤ e−c′R

e− 3
4 c′R

= e− 1
4 c′R,

establishing (2.3).

2.2. Proof of Lemma 2.2. Following [24], consider the Augmented GW-tree
(AGW), which is obtained by joining the roots of two i.i.d. GW-trees by an edge.
A highly useful observation of [24] is that the process in which SRW acts on (T ,ρ)

by moving the root to one of its neighbors is stationary when started at an AGW-
tree T and one of its roots. Clearly, the probability of the event under consideration
here in the GW-tree is, up to constant factors from below and above, the same as the
analogous probability in the AGW-tree (with positive probability the walk never
traverses the edge joining the two copies; conversely, a union bound can be applied
to the two GW-tree instances). For brevity, an AGW∗-tree will denote an AGW-
tree conditioned to be infinite, for which the above stationarity property w.r.t. SRW
is still maintained.

The event dist(Xt , ξ) > R implies that, if u is the vertex at distance R from Xt

on the loop-erased trace of (X0,X1, . . . ,Xt ) (the result of progressively erasing
cycles as they appear) then the SRW must revisit u at some time s > t .

The stationarity reduces our goal to showing that P(
⋃

s>0{Xs = u}) ≤
exp(−cR), where u is the vertex at distance R from X0 on the loop-erased trace of
(X0, . . . ,X−t ). Condition on the past of the walk. By Lemma 2.3, with probability
1 − O(exp(−cR)) the AGW∗-tree T satisfies that the path from ρ to u contains
some αR vertices from which the walk would escape and never return to this path
with probability bounded away from 0, whence the probability of visiting u at a
positive time is at most exp(−cR) for some c > 0.

2.3. Proof of Proposition 3. A regeneration point for the SRW on the GW∗-
tree is a time τ ≥ 1 such that the edge (Xτ−1,Xτ ) is traversed exactly once along
the trace of the random walk. Set τ0 = 0 and let τ1 < τ2 < · · · denote the sequence
of regeneration points on a random GW∗-tree T . The following remarkable result
due to Kesten was reproduced in [27] (see also [24, 25] where the first part was
observed).

LEMMA 2.4. Let T be a GW∗-tree rooted at ρ, let (τi)i≥0 be the regeneration
points of SRW on it, and let ϕi = dist(ρ,Xτi

) denote their depths in the tree:
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(a) Let Ti (i ≥ 1) denote the depth-(ϕi − ϕi−1) tree that is rooted at Xτi−1 . Then
{(Ti, (Xt)τi−1≤t<τi

)}i≥1 are mutually independent, and for i ≥ 2 they are i.i.d.
(b) There exist some α > 0 such that E exp[α(ϕi − ϕi−1)] < ∞.

By the standard decomposition of a GW∗-tree into a GW-tree with no leaves (the
skeleton of the tree) and critical bushes (see, e.g., [2], Section I.12), together with
the fact that the harmonic measure is supported on the skeleton, we may assume
throughout this proof that P(Z = 0) = 0.

Let ϕi = dist(ρ,Xτi
) (i ≥ 1) be as in the above lemma (noting that necessarily

Xτi
= ξϕi

as regeneration points are by definition part of the loop-erased trace ξ )
and set

Yi = − log θT (ξi),

so that our goal is to show the concentration of
∑t

i=1 Yi = WT (ξt ). Next, we show
that Yi has exponential moments. If v1, . . . , vZ1 are the children of the root (re-
call Z1 > 0), then θ−1

T (ξ1) =∑Z1
i=1 1ξ1=vi

θ−1
T (vi) with the summands being i.i.d.

given Z1. Hence,

E
[
θ−1
T (ξ1) | Z1

]= Z1E
[
1ξ1=v1θ

−1
T (v1) | Z1

]
= Z1E

[
θ−1
T (v1)E[1ξ1=v1 | T ] | Z1

]= Z1,

and it follows that

E exp(Y1) = E
[
θT (ξ1)

−1]= EZ1 = O(1).

By [24], Theorem 8.1, there exists a probability measure GWHARM on GW-trees,
which satisfies the following. It is stationary for the harmonic flow θT , mutually
absolutely continuous w.r.t. GW (moreover, GWHARM/GW is uniformly bounded
from above), and under GWHARM one has E[WT (ξt )] = dt . We will show that

(2.5) Var
(
WT (ξt )

)≤ Czt w.r.t. GWHARM � SRW

for some constant Cz that depends only on the law of the offspring variable Z,
where GWHARM�SRW is the joint distribution of a GWHARM-tree and SRW on
it. A direct application of Chebyshev’s inequality will then imply (1.6) under
GWHARM�SRW (for δ = √

Cz/ε). The analogous statement for GW�SRW will
then follow by the absolute continuity: for every ε > 0 there exists ε′ such that
if the event in (1.6) has probability at most ε′ under GWHARM×SRW then it has
probability at most ε under GW�SRW.

It remains to show (2.5). Note that the bounds established above on EY 2
1 under

GW remain valid under GWHARM thanks to the fact that dGWHARM/dGW = O(1).
Since the sequence (Yi)i≥1 is stationary under GWHARM�SRW, it suffices to

show that there exist some constants c, c′ > 0 such that Cov(Y1, Yk) ≤ c exp(−c′k)

for all k. Let T�k/2� be the depth-�k/2� subtree of T (sharing the same root), and
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write θ(v) = θT (v) and θ̃ (v) = θ̃T�k/2�(v) for brevity. Denoting the children of the
root by v1, . . . , vZ1 , recall from Lemma 2.1 (with R = �k/2�) and Lemma 2.4 that
there exist some c1, c2 > 0 (depending only on the offspring distribution Z) such
that the events E1, E2 given by

E1 = ⋃
1≤i≤Z1

{∣∣θ̃ (vi) − θ(vi)
∣∣> e−c1k

}
, E2 = {ϕ1 ≥ k/2}

satisfy P(E1 ∪ E2) ≤ exp(−c2k). It follows from Hölder’s inequality that

Cov(Y11E1, Yk) ≤ [EY 2
1
] 1

2
[
EY 4

k

] 1
4P(E1)

1
4 � exp(−c2k)

(recall Yi has finite moments of every order), and similarly for Cov(Y11Ec
1
, Yk1E2);

hence, to estimate Cov(Y1, Yk) it remains to bound Cov(Y11Ec
1
, Yk1Ec

2
).

On the event Ec
1 , either (i) we have θ(vi) ≤ exp(−3

4c1k), whence

θ(vi) log2 θ(vi)� e− 1
2 c1k and θ̃ (vi) log2 θ̃ (vi)� e− 1

2 c1k,

or (ii) we have θ(vi) > exp(−3
4c1k) and infer from the bound on |θ̃ (vi) − θ(vi)|

that ∣∣log θ(vi) − log θ̃ (vi)
∣∣2 ≤

(
e−c1k

θ(vi) ∧ θ̃ (vi)

)2
� e− 1

2 c1k,

where in both cases the implicit constants are independent of k. Hence, if we let
Y ′

1 assume the value log(1/θ̃(vi)) with probability θ̃ (vi) for each child vi of the
root of T ,

E
∣∣Y11Ec

1
− Y ′

1
∣∣2 � e− 1

2 c1kEZ � e− 1
2 c1k;

thus [recalling that EY 2
k = O(1)],

Cov
(
Y11Ec

1
− Y ′

1, Yk1Ec
2

)≤√E(Y11Ec
1
− Y ′

1

)2
EY 2

k � e− 1
4 c1k.

Thanks to the discrete renewal theorem—crucially using that the renewal intervals
ϕi have exponential moments (see [19] as well as [20], Section II.4)—we can
couple Yk1Ec

2
with an i.i.d. copy of Y1 with probability 1 − O(exp(−c3k)), and so

Cov(Y ′
1, Yk1Ec

2
) � exp(−c3k). This completes the desired bound on Cov(Y1, Yk)

and concludes the proof.

3. Random walk from a typical vertex in a random graph. We begin by
studying SRW and LERW on an infinite GW-tree along what would be the cutoff
window. This analysis will then carry over to SRW on G via coupling arguments,
and provide initial control over the distribution of the walk within the cutoff win-
dow. The final step will be to boost mixing in that window via the graph spectrum.
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3.1. Quantitative estimates on the infinite tree. Fix ε > 0 and set

m = n exp(−γ
√

logn),(3.1)

�0 = 1

d
logm = 1

d
logn − O(

√
logn),(3.2)

�1 = �0 + 1

4d
γ
√

logn,(3.3)

where γ > 0 is a suitably large constant with the following two properties:

(i) By Proposition 3, for large enough γ (in terms of the law of Z and ε),

P

(
WT (ξ�0) > logm − 1

3
γ
√

logn

)
> 1 − ε,(3.4)

P

(
WT (ξ�1) < logm + 1

3
γ
√

logn

)
> 1 − ε.(3.5)

(ii) It is known (see [27]) that the distance of SRW (Xt) from the root (its origin)
of GW-a.e. tree has mean νt + O(1) and variance at most Czt for some fixed
Cz > 0 (which depends only on the offspring variable Z). Thus,

P

(∣∣dist(ρ,Xt) − νt
∣∣≤ 1

16d
γ
√

logn

)
> 1 − ε for any t ≤ ν−1�1

provided γ is large enough in terms of d, Cz and ε. Combined with the ex-
ponential tails of the regeneration times (recall Section 2.3), taking γ large
enough further gives

P

(
max

t≤ν−1�1

∣∣dist(ρ,Xt) − νt
∣∣≤ 1

16d
γ
√

logn

)
> 1 − ε.(3.6)

Let c0 > 0 be some constant (to be specified later), and set

(3.7) R = c0 log logn.

DEFINITION. For a tree T and integer R > 0, if u0 = ρ,u1, . . . , uk = u is the
shortest path from the root to a vertex u and θ̃ is as defined in Section 2, define

W̃T (u) = −
k∑

i=1

log θ̃TR(u−
i )(ui),

where TR(u−
i ) is the depth-R subtree of T rooted at the parent of ui .

Consider the exploration process where at step k—corresponding to Fk in the
filtration—we expose the depth-(k + 1) descendants of the root, as in the standard
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breadth-first-search process, with one modification: we explore the children of a
vertex v (which is at depth k) only if its distance-R ancestor, denoted u, satisfies

(3.8) W̃T (u) ≤ logm + 1

2
γ
√

logn.

Instead, if (3.8) is violated, we declare that the exploration process is truncated at
all the depth-R descendants of u, and denote this Fk-measurable event by Btr(u).

We stress that, when determining whether to truncate the exploration at the ver-
tex v as described above, the variable W̃T (u) is Fk-measurable [as the event Btr(ui)

has not occurred for any of the ancestors of u, thus the subtree of depth R of each
of them has been fully explored].

LEMMA 3.1. Let T be a GW∗-tree, and define �1, γ and Btr as above. If c0
from (3.7) is sufficiently large, then

P

( ⋃
k≤�1

Btr(ξk)

)
≤ P

(
WT (ξ�1) > logm + 1

3
γ
√

logn

)
+ o(1) < ε + o(1).

To prove this result, we need the following simple claim.

CLAIM 3.2. Let T be a GW∗-tree. There exist c1, c2 > 0 such that the follow-
ing holds. For every measurable set A of trees and integer �,

P

(⋃
i≤�

{
T∞(ξi) ∈A

})≤ c1�P(A) + exp
(−c2�

1/3).
PROOF. It suffices to prove this for the AGW∗-tree (as argued in the proof of

Lemma 2.2). Let (Xt)
∞
t=0 be simple random walk on T whose loop-erased trace

is ξ . Then

P

(⋃
i≤�

T∞(ξi) ∈ A
)

≤ P

( ⋃
t≤2�/ν

{
T∞(Xt) ∈ A

})+ P

( ⋃
t≥2�/ν

{
dist(Xt , ρ) < �

})

≤ 2�

ν
P(A) + ∑

t≥2�/ν

exp
(−c3t

1/3),
using the stationarity of the AGW∗-tree and the large deviation estimate from [27]
on the speed of random walk on a GW-tree (see also [9]). �

PROOF OF LEMMA 3.1. Note that the right-hand inequality follows from the
choice of γ as per (3.5), and it remains to prove the left-hand inequality.

Let A denote the set of trees T for which there exists a child v of the root such
that ∣∣log θ̃TR

(v) − log θT (v)
∣∣> exp(−cR)
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for c > 0 the constant from Lemma 2.1. Note that P(A) < exp(−cR) by (2.3) in
that lemma. Furthermore, on the event

Ek :=
k−1⋂
i=0

(
Btr(ξi)

c ∩ {T∞(ξi) /∈ A
})∩Btr(ξk)

we have ∣∣log θ̃TR
(ξi) − log θT (ξi)

∣∣≤ exp(−cR) for all i = 1, . . . , k.

Thus, by the triangle inequality, the event Ek implies that∣∣W̃T (ξk) − WT (ξk)
∣∣≤ ke−cR � e−cR logn = O

(
log−2 n

)
,

provided that k = O(logn) and c0 ≥ 3/c in the definition (3.7) of R. Therefore, by
the truncation criterion (3.8), we find that Ek implies that

WT (ξk) ≥ logm + 1

2
γ
√

logn − O
(
log−2 n

)
> logm + 1

3
γ
√

logn

for sufficiently large n, whence [using that WT (ξk) ≤ WT (ξ�1) for all k ≤ �1],

(3.9)
⋃

k≤�1

Ek ⊂
{
WT (ξ�1) ≥ logm + 1

3
γ
√

logn

}
.

On the other hand, Claim 3.2 shows that

(3.10) P

(⋃
i≤�1

{
T∞(ξi) ∈ A

})≤ c1�1e
−cR + e−c2�

1/3
1 = O

(
log−2 n

)
.

Since, by the definition of Ek ,⋃
k≤�1

Btr(ξk) ⊂
( ⋃

k≤�1

Ek

)
∪
( ⋃

k≤�1

{
T∞(ξi) ∈ A

})
,

combining (3.9)–(3.10) completes the proof. �

Let Sk (k ≤ �1) denote the set of explored vertices at distance k from the root
(so that Sk is Fk-measurable), and define the Fk+R-measurable S′

k by

S′
k = {u ∈ Sk : Btr(u)c

}
.

By the definition of the truncation criterion, for every u ∈ S′
k ,

−W̃T (u) ≥ − logm − 1

2
γ
√

logn.

It is easy to see (e.g., by induction on k) that∑
u∈S′

k

exp
(−W̃T (u)

)≤ 1.
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In particular,

1 ≥ ∣∣S′
k

∣∣m−1e− 1
2 γ

√
logn,

thus it follows from (3.1) that∣∣S′
k

∣∣≤ m exp
(

1

2
γ
√

logn

)
= n exp

(
−1

2
γ
√

logn

)
.

Therefore, as the maximum degree is at most � = exp[(logn)1/2−δ], the number
of vertices reached in the first �1 exploration rounds (i.e., those revealed in F�1 ) is
at most ∑

k≤�1

|Sk| ≤
∑
k≤�1

∣∣S′
k

∣∣�R

≤ �1n exp
(
−1

2
γ
√

logn

)
�R

≤ n exp
(
−1

3
γ
√

logn

)
,

(3.11)

using the fact �R = exp[O((logn)1/2−δ log logn)] = exp[o(
√

logn)]. [We stress
that the estimate (3.11) holds with probability 1].

Finally, recall from (3.4) that WT (ξ�0) > logm − 1
3γ

√
logn with probability at

least 1 − ε. Since Lemma 3.1 implies that P(ξ�0 ∈ S′
�0

) ≥ 1 − ε − o(1), it therefore

follows [once we recall from (3.1) that 1
m

exp(1
3γ

√
logn) = 1

n
exp(4

3γ
√

logn)] that

P
(
ξ�0 ∈ S′′

�0

)≥ 1 − 2ε − o(1)

for S′′
�0

⊂ S′
�0

defined by

(3.12) S′′
�0

=
{
u ∈ S′

�0
: PT (ξ�0 = u) ≤ 1

n
exp
(

4

3
γ
√

logn

)}
.

3.2. Coupling the GW-tree to the random graph. We describe a coupling of
SRW (Xt) on a GW-tree4 T , started at its root ρ, to SRW (Xt ) on G, started at a
fixed vertex v1. Let T̃ ⊂ T be the truncated GW-tree from Section 3.1, and let τ

be the time at which the SRW (Xt) on T reaches level �1. We will first construct
a coupling of G and T , in which we will specify a tree �̃ ⊂ G rooted at v1 and a
one-to-one mapping φ : �̃ → T̃ , such that

(3.13) degG(x) = degT

(
φ(x)

)
for all x ∈ �̃

4More precisely, the degree of the root will be different—given by (pk) as opposed to the size-
biased law of Z—but this has no effect since this model is clearly contiguous to the standard GW-tree.
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[where degG(u) accounts for multiple edges]. Moreover, defining, for k ≥ 1, the
event

�k := ⋂
t≤k

{
Xt ∈ φ(�̃)

}
,

we will show that

(3.14) P(�τ ) ≥ 1 − ε − o(1).

In what follows, we refer to the event �k as a “successful coupling” of
(Xt ,Xt )

k
t=1, for the following reason: denoting τ̃ = min{t : Xt /∈ φ(�̃)}, take

Xt = φ−1(Xt) for t < τ̃ , let Xτ̃ choose a uniform neighbor of Xτ̃−1 among
those that belong to G\ �̃ [recalling that degG(Xτ̃−1) = degT (Xτ̃−1)] and run Xt

independently of Xt for t > τ̃ . This yields the correct marginal of SRW on G by
(3.13). When using this coupling, on the event �τ one has Xt = φ−1(Xt) for all
t ≤ τ .

Construct the coupling of (G,T ) by exposing, in tandem, the truncated GW-
tree T̃ and a subgraph of the exploration process of v1 in G via the configuration
model.5 Initially, we let degG(v1) = degT (ρ) and set �̃ = {v1} and φ(v1) = ρ. We
proceed by exposing, vertex by vertex, the tree T̃ , and attempting to find �̃ in G

such that �̃ is isomorphic to a subtree of T̃ rooted at ρ, while maintaining that the
queue of active vertices (ones that await exploration) in G will always be a subset
of �̃.

Suppose we are now exploring the offspring of z ∈ φ(�̃). Note one can map
the offspring y1, . . . , yr of z one-to-one to the half-edges of u = φ−1(z) in G, a
currently active vertex in the exploration queue, with (3.13) in mind.

(a) If the offspring of z are to be truncated, remove u from the exploration queue
of G (do not explore its half-edges). Otherwise, process y1, . . . , yr sequen-
tially as follows.

(b) If the half-edge corresponding to yi is matched to some previously encoun-
tered vertex v in the exploration of G [i.e., the edge (u, v) formed by this pair-
ing closes a cycle in G], mark both u and v by saying that the events Bcyc(u)

and Bcyc(v) hold, and remove u and its offspring from the exploration queue
of G. In addition, we delete u and its offspring from �̃.

(c) If, on the other hand, the half-edge corresponding to yi is to be matched to a
vertex v that has not yet been encountered, we sample degT (yi) and degG(v)

5Every vertex u is associated with a number of “half-edges” corresponding to its degree, and the
(multi)graph is generated by a uniform perfect matching of the half-edges (see, e.g., [8]). In our
context, we reveal the connected component of v1 by successively revealing the paired half-edges
of vertices in a queue (breadth-first-search). If multiple edges or loops are found, or the component
is exhausted with at most

√
n vertices, we abort the analysis [rejection-sampling for having v1 ∈

C1(G)].
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via the maximal coupling between their distributions (the former has the law of
Z, and the law of the latter is a function of the remaining vertex degrees in G).
If this sample has degT (yi) = degG(v), then we add v to �̃ and set φ(v) = yi ;
otherwise, we say Bdeg(v) holds, and remove v from the exploration queue.

The above construction satisfies (3.13) by definition. To verify (3.14), we must
estimate the probability that one of the following events occurs: (a) the walk (Xt)

visits a truncated vertex [i.e., Btr(Xt) occurs for some t ≤ τ ], (b) its counterpart
(Xt ) visits a vertex with nontree-edges [i.e., Bcyc(Xt ) occurs for some t ≤ τ ], or
(c) the walk (Xt) visits some vertex y ∈ T̃ such that its counterpart in G had a
mismatched degree [i.e., Bdeg(Xt ) occurs for some t ≤ τ ].

The estimate of the event in (a) will follow directly from our results in Sec-
tion 3.1. For the sake of estimating the events in (b)–(c), and in order to circumvent
potentially problematic dependencies between the random walk and the random
environment, we will estimate the probabilities of the following larger events: if
wR denotes the distance-R ancestor of a vertex w in a tree, then let

B̂(w) =⋃{Bcyc(v) ∪Bdeg(v) : v ∈ �̃R+1
(
wR)},

that is, we test whether there exists a vertex with nontree-edges or a mismatched
degree in the entire depth-R subtree of the distance-(R − 1) ancestor of w. We
will estimate the probability of B̂ =⋃�1

i=0 B̂(Xςi
), where ςi is the first time that

dist(Xt , v1) = R + i.
We first reveal the first R + 1 levels of �̃ and T̃ , and examine whether Bcyc(v)

or Bdeg(v) hold for any one of their vertices. (If so, then B̂ occurs due to i = 0.)
For each i ≥ 1, we reveal level R + i + 1 of �̃ and T̃ in the following manner:
we first run Xt until ςi , then examine whether Bcyc(v) or Bdeg(v) hold for some v

that is a depth-(R + 1) descendant of X R
ςi

(if so, B̂ occurs) and proceed to reveal
the rest of this level.

Using this analysis, we guarantee that we examine whether Bcyc(v) ∪ Bdeg(v)

occur for vertices v in a given level, only at the first time that the walk has
reached that level (thus preserving the underlying independence in the configu-
ration model). In addition, if Xt leaves �̃ for the first time on account of either
Bcyc(Xt ) or Bdeg(Xt ), then either B̂ holds, or Xt must have revisited some ver-
tex u after reaching one of its depth-R descendants. The latter occurs by time t

with probability at most t exp(−cR) by Lemma 2.2, which is o(1) for t � logn

provided that the constant c0 in the definition of R is sufficiently large.

(a) Avoiding a truncation: By definition, a truncated vertex v corresponds to a
distance-R ancestor u for which the event Btr(u) holds, and by Lemma 3.1
the probability that the LERW ξ visits such a vertex u by time �1 is at most
ε + o(1).

In the event that the LERW ξ does not visit such a vertex, the SRW (Xt)

must escape from the ray ξ to distance at least R in order to hit a truncated
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vertex, a scenario which has probability at most exp(−cR) by Lemma 2.2;
thus, the overall probability of the SRW hitting a truncation by some time
t � logn is at most

te−cR � e−cR logn = o(1)

provided the constant c0 in the definition of R is chosen large enough.
(b) Avoiding a cycle: A set of vertices S of size s in the boundary of the ex-

ploration process of G has at most �s half-edges that are to be matched in
the next round. A nontree-edge at a given vertex v ∈ S is generated by ei-
ther:
1. matching a pair of its half-edges together—which has probability O(�2/n)

as long as the number of remaining unmatched half-edges has order
n, or

2. pairing one of them to another unmatched half-edge of S (the more com-
mon scenario inducing cycles), which has probability O(s�2/n).

By (3.11), we know that s ≤ n exp(−1
3γ

√
logn) = o(n/�) and hence, in-

deed, the number of unmatched half-edges that remain at time �1 is of
order n. Thus, to bound the contribution to P(B̂) due to some Bcyc(v),
we estimate the probability of encountering such a vertex along some
�1�

R+1 trials. A union bound yields that this contribution has order at
most

�1�
R+1 s�2

n
� exp

(
−1

3
γ
√

logn + o(
√

logn)

)
= o(1).

(c) Coupling vertex degrees: While the tree uses a fixed offspring distribution Z,
the exploration process in G dynamically changes as the half-edges are sam-
pled without replacement. Let Nk denote the number of vertices of degree k

in G, and note that

P
(|Nk − npk| > 4(

√
npk logn ∨ logn)

)
= O

(
n−3/2)

by a standard large deviation estimate for the binomial variable Nk ∼
Bin(n,pk), for example, [18], Theorem 2.1, where the O(·) includes an extra
factor of 2 due to the conditioning that the sum of the degrees,

∑
kNk , should

be even. We may thus condition on the degrees (Du)u∈V (whence G becomes
a random graph with a given degree sequence) and assume, by neglecting an
event of probability o(1), that

|Nk − npk| ≤ 4(
√

npk logn ∨ logn) for all k = 1, . . . ,�(3.15)
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and that Nk = 0 for k > �. Further observe that, by Cauchy–Schwarz,

�∑
k=1

(
√

npk logn ∨ logn) ≤
√

�n logn ∨ � logn ≤ n1/2+o(1).(3.16)

Letting Ñk denote the number of vertices with k unmatched half-edges
at some point in time, a given half-edge gets matched to a vertex of degree
j with probability jÑj /

∑
k kÑk . Denoting the last variable by Z̃, and note

that ∑
j

j |Ñj − npj | ≤ �
∑
j

(|Ñj − Nj | + |Nj − npj |)
≤ �

∑
i≤�1

|Si | + n1/2+o(1)

� �n exp
(
−1

3
γ
√

logn

)
,

(3.17)

where the inequality between the lines used (3.15)–(3.16), and the last inequal-
ity used (3.11). Thus,

∥∥P(Z ∈ ·) − P(Z̃ ∈ ·)∥∥TV = 1

2

∑
j≤�

∣∣∣∣ jpj∑
k kpk

− jÑj∑
k kÑk

∣∣∣∣
= 1

2

∑
j≤�

j

∣∣∣∣pj

∑
k kÑk − Ñj

∑
k kpk∑

k kpk

∑
k kÑk

∣∣∣∣,
which, if we write � =∑k k(Ñk − npk), is equal to

1

2

∑
j≤�

j

∣∣∣∣npj − Ñj

n
∑

k kpk

+ Ñj�

n
∑

k kpk

∑
k kÑk

∣∣∣∣
≤ 1

2n

∑
j

j |Ñj − npj | + |�| ∑
j≤�

Ñj

n2 ,

for large n, using
∑

k kÑk ≥ (1 − o(1))n. By (3.17) and the hypothesis
on �,

∥∥P(Z ∈ ·) − P(Z̃ ∈ ·)∥∥TV �
(
� + �2) exp

(
−1

3
γ
√

logn

)
.

A union bound over �1�
R+1 trials of examining Bdeg(v) shows that this con-

tribution to P(B̂) is also o(1).
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3.3. Lower bound on mixing time in Theorem 2. Set

t− = �0

ν
= ν−1

(
�1 − 1

4d
γ
√

logn

)
,

and observe that (3.6) implies that dist(ρ,Xt−) ≤ �1 − (8d)−1γ
√

logn with prob-
ability at least 1 − ε. By Lemma 2.2, applied in a union bound over t ≤ t− =
O(logn), w.h.p.

(3.18) max
{
dist(Xt , ξ) : t ≤ t−

}≤ R

for a large enough c0 > 0 (depending only on the distribution of Z) in the defini-
tion (3.7) of R. It follows that upon a successful coupling, Xt− is within distance
R = O(log logn) from the set of vertices corresponding to

⋃
i≤�1

Si , the vertices
exposed in �1 rounds of our truncated exploration process of the GW-tree. Thus,
by (3.11), the distribution of Xt− given a successful coupling has a mass of 1 − ε

on at most

�R
∑
i≤�1

|Si | = o(n)

vertices, yielding the required lower bound.

3.4. Upper bound on mixing time in Theorem 2.

3.4.1. The case of minimum degree 3 [Theorem 2, Part (ii)]. Set

t+ = �0 + �1

2ν
= ν−1

(
�1 − 1

8d
γ
√

logn

)
.

We claim that, if PG is the transition matrix of the SRW (Xt ), then for large n,

(3.19) P

( ∑
v∈V (G)

[
P t+

G (v1, v) ∧ 1

n
exp
(

4

3
γ
√

logn

)]
≥ 1 − √

5ε

)
≥ 1 − √

5ε.

To see this, first define the event ϒ = ϒ1 ∩ ϒ2 ∩ ϒ3, where

ϒ1 =
{
�0 + 1

16d
γ
√

logn ≤ dist(ρ,Xt+) ≤ �1 − 1

16d
γ
√

logn

}
,

ϒ2 = {(Xt ,Xt )
t+
t=1 are successfully coupled

}
,

ϒ3 = {ξ�0 = (loop-erased trace of (Xt)t≤t+
)
�0

}∩ {ξ�0 ∈ S′′
�0

}
for (Xt) on T ,

where S′′
�0

is as defined in (3.12). Recall from (3.6) that P(ϒc
1) ≤ ε; we established

in Section 3.2 that P(ϒc
2 ∩ ϒ1) ≤ ε + o(1) (utilizing the upper bound portion of

the event ϒ1); and as for ϒ3, the first event in that intersection occurs w.h.p. on the
event of the lower bound on dist(ρ,Xt+) from ϒ1 [otherwise there would be some
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t ≤ t+ at which dist(Xt , ξ) �
√

logn, which is unlikely as argued above (3.18)]
and, therefore, P(ϒc

3 ∩ ϒ1) ≤ 2ε + o(1) by the bound above (3.12). Overall,

P
(
ϒc)≤ 4ε + o(1),

and by Markov’s inequality, for sufficiently large n we have

P
(
PG(ϒ) ≥ 1 − √

5ε
)≥ 1 − √

5ε.

In particular, with the definition of S′′
�0

in mind, with probability at least 1 − √
5ε,∑

v∈V (G)

[
PG(Xt+ = v,ϒ | X0 = v1) ∧ 1

n
exp
(

4

3
γ
√

logn

)]

≥ ∑
v∈V (G)

PG(Xt+ = v,ϒ | X0 = v1) ≥ PG(ϒ) ≥ 1 − √
5ε,

and (3.19) follows.
We now reveal G, and can assume that the event in (3.19) occurs. That is, if we

set μ(v) = P t+
G (v1, v) ∧ 1

n
exp(4

3γ
√

logn) then 1 − μ(G) ≤ √
5ε. With the fact

π(v) ≥ 1/(�n) in mind, we infer that∥∥P t++s
G (v1, ·) − π

∥∥
TV ≤ √

5ε + ∥∥μP s
G − π

∥∥
TV ≤ √

5ε + ∥∥μP s
G − π

∥∥
L2(π),

and ∥∥μ/π − μ(G)
∥∥
L2(π) ≤ exp

((
4

3
+ o(1)

)
γ
√

logn

)
.

In the setting where p1 = p2 = 0, we can now conclude the proof, using the well-
known fact that G is then w.h.p. an expander and by Cheeger’s inequality the
spectral gap of the SRW on G, denoted gap, is uniformly bounded away from 0
(see [1] on expanders and, e.g., [10], Lemma 3.5, (treating the kernel of the giant
component) for the standard argument showing expansion for a random graph with
said degree sequence). Indeed, if we take

(3.20) s = cgap−1(γ√logn + log(1/ε)
)

for a large enough absolute constant c > 0, then we will have∥∥P t++s
G (v1, ·) − π

∥∥
TV ≤ √

5ε + ε,

as desired.

3.4.2. Allowing degrees 1 and 2 [Theorem 2, Part (i)]. The general case re-
quires one final ingredient, since G is no longer an expander. Instead of G, con-
sider the graph G′ on n′ ≤ n vertices where every path of degree-2 vertices whose
length is larger than R = c0 log logn is contracted into a single edge, and similarly,
every tree whose volume is at least R is replaced by a single vertex.
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Let U be the set of vertices in V (G) \ V (G′) as well as their neighbors in G.
We claim that, if v is a uniform vertex conditioned to belong to C1(G) and

BU,t = ⋃
k≤t

{Xk ∈ U},

where Xk is SRW from v, then Pv(BU,log2 n) = o(1). This will reduce the analysis
to G′, as clearly on the event Bc

U,t we can couple the walks on G and G′ up to
time t . Since C1 is linear w.h.p., it suffices to take X0 to be uniform over V , that
is, to show that

1

n

∑
v∈V

Pv(BU,log2 n) = o(1).(3.21)

The fact that p2 is uniformly bounded away from 1 implies that

(3.22) P
(
v ∈ U | (Du)u∈V

)
< Dv(logn)−10

for every vertex v provided we choose the constant c0 to be sufficiently large [for
the long paths this uses the decay of P(Y > R) where Y ∼ Geom(p2), whereas for
the hanging trees this uses tail estimates for the size of subcritical GW-trees (see
[14])].

Condition on the degree sequence (Du)u∈V , let Nk denote the number of ver-
tices of degree k in G, and assume (3.15) holds, neglecting an event of prob-
ability o(1) as described above that inequality. Since

∑
k kpk = O(1) thanks

to our assumption on EZ, it follows [see (3.15)–(3.16)] that
∑

u Du = (1 +
o(1))n

∑
k kpk = O(n). In particular, for every v ∈ V we have π(v)−1 =

(
∑

u Du)/Dv = O(n). Therefore, for every t ,

1

n

∑
v

Pv

(
BU,t | (Du)u∈V

)
�
∑
v

π(v)Pv

(
BU,t | (Du)u∈V

)
= E

[∑
v

π(v)Pv

(⋃
k≤t

{Xk ∈ U} | G
)∣∣∣∣(Du)u∈V

]

≤ t
∑
v

π(v)P
(
v ∈ U | (Du)u∈V

)
,

where the last step combined a union bound with the stationarity of the SRW. Let
A = {v : Dv ≥ log3 n}, and notice that

∑
k≥log3 n kpk = O(1/ log3 n) using EZ =

O(1), which, by (3.15)–(3.16), yields π(A) = O(1/ log3 n). The above display
then gives

1

n

∑
v

Pv

(
BU,t | (Du)u∈V

)
� tπ(A) + t

log3 n

n

∑
v∈Ac

P
(
v ∈ U | (Du)u∈V

)
� t

log4 n
,
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where the last inequality used (3.22) to replace each summand in the sum over
v ∈ Ac by Dv(logn)−10 ≤ 1/ log7 n. This establishes (3.21).

The proof is concluded by noting that the kernel of G′ is an expander w.h.p., and
the effect of expanding some of its edges into paths of length at most R, or hanging
trees of volume at most R on some of its vertices, can only decrease its Cheeger
constant to c/R for some fixed c > 0. Hence, by Cheeger’s inequality, the spectral
gap of G′ satisfies gap> c/R2 for a fixed c > 0 (depending only on the degrees
of G′), and thereafter taking s as in (3.20) [noting that s � √

logn(log logn)2 now]
establishes the following: for every ε > 0 there exists some γ > 0 such that, with
probability at least 1 − ε − o(1),

d
(v1)
TV

(
t	 − γw′

n

)
> 1 − ε, whereas d

(v1)
TV

(
t	 + γw′

n

)
< ε,

where wn = √
logn(log logn)2. This immediately implies cutoff, w.h.p., for any

choice of a sequence wn such that w′
n = o(wn).

3.5. Random walk on the Erdős–Rényi random graph: Proof of Theorem 1.
The proof will follow from a modification of the argument used for a random
graph on a prescribed degree sequence, with the help of the following structure
theorem for C1.

THEOREM 3.3 ([12], Theorem 1). Let C1 be the largest component of G(n,p)

for p = λ/n where λ > 1 is fixed. Let μ < 1 be the conjugate of λ, that is, μe−μ =
λe−λ. Then C1 is contiguous to the following model C̃1:

1. [Kernel] Let � ∼ N (λ − μ,1/n), take Du ∼ Poisson(�) for u ∈ [n] i.i.d. and
condition that

∑
Du1Du≥3 is even. Let Nk = #{u : Du = k} and N =∑k≥3 Nk .

Draw a uniform multigraph K on N vertices with Nk vertices of degree k for
k ≥ 3.

2. [2-Core] Replace the edges of K by paths of i.i.d. Geom(1 − μ) lengths.
3. [Giant] Attach an independent Poisson(μ)-Galton–Watson tree to each vertex.

That is, P(C̃1 ∈A) → 0 implies P(C1 ∈ A) → 0 for any set of graphs A.

The first point is that we develop the neighborhood of a fixed vertex of G (not
of C1) as a GW-tree with offspring distribution Z ∼ Poisson(λ) for λ > 1 fixed.
Should its component turn out to be smaller than, say, log2 n, we abort the analysis
(with nothing to prove).

The second point is that, when analyzing the probability of failing to cou-
ple the SRW on G versus the GW-tree, mismatched degrees are no longer re-
lated to sampling with/without replacement from a degree distribution, but rather
to the total-variation distance between Poisson(λ) and Bin(n′, λ/n) where n′
is the number of remaining (unvisited) vertices. By (3.11), we know that n′ ≥
n(1 − exp(−1

3γ
√

logn)) and, therefore, by the Stein–Chen method (see, e.g., [3],
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equation (1.23)), this total-variation distance is at most λ/n + ‖Poisson(λ) −
Poisson(λn′/n)‖TV ≤ (logn)−10 (with room to spare).

The final and most important point involves the modification of G into G′,
where the spectral gap is at least of order R−2 where R = c0 log logn for some
suitably large constant c0 > 0. We are entitled to do so, with the exact same es-
timates on the probability that SRW visits the set U of contracted vertices, by
Theorem 3.3 (noting the traps introduced in Step 2 are i.i.d. with an exponential
tail, and similarly for the traps from Step 3); the crucial fact that G′ has a Cheeger
constant of at least c/R follows immediately from that theorem using the expan-
sion properties of the kernel.

3.6. The typical distance from the origin. A consequence of our arguments
above is the following result on the typical distance of random walk from its origin
at t � logn.

COROLLARY 3.4. Consider random walk (Xt ) from a uniform vertex v1 in
C1 either in the setting of Theorem 1 or of Theorem 2, let ν denote the speed
of random walk on the corresponding Galton–Watson tree, and let λ be the
mean of its offspring distribution. For every fixed a > 0, if t = a logλ n then
dist(v1,Xt )/ logλ n → (νa ∧ 1) in probability.

PROOF. First, consider the case a < ν−1, and fix ε > 0 small enough such that
aν < 1 − ε. Let T be a GW-tree with an offspring distribution that has the law of
Z (this time without any truncation), and consider the coupling described in Sec-
tion 3.2 of SRW (Xt) on T to SRW (Xt ) on the subtree � ⊂ T explored by the
standard breadth-first-search of G from v1. That is, we first reveal T and the walk
(X1, . . . ,Xt ), then explore the neighborhood of v1 in G, and estimate the probabil-
ity of

⋃
k≤t Bcyc(Xk). By the definition of ν in (1.3), the assumption on a implies

that maxk≤t dist(ρ,Xk) < (1 − ε/2) logλ n w.h.p. and, therefore, at all times k ≤ t ,
the boundary of the exploration process of G (which is at most the size of T ) con-
tains at most n1−ε/3 half-edges. Recalling the argument from Section 3.2 [part (b)],
the probability of hitting a cycle at a given step Xk is therefore O(�n−ε/3) ≤ n−ε/4

for large enough n, and a union bound over k implies that w.h.p.
⋃

k≤t Bcyc(Xk)

does not occur and the coupling is successful. In this case, dist(v1,Xt ) =
dist(ρ,Xt) and the desired result follows from the definition (1.3) of ν.

Next, consider a ≥ ν−1, and suppose first that p1 = p2 = 0. As stated in the
Introduction, it is then the case that the diameter of the graph is (1+o(1))D̄ where
D̄ = logλ n, and it remains to provide a matching lower bound on dist(v1,Xt ). Let

R = ⌊(logn)1/4⌋
and

�1 = ⌊(1 − ε) logλ n
⌋
, �0 = �1 − R.

Consider the exploration tree �, as defined above, up to level �1.
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CLAIM 3.5. Let H be the auxiliary graph on level �0 of �, where (u, v) ∈
E(H) if there is an edge of G connecting �R(u) and �R(v). With high probability,
the largest connected component of H has size at most 10/ε.

PROOF. As stated above, since the boundary of � contains at most n1−ε/3

half-edges, the analysis of Section 3.2 shows that the probability of Bcyc(z) is at
most n−ε/3+o(1) for every vertex z in � at distance at most �1 from v1. Therefore,
the degree of a vertex u in H is dominated by a binomial random variable ζ ∼
Bin(nε/8, n−ε/4), where we used that |�R(u)| ≤ �R = no(1). Consequently, the
size of the component of u in H is dominated by the total progeny � of a branching
process with offspring random variables ζ . By exploring this branching process via
breadth-first-search (or alternatively, through the Dwass–Otter formula; see, e.g.,
[14]), one finds that

P(� > �) ≤ P

(
�∑

i=1

(ζi − 1) ≥ 0

)

≤ P
(
Bin
(
�nε/8, n−ε/4)≥ �

)
≤∑

k≥�

(
�nε/8

k

)
n−kε/4

≤∑
k≥�

(
e�nε/8

k

)k

n−kε/4

≤∑
k≥�

(
en−ε/8)k = O

(
n−�ε/8).

Taking � > 10/ε supports a union bound over u and completes the proof. �

COROLLARY 3.6. Let H be as defined in Claim 3.5. With high probability, for
every connected component C of H there exists an interval I ⊂ [�0, �1] of length
at least εR/10 so that the induced subgraph of G on levels in I of

⋃
u∈C �R(u) is

a forest.

Suppose that G satisfies the property of the above corollary. We claim that if
dist(v1,Xk) = �1 for some k, then w.h.p. (w.r.t. the walk)

min
1≤j≤log2 n

dist(v1,Xk+j ) ≥ �0.

Indeed, in light of the above corollary, in order for the walk to reach level �0 start-
ing from level �1, it must cross an interval of length εR/10 where every vertex has
at least two children in a lower level. The probability that the biased random walk
(St ), where St − St−1 is 1 with probability 1

3 and −1 with probability 2
3 , reaches
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εR/10 before returning to the origin is at most 2−εR/10 < (logn)−5, and taking a
union bound over the log2 n possible time steps now completes the treatment of
the case p1 = p2 = 0.

Finally, when we allow degrees 1 and 2, recall from Section 3.4.2 that one can
modify the random graph G to a graph G′ where the long paths and large hanging
trees all have size O(log logn), and couple the SRW on G to the SRW on G′ w.h.p.
for all t ≤ log2 n. The only change in the above argument is in the analysis of
the biased random walk (St ) along the interval of length εR/10 that corresponds
to a forest in G. There the problem reduces to an interval shorter by a factor of
c log logn, and the fact that 2−εR/(c log logn) is again at most (logn)−5 for large
enough n concludes the proof. �

4. Nonbacktracking random walk on random graphs. In this section, we
consider the NBRW on a random graph G with i.i.d. degrees with distribution
(pi)i≥0 (see the paragraph preceding Theorem 2) where p0 = p1 = 0. Recall
that the NBRW is a Markov chain on the set �E of directed edges, which moves
from e = (u, v) to a uniformly chosen edge among {e′ = (v,w) : w �= u}. Since
deg(v) ≥ 2 (as p0 = p1 = 0) this Markov chain is well defined for all t , and that
the uniform measure π on �E is stationary. Let P t

G(e, e′) be the t-step transition
probability of the NBRW.

Our assumption on the degree distribution is that

(4.1) M0 :=∑
k

k(log k)2pk < ∞.

Let λ =∑k kpk be the mean degree [noting that 2 ≤ λ < ∞ by (4.1)], and let

qk−1 := kpk/λ (k ≥ 1)

be the shifted size-biased distribution. We further assume that the random variable
Z given by P(Z = k) = qk satisfies

(4.2) P(Z > �n) = o(1/n) for �n := exp
[
(logn)1/2−δ].

Recall that the dimension of harmonic measure for NBRW in the GW-tree with
offspring distribution (qk) is

(4.3) d̃ =∑
k

qk logk,

which is finite under (4.1). To state our next result, we let

t
(π)
MIX(ε) = min

{
t : d(π)

TV (t) < ε
}

where d
(π)
TV (t) = 1

| �E|
∑
e∈ �E

∥∥P t
G(e, ·) − π

∥∥
TV.
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THEOREM 4.1 (Typical starting point). Let G be a random graph on n vertices
with i.i.d. degrees with distribution (pk)k≥0, where p0 = p1 = 0 and (4.1)–(4.2)
hold. For every fixed 0 < ε < 1, with probability at least 1 − ε,

t
(π)
MIX(ε) = d̃−1 logn + O(

√
logn).

THEOREM 4.2 (Worst starting point). In the setting of Theorem 4.1 with the
extra assumption p2 = 0, for every fixed 0 < ε < 1, with probability at least 1 − ε,

tMIX(ε) = d̃−1 logn + O(
√

logn).

REMARK 4.3. After completing this work, we learned that another proof of
Theorem 4.2 was obtained independently by Ben-Hamou and Salez [4] with a
weaker assumption on � and an asymptotic estimate of the total-variation distance
within the cutoff window.

4.1. Mixing from a typical starting point.

4.1.1. The truncated exploration process. We first condition on the degree se-
quence of the random graph, {Dv : v ∈ V }, and may assume, as in Section 3.2, that
(3.15) holds by neglecting an event of probability o(1). Let (Yt ) denote the NBRW,
and for every directed edge e = (u, v), let De = Dv − 1 (the number of directed
edges that the NBRW can transition to from e).

Throughout this proof, let t	 be an odd integer given by

(4.4) t	 = 2L + 1 where L = ⌈(2d̃)−1 logn + 2Kd̃−3/2
√

logn
⌉
,

for

(4.5) K := 8
√

M0/ε with M0 from (4.1).

Let e = (u, v) ∈ �E. Let Te be the tree of depth L constructed as follows. Ex-
plore the neighborhood of e via breadth-first-search (as explained in Section 3.2).
Exclude every half-edge that is matched to a previously encountered half-edge
from Te. Moreover, do not explore an edge e′ (truncate its subtree) if it satisfies

(4.6)
∣∣∣∣ ∑
e0∈�(e,e′)

(logDe0 − d̃)

∣∣∣∣≥ K
√

L,

where �(e, e′) denotes the directed path from e to e′ in Te. Let ∂Te denote the half-
edges at level L that had been encountered (and not yet matched) in this process.

Next, consider a second edge f = (x, y) ∈ �E such that x, y /∈ Te. Define T e
f to

be the tree of depth L formed by exploring Tf ∗ corresponding to the reversed edge
f ∗ = (y, x), as described above, with the following modification: if a half-edge is
matched to ∂Te, we do not include it in the tree. Set

Fe = σ(Te), Ff = σ
(
T e

f

)
, Fe,f = σ(Fe,Ff ).
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Consider the sequence (ak) defined by

(4.7) ak := (2M0)
1/2/k with M0 from (4.1),

and let E denote the set of all edges e ∈ �E such that the NBRW from e remains in
Te except with probability aK , for K the constant in (4.5); that is, define

E = {e ∈ �E : Qe ≤ aK} where Qe := PG

(⋃
t≤L

{
Yt /∈ �E(Te)

} ∣∣ Y0 = e

)
.

Analogously, let

Ee = {f ∈ �E : Qe,f ≤ aK} where Qe,f := PG

(⋃
t≤L

{
Yt /∈ �E(T e

f

)} ∣∣ Y0 = f ∗
)
.

Note that, by labeling the half-edges of each vertex, we may refer to a directed
edge e = (u, v) also as e = (i, v) where i ∈ {1, . . . ,Dv} is the label of a half-edge
matched to a half-edge of the vertex u. Similarly, we may refer to f = (x, y) as
f = (x, j) where j corresponds to a half-edge j ∈ {1, . . . ,Dx} matched to a half-
edge of y.

With this notation, each half-edge in ∂Te of the form (u′, i) for some u′ ∈ V and
i ∈ {1, . . . ,Du′ } corresponds to a unique edge in �E, which we include in �E(Te),
the set of directed edges induced on Te. We claim that, for each 1 ≤ k ≤ L,

(4.8) #
{
e′ ∈ �E(Te) : dist

(
e, e′)= k

}≤ n1/2+o(1).

Indeed, by condition (4.6), and using its notation as well as (4.4), for every such e′,

Pe

(
Yk = e′)= ∏

e0∈�(e,e′)

1

De0

≥ e−kd̃−K
√

L(4.9)

≥ e−Ld̃−K
√

L = n−1/2−o(1).

This implies (4.8) since the events {Yk = e′} are disjoint for all edges e′. In par-
ticular, using that �n = no(1) and L = O(logn), the total number of half-edges
encountered in the exploration process of Te is at most n1/2+o(1), and, similarly,
this also holds for T e

f .
We next estimate the probability that e ∈ E and f ∈ Ee for some fixed e, f .

LEMMA 4.4. For every two edges e = (i, v), f = (x, j) (with 1 ≤ i ≤ Dv ,
1 ≤ j ≤ Dx),

P(e /∈ E) ≤ aK, P(f /∈ Ee | Te) ≤ aK.
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PROOF. The argument in Section 3.2 shows that the NBRW (Yt )t≥0 from
Y0 = e on the random graph G can be coupled to a NBRW (ξt )t≥0 on a (non-
truncated) GW-tree T w.h.p., as only the events Bcyc and Bdeg are to be avoided
(avoiding a cycle and coupling vertex degrees, resp.) when no truncation is per-
formed on the tree.

On the GW-tree, the random variables (Dξi
)i≥1, recording the number of off-

spring of each site visited by the NBRW, are i.i.d. with distribution given by
(qk)k≥0, and in particular, E[logDξi

] = d̃ and E[log2(Dξi
)] ≤ M0 for M0 from

(4.1). Hence,

P

(
max

1≤k≤L

∣∣∣∣∣
k∑

i=1

(logDξi
− d̃)

∣∣∣∣∣≥ K
√

L

)
≤ M0

K2

by Kolmogorov’s maximal inequality. Hence, the above coupling of (ξi) and (Yi),
which succeeds with probability 1 − o(1), implies that

E[Qe] ≤ M0/K
2 + o(1) =

(
1

2
+ o(1)

)
a2
K.

It thus follows from Markov’s inequality that

P(Qe ≥ aK) ≤ E[Qe]
aK

≤
(

1

2
+ o(1)

)
aK < aK,

provided that n is large enough. The statement concerning the NBRW from f ∗
follows in the exact same manner. �

4.1.2. Estimating the distribution of the walk via two truncated trees. We wish
to bound the quantity P t

G(e, f ) from below. Note that, since t	 = 2L + 1,

P
t	
G(e, f ) ≥ ∑

e0∈∂Te

∑
f0∈∂T e

f

P L
G(e, e0)1{e0=f0}P L

G(f0, f ),

where the event {e0 = f0} for e0 = (u0, i) ∈ ∂Te and f0 = (x0, j) ∈ ∂T e
f is equiva-

lent to having the ith half-edge incident to x be matched with the j th edge incident
to y. Further note that P L

G((j, x0), (v, v′)) = P L
G((v′, v), (x0, j)). Hence,

P
t	
G(e, f ) ≥ ∑

e0∈∂Te

∑
f0∈∂T e

f

P̄ L
Te

(e, e0)1{e0=f0}P̄ L
T e

f

(
f ∗, f ∗

0
)=: Ze,f ,

where P̄T (·, ·) corresponds to the walk restricted (not conditioned) to remain in
�E(T ). We will therefore estimate E[Ze,f ] and then its variance.

LEMMA 4.5. In the setting of Lemma 4.4, let A = {e ∈ E} ∩ {f ∈ Ef }, which
is Fe,f -measurable. Then for every sufficiently large n,

E[Ze,f | Fe,f ] ≥ 1 − 2aK

| �E| 1A,(4.10)

Var(Ze,f | Fe,f ) ≤ n−2 exp
(−Kd̃−1/2

√
logn

)
.(4.11)
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PROOF. Recall that P(e0 = f0 | Fe,f ) = 1/(| �E| − me,f ), where the Fe,f -
measurable random variable me,f denotes the number of half-edges matched dur-
ing the exploration process in Fe,f , which satisfies me,f ≤ n1/2+o(1) by (4.8) and
the discussion below it. Since P̄ L

Te
(e, e0) and P̄ L

T e
f
(f, f0) are both Fe,f -measurable,

we find that

E[Ze,f | Fe,f ] = 1

| �E| − me,f

( ∑
e0∈∂Te

P̄ L
Te

(e, e0)

)( ∑
f0∈T e

f

P̄ L
T e

f

(
f ∗, f ∗

0
))

≥ 1

| �E|(1 − Qe)(1 − Qe,f ) ≥ 1

| �E|(1 − 2aK)1A,

using the definitions of e ∈ E and f ∈ Ee and that (1−aK)2 ≥ 1−2aK . This yields
(4.10).

To establish (4.11), note that by definition

Var(Ze,f | F) ≤ ∑
e0,e1∈∂Te

∑
f0,f1∈∂T e

f

P̄ L
Te

(e, e0)P̄
L
Te

(e, e1)P̄
L
T e

f

(
f ∗, f ∗

0
)
P̄ L

T e
f

(
f ∗, f ∗

1
)

× Cov(1{e0=f0},1{e1=f1} | F).

Clearly, if e0 �= e1 or f0 �= f1 then the term Cov(1{e0=f0},1{e1=f1} | F) equals

P(e0 = f0 | F)
(
P(e1 = f1 | F, e0 = f0) − P(e1 = f1 | F)

)
≤ 1

| �E| − me,f

(
1

| �E| − me,f − 2
− 1

| �E| − me,f

)
= 2 + o(1)

| �E|3 ,

where in the last inequality we used that me,f = o(n) while | �E| ≥ 2n. On the other
hand, for the diagonal terms where e0 = e1 and f0 = f1, we have

Var(1{e0=f0} | Fe,f ) ≤ P(e0 = f0 | Fe,f ) = 1 + o(1)

| �E| .

Overall, using | �E| ≥ 2n, we conclude that

Var(Ze,f |Fe,f )

≤ 1 + o(1)

4n3 + 1 + o(1)

2n

(
max

e0∈∂Te

P̄ L
Te

(e, e0)
)(

max
f0∈∂T e

f

P̄ L
T e

f

(
f ∗, f ∗

0
))

.

Now, if e0 ∈ ∂Te, then the criterion (4.6) implies that

P̄ L
Te

(e, e0) ≤ e−Ld̃+K
√

L

= 1√
n

exp
[
−
(

2 − 1√
2

+ o(1)

)
Kd̃−1/2

√
logn

]

≤ 1√
n
e−Kd̃−1/2√logn
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for n sufficiently large, and the same holds for P̄ L
T e

f
(f ∗, f ∗

0 ). Consequently,

Var(Ze,f | Fe,f ) ≤ 1 + o(1)

2n2 exp
(−Kd̃−1/2

√
logn

)
,

and the result follows. �

REMARK 4.6. The expectation estimate (4.10) remains valid for all smaller
L; it is for the variance estimate (4.11) to hold that we must choose L as
in (4.4).

COROLLARY 4.7. In the setting of Lemma 4.4, for every sufficiently large n,

P
(
Ze,f < (1 − 3aK)/| �E|, f ∈ Ee

∣∣ Te

)
1{e∈E} � exp

(−Kd̃−1/2
√

logn
)
.

PROOF. Since | �E| = O(n), we deduce from Lemma 4.5 via Chebyshev’s in-
equality that

P

(
Ze,f <

1 − 3aK

| �E|
∣∣Fe,f

)
1A ≤ e−Kd̃−1/2√logn

n2(aK/| �E|)2

� e−Kd̃−1/2√logn.

(4.12)

Taking expectation given Te yields the desired result. �

4.1.3. Upper bound on the mixing time in Theorem 4.1. Let N = | �E| and e =
(i, v) ∈ �E. Recalling that P t

G(e, f ) ≥ Ze,f , it follows that

E
[
d

(e)
TV (t	) | Te

]
1{e∈E}

= E

[∑
f

∣∣∣∣ 1

N
− P

t	
G(e, f )

∣∣∣∣+]1{e∈E}

≤ 1{e∈E}
N

E
[
#{f : f /∈ Ee}

∣∣ Te

]
+ 1{e∈E}

N
E

[
#
{
f ∈ Ee : Ze,f <

1 − 3aK

N

} ∣∣ Te

]
+ 3aK.

The first term in the right-hand side is at most aK by Lemma 4.4, and the second
is o(1) by Corollary 4.7. Therefore,

(4.13) E
[
d

(e)
TV (t	) | Te

]
1{e∈E} ≤ 4aK + o(1).

Taking expectation over a uniform e ∈ �E and using Lemma 4.4 once again, we get

E
[
d

(π)
TV (t	)

]≤ 5aK + o(1) < ε

by the choices of aK and K .
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4.1.4. Lower bound on the mixing time in Theorem 4.1. Now consider

L′ = ⌊d̃−1 logn − 2K ′d̃−3/2
√

logn
⌋
, where K ′ =√M0/ε.

Define the truncated tree Te as in Section 4.1.1 (with K ′, L′ replacing K , L). As
in (4.9),

Pe

(
Yk = e′)≥ e−kd̃−K ′√L′ ≥ 1

n
e(K ′−o(1))d̃−1/2√logn

for every 1 ≤ k ≤ L′ and, therefore,

#
{
e′ ∈ �E(Te) : dist

(
e, e′)= k

}≤ ne−(K ′−o(1))d̃−1/2√logn for each 1 ≤ k ≤ L′.
Since the coupling argument of Section 3.2 was valid as long as the size of the
truncated tree did not exceed n exp(−c

√
logn) for some fixed c > 0, we can repeat

the analysis in the proof of Lemma 4.4 to find that

P

(⋃
t≤L′

{
Yt /∈ �E(Te)

} ∣∣ Y0 = e

)
≤ M0

K ′2 + o(1) = ε + o(1),

where the probability is over G, (Yt ). The fact | �E(Te)| = o(n) completes the proof.

4.2. Mixing from a worst starting point with minimum degree 3. We now de-
scribe how to modify the proof of Theorem 4.1 and derive the proof of Theo-
rem 4.2. Since the lower bound applies also to the worst starting point, it remains
to adapt the proof of the upper bound.

Recalling (4.13), we have in fact established not only an upper bound on
E[d(π)

TV (t)] a uniform starting edge e, but rather from every edge e ∈ E , condi-
tional on Te. Denote by T k

e the depth-k truncated tree from Section 4.1.1, take t	
and L as defined in (4.4) (so that T L

e is Te from that section), take K as in (4.5)
and R = 2 log2 logn. Further denote by T R;L

e the tree obtained by first exposing
T R

e , then exposing T L
e0

sequentially for each e0 ∈ ∂T R
e , while (as before) excluding

edges that form cycles/loops.
We will argue that, w.h.p., for every e ∈ �E, the truncated tree T L+R

e satisfies

(4.14) P R
G (e, Ẽe) > 1 − 2aK,

where (ak) is as defined in (4.7) (so that aK � ε), and

Ẽe = {e0 ∈ ∂T R
e : Q̃e0 ≤ aK

}
for Q̃e0 := PG

(⋃
t≤L

{
Yt /∈ �E(T R;L

e

)} ∣∣ Y0 = e0

)
.

(That is, the NBRW started at e0 does not exit T R;L
e , which, as opposed to the

original definition of E , also precludes it from visiting the subtree T L
e1

for another
e1 ∈ ∂T R

e .) The proof of (4.13) also yields that

E
[
d

(e0)
TV (t	) | T R;L

e

]
1{e0∈Ẽe} ≤ 4aK + o(1).
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Hence, the upper bound will follow from (4.14) using the decomposition

P
t	+R
G (e, ·) = ∑

e0∈∂T R
e

P R
G (e, e0)P

t	
G(e0, ·).

To prove (4.14), note that the proof of Lemma 4.4 further implies that

P
(
ej+1 ∈ Ẽe | T R

e , {Tei
}ji=1

)
≥ (1 − aK)1{ej+1 /∈⋃i≤j Tei

} for all e1, . . . , ej+1 ∈ ∂T R
e .

The indicators of the events {ej+1 ∈⋃i≤j Tej
} (j = 1,2, . . . , |∂T R

e |) are stochas-
tically dominated by i.i.d. Bernoulli random variables with parameter n−1/2+o(1).

Thus, appealing to Hoeffding–Azuma for the random variable

Se := ∑
ej∈∂T R

e

P R
G (e, ej )1{ej∈Ẽe} = P

R
G(e, Ẽe)

[while noting that P R
G (e, e0) ≤ 2−R ≤ log−2 n by the definition of R and the as-

sumption on the minimum degree assumption], we get

P(Se ≤ 1 − 2aK) ≤ exp
(−a2

K log2 n
)
,

which, through a union bound on e, establishes (4.14) and completes the proof.
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