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Given the present size of modern cities, it is beyond the perceptual capacity of most people to develop a good
knowledge about the qualities of the urban space at every street corner. Correspondingly, for planners, it is
also difficult to accurately answer questions such as ‘where the quality of the physical environment is the most
dilapidated in the city that regeneration should be given first consideration’ and ‘in fast urbanising cities, how
is the city appearance changing’. To address this issue, in the present study, we present a computer visionmethod
that contains three machine learning models for the large-scale and automatic evaluation on the qualities of the
urban environment by leveraging state-of-the-art machine learning techniques and wide-coverage street view
images. From various physical qualities that have been identified by previous research to be important for the
urban visual experience, we choose two key qualities, the construction and maintenance quality of building fa-
cade and the continuity of street wall, to be measured in this research. To test the validity of the proposed meth-
od, we compare the machine scores with public rating scores collected on-site from 752 passers-by at 56
locations in the city. We show that the machine learning models can produce a medium-to-good estimation of
people's real experience, and the modelling results can be applied in many ways by researchers, planners and
local residents.
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1. Introduction

As a city grows, it becomes hardly possible for its dwellers, as well as
planners, to gather a complete knowledge about how it looks at every
street corner and in every narrow alley (Lynch, 1960). Theoretically,
the human perception of the urban environment is inherently incom-
plete, discontinuous and distorted, as depicted by research on cognitive
mapping (Downs & Stea, 1973) and the city's image (Lynch, 1960). It is
especially the case, given the overwhelming size ofmodern cities. Ques-
tions such as ‘which are the worst-looking places in the city where re-
generation should be given first consideration’ and ‘in fast urbanising
cities, how is the city appearance changing’ are hard to answer.

For the past many years, several studies have attempted to measure
a city's appearance in a consistent manner on a larger scale (Harvey,
2014). The dominant method is by sending human auditors to the
field to observe and record the city's appearance (Brownson, Hoehner,
Day, Forsyth, & Sallis, 2009). However, this method is quite limited in
terms of sample size because its manual nature makes it inherently ex-
pensive and derives few economy of scale (Harvey, 2014). Recently, the
ersity, HaidianDistrict,

an open access article under
availability of online street view images, which have an unprecedented-
ly wide coverage on the built environment, provides a new methodo-
logical opportunity for this topic (Dubey, Naik, Parikh, Raskar, &
Hidalgo, 2016; Hara, Le, & Froehlich, 2013; Hwang & Sampson, 2014;
Kelly, Wilson, Baker, Miller, & Schootman, 2013; Sun, Fan, Bakillah, &
Zipf, 2015; Zhou, Liu, Oliva, & Torralba, 2014). When combined with
computer vision techniques, there is a possibility for the large-scale au-
tomatic evaluation of various high-level judgements of the urban envi-
ronment (Doersch, Singh, Gupta, Sivic, & Efros, 2012; Lee, Maisonneuve,
Crandall, Efros, & Sivic, 2015; Naik, Philipoom, Raskar, & Hidalgo, 2014;
Ordonez & Berg, 2014; Quercia, O'Hare, & Cramer, 2014; Salesses,
Schechtner, & Hidalgo, 2013).

Our goal in this paper is to explore this possibility in terms of the
physical quality of the urban environment. We refer to architectural
and urban design theories (explained in Section 2) and choose two
physical qualities, the construction andmaintenance quality of building
facade and the continuity of street wall, to be measured in this study.
Beijing, a fast-growing city with quite diverse urban environment, is
chosen as the case study area.

However, the use of street view images and computer vision is chal-
lenged by several issues in producing an appropriate estimation of
people's real experience. First, we used the method of expert rating to
label images and train the models. Although we attempted to make
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



Fig. 1. The conceptual framework.
Partly adapted from Ewing and Handy (2009).
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the rating standard as objective as possible, theremay be a gap between
the experts' opinions and the public's preference (e.g. in terms of what
makes a good quality and what is considered a bad condition). More-
over, the expert rating is based on static and two-dimensional images
instead of the on-site, dynamic, three-dimensional experience (e.g. in
real settings, how people judge the immediate urban environment
may be affected bywhat he/she experienced few seconds ago, so the ex-
perience is dynamic).

Regarding the validity of using street images in place of field survey,
there have been a few studies that compare the results of observational
field audits and street view image-based audits and show that there is
generally an agreement between them (Hara et al., 2013; Kelly et al.,
2013). However, what these studies deal with are usually quite objec-
tive and straightforward variables such as the building height and the
existence of obstacles on the sidewalk, while the physical qualities
that we are looking at are integrated judgements. To test the validity
of our proposed method, we conducted a field survey on 752 passers-
by at 56 locations in Beijing and compared the public's rating scores
with the machine rating scores.

The research questions that we aim to explore include

- How is the performance of machine learning models in judging the
physical qualities of the urban environment based on street view im-
ages? Is it possible to apply this method as a replacement to conven-
tional labour-intensive manual audits?

- How is the correlation between image-basedmachine rating and the
public's in-situ rating?

The results show that our machine learning models can reach a
mean squared error (MSE) of 0.61 on the task of rating the construction
and maintenance quality of building facade (rating scale: 1–4) and an
accuracy of 75% on the task of judging the continuity of street wall.
When compared with the public's in-situ rating scores, the street view
image-basedmachine rating scores showa Spearman's correlation coef-
ficient of 0.66 (p b 0.0001) with the public's rating scores on the former
task and 0.71 (p b 0.0001) on the latter task.

The rest of the paper is organised as follows: Section 2 provides the
conceptual framework; Section 3 reviews the long-lasting efforts in
measuring the qualities of urban environment and the recent pro-
gresses in applying machine learning on extracting high-level informa-
tion from city images; Section 4 explains the definitions and impacts of
the physical qualities modelled in this study; Section 5 introduces the
data and methodology; Section 6 presents the performance of the ma-
chine learningmodels and the validation results and the urban physical
quality maps of Beijing produced from themodel results; Section 7 con-
cludes and discusses the potential directions of research.

2. The conceptual framework

The research question tackled in this paper stems from the larger
conceptual framework that links the objective physical environment
with individual's subjective experience (Fig. 1). The framework is
based on the notion that specific physical features of buildings are me-
diated by a number of more abstract qualities and then the perceptual
processes to shape the experience in the urban space. Wohlwill (1976,
p. 108) argued that affect has often been found unrelated to individual
physical features unless features are combined in a more meaningful
composite measure, which makes the physical qualities such as order
and enclosure. However, unlike the specific physical features such as
building height and width, these qualities are not easily measured di-
rectly with a physical measure (Nasar, 1983). Physical measures of dif-
ferent parts of the scene would have to be combined to arrive at visual
prominence (Nasar, 1983). The conceptual framework points to several
issues in relation to a meaningful understanding of the physical envi-
ronment: what are the key qualities that affect people's perceptions,
how can these qualities bemeasured from rawmaterials of the physical
environment and how do they impact perceptions.

The fields of architecture and urban design have made many efforts
in identifying the key qualities that contribute to people's experience.
For instance, Moughtin (2003, p. 59) wrote that ‘order, unity, balance,
symmetry, scale, proportion, rhythm, contrast and harmony are
among the important tools used to define good architecture’. In urban
design, rules of enclosure, coherence, variety and so on are widely ac-
knowledged and discussed in many design handbooks as well as gov-
ernments' design codes (see for instance, Ewing et al., 2013, p. 8;
American Planning Association, 2006, p. 165; Parolek, Parolek, &
Crawford, 2008, p. 41 for the narratives on enclosure).

Ourwork focuses on the secondquestionmentioned above and aims
to explore the potential of machine learning algorithms in measuring
the physical qualities from street view images. Our approach is different
from relevant works by Quercia et al. (2014) and Ordonez and Berg
(2014), which directly measured people's perceptions from street im-
ages. While appreciating their works, we argue that our approach is of
particular importance for at least two reasons. First, the physical quali-
ties are more operational than perceptual variables for urban planning
and design practice, which themselves point to specificmeasures to im-
prove. Second, our approach could facilitate further research on the re-
lationship between physical qualities and human perceptions by
providing consistently measured inputs.

3. Related works

3.1. Measuring the qualities of urban environment

Over the last four decades, there have been constant efforts in mea-
suring the physical qualities of the urban environment that would po-
tentially be perceptually meaningful. According to Stamps (2000, p.
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preface), there had been ‘275 relevant empirical studies, covering over
12,000 stimuli and more than 41,000 respondents’ by 2000. In a more
recent review on this topic, Ewing and Handy (2009) found 51 percep-
tual-related qualities that were analysed.

Wohlwill (1976, p. 61) referred to two ways of measuring physical
attributes of the environment: the physical approach and the
judgemental approach. Because the perceptual-related qualities are
usually more qualitative ones, they are more commonly measured
using the judgemental approach, which resorts human judges to assess
these qualities (Nasar, 1983; Wohlwill, 1976, p. 61). In an attempt to
quantify and operationalise these human-judged qualities, Ewing and
Handy (2009) employed an innovative method and produced a series
of models linking concrete physical features withmore abstract percep-
tual qualities. Our work is similar to that of Ewing andHandy in that we
also aim tomodel the expert judgements on the qualities of urban envi-
ronment based on very basic attributes. However, the proposed big-
data-basedmachine learningmethod can bemore automatic and labour
saving.

3.2. Applying machine learning algorithms to urban image

Previously, most computer vision algorithms related to places fo-
cused on technical tasks such as scene classification or parsing scene im-
ages into constituent objects and background elements (Madhavan et
al., 2006; Ordonez & Berg, 2014). Building upon that, a few interesting
research studies into the perceptual and cultural aspects of urban im-
ages have emerged in recent years.

In the seminal work of ‘What makes Paris look like Paris’, Doersch et
al. (2012) dealt with the identification of local architectural identity
by proposing a discriminative clustering approach that automatically
discovers geographically representative elements from Google Street
View images.With regard to that, there are also studies on the automat-
ic classification of architectural styles by capturing the morphological
characteristics, which can be further applied to the identification of ar-
chitectural style mix and style transformation over time (Goel, Juneja,
& Jawahar, 2012; Lee et al., 2015; Shalunts, Haxhimusa, & Sablatnig,
2011, 2012; Xu, Tao, Zhang, Wu, & Tsoi, 2014).

The most relevant works to the present study are those that aim at
understanding people's perceptions of urban scenes, which are usually
analysed by crowd-sourcing rating on urban images. Quercia et al.
(2014) identified several aesthetic informative elements that positively
(e.g. the amount of greenery) or negatively (e.g. broad streets, fortress-
like buildings) affect people's perception of beauty, quietness and hap-
piness. Ordonez and Berg (2014) modelled the perception for wealth,
uniqueness and safety judged from street view images and validated
the results against local income and crime statistics. The perception of
safety was also modelled by Naik et al. (2014) and Porzi, Rota Bulò,
Lepri, and Ricci (2015) and was proved to be consistent with the actual
socio-economic indicators (Naik, Kominers, Raskar, Glaeser, & Hidalgo,
2015).

4. Physical qualities selected for this study

More specifically, we select one building-level quality (construction
andmaintenance quality of building facade) and one street-level quality
(continuity of street wall) to be modelled in this analysis. We do not
mean to argue that the two selected qualities are the most important
or the most suitable. They are just used as the starting points for this
line of research, which can be extended to include other qualities in
the future. However, these two qualities are slightlymore advantageous
in that their perceptual implications are generallymore straightforward
and easier to interpret. For instance, too much contrast may produce
disorder and lack of clarity (Moughtin, 2003), while to the authors'
knowledge, there is hardly any argument that high construction and
maintenance quality or high level of enclosure could have a negative
perceptual impact.
4.1. Building level: construction andmaintenance quality of building facade

The building-level quality measured in the present analysis is the
construction andmaintenance quality of building facade. The term ‘con-
struction and maintenance quality’ is more commonly used in the con-
text of engineering (Atkinson, 2003, p. 4; Brandt & Rasmussen, 2002). In
our analysis, we shift the focus of this term away from the engineering
domain and emphasise the specific elements that would affect the
final appearance of the building facade. The construction- and mainte-
nance-related elements that contribute to the appearance of building fa-
cade include

- Building material: whether the materials used are of high quality
and fine textured;

- Industrial precision and craftsmanship: whether the facade is
carefully constructed with high level of industrial precision and
craftsmanship;

- Maintenance: whether the facade is free from cracks, bulges, broken
components, deterioration, corrosion, dirt and stain, hanging wires,
messy add-ons, etc.

Although this quality seems to be technical oriented, its impacts arenot
limited to the technical realm. In the book ‘Sense of Beauty’, Santayana
(1955, p. 51) wrote highly of the aesthetic importance of material, saying
that ‘the beauty of material is thus the ground work of all higher beauty’.
Leading modern architects such as Walter Gropius, Le Corbusier and
Mies van der Rohe were inspired by what they saw as the great beauty
of technical perfection (Voordt & Wegen, 2005). The famous saying of
‘God is in the details’ is also a reminder of the importance of technical per-
fection on the overall architectural quality. Dilapidation in the environ-
ment has been found to be related to negative affect frequently, and
there is no compelling reason to expect different results (Nasar, 1983).

Furthermore, the construction and maintenance quality of building
facade also has obvious social effects. According to the famous theory
of ‘broken window’ on urban appearance and social effects,
neighbourhood appearances drive the reality of neighbourhood safety:
one brokenwindow leads to another brokenwindow and, in turn, to fu-
ture crimes (Quercia et al., 2014). In less extreme situations, deteriora-
tion in the physical environment may not necessarily lead to crime
but may very possibly affect the image and identity of a place (Said,
Zubir, & Rahmat, 2014) and the economic development potential avail-
able to it. Therefore, modelling results can not only help understand the
physical conditions of the urban space but also help identify areas vul-
nerable to social disorder and economic deprivation.

4.2. Street level: continuity of street wall

The street wall refers to the interface formed by building facade
along a street. A continuous street wall is formed when buildings
stand directly on the edges of their parcels (Lehnerer, 2009, p. 28). To
be more specific, a continuous street wall requires the following:

- No ‘dead spaces’ between buildings, which include vacant lots,
parking lots, drive ways or setbacks of a large building (Ewing &
Handy, 2009)

- No solid and blank wall blocking the sight and activities from the
street to the buildings, specifically in the context of China where
most residences and work compounds are gated and surrounded
by walls. However, if the wall itself is carefully designed and visually
attractive, it may also be perceived as a continuous flow of the street
interface.

Psychologically, a continuous street wall offers ‘a sense of enclosure’
(Ewing et al., 2013) and ‘majesty and controlled uniformity’ (Lyon,



Fig. 2. Base map of Beijing (red coloured area indicates the study area).
Source: adapted from Zhao (2011).
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1978). It positively affects the experience of urban space by ‘giving a
psychological security’ (Lang, 1994, p. 324), ‘instilling a sense of posi-
tion, of identity with the surroundings’ and ‘embodying the idea of
hereness’ (Cullen, 1961, p. 29). Behaviourally, it draws pedestrians
and activities and ‘sustains a vital urban district’ (Marcus & Francis,
1997, p. 19), and hence, it is considered to be one of the key rules for
place making (Bain, Gray, & Rodgers, 2012, p. 7).

As early as the 15th century, relevant rules had appeared in
street design codes in Nuremberg, Germany, which required buildings
to be lined up to create an ‘undeviating building line’ (Kostof, 1999).
Presently, it is addressed in numerous planning codes and guidelines,
e.g. the American Planning Association (APA) Planning and Urban De-
sign Standards requires infill projects to ‘maintain ground floor facade
to define a consistent street edge’ (American Planning Association,
2006).
Fig. 3. Camera facing the street (left)
5. Data and methodology

5.1. Case study area

We chose Beijing as the case study area, which has undergone dra-
matic transformation from the imperial capital to the administrative
centre, and even at present, to a hotspot of global investment. The city-
scape is a complex mosaic of traditional and super-modern malls and
giant structures. In addition, its rapid expansion in the recent decade
has resulted in considerable amount of poorly constructed buildings at
the urban fringe, where the cityscape is much different from that of
the city centre. The highly diversified physical environment makes Bei-
jing a vivid example for our analysis. We focused on the area within the
5th ring road, which coversmost of the built-up areas (Fig. 2). The study
area is approximately 670 km2 and resides around 10.54million people
and facing the buildings (right).



Fig. 4.Work flow diagram.
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(Beijing Municipal Bureau of Statistics & National Bureau of Statistics
Survey Office in Beijing, 2015).

5.2. Data and framework

We used street view images obtained from Baidu Map, the Chinese
equivalent of Google Map. The images were requested at an interval of
200 m along all the streets in the city in February 2016, resulting in
360,796 images (800 ∗ 500 pixels). Different frommost existing studies
that focused on the entire streetscape and used images taken with the
camera facing the street, we emphasised more on the building facade
and set the camera facing the buildings so that the buildings cover a
larger proportion of the image (see Fig. 3). However, approximately
30% of the images were still streetscape images, which were taken
Table 1
Rating standard for the construction and maintenance quality of building facade.

Ratings Rating standard

Four points Built with high quality, fine-textured materials;
Built with high industrial precision or fine craftsmanship, e.g
between material pieces unless they seem to be designed wi
Well maintained without obvious cracks, breakage, corrosion
hanging/loose wires

Three points Built with lower quality, not very fine-textured materials;
Do not show high level of industrial precision or craftsmansh
May have a few obvious cracks, breakage, corrosion, dirt and

Two points Built with low quality, not very fine-textured materials;
Built with low-level industrial precision or craftsmanship;
Show a lot of cracks, breakage, corrosion, dirt and stain or me

One point Built with low-quality materials, in many cases, bare cement
Built with low-level industrial precision or craftsmanship, so
Seriously deteriorated with a lot of cracks, breakage, corrosio

a We do not mean that these two materials are in themselves of low quality, but they are of
around street corners or entrances. Therefore, a machine learning
model was developed to discern streetscape images from building im-
ages to screen out unqualified images.

We followed a two-step approach to develop the machine learning
models and three models are developed in total (see Fig. 4). In the
first step, we randomly sampled 3500 images from the database and
manually labelled them as ‘building images’ (2575) and ‘street images’
(925) as shown in Fig. 3. These images were then used to train a
‘qualification’ model to decide whether the content of an image is ap-
propriate to be included in the analysis. In the next step, the qualified
‘building images’were labelled through expert rating on the two quali-
ties. The two scoreswere then fed to develop themodels of construction
and maintenance quality and continuity. We then applied the two
models on all the qualified images from the entire study area.
. building components and material pieces are well aligned, small gaps
de, etc.;
, dirt and stain or messy add-ons such as rusty iron rails on windows,

ip, e.g. material pieces may not be well aligned and may have wide gaps in between;
stain or messy add-ons but generally present a neat and clean look

ssy add-ons
and colour platea;
metimes seem unfinished;
n, dirt and stain or messy add-ons

ten used in low-quality buildings in Beijing.



Table 2
Rating standard for the construction and maintenance quality of building facade.

Ratings Rating standard

Continuous Building facades progress through the image without any
interruption, blockage or significant setback, at least at the eye
height.

Discontinuous There is a wide gap between two adjacent buildings.
There is a significant setback of a wide building.
There is a solid wall blocking the building from the street;
however, if the wall is carefully designed and visually attractive,
it can be considered continuous.
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5.3. Expert rating

As mentioned in Section 3.1, expert ratings have been frequently
employed in research that involves the measurement of qualities of
the urban environment. The judgemental approach was considered a
simple way of measuring the qualities here (Nasar, 1983). Despite the
element of subjectivity in the rating scale and the categorisation
methods that are relied upon in this approach, the reliability of the
resulting values has generally been found to be acceptable and, in
some cases, quite high (Wohlwill, 1976, p. 63).

Ideally, experienced experts in the field should be invited to make
judgements. However, given the size of the task in our research (each
expert needs to rate several hundreds of images), it was difficult for us
to invite experienced architects, urban designers or scholars to do this
job. Therefore, we chose to recruit eight graduate students whohave re-
ceived architectural training for N5 years to accomplish this task. Al-
though the validity of expert rating is supported by the virtue of their
specialised expertise (Ewing & Handy, 2009) and there is usually little
reason to expect that their assessments would differ systematically
from other such professionals (Nasar, 1983), we also took extra mea-
sures to reduce potential bias asmuch as possible. First, we held a train-
ing and discussion session with the recruited students to make an
agreement on the rating standard for each quality (Tables 1 & 2,
Fig. 5), which linked the judgement of the qualities with more concrete
features. Second,we held a practice session inwhich all students rated a
same sample group of images until in most cases they made same
judgements.
5.4. Machine learning

In the field of computer vision, there aremany approaches for image
representation. For our work, we evaluate three features: the conven-
tional SIFT histogram (Lowe, 1999) and two state-of-the-art deep
convolutional networks, namely AlexNet (Krizhevsky, Sutskever, &
Hinton, 2012) and GoogLeNet (Szegedy et al., 2015). AlexNet and
Fig. 5. Rating e
GoogLeNet outperformed all other features in the 2012 and 2014
ImageNet Large Scale Visual Recognition Competition, respectively.
Compared with conventional image techniques, which are dominated
by low-level features such as edges and corners, the deep convolutional
networks can capture both local- and high-level image characteristics.
We used the output of the last hidden layer of the two pre-trained neu-
ral networks and trained a SVR (Support Vector Regression) classifier
for each of the scene attributes.

The labelled data set was randomly sampled into three subsets: the
training set, the development set and the test set. For each task, the de-
velopment set and the test set were equally and randomly sampled in
each labelled class, and the rest of the images were used as the training
set. For example, for the visual quality task, 40 images were randomly
sampled in each of the four scoring groups for the development set
and 60 images each for the test set. The hyper parameters of SVM,
namely the regularisation constant and the regression epsilon width,
were optimised through grid searching on the development set. In
terms of the evaluation of model performance, we used F1 score for
the classification models (the qualification model and the continuity
model) and MSE for the construction and maintenance quality model,
which were calculated using the following equations:

Recall ¼ TP
P

Precision ¼ TP
TP þ FP

F1 ¼ 2TP
2TP þ FN þ FP

¼ 2� Precision� Recall
Precisionþ Recall

MSE ¼ 1
n
∑ yi−tið Þ2

where P (positive), TP (true positive), FP (false positive) and FN (false
negative) denote the number of the images that are qualified/continu-
ous, both labelled and predicted to be qualified/continuous, labelled un-
qualified/discontinuous but predicted to be qualified/continuous and
labelled true but predicted to be false, respectively, and yi and ti denote
the machine rating and expert rating for each image, respectively.

Themodels with the best performance for the three tasks were to be
applied to the entire image database of the research area. We then cal-
culated the average scores for each street segment and produced the
urban physical quality maps of Beijing.

5.5. Validation survey

As mentioned in the Introduction section, to test the validity of the
proposed method, we conducted a field survey to collect the public's
xamples.



Fig. 6. Density distribution of machine scores within the second ring road and in the entire study area.
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in-situ opinion on the two physical qualities and compared the results
with the machine scores. The survey was conducted on 56 street seg-
ments in March 2016. The street segments were sampled from the
area within the second ring road, which is the most diverse area of the
city in terms of physical environment. We sampled the street segments
from this area instead of the entire city for the following reasons. First,
the area chosen is a relatively small area; therefore, the efficiency of
the survey can be largely enhanced. Second, it is a good representative
of the physical environment of the city because all types of physical en-
vironment (traditional vs modern, brand new vs dilapidated, high den-
sity vs low density, etc.) can be found within this area. The distribution
of the machine scores on the two qualities within the second ring road
does not deviate much from that in the whole city (Fig. 6), and the dis-
tribution of the continuity scores is even more balanced. To avoid the
potential bias on people's judgement caused by different architectural
styles (traditional vsmodern), half of the street segmentswere sampled
from traditional areas, and the other half were from modern areas.

Eight surveyorswere recruited to helpwith the survey. Each of them
was assigned six to eight street segments. To reduce the bias caused by
demographic differences, the surveyorswere required to keep a balance
Table 3
Descriptive statistics of the interviewees.

Variables Frequency %Share %Share (from the
6th National Census)

Gender
Male 377 50.13 51.6
Female 375 49.87 48.4

Age
b18 62 8.24 8.6 (0–14)
18–40 272 36.17 82.7 (15–64)
41–60 254 33.78
60+ 164 21.81 8.7 (65+)

Residence
Beijing resident 249 66.89
Visitor 503 33.11

Education
Elementary school and under 39 5.19 10.0
Junior school 177 23.54 31.4
High school and equivalent 267 35.50 21.2
Bachelor's degree and equivalent 252 33.51 31.5 (included above)
Master's degree and above 17 2.26
in the demographic profile of their interviewees in accordance to the
demographic distribution of the whole city (Beijing data from the
sixthNational PopulationCensus, Table 3). However, for each street seg-
ment, because of the relatively small sample size, only the balance in the
distribution of gender and age was required. From each street segment,
10–15 interviewees were surveyed, and the total sample size was 752.
For validation, the Spearman's correlation coefficient was calculated
for the machine scores and the average public rating score for each
street segment.
6. Results

6.1. Results of expert rating

In terms of the construction and maintenance quality, the expert
rating returns 485 four-point images (18.8%), 1079 three-point im-
ages (41.9%), 809 two-point images (31.4%), and 202 one-point images
(7.8%). In terms of continuity, the expert rating identifies 1069 ‘contin-
uous’ images (41.5%) and 1506 ‘discontinuous’ images (58.5%)
(Table 4).
Table 4
Distribution of expert rating.

Rating criteria Proportion%

Qualification
Qualified 73.6
Unqualified 26.4
Total 100

Construction and maintenance quality
4 points 18.8
3 points 41.9
2 points 31.4
1 point 7.8
Total 100

Continuity
Continuous 41.5
Discontinuous 58.5
Total 100



Table 5
Performance of the qualification model.

Accuracy (%) Precision (%) Recall (%) F1 (%)

SIFTHist + SVR 79.2 45.1 71.3 55.2
AlexNet + SVR 89.3 48.2 85.9 61.8
GoogLeNet + SVR 90.0 48.1 86.3 61.8

Bold numbers indicate the highest performances.

Table 7
Performance of the visual continuity model.

Accuracy% Precision% Recall% F1%

SIFTHist + SVR 72.0 45.0 72.0 55.4
AlexNet + SVR 75.0 48.0 72.0 57.6
GoogLeNet + SVR 75.0 48.0 72.0 57.6

Bold numbers indicate the highest performances.
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6.2. Machine learning performance

Table 5 shows the performance of the SIFT, AlexNet and GoogLeNet
features on the test set of the qualification task. The deep convolutional
networks, AlexNet and GoogLeNet, performed better than the tradition-
al SIFT features. GoogLeNet achieved a slightly higher F1 score than
AlexNet, which indicated a more balanced performance between recall
and precision. Tables 6 and 7 show the performance on the other two
tasks. Similar to the task of qualification, deep features outperformed
the SIFT features. GoogLeNet showed the best capability of generalisa-
tion with the lowest MSE on the development set on the task of con-
struction and maintenance quality. GoogLeNet and AlexNet showed
almost the same levels of capability on the task of continuity. On the
basis of these results, we chose the GoogLeNet model for large-scale
application.

To better estimate the capability of themodels, we took a closer look
at themachine rating results on the test sets and comparedwith the ex-
pert rating scores. Fig. 7 shows that the machine scores generally fall
into a narrower range than the expert rating scores (average score of
‘one-point’ images = 2.0, of ‘two-point’ images = 2.3, of ‘three-point’
images = 2.9, and of ‘four-point’ images = 3.4). There were a number
of overlaps between themachine scores within the groups of low-qual-
ity building facades (the ‘one-point’ and ‘two-point’ images) and high-
quality facades (the ‘three-point’ and ‘four-points’ images). However,
there was little overlap between these two big groups (the lower quar-
tile of the machine scores for ‘three-point’ images was higher than the
higher quartile of the machine scores for the ‘two-point’ images). The
results indicate that the model performs well in discriminating high
quality from low quality but that it tends to produce more errors in
identifying the nuanced differences within the two big groups.

Regarding the task of continuity, we manually analysed 60 images
that were wrongly classified (false positive or false negative). Two
major types of errors for false positive and three major types of errors
for false negative were identified (Fig. 8). For false positive, the major
types of error were failing to identify an unattractive wall that disrupts
the continuity (12%) and failing to identify the gap between buildings
because of perspective (76%). For false negative, the major types of
error are failing to identify dilapidated buildings as a building (20%),
failing to identify a continuous street wall because of blockage by trees
and cars (30%) and failing to identify a continuous street wall when
the picture was taken from a distance (35%), usually from the opposite
side of a wide street. These errors are mainly because of the lack of la-
belled data to train the model to be aware of relevant situations. Al-
though the total number of labelled images was N2000, when it
comes to a very specific type of situation, the relevant sample size
could be b50. Therefore, the model performance may be further en-
hanced by collecting more labelled datax.
Table 6
Performance of the visual quality model.

MSE Training set Development set Test set

SIFTHist + SVR 0.36 0.84 0.84
AlexNet + SVR 0.22 0.64 0.62
GoogLeNet + SVR 0.28 0.61 0.64

Bold numbers indicate the highest performances.
6.3. Validation

The distribution of machine scores and survey scores on the two
measured qualities for the sample street segments is shown in Fig. 9.
To validate the models, a correlation analysis was performed, which
showed that the machine scores and survey scores were moderately-
to-highly correlated for both physical qualities (Spearman's r = 0.66,
p b 0.0001 for the construction and maintenance quality of building fa-
cade, Spearman's r = 0.71, p b 0.0001 for the continuity of street wall).

Because of the lack of similar works, we could not directly compare
our results against prior research and judge the ‘goodness’ or ‘badness’
of our results. However, the work by Ordonez and Berg (2014) took a
similar approach in comparing ground truth statistics with the qualities
of the urban environment judged by machine learning models from
street view images,which could provide somehints for the understand-
ing on themagnitude of the correlation. In theirwork, Ordonez andBerg
(2014) compared the perceptual scores of wealthiness with household
income statistics and compared the scores of safety with homicide sta-
tistics. The Pearson correlation coefficients were 0.51 for the former
task (can increase to 0.61 when only counties with large sample sizes
are included) and −0.36 for the latter task (can increase to −0.47
when only counties with large sample sizes are included).We acknowl-
edge that the tasks in Ordonez and Berg's work may have involved a
higher level of uncertainty and complexity; therefore, a weaker correla-
tionwas reported. Nevertheless, it lends some evidence that ourmodels
can provide a medium-to-good approximation to the public's visual ex-
perience in the real urban environment.

Looking closer at the results, we can identify a few interesting issues.
In terms of the construction and maintenance quality, the correlation is
stronger when both themachine scores and the public rating scores are
high but weakerwhen themachine scores are lower. This indicates that
there is generallymore consensus in terms of whatmakes a ‘good’ qual-
ity but more divergence in terms of how ‘bad’ is ‘bad’. The experts make
judgements depending on an overview of the conditions of the entire
city, whereas the public may have heterogeneous standards, for in-
stance, using the conditions of their residences or work places as the
benchmark.While acknowledging the value of public opinion in under-
standing the quality of the physical environment, the result also indi-
cates the advantage of consistency of expert rating. In terms of
continuity, the public generally rate higher than the model. A possible
explanation could be that in real settings, the public's judgement of con-
tinuity is affected by the presence of trees, which help visually diminish
the feeling of discontinuity. This finding indicates that we may need to
train another model that considers the influence of trees in the future.

6.4. Urban physical quality maps of Beijing

By calculating the average score for each street segment, we devel-
oped scoring maps for the two physical qualities (Figs. 10 and 11). The
maps can be used in various ways:

- Research: Researchers can further link large-sized and consistently
measured qualities with human perceptions and behaviour in the
urban environment and phenomena such as crime and economic
deprivation.

- Planning: Planners and city managers can achieve a more detailed
and comprehensive understanding of the urban built environment



Fig. 7. Comparison between machine scores and expert rating scores on the task of construction and maintenance quality.
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by reading the maps. It could provide support for policy making in
areas such as urban renewal, neighbourhood revitalisation and city
branding by helping identify the areas that are most in need of
change or most successful.

- Daily life: Local residents and visitors may also benefit from these
maps by knowing more about high-quality places to stay in the
city and planning more enjoyable routes for daily travel.

The purpose of this section is not to discuss every detail of the two
maps and their policy implications but to present a few examples of
the implications that can be drawn from this work. It needs to be
noted that although the analysis on the model performance indicates
a relationship between themodel scores and people's in-situ experience
of the built environment, the scores should not be considered absolutely
accurate but as estimations with errors. For instance, the red coloured
street segments may not always be of higher visual quality than the
Fig. 8. Examples of errors i
orange ones, but these are in most cases of higher quality than the
blue ones.

We here consider the whole city, the major avenues and the blocks
as the three levels of analysis, from which different types of patterns
can be identified. For instance, in terms of the visual quality, there is
an apparent pattern at the city scale that the northern part of the city
(Zone A) generally scores higher than the southern part (Zone B), espe-
cially at the urban fringes between the 4th and the 5th ring roads. The
street view image showed that while most areas between the north
4th ring road and the north 5th ring road maintain a modern urban
look, many areas in the south resemble more of a dilapidated village
than a city. It indicates that greater emphasis should be given to the
southern city in the agenda of urban renewal, which could involve a
range of measures from removing stains on the facade to overall facade
improvement and the demolition and reconstruction of very degraded
structures. Regarding the major avenues, for example, it draws atten-
tion that the north-south central axis (Zone C), which is considered
the heritage of the ancient city and is given great importance, does not
n the continuity task.



Fig. 9. Comparison between machine scores and the public in-situ ratings (colour print not needed).
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seem to present an outstanding architectural visual quality. Instead, the
west-east axis (Zone D) appears to be more visually appealing. It there-
fore indicates the need of more measures to be taken in the making of
this central axis. At the block level, small concentrations of high scores
and low scores can be identified. For instance, most key development
areas score above the average and form a hotspot of warm colours on
the map, which proves the success of place making in these areas,
such as the CBD (Zone E) and the second CBD (Zone F). However,
some of them appear to be isolated from the surrounding areas because
of the sudden drop of score in the surroundings. For example, ZoneG is a
business park with decently designed office buildings, but on the other
Fig. 10.Map of the construction and mainten
side of the adjacent railway lie shabby village houses (Zone H). Such an
imbalance in the development of the built environment also needs to be
alleviated in planning practice.

In terms of the visual continuity rating, at the city scale, it is apparent
that a large proportion of the street walls in Beijing are not continuous.
The historical areas within the 2nd ring road (Zone I), where the streets
take the form of traditional Hutongs, scoremuch higher than elsewhere
in the city, which reveals one of themajor differences between the visu-
al environment in the historical areas and modern developments. It re-
minds that if the city is going to keep its urban identity, not only the
architectural styles but also this kind of structural feature needs to be
ance quality of building facade in Beijing.



Fig. 11.Map of the continuity of street wall in Beijing.
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preserved and inherited. In addition, the street walls along the ring
roads are generally more continuous because they are considered the
gateways of the city, and the streetscape is given more emphasis. The
key development areas turn out to be much less outstanding in Fig. 11
than in Fig. 10, which indicates that the high-quality individual build-
ings fail to provide a feeling of continuity as a whole. In summary, the
visual continuity rating demonstrates the need to incentivise infill de-
velopment and more aggressively regulate shallow setbacks through
urban planning and design guidelines and policies so that the feeling
of enclosure and appeal by the street wall can be re-established.

7. Conclusion and discussion

Our aim in this paper was to develop and test a machine learning
method, which contains three machine learning models, to automati-
cally evaluate the urban visual environment in a large scale. We chose
two key features as the starting points of this research line: the visual
quality of architectural facade and the visual continuity of street wall.
The method can be further extended to evaluate other built environ-
ment features that shape the visual experience, such as the architectural
style, building scale and relationship between adjacent buildings.

By applying the state-of-the-art deep convolutional networks, we
could achieve a satisfying machine learning performance on the ex-
pert-rated data sets. The MSE for the visual quality task was 0.61 on a
rating scale of one to four, and the accuracy for the visual continuity
task was 75%. In the next step, we conducted a field survey on the
public's opinions of the built environment and found a moderate-to-
high correlation between the machine rating and the public's rating
(Spearman's r = 0.66 for visual quality, 0.71 for visual continuity),
which shows that the present method produces a good approximation
to the real experience in the urban environment.
The main contributions of our paper are as follows:

- Machine learning models for the measurement of two physical
qualities of the urban environment, which is one of the key
issues involvedwith ameaningful understanding of the physical en-
vironment. Previously, in most cases, these qualities weremeasured
using expensive and labour-intensive conventional methods such as
field audit or image-based audit.

- Validation of the proposed models against the public's opinions col-
lected from a field survey.

- Two full-coverage and consistently measured maps on the two
physical qualities in Beijing.

Ourwork is also limited in several aspects. First, the size of expert-la-
belled data set is not quite large, so we may not have achieved a maxi-
mum performance of the algorithm. To tackle this problem, we have set
up a website (www.urbanvisionstudy.com) that showcases the project
and advocates for crowdsourcing the labelling task to obtain a larger
data set. Second, although the convolutional neural network can cap-
ture more ‘global’ features (i.e. responsive to a larger region of pixel
space), it may not still grasp all the visual cues that contribute to the
judgements asmentioned in Section 3, which remains an open problem
in thefield of deep learning. Third, similar to the opinion of Quercia et al.
(2014) that the computer algorithm is ‘a tool, not a directive’, wewould
like to say that the present method provides evidence but not decision.
When it comes to the complex issue of urban planning and design, a
one-size-fits-all solution does not exist, and a high score in the algo-
rithmdoes not always suggest the best condition. For instance, although
the continuity of street wall contributes to the sense of enclosure and
appeal, interruptions at certain points are also necessary to provide
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variety and a rest for the eyes. In addition, revolutionary designs and
historical structures, which should be valued, may be lowly rated by
the algorithm because they do not take a ‘normal’ look (Quercia et al.,
2014). Therefore, it should not be oversimplified that a high-scored
streetscape is good enough and that a low-scored one needs change.
To translate this evidence into appropriate decisions, more work is
needed to understand the aesthetic cognition of the built environment
through cognitive experiments, physiological psychology and son on.

However, it should also be noted that the variability in the built en-
vironment also involves a socio-economic dimension. The co-evolution
between the physical appearance and social composition of cities has
gained considerable interest of scholars for centuries and underpinned
most architectural and urban planning movements (Naik et al., 2015).
Moreover, the recent progresses in computer vision-based large-scale
measurement of the built environment lend further evidence to the
co-evolution relationship. For instance, Ordonez and Berg (2014)
found a Pearson's correlation coefficient of 0.51 between household in-
come and built environment-based judgement of wealthy and a coeffi-
cient of −0.36 between homicide statistics and built environment-
based judgement of safety. Naik et al. (2015) found that the education
level of a neighbourhood strongly predicts changes in the physical envi-
ronment. Considering this, one should be very careful in drawing policy
suggestions from the computer ratings. Instead of saying that ‘all places
should be wealthy and highly scored’, which is unreasonable and raises
substantial ethical questions, one should interpret the ratingswithin the
local contexts and evaluate the performance of the built environment
against the socio-economic background. Future development of ma-
chine learningmodels may take socio-economic variability into consid-
eration and train separatemodels for different levels of affluence,which
corresponds to questions such as ‘howwould a successful non-wealthy
neighbourhood look like’.

This paper serves as thefirst step in profiling the cityscapewith com-
putational methods. We propose that this line of research can be ex-
tended in several ways. First, as mentioned before, more urban design
features can be fed into the machine learning algorithm to produce a
more comprehensive profile of the urban visual environment, such as
the building material, architectural style, building scale and design of
details. Moreover, the relationship between adjacent buildings is also
an important factor that shapes the streetscape, including the consisten-
cy and diversity in the use of materials, colour, style, scale and details,
and structural features, such as the alignment of cornice and belt course
lines.

Second, the long-term vision is that with the regular update of street
view images and the growing volume of geo-tagged images online, we
can consistently monitor the transformation of the cityscape at a large
scale. The urban planning issues that have been analysed case by case
depending on a limited database in the past will be easily reviewed on
the city scale, e.g. ‘which areas of the city are upgrading and which are
decaying’ and ‘how do new built projects complement existing build-
ings' geometry, scale and/or quality of detail’ (Parolek et al., 2008).

Third, cross-city and cross-regional comparison can also be an inter-
esting direction. The cross-regional comparison is somewhat linked to
the research area of computational geo-cultural modelling proposed by
Doersch et al., which serves to provide stylistic narratives to explore
the diverse visual geographies of our world (Doersch et al., 2012). Fol-
lowing our proposed research line, the regional differences in urban de-
sign cultures can be evaluated by comparing the aforementioned
features, whichmay provide a deeper insight to the design cultures. Re-
garding the cross-city comparison, a direct next step can be applying the
algorithms developed in the present paper to all the Chinese cities and
produce city rankings in terms of the visual environment. In this case,
the primate or the most economically developed cities may not win
over lower tier cities. We expect such comparisons to provide a more
experience-oriented and quality-of-life-oriented perspective towards
urban development, in addition to the measurement of hard numbers
such as GDP and road network density.
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