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FANO VARIETIES IN MORI FIBRE SPACES

GIULIO CODOGNI, ANDREA FANELLI, ROBERTO SVALDI, AND LUCA TASIN

Abstract. We show that being a general fibre of a Mori fibre space is a
rather restrictive condition for a Fano variety. More specifically, we obtain
two criteria (one sufficient and one necessary) for a Q-factorial Fano variety
with terminal singularities to be realised as a fibre of a Mori fibre space, which
turn into a characterisation in the rigid case. We apply our criteria to figure out
this property up to dimension three and on rational homogeneous spaces. The
smooth toric case is studied and an interesting connection with K-semistability
is also investigated.
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1. Introduction

In this work we focus on a natural question which arises in the context of the
classification of complex algebraic varieties and in the minimal model program (or
MMP) and tries to clarify the geography of Mori fibre spaces.

Question 1.1. Which Q-factorial Fano varieties can be realised as general fibres
of a Mori fibre space?
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Although every Fano variety of Picard number one is a Mori fibre space over
a point, this work gives evidence about the restrictiveness of this condition for
varieties of higher Picard rank.

The notion of “general fibre” will be clarified later in Section 2: the idea is to
determine an open dense subset of the base, on which the fibres are “good enough”
(cf. Definition 2.14).

Fano varieties play an essential role in the birational classification of projective
varieties with negative Kodaira dimension. Their importance was already high-
lighted in low dimension in [Mor88]. The seminal work [BCHM10] shows that
every Q-factorial variety with klt singularities and non-pseudoeffective canonical
divisor is birational to a Mori fibre space (or simply MFS), i.e., to a contraction
morphism with positive dimensional Fano fibres and relative Picard number one.
In this work, we will also assume the existence of a dense open set of the base over
which the fibres are Q-factorial.

Since Mori fibre spaces arise as final outcomes of a run of the MMP, they have
been widely studied for the last thirty years in the context of classification of higher
dimensional varieties.

It is important to underline that distinct Mori fibre spaces can belong to the same
birational class, as shown already in dimension 2 by elementary transformations
between ruled surfaces. Relations between Mori fibre spaces within a birational class
(the so-called Sarkisov program) were investigated by [Cor95] in low dimension. The
same picture has been proved to endure in higher dimension in [HM13]: two Mori
fibre spaces within the same birational class can be related via a sequence of very
easy birational maps, called Sarkisov links. Another interesting notion for Mori fibre
spaces which appears in the literature is birational rigidity (cf. [BCZ04]). Although
so many properties have been investigated, the geometric structure of Mori fibre
spaces remains quite mysterious and very few explicit examples are known. In this
work we focus on the classification of the fibres of MFS’s rather than the total
space.

The main results of this paper are the following criteria (cf. Theorem 3.1, The-
orem 3.4 and Theorem 3.5). We will denote by Mon(F ) the maximal subgroup of
GL(N1(F ),Z) which preserves the birational data of F (cf. Definition 2.8) and by
Aut(F ) the image of the natural homomorphism of the automorphism group of F
with value in GL(N1(F ),Z). Moreover, for a given group G acting on N1(F )Q,
we will denote by N1(F )GQ the G-invariant subspace, i.e. the subspace of classes

v ∈ N1(F )Q such that gv = v, ∀g ∈ G.

Theorem 1.2.

• Sufficient criterion: A terminal Q-factorial Fano variety F can be re-
alised as the general fibre of a MFS if

N1(F )
Aut(F )
Q = QKF .

• Necessary criterion: A terminal Q-factorial Fano variety F such that

dimN1(F )
Mon(F )
Q > 1

cannot be realised as the general fibre of a MFS.
• Characterisation for rigid varieties: Assume that H1(F, TF ) = 0, i.e.,
F is rigid. Then the sufficient criterion turns into a characterisation.
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Our results rely upon a careful study of the monodromy action on Mori fibre
spaces.

Remark 1.3. The notion of being realised as the general fibre of a MFS (or fibre-
likeness, see Definition 2.14) is quite subtle and it is important to remark that the
necessary criterion holds true also for Mori fibre spaces which are not isotrivial.

We can use our criteria to prove the following theorem (cf. Theorems 4.1 and
4.8, Corollaries 4.2 and 4.13).

Theorem 1.4.

• Surfaces: A smooth del Pezzo surface can be realised as the general fibre
of a MFS if and only if it is not isomorphic to the blow-up of P2 in one or
two points.

• Threefolds: The deformation type of a smooth Fano threefold F with
ρ(F ) > 1 can be realised as the general fibre of a MFS if and only if it
is one of the 8 classes appearing in Table 4.3.

In particular fibre-likeness is invariant under smooth deformations for Fano vari-
eties of dimension up to three; moreover, in these cases the necessary criterion of
Theorem 1.2 is actually a characterisation.

Let us point out that cubic surfaces in P3 provide examples of varieties that do
not satisfy our sufficient criterion but can be realised as a general fibre of a MFS.
To deal with Fano threefolds in Section 4, we give some ad hoc versions of the
necessary criterion explicitly in terms of the birational geometry of F . We do not
know if there are higher dimensional examples of smooth Fano varieties which are
not fibre-like but still verify the necessary criterion of Theorem 1.2.

Remark 1.5. The 2-dimensional case of Theorem 1.4 has been worked out in
[Mor82, Theorem 3.5] when the dimension of the total space of the Mori fibre space
is three. In Section 4 we give an alternative proof using our criteria, allowing total
spaces of arbitrary dimension.

Mori and Mukai classified all smooth Fano threefolds with Picard number bigger
than one up to deformation into 88 classes in [MM82] and [MM03]: Theorem 1.4
shows how restrictive the fibre-likeness condition is.

The second part of Theorem 1.4 can be deduced by combining our criteria with the
classification result of Prokhorov, see [Pro13, Theorem 1.2]. We prove the theorem
without using Prokhorov’s work, but looking directly at the nef cone of F .

On the positive side, we can give the following examples of varieties of higher
dimension and large Picard number which can be realised as the general fibre of a
Mori fibre space.

Definition 1.6. Let Z be a variety and L1, . . . , Lk Cartier divisors on Z.
Let I be the subvariety of Z × |L1| × · · · |Lk| such that for any divisors D1 ∈

|L1|, . . . , Dk ∈ |Lk|, the fiber of the projection morphism I → |L1| × · · · |Lk| above
(D1, . . . , Dk) equals the complete intersection D1 ∩ · · · ∩Dk in Z.

We call I the incidence variety.

Theorem 1.7 (= Theorem 4.5). Let F be a smooth Fano variety. Let Z be a
smooth projective variety. Assume that Li, 1 ≥ i ≥ k are basepoint-free effective
Cartier divisors on Z and that F is the complete intersection of the divisors Li in
the ambient variety Z.
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Let I the incidence variety in Z × |L1| × · · · |Lk|. Suppose that there is a finite
cyclic subgroup G of Aut(Z) which is fixed point free in codimension one and whose
action can be lifted to I. Assume that G does not preserve F . If

dimN1(Z)GQ = 1,

then F is fibre-like.

We will give a few concrete applications of this result; let us point out one of
them.

Corollary 1.8 (= Corollary 4.6). Take positive integers r, k, d, and n ≥ 2 such
that kd < n + 1. Let F be a smooth complete intersection of k divisors of degree
(d, . . . , d) in (Pn)r. Then F is fibre-like.

In the case of smooth toric Fano varieties, we obtain the following necessary
condition.

Theorem 1.9 (= Thm 5.7). Let F be a toric Fano variety and let Σ ⊂ N be the
fan associated to it. Let ∆ be the polytope whose vertices are the integral generators
of the 1-dimensional cones of Σ.

If F can be realised as the general fibre of a MFS then the barycentre of ∆ is in
the origin.

Remark 1.10. Smooth fibre-like toric varieties have been completely classified in
low dimension: as Table 5.3 shows, it is a rather restrictive condition.

In section 6 we classify fibre-like rational homogeneous spaces.
We do not know if the fibre-likeness (i.e. the property of being realised as the

general fibre of a MFS) is open in families. Our necessary criterion in Theorem 1.2
is invariant under flat deformation, while the sufficient criterion is closed in families,
but it detects just a special kind of MFS’s: the isotrivial ones.

In the case of del Pezzo surfaces and of toric varieties we are able to draw
an interesting connection between fibre-likeness and K-stability for smooth Fano
varieties. So far, we can prove the following result (cf. Corollary 4.3 and Theorem
5.7).

Corollary 1.11.

• A smooth del Pezzo surface is K-stable if and only if it can be realised as a
general fire of a MFS.

• If a smooth toric Fano variety F appears as the general fibre of a Mori fibre
space, then it is K-stable.

Furthermore, fibre-like smooth threefolds are suspected to be K-stable (cf. Re-
mark 4.14). Inspired by [OO13], we propose the following question, which is the
relative version of a conjecture by Odaka and Okada.

Question 1.12. Is it true that every smooth Fano variety which can be realised as
a general fibre of a MFS is K-semistable?
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Notation

By a variety X we mean an integral separated scheme of finite type over a field
k. Unless otherwise specified we work over the field of complex numbers.

We follow the usual notation from [KM98] and [BCHM10]. In particular, the
reader can refer to these two references for the general definitions about the singu-
larities of the Minimal Model Program.

We denote with N1(X)Q the group of Cartier divisors of X modulo numerical
equivalence, after tensoring by Q. We denote with N1(X)Q the group of curves of
X modulo numerical equivalence, after tensoring by Q. By construction, these two
rational vector spaces are dual.

For a projective morphism of varieties f : X → Y , we denote by N1(X/Y )Q the
subspace of N1(X)Q generated by curves that are mapped by f to a point. The
group N1(X/Y )Q is the dual of N1(X/Y )Q.

2. Preliminary results

2.1. Monodromy Action and Deligne’s Theorem. We will discuss some facts
about monodromy on fibrations in Fano varieties. Let us recall a basic definition.

Definition 2.1. A normal projective variety F is said to be Fano if its anti-
canonical divisor −KF is Q-Cartier and ample, i.e., there exists a sufficiently high
multiple −nKF which is Cartier and the invertible sheaf OF (−nKF ) is very ample.
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In this subsection, we deal with projective morphisms between normal varieties

f : X → Y

such that f∗OX = OY , i.e., the fibres are connected. Moreover we assume that
X is Q-factorial with rational singularities and −KX is relatively ample over Y .
The assumption on the ampleness of −KX implies that the general fibre is a Fano
variety. As our final goal is to discuss a classification of fibres of Mori fibre spaces,
the reader will notice that towards the end of this section (cf. Definition 2.13) we
will make further assumptions on the singularities of X ; for the time being, though,
we will try to keep our treatment to the widest possible level of generality.

We consider two sheaves on Y : the first one is R2f∗Q, whose fibre at t is
H2(Ft,Q); the second one is R1f∗Gm ⊗ Q, whose fibre at t is Pic(Ft)Q. The
first Chern class defines a morphism

(1) c1 : R
1f∗Gm ⊗Q → R2f∗Q.

When X is mildly singular, for example when X has Kawamata log terminal (in
short, klt) singularities, the above assumptions imply that the map c1 is an isomor-
phism, as the relative version of Kawamata-Viehweg vanishing applies.

When both X and Y are smooth, by Sard’s Theorem there is an open dense
subset U of Y where f is a submersion. Using Ehresmann’s Theorem (cf. [Voi02,
Proposition 9.3]), it follows that f is a locally trivial fibration of topological spaces

over U . The existence of a non-empty Zariski open subset U topf of Y where f is
a locally trivial topological fibration holds also in the singular case by a delicate
argument due to Verdier (cf. [Ver76, Corollary 5.1]). In our exposition, we will
denote this open set by U top. Unfortunately, the characterisation of U top is not
easily obtained and leads to the concept of equisingularity (cf. [Tei75]).

On U top, the sheaf R2f∗Q is a local system. Thus, there is a monodromy action
of π1(U

top, t) on the fibre (R2f∗Q)t. In this set-up, we can obtain a more refined
result.

Theorem 2.2 ([KM92], [dFH11]). Let U = Uf be the open subset, possibly empty,
of Y where

(1) Y is smooth;
(2) f is flat;
(3) the fibres of f are Q-factorial with terminal singularities.

Then the sheaf R1f∗Gm ⊗Q is a local system on U with finite monodromy.

Proof. Since the fibres of f over U are terminal with Q-factorial singularities they
satisfy [KM92, Conditions 12.2.1] as explained in [KM92, Remark 12.2.1.4]. Hence
we can define the sheaf GN 1(X/U) as in [KM92, Def. 12.2.4] and show that it is a
local system with finite monodromy isomorphic to R1f∗Gm ⊗ Q at a very general
point of U . The following step is taken from [dFH11, Prop. 6.5]. The authors first
show that GN 1(X/U) is isomorphic to R1f∗Gm⊗Q at the general point of U ; that
essentially follows from Verdier’s result and the isomorphism (1). Moreover, they
show that actually the isomorphism holds at every point of Uf .

We remark that in [dFH11] the base is a smooth curve and the Fano varieties
involved have terminal singularities. Nonetheless, the same argument applies ver-
batim to smooth bases of arbitrary dimension. �
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Remark 2.3. Assumption 3. in the statement of the theorem is needed to define
the sheaf GN 1(X/U). By the discussion in [KM92, Remark 12.2.1.4] this hypothesis
may be weakened to the requirement of fibres having Q-factorial singularities and
being smooth in codimension 2.

In general, the above set Uf may be empty. Nonetheless, the reader should keep in
mind at this stage that our goal is to classify fibres of a Mori fibration (cf. Definition
2.13). In particular, in the following sections we will often be able to assume that
either the singularities of X are terminal, hence the general fibre of f will also be
terminal, or by construction the fibres of f will have terminal singularities.

Finally, let us comment on the Q-factoriality of the fibres. In [KM92, Thm.
12.1.10], the authors show that in a flat family T → S of varieties with rational
singularities and smooth in codimension 2, there is an open subscheme W ⊂ S
parametrizing Q-factorial fibres. These hypotheses are clearly satisfied in the case
of a family of Fano varieties with terminal singularities or with klt singularities and
smooth in codimension 2. The problem is that even assuming that T is Q-factorial,
then the set W may be empty as the following example shows.

Example 2.4. Let C be a projective curve of genus g ≥ 1 and let C′ be a degree
2 étale cover of C and call i the associated involution. Let Q be a quadric in P4

of rank 3, i.e., the projective cone of P1 × P1 for the Segre embedding. The action
of Z/2Z switching the factors on P1 × P1 lifts to an automorphism of Q, which we
denote by g. Define T to be the quotient of Q × C′ by the involution (g, i). Then
T maps to C and the fibres are all isomorphic to Q. The class group of Q × C′

has rank 3 as it is isomorphic to the direct sum of the class groups of Q and C′.
On T , the monodromy induced by the quotient reduces the rank of the class group
to 2. The Picard group of T instead has rank 2 as the Picard group of Q × C′.
We conclude that the morphism T → C is an isotrivial fibration of relative Picard
number 1 such that T is Q-factorial but none of the fibres is Q-factorial.

On U top, the monodromy action on R2f∗Q can be explicitly described as follows.
Take the class of a loop γ in π1(U, t). Pull back X to the interval I = [0, 1]
via γ. Trivialise the family XI . The identification between the fibres over the
endpoints of the interval I is a homeomorphism of Ft: such homeomorphism gives
the monodromy action. If we change the representative of [γ] we may change the
automorphism, but not its action on H2(Ft,Q). See [Voi02, Section 9.2.1, 15.1.1
and 15.1.2] for more details.

In general, we will consider the monodromy action of the fundamental group of
different open subsets of Y . However, if we have a normal variety W with a closed
subvariety Z, the natural morphism

π1(W \ Z) → π1(W )

is always surjective (cf. [FL81, 0.7 (B)]). As we will be investigating Mori fibre
spaces (see Definition 2.13), restricting to open subsets of U top is not going to
change the monodromy action very much and in particular it will not affect the
dimension of the invariant part that is of dimension 1.

Restricting a cohomology class to each fibre we have a morphism

H2(X,Q) → H0(U,R2f∗Q).

By evaluating the section at t we get an isomorphism

H0(U,R2f∗Q) → H2(Ft,Q)π1(U,t).
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Composing the above maps we obtain a morphism

ρ : H2(X,Q) → H2(Ft,Q)π1(U,t).

When X and Y are smooth, a result due to Deligne (cf. [Voi02, Theorem 16.24])
states that ρ is surjective for every t ∈ U , providing a method to easily identify
the invariant part of cohomology. Deligne’s result is rather general and it concerns
all cohomology groups and cohomology classes which are not, in general, algebraic.
However, in our case, the cohomology classes we are interested in are just the classes
of divisors, so we can generalise Deligne’s result to the singular case for N1

Q.

Theorem 2.5. Let
f : X → Y

be a dominant morphism of projective normal varieties, where X is Q-factorial with
rational singularities. Assume that −KX is f -ample. Take U = Uf as in Theorem
2.2 and assume it contains a point t. Then the restriction map

ρ : N1(X)Q → N1(Ft)
π1(U,t)
Q

is surjective for every t in U .

Proof. By Theorem 2.2 and [KM92, Corollary 12.2.9], GN 1(f−1(Uf )/Uf ) is a local
system on Uf whose global sections are N1(f−1(Uf )/Uf)Q. By general properties of
local systems and the exponential sequence (cf. [Voi02, Lemme 16.17]) this vector

space can be identified with H2(Ft,Q)π1(Uf ,t) which is isomorphic to N1(Ft)
π1(U,t)
Q ,

since Ft is Fano with terminal singularities and by [FL81, 0.7 (B)]. Hence,

N1(f−1(Uf )/Uf)Q ∼= N1(Ft)
π1(U,t)
Q

where the isomorphism is given by the restriction to Ft. By definition ofN1(f−1(Uf )/Uf)Q,
there is a surjection

N1(f−1(Uf ))Q ։ N1(Ft)
π1(U,t)
Q

again given by restricting to Ft.
The Q-factoriality of X implies that the surjectivity of the restriction map ex-

tends also to N1(X)Q, proving the statement of the theorem. �

2.2. The monodromy action and the MMP. In this section we show that the
monodromy action preserves some information about the birational geometry of
terminal Q-factorial Fano varieties (a general reference on this topic is [dFH12]).
As in the previous section we think that Ft is a Fano variety which appears as a
fiber in a given morphism f : X → Y with −KX relatively ample over the open set
Uf defined in Theorem 2.2.

First of all, the monodromy preserves the intersection pairing. Indeed, it can be
seen as an action on the cohomology algebra H∗(Ft,Z). The class of the canonical
divisor of Ft is, by adjunction, the restriction KX |Ft

; hence it is preserved by the
monodromy. Call n the dimension of Ft. The Q-valued bilinear form

b(A,B) := (KFt
)n−2 · A ·B

on N1(Ft)Q is equally preserved.
What else is preserved?
When all fibres are smooth Fano varieties of the same dimension, Wiśniewski

proved in [Wiś91] and [Wiś09] that the nef cone is locally constant. In the terminal
Q-factorial case, [dFH11, Theorem 6.8] shows that the movable and pseudoeffective
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cones are preserved. As Ft is Fano, it follows that it is also a Mori dream space,
[BCHM10, Cor. 1.3.2]. In particular, the movable cone Mov(Ft) admits a finite
decomposition into polyhedral cones, called Mori chambers decomposition, [HK00,
Prop. 1.11]. The cone Nef(F ) is one of the chambers in the decomposition.

In [dFH11, Theorem 6.9], the authors shows that the Mori chambers are locally
constant in the following cases:

• families of 3-dimensional Fano varieties;
• families of 4-dimensional and 1-canonical Fano varieties;
• families of toric Fano varieties.

In these cases the nef cone of fibres is locally constant in the family. In [Tot12],
Totaro has shown that under weaker assumptions than the one just illustrated the
Mori chambers are not preserved by the monodromy action.

We can prove the following theorem.

Theorem 2.6. Keep notation as in Theorem 2.2. Up to shrinking Uf there exists
an open set U ′

f ⊂ Uf ⊂ Y on which the monodromy action preserves Nef(Ft).

Proof. By Theorem 2.2, there is a finite étale cover p : V → Uf trivialising the
monodromy action. Let us denote by XV := V ×Uf

X the pull-back of the family
of Fano varieties over Uf to V with fp : XV → V the associated map.

Denote by N1(XV /V ) the quotient N1(XV )/f
∗
pN1(V ). For every fibre Ft of fV ,

the restriction map N1(XV /V )Q → N1(Ft)Q is an isomorphism.
Since −KX is f -ample, by the cone theorem we know that NE(XV /V ) - the

cone generated by effective classes of curves - is rational polyhedral: in particular
it is generated by a finite number of rays R1, . . . , Rk and each ray is generated
by the class of a curve Ci. Any Ci is represented by an integral lattice point in
N1(XV /V )Q.

By Kawamata’s rationality theorem, [KM98, Thm. 3.5], the primitive generators
of NE(XV /V ) are integral lattice points that lie between the hyperplanes H0 =
{v ∈ N1(X/Y ) | KX · v = 0} and H2n = {v ∈ N1(X/Y ) | KX · v = 2n}, where
n = dimX . The number of integral points contained in the closure of the relative
cone of effective curves, NE(XV /V ), laying between H0 and H2n is of course finite.
Let us denote the set of such points by C.

Now, to C we can associate the variety

M :=
⋃

β∈C

Mor(P1, XV /V, β)

of morphisms from P1 to XV , contracted by XV → V , whose images have class
belonging to C. This is a quasi-projective scheme of finite type that comes equipped
with a proper map to π : M → V . Let N be the union of those irreducible
components of M that do not dominate V via π, and let T = π(N). Let us remark
that T is a Zariski closed set of V , as M is a variety of finite type proper over V .

Define W := V \ T and XW = f−1(W ). The claim is that p(W ) is the
Zariski open set we are looking for. In fact, consider the rational polyhedral cone
NE(XW /W ). As above, the extremal rays are finite and their generators have
bounded degree with respect to −KX . As every component of M that does not
belong to N dominates V , then the classes that generate the extremal rays of
NE(XW /W ) move over W . But this means that the restriction N1(XW /W )Q →
N1(Ft)Q identifies NE(XW /W ) and NE(Ft). The inclusion NE(Ft) ⊂ NE(XW /W )
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follows in fact directly from the definition, while the opposite one is a consequence
of the last observation. �

Our result does not provide any effective method to characterise the open subset
where the monodromy preserves the nef cone.

To ease the notation, from now on we will denote by U the open subset con-
structed in Theorem 2.6.
Take an element g of π1(U, t). Assume it exchanges two maximal faces G1 and G2

of the nef cone. These faces give contractions

πi : Ft → Gi,

which correspond to the first step in a run of the KFt
-MMP. The pull-back via

πi identifies Nef(Gi) with the face Gi. The first step of such a run is one of the
following three possibilities.

Divisorial contraction: π : Ft → G is birational, the exceptional locus is an
irreducible divisor and all the curves in the fibres are numerically equivalent,
i.e. ρ(Ft/G) = 1;

Flipping contraction: π : Ft → G is birational, the exceptional locus is of
codimension at least 2 and ρ(Ft/G) = 1;

Mori fibre contraction: π : Ft → G, dimFt > dimG and ρ(Ft/G) = 1.

The information whether the map πi is a divisorial contraction or a flipping con-
traction or a Mori fibration is encoded in the cohomology ring. As a consequence,
each of the above types is preserved under monodromy.

Theorem 2.7. Using the same notations as above. Let us consider the flat family
of terminal Fano’s over the open set U := U ′

f defined in Theorem 2.6. Let t ∈ U be
a point and let Ft be the fibre over t. Assume that the monodromy action identifies
two, not necessarily maximal, faces G1 and G2 of the nef cone of Ft. Then, the two
maps

π1 : Ft → G1

π2 : Ft → G2

correspond to the same kind of step in the MMP. In the case of the divisorial
contraction, the monodromy action exchanges the exceptional divisors.

Moreover, the varieties G1 and G2 (and the morphisms π1 and π2) are deforma-
tion equivalent.

Proof. To ease the notation throughout the proof we will indicate Ft simply by F .
To prove the first part of the theorem, we do a case-by-case analysis.

Divisorial contraction: As πi : Ft → Gi is birational, given a divisor H in
the relative interior of π∗

i Nef(Gi), we have (HdimFt) > 0. The exceptional
locus is an irreducible divisor, call it Di. It is clear that Di is the only
effective divisor on F such that (HdimFt−1 · Di) = 0, for every H in the
relative interior of the corresponding face. Moreover, we can characterise
the dimension of πi(Di) as the maximal integer k such that (Hk ·Di) 6= 0,
i.e., the numerical dimension of the restriction of H to Di.

Flipping contraction: as πi : Ft → Gi is birational, given a divisor H in
the relative interior of π∗

i Nef(Gi), we have (HdimFt) 6= 0. The smallness of
πi is equivalent to the fact that for every effective divisor E ∈ Gi we have
(HdimFt−1 ·E) > 0. Both these conditions are preserved by the monodromy
action (as the effective cone is preserved).
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Mori fibre contraction: as dimFt > dimGi, given a divisor H in the rela-
tive interior of π∗

i Nef(Gi), we have (HdimFt) = 0 and dimGi is the max-
imum integer such that (Hk) 6= 0. Hence, in this case, we also know that
the dimension of the base of the fibration is preserved by monodromy.

Let us prove that there exists a flat deformation from G1 to G2. The monodromy
action is finite, so after a finite étale cover p : V → U , we obtain a family

fp : XV → V

with trivial monodromy action on the fibres. This means that the restriction mor-
phism N1(XV )Q → N1(F )Q is surjective for every fibre of fp. As G1 and G2 are
two faces identified under the monodromy action on the family XU → U , we can
find two point t1, t2 on V and a Cartier divisor H on XV whose restrictions to Ft1
(resp. Ft2) lie in the relative interior of G1 (resp. G2).

We want to construct the variety X̃ := ProjOV
(
⊕

n∈N fp∗OXV
(nH)), getting a

morphism relative to V

XV
g

//

fp
  
❆❆

❆❆
❆❆

❆❆
X̃

π
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

V

The fibre of π over ti is Gi. The restriction of g over ti is the contraction given
by the face Gi. We are going to prove that X̃ and π exist and they are flat over V .
Since H is Cartier and fp is flat, the sheaves OXV

(nH) are flat over V . Moreover,
as any fibre Fs is terminal Hi(Fs,OFs

(nH |Fs
)) = 0, i > 0, n > 0: we have assumed

that H |F1
is nef and since the monodromy action on the family XU → U preserves

the nef cone, we have that H |Fs
is nef for every s ∈ V . So by the classical theory

of cohomology and base change, [Mum08, Cor. 2], the sheaves π∗OXV
(nH) are

locally free sheaves. Hence
⊕

n∈N fp∗OXV
(nH) is a flat sheaf of algebras. The

finite generation now follows from Castelnuovo-Mumford regularity, up to passing
to a sufficiently large multiple of H , cf. [Laz04, Example 1.8.24].

Hence π is flat and hence G1 is deformation equivalent to G2, i.e., we have an
actual flat deformation of the contraction given by G1 to the contraction given by
G2. �

The previous discussion motivates the following definition.

Definition 2.8 (The groups HMon and Mon). Let F be a normal n-dimensional
Fano variety with terminal singularities. We denote by Aut(F )0 the largest sub-
group of Aut(F ) which acts trivially on the Néron-Severi group with Q-coefficients.
Then the group HMon(F ) is defined as

HMon(F ) : = Aut(F )/Aut(F )0.

The group Mon(F ) is defined as the maximal subgroup of GL(N1(F ),Z) which
preserves:

• the line spanned by the class of KF ;
• the Q-valued bilinear form b(A,B) := (KF )

n−2 · A · B;
• the nef cone;
• the type of step (divisorial, flipping, fibre type) of the MMP associated to

the facets of the nef cone and the exceptional divisor;
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• the deformation type of the images of the maps defined by the faces of the
nef cone.

Remark 2.9. The group HMon(F ) is the subgroup defined as the image of the
natural homomorphism

Aut(F ) → Mon(F ) ⊆ GL(N1(F ), Z)

Example 2.10. As an example, let us discuss the case of a Fano manifold F of
Picard number 2.

In this case there are only two possibilities: either Mon(F ) is trivial or it has
order 2. In fact, as Nef(F ) is invariant, if the action of Mon(F ) is not the trivial
one, then it permutes the two primitive vectors v1, v2 generating the extremal rays
of the cone.

When this case occurs, the canonical divisor lies on the line spanned by v1 + v2
and Theorem 2.7 shows that the extremal rays of Nef(F ) correspond to the same
type of contraction in the KF -MMP and the images of F under the two contractions
are deformation equivalent.

Another easy example is for del Pezzo surfaces (cf. Section 4): the generic del
Pezzo surface of degree 3 has no automorphisms (HMon is then trivial in this case),
but Mon is certainly not trivial, as we will show in Section 3.

The group Mon(F ) is invariant under flat deformations which preserve the nef
cone, whereas the group HMon(F ) can jump when we deform F . Let us state the
definitive form of our result for further references.

Definition 2.11 (Isotrivial fibration). A morphism

f : X → Y

is isotrivial if there exists an open dense subset U of Y such that all the geometric
fibres over Y are isomorphic to a fixed variety.

Equivalently, every point t in U has an Euclidean neighbourhood over which f
is holomorphically trivial; moreover, there exists a finite étale cover U ′ → U such
that XU ′ ∼= XU ×U U

′ is a trivial family (cf. [Ser06, Proposition 2.6.10]).
When we are dealing with isotrivial fibrations, the identification between fibres

over two distinct points is given by a holomorphic automorphism of Ft. This does
not give us a homomorphism from π1(U, t) to Aut(Ft), but it allows us to assume
that the action of [γ] is induced by a (non-unique) element of Aut(Ft). We remark
that isotriviality is a special condition. The only case when it is granted for free
is when Ft is rigid. To summarise, in these two sections we proved the following
result.

Theorem 2.12. Let

f : X → Y

be a dominant morphism of projective normal varieties, where X is Q-factorial with
rational singularities and on an open dense subset of Y the fibres of f are terminal
and Q-factorial. Assume that −KX is f -ample. Then there exists a maximal open
dense subset U = U ′

f of Y such that

• the morphism f : XU → U is a flat family of Q-factorial Fano varieties with
terminal singularities;
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• for every t in U , the monodromy action of π1(U, t) on N1(Ft)Q factors
through the finite group Mon(Ft) defined above. If the fibration is isotrivial,
the monodromy factors through HMon(Ft).

Moreover, the restriction map

ρ : N1(X)Q → N1(Ft)
π1(U,t)
Q

is surjective for every t in U .

Since in the following we will focus on a specific class of Fano fibrations, let us
recall a definition.

Definition 2.13. Let f : X → Y be a dominant projective morphism of normal
varieties. Then f is called a Mori fibre space (or simply MFS) if the following
conditions are satisfied:

(1) f has connected fibres, with dimY < dimX ;
(2) X is Q-factorial with at most Kawamata log terminal singularities;
(3) the relative Picard number of f is one and −KX is f -ample.

We can finally introduce the key notion for our purposes.

Definition 2.14 (Fibre-like). A normal Fano variety F with terminal Q-factorial
singularities is said to be fibre-like if it can be realised as a fibre of a Mori Fibre
Space f : X → Y over U ′

f , where U ′
f is as in Theorem 2.12.

In all the examples we produce, the total spaceX will have quotient singularities,
which are well known to be klt.

3. Criteria for Fibre-likeness

3.1. General Criteria. In this section we present two criteria, one sufficient and
one necessary, which detect the fibre-likeness in a rather general setting. The neces-
sary criterion is based on Theorem 2.12. When the Fano variety is rigid, we obtain
a characterisation. Here by rigid we simply mean that H1(F, TF ) = 0.

Theorem 3.1 (Sufficient Criterion). A Fano variety F with terminal Q-factorial
singularities and such that

N1(F )
Aut(F )
Q = Q[KF ]

is fibre-like.
Moreover, there exists a Mori fibre space f : X → Y such that the base Y is a

curve and the fibration is isotrivial.

Remark 3.2. Before giving the proof, let us remark that KF is always fixed by
Aut(F ). In particular, if we fix m ∈ N s.t. −mKF is very ample, then the action of
Aut(F ) lifts faithfully to a linear action on |−mKF |. In other words, the hypothesis
of the theorem is requesting that the subspace of N1(F )Q fixed by Aut(F ) is minimal.

Proof of Theorem 3.1. We know that HMon(F ) is finite since the nef cone Nef(F )
of F is rational polyhedral and HMon(F ) permutes its faces.

Pick a set of generators [f1], . . . , [fg] of HMon(F ). Call G the sub-group of
Aut(F ) generated by f1, . . . , fg. Take a genus g curve C and denote by ai and bi
the generators of its fundamental group. There is a unique relation between the ai
and bi and it is the one on the product of commutators:

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · · agbga
−1
g b−1

g = 1.
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We define a surjective morphism

ρ : π1(C, t) → G.
ai 7→ fi
bi 7→ f−1

i

Let Ĉ be the universal cover of C. We define

X := F × Ĉ
/

π1(C, t),

where π1(C, t) acts on F via ρ. The action of π1(C, t) is free and properly dis-
continuous; hence X is an analytic space with terminal singularities, i.e., the same
type of singularities of F . The natural projection

f : X → C

is an isotrivial fibration with fibre isomorphic to F .
Let us show that X is projective. Indicating by φ|−mKF | : F → PN , N = dim |−

mKF | the embedding induced by the linear system of | − mKF |, we know from
Remark 3.2 that the action of π1(C, t) extends also to PN and the map φ|−mKF | is
equivariant for the action.

Hence we have the following commutative diagram

F × Ĉ
φ|−mKF |×idĈ

//

��

PN × Ĉ

��

X = F × Ĉ
/

π1(C, t)
ψ

//

f

��

PN × Ĉ
/

π1(C, t) = Z

g

��

C
id

// C

As above, the singularities of Z are the same as PN and so Z is smooth. More-
over, as the action of Aut(F ) is contravariant for φ|−mKF |×id

Ĉ
, Z maps to C and

every fibre is isomorphic to PN . In particular, the anticanonical sheaf OZ(−KZ) is
relatively ample over C. Since C is itself projective, it follows that Z is projective.

The variety X is Q-factorial. This is simply a consequence of [KM92, Cor.
12.1.9], as in view of the hypotheses of the theorem, F is Cohen-Macaulay, in
particular S3, [KM98, Thm. 5.22] and the codimension of the singular locus of F
is at least 3.

To finish the proof, we need to show that ρ(X/C) = 1. We fix a point t on C
and consider the fibre Ft of f over t. That is isomorphic to F via the map q defined
in the above diagram. We will denote the inclusion of Ft in X by ι : F →֒ X . As
ρ(C) = 1 it suffices to show that ρ(X) = 2. We consider the sequence

0 → N1(C)Q
f∗

−→ N1(X)Q
ι∗
−→ N1(Ft)

G
Q → 0.(2)

If this sequence is exact, then ρ(X) = 2.
The injectivity of f∗ follows by the connectedness of the fibres and the projection

formula. The vector space N1(Ft)
G
Q is generated by −KFt

. By adjunction ι∗KX =
KFt

, so ι∗ is surjective. We have im f∗ ⊆ ker ι∗. We need to show the opposite
inclusion, but this follows by the same reasoning as in the proof of Lemma 4.4 from
the seesaw principle. �
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Remark 3.3. The same proof works verbatim in the case where X is a Fano
variety with rational Q-factorial singularities of dimension ≥ 3 and F is smooth
in codimension 2, i.e. the singular locus has codimension at least 3. In fact the
assumption on the terminality of X has been used only to allow us to use [KM92,
Cor. 12.1.9]. But all the hypotheses in the corollary are verified with the weaker
assumptions just explained.

We state now a necessary criterion for F to be fibre-like.

Theorem 3.4 (Necessary Criterion). A Fano variety with Q-factorial terminal
singularities for which

dimN1(F )
Mon(F )
Q > 1

is not fibre-like.

Proof. We argue by contradiction. Let

f : X → Y

be a Mori fibre space. By the definition of fibre-likeness, there exists an open dense
subset U = U ′

f of Y such that the map

ρ : N1(X)Q → N1(Ft)
π1(U,t)
Q

for a given fibre Ft isomorphic to F . Let us show that N1(Ft)
π1(U,t)
Q is one dimen-

sional. We first prove that sequence

0 → N1(Y )Q
f∗

−→ N1(X)Q
ρ
−→ N1(Ft)

π1(U,t)
Q → 0.

is exact. Since F is connected, the map f∗ is injective on N1(Y )Q. The inclusion
im f∗ ⊆ ker ρ holds because the composition Ft → X → Y factors through a point.
The map ρ is not the zero map. Now, we use the fact that we are dealing with a
Mori fibre space. The relative Picard number is one, so:

dimN1(X)Q = dimN1(Y )Q + 1.

Thus, the sequence is exact and

dimN1(Ft)
π1(U,t)
Q = 1

By Theorem 2.12, the monodromy action factors through Mon(F ), so

N1(F )
Mon(F )
Q = QKF .

This contradicts our hypothesis. �

In the next section we will introduce a more handy version of this criterion. Let
us finish this section by considering the rigid case.

Theorem 3.5 (Characterisation - Rigid case). A rigid Fano variety F with Q-
factorial terminal singularities is fibre-like if and only if

N1(F )
Aut(F )
Q = QKF

In this case, F is a fibre of an isotrivial Mori fibre space over a curve.

Proof. The “if” part is Theorem 3.1. The “only if” part follows from Theorem 3.4:
just remark that if F is rigid the monodromy action factors through HMon(F ) (cf.
Theorem 2.12). �
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If F is not rigid this characterisation is false. A counterexample is the del Pezzo
surface of degree 3 (see Section 4).

3.2. Applications of the Necessary Criterion. The group Mon(F ), defined in
2.8, is in general difficult to describe. Roughly speaking, it can be thought of as
the group of symmetries of the nef cone preserving some other features coming
from the birational geometry of the underlying variety. Taking this point of view,
we can rephrase this criterion in terms of the birational geometry of F . The idea
is that, if the faces of the nef cone are different from the view point of birational

geometry, then N1(F )
Mon(F )
Q must be big. Let us give an easy example. Assume

that F has Picard number 2. The nef cone has two faces, G1 and G2. Each face
gives a contraction

πi : F → Gi.

Corollary 3.6. Keep notations as above. If

dimG1 6= dimG2

then F can not be fibre-like.

Proof. The group Mon(F ) can not exchange G1 and G2, so it is trivial. �

Case by case, one can cook up more refined versions of this corollary. Let us give
more examples.

Corollary 3.7. Let F be a Fano variety obtained as the blowup of another Fano
variety G and assume there are no other facets of Nef(F ) whose associated con-
traction is divisorial with image a variety deformation equivalent to G. Then, F
cannot be a fibre-like Fano.

Proof of Corollary 3.7. The face of Nef(F ) corresponding to the pullback of Nef(G)
is invariant by Mon(F ). In fact, the type of an extremal contraction and the
deformation type of its image are preserved under the action of Mon(F ). Hence,
the uniqueness implies that the map must be preserved by such action.
It is enough to show that on such face there is a fixed point and, consequently,
a fixed one-dimensional subspace. As, in order to be a fibre-like Fano, the only
subspace preserved by Mon(F ) could be the span of KF and this does not lay on
the pullback of Nef(G), the required contradiction is immediate. As we explained
above, if Nef(G) is stable by Mon(F ), then the class of the exceptional divisor is
fixed as well. �

The above criterion can be generalised quite easily. Let us explain how, by means
of some examples.

Example 3.8. Let F be a Fano manifold that possesses a unique Mori fibre con-
traction to a variety G, with dimG = k > 0. Then the face of the nef cone of
F corresponding to the nef cone of G is stable under Mon(F ). In particular, the
primitive generators of the extremal rays (in the lattice N1(F ) ⊂ N1

R(F )) of such a
face are going to be permuted by Mon(F ). In particular their sum will be Mon(F )-
invariant. Hence, F cannot be fibre-like. This is the case, for example, for the pro-
jectivisation F of the vector bundle associated to the sheaf OP1×P1 ⊕OP1×P1(1, 1).
Recall that F is isomorphic to the blow-up of the cone over a smooth quadric in P3

with center the vertex. ρ(F ) = 3 and the facets of Nef(F ) are given by the Mori



FANO VARIETIES IN MORI FIBRE SPACES 17

fibre contraction F → P1 × P1 and the two small contractions F → Fi, i = 1, 2,
given by contracting the two rulings of the exceptional copy of P1 × P1.

The above analysis can be formalised into the following statement.

Corollary 3.9. Let F be a Fano variety and assume that the nef cone of F contains
a facet G corresponding to a certain variety G. Assume that for any other facet H
of the nef cone, the corresponding variety H is not deformation equivalent to G.
Then, F cannot be a fibre-like Fano.

So far we have dealt with the case of a facet globally fixed by Mon(F ). What
happens to facets that are translated around the nef cone?

Let F be a Fano variety and F be a facet of Nef(F ) and let L be the sum of
the primitive generators of the extremal rays spanning F . Let F1, . . . ,Fk be the
facets corresponding to translates of F under Mon(F ). Again, for each of the facets
F1, . . . ,Fk, let L1, . . . , Lk be the sum of the primitive generators of the extremal
rays spanning the facet. The Li constitute the orbit of L under the action of
Mon(F ). Hence, L1 + · · ·+Lk is Mon(F )-invariant. In order for F to be fibre-like,
it has to be a negative multiple of KF , in particular it has to be ample.

When F corresponds to a divisorial contraction, then the same reasoning applies
to show that the sum E + E1 + · · ·+ Ek of the exceptional divisors relative to the
different facets must be a multiple of −KF ; otherwise F will not be fibre-like.

Example 3.10. Let Q a smooth quadric Q ⊂ P3. Let p : R → Q be the projective
space bundle P(OQ ⊕OQ(1, 1)).
The map p has two sections E0, E(1,1) corresponding to the two projections of
OQ ⊕OQ(1, 1) on its factors.
Let F be the Fano variety obtained as the blow-up of R along an elliptic curve C
contained in E0. We will denote by π : F → Q the given map.
The generic fibre of π is P1, but over p(C) ⊂ Q the fibres are chains of two copies
of P1 intersecting at a point. The variety F has exactly two different divisorial
contractions ψi : F → PQ(OQ ⊕ OQ(1, 1)), i = 1, 2 given by contracting the two
components of the fibres of π over p(C), respectively. Hence, for F to be fibre-like,
the sum of the exceptional divisors for the ψi must be ample. But this is not possible
as such sum has intersection 0 with the generic fibre of π.

4. Surfaces, threefolds and other higher dimensional examples

4.1. Del Pezzo surfaces. The classification of fibre-like surfaces was carried out
in [Mor82, Theorem 3.5, Addendum to item 3.5.2] when the total space X has
dimension three. We generalise this result to higher dimensional total spaces. Let
us denote by Sd the blow up of P2 at 9− d general points.

Theorem 4.1. A del Pezzo surface S is fibre-like if and only if it is isomorphic to
P2, P1 × P1 or Sd, with d ≤ 6.

Proof. To show that S7 and S8 are not fibre-like we can apply either Theorem 3.4
or Theorem 3.5. To show that P1 × P1 and Sd, with d ≤ 6 and d 6= 3, are fibre-like
we can apply Theorem 3.1 and the classical analysis of the automorphism group of
del Pezzo surfaces (cf. [Koi88] and [DI09]). Now, let F be S3, a smooth cubic in
P3. A generic F does not have automorphisms (cf. [Seg42]) so we can not apply
the sufficient criterion in Theorem 3.1; however, we can argue as follows. Let X
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be the incidence variety in P3 × PH0(P3,O(3))∨. This is a smooth ample divisor.
Hence by Lefschetz hyperplane theorem it has Picard number 2. The projection

X → PH0(P3,O(3))∨

is a Mori fibre space which contains all cubic surfaces as smooth fibres, so S3 is
fibre-like. We remark that we can handle in a similar way also P1×P1 and Sd with
d ≤ 4. �

The cubic surface is an example of a fibre-like variety where the sufficient criterion
in Theorem 3.1 does not apply. A consequence of our case-by-case proof is the
following.

Corollary 4.2. When F is a surface, the necessary criterion 3.4 is actually a
characterisation of fibre-likeness. Moreover, fibre-likeness is preserved by smooth
deformations.

By comparing our result with the classification of K-stable smooth del Pezzo
surfaces ([Tos12, Theorem 1.4]), we also obtain the following corollary.

Corollary 4.3. A smooth del Pezzo surface is K-stable if and only if it is fibre-like.

4.2. A general procedure to construct Mori fibre spaces. The abstract no-
tation will be heavy, so we start with an example. Let F be a smooth divisor
of bidegree (2, 2) in P2 × P2. Let σ be the involution of P2 × P2 and PN :=
PH0(P2 × P2,O(2, 2))∨. Consider the incidence variety I in PN × P2 × P2; it is a
smooth divisor of degree (1, 2, 2). We can apply Lefschetz hyperplane theorem to
show that the Picard number of I is 3. We have a fibration

π : I → PN ,

whose relative Picard number is 2. The involution σ acts on this fibration. Let
X := I/σ and Y = PN/σ. In this way, we obtain a fibration

f : X → Y,

with relative Picard number 1. The singularities are finite quotient singularities,
they are klt and Q-factorial by [KM98, Proposition 5.15 and Corollary 5.21]. We
conclude that F is a Mori fibre space. By moving F by a generic element of
PGL(3) × PGL(3), we can always assume that it is not preserved by σ; hence the
action of σ is free on a neighbourhood of F in Z. This means that F is a smooth
fibre of f . The previous argument shows that every smooth divisor of bidegree
(2, 2) in P2 × P2 is fibre-like.

We now generalise this construction. Let F be a smooth Fano variety and let Z
be a smooth projective variety in which F is immersed. Let L1, . . . , Lk be effective
prime divisors on Z such that the associated line bundles OZ(Li) are basepoint-
free. We will indicate by |Li| the linear systems of the divisors LI .
Suppose that F is a complete intersection Z = L1∩· · ·∩Lk. Let I be the incidence
variety in Z × |L1| × · · · × |Lk| defined as

Z := {(z,D1, . . . , Dk) ∈ Z × |L1| × · · · × |Lk| | z ∈ D1 ∩ · · · ∩Dk};

the variety I is smooth since the Li are basepoint-free.

Lemma 4.4. The restriction morphism

ρ : Pic(Z × |L1| × · · · × |Lk|) → Pic(I)

is surjective.
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Proof. Consider the projection

π : I → Z.

The fibres are divisors of multi-degree (1, . . . , 1) in |L1| × · · · × |Lk|. In particular,
they are equidimensional, hence π is flat. Fix a point t in Z and let H be the fibre
over it. Below, we will show that the sequence

Pic(Z) → Pic(I) → Pic(H)

is exact. Since the image of Pic(Z × |L1| × · · · × |Lk|) contains the image of
Pic(Z) and surjects to Pic(H) we obtain the statement.

To complete the proof of the exactness of the sequence in 4.2 we argue as in the
last part of the proof of Theorem 3.1. Let L be a line bundle on I whose restriction
to H is trivial. Since R2π∗Q is locally constant on Z, we have that c1(L) is trivial
on every fibre. The fibres are Fano, so L itself is trivial on every fibre. The map
π is flat, so, by the seesaw principle, cf. [Mum08, Corollary 6, p. 54] or [KM92,
Proposition 12.1.4], a line bundle which is trivial on each fibre is the pull-back of a
line from the base.

�

Suppose that there is a finite subgroup G of Aut(Z) which is fixed-point-free in
codimension one and whose action can be lifted to I; fix such a lifting. Assume
that G does not preserve F .

Theorem 4.5. Keep notation as in Lemma 4.4. If

dimN1(Z)GQ = 1,

then F is fibre-like.

Proof. We construct explicitly a Mori fibre space which will have F as a smooth
fibre. Let X := I/G and Y = (|L1| × · · · × |Lk|)/G. We claim that the projection

f : X → Y

has relative Picard number one. Since the |Li| are projective spaces, we have

Pic(Z × |L1| × · · · × |Lk|) = Pic(Z)× Pic(|L1|)× · · · × Pic(|Lk|).

Lemma 4.4 and the hypothesis dimN1(Z)GQ = 1 imply that

dimN1(X)Q = dimN1(I)GQ ≤∼ N1(X × |L1| × · · · × |Lk|)GQ =

= dimN1(|L1| × · · · × |Lk|)
G
Q + 1 = dimN1(Y )Q + 1.

The variety F is a smooth fibre of f because it is not fixed by G. Since the action
of G on Z is fixed-point-free in codimension one, the singularities of X and Y are
klt and Q-factorial by [KM98, Proposition 5.15 and Corollary 5.21]. �

We remark that it should not be easy to check if the singularities are terminal,
as explained in the remark after [KM98, Corollary 5.21]. Let us apply our result.
Denote by (Pn)r the cartesian product of r copies of Pn.

Corollary 4.6. Take positive integers r, k, d, and n ≥ 2 such that kd < n + 1.
Let F be a smooth complete intersection of k divisors of degree (d, . . . , d) in (Pn)r.
Then F is fibre-like.



20 G. CODOGNI, A. FANELLI, R. SVALDI, AND L. TASIN

Proof. The condition kd < n+ 1 ensures that F is Fano. Let G be the symmetric
group on r elements. It acts on (Pn)r permuting the factors. By acting by a general
automorphism of (Pn)r we can arrange that G does not fix F . We can now apply
Theorem 4.5. �

The Mori fibre space will in general depend on a choice of the lifting of G to a
subgroup of Aut(I). For instance, if G acts trivially on the linear systems, the base
Y will be a product of projective spaces. If the lifting is nontrivial, the base will
be a singular variety with smaller Picard number. Moreover, we could have chosen
a smaller G. It is enough that the action of G is transitive on the copies of Pn and
fixed-point-free in codimension one on (Pn)r.

Corollary 4.7. Fix two integers r and n ≥ 2. Denote by Li be the line bundle
O(1, . . . , 0, . . . , 1) on (Pn)r, where the 0 appears only at the i-th position. A smooth
complete intersection F of multi-degree (L1, . . . , Lr) in (Pn)r is fibre-like.

Clearly, there are many variants of these corollaries.In the next section we will
give a few more specific examples.

4.3. Fano Threefolds. The results described in the previous sections show that
there are quite a few restrictions on the geometry of a Fano variety F in order for
it to be fibre-like. We are interested in understanding how strong these restrictions
are. As vague as this question may appear, drawing on the classification of smooth
Fano threefolds due to Mori and Mukai (cf. [MM82] and [MM03]), we are able to
show that in this context most threefolds do not satisfy these restrictive conditions.

We will refer to [MM82, Tables 2, 3, 4, 5] where a full description of the defor-
mation types of Fano threefolds is given.

Theorem 4.8. Let F be a smooth Fano threefold with Picard number greater than
1. Then F is fibre-like if and only if its deformation type appears in Table 4.3.

Remark 4.9. In the second column of Table 4.3 we use the numbering adopted in
[MM82]. Exactly the same numbering will be used throughout our proof. We remark
that entry 1a and 1b have the same deformation type. Alternative descriptions of
these manifolds, which we will use, can be found in [Pro13].

Remark 4.10. The last column in each table presented in [MM82] enumerates all
the possible ways a Fano threefold can be obtained from another Fano threefold by
blowing up a curve. Alternatively, in the language of this section, they describe
all the facets of the nef cone corresponding to a divisorial contraction in which the
image of the exceptional divisor is a curve. We remark that the contractions are
listed without multiplicity; this means that there could be more than one face giving
the same contraction.

Proof. For the reader’s convenience, we will divide our analysis based on the Picard
number of the Fano threefolds that we examine.

Fano varieties of Picard number 2
The nef cone of a Fano variety F of Picard number 2 is a rational polyhedral

cone of the form R+D1 + R+D2, for D1, D2 two nef, semiample (integral) Cartier
divisors on F . In this representation, we always assume that the classes of the Di

are primitive in the Néron-Severi group.
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No [MM82] ρ(F ) −K3
F Deformation type of F

1a (6a) 2 12 F is a divisor of bidegree (2, 2) in P2 × P2.
1b (6b) 2 12 F is a 2 : 1 cover of a smooth divisor W of bidegree

(1, 1) in P2 × P2 branched along a member of | −KW |.
2 (12) 2 20 F is the blow-up of P3 with center a curve of degree 6 and

genus 3 which is an intersection of cubics. Alternatively,
F is the intersection of three divisors of bidegree (1, 1)
in P3 × P3.

3 (28) 2 28 F is the blow-up ofQ ⊂ P4 with center a twisted quartic,
a smooth rational curve of degree 4 which spans P4.

4 (32) 2 48 F is a divisor of bidegree (1, 1) in P2 × P2.
5 (1) 3 12 F is a double cover of P1 × P1 × P1 whose branch locus

is a divisor of tridegree (2, 2, 2).
6 (13) 3 30 F is the blowup of a smooth divisor of bidegree (1, 1) in

P2 × P2 with center a curve C of bidegree (2, 2) on it,
such that C →֒W →֒ P2×P2 → P2 is an embedding for
both both projections P2 × P2 → P2.

7 (27) 3 48 F = P1 × P1 × P1.
8 (1) 4 24 F is a smooth divisor of multi degree (1, 1, 1, 1) in P1 ×

P1 × P1 × P1.
Table 1. Deformation types of Fano varieties in Theorem 4.8

Remark 4.11. As the nef cone is Mon(F )-invariant, dimNef(F ) = 2 and the only
invariant subspace for the action of Mon(F ) is the span of the anticanonical class,
it follows that the sum of the primitive generators of Nef(F ) must be a multiple of
the canonical class, i.e. there exists λ < 0 such that

λKF ∼ D1 +D2.

This is another useful condition: e.g., a Fano variety F isomorphic to a smooth
divisor of type (1, 2) contained in P2 × P2 cannot be fibre-like. Let i : F →֒ P2 × P2

be the inclusion of F in P2×P2. We denote by p1, p2 the projections of P2×P2 onto
the its two factors. By Lefschetz hyperplane theorem, Nef(F ) = i∗ Nef(P2 × P2).
Then Nef(F ) = R+i∗p∗1(OP2) + R+i∗p∗2(OP2) and the two classes are the primitive
generators of the cone. The adjunction formula implies that

KF = (KP2×P2 + F )|F = (KP2×P2 +OP2×P2(1, 2))|F .

It is immediately clear that [KF ] is not contained on the line spanned by the sum
of the two primitive generators of Nef(F ).

Using Corollary 3.9, we can immediately exclude the families corresponding to
the following entries of Table 2 of [MM82]:

(1− 5), (7− 11), (13− 20), (22), (23), (25− 31), (33− 36).

The variety corresponding to entry number (12), the intersection of three divisors
of bidegree (1, 1) in P3 × P3, is fibre-like because of Theorem 4.5. Using Remark
4.11, we can also exclude entry (24).

The variety corresponding to entry (6a) is a divisor of degree (2, 2) in P2 × P2,
while the variety from entry (32) is a divisor of type (1, 1) in P2 × P2. They are
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fibre-like because of Corollary 4.6. Entry (6b) is a 2 : 1 cover F of a smooth divisor
W of bidegree (1, 1) in P2 × P2 branched along a member of | − KW |. We can
construct inside | −KW | × | −KW | the universal family Z for F (cf. [BHPVdV04,
Chapter I.17]). The variety Z is smooth and projective and it has Picard number
3. We remark that W has an involution σ; its action can be lifted to both | −KW |
and Z. Letting Y := | −KW |/σ and X := Z/σ we obtain a Mori fibre space which
contains F as a general fibre (cf. Theorem 4.5).

Entry (28) can be described as a smooth complete intersection of L1 := f∗H and
L2 := f∗2H−E, where f : Z → P5 is the blow-up of the Veronese surface V , E is the
exceptional divisor and H is an hyperplane in P5. We want to apply Theorem 4.5.
To this end we construct an order 2 automorphism C of Z such that C∗L1 = L2.
The automorphism C is a special Cremona transformation. The Veronese surface
is the intersection of 6 quadrics, so we have a Cremona transformation of P5 whose
indeterminacy locus is V . By blowing up V , we get a regular map from Z to P5

which contracts the secant variety of V , so this new map is again a blow-up. We
conclude that C lifts to a regular automorphism of Z. One checks that it acts
nontrivially on the Picard group. A general reference for this kind of Cremona map
is [ESB89].

Fano varieties of Picard number 3
Entry (1) is a double cover of P1 × P1 × P1 whose branch locus is a divisor of

tridegree (2, 2, 2). We will use the same notation as [CCGK13, Section 54]: this
Fano variety can be realised as a member of the linear system |2L+ 2M + 2N | in
the toric variety Z with weight data

x0 x1 y0 y1 z0 z1 w
1 1 0 0 0 0 1 L
0 0 1 1 0 0 1 M
0 0 0 0 1 1 1 N

Also for this variety Theorem 4.5 applies, since Z carries a natural action of the
symmetric group S3 which exchanges the divisors L, M and N and so lifts to the
linear system |2L+ 2M + 2N |. This shows that entry (1) is fibre-like.

Entry (13) can be alternatively described as a smooth complete intersection of
three divisors of multi-degree (0, 1, 1), (1, 0, 1) and (1, 1, 0) in P2 × P2 × P2. It is
fibre-like because of Corollary 4.7.

Using Table 3 of [MM82] and Corollary 3.9, we can immediately exclude the
families corresponding to the following entries of the table:

(2 − 8), (11), (12), (14− 16), (18), (20− 24), (26), (28− 31).

Remark 4.12. Let F be a Fano variety of Picard number 3. Suppose that the
nef cone contains two facets for which the images of the corresponding contraction
morphisms are deformation equivalent. Then these may be identified by the action
of Mon(F ). In particular, the primitive generators of the two facets are exchanged
and their sum is then invariant. Hence it has to belong to the span of the canonical
class, if F is fibre-like.

When the two facets correspond to divisorial contractions the same holds true
for the sum of the two exceptional divisors Ei, with i = 1, 2. In particular, E1+E2

has to be ample.
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Using the previous remark, the following entries can be shown not to be of fibre-
like type:

(3), (9), (10), (17), (19), (25).

Fano varieties of Picard number 4
In Table 4 of [MM82] entry (1), a divisor of multidegree (1, 1, 1, 1) in P1 × P1 ×

P1 × P1, is fibre-like because of Corollary 4.6. Using Corollary 3.9, it is immediate
to see that we can exclude the families corresponding to the following entries of the
table:

(3− 6), (8− 11), (13).

Using the natural generalisation to Picard number 4 of Remark 4.12, we can
exclude the following entries, too:

(2), (7), (12).

Fano varieties of Picard number 5
In this case the only Fano threefolds are the following.

• Let Y be the blow up of a quadric Q ⊂ P3 along a smooth conic contained
in it. The Fano variety F is the blow-up of Y with center three distinct
exceptional lines of the blow-up Y → Q; then the sum of the three excep-
tional divisors over the lines must be a (negative) multiple of KX and it is
ample. That is clearly false true, as one can see by taking an exceptional
line for the map Y → Q other than those already blown up.

• F is the blow-up of Y = P(OP1×P1(1, 0)
⊕

OP1×P1(0, 1)) with center two
exceptional lines l1, l2 of the blow-up φ : Y → P3 such that l1 and l2 lie on
the same irreducible component of the exceptional set of φ; such F is not
fibre-like by Proposition 3.7.

• Products

P1 × Sd, d ≤ 6,

where Sd is a del Pezzo of degree d. A quick analysis shows immediately
that the projection onto the second factor must be Mon(Sd)-invariant as
Nef(P1 × Sd) = Nef(P1)×Nef(Sd).

�

As a consequence of our case-by-case proof we have the following corollary.

Corollary 4.13. When F is a threefold, the necessary criterion 3.4 is actually a
characterization of fibre-likeness. Moreover, fibre-likeness is preserved by smooth
deformations.

Remark 4.14 (K-stability). It is known that threefolds (4) and (7) are K-stable;
in [Der15] varieties (1.b) and 5 are proved to be K-stable, being appropriate finite
cover of K-stable varieties.

5. Smooth toric Fano varieties and K-stability

In this section we prove that any smooth fibre-like toric Fano variety has barycen-
tre in the origin (i.e. it is K-stable). Let us point out that there are smooth toric
varieties that are K-stable but not fibre-like, such as P1 × P2.
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5.1. Preliminaries on toric geometry: primitive collections. We start re-
calling some notation and basic facts. For more details, see [CLS11], [Bat91] and
[Cas03].

Let N be a free abelian group of rank n and set NQ := N ⊗Z Q. Denote by
M the dual of N . Let Σ ⊂ NQ be a fan of an n-dimensional smooth toric Fano
variety F and let ∆ ⊂ NQ be the dual polytope associated to the anti-canonical
polarisation.

The polytope ∆ is the polytope whose vertices are the integral generators of the
1-dimensional cones contained in Σ. We denote the set of all vertices of ∆ by V (∆).

Let N1(F ) be the group of 1-cycles on F modulo numerical equivalence and set
N1(F )Q = N1(F ) ⊗ Q. Inside N1(F )Q we consider the Kleiman-Mori cone NE(F )
generated by the effective 1-cycles. There is the following basic exact sequence:

(3) 0 → N1(F ) → ZV (∆) → N → 0

and dually

(4) 0 → M → ZV (∆) → N1(F ) → 0.

In this subsection, we also need some notation and results about primitive col-
lections.

Definition 5.1. A subset P ⊂ V (∆) is called a primitive collection if the cone
generated by P is not in Σ and for each x ∈ P the cone generated by P \ {x} is in
Σ.

For a primitive collection P = {x1, . . . , xk} denote by σ(P) the minimal cone
in Σ such that x1 + . . . + xk ∈ σ(P) . Let y1, . . . , yh be generators of σ(P). By
smoothness of F , there exist positive integers bi such that

x1 + . . .+ xk = b1y1 + . . .+ bhyh;

let r(P ) be this relation.

Definition 5.2. The linear relation r(P) is called the primitive relation of P and
the cone σ(P) is called the focus of P . The integer k is called the length of r(P )
and the degree of P is defined as degP = k −

∑

bi.

Using the exact sequence (3) we have the following identification between N1(F )
and the group generated by relations among the vertices of ∆:

N1(F ) ∼=







(bx)x∈V (∆) ∈ Hom(Zm,Z)

∣

∣

∣

∣

∣

∑

x∈V (∆)

bxx = 0







.

Remark 5.3. By abuse of notation we denote by r(P) also the cycle associated,
via the previous isomorphism, to the relation

x1 + . . .+ xk − (b1y1 + . . .+ bhyh) = 0.

Note that degP = −(KF · r(P)) and so, since we are considering Fano varieties,
any primitive relation has strictly positive degree.

We will need the following result (cf. [Bat91, Proposition 3.2]).

Proposition 5.4 (Batyrev). Let F be a smooth toric Fano variety. Then there
exists a primitive collection P such that σ(P) = 0.
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Remark 5.5. Let

a1x1 + · · ·+ akxk = b1y1 + · · ·+ bhyh

be a relation among vertices of ∆ with all {ai} and {bj} positive integers. Assume
that

∑

ai ≥
∑

bj . Then, by Lemma 1.4 in [Cas03], 〈x1 · · · , xk〉 6∈ Σ.

5.2. Fibre-likeness implies K-stability. It is known that the symmetry of the
polytope ∆ is related to the K-stability, which is known to be equivalent to the
existence of a Kähler-Einstein metric (cf. [WZ04] and [BB13]) of the associated
Fano variety. Mabuchi proved in [Mab87] the first result relating the K-stability
with the triviality of the barycentre of ∆. This result was generalised in the singular
setting in [Ber12].

Theorem 5.6 ([Ber12, Cor. 1.2]). Let F be a Gorenstein toric Fano variety. Then
F is K-stable if and only if the barycentre of ∆ is the origin.

The proof of the previous result is analytic and passes through the existence of
Kähler-Einstein metrics. Applying the theorem above, we can see that there are
Gorenstein terminal Q-factorial toric varieties which are fibre-like, but notK-stable,
e.g., the weighted projective space P(1, 1, 1, 1, 2).

In this context our main result is the following.

Theorem 5.7. For every smooth toric fibre-like Fano variety F , the barycentre of
the ∆ is in the origin and, as a consequence, F is K-stable.

Before proving the theorem, we need to recall some convex geometry.

Remark 5.8. A basic fact is the following: the intersection of a convex polytope
with an affine space is again a convex polytope.

Lemma 5.9. Let P be an n-dimensional convex polytope in an affine space W ≃ Qn

and let H be a k-dimensional affine subspace intersecting the interior of P . Set
P ′ := P ∩H and consider a facet F ′ of P ′. Then there exists a unique face F of
P of dimension al least k − 1 such that

• F ′ = F ∩H;
• H intersects F in its relative interior.

Proof. The polytope P is defined by a collection of inequalities {x ∈ W | ai · x ≤
bi, i = 1, . . . t}, with ai, bi ∈ Qd, t ≥ n + 1 and H is defined by a collection of
equations {x ∈ W | cj · x = dj , j = 1, . . . , d− k}, with cj , dj ∈ Qd. The facet F ′ is
then defined, up to reordering the indices i by {x ∈W | aix = bi, i = 1, . . . l, aix ≤
bi, i = l + 1, . . . t, cjx = dj , j = 1, . . . , d − k}, with l ≤ n − k + 1. The set
{x ∈ W | aix = bi, i = 1, . . . l, aix ≤ bi, i = l + 1, . . . t} defines the unique face F
of P of dimension at least k − 1 with the required properties. �

If we consider the action of a subgroup of automorphisms of the polytope on the
vertices of P , we obtain the following lemma.

Lemma 5.10. Let P be an n-dimensional polytope in an affine space W ≃ Qn and
let G be a finite subgroup of GL(W,Q). Assume that P is invariant for the action
of G on W and that WG is k-dimensional and intersects the interior of P . Then
the action of G on the vertices V (P ) has at least k + 1 orbits.
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Proof. We prove this lemma by induction on k. In the case k = 0, there is nothing
to prove. In the case k = 1, the fixed locus WG is a line, which meets two distinct
(possibly not maximal) faces F1 and F2 of P . We immediately obtain two invariant
sets:

V (F1) \ V (F2), and V (F2) \ V (F1).

These give at least two orbits.
We now prove the inductive step. Since the intersection of a convex polytope

with an affine space is again a convex polytope, we can consider the intersection
polytope P ′ := P ∩WG. Let F ′ be one of its (k − 1)-dimensional facets. Using
Lemma 5.9, we can find a (unique) face F of P , cut in its interior by WG in a
k − 1 affine space such that F ′ = F ∩WG. Let H be the smallest affine subspace
containing F ; it is preserved by the action of G. By induction, we obtain at least
k orbits of vertices contained in F . The extra orbit is obtained by the vertices of
P not contained in F . �

Proof of Theorem 5.7. Any smooth Fano toric variety is rigid (cf. [dFH12, Corol-

lary 4.6]), so we can apply Theorem 3.5: F is fibre-like if and only if dimN1(F )
Aut(F )
Q =

1.
After tensoring by Q the exact sequence (4), we obtain

(5) 0 →MQ → QV (∆) → N1(F )Q → 0,

where MQ is the n-dimensional Q-vector space containing the dual polytope of ∆.

There is a natural action of Aut(∆) on MQ and QV (∆), and a natural homomor-
phism Aut(∆) → Aut(F ), which make the sequence above equivariant for Aut(∆).

Moreover by [Cox95, Corollary 4.7]) we have N1(F )
Aut(∆)
Q = N1(F )

Aut(F)
Q . Let us

denote by t be the number of orbits of the action of Aut(∆) on V (∆).
It is easy to see that if we take the Aut(∆)-invariant part of the exact sequence in

5, we obtain again an exact sequence. Moreover, in this case it follows immediately
that

(QV (∆))Aut(∆) = QV (∆)/Aut(∆) = Qt.

Let now G be Aut(∆) and t be the number of orbits of the action of G on V (∆).
Set k := dimMG; the observation from the last paragraph and the sequence (5)
imply that F is fibre-like if and only if t− k = 1. Therefore, we want to prove that
if G has exactly k + 1 orbits on V (∆), then the barycentre of ∆ is the origin.

Since we are working with Q-vector spaces, M and N are isomorphic as G-
modules; in particular dimNG = dimMG = k.

Let ∆′ be the intersection polytope NG ∩∆. For every facet F ′ of ∆′, one can
apply Lemma 5.9 to find a unique face F of ∆ cut by NG in its interior such that
F ′ = F ∩ NG. Lemma 5.10 says that V (F) splits in at least k orbits. Since F
is fibre-like, V (F) splits in exactly k orbits: another orbit is given by the set of
vertices V (∆)\V (F).

Let now F ′
1 and F ′

2 be two distinct facets of ∆′, which correspond to two faces
F1 and F2 of ∆ and determine two sets S1 and S2 of k orbits in V (∆). We claim
that S1 6= S2: otherwise

V (F1) =
⋃

S1 =
⋃

S2 = V (F2),

which would imply F1 = F2.
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Since there are exactly k + 1 ways to choose k elements in a set of cardinality
k+1 and ∆′ has at least k+1 facets (actually exactly k+1 by the above argument),
we conclude that any collection of k orbits is supported on a face F of ∆.

Let P be a primitive collection with trivial focus, whose existence is guaranteed
by Proposition 5.4. Since any set of k orbits must be contained in a face, P must in-
volve at least one vertex from every orbit. Acting with G on P we obtain a family of
primitive collections {Pi}1≤i≤r such that σ(Pi) = 0 and ∪Pi = V (∆). Assume that
Pi∩Pj 6= ∅ for some i, j, i.e., Pi = {x1, . . . , xk} and Pj = {x1, . . . , xh, yh+1, . . . , yk}
with ys 6= xt for any s, t. Then

xh+1 + . . .+ xk = yh+1 + . . . yk,

which is impossible by Remark 5.5, because xh+1, . . . , xk generate a cone in Σ.
This implies that all the Pi are disjoint and, as a consequence, that the sum of

all vertices of ∆ equals the origin, i.e. the barycentre of ∆ is trivial. The theorem
is proved. �

The previous corollary seems to be the relative version in the toric case of the
following very general conjecture by Odaka and Okada.

Conjecture 5.11 ([OO13, Conj. 5.1]). Any smooth Fano manifold X of Picard
rank 1 is K-semistable.

5.3. MAGMA computations. Theorem 5.7 and its proof show that the fibre-like
condition is rather restrictive.

Table 5.3 collects the smooth Fano toric varieties (up to dimension 8) which
are fibre-like. It has been obtained using the software MAGMA together with the
Graded Ring Database [BK+] (for further details on the classification, cf. [Øbr07]).

Remark 5.12. In Table 5.3, the IDs of the Fano polytopes are the ones introduced
in [BK+]. The varieties Vd are known as Del Pezzo varieties (see [VK84] for more
details). There is no classical description for the varieties W1,W2 and W3.

We would like to finish off by stating the following speculation.

Conjecture 5.13. Let ∆ be a smooth fibre-like polytope of dimension d. Assume
that d is an odd prime number. Then either X(∆) = Pd or X(∆) = (P1)d.

6. Rational homogeneous spaces

In this section we classify fibre-like rational homogeneous spaces; the upshot is
that most of them are not fibre-like. Let us fix the notation.

Definition 6.1. A homogeneous space is a projective variety F endowed with a
transitive action of an algebraic group G.

We assume that G is semi-simple. In this set up, F is a rational Fano varieties.
Because of this remark, we refer to these varieties as rational homogeneous space.
Alternatively, F can be defined as a quotient of G by a parabolic subgroup P .
General references are [Bri05] and [Dem77].

The isomorphism class of F is determined by the conjugacy class of P ; conjugacy
classes of parabolic subgroups are in bijective correspondence with subsets of the
nodes of the Dynkin diagram of G. We picture them by marking the corresponding
nodes of the diagram; the resulting decorated diagram is called the Dynkin diagram
of P . We denote by EP the group of symmetries of the Dynkin diagram preserving
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DImension # Vertices Description ID
2 6 V2 2
2 4 P1 × P1 4
2 3 P2 5
3 6 (P1)3 21
3 4 P3 23
4 10 V4 63
4 12 V2 × V2 100
4 8 (P1)4 142
4 6 P2 × P2 146
4 5 P4 147
5 10 (P1)5 1003
5 6 P5 1013
6 14 V6 1930
6 12 W1 5817
6 18 (V2)

3 7568
6 12 (P1)6 8611
6 9 (P2)3 8631
6 8 (P3)2 8634
6 7 P6 8635
7 14 (P1)7 80835
7 8 P7 80891
8 18 V8 106303
8 15 W2 277415
8 20 (V4)

2 442179
8 24 (V2)

4 790981
8 12 W3 830429
8 16 (P1)8 830635
8 12 (P2)4 830767
8 10 (P4)2 830782
8 9 P8 830783

Table 2. Smooth toric Fano varieties of dimension at most 8 that
are fibre-like.

the marked nodes; it is a finite group and it is isomorphic to HMon(F ) (see the proof
of Corollary 6.3). We are going to use the following classical result (cf. [Dem77,
Theorems 1 and 2]).

Theorem 6.2 (Demazure). Let F = G/P be a rational homogeneous space of
Picard number at least 2, with G simple. Then F is rigid, that is h1(F, TF ) = 0.
Moreover, the automorphism group of F is isomorphic to the semi-direct product
of G and the symmetry EP of the Dynkin diagram of P .

Let us make a few comments. The rational homogeneous spaces which are called
exceptional in [Dem77] have Picard number one, so we can ignore them. The group
of exterior automorphisms of G, which is denoted by E in [Dem77], is known to be
equal to the symmetries of the Dynkin diagram, see e.g. [Pro07, Section 10.6.10].
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The group that Demazure calls Eπ here is denoted by EP . The following result
follows directly from Theorem 1.2 and Demazure’s result.

Corollary 6.3. Let F = G/P be a homogeneous space of Picard rank at least 2,
with G simple. Then F is fibre-like if and only if is it isomorphic to one of the
following varieties:

(1) F = F (n, k) parametrises pairs of subspaces (L,H) in Cn such that dimL =
k, dimH = n− k and L ⊂ H;

(2) F = F (n) parametrises n dimensional isotropic subspaces of (C2n, Q),
where Q is a non-degenrate symmetric form;

(3) F = F τ parametrises pairs of isotropic subspaces (L,Π) in (C8, Q), where
Q is a non-degenrate symmetric form, L is a line, Π is four-dimensional
and L ⊂ Π (the upper-script τ stands for triality);

(4) F = F τi is the target of a contraction of a facet of the nef cone of F τ ;
more explicitly either F τi = F (4) or Π is forced to belong to one of the
two connected component of the grassmannians of isotropic 4-dimensional
subspaces of C8.

(5) F = G/P , where G is the exceptional group E6 and P is associated to one
of the two pairs of roots conjugated by the automorphism of the Dynkin
diagram.

Before giving the proof, let us give some details about these varieties. Case (1)
is realised as an homogeneous space with G = SLn; it has Picard number two
and the faces of the nef cone are given by the projection onto grassmannians. If
we fix a quadratic form Q, we get an automorphism of F given by φQ(L,H) =
(H⊥, L⊥) which exchanges the faces of the nef cone. In Case (2), G = SO2n.
The linear subspaces of an even dimensional quadric are divided into two families,
which correspond to the even and odd spin representations (cf. [Pro07, Section
11.7.2] or [GH78, Section 6.1]). This variety has Picard number two; the action of
an improper orthogonal transformation exchanges the faces of the nef cone. The
third variety is homogeneous for G = SO8; it has Picard number 3. The relevant
automorphisms are realised via triality (e.g. [Pro07, Section 11.7.3]).

Proof. Since F is rigid, because of Theorem 1.2 we have just to study the action
of Aut(F ) = G⋊EP on N1(F )Q. The group G acts trivially in cohomology, so we
are left with the action of the finite group EP . The group N1(F )Q is spanned by
the line bundles associated to the simple roots of P (cf. [Bri05]), so we can identify
a basis of N1(F )Q with the set of the marked nodes of the Dynkin diagram of
P . This identification is equivariant with respect to the group of symmetry EP ; in

particular HMon(F ) equals to EP . In other words, dimN1(F )
Aut(F )
Q = 1 if and only

if the group of symmetry EP acts transitively on the set of marked nodes. Dynkin
diagram and their symmetries are classified (e.g. [Pro07, Section 10.6.10]); by direct
inspection, we conclude that the unique F which are fibre-like are the ones listed
above. More explicitly, the Dynkin diagrams Bn, Cn, E7, E8, F4 and G2 have no
symmetries, so the rational homogeneous spaces for the respective groups are fibre-
like if and only if the Picard number is one. An has just an order two symmetry,
so for each pair of conjugated nodes one gets a fibre-like homogeneous space of
Picard number 2; this is case (1). Dn, for n ≥ 4, has just an order-two symmetry
which fixes all nodes except the two nodes associated to the Spin representations,
this gives case (2). D4 has the symmetric group on three elements as group of
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symmetries, this is the so called triality and gives cases (3) and (4). The Dynkin
diagram E6 has an order-two symmetry which gives case (5). �
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