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Abstract

The method of moments is a simple but efficient method of solving the pop-

ulation balance equation which describes particle dynamics. Recently, the

moment projection method (MPM) was proposed and validated for particle

inception, coagulation, growth and, more importantly, shrinkage; here the

method is extended to include the fragmentation process. The performance

of MPM is tested for 13 different test cases for different fragmentation ker-

nels, fragment distribution functions and initial conditions. Comparisons are

made with the quadrature method of moments (QMOM), hybrid method of

moments (HMOM) and a high-precision stochastic solution calculated using

the established direct simulation algorithm (DSA) and advantages of MPM

are drawn.
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1. Introduction1

Fragmentation (also referred to as breakage) is a process by which parti-2

cles break into two or more fragments leading to an increase in the number3

of particles [1]. For this reason it plays an important role in a number of4

chemical processes [2]. In fluidised-bed combustion, the rate of fragmenta-5

tion during particle burnout influences the overall burning rate of single coal6

particles [3]. Arguably, in practical combustion systems, predicting particle7

destruction can be as important as predicting particle formation and growth.8

It is found in Ref. [4] that the inclusion of fragmentation improved model9

predictions of soot particle size distributions (PSDs) from a diesel engine.10

The evolution of the PSD with time is described by the population bal-11

ance equation (PBE) with mechanisms which modify the particles such as12

inception, coagulation (otherwise known as aggregation), growth, and shrink-13

age where particles reduce in mass and are eventually removed from the14

system [5–7]. In Ref. [8] the PBE for a particulate system undergoing frag-15

mentation is studied and it is found that the PSD obeys a first-order linear16

ordinary integro-differential equation. The complexity of the equation de-17

pends on the fragmentation kernel and fragment distribution function, and18

analytical solutions only exist for certain restrictive cases.19

A number of methods have been proposed to solve these types of equa-20

tions which can be broadly classified as: method of moments (MOM) (see,21

e.g., Refs. [2, 4–7, 9–21]), sectional method (see, e.g., Refs. [1, 9, 22–29])22

and stochastic method (see, e.g., Refs. [11, 30–35]). These methods often23

encompass a trade-off between physical detail and computational efficiency.24

In the stochastic method the particle population is represented by an en-25
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semble of stochastic particles and the particle processes are treated proba-26

bilistically [36]. The stochastic solution has been proven to converge to the27

deterministic solution of the PBE [33]. The method easily allows a highly28

detailed particle description; however, under certain conditions, the compu-29

tational time [34] and memory requirement [35] can be intractable. Sectional30

methods divide the mass range into a finite number of sections [24]. The31

PSD within each section evolves according to a ordinary differential equa-32

tion which can be solved by standard solvers (see, e.g., Refs. [25–28]). The33

computational time rapidly scales with the number of internal coordinates34

tracked and the number of sections required to achieve convergence [29].35

When the PBE is written in terms of one or two internal coordinates,36

MOM is a particularly attractive option for its computational efficiency [13,37

14]. The PBE is rewritten in terms of moments and one solves for just the38

first few moments which are usually sufficient for most practical applica-39

tions [37]. Development of MOM for the fragmentation/breakage process is40

a particularly active field of research (see, e.g., Refs. [7, 15]). In Ref. [7] the41

hybrid method of moments (HMOM) [6] is extended to model the fragmen-42

tation of soot aggregates in laminar flames. HMOM combines the numerical43

ease of the method of moments with interpolative closure (MOMIC) [37] and44

the accuracy of the direct quadrature method of moments (DQMOM) [21]45

with a source term for the smallest particles based on the negative infinity46

moment. The production of the smallest particles was assumed to be pro-47

portional to the mass lost from the large particles. Symmetric fragmentation48

was assumed where one particle fragments into two identical particles. In49

this paper we test HMOM, albeit a spherical particle description, for both50
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symmetric fragmentation and erosion distribution functions.51

Another widely used moment method that has been used to address52

breakage is the quadrature method of moments (QMOM) [17–20] where the53

PSD is approximated by a weighted summation of Dirac delta functions. The54

performance of QMOM for simultaneous aggregation and breakage problems55

with different combinations of aggregation and breakage kernels, fragment56

distribution functions and initial conditions has been investigated in Ref. [20].57

A quadrature approximation with two nodes was found to be sufficiently ac-58

curate for most cases except for symmetric fragmentation with a constant59

kernel and erosion with a size-dependent kernel. Increasing the number of60

nodes did not help in decreasing the error in some cases. However, across all61

cases aggregation was dominant. The accuracy of QMOM in treating pure62

breakage problems or where breakage is the dominant process has not been63

addressed yet. This paper will be a step in this direction.64

In Ref. [38] a finite-size domain complete set of trial functions method65

of moments (FCMOM) is proposed which uses a series of Legendre polyno-66

mials to reconstruct the PSD, thus closing the moment equations. However,67

because only a finite number of polynomials can be determined, certain val-68

ues of the reconstructed PSD can be negative [39]. An alternative method69

is the extended quadrature method of moments (EQMOM) where a set of70

non-negative continuous kernel density functions such as gamma, beta and71

lognormal functions is adopted to approximate the PSD. In terms of the re-72

constructed PSD this method can achieve very high accuracy and is able to73

handle the shrinkage problem. However, information about the shape of the74

PSD is needed a priori to select a suitable kernel density function. Both75
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FCMOM and EQMOM are focused on the reconstruction of the PSD while76

for most practical applications only the first few moments are needed.77

Recently, a moment projection method (MPM) [5] was developed to ad-78

dress the shrinkage of particles. It directly solves the moment transport79

equation and tracks the number of the smallest particles using the algo-80

rithm by Blumstein and Wheeler [40]. A similar algorithm for solving the81

Gauss-Radau quadrature is given by Golub [41, 42]. In both algorithms the82

derivation is given in terms of orthogonal polynomials which is straightfor-83

ward and can be easily modified to treat the cases in which zero, one or two84

particle mass classes are fixed. The ability of MPM to simulate shrinkage85

problems was investigated and the advantages of the method was highlighted.86

To be able to model fragmentation accurately one has to be able to model the87

number of the smallest particles accurately which are formed under strong88

fragmentation. Therefore, fragmentation is a natural extension of MPM.89

For quadrature-based moment methods a very important consideration90

is the realisability of the moment set [43]. Realisability is related to the91

existence of an underlying PSD that corresponds to a set of moments. The92

moments are linked to each other under complex mathematical relationships.93

If the numerical schemes do not preserve these relationships the set of mo-94

ments can be unrealisable, i.e., no PSD can be described by such moments95

or they lead to unphysical distributions (e.g. negative weights and abscis-96

sas). The generation of unrealizable moments usually arises from the spatial97

transportation of moments [44]. Even if a suitable closure is established for98

the moment transport equation, numerical advection and diffusion schemes99

can still lead to unrealizable moment sets. This realisability problem can be100
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avoided by properly designing the numerical schemes. For example, recently101

in Ref. [45] a high-order-volume-schemes for quadrature-based moment meth-102

ods is introduced to guarantee the realisability of moments. The idea of the103

discretization scheme is to construct the moment flux terms through inter-104

polation of the quadrature weights rather than the moments at the faces of105

the cells. By doing this the realisability problem can be prevented. Another106

scheme developed to preserve the realisability of moments can be found in107

Ref. [46] where the moments are not transported directly. Instead they use108

the canonical moments which are easy to control and guarantee the moment109

vector to stay in the moment space by transporting them separately. In light110

of realisability, here we restrict our attention to the moment closure method.111

The aim is to investigate the MPM error in isolation. Therefore we are simu-112

lating a spatially homogenous PBE with no moment advection and diffusion113

terms. The moments always remain realizable during the whole simulation114

time span. While for the application of MPM to spatially inhomogeneous115

systems, moments realizability can be guranteed by adopting the realizable116

finite-volume methods.117

In this work, different types of fragmentation kernels, fragment distribu-118

tion functions and initial conditions are imposed and the results are compared119

with QMOM, HMOM and a high-precision stochastic solution. Both QMOM120

and HMOM have the advantages of mathematical simplicity, numerical ro-121

bustness and ease of implementation. The stochastic solution was obtained122

with 131,072 stochastic particles in a single run and is used as “exact” so-123

lution in this work. The paper is organized as follows. Section 2 presents124

the moment of methods for solving the PBE as well as the mathematical for-125
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mulation and numerical algorithm of MPM. In Section 3 the performance of126

MPM is tested for different test cases and in Section 4 principal conclusions127

are summarised.128

2. Moment methods for population balance equations129

2.1. Population balance equation130

A spatially homogeneous population of particles with a discrete-mass dis-131

tribution is considered in this work. The smallest particles have mass m1 and132

particles in the mass class i have mass mi = im1. The PBE governing the133

evolution of the distribution can be written as:134

dN(i, t)

dt
= R(i, t)+W (i, t)+S(i, t)+G(i, t)+F (i, t), i = 1, 2, . . . ,∞, (1)

where N(i, t) is the number of particles in the mass class i at time t which135

we will refer to as Ni from hereon. This is known as a particle number136

representation of the PSD. R, W , S, G and F are the inception, growth,137

shrinkage, coagulation and fragmentation terms, respectively. The specific138

functional forms used in this work are as follows:139
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R(i = 1, t) = Im1 , (2)

W (i, t) = KG(i− δ)Ni−δ −KG(i)Ni, (3)

S(i, t) = KSk(i+ δ)Ni+δ −KSk(i)Ni, (4)

G(i, t) =
1

2

i∑
j=1

KCg(j, i− j)NjNi−j −
∞∑
j=1

KCg(i, j)NiNj, (5)

F (i, t) =
∞∑
j=i

KFg(j)P (i|j)Nj −KFg(i)Ni, (6)

where Im1 is the inception kernel which describes the rate of formation of the140

smallest particles. KG and KSk are the growth and shrinkage kernels, respec-141

tively, where δ refers to the mass change in a single growth or shrinkage event142

which can be different. KCg is the coagulation kernel which describes the rate143

at which particles collide and stick together. Lastly, KFg is the fragmenta-144

tion kernel which describes the frequency with which particles fragment and145

P (i|j) is the fragment distribution function which represents the number of146

particles of mass class i formed by the fragmentation of particles of mass147

class j.148

The choice of fragmentation kernel and fragment distribution function149

are important because for certain combinations, “shattering” may occur [47,150

48]. In a process analogous to gelation (but in the oppposite sense), a finite151

fraction of the mass shatters into an infinite number of particles of zero mass152

and for this reason mass is not conserved [49]. This usually occurs when153

the fragmentation rate increases as the particles become smaller. Note that154

self-similar solutions where the PSD does not vary with time are of special155

interest as the PSD is independent of initial conditions and most experimental156
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systems evolve to the point where this behaviour is reached [50]. It is found157

in Ref. [51] that a self-similar PSD is achieved when the fragmentation kernel158

is of the power type and the fragment distribution function depends on the159

parent-daughter particle mass ratio.160

Many different functional forms of the fragment distribution function have161

been proposed, however some physical constraints must be fulfilled [51, 52]:162

P (i|j) = 0, for i > j, (7)

j∑
i=1

iP (i|j) = j. (8)

The first equation states that fragmentation can only lead to the formation163

of particles of mass class i smaller than the parent particle mass class j,164

while the second equation is the conservation of mass where the total mass165

class of particles resulting from the breakup of a particle of mass class j166

must be equal to j. In this work, we only consider binary fragmentation and167

the fragment distribution functions are reported in Table 1; a discussion of168

multiple fragmentation can be found in Ref. [51]. Symmetric fragmentation169

leads to the formation of two equal mass fragments, whereas in the case of170

erosion one fragment is of the smallest mass class i = 1 while the other is of171

the mass class i = j − 1.172

2.2. Moment equations173

As mentioned earlier, an efficient approach for solving the PBE is MOM174

where the PBE is transformed into a set of moment equations and integral175

quantities such as the total particle number and mass are computed. This is176

achieved by applying the definition, moment of order k of the PSD177
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Table 1: Fragmentation distribution functions.

Mechanism P (i|j)

Symmetric fragmentation

2 if i = j/2

0 otherwise

Erosion


1 if i = 1

1 if i = j − 1

0 otherwise

Mk =
∞∑
i=1

ikNi, k = 0, 1, 2, . . . , (9)

to Eq. (1), leading to178

dMk

dt
= Rk(M) +Gk(M) +Wk(M) + Sk(M,N1) + Fk(M,N1), (10)

where179
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Rk(M) = mk
1Im1 , (11)

Gk(M) =
1

2

∞∑
i=1

i−1∑
j=1

ikKCg(j, i− j)NjNi−j −
∞∑
i=1

∞∑
j=1

ikKCg(i, j)NiNj,

(12)

Wk(M) =
∞∑
i=1

KG(i− δ)ikNi−δ −
∞∑
i=1

KG(i)ikNi, (13)

Sk(M,N1) =
∞∑
i=1

KSk(i+ δ)ikNi+δ −
∞∑
i=1

KSk(i)ikNi, (14)

Fk(M,N1) =
∞∑
j=1

j∑
i=1

KFg(j)ikP (i|j)Nj −
∞∑
i=1

KFg(i)ikNi. (15)

Evaluation of the moment source terms depends on the kernel function K.180

It is assumed that when the smallest particles shrink they are removed from181

the system, while for the fragmentation process the smallest particles are182

unbreakable. Depending on the specific kernels used the shrinkage and frag-183

mentation source terms Sk and Fk can depend on the number of the smallest184

particles N1. These will be specified later. Where realistic kernels are used,185

fractional- or even negative-order moments are encountered [14]. Therefore,186

the mathematical difficulty of MOM lies in obtaining closure for these mo-187

ment source terms using a finite set of moments. This requires either a priori188

assumptions about the shape of the PSD or a suitable closure scheme. One189

of the more widely used closure methods is MOMIC [37] where closure is190

accomplished by Langrange polynomial interpolation of the logarithm of the191

whole-order moments whose values are available at each integration step of192

Eq. (10). By separating interpolation for positive- and negative-order mo-193
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ments, MOMIC shows very high accuracy in the treatment of mono-modal194

PSDs undergoing growth and coagulation and satisfactory accuracy for bi-195

modal PSDs formed under persistent nucleation [6]. However, MOMIC can-196

not handle shrinkage as it does not track N1. Likewise, it cannot rigorously197

treat fragmentation especially erosion where a large number of particles ac-198

cumulate in the smallest particle mass class.199

2.3. Moment projection method200

The mathematical formulation and numerical algorithm of MPM have201

already been presented in Ref. [5], however, pertinent details are repeated202

here for the reader’s convenience. In MPM, we approximate the true PSD203

by assuming that all particles are distributed into a finite number of particle204

mass classes. The k-th order moment of the approximated PSD can then be205

expressed as:206

M̃k = αk1Ñα1 +

Np∑
j=2

αkj Ñαj , k = 0, . . . , 2Np − 2, (16)

where αj is the particle mass, Ñαj is the number of particles of the mass207

αj, and Np is the number of particle masses used to represent the PSD. The208

symbol “∼” is used to indicate approximations of the corresponding quantity209

from the true PSD. αj and Ñαj are chosen such that the empirical moments210

are equal to the moments from the true PSD:211

M̃k = Mk. (17)

Applying Eq. (17) to Eq. (10), we obtain:212
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dM̃k

dt
= Rk(M̃) +Gk(M̃) +Wk(M̃) + Sk(M̃,N1) + Fk(M̃,N1). (18)

To evaluate the boundary flux term N1 present in the shrinkage and frag-213

mentation terms, we fix the first particle mass to be equal to the smallest214

particle mass of the true PSD: α1 = m1. Therefore, Ñα1 is an approximation215

of the number of the smallest particle which allows us to express Eq. (18) as:216

dM̃k

dt
= Rk(M̃) +Gk(M̃) +Wk(M̃) + Sk(M̃, Ñα1) + Fk(M̃, Ñα1). (19)

As can be seen from Eq. (19), M̃k is directly evaluated from the moment217

transport equation which allows us to take advantage of MOMIC when real-218

istic kernels are used. However, this introduces an interpolation error. The219

aim here is to investigate the MPM error in isolation, therefore constant220

kernels are adopted:221

Rk(M̃) = mk
1Im1 , k = 0, . . . , 2Np − 2, (20)

Gk(M̃) =



−1
2
KCgM̃

2
0 , k = 0,

0, k = 1,

1
2
KCg

k−1∑
r=1

k
r

 M̃rM̃k−r, k = 2, . . . , 2Np − 2,

(21)

Wk(M̃) =


0, k = 0,

KG

k∑
r=1

k
r

 δrM̃k−r, k = 1, . . . , 2Np − 2,
(22)
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Sk(M̃, Ñα1) =


−KSkÑα1 , k = 0,

KSk

k∑
r=1

k
r

 (−δ)rM̃k−r, k = 2, . . . , 2Np − 2.
(23)

The fragmentation source term depends on the fragment distribution222

function. For symmetric fragmentation it is:223

Fk(M̃, Ñα1) =


KFg(M̃0 − Ñα1), k = 0,

0, k = 1,

KFg(21−k − 1)(M̃k − αk1Ñα1), k = 2, . . . , 2Np − 2,

(24)

and for erosion:224

Fk(M̃, Ñα1) =



KFg(M̃0 − Ñα1), k = 0

0, k = 1,

KFgα
k
1M̃0 +KFg

k∑
r=1

k
r

 (−α1)rM̃k−r, k = 2, . . . , 2Np − 2.

(25)

In Ref. [30] a fragmentation kernel with a linear dependence on particle225

mass is used to study the wet granulation of particles. Since the fragmen-226

tation moment source term can be evaluated based on the whole-moments,227

we also investigate the same fragmentation kernel which for symmetric frag-228

mentation is:229
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Fk(M̃, Ñα1) =


KFg(M̃1 − α1Ñα1), k = 0,

0, k = 1,

KFg(21−k − 1)(M̃k+1 − αk+1
1 Ñα1), k = 2, . . . , 2Np − 2,

(26)

and for erosion:230

Fk(M̃, Ñα1) =



KFg(M̃1 − α1Ñα1), k = 0,

0, k = 1,

KFgα
k
1M̃1 +KFg

k∑
r=1

k
r

 (−α1)rM̃k−r+1, k = 2, . . . , 2Np − 2.

(27)

The challenge now is determining αj and Ñαj such that Eq. (17) is true231

while fulfilling the requirement that Ñα1 u N1 to close the moment source232

terms due to shrinkage and fragmentation. This can be achieved using the233

Blumstein and Wheeler algorithm [40] which can be found in Appendix 2.234

The numerical procedure of MPM is summarized in Algorithm 1.235
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Algorithm 1: Moment projection method algorithm.
Input: Moments of the PSD Mk(t0) for k = 0, . . . , 2Np − 2 or the PSD itself

N(i, t0) for i = 1, . . . ,∞ at initial time t0; final time tf.

Output: Empirical moments of the PSD M̃k(tf) for k = 0, . . . , 2Np − 2 at final

time tf where Np is the number of particle masses used to

approximate the PSD.

Calculate the moments of the true PSD using Eq. (9):

Mk(t0) =

∞∑
i=1

ikN(i, t0), k = 0, . . . , 2Np − 2.

For M̃k = Mk, solve Eq. (16) for Ñα1
(α1 is fixed) and αj and Ñαj

(j = 2, . . . , Np) using Algorithm 2:

M̃k(t0) = αk1Ñα1
(t0) +

Np∑
j=2

αkj Ñαj
(t0), k = 0, . . . , 2Np − 2.

t←− t0, M̃k(t)←− M̃k(t0);

while t < tf do

Integrate Eq. (19) over the time interval [ti, ti + h] using a fouth-order

Runge-Kutta method:

dM̃k

dt
= Rk(M̃) +Gk(M̃) +Wk(M̃) + Sk(M̃, Ñα1

) + Fk(M̃, Ñα1
)

with initial condition:  M̃k(ti)

Ñα1
(ti)

 =

 M̃k,i

Ñα1,i

 ,

where Rk(M̃), Gk(M̃), Wk(M̃) and Sk(M̃, Ñα1
) are given by Eqs. (20),

(21), (22) and (23), respectively. The form of Fk(M̃, Ñα1
) depends on the

fragmentation kernel and fragment distribution function as given by

Eqs. (24–27).

Use Blumstein algorithm to update αj and Ñαj
, and assign solution at

ti+1 = ti + h:  M̃k,i+1

Ñα1,i+1

←
 M̃k(ti + h)

Ñα1(ti + h)

 .

i←− i+ 1;

236
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3. Numerical results237

As the focus of this paper is to test MPM for the process of fragmentation,238

we devise a number of test cases which can be classified into the following239

three categories: (1) pure fragmentation, (2) simultaneous coagulation and240

fragmentation, and (3) all particle processes combined (inception, growth,241

coagulation, shrinkage and fragmentation). It is assumed that the smallest242

particles are unbreakable, i.e., KFg(i = 1) = 0. Log-normal, unimodal and243

parabolic PSDs are supplied as the initial condition.244

Numerical results are compared to those from HMOM, QMOM and a245

high-precision stochastic solution calculated using the direct simulation al-246

gorithm (DSA). HMOM was originally developed for bivariate PBEs [6, 7].247

We modify this method so that it is applicable to monovariate PBEs. Details248

on the modifications made, with a focus on the fragmentation process, can249

be found in Appendix B.250

3.1. Pure fragmentation251

The fragmentation kernels, fragment distribution functions and initial252

conditions used to test pure fragmentation are reported in Table 2.253

For Case 1 particles undergo symmetric fragmentation with a constant254

kernel; a log-normal distribution is supplied as the initial condition. The255

moment transport equation with the fragmentation moment source term in256

Eq. (24) is solved. The particle masses αj and the corresponding number257

of particles Ñαj describing the evolution of the moments of the PSD are258

computed using MPM and are shown in Fig. 1. Four particle masses are259

used to approximate the PSD. αj (j = 2, 3, 4) decrease as particles fragment260
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Table 2: Cases used for the comparison of pure fragmentation.

Case KFg(i) P (i|j) Ni(t = 0)

1

 0 i = 1

20 i > 1

Symmetric

fragmentation

Ni = 105 exp(−(log(2i−1)− log(32))2/0.05),

i = 1, . . . , 10

2

 0 i = 1

2i i > 1
Erosion Ni = 100, i = 30

3

 0 i = 1

0.2i i > 1

Symmetric

fragmentation

Ni = 105 exp(−(log(2i−1)− log(16))2/0.05),

i = 1, . . . , 10

4

 0 i = 1

0.2i i > 1

Symmetric

fragmentation
Ni = 10000, i = 256

5

 0 i = 1

2 i > 1
Erosion Ni = 300i− 10i2, i = 1, . . . , 30

6

 0 i = 1

2 i > 1
Erosion

Ni = 100 exp(−(log(i)− log(25))2/0.05),

i = 1, . . . , 100

7

 0 i = 1

2i i > 1
Erosion

Ni = 100 exp(−(log(i)− log(25))2/0.05),

i = 1, . . . , 100

to form increasingly smaller particles. The number of particles of the largest261

mass Ñα4 decreases leading to an initial increase in Ñα2 and Ñα3 before also262

decreasing. Ñα1 increases and shows an asymptote at around N = 3.0× 106
263

as particles of the smallest mass m1 are formed which are assumed to not be264

able to fragment further.265

To assess the accuracy of the moments calculated using MPM the follow-266

ing relative error metric is used:267
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Figure 1: Evolution of the particle mass αj (left panel) and the corresponding number of

particles Nαj
(right panel) obtained using MPM for case 1.

Mk,error =
|M̃k −Mk|

Mk

, (28)

where Mk is the k-th order moment from a high-precision stochastic solution.268

Figure 2 shows the relative moment errors computed using MPM with Np = 4269

for case 1. Mk,error shows cusp points when the function (M̃k −Mk) changes270

sign which was also observed in Ref. [20] for QMOM. In general, MPM shows271

very high accuracy. Although the relative errors in the higher-order moments272

(k = 5, 6) show an overall increase, the errors at t = 0.8 s is at most 10−4.273

By contrast, the relative errors in the lower-order moments (k = 0, 2) show274

an overall decrease. Note that as mass is conserved in MPM the errors in275

the first-order moment (total particle mass) is 0.276

To investigate the sensitivity of the results to the number of particle277

masses, Np, moments are computed using MPM with Np = 3, 4 and 5 and278

compared with the stochastic solution. Figure 3 shows that for case 1 at279

least four particle masses (dotted line) are required for there to be no obvious280
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Figure 2: Error in the k-th order moment obtained using MPM relative to a high-

precision stochastic solution for case 1.

discrepancy in M̃0. Interestingly, M̃0 at longer residence times displays little281

sensitivity to Np. The time-averaged (t = 0 to 0.8 s) relative moment errors,282

Mk,error, as a function of Np and k for case 1 are listed in Table 3. As expected,283

higher accuracy is generally observed when more particle masses are used:284

there is about an order-of-magnitude decrease in the errors in the lower order285

moments (k = 0, 2, 3) when Np is increased from 3 to 5. However, this is286

not the case for the higher order moments (k = 4, 5, 6) where there is in fact287

an increase in errors when Np is increased from 4 to 5.288

For Case 2 particles undergo erosion where the parent particle mass class289

is reduced by one and a particle of the smallest mass class is formed. The290

20



0 0.2 0.4 0.6 0.8
0

0.7

1.4

2.1

2.8

3.5
x 10

6

Time (s)

M
0 (

d
im

en
si

o
n

le
ss

)

 

 

Stochastic
MPM with N

p
 = 3

MPM with N
p
 = 4

MPM with N
p
 = 5

Figure 3: Sensitivity of the zeroth moment M0 to the number of particle masses Np

obtained using MPM for case 1. The stochastic solution (continuous line) is

shown as a point of reference.

rate is controlled by a mass-dependent kernel and a unimodal distribution is291

supplied as the initial condition. The moment transport equation with the292

fragmentation moment source term in Eq. (27) is solved. The time evolution293

of αj and Ñαj obtained using MPM is shown in Fig. 4. At t = 0, the third294

and fourth particle masses are positioned on either side of the particles at295

mass class i = 30. As these particles reduce in mass, αj (j = 2, 3, 4) all move296

towards the position of the new parent particle class to better represent these297

particles. This is reflected as an increase in α2 (and α3) and a decrease in298

α4. The evolution of Ñαj is similar to that of case 1.299
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Table 3: Average error in the k-th order moment obtained using MPM relative to a high-

precision stochastic solution for different particle masses Np for case 1.

k Np = 3 Np = 4 Np = 5

0 3.9× 10−2 1.3× 10−2 8.2× 10−3

1 0 0 0

2 8.8× 10−3 2.3× 10−3 9.7× 10−4

3 2.3× 10−3 5.2× 10−4 2.1× 10−4

4 4.0× 10−4 9.6× 10−5 2.3× 10−4

5 - 1.6× 10−5 2.8× 10−4

6 - 1.2× 10−6 3.1× 10−4

7 - - 3.1× 10−4

8 - - 3.2× 10−4
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Figure 4: Evolution of the particle mass αj (left panel) and the corresponding number of

particles Nαj (right panel) computed using MPM for case 2.

Figure 5 shows the sensitivity of M0 to the number of particle masses300

computed using MPM for case 2. It can be seen that there is no discernable301
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Figure 5: Sensitivity of the zeroth moment M0 to the number of particle masses Np

obtained using MPM for case 2. The stochastic solution (continuous line) is

shown as a point of reference.

difference between MPM and the stochastic method across all particle masses.302

This is due to the mass-dependent kernel used where the only source of error303

in the fragmentation moment source term Fk(M̃, Ñα1) is in Ñα1 (see Eqs. (26)304

and (27) for k = 0) as opposed to both M̃0 and Ñα1 for mass-independent305

kernels (see Eqs. (24) and (25) for k = 0) such as in case 1. The time-306

averaged relative errors (t = 0 to 2 s) are listed in Table 4. Overall, the307

errors are lower than in case 1 but the observations that can be made are308

similar. Note that each increment in the number of particle masses requires309

the solution of two extra moments (See Eq. (16)). Smaller tolerances have to310
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Table 4: Average error in the k-th order moment obtained using MPM relative to a high-

precision stochastic solution for different particle masses Np for case 2.

k Np = 3 Np = 4 Np = 5

0 2.7× 10−4 1.1× 10−4 1.5× 10−5

1 0 0 0

2 3.6× 10−6 8.4× 10−8 5.9× 10−8

3 1.9× 10−6 8.3× 10−8 6.7× 10−8

4 1.8× 10−6 5.8× 10−8 9.3× 10−8

5 - 5.4× 10−8 9.6× 10−8

6 - 5.3× 10−8 9.4× 10−8

7 - - 8.8× 10−8

8 - - 8.1× 10−8

be used for the time integration of the set of ODEs and increases the stiffness311

of the eigenvalue-eigenvector problem solved via the Blumstein and Wheeler312

algorithm, thus leading to a higher computational cost. For this reason, four313

particle masses will be used in the rest of this paper.314

Case 3 is similar to case 2 except that a mass-dependent kernel is used.315

The moment transport equation with the fragmentation moment source term316

in Eq. (26) is solved. We now compare MPM to other moment methods:317

HMOM and QMOM with four nodes. Figure 6 shows a comparison of M0 be-318

tween MPM, HMOM and QMOM with the stochastic solution as a reference.319

There is an excellent agreement between MPM and the stochastic method320

apart from a slight underprediction at intermediate times. Both HMOM321

and QMOM overestimate M0 but the performance by HMOM is worse. It322
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Figure 6: Comparison of the zeroth moment M0 between MPM (four particle masses),

QMOM (four nodes), HMOM and the stochastic solution for case 3.

was initially puzzling but it became clear to us that in HMOM particles are323

represented as either small or large particles which is a coarser assumption324

than the four particles masses or nodes used in MPM and QMOM, respec-325

tively. Second, it is assumed that the rate at which the smallest particles are326

formed is proportional to the overall fragmentation rate [7]. However, there327

exist situations where particles fragment and the smallest particles are not328

formed, for example, in symmetric fragmentation. Although QMOM incurs329

some errors, when particles are small enough, it implicitly tracks the number330

of the smallest particles which keeps its accuracy high. The results for case 4331
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where a unimodal distribution is supplied as the initial condition is similar332

(see Fig. 7).
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Figure 7: Comparison of the zeroth moment M0 between MPM (four particle masses),

QMOM (four nodes), HMOM and the stochastic solution for case 4.

333

For case 5, particles undergo erosion with a constant kernel and the mo-334

ment transport equation with the fragmentation source term in Eq. (25) is335

solved. Unlike case 2 where there are only particles at mass class i = 30 at336

t = 0 s, the parabolic distribution for this case has particles in the small-337

est mass class. Therefore, the ability to accurately track the number of the338

smallest particles is particularly important. Both HMOM and QMOM are339

not able to even capture the steady-state M0 at t = 20 s as shown in Fig. 8.340
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Figure 8: Comparison of the zeroth moment M0 between MPM (four particle masses),

QMOM (four nodes), HMOM and the stochastic solution for case 5.

For cases 6 and 7, particles undergo erosion and a log-normal distribution341

is supplied as the initial condition. A constant fragmentation kernel is used342

in case 6 while a mass-dependent fragmentation kernel is used in case 7.343

M0 computed using the different methods for cases 6 and 7 are shown in344

Figs. 9 and 10, respectively. The results for case 6 is similar to case 5345

where HMOM overpredicts and QMOM underpredicts M0. When a mass-346

dependent fragmentation kernel is used in Case 7, the agreement is much347

improved. As highlighted before, one reason for the improved performance is348

that when the mass-dependent kernel is used, the source term for the zeroth-349
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Figure 9: Comparison of the zeroth moment M0 between MPM (four particle masses),

QMOM (four nodes), HMOM and the stochastic solution for case 6.

order moment is governed by the total particle mass which is insensitive to350

the number of the smallest particles, thus decreasing the errors in computing351

the moments. In both cases, MPM exhibits the highest accuracy regardless352

of the fragmentation kernel used.353

Based on the above results, the following observations can be made: MPM354

is the most accurate amongst the different method of moments studied for355

the pure fragmentation process. Across all of these test cases, the agreement356

betweenM0 obtained using MPM and the stochastic method is excellent. The357

source term developed in HMOM tends to overestimate the formation of the358
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Figure 10: Comparison of the zeroth moment M0 between MPM (four particle masses),

QMOM (four nodes), HMOM and the stochastic solution for case 7.

smallest particles. Because QMOM does not explicitly track the number of359

the smallest particles, the performance of QMOM is worse for erosion than360

for symmetric fragmentation.361

3.2. Simultaneous coagulation and fragmentation362

In this section, the performance of MPM is tested for simultaneous co-363

agulation and fragmentation processes. Depending on the coagulation and364

fragmentation kernels used, the PSD will evolve differently and result in dif-365

ferent total particle numbers at steady state. Four cases are developed to366

investigate the competition between these two processes as shown in Table 5.367
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The fragmentation kernel is systematically varied while the coagulation ker-

Table 5: Cases used for the comparison of simultaneous coagulation and fragmentation.

Case KFg(i)

8

 0 i = 1

0.02 i > 1

9

 0 i = 1

200 i > 1

10

 0 i = 1

0.02i i > 1

11

 0 i = 1

200i i > 1

Note: KCg = 0.02 s−1, P (i|j) = erosion, N30(t = 0) = 100.

368

nel is left unchanged. For all of these cases, fragmentation takes the form369

of erosion and the unimodal distribution in case 2 is supplied as the initial370

condition.371

For case 8, the coagulation and fragmentation kernels are identical. M0372

computed using the different methods are shown in the left panel of Fig. 11.373

The process is dominated by coagulation as shown by the decrease in M0.374

Therefore, very few particles accumulate in the first particle mass class as375

these particles tend to collide with each other to form particles of larger376

mass. Since constant kernels are used, no closure problem is present in the377

coagulation moment equation and all the methods generate almost the same378

results as the stochastic method. Also shown in Fig. 11 (right panel) are the379

corresponding results for case 9 where the fragmentation kernel is four orders-380
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Figure 11: Comparison of the zeroth moment M0 between MPM (four particle masses),

QMOM (four nodes), HMOM and the stochastic method for case 8 (left panel)

and case 9 (right panel).

of-magnitude larger than the coagulation kernel. The process is dominated381

by fragmentation and the accumulation of the smallest particles plays an im-382

portant role: HMOM overestimates the formation of the smallest particles,383

thus overestimating M0; MPM shows the highest accuracy while slight dis-384

crepancy is observed between the QMOM and stochastic solutions. Cases 10385

and 11 are similar to cases 8 and 9 except that mass-dependent fragmentation386

kernels are used. Similar conclusions can be drawn from Fig. 12.387

3.3. Combined processes388

In this section, MPM is tested against QMOM, HMOM and the stochas-389

tic method for the combined processes of inception, growth, coagulation,390

shrinkage and fragmentation. The specifics of the two test cases are shown391

in Table 6. The total particle number and mass of particles computed using392

the different methods for cases 12 and 13 are shown in Figs. 13 and 14, re-393

spectively. It can be seen that MPM exhibits a very high accuracy that was394
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Figure 12: Comparison of the zeroth moment M0 between MPM (four particle masses),

QMOM (four nodes), HMOM and the stochastic method for case 10 (left

panel) and case 11 (right panel).

Table 6: Cases used for the comparison of combined processes.

Case KFg(i) Ni(t = 0)

12

 0 i = 1

2× 10−5i i > 1

100 exp(−(log(i)− log(25))2/0.05),

i = 1, . . . , 100

13

 0 i = 1

2× 10−5 i > 1
Ni = 1000, i = 50

Note: Im1 = 100 s−1, KG = 20 s−1, KCg = 2 × 10−5 s−1, KSk = 30 s−1 and

P (i|j) = erosion.

also observed for pure fragmentation and simultaneous coagulation and frag-395

mentation. M0 decreases mainly due to the shrinkage of particles—rather396

than coagulation—as evidenced by the corresponding decrease in M1. The397

shrinkage process leads to a zeroth order moment equation containing a term398

corresponding to the loss of particles of the smallest size [12, 39]. In order to399
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Figure 13: Comparison of the zeroth order moment M0 (left panel) and the first order

moment M1 (right panel) between MPM (four particle masses), QMOM (four

nodes), HMOM and the stochastic method for case 12.
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Figure 14: Comparison of the zeroth order moment M0 (left panel) and the first order

moment M1 (right panel) between MPM (four particle masses), QMOM (four

nodes), HMOM and the stochastic method for case 13.

evaluate this term, the value of the PSD at the smallest internal coordinate is400

required which is not available in QMOM. As expected, Figs. 13 and 14 show401

that QMOM fails to predict the evolution of M0 and therefore M1. Although402

HMOM is able to predict the consumption of particles, it shows a significant403
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discrepancy compared with the stochastic solution.404
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4. Conclusion405

In this paper, the moment projection method (MPM) was extended to406

include the fragmentation process. MPM was tested against cases involving407

(1) pure fragmentation, (2) simultaneous coagulation and fragmentation, and408

(3) combined processes of inception, growth, coagulation, shrinkage and frag-409

mentation with different fragmentation kernels, fragment distribution func-410

tions and initial conditions. The numerical results were compared against411

the hybrid method of moments (HMOM) and the quadrature method of412

moments (QMOM) with four nodes and a high-precision stochastic solution413

calculated using the direct simulation algorithm (DSA).414

By fixing the first particle mass α1 to be equal to the smallest particle415

mass m1, the evolution of the smallest particles could be tracked in MPM416

with a high accuracy. The accuracy was shown to generally improve with the417

number of particle masses, Np, with Np = 4 being the best compromise be-418

tween accuracy and computational efficiency. In all the test cases considered419

in this work, MPM is capable of accurately predicting the time evolution of420

the moments while the agreement with HMOM and QMOM tend to be less421

good when fragmentation dominates. Future work includes application of422

MPM to real particle processes such as soot formation in flames. It remains423

to be seen how effective is MPM for more complicated PBEs with additive424

kernels and/or free-molecular Brownian kernel.425
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Nomenclature429

Upper-case Roman

D Eigenvectors of matrix P

F Source term due to fragmentation

G Source term due to coagulation

Im1 Inception rate of particles of the smallest mass m1

KCg Coagulation kernel

KFg Fragmentation kernel

KG Growth kernel

KSk Shrinkage kernel

M Moment

N Number

P Symmetric tridiagonal matrix as a function of recursion coeffi-

cients a and b

P Fragment distribution function

R Source term due to inception

S Source term due to shrinkage

V Eigenvalues of matrix P

W Source term due to growth

Z Matrix with components Z which are a function of the moments

M

430
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Lower-case Roman

a, b Recursion coefficients

h Time interval

i particle mass class

m Mass

r Recursive function

t Time

w weight

Greek

α Particle mass

δ Particle mass change in a growth or shrinkage process

Subscripts

f Final

L Large

p Particle

0 Initial or zero

1 Smallest particle mass class

Symbols

431
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x̃ Approximation of x

b̂ Integral of fragmentation distribution function

Abbreviations

DQMOM Direct quadrature method of moments

DSA Direct simulation algorithm

EQMOM Extended quadrature method of moments

FCMOM Finite-size domain complete set of trial functionss method of mo-

ments

HMOM Hybrid method of moments

MOM Method of moments

MOMIC Method of moments with interpolative closure

MPM Moment projection method

ODE Ordinary differential equation

PBE Population balance equation

PSD Particle size distribution

QMOM Quadrature method of moments

432

Appendix A. Blumstein-Wheeler algorithm433

This algorithm is used to determine the particle masses and the numbers434

used to approximate the PSD from the empirical moments. The algorithm is435

implemented in Matlab and makes use of the eig function to determine the436

eigenvalues and eigenvectors.437
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Algorithm 2: Blumstein-Wheeler algorithm.

Input: The empirical moments M̃k for k = 0, 1, . . . , 2Np − 2.

Output: The particle masses αj and the corresponding number of particles Ñαj for

j = 1, 2, . . . , Np.

Create a Np × 2Np matrix Z with zeros in all elements.

Determine the elements of the first row of matrix Z: Z1,l = M̃l−1 for l = 1, . . . , 2Np − 1.

For a1 = M̃1/M̃0 and b1 = 0, determine the recursion coefficients ak and bk:

for k = 2 to Np do

for l = k to 2Np − 1 do
The elements of Z must satisfy the following recursion relation:

Zk,l = Zk−1,l+1 − ak−1Zk−1,l − bk−1Zk−1,l;

ak =
Zk,k+1

Zk,k
−

Zk−1,k

Zk−1,k−1
; bk =

Zk,k

Zk−1,k−1
.

For r1 = 1/(m1 − a1) where m1 is the smallest particle mass, determine the recursion

function:

rk = 1/(m1 − ak − bkrk−1), k = 2, . . . , Np − 1.

As we fix the smallest particle mass, replace aNp with:

aNp = m1 − bNprNp−1.

Construct a symmetric tridiagonal matrix P with ak as the diagonal and the square roots of

bk as the co-diagonal:

P =



a1 −
√
b2 0 · · · 0

−
√
b2 a2 −

√
b3 · · · 0

0 −
√
b3 a3 · · · 0

...
...

...
. . .

...

0 0 0 · · · aNp


.

Solve for the eigenvalues V and eigenvectors D of matrix P:

[
V,D

]
= eig(P).

Solve for αj and Ñαj :

αj = V(j, j), Ñαj = M̃0D(1, j)2.

438
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Appendix B. Hybrid method of moments439

The hybrid method of moments (HMOM) was originally developed for440

bivariate population balance equations (PBEs) based on particle volume and441

surface area [6, 7]. Here we revise the method so that it is applicable to442

monovariate PBEs. Below is a brief description of HMOM based on particle443

mass for symmetric fragmentation with a constant kernel.444

Following the idea in Ref. [6], the particles are discretised into two modes:445

particles of the smallest mass class i0 and particles of the large mass class iL.446

The moments can then be represented as:447

Mk = Ni0i
k
0 +NiLi

k
L, (B.1)

where Ni0 and NiL are the number of particles of mass i0 and iL, respec-448

tively. The fragmentation moment source term for symmetric fragmentation449

with a constant kernel (Eq. (24)) can then be written as:450

dMk

dt
=


KFgNiL , k = 0,

0, k = 1,

(21−k − 1)KFgi
k
LNiL , k > 1.

(B.2)

The source term for Ni0 is given by the negative infinity order moments:451

dNi0

dt
= lim

k→−∞

dMk/dt

ik0
. (B.3)

Applying Eq. (B.3) to Eq. (6) for symmetric fragmentation, we obtain:452

dNi0

dt
= 2KFgN2i0 . (B.4)
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The only unknown term N2i0 corresponds to the intermodal transfer of453

particles from the second mode to the first during the fragmentation pro-454

cess. To close this term, in Ref. [6] it is assumed that the rate of transfer455

is proportional to the overall fragmentation rate with a coefficient equal to456

the mass ratio between the two modes i0/iL. As a result, Eq. (B.4) can be457

transformed into:458

dNi0

dt
=

2i20
i2L
KFgNiL . (B.5)

assuming the remaining two quantities in Eq. (B.1) are obtained by in-459

verting the system with two known moments:460

NiL = M0 −Ni0 , (B.6)

and461

iL =
M1 −Ni0i0

NiL

. (B.7)

Algorithm 3 describes the numerical procedure of HMOM for symmetric462

fragmentation with a constant kernel. HMOM for other processes (incep-463

tion, growth, shrinkage, coagulation, symmetric fragmentation with a mass-464

dependent kernel, erosion fragmentation with a constant or mass-dependent465

kernel) can be obtained in a similar way. The details are not given here for466

simplicity.467
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Algorithm 3: Hybrid method of moments algorithm.
Input: PSD supplied as initial condition N(i, t0) for i = 1, . . . ,∞ at initial

time t0; final time tf.

Output: Moments Mk(tf) for k = 0, 1, . . . at final time tf.

Calculate the moments of the true PSD using Eq. (9):

Mk(t0) =

∞∑
i=1

ikN(i, t0), k = 0, . . . , 2Np − 2.

Determine the number and mass of the large particles NiL(t0) and iL(t0),

respectively, by solving Eqs. (B.6) and (B.7).

t←− t0, Mk(t)←−Mk(t0);

while t < tf do

Integrate Eq. (B.2) for the moments Mk(t+ h) over the time interval

[t, t+ h] (using an ODE solver) with Ni0(t), NiL(t) and iL(t) as the

initial condition.

Integrate Eq. (B.5) for the number of smallest particles Ni0(t+ h) over the

time interval [t, t+ h] with Ni0(t), NiL(t) and iL(t) as the initial

condition.

Determine NiL(t+ h) using Eq. (B.6) with the obtained M0(t+ h) and

Ni0(t+ h).

Determine iL(t+ h) using Eq. (B.7) with the obtained M1(t+ h),

Ni0(t+ h) and NiL(t+ h).

Increment t←− t+ h.

468
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Appendix C. Qudrature method of moments469

The quadrature method of moments (QMOM) used in this work is similar470

to the one in Ref. [20]. This method was originally derived from continuous471

PSD approaches. Here we give a simple description about the way QMOM472

is used for fragmentation processes with a discrete-mass distribution.473

In order to apply the QMOM, the fragmentation equation must first be474

transformed into moment equation which is the same as Eq. (15):475

dMk

dt
=
∞∑
j=1

j∑
i=1

KFg(j)ikP (i|j)Nj −
∞∑
i=1

KFg(i)ikNi. (C.1)

The QMOM is based on the following quadrature approximation:476

Mk ≈
N∑
α=1

ikαwα, (C.2)

where N is the number of quadrature nodes. iα and wα are respectively the477

quadrature abscissas and weights and their values can be determined using a478

product-different (PD) algorithm from lower-order moments [53]. Applying479

Eq. (C.2) to Eq. (C.1) leads to480

dMk

dt
=

N∑
α=1

KFg(iα)wαb̂(iα)−
N∑
α=1

ikαKFg(iα)wα, (C.3)

where481

b̂(iα) =
iα∑
i=1

ikP (i|iα). (C.4)

For symmetric fragmentation482

43



b̂(iα) = 21−kikα, (C.5)

and for erosion483

b̂(iα) = 1k + (iα − 1)k. (C.6)

Note that KFg(iα = 1) = 0 since the smallest particles cannot fragment.484

Algorithm 4 describes the numerical procedure of QMOM for fragmenta-485

tion process. QMOM for other processes can be obtained in a similar way.486

The details are not given here for simplicity.487
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Algorithm 4: Quadrature method of moments algorithm.
Input: PSD supplied as initial condition N(i, t0) for i = 1, . . . ,∞ at initial

time t0; final time tf.

Output: Moments Mk(tf) for k = 0, 1, . . . at final time tf.

Calculate the moments of the true PSD using Eq. (9):

Mk(t0) =

∞∑
i=1

ikN(i, t0), k = 0, . . . , 2N − 1.

Determine the values of iα and wα (α = 1, . . . , N) based on the 2N moments

using the PD algorithm.

t←− t0, Mk(t)←−Mk(t0);

while t < tf do

Integrate Eq. (C.3) for the moments Mk(t+ h) over the time interval

[t, t+ h] (using an explicit Runge-Kuta method):

dMk

dt
=

N∑
α=1

KFg(iα)wαb̂(iα)−
N∑
α=1

ikαKFg(iα)wα,

with the quadrature abscissas and weights: iα, wα (α = 1, . . . , N).

Update iα and wα using the PD algorithm with the obtained Mk(t+ h).

Increment t←− t+ h.

488
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