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Abstract

Micro-devices are developed for uses in targeted drug delivery and microscale manipulation.
Here we numerically and analytically study two promising devices in early stages of develop-
ment. Firstly, we study Armoured Microbubbles (AMBs) which can self-propel as artificial
microswimmers or facilitate microfluidic mixing in a channel when held stationary on a wall.
Secondly, we study an artificial cilium, which due to its unique design, when placed in an
array, easily produces a metachronal wave for fluid transportation.

The Armoured Microbubble was designed by our experimental collaborators (group of
Philippe Marmottant, University Grenoble Alpes) and consists of a partial hollow sphere, in-
side which a bubble is caught. Under ultrasound the bubble oscillates, generating a streaming
flow in the surrounding fluid and producing a net force. Motivated by the AMB but consider-
ing initially a general setup, using matched asymptotic expansions we calculate the streaming
flow around a spherical body undergoing arbitrary, but known, small-amplitude surface shape
oscillations.

We then specialise back to the AMB and consider its excitation under ultrasound, using a
potential flow model with mixed boundary conditions, to identify the resonant frequencies and
mode shapes, including the dependence of the resonance on the AMB shape parameters. Re-
turning to our general streaming model, we applied the mixed boundary conditions directly to
this model, calculating the streaming around the AMB, in good agreement with experiments.
Using hydrodynamic images and linear superposition, this model was extended to incorporate
one wall, and AMB compounds.

We then study the streaming flows generated by arrays of AMBs in confined channels,
by modelling each AMB as its leading order behaviour (with corrections where required)
and superposing the individual flow fields of all the AMBs. We identified the importance
of two confining walls on the streaming flow around the array, and compared these flows to
experiments in five cases. Motivated by this setup, we theoretically considered the extension
of a two fluid interface passing through an AMB array to quickly identify good AMB arrays
for mixing.

We then studied the second artificial micro-device: an artificial cilium. Tsumori et. al. pro-
duced a cilium of PDMS containing aligned ferromagnetic filings, which beat under a rotating
magnetic field. We modelled a similar cilium but assumed paramagnetic filings, using a force
model balancing elastic, magnetic and hydrodynamic forces identifying the cilium beat pat-
tern. This agreed with our equilibrium model and asymptotic analysis. We then successfully
identified that the cilium applies the most force to the surrounding fluid at an intermediate
value of the two dimensionless numbers quantifying the dynamics.
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The behaviour of engineered microscopic actuators and microswimmers, whose size is of
the order of 1 µm-1000 µm, is the focus of this thesis. The long-term goal of microdevice
development is medical equipment, in the form of micro-diagnostic appliances and also tools
used for targetted drug delivery, [2, 3] as well as for biodetoxification [4]. In the short-term, the
aim is to develop efficient designs for microfluidic mixing [5], fluid transportation [6], particle
transportation [7] and self-propulsion [8]. Initially these will be used in lab-on-chip micro-
devices. These offer many advantages over laboratory testing in the form of automation, low
cost, less risk of contamination, reduced reagent consumption, fast response times and control
of flow over small length scales [3, 9, 10]. However, developing devices at this micro-scale
provides a number of challenges including power supply, control mechanism, life span and
stability.

Power supply is an interesting conundrum for a micro-device. Even small batteries are
millimetres in size [11], which is still too large, and biological chemical conversion to kinetic
energy is too complex to reproduce artificially. Therefore, different methods are required. One
option is to use the surrounding environment. Janus particles consist of two parts which react
differently with the environment, and self-propel by generating an asymmetric distribution
of charge or solute which propels the particle by electrophoresis [12, 13] or diffusiophoresis
[14]. If the environment is active matter, and thus contains many moving microorganisms, this
random motion can be harnessed and asymmetric gears will rotate [15].

An effective alternative option is to use an external forcing. Two examples are an ul-
trasound field and a magnetic field, which both need to be used slightly differently and on
suitable objects to provide continuous power. More specifically, an ultrasound field can drive
oscillations of microbubbles [16–18] and thin beams [8, 19, 20], which act as a focusing agent
for the ultrasound so that the ultrasound wave, with a wavelength on the order of 1mm, can
control behaviour on the micrometer scale. A magnetic field can be used to actuate artificial
cilia [1, 21–23], which are hair like appendages, for which the cilium needs to be made of a
magnetic material and the magnetic field itself needs to be either oscillating [24] or rotating
[6, 23]. However, there are also undesirable side effects of using an external forcing such as
temperature rises and bubble formation, which need to be carefully monitored and controlled.
In this thesis an ultrasound field and a magnetic field are used to power the two devices.

It is not just the power supply of these machines which is different on the microscale.
Their behaviour and the difficulties our designs have to overcome are significantly different
to those on the macroscale, where fish swim with a repetitive motion, and mixing is achieved
through stirring. At the microscale the Reynolds number is low so viscous effects dominate
over inertial effects. The Scallop Theorem [25] says time irreversible body motion is necessary
for propulsion, so the fish would go nowhere, and indeed unstirring the liquid (time reversing)
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would return it to its unmixed state.

Nature has had millions of years to evolve optimal methods to overcome these microscale
difficulties so can act as good blueprints when designing artificial products. A natural append-
age that has motivated the development of a similar artificial product, are natural flagella and
cilia. The green alga Chlamydomonas [26] has two slender flexible rod appendages whose
length is of the same order of magnitude as its body length, called flagella, which beat to pro-
pel the microorganisms. Rabbit Tracheal Epithelium [27] has thousands of tiny cilia, small
hair-like appendages, on its surface, which beat in a pattern to generate net flow.

Where the artificial design is based off a natural mechanism and there are significant phys-
ical similarities, modelling mechanisms for both are related so the biological models are help-
ful when studying the man-made systems. Also whereas micro-devices have only been being
built for a few decades, study of the biological system dates back a lot further, sixty years or
more, and thus forms the foundation of work on these systems. This is the case for our flagella
and cilia, and additionally the modelling mechanisms for a flagellum and cilium are similar
but with different boundary conditions. The earliest analytic models of biological flagella by
G. I. Taylor [28] considered the swimming speed of an infinite waving sheet and how adja-
cent sheets interact. More modern methods assume cilium slenderness and a 2D stroke shape
to model the beat pattern and force applied by a single finite length flagellum [29] and cilium
[30]. But sometimes very simple theoretical models are sufficient, with a three Stokeslet (point
force) model giving the flow field around Chlamydomonas [31]. At the other extreme using
large computational models, boundary element methods has shown the flow field around long
thin waving microrganisms [32], and arrays of cilia in more complicated geometries [33].

When densely packed cilia beat, there is a phase delay between adjacent cilia, which causes
a metachronal wave to form. A standard modelling approach then consists of considering the
dynamics of the enclosing envelope of the cilia. For microorganisms covered with these cilia
(e.g the multicellular alga Volvox or the protozoon Opalina) that are approximately spherical,
this reduces the problem to that of a spherical body inducing a surface wave of deformation
[34, 35]. The first of such analytic models was proposed by Lighthill [36] and later corrected
by Blake [34], who calculated the net flow generated by small-amplitude axisymmetric oscil-
lations of a spherical surface in a Stokes flow. This model is now refereed to as the “squirmer”
model. More recent studies have extended this model to include non-axisymmetric motion
[37], the presence of nearby boundaries [38, 39] and large-amplitude oscillations [40].

While most microsystems are low Reynolds number, inertial effects are significant when
an ultrasound forcing is applied. The kilohertz driving frequency of ultrasound increases the
local Reynolds number, making inertia important locally, and thus allowing time-reversible
oscillatory motion to generate net flow. This motion is the classical phenomenon of steady
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(or acoustic) streaming, whereby a time-periodic forcing is non-linearly rectified by inertia to
induce a non-zero net flow [41]. Theoretical studies of steady streaming flows have focused
on shape oscillations in simple geometries, including a translating sphere [42], a translating
bubble [43, 44], a bubble both translating and pulsating [44], and more recently a bubble both
pulsating and oscillating with one higher-order Legendre mode [45]. For free microbubbles,
the external acoustic energy is focused into the first few surface modes of oscillation hence
these classical studies are sufficient to model streaming. However, as setups become more
complicated, for example in the case of solid capsules partially enclosing three-dimensional
bubbles [46–48], it is important to be able to model the complex shape dynamics and accur-
ately compute the resulting streaming flows and forces.

In this thesis two micro-devices are studied in detail: an armoured microbubble (AMB) and
an artificial cilium. We will thus now briefly discuss the uses and development of microbubbles
and artificial cilia separately.

Early experiments on microbubbles were performed by Elder in 1958 looking at the stream-
ing flow generated by oscillating microbubbles [49]. Since then they have been used to trans-
port particles either in the streaming flow when the microbubble is held stationary [7, 16] or
where the microbubble carries the particle [3, 46]. They can be fixed on the edge of chan-
nels in small indents and interactions between multiple oscillating bubbles may be used to
increase mixing flows [18, 50, 51]. In the last couple of years microbubbles have been used
for micropropulsion by containing them within small solid capsules [46–48]. The experi-
mental armoured microbubble we study in this thesis consists of a hollow partial sphere inside
which a microbubble is captured (see Fig.1a), which is different from other similar devices
in that it is far smaller, of 20 µm diameter rather than with a length of 150 or 250 µm [47] or
750 µm× (2−4)mm in size [46].

One of the earliest artificial cilia was a curled filament actuated with electrostatics, which
had a symmetric stroke but non-negligible local inertia, so the different speeds of the effective
and recovery stroke generate a net force [5]. Since then, driving mechanisms have moved
away from electrostatics as the voltage necessary can be problematic in biological settings
and if the surrounding fluid is conductive, it interferes with the operation of the device. More
recently a number of magnetic artificial cilia have been designed experimentally for pumping
and mixing, actuated by a rotating magnetic field [52] (with such systems having been studied
solely analytically and numerically too [53]), or actuated by more complex or asymmetric
motions of the magnetic field [54, 55]. A particularly promising artificial cilium consists of
superparamagnetic particles, which are guided to trenches allowing self-assembly, and are
then actuated under a rotating magnetic field [22]. However, generating a metachronal wave
for an array of cilia, as found in nature, is difficult without having a different driver for each
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(a) The armoured microbubble
(by Nicolas Bertin)

(b) The artificial cilium reproduced
from: Metachronal wave of artificial
cilia array actuated by applied mag-
netic field, F. Tsumori, R. Marume,
A. Saijou, K. Kudo, T. Osado and H.
Miura, Jpn. J Appl. Phys., 2016,
55:06GP19. [6]. Copyright 2016
The Japan Society of Applied Phys-
ics.

Figure 1: Experimental designs motivating this thesis.

cilium. The artificial cilium motivating the study in this thesis overcomes this difficulty. It
is a PDMS cilium with aligned magnetic filings, and by changing the angle of the filings in
adjacent cilia, a metachronal wave will appear when a rotating magnetic field is applied [1, 6].

In this thesis, part II focuses on our first micro-device, the Armoured Microbubble (AMB).
We will first consider the streaming flow generated by arbitrary but known small amplitude
oscillations of a spherical body in Chapter 1. We will then study the resonances and streaming
flow generated by a single armoured microbubble, and multipropulsor compounds in Chapter
2. Next, we consider arrays of AMBs and the shape of the large collective flows they can
generate in Chapter 3 and their mixing ability in Chapter 4. Then we move to our second
micro-device in part III and study the beat pattern of a paramagnetic cilium in Chapter 5. We
finish with a conclusion and discuss the direction of future studies in part IV.



Part II

Armoured Microbubble





Chapter 1

Acoustic Streaming around a Spherical
Body

This chapter, with some edits, was published in: “Arbitrary axisymmetric steady streaming:
flow, force and propulsion”, Tamsin A. Spelman and Eric Lauga, Journal of Engineering Math-
ematics, 1-35, 2016 (reproduced with permission of Springer).

In this first chapter, we develop the mathematical framework to quantify the steady stream-
ing of a spherical body with arbitrary axisymmetric time-periodic boundary conditions (see
Fig.1.1 for setup). We compute the flow asymptotically under two assumption: (1) the amp-
litude of surface oscillations are small relative to the size of the body (ratio of amplitude
ε ≪ 1); and (2) the acoustic frequency is large such that the viscous penetration length scale
is small compared to the body size (ratio penetration length to body size δ ≪ 1). Mathematic-
ally, we solve the problem as a regular perturbation expansion in ε , with each term expended
in turn in powers of δ . We thus focus implicitly on the limit ε ≪ δ ≪ 1, which is the rel-
evant one for micron-size bubbles forced by ultrasound (frequencies in the hundreds of kHz
range) and millimetre-sized organisms. Similarly to classical work, the flow is shown to have
a boundary layer structure and the problem is solved by asymptotic matching. Our results,
which assume that the body is fixed in space, are presented in the case of no-slip boundary
conditions and extended to include the motion of vibrating free surfaces, also recover clas-
sical work as particular cases. We then illustrate the flow structure given by our solution and
propose one application of our results, discussing the adaptation for a force-free body, on
small-scale force-generation and synthetic locomotion.

This chapter is organised as follows. In §1.1 we set up the problem of the fluid flow gener-
ated by arbitrary surface motion of a no-slip spherical body. In §1.2, we derive the first-order
solution. The second-order Eulerian steady streaming is derived in §1.3, which is extended
to give the Lagrangian steady streaming in §1.4. The special case of a squirming microor-
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ganism is then discussed in §1.5. This no-slip general model can be extended to incorporate
other surface motion such as a no tangential stress boundary as shown in §1.6. The special
case of a bubble is then considered in §1.7. In §1.8 our general solution is validated against
classical results for spheres and bubbles. In §1.9, we illustrate examples of streaming flows.
In all previous sections, the body was assumed to be held stationary at the origin. In §1.10
the time-averaged force induced by the flow on the fixed body is calculated, along with the
translational velocity of the spherical body if it was instead free to move.

1.1 Axisymmetric steady streaming: setup

In this first section we present the general setup for our calculation. The body is taken to be
spherical with an imposed axisymmetric, radial and tangential time-periodic deformation of
its surface. In the following sections we will use asymptotic matching to first characterise the
flow in the case of no-slip between the fluid and the surface, and then we generalise to allow
the formulation to be adapted to other boundary conditions, in particular no tangential stress
for a clean bubble.

1.1.1 Statement of the Mathematical Problem

The sphere has mean radius a and is contained within an unbounded Newtonian fluid
of constant kinematic viscosity ν and uniform density ρ (Fig.1.1). Working in a spherical
coordinate system centred on the sphere, with radial distance r and polar angle θ , the axis
θ = 0 is the axis of rotational symmetry. The surface of the body is assumed to oscillate at
angular frequency ω with small amplitude εa, where ε ≪ 1 is formally specified below. We
define µ ≡ cosθ and since the flow is axisymmetric, a stream function ψ can be introduced to
give radial ur and angular uθ velocities as

ur =− 1
r2

∂ψ

∂ µ
, (1.1)

uθ =
−1

r(1−µ2)
1
2

∂ψ

∂ r
· (1.2)

The governing equation is then given by the vorticity equation [56]

∂ (D2ψ)

∂ t
+

1
r2

[
∂ (ψ,D2ψ)

∂ (r,µ)
+2D2

ψLψ

]
= νD2 (D2

ψ
)
, (1.3)
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Figure 1.1: A sphere of rest radius a (left) undergoes arbitrary axisymmetric vibrations of
amplitude εa, with ε ≪ 1 (right). Spherical coordinates are used with radial distance r and
polar angle θ . The surrounding fluid is Newtonian with kinematic viscosity ν and density ρ .

where we have defined the operators

D2 ≡ ∂ 2

∂ r2 +
(1−µ2)

r2
∂ 2

∂ µ2 , (1.4)

L ≡ µ

(1−µ2)

∂

∂ r
+

1
r

∂

∂ µ
, (1.5)

and
∂ (ψ,D2ψ)

∂ (r,µ)
=

∂ψ

∂ r
∂ (D2ψ)

∂ µ
− ∂ (D2ψ)

∂ r
∂ψ

∂ µ
. (1.6)

In order to non-dimensionalise the problem, we take the relevant time scale to be ω−1 and
the relevant length scale to be a, so that the sphere now has a rest radius of 1. The stream
function thus has dimensions a3ω and the vorticity equation becomes

∂ (D2ψ)

∂ t
+

1
r2

[
∂ (ψ,D2ψ)

∂ (r,µ)
+2D2

ψLψ

]
=
(

ν

ωa2

)
D2 (D2

ψ
)
. (1.7)

Eq.1.7 introduces a non-dimensional quantity: the ratio of the viscous penetration length scale,
∼ (ν/ω)1/2, to the radius of the body, a. Specifically, we define a dimensionless number δ as
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δ ≡ (2ν/ω)
1
2

a
, (1.8)

thus reducing the governing equation to

∂ (D2ψ)

∂ t
+

1
r2

[
∂ (ψ,D2ψ)

∂ (r,µ)
+2D2

ψLψ

]
=

(
δ 2

2

)
D2 (D2

ψ
)
. (1.9)

The second dimensionless quantity in this problem is the ratio ε between the amplitude of
oscillation and the body radius. To use notations similar to those in classical steady streaming
calculations, we use U to denote the maximum velocity at the surface of the oscillating body,
such that ε can be defined as

ε =
U
aω

· (1.10)

We will look to solve this problem as a regular expansion in ε for small values of δ , and
then take a regular expansion in δ . We will thus assume the asymptotic limit ε ≪ δ ≪ 1. Im-
portantly, this assumption is sufficient for our asymptotic solution to be valid. As explained be-
low, we will solve this problem using asymptotic matching between an inner solution (bound-
ary layer of size δ ) and an outer solution. For the inner asymptotic solution, ψ i, we will have
an expansion of the form

ψ
i = ε(ψ

i(0)
1 +δψ

i(1)
1 + ...+δ

n
ψ

i(n)
1 )+ ε

2(ψ
i(0)
2 +δψ

i(1)
2 )+O(εδ

n+1,ε2
δ

2,ε3), (1.11)

with n ≥ 2. The solution in Eq.1.11 is a valid approximation provided the errors are smaller
than the order of our solution O(ε2δ ). So we require δ ≪ 1, ε ≪ δ and δ n ≪ ε . But n can be
chosen to be as large as required, thus reducing down to the condition ε ≪ δ ≪ 1 only. We
note that we can easily obtain the O(ε) solution up to order n in δ since ε is introduced into
our equations only through assuming ψ is a power series in ε so mathematically higher orders
of ε cannot effect lower orders in ε .

Physically, a small value of ε indicates small-amplitude motion while a small value of δ

means that the viscous penetration length is small compared to the rest size of the body. For
which practical situations will these limits be relevant? To fix ideas, let us take a value for
the relative amplitude of ε ∼ 10−2. A ciliated microorganism in water (ν = 10−6 m2/s) would
have intrinsic frequencies of about 50 Hz, so ω ≈ 300rad/s, leading to a penetration length of
(2ν/ω)

1
2 ≈ 80 µm. In order to satisfy the limit ε ≪ δ ≪ 1, the organism size would need to

be just below 1mm, which is achieved for the largest ciliated organisms such as Spirostomum
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which can grow up to 4mm in length [57]. For a micro bubble actuated by ultrasound the
frequency is about ω ∼ 106 rad/s, so the penetration length is (2ν/ω)

1
2 ≈ 1 µm and thus the

bubble would have to be about 10 µm in diameter.

1.1.2 Boundary conditions

We apply, in this first part of the chapter, the no-slip boundary condition. Thus, the fluid
velocity has to match the velocity of the material points on the surface of the body, which
is arbitrary and decomposed along an infinite sum of surface modes. Using a Lagrangian
formulation, the motion of the boundary can be described by its radial position, R̃, and angular
position measured from the axis of axisymmetry, Θ̃, which are functions of time t and the rest
angular position θ (through µ) as

R̃ = 1− ε

∞

∑
n=0

VnPn(µ)ei(t+ π

2 )+O(ε2), (1.12)

Θ̃ = θ + ε

∞

∑
n=1

Wn

(∫ 1
µ

Pn(x)dx

(1−µ2)
1
2

)
ei(t+ π

2 )+O(ε2), (1.13)

where Vn and Wn are arbitrary complex constants determined by the surface motion of the
spherical body and Pn(x) is the Legendre Polynomial of degree n. Throughout this chapter,
complex notation will be used and it will always be implied that only the real part is taken;
when an explicit real part appears we will denote it ℜ.

The µ-dependence of R̃ and Θ̃ was chosen in order to match the form of the first-order
solution, as seen below. More specifically, assuming R̃ and hence ur has Legendre polynomial
µdependence, Eq. 1.1 suggests the µ-dependence ψ should have and hence, from Eq. 1.2,
the dependence uθ (and so Θ̃) should have. Therefore, this form of Θ̃ is suggested by the
relationship between ur, uθ and ψ . We also note

(∫ 1
µ

Pn(x)dx
)
/(1−µ2)

1
2 = P1

n (µ)/(n(n+1))

so our formulation for Θ̃ gives its µ-dependence as Associated Legendre Polynomials of order
one. Additionally, Θ̃ has the same µ-dependence at leading order as uθ on the boundary, and
this form of uθ is consistent with the classical work of Riley [42] and Longuet-Higgins [44].

Since Vn and Wn can each take any value within the complex plane, a wide range of bound-
ary motions can be studied. At leading order, R̃(θ) is equivalent to the radial position of
the surface at an angle θ from the axis of symmetry. As such, Vn will be determined by the
shape of the surface oscillation, and since the Legendre polynomials form a basis, any arbit-
rary axisymmetric small amplitude radial oscillation can be written in this form. At leading
order, Θ̃(θ) captures the tangential motion at an angle θ from the axis of symmetry, and thus
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Wn will be determined by the appropriate in-surface motion. We note that the use of Legendre
polynomials as a basis for µ was expected due to the axisymmetry of the problem and such a
basis has appeared in other work based in similar regimes [34].

At O(ε2) only terms in R̃ and Θ̃, which time-average to a non-zero value, would contribute
to the streaming. However, such terms would indicate that the body was slowly growing
or shrinking over time, and would also stretch or contract tangentially, violating the small-
amplitude assumption on long time scales. We therefore do not allow for steady Lagrangian
terms at order O(ε2). The boundary condition can thus be written in a Lagrangian form as

ur =
∂ R̃
∂ t

= ε

∞

∑
n=0

VnPn(µ)eit +O(ε3), (1.14)

uθ = R̃
∂ Θ̃

∂ t

= ℜ

[
−ε

∞

∑
n=1

Wn

(∫ 1
µ

Pn(x)dx

(1−µ2)
1
2

)
eit

]
ℜ

[
1− εi

∞

∑
n=0

VnPn(µ)eit

]
+O(ε3), (1.15)

and both of which have to be evaluated at (r,θ) = (R̃(µ, t),Θ̃(µ, t)).

Finally, we require that the flow decays to zero from the body and thus ur,θ → 0 as r → ∞.

We note here that we are assuming the spherical body is fixed in space and as such is
not force free. A force-free condition may be incorporated with the same setup in a suitable
reference frame, whereby it limits the possible surface shape oscillations through restrictions
on the choice of constants Vn and Wn. This is discussed in detail in § 1.10.

1.1.3 Rearranging the surface boundary conditions

The current Lagrangian form of the surface conditions of the body Eqs.1.14–1.15 needs
to be transformed into Eulerian boundary conditions of the fluid motion. This is achieved by
Taylor expanding them about the average oscillation position (1,θ) so

uL = uE +(δx ·∇)uE +O(δx2), (1.16)

where uL gives the Lagrangian surface velocity, uE the Eulerian velocity and δx the change
in position. The relationship between these variables is illustrated in Fig. 1.2. In spherical



1.1 Axisymmetric steady streaming: setup 15

Figure 1.2: Comparing the Lagrangian and Eulerian boundary conditions

coordinates this gives

ur|r=R = ur|r=1 +ℜ
[
(R̃−1)

]
ℜ

[
∂ur

∂ r

∣∣∣∣
r=1

]
+ℜ[(Θ̃−θ)]ℜ

[(
∂ur

∂θ
−uθ

)∣∣∣∣
r=1

]
+O(ε3), (1.17)

and

uθ |r=R = uθ |r=1 +ℜ
[
(R̃−1)

]
ℜ

[
∂uθ

∂ r

∣∣∣∣
r=1

]
+ℜ[(Θ̃−θ)]ℜ

[(
∂uθ

∂θ
+ur

)∣∣∣∣
r=1

]
+O(ε3). (1.18)

Looking for the dimensionless velocities and stream function as power series in ε as

ur = εu(1)r + ε
2u(2)r +O(ε3), (1.19)

uθ = εu(1)
θ

+ ε
2u(2)

θ
+O(ε3), (1.20)

ψ = εψ1 + ε
2
ψ2 +O(ε2), (1.21)

then at leading order Eq.1.17 and Eq.1.18 give

u(1)r =
∞

∑
n=0

VnPn(µ)eit , (1.22)
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u(1)
θ

=−
∞

∑
n=1

Wn

(∫ 1
µ

Pn(x)dx

(1−µ2)
1
2

)
eit , (1.23)

at r = 1 and for all values of θ . Similarly from Eq.1.17 and Eq.1.18 the O(ε2) boundary
condition can be calculated. However, due to the non-linear terms arising from the Taylor
expansions, the first-order flow needs to be first evaluated in order to determine the O(ε2)

boundary conditions explicitly. This will be discussed in §1.3.1.

1.2 First-order Asymptotic solution

1.2.1 General solution

Based on the oscillatory nature of the boundary condition at first order, Eq.1.22–1.23, we look
for a solution ψ1 ∝ eit . At leading order the governing equation reduces to(

∂

∂ t
− δ 2

2
D2
)
(D2

ψ1) = 0. (1.24)

This is easily solved using separation of variables D2ψ1 = f (r)g(µ)eit to find D2ψ1 as

D2
ψ1 = eit

[
∞

∑
n=1

(∫ 1

µ

Pn(x)dx
)(

Bn
√

rKn+ 1
2
(αr)

)]
, (1.25)

where Ka(x) is the modified Bessel function of the second kind of order a.

We then use separation of variables with the definition of the operator Eq.1.4 to solve
Eq.1.25 for ψ1 noting that Eq.1.25 gives the particular solution of ψ1. Hence we finally obtain

ψ1 = eit
[(

A0

√
r

α2 I1
2
(αr)+B0

√
r

α2 K1
2
(αr)+C0r+D0

)(∫ 1

µ

P0(x)dx+ e0

)
+

∞

∑
n=1

(
An

√
r

α2 In+ 1
2
(αr)+Bn

√
r

α2 Kn+ 1
2
(αr)+Cnrn+1 +Dnr−n

)(∫ 1

µ

Pn(x)dx
)]

, (1.26)

where α = (1+ i)δ−1, Ia(x) is the modified Bessel function of the first kind of order a, and
An, Bn, Cn, Dn are constants to be determined using the boundary conditions.
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1.2.2 Enforcing the boundary conditions

Since In(αr) increases to infinity exponentially as r → ∞, we first see that the boundary con-
ditions at infinity impose that An = 0 for all n and similarly Cn = 0 for n > 0.

Secondly, singularities in the velocity profile should be removed. This is not a problem
for ur but it is for uθ . Indeed, we have the scaling uθ ∼ (1−µ2)−

1
2

(∫ 1
µ

Pn(x)dx
)

, which has
formal singularities at µ =±1. Using the identity

∫ 1

µ

Pn(x)dx =
(1−µ2)P

′
n(µ)

n(n+1)
for n ̸= 0, (1.27)

we see that the singularities are removable for n > 0 but not for n = 0. Since e0 provides
only one degree of freedom, it can be used to remove at most one singularity. Therefore, in
order to prevent any singularity in uθ at µ = ±1, it is required that C0 = B0 = 0. The only
term remaining in ψ1 containing e0 is proportional to e0D0, which is an arbitrary constant and
hence e0 can be set to 0.

With these results, ψ1 is reduced to

ψ1 = eit

[(
D0

∫ 1

µ

P0(x)dx
)
+

∞

∑
n=1

(
Bn

√
r

α2 Kn+ 1
2
(αr)+Dnr−n

)(∫ 1

µ

Pn(x)dx
)]

. (1.28)

Applying the two first-order boundary conditions, Eq.1.22 and Eq.1.23, finally allows the
determination of the remaining constants Bn, Dn and D0. This solution for the constants Bn,
Dn and D0 is a closed-form solution, which has dependence on δ . However, a δ expansion is
required for our second order calculation, to calculate the streaming flow. Thus, we expand this
closed-form solution in powers of δ , and this form of the constants Bn, Dn and D0 is expressed
below in Eq.1.29-1.31. For the standard second order calculation, only the two leading orders
terms in δ for each constant (Bn and Dn) are required, but three are included here as the third
is necessary to calculate the in-phase streaming around a bubble discussed in §1.14, due to the
significant cancellation of terms in that case so that the leading order streaming flow occurs
at a higher order of δ . The Bessel function factor evaluated at α has been left formally in the
definition of the constants, as Bessel function terms will appear in the second-order streaming
equations and the expansion of that term has to be performed careful (as discussed in §1.3.3),
which is simpler when this Bessel function term is left in Bn. We obtain the solution for Bn,
Dn and D0 as

Bn =
−1

Kn+ 1
2
(α)

(
1
δ
(1+ i)+n+δ

(i−1)n2

4

)
(Wn +nVn)
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+O

(
δ 2

Kn+ 1
2
(α)

)
for n ≥ 1, (1.29)

Dn =Vn +δ
(1− i)

2
(Wn +nVn)−δ

2 in
2
(Wn +nVn) (1.30)

+O(δ 3) for n ≥ 1,

D0 =V0. (1.31)

For simplicity of notation in what follows, we define W0 = 0 so that Eq.1.29 and similarly
Eq.1.30 remain valid for n = 0.

1.3 Second-order asymptotic solution

At O(ε2), a net fluid motion will arise and from this we will obtain the streaming flow. The
first-order solution determines the explicit second order boundary conditions (§1.3.1) and
provides a non-zero forcing term (§1.3.2) at O(ε2). Unfortunately, the governing equation
with this forcing is too complex to solve explicitly analytically. We will thus employ asymp-
totic matching in order to solve for the flow inside the boundary layer of size η = 1+ δ r
(§1.3.3) and for the flow in the far field (§1.3.4) where exponential decay of this forcing leads
to a Stokes flow. Upon matching these two solutions (§1.3.5) the outer solution will give the
Eulerian streaming flow around the body.

1.3.1 Second-order boundary conditions

Eqs.1.28–1.31 give the full solution for ψ1. Using Eq.1.17 and Eq.1.18 we can now time-
average the boundary conditions at order ε2. Note that the product of two terms of the form
f eit and geit time average to f g/2 or f g/2 where the real part is assumed and overbars denote
complex conjugates. Simplifying the µ dependence of the result to a sum over the appropriate
basis functions, i.e. (1− µ2)−

1
2
∫ 1

µ
Pn(x)dx for uθ and Pn(µ) for ur and using the classical

identities

xP
′
n(x) = P

′
n+1(x)− (n+1)Pn(x), (1.32)

P
′
n+1(x) = P

′
n−1(x)+(2n+1)Pn(x), (1.33)
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we explicitly obtain time-averaged boundary conditions

⟨u(2)r ⟩
∣∣∣∣
r=1

=
∞

∑
k=1

{
i
2

[
2V0V̄k −

∞

∑
n=0

∞

∑
m=1

gknmV̄n (Wm −2Vm)

+
∞

∑
n=1

∞

∑
m=1

fknm (V̄nn(n+1)−W̄n)Wm
1

n(n+1)m(m+1)

]}
Pk(µ), (1.34)

and

⟨u(2)
θ
⟩
∣∣∣∣
r=1

=
∞

∑
k=1

{
∞

∑
n=0

∞

∑
m=1

aknm
i
2

[
2VnW̄m − 1

δ
V̄n (Wm +mVm)(1+ i)+V̄nVmm

−V̄nWm(m+1)−WnW̄m +
∞

∑
j=1

Cn j

j( j+1)
W̄mWj

]}(∫ 1
µ

Pk(x)dx

(1−µ2)
1
2

)
, (1.35)

where we have used triangular brackets to indicate time-averaging.

In these equations, the series of coefficients Cn j, aknm, fknm and gknm are defined by

Cn j =


0 if ( j < n) or (n and j have different parity),

n if j = n,

(2n+1) otherwise,

(1.36)

and

Pn(µ)

(∫ 1

µ

Pm(x)dx
)
=

∞

∑
k=1

aknm

(∫ 1

µ

Pk(x)dx
)
, (1.37)

P1
n (µ)P

1
m(µ) =

∞

∑
k=0

fknmPk(µ), (1.38)

Pn(µ)Pm(µ) =
∞

∑
k=0

gknmPk(µ), (1.39)

where P1
n (µ) is the associated Legendre polynomial of degree n and order 1. Recall that

associated Legendre polynomials of degree n and order m are defined by

Pm
n (x) = (1− x2)

m
2

dmPn(x)
dxm , (1.40)
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and have the useful orthogonality property

∫ 1

−1
Pm

n (x)Pm′
n′ (x)dx =

2
(2n+1)

(n+m)!
(n−m)!

δnn′δmm′. (1.41)

Using the orthogonality property together with Eq.1.27, the formulae for aknm in Eq.1.37, fknm

in Eq.1.38 and gknm in Eq.1.39 can be rearranged into a more useful form to calculate their
numerical value

aknm =
k(k+1)

m(m+1)

∫ 1
−1 Pn(x)P1

m(x)P
1
k (x)dx∫ 1

−1 P1
k (x)P

1
k (x)dx

, (1.42)

=
(2k+1)

2m(m+1)

∫ 1

−1
Pn(x)P1

m(x)P
1
k (x)dx, (1.43)

fknm, =
(2k+1)

2

∫ 1

−1
P1

n (x)P
1
m(x)Pk(x)dx, (1.44)

gknm =
(2k+1)

2

∫ 1

−1
Pk(x)Pn(x)Pm(x)dx. (1.45)

The constants aknm, fknm and gknm are Gaunt Coefficients, which have been extensively studied
due to their appearance in theoretical physics. Gaunt’s formula [58] for the triple product
integral and fast numerical algorithms [59] exist to evaluate such coefficients.

1.3.2 Nonlinear Forcing

The governing equation at order ε2 is given by

δ 2

2
(
D4

ψ2
)
− ∂ (D2ψ2)

∂ t
=

1
r2

(
∂ (ψ1,D2ψ1)

∂ (r,µ)
+2Lψ1Dψ1

)
. (1.46)

Time averaging equation (1.46) leads to

δ 2

2
D4⟨ψ2⟩=

1
r2

〈
∂ (ψ1,D2ψ1)

∂ (r,µ)
+2Lψ1Dψ1

〉
. (1.47)

A general second order solution that is valid throughout the domain, cannot be found due
to the complexity of the right-hand side of Eq.1.47. However, for small values of δ , solutions
can be found separately within the viscous boundary layer and in the far field, and they can be
asymptotically matched to provide a full outer solution. This is the method we will be using
in this chapter. In either case, an indication of the form of the non-linear forcing is required.



1.3 Second-order asymptotic solution 21

The term D2ψ1 is given in Eq.1.25. We also have

Lψ1 = eit

[
∞

∑
n=1

(
Bn

2α2√r
Kn+ 1

2
(αr)+Bn

√
r

α
K

′

n+ 1
2
(αr)−Dnnr−(n+1)

)(
µP

′
n(µ)

n(n+1)

)

−D0

r
P0(µ)−

∞

∑
n=1

(
Bn√
rα2 Kn+ 1

2
(αr)+Dnr−(n+1)

)
Pn(µ)

]
, (1.48)

and〈
∂ (ψ1,D2ψ1)

∂ (r,µ)

〉
=−1

2

∞

∑
n=0

∞

∑
m=1

(
B̄nBm

α2 K̄n+ 1
2
(αr)Km+ 1

2
(αr)

+2
B̄nBmr

α
K̄n+ 1

2
(αr)K

′

m+ 1
2
(αr)− B̄nDmmK̄n+ 1

2
(αr)r−(m+ 1

2 )

−D̄nBm

2
r−(n+ 1

2 )Km+ 1
2
(αr)− D̄nBmαr−(n− 1

2 )K
′

m+ 1
2
(αr)

)
Pn(µ)

(∫ 1

µ

Pm(x)dx
)
. (1.49)

Using the coefficient aknm defined in Eq.1.37, Eq.1.49 can then be transformed to the
appropriate (integral polynomial) basis. Similarly the quantity given by 2×Eq.1.48×Eq.1.25
can have its basis transformed using aknm and Cn j defined in Eq.1.36. These two quantities
can then be added, which gives the total non-linear forcing as

〈
2Lψ1D2

ψ1 +
∂ (ψ1,D2ψ1)

∂ (r,µ)

〉
=

∞

∑
k=1

[
∞

∑
n=0

∞

∑
m=1

aknm ×(
B̄nBm

1
2α2 K̄n+ 1

2
(αr)Km+ 1

2
(αr)− 3

4
D̄nBmr−(n+ 1

2 )Km+ 1
2
(αr)

− B̄nBm
r
α

K̄n+ 1
2
(αr)K

′

m+ 1
2
(αr)+

1
2

B̄nDmmK̄n+ 1
2
(αr)r−(m+ 1

2 )

+
1
2

D̄nBmαr−(n− 1
2 )K

′

m+ 1
2
(αr)

+
∞

∑
j=1

(
Cn j

j( j+1)

)(
−BmB̄ j

1
2α2 Km+ 1

2
(αr)K̄ j+ 1

2
(αr)

+BmB̄ j
r
ᾱ

Km+ 1
2
(αr)K̄ ′

j+ 1
2
(αr)−BmD̄ j jKm+ 1

2
(αr)r−( j+ 1

2 )
))](∫ 1

µ

Pk(x)dx
)
. (1.50)
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1.3.3 Solution inside the boundary layer

The rest boundary is located at r = 1 with a boundary layer of size δ . We thus define an
inner variable η related to r by r = 1+ δη . The boundary layer is small, δ ≪ 1, and within
the boundary layer the inner variable η varies from 0 to 1. We now write the second-order
equation in terms of η and expand in ascending powers of δ .

First consider expanding the right-hand side of Eq.1.47, i.e. Eq.1.50 divided by r2. When
the first-order boundary conditions were applied above, we obtained in Eq.1.29-1.31 Taylor
expansions of the coefficients Dk and Bk in terms of δ . The powers of r can also be Taylor
expanded about r = 1 to also obtain a powers series in δ .

However, the Taylor expansions of the Bessel functions have to be done more carefully.
A useful identity [60] for expanding the Bessel function is that, for non-negative integer n we
have

Kn+ 1
2
(z) =

√
π

2
e−z
√

z

n

∑
j=0

( j+n)!
(n− j)! j!

(2z)− j. (1.51)

Next, notice that when the expansions for Dk and Bk are substituted into Eq.1.47, the Bessel
functions always appear in ratios of the form

K̂n+ 1
2
(αr)

Kn+ 1
2
(α)

, (1.52)

where K̂ represents a derivative or complex conjugate of the Bessel function. As such, taking
f (r) as the appropriate power series in r gives

K̂ j+ 1
2
(αr)

K j+ 1
2
(α)

= e−α̃(r−1) f (r) = e−(1±i)η f (1+δη), (1.53)

where α̃ can be α or its complex conjugate. The exponential part of the Bessel function can
clearly not be Taylor expanded in powers of δ . Hence to obtain the correct expansion, the
power series part of the Bessel function should be Taylor expanded in powers of δ and the
negative exponential part should only have the appropriate η substitution carried out.

Upon completion of the substitution and expansion in δ , we obtain inside the boundary
layer

1
r2

〈
2Lψ1D2

ψ1 +
∂ (ψ1,D2ψ1)

∂ (r,µ)

〉
=

∞

∑
k=1

∞

∑
n=0

∞

∑
m=1

aknm×{
3
4

1
δ

V̄n(Wm +mVm)(1+ i)e−(1+i)η +
1
δ
(W̄n +nV̄n)(Wm +mVm)(1− i)e−2η
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− 1
2

1
δ
(W̄n +nV̄n)Vm(1− i)me−(1−i)η +

1
2

[
2

δ 2 V̄ni+
1
δ
(−2Vninη+

V̄nm(1+ i)− (W̄n +nV̄n)(1− i)+
1
2

V̄n(1+ i)−4Vniη
)]

(Wm +mVm)e−(1+i)η

+
∞

∑
j=1

(
Cn j

j( j+1)

)[
− 1

δ
(Wm +mVm)(W̄j + jV̄j)(1+ i)e−2η

+
1
δ
(Wm +mVm)V̄j j(1+ i)e−(1+i)η

]
+O(1)

}(∫ 1

µ

Pk(x)dx
)
. (1.54)

This expansion has been performed to the two leading orders in δ , order δ−2 and δ−1. Two
orders of δ will be required when the matching conditions are applied, to obtain the leading
order streaming behaviour, similar to the work of Longuet-Higgins [44].

Inside the boundary layer, the D4 operator on the left hand side of Eq.1.47 is asymptotically
given by

D4 =
1

δ 4
∂ 4

∂η4 +O(δ−2), (1.55)

and therefore Eq.1.47 finally simplifies to

〈
∂ 4ψ i

2
∂η4

〉
=

∞

∑
k=1

∞

∑
n=0

∞

∑
m=1

aknm

({
3
2

δV̄n(Wm +mVm)(1+ i)e−(1+i)η+

2δ (W̄n +nV̄n)(Wm +mVm)(1− i)e−2η −δ (W̄n +nV̄n)Vmm(1− i)e−(1−i)η+[
δ

(
−2V̄ninη +V̄nm(1+ i)− (W̄n +nV̄n)(1− i)+

1
2

V̄n(1+ i)−4V̄niη
)
+2V̄ni

]
×

(Wm +mVm)e−(1+i)η +
∞

∑
j=1

(
Cn j

j( j+1)

)[
−2δ (Wm +mVm)(W̄j + jV̄j)(1+ i)e−2η

+2δ (Wm +mVm)V̄j j(1+ i)e−(1+i)η
]}

+O(1)
)(∫ 1

µ

Pk(x)dx
)
, (1.56)

where ψ i
2 is the second order stream function inside the boundary layer.

Using the elementary indefinite integrals (where c is the constant of integration)∫
y

∫
˜̃̃y

∫
˜̃y

∫
ỹ
eaxdxdỹd ˜̃yd ˜̃̃y =

eay

a4 + c, (1.57)

∫
y

∫
˜̃̃y

∫
˜̃y

∫
ỹ
xeaxdx dỹ d ˜̃y d ˜̃̃y =

yeay

a4 − 4eay

a5 + c, (1.58)

allows us to integrate Eq.1.56 explicitly. We take the resulting solution to its first two leading
orders, of order 1 and δ (as will be required for calculating the leading order outer streaming
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flow), giving the general inner solution of

〈
ψ

i
2
〉
=

∞

∑
k=1

{
∞

∑
n=0

∞

∑
m=1

aknm

[
−3

8
δV̄n(Wm +mVm)(1+ i)e−(1+i)η

+
1
8

δ (W̄n +nV̄n)(Wm +mVm)(1− i)e−2η +
1
4

δ (W̄n +nV̄n)Vmm(1− i)e−(1−i)η

−
{

δ

[
−1

2
V̄ni(n+2)(η +2(1− i))+

1
4

V̄nm(1+ i)− 1
4
(W̄n +nV̄n)(1− i)+

1
8

V̄n(1+ i)
]

+
1
2

V̄ni
}
(Wm +mVm)e−(1+i)η +

∞

∑
j=1

(
Cn j

j( j+1)

)(
−1

8
δ (Wm +mVm)(W̄j + jV̄j)(1+ i)e−2η

−1
2

δ (Wm +mVm)V̄j j(1+ i)e−(1+i)η
)
+O(δ 2)

]
+(Lk +Mkη +Nkη

2 +Qkη
3)

}
×(∫ 1

µ

Pk(x)dx
)
, (1.59)

where Lk, Mk, Nk and Qk are constants of integration to be determined. Of those, two will
be determined by enforcing the two second-order boundary conditions Eq.1.34 and Eq.1.35,
namely Lk and Mk. Since these boundary conditions must hold for all −1 ≤ µ ≤ 1, the coef-
ficient of each basis function (i.e. Pn(µ) or

∫ 1
µ

Pn(x)dx) must obey these boundary conditions
term by term, giving a countably infinite number of equations with solution

Lk = ℜ

{[
∞

∑
n=0

∞

∑
m=1

aknmV̄n(Wm +mVm)+2V0V̄k−

∞

∑
n=0

∞

∑
m=1

gknmV̄n (Wm −2Vm)+
∞

∑
n=1

∞

∑
m=1

fknm ×

(V̄nn(n+1)−W̄n)Wm
1

mn(n+1)(m+1)

]
i
2

}
+O(δ ), k > 0, (1.60)

Mk = δ

(
∞

∑
n=0

∞

∑
m=1

aknm

{
−1

2
(W̄n +nV̄n)Vmim+

1
2

V̄n(Wm +mVm)i(4+3n−m)

+
1
4
(W̄n +nV̄n)(Wm +mVm)(3− i)+

1
2

V̄nWm(m+3)i− 1
2

V̄nVmmi

+
1
2

WnW̄mi−
∞

∑
j=1

(
Cn j

j( j+1)

)[
1
4
(Wm +mVm)(W̄j + jV̄j)(1+ i)

+(Wm +mVm)V̄ji j+
1
2

W̄mWji
]})

+O(δ 2), k > 0. (1.61)

Both Lk and Mk are given to leading order in δ , and although their order in δ is different, both
contribute their leading order behaviour to the leading order outer streaming flow. Asymptotic
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matching will determine the values of the remaining coefficients.

1.3.4 Solution Outside the Boundary Layer

Looking at equation Eq.1.50, we see that all the terms in the non-linear forcing are multiples
of modified Bessel functions of the second kind or their derivatives. As such, this forcing
decays away exponentially fast as r → ∞ and can be neglected outside the boundary layer. In
the outer region we therefore have an unforced Stokes flow and the governing equation for the
outer stream function, ψo

2 , is
D2D2⟨ψo

2 ⟩= 0, (1.62)

with exponentially small errors.

Given the form of the inner solution Eq.1.59, and anticipating the asymptotic matching,
we can look for the outer solution with a known µ dependence as

⟨ψo
2 ⟩=

∞

∑
n=1

fn(r)
(∫ 1

µ

Pn(x)dx
)
+ f0(r)

(∫ 1

µ

P0(x)dx+ e0

)
. (1.63)

The value of ⟨D2ψo
2 ⟩ can be found by differentiating Eq.1.63 as well as by solving Eq.1.62

for ⟨D2ψo
2 ⟩ using separation of variables. Equating these gives a second order differential

equation for f with power-law solutions. The general outer solution is thus given by

⟨ψo
2 ⟩=

(
R0 +T0r+Y0r2 +S0r3)(∫ 1

µ

P0(x)dx+ e0

)
+

∞

∑
n=1

(
Rnrn+3 +Tnr−n +Ynrn+1 +Snr−(n−2)

)(∫ 1

µ

Pn(x)dx
)
. (1.64)

Applying the boundary condition at infinity gives Rn = Yn = 0 for n ≥ 1 and S0 = Y0 = 0.
Furthermore, in order to avoid a singularity in uθ at µ =±1 it is required T0 = 0, and as ⟨ψo

2 ⟩
is a stream function it can be set that e0 = 0 without affecting ur or uθ . Hence we obtain the
outer solution as

⟨ψo
2 ⟩= R0

(∫ 1

µ

P0(x)dx
)
+

∞

∑
n=1

(
Tnr−n +Snr−(n−2)

)(∫ 1

µ

Pn(x)dx
)
. (1.65)
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1.3.5 Matching

The final part of determining the solution for the flow consists of carrying out the asymptotic
matching between the inner Eq.1.59 and outer solutions Eq.1.65. We first need to evaluate
the inner solution, Eq.1.59, in the limit η ≫ 1 which, because of the negative exponentials,
simplifies to 〈

ψ
i
2
〉
=

∞

∑
k=1

(
Lk +Mkη +Nkη

2 +Qkη
3)(∫ 1

µ

Pk(x)dx
)
. (1.66)

The outer solution, Eq.1.65, then needs to be evaluated in the limit r → 1. Writing the outer
solution in terms of the inner variable η and Taylor expanding the expression about η = 0
then gives

⟨ψo
2 ⟩= R0

(∫ 1

µ

P0(x)dx
)
+

∞

∑
n=1

[
(Tn +Sn)−δ (nTn +(n−2)Sn)η

+δ
2
(

n(n+1)
2

Tn +
(n−2)(n−1)

2
Sn

)
η

2

−δ
3
(

n(n+1)(n+2)
6

Tn +
n(n−1)(n−2)

6
Sn

)
η

3 +O(η4)

](∫ 1

µ

Pn(x)dx
)
. (1.67)

Here
〈
ψo

2
〉

has been given to its four leading orders in η . The first two orders are required for
the matching conditions, to calculate the outer streaming flow. The third and fourth orders can
be used to explicitly determine Nk and Qk, which are used in §1.10.

Equating the two highest orders of η gives

Lk = Tk +Sk (k ≥ 1), (1.68)

Mk =−δ [kTk +(k−2)Sk] (k ≥ 1), (1.69)

R0 = 0. (1.70)

If we use M(δ )
k to denote the O(δ ) term of Mk, the outer constants are thus given by

Tk =
(2− k)

2
L(1)

k − 1
2

1
δ

M(δ )
k +O(δ ) (k ≥ 1), (1.71)

Sk =
k
2

L(1)
k +

1
2

1
δ

M(δ )
k +O(δ ) (k ≥ 1). (1.72)

Notice that Tk and Sk are now known so they can be used to determine Nk and Qk by matching
to third and fourth order; if one carries out this matching, one obtains that Nk and Qk are O(δ 2)

and O(δ 3) respectively.



1.4 Lagrangian streaming 27

1.4 Lagrangian streaming

The solution derived so far has focused on the Eulerian streaming, i.e. the time-averaged
Eulerian velocity field at a fixed position in the laboratory frame of reference. In order to
compare with future experimental results tracking the motion of passive tracers in the flow,
it is necessary to calculate the Lagrangian streaming instead. The difference between the
Eulerian and the Lagrangian streaming is the so-called Stokes drift, which arises because the
Lagrangian particles are advected by the Eulerian velocities at all the positions the particles
move through, and not just fixed positions in the laboratory frame, and thus velocity gradients
need to be accounted for.

Longuet-Higgins [44, 61] showed that the stream function for the non-dimensional time
averaged Stokes drift ⟨ϕS⟩ at O(ε2) is given by

⟨ϕS⟩=
〈

1
r2

∫
∂ψ1

∂ r
dt

∂ψ1

∂ µ

〉
· (1.73)

Ignoring exponentially-decaying terms, the outer solution for the Stokes drift is thus

⟨ϕS⟩=−ε
2 i

2

∞

∑
k=1

(
∞

∑
n=0

∞

∑
m=1

aknmV̄nVmmr−(n+m+3)

)(∫ 1

µ

Pk(x)dx
)
+O(δ ). (1.74)

Adding this expression to the outer time-averaged Eulerian solution ψo
2 from Eq.1.65 leads to

the final expression for the outer leading order time averaged Lagrangian streaming as

⟨ψL⟩=
∞

∑
k=1

(
Tkr−k +Skr−(k−2)−

∞

∑
n=0

∞

∑
m=1
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)(∫ 1

µ

Pk(x)dx
)
, (1.75)

where

Yknm = ℜ

(
1
2

aknmV̄nVmim
)
, (1.76)

and the coefficients Sk and Tk are given by
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{
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+
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and
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}
+O(δ ). (1.78)

Since the inner solutions is only valid in a δ -sized region about the spherical body this
gives the Lagrangian solution in the bulk of the fluid.

We note that in the far field, the flow will be dominated by the slowest spatially decaying
term. In the stream function Eq.1.75 this is the ⟨ψL⟩ ∼ S1r term. The velocities associated
with this term decay as ∼ 1/r and are associated with a net force acting on the fluid (stokeslet).
This will be further discussed §1.10 in the context of force generation and propulsion.

1.5 Special case: squirming

As discussed in the introduction, the squirmer model of low-Reynolds number swimming is
a popular mathematical model to address the motion of nearly spherical ciliated cells (e.g.
Opalina, Volvox) [34, 36]. The array of deforming cilia is modelled as a continuous envel-
ope where the effective tangential component is deemed far more significant than the radial
component of motion. As such, the position of the surface can be modelled as fixed at its
average position, and imposing steady velocities along it. Models of this form have been used
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to study nutrient uptake by microorganisms [62], interaction of microorganisms [63], optimal
locomotion and were recently generalised [37, 40]. Some versions of the squirming model do
also allow a radial velocity to be applied through the fixed boundary as a model for a porous
surface with normal jets of fluid through it [64].

The squirming approximation significantly increases the ease of theoretical calculations.
However, and as expected, it has its limitations. A prescribed forcing through the boundary
cannot be used to accurately model a moving boundary. If there is a non-zero radial velocity
at the fixed boundary, the streaming flow will become one order of magnitude larger since
the boundary conditions are no longer cancelling the leading-order term. In the very specific
case of solely radial motion where all the radial modes are exactly π/4 out of phase with each
other the solution will be at the right order, but other important terms will still be missing from
the streaming. This demonstrates that the physical movement of the boundary, and hence the
physical displacement of the fluid in that region, is as important as the prescribed velocities it
is imparting to the fluid around it.

For angular motion alone, however, the squirmer streaming is identical to the full solution,
demonstrating such an approximation is valid. Furthermore, in that situation the Lagrangian
and Eulerian streamings are the same since the Stokes drift depends only on the radial motion
of the surface. We thus focus on the standard tangential squirmer model where there is no
radial motion at leading-order and Vn = 0 for all n. In that setup, the generated streaming is of
the same form as has already been derived, Eq.1.75, but the constants are much simpler with
Yknm = 0 and

Sk = ℜ
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∞
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+O(δ ), (1.79)

and
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{
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+O(δ ). (1.80)
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1.6 Allowing slip on the boundary

In previous sections we assumed that the fluid satisfied the no-slip boundary condition and
thus exactly matched the motion of our deforming body. Slip can however be systematically
incorporated into this model through a small change of boundary conditions. The general form
of the solution remains the same but the constants of integration gain an extra contribution.
This will then extend the model to include other spherical bodies, in particular bubbles.

In the case of no-slip, the motion of the boundary was described by its radial position, R̃,
and angular position, Θ̃. Our new, more general, R and Θ can be interpreted as describing the
motion of the fluid on the boundary of the spherical body. If we allow streaming at second
order on the boundary, we can then write

R =1− ε

∞

∑
n=0

VnPn(µ)ei(t+ π

2 )+ ε
2

∞

∑
n=0

GnPn(µ)g(t)+O(ε3), (1.81)

Θ =θ + ε
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Pn(x)dx

(1−µ2)
1
2

)
ei(t+ π

2 )+ ε
2

∞

∑
n=0

Fn

(∫ 1
µ

Pn(x)dx

(1−µ2)
1
2

)
f (t)+O(ε3), (1.82)

which now has the extra second-order contributions where Fn and Gn are known constants
determined by the motion of the spherical body and f (t) and g(t) are unknown functions of
time. This new R and Θ are a more general form of R̃ and Θ̃ since imposing no-slip boundary
conditions sets Gn = Fn = 0, which reduces R and Θ to R̃ and Θ̃. The equations relating R
and Θ to the velocities ur and uθ are the same as those relating R̃ and Θ̃ to these velocities
(Eq.1.14 -1.18), hence the form of the final solution is similar to before with the addition, at
second order, of terms containing Fn and Gn .

The new definition of R is equivalent to the previous one since the fluid and spherical
body cannot encompass the same space. Therefore, Vn is still determined by the shape of the
surface oscillation and there is still no net motion of the boundary, we thus have Gn = 0 for all
n. The new definition of Θ does, however, allow for net motion of the fluid along the surface
of the body, and the coefficients Wn are then chosen so that the appropriate surface boundary
condition is obeyed at first order. Similarly the value of Fn is determined by ensuring that this
same surface boundary condition is obeyed at second order. As such Fn may be nonzero and
without loss of generality we assume that ∂ f/∂ t time averages to one.

The addition of the coefficients Fn is a second-order contribution so ψ1 is unchanged from
Eq.1.28. The form of the second-order inner solution Eq.1.59 is unchanged with Lk as in
Eq.1.60 but Mk now has an extra Fk contribution so we obtain the revised equation
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Mk = δ
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The new boundary condition considered, such as that of no angular stress along the surface
of a bubble, would now be applied to this new second order inner solution allowing us to
determine the value of the coefficients Fk.

Similarly the form of the outer solution Eq.1.75 remains the same but through the asymp-
totic matching there is an extra contribution to its constants of integration so that the revised
formulae for the Sk and Tk coefficients are now
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and
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with the coefficients Yknm remaining the same as in Eq.1.76. Naturally, through the asymptotic
matching outlined above, as Tk and Sk have an extra contribution, the inner constants Nk and
Qk will also include a contribution proportional to the constants Fk.

1.7 Special case: free surfaces

In the case of an oscillating bubble, the extra boundary condition is that of no tangential stress
on the bubble surface

n ·σ ·Γ = 0 at r = Rθ = Θ, (1.86)

where Γ is the tangent vector in the plane through the axis of axisymmetry, n is the normal
vector and σ is the Newtonian stress tensor. There is still no penetration on the bubble surface
and the shape of the bubble oscillation (via the coefficients Vn) is prescribed. Ensuring that the
no-tangential stress conditions holds at first order and at second order (when time averaged)
determines the values of Wn and Fn. This calculation is quite involved and its details are given
in the appendices of §1.13 and §1.14 with the main results quoted in what follows.

1.7.1 General case

In this subsection we calculate the leading-order streaming provided the result is non-zero
(in which case see §1.7.2). The generated streaming is of the same form as the one already
derived, Eq.1.75, with Yknm defined as in Eq.1.76 and R0 = 0, with the difference that the
constants Tk and Sk now take new values
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and
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This solution is derived in detail in the appendix of §1.13.

1.7.2 Special case - In-phase motion

If the Vn coefficients are chosen such that the real part of iVnV̄m = 0 for all valued of n and m
(i.e. all modes are in phase or π out-of-phase with each other) then Tk = Sk =Yknm = 0 and the
steady streaming is identically zero at O(1). This of course includes the case where only one
mode is being forced. The net streaming in that case occurs at order δ . In order to determine
this streaming the solution derived in §1.1 needs to be taken to third order, to give one more
power of δ , and then have the no-stress condition applied to it. The details for this calculation
are in the appendix of §1.14. The generated streaming is still of the same form as has already
been derived, Eq.1.75 but with Yknm = 0, R0 = 0 and with the constants Tk and Sk now taking
new values as
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and
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+
∞

∑
n=0

∞

∑
m=1

aknm

[
−V̄nVm

(
n2

4
+

9n
4
− 5m2

4
− 5m

4
+

1
2

k(k−1)
)

m(m+2)
2(2k+1)

+V̄nVm
nm(n+2)(2m+1)

2(2k+1)
+

∞

∑
j=1

Cn j

j( j+1)

(
VmV̄j

m j(2m+ j+6)
2(2k+1)

)]}
. (1.90)

1.7.3 Discussion

Our results thus show that a bubble, for any in-phase oscillation of its shape, generates a
streaming of O(δ ) or lower, and therefore at least one order of magnitude weaker than that of
a deformable no-slip surface (such as an elastic membrane) undergoing the same sequence of
shape change. Thus the net flows generated by the angular velocities are of similar magnitude
to those induced by the radial velocities and they cancel at leading order.

Longuet-Higgins observed that a bubble undergoing translational oscillation produced a
force of O(δ ), one order of magnitude less than the out-of-phase translational and pulsating
oscillations, which is O(1) [44]. Our calculations allow us to generalise this result to all shape
changes, and thus suggests that ensuring there are at least two modes of oscillation out of
phase leads to stronger streaming flows.

For bubbles forced by external fields, this raises an interesting question of whether a res-
onance mode of oscillation, which is solely at one mode, would produce a weaker streaming
flow than out-of-phase forcing, which excites multiple modes. From a practical standpoint,
microbubbles are often fixed to a wall, which enforces that the centre of the bubble has to
move and as such is naturally excited at a second mode.

1.8 Comparison with past work

Our calculations have allowed us to compute the streaming generated by any specified, fixed,
oscillating spherical object (and in particular we solved for a bubble). Past work has charac-
terized the streaming flow for simple shape oscillations of bubbles and rigid spheres, to which
we can compare our model in order to validate it.

1.8.1 Translating Bubble

In the case of a bubble undergoing translational oscillations, we have V1 = 1 and Vn = 0 for
n ̸= 1, The angular boundary conditions Wn and Fn are determined by the no stress boundary
condition. This case was studied by Longuet-Higgins [44] and the solution we obtain here is
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(a) Streaming from current model (b) Longuet-Higgins’s streaming, reproduced
by permission of the Royal Society from: M. S.
Longuet-Higgins, “Viscous streaming from an
oscillating spherical bubble”, Proc.Roy.Soc.A,
1998, 454, no.1970, pp.725-742. [44]

Figure 1.3: Streaming, in the form of a stresslet, generated by the translational oscillations of
a bubble.

identical to his, namely

⟨ψL⟩= δ
27
20

(
1
r2 −1

)∫ 1

µ

P2(x)dx, (1.91)

as further illustrated in Fig.1.3. This streaming flow is a stresslet with fluid pulled in along the
axis of oscillation and pushed out along the equator.

1.8.2 Translating Sphere

In the case of a solid sphere undergoing translational oscillations we have V1 = 1, Vn = 0
for n ̸= 1, W1 = 2, Wn = 0 for n ̸= 1, and Fn = 0. This case was studied by Riley [42] and the
streaming we obtain is identical to his solution, namely

⟨ψo
2 ⟩=−45

16

(
1
r2 −1

)∫ 1

µ

P2(x), (1.92)

as further illustrated in Fig.1.4. Similarly to the oscillating bubble, this streaming flow is a
stresslet but with opposite direction.
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(a) Streaming from the current mode (b) Riley’s streaming, reproduced
by permission of Oxford University
Press from: N. Riley, “On a sphere
oscillating in a viscous fluid”, Q. J.
Mech. Appl. Math., 1966, 19, no.4,
pp.461-472, [42]

Figure 1.4: Streaming, in the form of a stresslet, generated by the translational oscillations of
a sphere.

1.8.3 Bubble Translating and Radially Oscillating

Finally, in the case of a bubble undergoing radial and lateral oscillations only V0 and V1 can be
non-zero. Then the pairs Wn and Fn are determined by the no stress boundary condition. We
obtain W1 = −V1, Wn = 0 for n ̸= 1, F1 = 4iV̄0V1 and Fn = 0 for n ̸= 1. In this case there is a
contribution from the Stokes drift with one non-zero component of Y , Y101 = iV̄0V1/2 leading
to the final Lagrangian streaming as

⟨ψL⟩= ℜ(V̄0V1i)
(
− 1

4r
+

r
2
− 1

4r4

)
(1−µ

2), (1.93)

which matches the result of Longuet-Higgins [44] (note that in Ref.[44], ℜ(iV̄0V1) is written
as sin(φ) with φ denoting the phase difference between modes 0 and 1). At leading order this
streaming flow is a stokeslet, with direction parallel to the axis of axisymmetry, and with a
sign determined by the phase difference between V0 and V1.
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1.9 Illustration of steady streaming and far-field behaviour

With the calculations above, we can now illustrate the streaming patterns, which can be ob-
tained from surface oscillations. We consider a range of surface boundary conditions (Vn and
Wn) and assume for simplicity that the surface streaming is zero (Fn = 0). The steady stream-
ing flow splits naturally into two regions with different behaviours: the fluid motion close
to the spherical body, which often contains recirculation regions, and the far-field behaviour,
which is dominated by the slowest decaying term in the velocity.

First we consider the streaming generated by a few simple surface shape oscillations. In
Fig.1.5a we illustrate the streaming when only the mode V1 ̸= 0 is being forced. In all cases,
the flow being axisymmetric, we only need to display streamlines in the plane of symmetry to
illustrate the whole flow. Here S1 = 0 so the slowest decaying term is S2/r2, which produces
the pattern of flow coming in in the equatorial plane of the spherical body and pushed away
along the vertical axis (stresslet, see below). Furthermore, as there are few higher order terms
this behaviour in fact dominates the flow throughout the domain.

Differences between the far-field flow and the fluid motion close to the body can be seen
with higher modes. This is illustrated in Fig.1.5b, which shows the streaming generated by
forcing mode V2 only. On the edge of the figure the dynamics seen in Fig.1.5a is apparent as
the term S2/r2 is still dominant in the far field. However, close to the spherical body, we see
circulation zones, which extend about one body diameter into the fluid. The number of these
circulations regions increase as higher modes are being forced. A similar pattern is observed
when only oscillating at one angular mode (i.e. Wn ̸= 0 for one choice of n).

Let us now consider the behaviour in the far field. Far from the sphere, the steady streaming
is dominated by the slowest decaying term. If S1 ̸= 0 then the slowest decaying flow is the
stokeslet with the velocities decaying as S1/r. This produces a non-zero force along the axis
of rotational symmetry and this gives a clear movement of flow parallel to this axis - either in
the positive (Fig.1.5c) or negative direction (Fig.1.5d). If S1 = 0 the body has no force acting
on it, as seen in Fig.1.5a and Fig.1.5b where the symmetry of the system prevents a net force
from being induced. Generally, a net force is created only if two adjacent modes are non-zero,
as otherwise aknm, gknm, fknm are all zero and the aknmcn j combinations cancel.

If the stokeslet coefficient, S1, is zero the far field behaviour is dominated by a slower
decaying term. In most cases it will be a stresslet with associated velocities decaying as S2/r2.
This is the flow seen in Fig.1.5a. If S1 = S2 = 0 are both zero then the far-field behaviour is
dominated by the (Tk +Sk+2)/rk+2 term for the lowest value of k ≥ 1 such that (Tk +Sk+2) is
non-zero.

Close to the spherical body, circulation regions will form. If there is a stokeslet, this term
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(b) Oscillating with V2 = 1 only. This corres-
ponds to the body oscillating between an oblate
and prolate spheroid.
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(c) Positive force by oscillating at two modes
V1 =

1√
2
, V2 =

1√
2
,W1 =

−3√
2

and W2 =
2√
2
. This

oscillation shape is a combination of a transla-
tional oscillation and an oscillation between a
prolate and oblate spheroid.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(d) Negative force by oscillating at two modes
V1 =

1√
2

and V2 =
1√
2
. This oscillation shape is a

combination of a translational oscillation and an
oscillation between a prolate and oblate spher-
oid.

Figure 1.5: Patterns of steady streaming for the first few surface oscillation modes.
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tends to dominate the flow and even close to the body circulation regions rarely appear. The
one exception is close to the axis of symmetry where a pair of large circulations will sometimes
form, either just above or just below the sphere (see Fig.1.5c and Fig.1.5d). Since the flow is
axisymmetric, this corresponds to a recirculation torus.

Intuitively, one would expect that the shape of the volume physically displaced by the
spherical body (set by the modes Vn) would have a significant effect on the features of the flow
field. But as discussed in §1.7, the angular motion on the surface can produce a flow of similar
magnitude, and in fact it can change the direction of the circulations and the streaming flow
(and hence the direction of the body force applied to the spherical object) as demonstrated in
Fig.1.5d and Fig.1.5c. Another example of this, already seen in §1.8, displayed the streaming
flow difference between a translating bubble (Fig.1.3) and a translating sphere in (Fig.1.4).

1.10 Application: force generation and propulsion

In our current setup, the sphere is held fixed, and the force exerted by the oscillations of the
surface of the spherical body on the fluid is computed. However, by Newton’s law, an equal
and opposite force is being applied to the spherical body from the fluid. If the spherical body
is not held in place then this would cause it to move. Mathematically, a net motion of the body
is necessarily a second-order effect as all leading-order effects are oscillatory and produce
no net motion or forces. Hence allowing the body to move will only slightly modify our
mathematical approach. In this section we characterise the force induced by a fixed body and
then adapt the calculation for the case where the body is free to move.

1.10.1 Force generation

Due to the axisymmetry of the system a net force can only be exerted along the axis of rota-
tional symmetry, taken to be ez using traditional notation from spherical coordinates. We thus
write F = Fez, for F the magnitude of F .

The time averaged force on the spherical body is equal to the force across the boundary of
our spherical object at r = R, i.e.

F =

〈∫ (
σ ·n

)
|r=R(µ)dS

〉
. (1.94)

This force must match the force across the boundary “r = ∞” and thus

F =−
〈∫ (

σ ·n
)
|r=∞dS

〉
. (1.95)
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Across r =∞, if the time average is taken then there will only be a contribution from the second
order term as all first-order terms are oscillatory. Also, the region r = ∞ is now outside the
boundary layer, where, due to the exponential decay of the non-linear terms, the time-averaged
behaviour is a Stokes flow. Outside the boundary layer, the slowest decaying velocity is the
1/r term. This velocity field at leading order in r is

ur = S1
cosθ

r
+O(r−3), (1.96)

uθ =−S1
sinθ

2r
+O(r−3). (1.97)

This is the stokeslet discussed above. Indeed a non-dimensional stokeslet due to a force F
applied at the origin induces a flow U with components

U j =
Fi

8π

(
δi j

r
+

xix j

r3

)
. (1.98)

With a force in the ez direction this gives

Ur =
F

4πr
cosθ , (1.99)

Uθ =− F
8πr

sinθ . (1.100)

Equating these two forms of the stokeslet shows the non-dimensional force exerted on the
spherical body by the surrounding fluid is

F =−8πε
2 S1

2
ez. (1.101)

This force is the result of a dominant pressure field, thus the dimensional scaling for the
pressure indicates the scaling for the force. The Navier-Stokes equations indicate that the
pressure scales with time varying inertia so p∼ ρUaω ∼ ρa2ω2 implying that the dimensional
force is

F =−4πε
2S1
(
ρa4

ω
2)ez. (1.102)

1.10.2 Force-free swimming

If the spherical body is no longer held in place but is free to move, it will translate with an
O(ε2) velocity in the direction of this force. However, the constraint of force-free motion
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needs to be carefully enforced at both O(ε) and O(ε2) and being free to move will in general
also impact the first-order oscillatory motion.

1.10.2.1 Force-free motion at O(ε)

At O(ε) the motion of the spherical body is completely determined by the constants Vn and
Wn. Up to now these coefficients could be chosen arbitrarily to represent any surface motion.
The extra constraint of force-free motion will now restrict the allowed motion of the spherical
body, therefore restricting choices of Vn and Wn.

Mathematically, force-free motion is written as

F =
∫ (

σ ·n
)
|r=R(µ,t)dS = 0. (1.103)

The normal vector to the surface of the spherical body is

n̂ = er −
∂R
∂θ

eθ +O(ε2). (1.104)

Knowing that the direction of F is in the ez direction by symmetry, this becomes

F =

[∫
(σrr cosθ −σθr sinθ) |r=1dS+O(ε2)

]
ez. (1.105)

This can then be non-dimensionalised and the integral expanded to give

F =

{∫ 2π

0

∫
π

0

[(
−p+δ

2 ∂ur

∂ r

)
cosθ − δ 2

2

(
1
r

∂ur

∂θ
+

∂uθ

∂ r
− uθ

r

)
sinθ

]
×

sinθ dθ dφ +O(ε2)

}
ez. (1.106)

The first-order pressure can be calculated by substituting the first-order solution for ψ1, Eq.1.28,
into the Navier-Stokes equation to obtain

p = eit
∞

∑
n=0

Pn(µ)

(
iDn

(n+1)rn+1

)
. (1.107)

Then notice, using integration by parts and Legendre identities, that∫
π

0
Pn(µ)cosθ sinθdθ =

2
3

δ1n for n ≥ 0, (1.108)∫
π

0
(1−µ

2)−
1
2

(∫ 1

µ

Pn(x)dx
)

sin2
θ dθ =

2
3

δ1n for n ≥ 1. (1.109)
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Therefore the force-free condition will only affect the n = 1 mode. Then as we have the
scalings

∂ur

∂ r
∼ O(1),

∂ur

∂θ
∼ O(1),

∂uθ

∂ r
∼ O(δ−1), uθ ∼ O(1), p ∼ O(1), (1.110)

at the two leading orders in δ only pressure and the viscous stress ∼ ∂uθ/∂ r will contribute
to the force, leading to

F =
4π

3
eit
[
− i

2
V1 +δ

(1+ i)
4

(W1 +V1)+O(δ 2)

]
ez. (1.111)

For the spherical body to be force-free we thus need V1 = W1 = 0. In other words, if the
boundary conditions are such that V1 ̸= 0 and W1 ̸= 0 for a fixed sphere, then the force-free
sphere will undergo additional oscillatory motion to compensate and lead to V1 =W1 = 0 over-
all. Physically the V1 mode corresponds to the sphere undergoing translational oscillations. So
for the body to be force free the translational oscillations are suppressed. At O(ε), since the
behaviour is linear, for most angular surface boundary conditions, W1 will be directly depend-
ent on the value of V1 so a condition restricting translational oscillations would be anticipated
to effect the angular motion at this mode too.

1.10.2.2 Force-free motion at O(ε2)

In order for the motion of the sphere at O(ε) to be force-free, we saw that two of the surface
coefficients become zero. Beyond that, the model has not fundamentally changed. We can
thus use our mathematical framework to calculate the velocity of translation at O(ε2) in terms
of the force generated by the oscillating body, which was force-free at first order.

We use Ṽ to denote the non-dimensional time-averaged velocity of the body at order ε2.
In order to use the same formulation as above, we move into a frame of reference where the
body undergoes no net motion at O(ε2) in the z direction. Mathematically, this keeps all the
boundary conditions the same as above except now requires in the far field that

ψ ∼−ε
2Ṽ

r2

2
(1−µ

2), r → ∞. (1.112)

As this is an outer boundary condition, the form of the second-order inner solution remains
unchanged. Therefore, the main change is in the second-order outer solution. The general
form of this outer streaming is still given by Eq.1.64 (which is still a Stokes approximation
since the non-linear forcing term can be neglected due to its exponential decay rate). The
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difference is that applying the new boundary condition Eq.1.112 allows one more term than
before to be non-zero so we have

⟨ψo
2 ⟩= R̃0

(∫ 1

µ

P0(x)dx
)
+(−Ṽ r2 + T̃1r−1 + S̃1r)

(∫ 1

µ

P1(x)dx
)

+
∞

∑
n=2

(
T̃nr−n + S̃nr−(n−2)

)(∫ 1

µ

Pn(x)dx
)
. (1.113)

Then when comparing this outer solution to the inner solution Eq.1.68, Eq.1.69 and Eq.1.70
all still hold for k ̸= 1 but for k = 1 we instead have

L1 = T̃1 + S̃1 −Ṽ , (1.114)
M1

δ
= S̃1 − T̃1 −2Ṽ . (1.115)

In order to determine the value of Ṽ we enforce that the time-averaged second-order solu-
tion be force-free so we have

F =

〈∫ (
σ ·n

)
|r=R(µ,t)dS

〉
= 0. (1.116)

Contributions to this integral will come from linear terms involving the internal second-order
solution, ψ i

2, as well as non-linear terms involving the first order solution ψ1.

As the form of the first-order solution has not changed, the contributions from those non-
linear terms remain the same as when we restrict Ṽ = 0 (i.e. no second-order translation).
However, the second-order internal solution will give a slightly different contribution as the
values of the constants of integration Nk and Qk have changed.

Looking at the second-order internal solution only the constants of integration Lk, Mk, Nk

and Qk could be different. But changes will only occur for k = 1 since for other values of k the
outer solution is as before. Furthermore, the constants L1 and M1 are the same as before since
their values were determined by the boundary conditions on the surface of the body, which are
the same. We use the asymptotic matching in order to determine the values of T1 and S1 in
terms of the known values L1 and M1 and this is then used to calculate the new values of N1

and Q1.

In this new system we have

L1 =

(
T̃1 +

Ṽ
2

)
+

(
S̃1 −

3Ṽ
2

)
, (1.117)
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M1

δ
=

(
S̃1 −

3Ṽ
2

)
−
(

T̃1 +
Ṽ
2
,

)
, (1.118)

N1

δ 2 = T̃1 −Ṽ =

(
T̃1 +

Ṽ
2

)
− 3Ṽ

2
, (1.119)

Q1

δ 3 =−T̃1 =−
(

T̃1 +
Ṽ
2

)
+

Ṽ
2
· (1.120)

Compared to S1 and T1 in the first-order force-free case, T1 = T̃1 + Ṽ/2 and S1 = S̃1 −3Ṽ/2.
Therefore, the drag force on the sphere will be the same as before, −4πµS1ez plus an extra
contribution from the −3Ṽ/2 extra term in N1 and the Ṽ/2 term in Q1.

Knowing n̂ from Eq.1.104 and that the direction of F is still in the ez direction means we
have

F =

〈∫ [(
σrr − ε

∂R
∂θ

σθr

)
cosθ −

(
σθr − ε

∂R
∂θ

σθθ

)
sinθ

]
|r=R(µ,t)dS

〉
ez. (1.121)

We see that the extra contributions to F can only come from the linear terms evaluated at r = 1
(so η = 0) i.e.

σrr cosθ −σθr sinθ =

[(
−p+δ

2 ∂ur

∂ r

)
cosθ − δ 2

2

(
1
r

∂ur

∂θ
+

∂uθ

∂ r
− uθ

r

)
sinθ

]
. (1.122)

In σθr there will only be an extra N1 contribution arising from the ∂uθ/∂ r term. Any extra
contribution from σrr will come from the pressure term. The non-dimensional second-order
equation for the pressure is

ε ⟨u ·∇u⟩=−∇⟨p⟩+ δ 2

2
µ∇

2 ⟨u⟩ , (1.123)

where the pressure scales as p∼ ρaUω . Then ⟨u ·∇u⟩ gives a contribution in terms of ψ1 only.
There is however an extra contribution coming from ∇2 ⟨u⟩. By looking at the θ component
of this equation, and noticing that we are evaluating at r = 1 in the integral, we see we are
only interested in terms with no dependence of η . Then it can be found that the additional
contribution comes from Qk only (with none from Nk), and is given by

p =
3
2

δ
2
(

Q1

δ 3

)
P1(µ). (1.124)
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The extra contribution to F coming from the ∂uθ/∂ r term in σθr and from the pressure is

δ
2
∫ 2π

0

∫
π

0

[(
−3Ṽ

4

)
sin3

θ −
(

3Ṽ
4

)
cos2

θ sinθ

]
dθdφ =−3πδ

2V. (1.125)

Therefore, the total non-dimensional force on the spherical body is

F = ε
2 (−4πS1 −3πδ

2Ṽ
)

ez. (1.126)

For the body to be force free its dimensional velocity must therefore be

Ṽ =− 4
3δ 2 (aω)S1, (1.127)

which we can use to calculate a numerical value for Ṽ .
The relationship between the force on the body and its velocity is given by substituting

this value of S1 into Eq.1.102 giving

F = 3πε
2
δ

2Ṽ (ρa3
ω)ez. (1.128)

Then substituting the scaling for δ 2 given by Eq.1.8 finally leads to

F = 6πε
2Ṽ (aρν)ez. (1.129)

We recognise the standard result for a solid sphere translating at speed ε2Ṽ in a Stokes flow.
Since outside the boundary layer the flow is a Stokes flow, such a similarity was in fact expec-
ted (corrections for non-sphericity are expected at higher orders in ε).

1.11 Conclusion

In this chapter we have mathematically derived the steady streaming flow generated by arbit-
rary axisymmetric shape oscillations of a spherical body. The final solution, and thus the main
result of this chapter, is quantified in Eqs.1.75−1.78.

Our model, which agrees with classical results, shows that a net force is generated in the
far field only when two adjacent surface modes are excited. If the body is free to move, this
force will cause the body to move with a net velocity, which we derived, given by a balance
between that streaming force and the Stokes drag (Eq.1.127).

Having kept the boundary forcing arbitrary makes our model applicable to a wide range of
microorganisms and microfluidic devices. Future work could involve determining the impact
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of inertia on the optimal swimming shape and associated efficiency of larger microorganisms
(such as Spirostomum [57]), which may swim in regimes with non-negligible convective iner-
tia. In addition, using this framework the study of active colloids could be extended to inertial
regimes, from the extensively studied low Reynolds number regimes [65].

Recent experimental work has used bubbles embedded in free-moving hollow bodies to
generate propulsion [46] and our formalism will be directly applicable to this new class of syn-
thetic swimmers. In particular, in Chapter 2 we use our calculations to determine the streaming
flow induced by such micron-sized “Armoured Microbubbles”. Our analysis could be exten-
ded to a wider range of experimental parameters and could help improve future designs.

Since this model calculates the streaming flow around a spherical body, it could be used
to study collective flows of these “Armoured Microbubbles” or other spherical bodies with
complex surface shape oscillations where inertia is non-negligible, by linearly superposing
their individual flows and correcting for other close bodies where necessary, using methods
similar to Faxen’s corrections for example. However, this model would need adapting to allow
the spherical body to move rather than holding it stationary. The main problem, which may
prevent this model being used to study (in particular, dense) collective flows, is in determining
the effects when two bodies become close enough so that they significantly effect each others
non-linear boundary layer (such as during collisions), and that scenario may require a different
model to study it.

1.13 Appendix A: Out-of-phase streaming around a bubble

In order to apply the general steady streaming model Eq.1.75 specifically to a bubble the
boundary condition of tangential stress on the boundary of the spherical body,

n ·σ ·Γ = 0 at r = R, θ=Θ, (1.130)

needs to be applied. This will determine the angular motion on the surface of the bubble Wn

and Fn in terms of a prescribed radial motion Vn.

1.13.1 Boundary condition

We denote the unit tangent vector to the body’s surface in the plane through the axis of sym-
metry, Γ, and the normal vector n. Both can be calculated in terms of er and eθ measured from
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the centre of the rest position of the body giving

Γ = eθ +
∂R
∂θ

er +O(ε3), (1.131)

n = er −
∂R
∂θ

eθ +O(ε3). (1.132)

Using these equations the no stress condition can be expanded in terms of ε giving the first
two terms as

σθr +
∂R
∂θ0

(σrr −σθθ )+O(ε3) = 0 at r = R, θ=Θ, (1.133)

becoming

σθr +(R−1)
∂σθr

∂ r
+(Θ−θ0)

∂σθr

∂θ
+(σrr −σθθ )

∂R
∂θ

+O(ε3) = 0

at r = 1, θ = θ0. (1.134)

1.13.2 Leading-order solution

At O(ε), Eq.1.134 reduces to the non-dimensional equation(
1
r

∂ur

∂θ
+

∂uθ

∂ r
− uθ

r

)
= 0 at r = 1, θ = θ0. (1.135)

By substituting in the known first-order solution ψ1, Eq.1.28, this equation can be used to
determine Wn giving

Wn =−nVn +δ
2n(n+2)
(1+ i)

Vn +δ
2in(n+2)2Vn +O(δ 3). (1.136)

1.13.3 Second-order solution

At O(ε2), after Taylor expansion of σθr Eq.1.134 reduces to the non-dimensional equation

σ
(ε2)
θr =−(R−1)

∂σ
(ε)
θr

∂R
− (Θ−θ0)

∂σ
(ε)
θr

∂θ
− ∂R

∂θ0

(
σ
(ε)
rr −σ

(ε)
θθ

)
at r = R, θ=Θ, (1.137)
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where superscripts indicate the order at which each term is to be taken. Upon substitution of
R , Θ and σ , Eq.1.137 becomes

(
(1−µ

2)
∂ 2ψ i

2
∂ µ2 +2

∂ψ i
2

∂ r
−

∂ 2ψ i
2

∂ r2

)
= ℜ

[
i

∞

∑
n=0

VnPn(µ)eit

]
×

ℜ

[
(1−µ

2)
∂ 3ψ1

∂ µ2∂ r
+3

∂ 2ψ1

∂ r2 − ∂ 3ψ1

∂ r3 −3(1−µ
2)

∂ 2ψ1

∂ µ2 −4
∂ψ1

∂ r

]
+

ℜ

[
εi

∞

∑
n=1

Wn

(∫ 1

µ

Pn(x)dx
)

eit

]
ℜ

[
µ

(1−µ2)

(
(1−µ

2)
∂ 2ψ1

∂ µ2 +2
∂ψ1

∂ r
− ∂ 2ψ1

∂ r2

)
+

∂

∂ µ

(
(1−µ

2)
∂ 2ψ1

∂ µ2

)
+2

∂ 2ψ1

∂ r∂ µ
− ∂ 3ψ1

∂ r2∂ µ

]
−ℜ

[
εi

∞

∑
n=0

n(n+1)Vn

(∫ 1

µ

Pn(x)dx
)

eit

]

×
[

6
∂ψ1

∂ µ
−4

∂ψ1

∂ r∂ µ
−2

µ

(1−µ2)

∂ψ1

∂ r

]
at r = 1, θ = θ0. (1.138)

The forcing on the right-hand side of Eq.1.138 can be calculated explicitly from the derivatives
of ψ1, Eq.1.28, simplifying the equation to

〈
(1−µ

2)
∂ 2ψ i

2
∂ µ2 +2

∂ψ i
2

∂ r
−

∂ 2ψ i
2

∂ r2

〉
=

i
2

∞

∑
k=0

∞

∑
n=0

∞

∑
m=1

aknm

{
−V̄nVmm(m2 +2)+

V̄nWm(m+2)2 −4W̄nVmm(m+1)+V̄n(Wm +mVm)

[
2i

1
δ 2 +

1
δ
(m+3)(1+ i)+

1
2

m(2m+3)
]
− 1

δ
(W̄n +nV̄n)Wm(1− i)+V̄nWmn(n+2)−W̄nWm(n+2)

+
∞

∑
j=1

Cn j

j( j+1)

[
1
δ

Wm
(
W̄j + jV̄j

) (1− i)
j( j+1)

+Wm
(
W̄j − jV̄j

) ( j+2)
j( j+1)

+2VmW̄jm(m+1)
]}∫ 1

µ

Pk(x)dx. (1.139)

The left hand side of Eq.1.138 can be evaluated using ψ i
2 from Eq.1.59 and the value of

the three constants of integration, Lk, Mk and Nk, are needed. The constants Lk and Mk were
calculated in Eq.1.60 and Eq.1.61. From the asymptotic matching Lk and Mk are known in
terms of Tk and Sk, Eq.1.68 and Eq.1.69. Matching at one higher order determines Nk in terms
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of Tk and Sk, then using Eq.1.68 and Eq.1.69, Nk can be written in terms of Lk and Mk giving

Nk =

[
(2− k)k

2
Lk +

(1−2k)
2

Mk

δ

]
δ

2. (1.140)

Using Eq. 1.138 leads to an equality for ∑
∞
k=1 Fk

(∫ 1
µ

Pk(x)dx
)

at leading order, O(1). As

this must hold for all µ ∈ [−1,1], the coefficients of
(∫ 1

µ
Pk(x)dx

)
must equate for each k,

and thus this will give an equation for every Fk separately. Upon substitution of Eq.1.136 the
equation for Fk at order δ reduces to

1
δ

F(δ )
k =−

∞

∑
n=0

∞

∑
m=1

aknm

[
1
2

V̄nVmm(m+4+n)i+
∞

∑
j=1

(
Cn j

j+1

)
1
2

V̄mVjmi

]

−V0V̄k
3ki

(2k+1)
−

∞

∑
n=0

∞

∑
m=1

gknmV̄nVm
9ki

2(2k+1)

+
∞

∑
n=1

∞

∑
m=1

fknmV̄nVm
3k(n+2)i

2(2k+1)(n+1)(m+1)

+
∞

∑
n=0

∞

∑
m=1

aknm

(2k+1)

[
V̄nVm

(
n2 −4nm−4n+m2 −m−3

)
mi

+
∞

∑
j=1

(
Cn j

j+1

)
VmV̄jm(3m+5)i

]
. (1.141)

Then substituting F(δ )
k into Eq.1.77 and Eq.1.78 finally gives

Tk = ℜ

{
V0V̄k

(1− k2)i
(2k+1)

+
∞

∑
n=1

∞

∑
m=1

fknmV̄nVm

(
k2 − k−1

)
(n+2)i

2(2k+1)(n+1)(m+1)

+
∞

∑
n=0

∞

∑
m=1

gknmV̄nVm
3(1− k2)i
2(2k+1)

+
∞

∑
n=0

∞

∑
m=1

aknm

2(2k+1)

[
V̄nVm

(
n2 −4nm−4n

+m2 −m−3
)

im+
∞

∑
j=1

(
Cn j

j+1

)
VmV̄jm(3m+5)i

]}
+O(δ ), (1.142)

and

Sk = ℜ

{
V0V̄k

k(k+2)i
(2k+1)

−
∞

∑
n=1

∞

∑
m=1

fknmV̄nVm
(2k+4)k(n+2)i

4(2k+1)(n+1)(m+1)

+
∞

∑
n=0

∞

∑
m=1

gknmV̄nVm
3k(k+2)i
2(2k+1)

−
∞

∑
n=0

∞

∑
m=1

aknm

2(2k+1)

[
V̄nVmmi

(
n2 −4nm−4n
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+m2 −m−3
)
+

∞

∑
j=1

(
Cn j

j+1

)
VmV̄jm(3m+5)i

]}
+O(δ ), (1.143)

which with Eq.1.76 gives the value of all the constants in the streaming solution Eq.1.75.

1.14 Appendix B: In-phase streaming around a bubble

Notice, from the solution of the steady streaming around a bubble given in Appendix A
(§1.13), that all terms in Eq.1.143, Eq.1.142 and Eq.1.76 are multiplies of iVmV̄k for some
integers m,k ≥ 0. As such Appendix A (§1.13) only gives the solution for out-of-phase mo-
tion of the bubble, as otherwise that solution is identically zero. Therefore, for these cases, the
steady streaming needs to be calculated to the next order, namely O(δ ).

Since here the analysis is to one higher order in δ this could require more stringent condi-
tions than ε ≪ δ ≪ 1 relationship. However, the order change is due to terms being identically
zero, which we expect to continue at higher orders in ε so the same relationship should hold.

Inner-solution at third order in δ

In order to find the steady streaming at O(δ ), the asymptotic matching must be carried out
at one higher order. As such the inner second-order solution must be calculated to an extra
order in δ . Therefore, more terms will be required in the δ expansions, so we first return to
the second-order, inner governing equation

δ 2

2
⟨D4

ψ
i
2⟩=

1
r2

〈
∂ (ψ1,D2ψ1)

∂ (r,µ)
+2Lψ1Dψ1

〉
. (1.144)

When expanding the left hand side in δ , the O(1) terms in δ now contribute to the streaming
as well as the O(δ−2) term so we have

δ 2

2
⟨D4

ψ
i
2⟩=

1
2δ 2

∂ 4⟨ψ i
2⟩

∂η4 +(1−µ
2)

∂ 4⟨ψ i
2⟩

∂η2∂ µ2 +O(δ ). (1.145)

From Eq.1.59, the O(1) (leading-order) solution of ⟨ψ i
2⟩ is known. The second term in

Eq.1.145 will only make an O(1) or lower contribution from this term so the governing equa-



1.14 Appendix B: In-phase streaming around a bubble 51

tion for the first three orders of ⟨ψ i
2⟩ can be simplified to

∂ 4⟨ψ i
2⟩

∂η4 =
2δ 2

r2

〈
∂ (ψ1,D2ψ1)

∂ (r,µ)
+2Lψ1Dψ1

〉
+δ

2
∞

∑
k=1

∞

∑
n=0

∞

∑
m=1

aknm

[
2V̄n(Wm +mVm)k(k+1)e−(1+i)η

](∫ 1

µ

Pk(x)dx
)
+O(δ 3). (1.146)

Expanding the term
〈
∂ (ψ1,D2ψ1)/∂ (r,µ)+2Lψ1Dψ1

〉
to O(δ 2) and then substituting into

Eq.1.146 gives an equation for
〈
∂ 4ψ i

2/∂η4〉, which can be integrated twice to find that the
O(δ 2) (only) term in

〈
∂ 2ψ i

2/∂η2〉 is

〈
∂ 2ψ i

2
∂η2

〉(δ 2)

=
∞

∑
k=1

∞

∑
n=0

∞

∑
m=1

aknm

{
−(W̄n +nV̄n)Vmmi

(n
2
−m−3

)
+(W̄n +nV̄n)(Wm +mVm)

(
i
2
(1−m+n)−2− n

2

)
+V̄n (Wm +mVm) i

(
−5n2

4
− 21n

4
+nm+m+

m2

4
−3− t2 − t

)
+

∞

∑
j=1

(
Cn j

j( j+1)

)[
(Wm +mVm)(W̄j + jV̄j)

(
1+ i− m

2
− i j

2
+ j
)

+(Wm +mVm)V̄ji j(2 j+6−m)

]}∫ 1

µ

Pk(x)dx. (1.147)

The O(δ 2) contribution to⟨ψ i
2⟩ can be calculated by integrating twice more but in order to

satisfy the no tangential stress boundary condition only
〈
∂ 2ψ i

2/∂η2〉 is required at O(δ 2).

Notice that every term in ⟨ψ i
2⟩ up to and including O(1) is a multiple of Wn+nVn for some

n so every term will drop an order when the first order stress condition Wn = −nVn +O(δ )

is applied. Similarly, higher-order terms in ⟨ψ i
2⟩ will also be multiples of Wn + nVn since

in
〈
∂ (ψ1,D2ψ1)/∂ (r,µ)+2Lψ1Dψ1

〉
every term is a multiple of Bn ∝ (Wn + nVn) and in

⟨D4ψ i
2⟩ extra terms in its delta expansion will be in terms of lower orders of ⟨ψ i

2⟩, which are
also proportional to Wn + nVn. Therefore, even when calculating the streaming to O(δ ) for a
bubble, only the first three terms up to O(1) are needed in the equation for the inner streaming.

Constants of integration

The second order inner solution ⟨ψ i
2⟩ is of the form



52 Acoustic Streaming around a Spherical Body

⟨ψ i
2⟩=

∞

∑
k=1

[
fk(η)+δgk(η)+δ

2hk(η)+Lk +Mkη +Nkη
2 +O(δ 3)

]
×(∫ 1

µ

Pk(x)dx
)
, (1.148)

where f and g are known from Eq.1.59 and h could be found by integrating Eq.1.147. The
no-tangential stress boundary condition then gives

〈
(1−µ

2)
∂ 2ψ i

2
∂ µ2 +2

∂ψ i
2

∂ r
−

∂ 2ψ i
2

∂ r2

〉
=

∞

∑
k=1

{
− 1

δ 2
∂ 2 fk

∂η2 +
1
δ

(
2

∂ fk

∂η
− ∂ 2gk

∂η2

)
+

[
−k(k+1) fk(η)+2

∂gk

∂η
− ∂ 2hk

∂η2 +2
1
δ

Mk −2
1

δ 2 Nk − k(k+1)Lk

]}
×(∫ 1

µ

Pk(x)dx
)
. (1.149)

The O(δ−2) terms will cancel with the O(δ−2) quantity in Eq.1.139. The O(δ−1) terms do
not cancel exactly but when taking Wn =−nVn +O(δ ) (the first order bubble condition) they
do. Therefore, the O(1) terms will give the leading-order behaviour for which the value of the
constants Lk, Mk and Nk are needed. The constants Lk and Mk were calculated in Eq.1.60 and
Eq.1.61 and Nk can be written in terms of Lk and Mk, Eq.1.140.

Next, Eq.1.149 can then be equated with Eq.1.139 to give the algebraic condition for no
tangential stress. This will give a condition on Mk and Lk but Lk is uniquely determined by
the boundary condition: the radial velocity of the bubble equals the radial velocity of the fluid
adjacent to the bubble. The constant Mk was also determined but is a function of the unknown
Fk, which this no tangential stress condition will determine. However, Fk uniquely determines
Mk so this equation can be considered as just determining Mk giving

− 1
δ

Mk(2k+1) =−3Lkk+
∞

∑
n=0

∞

∑
m=1

aknm

(
1
δ

{
1
2
(W̄n +nV̄n)(Wm +mVm)(i−1)

+
1
2

V̄n(Wm +mVm)(1− i)(2n+3)+
∞

∑
j=1

Cn j

j( j+1)

[
1
2
(Wm +mVm)(W̄j + jV̄j)(1+ i)

−(Wm +mVm)V̄j j(1− i)− 1
2

Wm
(
W̄j + jV̄j

) (1+ i)
j( j+1)

]}
+{

(W̄n +nV̄n)Vm

(n
2
−m−2

)
mi− 1

2
(W̄n +nV̄n)(Wm +mVm)(in− im+n−1)

−V̄n (Wm +mVm) i
[
−5n2

4
− 9n

4
+nm +

m2

4
+1− 3

2
k(k+1)+

1
4
(2m2 +3m)

]
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− 1
2

V̄nWmn(n+2)i+
1
2

W̄nWm(n+2)i

+
1
2

V̄nVmm(m2 +2)i− 1
2

V̄nWm(m+2)2i+2W̄nVmm(m+1)i

+
∞

∑
j=1

Cn j

j( j+1)

[
−(Wm +mVm)(W̄j + jV̄j)

(
1
2
(1+ i)− 1

2
(m+ i j)+ j

)
−

(Wm +mVm)V̄ji j(2 j+4−m)−VmW̄jm(m+1)i− 1
2

Wm
(
W̄j − jV̄j

) ( j+2)i
j( j+1)

]})
+O(δ ). (1.150)

When applying the first-order stress boundary condition of Eq.1.136, all terms drop by one
order in δ . Then assuming the O(1) terms cancel (which is required for the result in the first
appendix of §1.13 not to give the solution) this gives Mk at O(δ ). Then Lk can be calculated
at O(δ ) by applying Eq.1.34 at O(δ ) to ⟨ψ i

2⟩ of Eq.1.59. This gives

Lk = δ

{
∞

∑
n=0

∞

∑
m=1

1
2

aknmV̄nVmm(m+2)(1+ i)−
∞

∑
n=0

∞

∑
m=0

1
2

gknmV̄nVmm(m+2)(1+ i)

+
∞

∑
n=1

∞

∑
m=1

1
2

fknmV̄nVm
(n+2)(m+2)(1+ i)

(n+1)(m+1)
−

∞

∑
n=1

∞

∑
m=1

1
2

fknmV̄nVm
(n+2)(1− i)
(n+1)(m+1)

}
, (1.151)

and the simplified Mk expression

1
δ

Mk = Lk

(
3k

2k+1

)
−δ

∞

∑
n=0

∞

∑
m=1

aknm

(2k+1)

{
−V̄nVmnm(n+2)(2m+1)(1− i)

+
1
4

V̄nVm
(
n2 +9n−5m2 +6t(t +1)−5m

)
(1+ i)m(m+2)

+
∞

∑
j=1

(
Cn j

j( j+1)

)
VmV̄jm j [(m+1)( j+2)(1− i)− (m+2)( j+4)(1+ i)]

}
. (1.152)

Outer streaming constants

Using the matching conditions Eq.1.71 and 1.72 gives

Tk = δℜ

(
∞

∑
n=1

∞

∑
m=1

fknmV̄nVm
(1− k2)(n+2) [(m+2)(1+ i)− (1− i)]

2(2k+1)(n+1)(m+1)
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−
∞

∑
n=0

∞

∑
m=0

gknmV̄nVm
(1− k2)m(m+2)(1+ i)

2(2k+1)

+
∞

∑
n=0

∞

∑
m=1

aknm

2(2k+1)
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4

V̄nVm
(
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)
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+
∞
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(
Cn j

j+1
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VmV̄j [m(m+1)( j+2)(1− i)−m(m+2)( j+4)(1+ i)]
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, (1.153)

and

Sk = δℜ

(
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∞
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m=1

fknmV̄nVm
k(k+2)(n+2) [(m+2)(1+ i)− (1− i)]

2(n+1)(m+1)(2k+1)
−

∞
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∞
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+

∞
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∞
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aknm

2(2k+1)

{
−1

4
V̄nVmm(m+2)

×
[
n2 +9n −5m2 −5m+2k(k−1)

]
(1+ i)+V̄nVmn(n+2)m(2m+1)(1− i)

−
∞

∑
j=1

(
Cn j

j+1

)
VmV̄j [m(m+1)( j+2)(1− i)−m(m+2)( j+4)(1+ i)]

})
, (1.154)

which, with Yknm = 0, give the value of all the constants in the Lagrangian streaming solution
of Eq.1.75.



Chapter 2

Resonances and streaming of an
armoured microbubble

The main results presented in this chapter have been published in: “Bubble-based acous-
tic micro-swimmers”, Nicolas Bertin, Tamsin A. Spelman, Olivier Stephan, Laetitia Gredy,
Michel Bouriau, Eric Lauga and Philippe Marmottant, Physical Review Applied, 4:064012,
2015 [48] (copyright 2015 by the American Physical Society). The work on double and triple
multipropulsors is included in our published paper: “Bubble-based acoustic micropropulsors:
active surfaces and mixers”, Nicolas Bertin, Tamsin A. Spelman, Thomas Combriat, Hervé
Hue, Olivier Stéphan, Eric Lauga and Philippe Marmottant, Lab on a Chip, 17:1515-1528 ,
2017 [66] (adapted by permission of the Royal Society of Chemistry).

This chapter focuses on studying the Armoured Microbubble (AMB) built by our exper-
imental collaborators Nicolas Bertin and Philippe Marmottant, based at the University Gren-
oble Alpes, studying its resonances and streaming flow. We will first give details of the exper-
iments in §2.1, then discuss the resonances of the AMB in §2.2. We then use the streaming
model from Chapter 1 to calculate the streaming flow around the AMB in §2.3 and finally look
at the streaming flow and resonances of multipropulsor compounds in §2.4.

2.1 Experiments

An AMB is a hollow partial sphere inside which a microbubble can be caught, see Fig.2.1a.
Therefore, the surface of the device is mostly solid with a spherical bubble cap. Under ultra-
sound forcing, the spherical bubble cap oscillates applying a net force to the surrounding fluid,
which generates a streaming flow in the fluid.
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The capsule is constructed using two-photon polymerisation, attached to a wall by a tower
of height H, see Fig.2.1a. If the AMB is being used for free-swimming, it can then be disat-
tached from the tower. When a liquid is poured over the capsule, an air bubble can become
trapped inside. In deionised water the AMB lasted approximately 15min without ultrasound
and 1min under ultrasound forcing. Thus, experiments were conducted in 25−wt% NaCl
solution, which increased the life-span of the AMBs to hours. (It was also later discovered
that salianising the capsule improved bubble lifespan.)

The minimum shell thickness a capsule can be fabricated with is approximately 0.5 µm.
However, we generally used capsules with shell thicknesses of 1 µm, for the additional strength
provided by the thicker shell. The standard experimental AMB had a radius a = 9− 10 µm
and aperture opening b = 5 µm. These dimensions can be changed but these sizes were exper-
imentally found to be good for bubble life-span. In the extreme when b/a becomes too large
the bubble either never becomes trapped or escape very quickly.

The streaming flow around the AMB was experimentally observed by tracking the motion
of 2 µm spherical particles in the flow using a Phantom v2511 high-speed camera. We assume
the paths of the tracer particles are the streamlines of the flow, but we note that the tracer
particle has a non-zero size so due to the interactions between themselves and the AMB or
the wall when they are close, the tracer particle paths will not perfectly match the streamlines
of the flow. You observe this effect when tracer particles become stuck on the AMB surface,
particularly on the bubble interface. However, in the bulk of the flow, we expect these effects
to be small due to the small size of the tracer particles. In theoretical calculations, Faxon’s
corrections can be used to calculate corrections to the particle velocity due to interactions with
a nearby sphere or wall. Also, this disparity between particle paths and streamlines can be
used to sort particles based on their size, such as in the work of Thameem et. al. [67], but their
particles were much larger than our tracer particles with diameters of 5 µm and 10 µm.

Experimental ease and accuracy were increased by keeping the AMB attached to its tower
of height H = 10 µm, 20 µm or 30 µm. For these experiments the AMB was forced at an
ultrasound frequency close to its resonance frequency, as the AMB only generates significant
streaming at a driving frequency close to its resonance. For an AMB on a H = 30 µm tower
(where wall effects are minimal) the AMB generates a streaming pattern with flow being
pulled in from behind and then pushed away in a strong jet in front of the orifice, see Fig.2.1b.
When separated from the tower, the net force causing the strong jet propels the AMB.

Our aim was to model these experiments in order to validate and better physically under-
stand the observed behaviour of the AMB, focusing particularly on their generated streaming
flow and resonances.
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(a) A scanning-electron-
microscopy image of the
AMB.

(b) Streaming around the AMB with H = 30 µm.

Figure 2.1: The Armoured Microbubble (by Nicolas Bertin)

2.2 Resonant modes

In this section, using a potential flow model, we will calculate the resonant modes of the
AMB by applying mixed boundary conditions and solving the resulting eigenvalue problem.
Our potential model will apply boundary conditions at the surface and in the far-field, thus
assuming the validity of the model throughout the entire space, in contrast to our streaming
analysis, which has a boundary layer and is performed in the limit as the size of the boundary
layer tends to zero. Additionally, due to parameter limits, angular boundary conditions cannot
be captured by the potential model. However, we expect the potential model to provide a good
approximation to the resonances, since we focus on behaviour close to the AMB surface, and
expect the radial surface motion to be most significant. We will specifically consider these
modes for the preferred experimental AMB with inner radius a = 10 µm and opening radius
b = 5 µm.

Before performing that analysis, we will estimate the importance of the surface tension
forces and the volume forces using a scaling argument, to determine which is dominant. In an
isentropic scenario, P1/P2 = (V1/V2)

κ for P1 and P2 pressures at two stages of the oscillation;
V1 and V2 the associated volumes and κ = 1.4 is the adiabatic index (in this chapter). Thus,
assuming P2 and V2 are small perturbations of their respective quantities when the AMB is at
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Figure 2.2: Setup for calculating the resonances of the AMB

rest, Taylor expanding gives the change in pressure as

δP ∼ κ(δV )P0

V
∼

κ(π

2 b2εa)P0
4
3πa3

, (2.1)

where δP is the change in pressure from the rest state to the perturbed state, δV the equivalent
change in volume, V the volume of the capsule and P0 atmospheric pressure. We can estimate
the pressure change coming from the surface tension as

δP ∼ 2πγ(εa)
πb2 . (2.2)

Inserting values for our experimental AMB gives the pressure from the surface tension as
being approximately four times bigger than that from the change in volume. (The basis of this
analysis was done by our collaborators and details of it are included in [48].)

2.2.1 Setup

We will use a spherical coordinate system centred on the AMB with radial coordinate r and
azimuthal angle θ . This setup is shown in Fig.2.2. The AMB is modelled as a axisymmetric
spherical body, where for azimuthal angles θ ≥ θ0 the body has a solid stationary surface but
for θ < θ0 the body has a free surface. We assume the AMB thickness is negligible and take
the AMB radius as a and the radius of the capsule opening as b, so b= asinθ0. We assume that
the fluid density of the air inside the spherical body is negligible relative to the liquid outside
the body where the density is ρ . The surface tension of the fluid-fluid interface is γ . We
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are looking to identify the resonances so the AMB will be oscillating at the resonant angular
frequency ω , which is the dominant time scale to the problem. The resonance frequency f is
then f = ω/2π . We assume small amplitude oscillations and thus that ε ≪ 1 (where εa is the
amplitude of oscillation as in Chapter 1).

2.2.2 Governing equations

As with the classical Lamb calculation for the resonances around a bubble [68], we assume
the flow is potential so our governing equation is

∇
2
φ = 0, (2.3)

where φ is a velocity potential, with a spherical axisymmetric solution of the form

φ(r,θ) =
∞

∑
n=0

(
anrn +bnr−(n+1)

)
Pn(cos(θ)). (2.4)

The spherical body undergoes small amplitude oscillations so the surface’s radial position R
is of the form

R = a

(
1− εi

∞

∑
n=0

VnPn(cos(θ))eiωt

)
, (2.5)

where Vn are constants to be determined. As the Legendre polynomials are an orthogonal basis
this incorporates all axisymmetric oscillatory surface motions.

There are three boundary conditions for the problem. Firstly, that the radial motion of the
fluid matches the radial motion of the body’s surface (at leading order in ε)

∂φ

∂ r
=

∂R
∂ t

at r = a. (2.6)

Secondly, that the system has finite energy

φ → 0 as r → ∞. (2.7)

Finally there are the mixed boundary conditions: in θ < θ0 the normal surface stress is bal-
anced by surface tension (at leading order in ε)[

n ·σ ·n
]+
−
= γ(∇ ·n) at r = a when 0 ≤ θ < θ0, (2.8)
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and when θ ≥ θ0 the body’s surface does not move (at leading order in ε)

∂φ

∂ r
= 0 at r = a when θ0 ≤ θ ≤ π. (2.9)

Applying the boundary conditions in Eq.2.6 and Eq.2.7 reduces Eq.2.4 to

φ =−ε

∞

∑
n=0

a2ωVn

(n+1)

(a
r

)n+1
Pn(µ)eiωt . (2.10)

Then applying the mixed boundary conditions of Eq.2.8 and Eq.2.9 to Eq.2.10 gives the ei-
genvalue equations of

∑
∞
n=0 iVnPn(µ)eiωt

[
Ω

(n+1) − (n−1)(n+2)
]
= 0 when 0 ≤ θ < θ0,

∑
∞
n=0VnPn(µ)eiωt = 0 when θ0 ≤ θ ≤ π,

(2.11)

where Ω is the non-dimensional quantity Ω = ρa3ω2/γ , which are the eigenvalues we aim to
determine (to determine the resonance angular frequencies ω).

Using the same method as used for some other Legendre polynomial mixed boundary
value problems [69] , by using the integral form of the Legendre polynomial these equations
can be simplified to∑

∞
n=0Vncos

[
(n+ 1

2)θ
][

Ω

(n+1) − (n−1)(n+2)
]
= 0 when 0 ≤ θ < θ0,

−∑
∞
n=0Vn

1
(2n+1)cos

[
(n+ 1

2)θ
]
= 0 when θ0 ≤ θ ≤ π.

(2.12)

This system cannot be solved analytically so a numerical approach will be taken.

2.2.3 Solving numerically

Numerically Eq.2.12 can be solved by taking the inner product (multiplying by cos
(
(m+ 1

2)θ
)

for ∀m) and integrating over θ . Rearranging, then reduces this to the generalised eigenvalue
equation.

AmnVn = ΩBmnVn, (2.13)
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with

Am+1,n+1 =


((n−1)(n+2)+ 1

2n+1)
2

[
sin((n+m+1)θ0)

(n+m+1) + sin((n−m)θ0)
(n−m)

]
if n ̸= m,

((n−1)(n+2)+ 1
2n+1)

2

[
sin((n+m+1)θ0)

(n+m+1) +θ0

]
− π

2(2n+1) if n = m,
(2.14)

Bm+1,n+1 =


1

2(n+1)

(
sin((n+m+1)θ0)

(n+m+1) + sin((n−m)θ0)
(n−m)

)
if n ̸= m,

1
2(n+1)

(
sin((n+m+1)θ0)

(n+m+1) +θ0

)
if n = m,

(2.15)

where our eigenvalues are Ω.
This is a system of infinitely many equations in infinitely many unknowns so to solve

numerically it needs to be truncated. However, information is lost in truncation. But θ = θ0 is
an important angle as it marks the sharp change from no motion to the free surface moving cap,
so it is useful to retain information about this point. Therefore, when this system is truncated
at size N the highest order resonance equation (the Nth equation) will be replaced with the
condition of no motion at θ = θ0

N

∑
n=0

VnPn(cos(θ0) = 0. (2.16)

This finite generalised eigenvalue problem will then be solved numerically using the QZ
algorithm through Matlab’s eig function, which uses the LAPACK library routine ZGGEV.

2.2.4 Resonant frequency and mode shape

For the experimental AMB θ0 = 0.52 radians, which we use throughout this subsection.

2.2.4.1 Convergence of eigenvalues and eigenvectors

As N is increased the eigenvalues converge. As seen in Fig.2.3a for the first eigenvalue this
convergence is smooth and consistent, although for larger eigenvalues larger truncation sizes
are necessary to obtain an accurate estimate.

The eigenvector convergence is shown in Fig.2.3b. Here vN is the Nth eigenvector. The
quantity |1− vN � vN+1| is analysed for increasing N, since |1− vN � vN+1| tends to zero as
the eigenvectors converge and become parallel. There is a power law convergence giving
|1− vN � vN+1| ∼ N−1.7. Therefore, this convergence is slow but consistent. Looking at the
mode shapes (see Fig.2.5) there is slow convergence near θ = π and θ = θ0.

The rate of convergence changes depending on θ0, with slower convergence at smaller
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(a) Convergence of the smallest eigenvalue with
truncation size

(b) Log-log convergence of the first eigenvector.
Numerical results are +. An analytic power law
fit of the local maxima for N > 100 is the solid
straight line with a gradient of −1.704

Figure 2.3: Convergence of the first eigenvalue and eigenvector

values of θ0 (see Fig.2.4 ). However, even for θ0 = 0.1 the first eigenvalue has converged to at
least one significant figure by N = 500.

2.2.4.2 Mode Shapes

The non-dimensional eigenvalues for θ0 = 0.52 are obtained numerically to be Ω = 63.2, 987,
4060, 10600, 21800, 39100.

For the experiments ρ = 103 kgm−3, γ = 69.7× 10−3 Nm−1 and a = 10× 10−6 m and as
f =

√
Ωγ/ρa3/2π, this gives the first six resonance frequencies as f = 334kHz, 1320kHz,

2680kHz, 4330kHz 6200kHz, 8310kHz with the mode shapes displayed in Fig.2.5.

The first resonance frequency of 334kHz agrees well with the experimentally identified
resonance of 320kHz, giving a 4% error.

2.2.4.3 Range of θ0

We will now analyse the eigenvalue dependence on the size of the capsule opening, θ0. The
correlation for the four smallest eigenvalues are shown in Fig.2.6a. As θ0 increases away from
0, the eigenvalues decrease, initially very rapidly away from infinity. This rate of decrease
lessens sharply until very close to θ0 = π where it becomes steeper again. These larger gradi-
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Figure 2.4: Convergence of the first eigenvalue with θ0.

ents near the two extremes can be physically explained as the results are tending towards the
resonances at the two limits of a completely solid surface and a complete bubble, but these are
physically quite different systems to our mixed boundary system.

Fitting a curve of the form Ω = A/θ k
0 indicates a good correction in Fig.2.6a . The log-log

plot in Fig.2.6b indicates Ω ∼ θ
−3
0 is an accurate scaling. The log-log plot in Fig.2.7 indicates

the coefficient A scales with mode number n such that A ∼ n3. Therefore,

f ∼
(

n3γ

ρa3θ 3
0

) 1
2

. (2.17)

2.3 Streaming around AMBs

In this section, we will calculate the streaming flow around the AMB using our model from
Chapter 1. For this we need to know the surface motion of the AMB. The motion in §2.2
provides the radial motion of the surface near each resonant mode but this can be improved
by applying our mixed boundary conditions directly to our streaming model from Chapter
1 to additionally obtain the angular surface motion. We will then compare the numerically
obtained streaming flow to experiments and consider the effects of a nearby wall.
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(a) 334kHz (b) 1320kHz

(c) 2680 kHz (d) 4330kHz

(e) 6200kHz (f) 8310kHz

Figure 2.5: First six resonant mode shapes of the AMB. Blue marks the solid capsule and the
red the bubble’s free surface. The radial lines mark the edge of the cap at an angle θ0 = 0.52
from the axis of symmetry.
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(a) The lowest four eigenvalues and the lines of best fit for
a relation to θ0 fitted for θ0 ≤ π

2

(b) Displaying the fit for Ω ∼ θ
−3
0 for the first

five eigenvalues. Numerical results are in +. The
straight line was the line of best fit for θ0 < π/4
for the smallest eigenvalue and θ0 < π/2 for the
remainder eigenvalues. Each colour refers to a dif-
ferent eigenvalue.

Figure 2.6: Analysing the dependence of the non-dimensional eigenvalue Ω with θ0

Figure 2.7: Coefficient A with increasing mode number n. Numerical results are +. The
theoretical line is fitted for mode numbers > 10 with a gradient of 3.
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2.3.1 Viscous approximation of the surface motion of the AMB

Our two radial boundary conditions are the same as for the resonant modes: normal stress
balanced by surface tension on the bubble cap (when θ < θ0) and the radial velocity zero on
the solid shell (when θ ≥ θ0)

n ·σ ·n = γ(∇ ·n) for θ < θ0, (2.18)

ur = 0 for θ ≥ θ0. (2.19)

An external pressure forcing is included inside Eq.2.18. However, now that we are using our
viscous streaming model, we can also apply the angular boundary conditions: no tangential
stress on the bubble cap (when θ < θ0) and no angular velocity on the solid shell (when
θ ≥ θ0)

n×σ ·n = 0 for θ < θ0, (2.20)

uθ = 0 for θ ≥ θ0. (2.21)

These conditions are all applied on the surface of the AMB at r = R.

2.3.1.1 Pressure field

In order to calculate the radial stress in Eq.2.18 the pressure field needs to be evaluated in
terms of the boundary constants Vn and Wn.

The non-dimensional Navier-Stokes equation is(
∂u
∂ t

)
+ ε (u ·∇u) =

p
ρaUω

(−∇p)+
δ 2

2
(
∇

2u
)
. (2.22)

Pressure p can either scale with the viscosity or the time dependent inertia but inertia is im-
portant close to the AMB.

We evaluate the r and θ component of Eq.2.22 at leading order in ε using our solution for
ψ1 in Eq.1.28. There is significant cancellation of terms so at O(ε) this gives

p = eit

(
∞

∑
n=0

Pn(µ)

(
iDn

(n+1)rn+1

))
+ f (θ), (2.23)
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for f (θ) an unknown function of θ . Then similarly evaluating the θ component of Eq.2.22
gives f (θ) as a constant, which must be zero.

2.3.1.2 Radial boundary conditions

The two radial boundary conditions can now be written in terms of the constants Vn and Wn.
Using Eq.1.28 for ψ1 (and hence ur) reduces the radial boundary condition (see Eq.2.18) to

∞

∑
n=0

VnPn(µ) = 0. (2.24)

To apply the boundary condition in Eq. 2.19 we require the direction of the normal away
from the AMB, which is calculated using the radial position of the AMB surface R given in
Eq 1.12 . Then n = ∇(r−R) and thus the non-dimensional surface curvature is

∇ ·n = 2−
∞

∑
n=0

ε(n−1)(n+2)VnPn(µ)ei(t+ π

2 )+O(ε2). (2.25)

Using Eq. 2.23 (with f = 0) and Eq. 1.28 the LHS of Eq. 2.19 can be evaluated since in the
fluid

n ·σ ·n =−p+2
∂ur

∂ r
+O(ε2). (2.26)

The external ultrasound pressure forcing is included through a ∆peit forcing term. Therefore,
at O(ε) we obtain

∞

∑
n=0

Pn(µ)

(
−δ

2 3Bn

2α2 Kn+ 1
2
(αr)+δ

2 Bn

α
K′

n+ 1
2
(αr)−δ

2(n+2)Dn −
iDn

(n+1)

)
+∆p =− γ

ρa3ω2

∞

∑
n=0

i(n−1)(n+2)VnPn(µ), (2.27)

which, upon Taylor expansion, gives the leading order behaviour in δ as

∞

∑
n=0

Pn(µ)

(
i

(n+1)
Vn

)
−∆p =

γ

ρa3ω2

∞

∑
n=0

i(n−1)(n+2)VnPn(µ). (2.28)
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2.3.1.3 Angular boundary conditions

Similar to the previous subsection, using Eq.1.28 reduces Eq.2.21 to

− ∑
n∈N

Wn

∫ 1
µ

Pn(x)dx

(1−µ2)
1
2
= 0. (2.29)

The tangential stress condition of Eq. 2.20 reduces at O(ε) to σrθ = 0, which (at leading order
in δ ) gives

∑
n∈N

(Wn +nVn)

(
2i

1+ i

)(∫ 1
µ

Pn(x)dx

(1−µ2)
1
2

)
= 0. (2.30)

2.3.1.4 Leading-order surface conditions

Therefore, having the same non-dimensional quantity as before of Ω = ρa3ω2/γ at leading
order in δ we have

∞

∑
n=0

VnPn(µ) = 0 on θ0 ≤ θ ≤ π, (2.31)

∞

∑
n=0

Vn

(
i

(n+1)
− 1

Ω
i(n−1)(n+2)

)
Pn(µ) = ∆p, on 0 ≤ θ < θ0, (2.32)

− ∑
n∈N

Wn

[
P1

n (µ)

n(n+1)

]
= 0, on θ0 ≤ θ ≤ π, (2.33)

∑
n∈N

(Wn +nVn)
2i

(1+ i)

[
P1

n (µ)

n(n+1)

]
= 0. on 0 ≤ θ < θ0. (2.34)

To solve these equations, the first pair of equations can be solved for Vn, which then
provides the forcing for the second pair of equations to solve for Wn. We can multiply Eq.2.34
through by (1+ i)/2i to reduce it to a real equation. Similarly we can multiply Eq.2.32 through
by −i which gathers the complex part, physically the phase change, into the pressure forcing
term ∆p. Since the only effect of this is on the phase of the pressure forcing, which is arbit-
rary, the phase of the pressure forcing can be adapted so that the quantity is real. We note this
suggests the response is then π/2 out of phase with the pressure forcing but this is not the case
as a π/2 phase difference is included in the definition of the radial position R in Chapter 1
(which we used here). This then reduces the system to a set of real equations. This therefore
implies that out-of-phase surface motion is not a leading order effect, and will also not effect
the steady streaming.
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Thus our equations reduce to the real pair of equations to solve for the radial motion∑
∞
n=0VnPn(µ) = 0 on θ0 ≤ θ ≤ π,

∑
∞
n=0Vn

(
1

(n+1) −
1
Ω
(n−1)(n+2)

)
Pn(µ) = ∆p on 0 ≤ θ < θ0,

(2.35)

and the real pair of equations to solve for the angular motion

−∑
∞
n=1Wn

[
P1

n (µ)
n(n+1)

]
= 0 on θ0 ≤ θ ≤ π,

∑
∞
n=1(Wn +nVn)

[
P1

n (µ)
n(n+1)

]
= 0 on 0 ≤ θ < θ0.

(2.36)

2.3.1.5 Radial surface motion

This radial motion is solved from Eq.2.35, similarly to with the resonant modes, by taking
inner products and then truncating a size N, then many numerical routines exist to solve a
finite series of N +1 linear equations in N +1 unknowns.

The constant Ω was calculated for the experimental parameter of f = 320kHz (giving ω

through ω = 2π f ), γ = 69.7× 10−3 Nm−1 ρ = 103 kgm−3 and a = 9× 10−6 m. We took
the non-dimensional change in pressure as ∆p = 1. Numerically this non-dimensional value
only effects the amplitude of the oscillation, not the shape of the oscillation. Thus, the same
shape will be obtained whatever value ∆p takes, and once the shape has been obtained, the
coefficients can be scaled to give the appropriate amplitude.

The predicted radial surface motion for this forcing is shown in Fig.2.8a. As expected it
is a very similar shape to the first resonant mode predicted by the potential model shown in
Fig.2.5a. For a fixed maximum number of modes N we observe |Vn| oscillates in size as n → N
but its amplitude of oscillation decreases on the order of n−1.5. This justifies the accuracy of
truncating our system at N coefficients. Similarly, the quantity

∣∣∣1−V (N) ·V (N+1)
∣∣∣→ 0 as

N → ∞ , with its amplitude decaying like N−2.4, which indicates convergence (where here
V (N) indicates the predicted radial modes V of length N). We also note this is faster than the
eigenvalue solution of our potential model converged in § 2.2.4.1.
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(a) Shape of the radial oscillation. (b) uθ on the spherical
body. The amplitude away
from the rest position r =
1 indicates the relative
strength and direction of
uθ .

Figure 2.8: Surface motion of the AMB. The solid line gives the surface shape, with red
indicating the solid capsule surface and blue the bubble surface The red dotted line indicates
the rest position of the AMB.

2.3.1.6 Angular surface motion

The angular motion can now be solved using Eq. (2.36). Similar to before, taking the inner
product of Eq. (2.36) reduces to a set of linear equations

(
2

2n+1

)
Wnδnm =−

∞

∑
n=1

Vn

[∫ 1
cos(θ0)

P1
n (µ)P

1
m(µ)

(n+1)

]
∀m, (2.37)

where again we solve numerically by truncating the sum at n = N and consider equations up
to m = N.

This gives the angular motion indicated in Fig. 2.8b. Here we do not observe a decrease
in |Wn|but instead |Wn|

n oscillates as n → N with the amplitude of oscillation decreasing on the
order of n−0.6. Since Wn is a cofactor of P1

n (µ)/[n(n+ 1)] this still corresponds to larger
coefficients having a smaller impact on the surface angular velocity and hence the steady
streaming, justifying the accuracy of truncating our system at N coefficients. Similar to V we
observe that

∣∣∣1−W (N) ·W (N+1)
∣∣∣→ 0, with its amplitude decaying like N−0.9, as N → ∞. The

order of convergence of |Wn|
n is thus lower than Vn and similarly

∣∣∣1−W (N) ·W (N+1)
∣∣∣ decays

more slowly than
∣∣∣1−V (N) ·V (N+1)

∣∣∣ .
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2.3.2 Streaming around the AMB

Now that we have both the angular and radial motions on the AMB surface, we will calculate
the acoustic streaming of O(ε2).

2.3.2.1 Second-order boundary conditions

When using this model to study the streaming generated by a bubble we obtained an O(1) in
δ steady streaming, which was a result of the O(δ−2) and O(δ−1) terms cancelling out when
calculating Fk (or equivalently the matching coefficients Mk) . But here, because of the mixed
boundary conditions, this does not occur. The O(δ−2) terms still cancel but the O(δ−1) term
does not.

Here we will refer to determining the matching coefficient Mk, which is equivalent to
calculating Fk as the two are dependent on each other, but we note that the explanations in
Chapter 1 were performed using Fk. As the O(δ−1) term does not cancel,when applying the
boundary conditions the motion is dominated by the value of Mk where it obeys the mixed
boundary conditions

∞

∑
k=1

(2k+1)
(

Mk

δ

) (∫ 1
µ

Pk(x)dx
)

(1−µ2)
1
2

=−
∞

∑
k=1

∞

∑
n=0

∞

∑
m=1

aknm

(
1
δ

{
(Wm +mVm)(W̄n +nV̄n)

(i−1)
2

+(Wm +mVm)
V̄n

2
(1− i)(2n+3)+

∞

∑
j=1

(
Cn j

j( j+1)

)[
(W̄j + jV̄j)(Wm +mVm)

(1+ i)
2

−(Wm +mVm)V̄j j(1− i)−
Wm
(
W̄j + jV̄j

)
(1+ i)

2 j( j+1)

]} (∫ 1
µ

Pk(x)dx
)

(1−µ2)
1
2

for 0 ≤ θ < θ0,

(2.38)

and
∞

∑
k=1

(
Mk

δ

) (∫ 1
µ

Pk(x)dx
)

(1−µ2)
1
2

= 0 for θ0 ≤ θ ≤ π. (2.39)

This is one order higher than Lk and other streaming terms, and as such this value will domin-
ate the streaming flow. At leading order in δ , this means Sk =−Tk = Mk/2δ so our streaming
is of the simpler form

⟨ψL⟩= Sk

∞

∑
k=1

(
r−(k−2)− r−k

)(∫ 1

µ

Pk(x)dx
)
. (2.40)

The pair of equations for Mk can be transferred to associated Legendre polynomials and then
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by taking the inner product with P1
m(x) this gives the set of linear equations

∞

∑
k=1

Mkδkq

(
2

2k+1

)
+

∞

∑
k=1

(2k)Mk
1

k(k+1)

[∫ 1

cos(θ0)
P1

k (µ)P
1
q (µ)dµ

]
=−

∞

∑
k=1

∞

∑
n=0

∞

∑
m=1

aknm

({
(Wm +mVm)(W̄n +nV̄n)

(i−1)
2

+(Wm +mVm)
V̄n

2
(1− i)(2n+3)+

∞

∑
j=1

(
Cn j

j( j+1)

)[
(W̄j + jV̄j)(Wm +mVm)

(1+ i)
2

−(Wm +mVm)V̄j j(1− i)−
Wm
(
W̄j + jV̄j

)
(1+ i)

2 j( j+1)

]} [∫ 1
cos(θ0)

P1
k (µ)P

1
q (µ)dµ

]
k(k+1)

∀q. (2.41)

Similar to first order, this is truncated at k = K and q = K to give K equations to find the first
K coefficients Mk. The constants are then used to calculate Sk and Tk, which gives the acoustic
streaming flow shown in Fig. 2.9. We observed 5 coefficients for Mk were sufficient to display
the main features of the streaming flow.

2.3.2.2 Streaming around a single AMB

We have now calculated the numerical streaming flow around a single, stationary AMB in free
space, which is shown in Fig. 2.9. The flow shows fluid being pulled in towards the AMB
slowly from behind and the sides, and then pushed away from the AMB at the front, where
the aperture opening is located, in the form of a strong jet. Small circulations are also visible
close to the AMB.

We next compare this numerical model to the experimental streaming flow for an AMB
held on a H = 30 µm tower, where we focus the microscope on a plane parallel to the wall
and through the centre of the AMB. This experimental streaming flow is shown in Fig. 2.9.
The experimental streaming image is obtained by stacking the frames of a video showing the
motion of the 2 µm tracer particles when the AMB is forced under ultrasound. Here we see
flow being pulled in from a wide region behind the AMB and pushed out in a wide region in
front of the AMB.

The overall flow shape of the numerical and experimental streaming patterns agree. How-
ever, there are differences. Circulations close to the AMB are only seen numerically, which is
likely due to errors in the numerical model since neglected higher order terms make a greater
contribution close to the AMB. The exact shape of the jet also differs slightly. This additional
difference could be attributed to the tower and tracer particles impacting the experimental flow
or the neglecting of higher order terms in the numerical flow. Nevertheless the good overall
agreement in flow shape indicates that wall effects are small for a tower of height H = 30 µm.
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(a) Experimental Streaming (by Nicolas Bertin) (b) Numerical Streaming

Figure 2.9: Comparing numerical and experimental streaming around an AMB

Indeed, this is supported by the fact that if we include leading order wall effects in our numer-
ical model (see §2.3.3) for a tower of height H = 30 µm there were minimal changes to the
numerical streaming pattern.

2.3.3 AMB near a Wall

For towers of height of H = 30 µm the effect of the wall on the flow was small, however, we
expect wall effects to be more significant for smaller towers of heights H = 10 µm and H =

20 µm. This is reflected by changes in the experimental streaming patterns for these lower
heights. At H = 20 µm small circulations have started to appear behind the AMB (see Fig.
2.10a). The general flow shape is otherwise similar to H = 30 µm although the shape of the
bend in the flow as it moves from behind the capsule to in front is sharper. At H = 10 µm a
very different flow field has been established with two circulations in front of the AMB and
two behind, although the strong jet at the capsule opening, seen at larger tower heights, is still
visible (Fig. 2.11a). Comparing the sharp clear flow fields of H = 30 µm and H = 10 µm, to
that of H = 20 µm we see that the H = 20 µm flow has flow features that are similar to those
observed at H = 30 µm, such as flow being pulled around the AMB with a sharp jet but no
circulations at the front, and, more weakly, similar to those observed at H = 10 µm, such as
an area of back flow behind the AMB. This giving the impression that at H = 20 µm the flow
is in a transitional state between these two flow fields.
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We incorporated the wall computationally by adding the image system for the leading-
order Stokeslet flow decaying as 1/r [70] and next order Stresslet decaying as 1/r2 [71], which
both have well known image systems. This wall approximation will become less accurate very
close to the wall since the 1/r3 and higher order terms are then relevant. The computational
flow for a 20 µm tower is similar to that with no wall, although the circulations behind the
AMB are slightly larger (see Fig. 2.10b). However, for H = 10µm we see significant changes
in the flow computationally (see Fig. 2.11b ). Two large circulations have formed out the front
of the AMB, and behind the AMB there are small circulations still but with the flow being
bent more strongly behind the AMB.

Comparing the computational and experimental flow fields for a H = 20 µm tower, we see
the overall shape of the flow fields are very similar, with flow being pulled in from behind and
pushed out in a strong jet in front. The small pair of circulations seen behind the AMB ex-
perimentally is seen numerically, however, more circulations are seen numerically, and given
these circulations were present numerically when there was no wall it is unlikely the numer-
ical and computational cause are the same. Also there is a definite change experimentally in
the flow field from a 30 µm to a 20 µm tower, but numerically the flow fields at these two wall
heights are more similar. For H = 10 µm, the pair of circulations near the opening of the AMB
are seen numerically and computational. This is a very significant flow feature given that the
flow velocities are largest here, in front of the capsule opening. However, the flow behind the
capsule does not agree computationally and experimentally, with a large pair of circulations
seen only experimentally. One explanation for this is that the flow velocities are low here
and thus the higher order terms neglected in our numerical model are more significant behind
the capsule than in front. Thus, for 10 µm tower, there is agreement between the computa-
tional model and experiments for the flow field at the front of the AMB, near the opening, but
disagreement in flow shape behind the AMB.

When the tower height is 0 µm, so the AMB is sitting on the wall, our computational wall
approximation becomes invalid but experimentally there are also problems with tracer beads
getting stuck. As such towers of lower than 10 µm have not been studied.

2.4 Combining AMBs

Up until this point only single AMBs have been studied. We will now consider combinations
of AMBs first by considering two multipropulsor compounds (created by attaching together
equally sized AMBs) and then briefly discussing combining different sized AMBs to build a
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(a) Experimental Streaming (by Nicolas Bertin) (b) Numerical Streaming

Figure 2.10: Comparing numerical and experimental streaming around an AMB with a H =
20 µm tower

(a) Experimental Streaming (by Nicolas
Bertin)

(b) Numerical Streaming

Figure 2.11: Comparing numerical and experimental streaming around an AMB with a H =
10 µm tower
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(a) Double AMBs (b) Triple AMBs

Figure 2.12: Set up of double and triple capsule configurations. Blue arrows indicate the
direction of the aperture opening.

multi-directional swimmer.

2.4.1 AMB Compounds

Experimental work has been conducted studying pairs and triples of AMBs (see Fig.2.12) and
the streaming flow they generate in the surrounding fluid (Fig.2.13a and 2.14a respectively).
Double propulsors consist of two AMBS attached to each other, built on the same tower,
with their aperture opening pointing in the same direction perpendicular to the line joining
their centres (see Fig.2.12a). Triple propulsors consist of three capsules arrayed in a triangle
with aperture openings pointing outwards at 0o, 120o and 240o from each other (see Fig.
2.12b). The constituent parts of both setups are standard capsules of inner radius a = 9 µm
and aperture opening b = 5 µm.

To model these multipropulsors compounds we use our previous model describing the
streaming flow around one AMB (see §2.3). We note that applying a rotation or translation to
our original flow field generated by one AMB gives the streaming around an AMB at any po-
sition and orientation. To approximate the flow field around the double and triple propulsors,
we linearly superpose the flow fields generated by each AMB individually. However, this in-
troduces errors since we are superposing individual solutions, which only obey the boundary
conditions on their own AMB, and thus the resulting streaming flow approximation is not valid
close to where the AMBs meet. In the external Stokes flow, adding two solutions obeying the
same boundary conditions will produce a third solution, however within the boundary layer
convective inertia is important so in the boundary layer using linear superposing to obtain new
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solutions does not work. Within the boundary layer there are additional contributions to the
flow field, beyond linear superposition, from the flow of one AMB affecting the boundary
layer of a different AMB. This in turn will affect the boundary layer matching conditions and
the external Stokes flow, thus providing additional contributions to the flow field beyond linear
superposition, which is not accounted for by our method.

Additional errors are added close to the AMBs due to the importance of inertia in the
boundary layer close to the AMBs. But outside the boundary layer the streaming flow is a
Stokes flow and so a short distance from the AMBs our approximation is valid.

The comparisons of experimental and numerical streamlines for the double AMB is shown
in Fig.2.13. Experimentally the double propulsors showed a pair of circulations in front of
the opening and a pair of circulations behind, similar to a single AMB on a 10 µm tower.
However, the jet in front of the aperture openings is wider than the jet seen for a single AMB.
All the double AMBs in Fig. 2.13a show the circulations in front of the opening, but the
circulations behind the AMB are not always clear due to the slower velocities behind the
AMB and the positioning of the tracer beads. This experimental streaming flow compares
well to the numerical streaming flow in front of the double AMB, where the wide jet and
frontal circulations are seen numerically. However, behind the AMB no pair of circulations
are observed numerically, in disagreement with experiments. This was unsurprising as our
model for a single AMB also did not capture this feature of circulations behind the AMB.

The comparison between experiments and numerics for the triple AMB is shown in Fig.
2.14. Experimentally, the triple propulsor shows three pairs of circulations around itself, with
each capsule opening having one pair of AMBs, one circulation on either side of a strong jet.
Not all the circulations are the same size, which could be attributed to small variation in the
hole strengths due to tracer particles becoming stuck near the capsule openings. This experi-
mental flow agrees well with the numerical streamlines, which show six pairs of circulations
(although all equally sized) with a strong jet in front of each opening. The better agreement
can be attributed to the flow behind the AMBs having a smaller overall effect on the flow field,
and this was the portion of flow the numerics modelled badly

2.4.2 Multidirectional swimmer

The AMBs free swim when detached from their tower. This was studied experimentally (by
our collaborators). Initially there were issues with the AMBs sinking to the bottom of the
tank or floating to the top. This was dealt with by attaching the AMB to a ring on a tower.
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(a) Experimental results (by Nicolas Bertin). (b) Computational prediction.

Figure 2.13: Flow field around the double AMB configuration

(a) Experimental results (by Nicolas Bertin) (b) Computational prediction

Figure 2.14: Flow field around the triple AMB configuration
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(a) AMB on the ring/tower setup for
circular swimming

(b) Free swimming AMB with additional weight for buoyancy
and stability

Figure 2.15: Free swimming AMB ( by Nicolas Bertin)

The AMB then swims around the tower at a constant distance maintained by the ring, and
the “hat” on the tower stopped the AMB from floating away (Fig.2.15a). Using this setup the
force generated by the AMBs was estimated, but due to friction with the tower this is believed
to be an underestimate. Free-swimming was later demonstrated by attaching the AMB to a
40 µm×40 µm×30 µm cuboid so it was neutrally buoyant (Fig.2.15b).

Experiments then moved to building multidirectional swimmers from AMBs of different
sizes by containing AMBs in different sides of a cuboid (Fig.2.16). Upon applying an ultra-
sound field, a significant response is generated only by the AMBs (if any) whose resonance
is close to the frequency of the ultrasound field, pushing the device away from the active
AMB. As such AMBs with sufficiently separated resonances were required so they could be
be separately activated.

For this purpose, additional sizes of AMBs were studied, two in particular. Both had radius
a = 9 µm with an aperture opening radius of b = 7.5 µm and b = 3 µm. We can use our AMB
resonance model from §2.2 to predict the resonances for these cases under the same physical
conditions. For b = 7.5 µm our resonance model predicts the first resonance at 133kHz ,
whereas it has an experimentally observed resonance frequency of 160kHz. This gives a
higher error than for our standard capsule size of 17%. However, as the aperture opening gets
larger our approximation of a spherical rest position becomes less accurate.

For the b = 3 µm capsule our resonance model predicts 725kHz whereas the experimental
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(a) Schematic (b) Actual Swimmer

Figure 2.16: Multidirectional Swimmer created by combining AMBs (by Nicolas Bertin)

resonance was 510kHz, which is a percentage error of 42%. This large error can be explained
by noticing that for small openings, slight changes in θ0 have large effects on the resonance (as
seen in Fig.2.6a). To illustrate, for b = 5 µm if the AMB radius a is increased from a = 9 µm
to a = 10 µm the difference in resonance is of the order of 10kHz, whereas the difference
in resonance between an AMB of size b = 2.8 µm and a = 8.8 µm compared to one of size
b = 3.2 µm and a = 9.2 µm is of the order of 200kHz. Therefore, a numerically sensitive
resonance combined with small experimental inaccuracies could account for differences in
the experimental and theoretical results.

2.5 Conclusion

For the AMB, we have determined the resonance frequency dependence on the aperture open-
ing size, f ∼ θ 3

0 , and found the exact resonances. For the preferred experimental AMB size
the theoretical prediction of 334kHz was in good agreement with experiments. Applying
mixed boundary conditions, to our streaming model introduced in Chapter 1 we calculated
the streaming around the experimental AMB in free space, predicting the strong frontal jet
in good agreement with experiments. By adding the two leading-order images for the wall
and linearly superposing the effects of multiple AMBs we accurately calculated: the frontal
circulations generated close to a wall; the wider jet produced by double propulsors and the
three pairs of circulations produced by triple propulsors.



Chapter 3

Streaming flows around AMB arrays

The main results from this chapter are included in our published paper: “Bubble-based acous-
tic micropropulsors: active surfaces and mixers”, Nicolas Bertin, Tamsin A. Spelman, Thomas
Combriat, Hervé Hue, Olivier Stéphan, Eric Lauga and Philippe Marmottant, Lab on a Chip,
17:1515-1528 , 2017 [66] (adapted by permission of the Royal Society of Chemistry).

In this chapter we will study the flow fields generated by Armoured Microbubbles (AMBs),
introduced in Chapter 2, placed in a pattern short distances apart, inside a confined channel.
We are interested in such arrays as they generate large collective flows, which can be used
for mixing, although their mixing potential is not considered in this chapter. In §3.1 we in-
troduce the experimental setup and experimentally studied AMB arrays, which we will focus
our theoretical analysis on. We will first consider the effect of the confined channel by ana-
lysing the L-array when just one wall is present (§3.2) before extending this analysis to two
walls in §3.3, and discussing the effects of the additional wall. In §3.4 we will use this two
wall numerical model to discuss the numerical flow fields generated by the five experimental
arrays and how they change as the relative strength of the AMBs is decreased, comparing to
experimental results. In §3.5 we will briefly discuss how our results validate our estimate of
the AMB strength.

3.1 Experimental arrays

Our experimental collaborators Nicolas Bertin and Philippe Marmottant constructed a mi-
crochannel with an AMB array printed on its base. To do this, they first printed an array of
AMBs, each on 10 µm poles, onto a glass coverslip, which they drew marker lines on. The
microchannel was then placed on top after plasma treatment. Plasma treatment is a technique
used to change the surface properties of a material. Here it is used to change the polydi-
methylsiloxane (PDMS) channel from a hydrophobic to a hydrophilic material, which prevents
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bubbles becoming stuck on the surface of the channel and interfering with the fluid flow. The
channel cross section was 80 µm in height and 1mm in width (although 0.5 mm wide channels
were also considered experimentally only). The channel had a Y shaped entrance (Fig.3.1).
This allows fluid dyed different colours to enter from the two entrances so this setup can be
used for microfluidic mixing (although this use is not discussed further in this chapter). This
size of channel is not expected to cause any cell streaming as the observed resonant frequen-
cies in other microchannels are on the order of megahertz [72], whereas these experiments
used a driving frequency of 350kHz. Additionally, significant cell streaming would have been
noticeable experimentally when ultrasound was applied to the channel and any AMBs con-
tained no air. A driving frequency of 350kHz corresponds to an ultrasound wavelength of
4.2mm, four times the width of the channel. The acoustic beam width is the same order of
magnitude as the wavelength. Thus, multiple AMBs in the channel can be actuated by our
generated ultrasound wave. A different experimental setup of a circular tank with one or two
confining walls was also used for the L-array only to observe the effects of confinement on the
flow field.

For the microchannel experiments, the ultrasound was produced by a focussed transducer.
The voltage applied to the transducer was steadily increased and this corresponds to a rise in
the acoustic pressure. A separate experiment was performed with a hydrophone inside a ring
of PDMS, where the PDMS thickness was similar to that of the microchannel, so the loss of
pressure from transmitting sound through water to PDMS to PBS could be determined. This
experiment measured Pac and thus determined the relationship between the driving voltage and
the acoustic pressure, so comparison to driving pressure rather than voltage could be made in
the results.

Experimentally, they studied five AMB configurations in detail (see Fig.3.2): a L , a V,
a straight line perpendicular to the flow, a short line parallel to the base flow with half the
AMBs pointing in opposite directions and a diagonal line with half of the AMBs pointing in
opposite direction. The AMBs are in general separated by gaps of 50 µm centre-to-centre.
The exception is for the two arrays where half the AMBs point in different directions, then
between the two AMBs where the direction changes the gap is 100 µm centre-to-centre. The
AMBs have an inner radius of 9 µm and are 1 µm thick so have an outer radius of 10 µm.

It was experimentally observed that these AMB arrays produce large collective flows, such
as for the L-array shown in Fig.3.3. Here the L-array is positioned closer to one of the side
walls than the L-array design in Fig. 3.2, where the L-array is centred in the middle of the
channel. The confining effects caused by both walls has the largest impact on the flow but
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(a) Top-down view of the channel containing a small v-array (b) Vertical arrangement in channel cross
section (by Nicolas Bertin)

Figure 3.1: Experimental setup

Figure 3.2: Configuration of the 5 experimental arrays in 1 µm wide and 80 µm high mi-
crochannel (adapted from original figure by Nicolas Bertin)
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Figure 3.3: Experimental streaming around the L-array, in a confined channel 1 µm wide and
80 µm high, when Pac = 216kPa (by Nicolas Bertin)

smaller differences, such as the right hand circulations being smaller than the left, are likely
attributed to the array being closer to one wall than the other. It can be difficult experimentally
to position the array in the centre of the microchannel, this is why the straight line array was
the first array to be studied since a longer line of capsules could be built and the microchannel
placed over a subset of capsules.

In Fig. 3.3 there are two circulations (with the right one smaller than the other likely due
to the closer right hand wall ). The circulations are far larger than those seen around single
AMBs in Chapter 2 and it is these large flow features, generated by the AMB arrays, which
we will build a model to study in this chapter.

3.2 Flow field with only one wall

The arrays are contained with a microchannel, but three of the walls are a long distance away
from most of the AMBs. The wall they are closest to is the base they are attached to, which is
only 20 µm away fro the AMB centre. Therefore, we will initially model the AMBs adjacent
to just one plane wall to see if this generates the large collective flows. .
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3.2.1 Numerical model for an array near one wall

For the arrays of AMBs considered in this section, the length scales of the relevant patterns
are O(100 µm) as opposed to O(10 µm) for the individual AMBs in Chapter 2, and therefore
we approximate each AMB as its leading order flow in the far field, namely a Stokeslet. The
next order correction is a Stresslet, which we will include here when modelling one wall.

We then model the flow induced by each AMB above a flat plate using the regularised
version [73, 74] of the well known Blake solution for a Stokeslet above a no-slip wall [70]
plus the Stresslet with its known solution near one wall [73, 74]. The Stokeslet strength for
an AMB, ft , was chosen so the flow velocity ≈ 10 µm from the Stokeslet was of the order
of 1− 100 mms−1, the range of velocities observed in front of an AMB experimentally (we
discuss this in more detail in §3.3.1). The flow field of the Stresslet is determined by a tensor,
that for an AMB pointing in the x direction, is modelled at leading order by a Stokeslet of
strength ft in the x-direction, is given by

ft

 −8/3 0 0
0 4/3 0
0 0 4/3

 . (3.1)

This form and relative strength of the Stresslet is given by the full solution of the flow field
around the AMB, calculated in Chapter 1. To regularise, the delta function is replaced by a
smoothed finite function, of similar shape. We used a standard algebraic blob of

Φ =
15∆4

8π(r2 +∆2)
7
2
, (3.2)

taking the regularisation factor as ∆ = 10−5, the radius of the AMB. The blob Φ tends to the
delta function as ∆ → 0 and thus with a non-zero ∆ is used as a non-singular approximation to
the delta function.

To obtain the full flow field around the AMB array, we then linearly superpose the flow
field generated by each AMB individually. Additionally if there is a base flow we linearly add
it to the full flow field generated by the AMBs.

3.2.2 L-array with one wall

Using our one wall numerical model, we will now study the flow induced by the L-array when
we account only for the wall it is closest to in the microchannel (i.e. the one it is attached to,
20 µm away from the AMB centre). The numerical flow field bends as it passes through the



86 Streaming flows around AMB arrays

array with a small circulation at the end of each line of AMBs (see Fig.3.4a). This numerically
obtained flow field does not contain the large circulations we observe experimentally when
the L-array is in the microchannel (see Fig.3.3). We note that the base flow in these compared
numerical and experimental cases are different, but we would expect the additional base flow
in the experimental case to reduce the size of the circulations, as happens numerically, so this
base flow difference does not account for the absence of the large circulations numerically.

If we remove the first order Stresslet correction and modelled each AMB solely as their
leading order Stokeslet, we see a similar numerical flow field to Fig.3.4a where the Stokeslet
and Stresslet were included. However, we included the Stresslet correction, as the Stresslet
incorporates the small circulations found locally near the AMB, which could have contributed
to generating the large circulations seen experimentally in the microchannel. This suggests the
errors from our approximation of the AMB flow field is not the reason why large collective
flows are not observed with our current numerical model.

We can check whether the lack of large circulations is due to the walls rather than inac-
curacies in the numerical model by comparing to an experiment where there was only one wall
close to the array. When the L-array was placed in a circular tank with no base flow and only
one wall (see Fig.3.4b), the flow shows fluid being pulled through the array with circulations
off the ends of the two AMB rows, matching our numerical flow field (in Fig. 3.4a) for the L-
array above one wall with no base flow. Thus, this suggests that the confinement effects caused
by the second side wall of the microchannel is important for generating the large circulations.

3.3 Flow field with two walls

We will now consider building a numerical model for the array flow field which includes two
confining walls. We will include the base of the channel (same as our previous model) and we
will add the top wall to the channel, as for the majority of the AMB arrays this is the second
closest wall and thus, we expect, the second most influential.

3.3.1 Model for an array between two walls

To model the AMBs between two walls, we approximate each AMB by its leading order
Stokeslet only (so we ignore the Stresslet correction). Between two walls a Stokeslet has a
well known solution [75]. To obtain the flow field in a vertical cross section of the channel,
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(a) Numerical streamlines around L array
above a plane wall with no base flow

(b) Experimental streamlines
above one wall with no base
flow (by Nicolas Bertin)

Figure 3.4: Streamlines around the L-array with no side walls

we linearly superpose this individual solution for each AMB between two walls. However,
this solution cannot be regularised, so the ODE solver breaks down near the singularities, thus
streamlines may end abruptly and computational plotting time will be higher.

We can simplify this model, when we are not focusing on studying the vertical flow. The
solution for a Stokeslet parallel to two confining walls has a vertical component of velocity,
which decays exponentially, whereas the planar component of the velocity decays as a power
law. Therefore, in the far field, the vertical velocity component is negligible. The horizontal
velocity is then given by

u(x,y) =
4
h2 z(h− z)ũ(x,y), (3.3)

where z = 0 is the bottom plate, z = h is the position of the top plate, and ũ is the 2D Stokes
Doublet that for an AMB pointing in the x direction is

ũ1
j ∼− 3 ft

4πµ
H(1− H

h
)

1
ρ2

[
1
2

δ j1 −
r jr1

ρ2

]
, (3.4)

where j = 1,2 , H is the height of the Stokeslet above the bottom plate, µ is the dynamic
viscosity of the fluid, (y1,y2,H) is the position of the Stokeslet, ρ =

√
(x− y1)2 +(y− y2)2

is the distance in the plane from the Stokeslet, and r1 = (x− y1), r2 = (y− y2) is the straight
line distance from the Stokeslet in the x and y direction. We see that in the far field the flow is
equal to a 2D Stokes Doublet (Eq. 3.4) with a magnitude, which varies quadratically across the
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channel as in Eq. 3.3 [75]. We can then regularise this Stokes Doublet to remove singularities
using the technique described in Refs. [73, 76]. We then linearly superpose this individual
solution for each AMB to obtain the total flow field around the AMB array. Note that the
result in Eq.3.3 shows that the choice of horizontal plane (i.e. the value of z) only affects the
total magnitude of the flow field, thus the flow field is structurally the same in every plane (at
leading order). The flow field is similar to those in a Hele-Shaw cell (where Poiseuille base
flows are standard) however, such an approximation would be insufficient close to the AMB
where inertia is important.

When there is a base flow of strength 4v0/h2 (for constant v0), we assume it is a traditional
2D Poiseuille flow with velocity field

U0 =
4v0

h2 z(h− z)ey. (3.5)

This has the same quadratic dependence across the channel as the flow generated by the AMB
array, so when we linear superpose it the flow generated by the AMB array it is still structurally
the same in each plane.

The flow structure in the horizontal plane will depend on the non-dimensional quantity of
the ratio of the strength of the AMBs (which is equal for all of them) to that of the base flow,
U0, which we denote τ ,

τ =
ft

µHU0
. (3.6)

To quantify τ experimentally we require values for U0 and ft . Experimental base flow velo-
cities were 1.2mms−1 (for most experiments). The strength of the AMBs is harder to identify
experimentally, and the experimental measurements which were taken underestimate the force
due to friction. However, it is known the velocity field in front of the AMB was 1−100mms−1

so our Stokeslet strength was chosen so the flow velocity ≈ 10 µm from the Stokeslet was at
the upper end of this on the order of 10−100mms−1. Although we approximate the Stokeslet
strength this way we acknowledge limitations of our numerical model which may impact its
validity: a Stokeslet evenly distributes force in front and behind itself unlike the AMB; the
regularisation size can effect the velocity magnitude close to the AMB and the Stokeslet is a
far field model for the AMB. We approximate the force at about ft ≈ 1−10nN. Therefore, for
experiments, τ ≈ 40−400. (We will discuss if this choice is validated by our results in §3.5).
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3.3.2 Vertical flow field and collective flow features of the L-array with
two walls

We will first consider the significance of adding the additional wall by comparing the flow in
vertical cross-sections around the L-array for our one wall model (see Fig.3.5) and our two
wall numerical model, (see Fig.3.6). Fig. .3.5 shows the array layout with the relative position
of the modelled cross sections marked. Around this layout, the cross-sectional flow fields
are shown for the numerical model with one wall. In Fig.3.6 streamlines from the numerical
model incorporating two walls is shown for the cross section at y = 0 (where the plane this
corresponds to is marked on the layout in Fig. .3.5). These streamline pictures are plotted
from the in-plane velocity fields.

With the unconstrained flow (one wall) there is significant motion through the second ima-
ginary boundary, pulling flow into the array and pushing flow out once it has passed through
the array. The second plane restricts this 3D motion, so within the vertical cross section, flow
is approximately parallel to the top and bottom walls, except close to the AMBs. To com-
pensate for this additional confinement caused by the second wall, we observe the appearance
of two large in-plane vortices (see Fig. 3.7).

These large vortices are the significant collective flow features from Fig.3.3. There is
evidence the side-walls are impacting the flow in the microchannel as in Fig.3.3 the right-
hand vortex is relatively small. However, when the experiment is undertaken in an open tank
with a low base flow rate, the two vortices are similar sizes and match those seen in our
numerical model when there is no base flow rate (see Fig.3.7a). We note that the experiments
have a higher base flow rate than the numerical model and we expect higher base flow rates to
suppress flow features generated by the array, as we will see in §3.4.1. However, the aim of
the experiments was to understand the array flow features, so the experiments were performed
in a regime where the array dominates over the base flow, which justifies our comparison of
the numerics and experiments despite the different base flow rates . Overall, our model is
capturing the main flow features, as was the aim, and we will now use this model to examine
flow fields around arrays.
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Figure 3.5: Streamlines around the L-array in vertical planes using our one wall numerical
model. Green arrows indicate the direction of the base flow. The red line at H = 0 marks the
base wall of the channel and the red line at H = 80 µm marks the position of the channel top
wall, which is neglected by our model so the numerical model shows flow through this top
wall.
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Figure 3.6: Vertical motion at y = 0 (as marked on Fig.3.5) using our numerical model with
two confining walls. The red line at H = 0 marks the base wall of the channel and the red line
at H = 80 µm marks the position of the channel top wall, both of which are incorporated in
the numerical model (unlike in Fig. .3.5).

(a) Experiments at Pac = 1.53MPa with a base flow of
0.5mms−1 (by Nicolas Bertin)

(b) Numerics with no base flow, τ = ∞.

Figure 3.7: Streaming around the L-array at low base flow
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(a) Experiments at Pac = 93kPa (by Nic-
olas Bertin)

(b) Numerical streamlines for L for τ ≈ 187.5

Figure 3.8: Streamlines showing the flow around the L-array, at low AMB strength.

3.4 Numerical flow structure development of the experimental
arrays

In this section, we will numerically examine the development of the flow fields for the five
experimental arrays, as τ is increased. These will be compared to experimentally obtained
flow fields. With the exception of the L-array, all these experimental flow fields were obtained
during mixing experiments, thus concentration fields are shown with flow direction arrows
added afterwards, using the associated videos to determine the direction of the flow manually.

3.4.1 L-array

Our first array is the L-array. The L-array is not symmetric and thus non-symmetric flow
fields are expected and observed (see Fig. 3.7). The main changes in flow shape as τ decreases
(corresponding to increasing strength of background flow) are:

• τ = ∞ (corresponding to U0 = 0), plotted in Fig. 3.7b. There are two large circulations
on both sides of the L, in agreement with experiments performed at a small but non-zero
U0(which could correspond to τ as large as 800), Fig. 3.7. However, in channel ex-
periments, due to the side walls these circulations are different sizes (Fig.3.3). Another
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difference with these experiments, likely due to the non-zero U0 in the experiments, is
that there is a change in behaviour from flow being caught by the left hand vortex to
flow escaping downstream.

• τ ≈ 1900. The circulations start to be suppressed within a 1mm width here;

• τ ≈ 190 plotted in Fig. 3.8b. A saddle is now clearly apparent to the left of the array be-
hind the circulations. The two circulations have shrunk significantly and become more
elongated, but survive off the edge of the two straight sections of the array. These fea-
tures all agree with those observed experimentally when the driving acoustic pressure is
Pac = 93kPa and there is a 1.2mms−1 base flow (Fig. 3.8). Numerically our features are
noticeable closer to the two end points of the array than those experimentally, and this is
true even at slightly higher τ where the circulations are bigger. Since these differences
are small, they are likely due to our approximation to the AMB flow field. We also have
a saddle to the right of the array, next to the right hand circulation, which is not observed
experimentally, but experimentally that end of the array is very close to the wall. The
major additional experimental feature is the presence of an additional saddle to the left
of the AMB array separating flow into the bottom of the array, flow past the array and
backflow behind the array. Numerically, there is no backflow close to the AMBs, which
means the saddle is not seen numerically, so this suggests the AMB flow approximation
may explain the difference between the numerical and experimental flow feature.

• τ ≈ 40. Both circulations have disappeared completely.

The structural changes with decreasing τ agree well with experiments as seen when comparing
Fig.3.3 and Fig.3.7b and in Fig.3.8.

Less experimental analysis has been undertaken for the other four experimental array, but
we will still study their structurally changes and compare to the available experimental data.

3.4.2 V-array

The main changes in flow shape as τ decreases (corresponding to U0 increasing) are:

• τ = ∞ (corresponding to U0 = 0), plotted in Fig. 3.9a. As shown in Fig.3.9a, the V-array
pushes fluid away from its point, around the outside and into the pointed ends of the V
from behind. A saddle exists between the V opening. Flow at the two ends of the V is
pushed down a very narrow channel close to the AMB lines, but they can the be pulled
into the many small circulations pushing flow back to the V ends. Since the array is
vertically symmetric, the flow it generates is also symmetric;
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(a) Numerical streamlines, τ = ∞ (b) Numerical streamlines, τ = 187.5 (c) Experiments for
Pac = 224kPa (by
Nicolas Bertin)

Figure 3.9: Flow around the V-array

• ∞> τ & 50 plotted at τ = 187.5 in Fig. 3.9b. As τ decreases down to τ ≈ 380, the saddle
in the V of the array is pushed further away from the array. It is rapidly approached
(as τ decreases) by a different saddle, which starts (at τ = ∞) on the centre line at
y = ∞, until they are nearly on top of each other. Around τ ≈ 380 they both move
away, towards either end of the V. The saddles separate flow caught by the array and
that passing around the outside. A saddle also appears upstream, approaching the array
as τ decreases. This saddle separates the region where the saddle is pulling in flow from
behind as seen in Fig. 3.9a and the base flow pushing flow around and away from the
array. As τ decreases from infinity more flow is pushed around the array, although some
is still caught and pulled into the array. Many of these features are visible in Fig.3.9b
for τ = 187.5;

• τ ≈ 50. The array is having minimal effect on the flow field.

In experiments, when the AMBs were pointing into the flow, the AMBs degraded and had a
significantly shorter life span, making experimental data harder to obtain. This was particu-
larly a problem at higher acoustic pressures. However, fluid being circulated close to the line
of AMBs is visible in Fig. 3.9c along with fluid escaping around the outside of the array,
which we identified numerically. But the flow is not symmetric, in contrast with what we saw
numerically, probably due to AMBs degrading as well as manufacturing variability, meaning
the two rows of AMBs are not of exactly equal strengths.
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3.4.3 Straight-line array

The straight line array contains 19 AMBs stretching across the channel width and pointing
(downwards) against the base flow (as shown in Fig. 3.2). The main changes in flow shape as
τ decreases (corresponding to U0 increasing) are:

• τ = ∞ (corresponding to U0 = 0), plotted in Fig. 3.10a. There are two circulations, an
anticlockwise one to the right of the line of AMBs and a clockwise one to the left of the
line of AMBs, with each circulation centred slightly off the edge of the line of AMBs
(see Fig.3.10a);

• ∞ > τ > 130 plotted at τ = 375 in Fig. 3.10b. As τ decreases from ∞, saddles ap-
pear in front and behind the array and start moving towards the array. Simultaneously
the circulations elongate squeezing in close to the line of AMBs, reducing the size of
the backflow region. Decreasing τ further causes the base flow to break through in
the middle of the AMB line leaving a saddle to either side each bordering a smaller
circulation centred near the line’s end, as can be seen in Fig.3.10 for τ = 375;

• τ = 130. The circulations have reduced in size and the AMB line does no more than
cause a slight bending of the flow away from its centre.

This simulation gives the worst experimental agreement of all five arrays (see 3.10). The
experiment shows a large anti-clockwise circulation on the right-hand side of the channel
and a partial clockwise circulation on the left-hand side. The partial circulation is missing any
rotation beyond the array, as is seen on the right-hand side. To the far right and the far left of the
channel, near the side walls, there is evidence of flow proceeding past the array with minimal
interference from the array. The presence of the circulations and regions where the flow passes
straight past the array agrees with the numerical model. However, the major difference is that
numerically the flow passes straight through the middle of the array separating the circulations
rather than having the circulations in the middle with the flow passing around both sides. We
hypothesise this is an effect of not including the side walls in our numerical model, which we
expect to be particularly significant since this array stretches the entire width of the channel.
The missing half of the left circulation experimentally could be a wall effect or more likely, due
to practical differences between experiments and numerics (line not completely horizontal, air
trapped in AMBs) so the idealised symmetric numerics is not realised in the physical world.

As such with this array we should be most sceptical about drawing conclusions about how
the flow structure changes with τ .
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(a) Numerical streamlines, τ = ∞ (b) Numerical streamlines, τ = 375 (c) Experiments at
Pac = 1.45MPa (by Nic-
olas Bertin)

Figure 3.10: Flow around the straight-line array

3.4.4 Tilted left/right array

The tilted left/right array consists of a diagonal line of AMBs across the channel, with 9
AMBs on the left, pointing perpendicular to the line against the base flow, and 9 AMBs on the
right, pointing perpendicular to the line with the base flow (as shown in Fig. 3.2). The main
changes in flow shape as τ decreases (corresponding to U0 increasing) are:

• τ = ∞ (corresponding to U0 = 0), plotted in Fig. 3.11a. There is a large anticlockwise
circulation at the centre of the AMB line, with two other large clockwise circulations
with oppose directions centred just off both ends of the AMB line (see Fig. 3.11a);

• ∞ > τ > 50 plotted at τ = 187.5, in Fig. 3.11b. Decreasing τ from infinity causes
fluid to push through, between the circulations on the right hand of the array where the
direction of the component of the AMBs force parallel to the channel matches the base
flow. This separates the right-hand end clockwise circulation from the other two, which
shrinks far more quickly than the other two circulations. Saddles move in from infinity,
one for each circulation, separating flow that escapes from the array and that which is
caught in the vortices. The two circulations become linked so flow can do half a rotation
with one circulation before passing into the other circulation, doing half a rotation and
escaping. Decreasing τ further increases this interplay between the two circulations and
shrinks all the array features. The flow for τ = 187.5 is shown in Fig.3.11;

• τ ≈ 50. Most array effects are unnoticeable by this stage.
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(a) Numerical streamlines, τ = ∞ (b) Numerical streamlines, τ = 187.5 (c) Experiments with
Pac = 1.82MPa (by
Nicolas Bertin)

Figure 3.11: Flow around the tilted left/right array

Experimentally, we observe a central anticlockwise circulation as the major flow feature. This
main flow feature is observed numerically as well but this circulation dominates more than is
observed theoretically (see Fig.3.11), which we again expect to be due to side wall effects.

3.4.5 Vertical left/right array

The vertical left/right array consists of a line of 6 AMBs positioned down the centre of
the channel with the 3 at one end pointing towards one side-wall and the 3 at the other end
pointing towards the other side wall (as shown in Fig. 3.2 ). The main changes in flow shape
as τ decreases (corresponding to U0 increasing) are:

• τ = ∞ (corresponding to U0 = 0), plotted in Fig. 3.12a. There is a long wide central
circulation exchanging flow between the top AMBs to the bottom AMBs, as well as two
large oblong circulations above and below the array (see Fig. 3.12a). We note that like
the tilted left/right array, the flow is symmetric under a π radian rotation;

• ∞ > τ > 15 plotted at τ = 375 in Fig. 3.12b. Decreasing τ , the left half of the centre
circulation, (which has a component of its flow in the direction of the base flow), main-
tains its size (even temporarily growing in size vertically) and the right hand side of
the centre circulation, (with a flow direction with the base flow), shrinks in size. The
other two circulations reduce in size (far faster than the large circulation) and elongate,
with the additional space between the circulations allowing flow to be pulled in from
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(a) Numerical streamlines, τ = ∞ (b) Numerical streamlines, τ = 375 (c) Experiments with
Pac = 1.34MPa (by Nicolas
Bertin)

Figure 3.12: Flow around the vertical left/right array

up channel and pushed out down channel. Some flow escapes around the outside of the
array and by τ ≈ 940 this occurs within a 1mm wide channel. One saddle approach
from infinity for each of the circulations, separating this laminar flow and circulation.
Many of these features are visible in Fig.3.12b for τ = 375;

• τ = 15. Most of these array features are almost unnoticeable by τ ≈ 15, but the longest
surviving major feature is the gentle bending of flow as it passes through the array.

Experimentally, at Pac = 1.34 MPa, we observe four circulations. Two on the right, the one
further upstream clockwise and the one further downstream anticlockwise, and two on the left,
the one further upstream anticlockwise and the one further downstream clockwise. In good
comparison, we numerically saw the four distinct flow circulations, however their alignment
and relative sizes differed from these experimental observations (Fig. 3.12). We anticipate this
being partly due to the approximations we made in our AMB flow model, since the differences
in the flows occur close to the AMBs. Also, the circulations in the experiments stretch across
the width of the channel so the side walls may have an impact.

3.5 Force strength and τ

We have observed that the array has minimal effects as τ is reduced long before τ equals
1. Thus the strength of the AMBs needs to be orders of magnitude stronger than that of the
base flow to have an effect. This agrees with experiments where the stronger AMBs generate
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velocities of roughly 10− 100mms−1 in front of themselves, whereas base flows used were
1.2mms−1. This can be explained as the AMB force is maintained in one location whereas
the base flow is uniform in the plane.

We can now consider whether the observed flow fields validate our choice of force strength
of ft = 1− 10nN. A comparison is made more difficult as the driving pressures for the flow
fields vary experimentally, and its effect vary between the experimental setups of a circular
tank and a microchannel. However, the excellent agreement in Fig.3.8 in terms of shape and
size of features suggests ft = 4.5nN for the strength of the Stokeslets is appropriate for a
driving pressure of Pac ≈ 100kPa, well within our force range based on AMB velocities.

At higher Pac the comparison becomes harder as the agreement between the theoretical
and experimental results are not as good. Similar features are observed (see Fig.3.12) but
experimentally the features extend across the width of the channel. At that point the side walls
become important, which are not captured theoretically. However, forces 10 times stronger are
required to get some features stretching across the channel suggesting much stronger forces are
being produced under the stronger driving pressures Pac, and this strength is then of a similar
order of magnitude but outside our original force range (although side walls may reduce the
necessary strength to obtain these effects).

3.6 Conclusion

We first modelled the AMBs as Stokeslets above one wall and then separately in a confined
channel as Stokeslets between two plane walls identifying that the top wall of the channel
is essential to the structure of the flow field in the channel. Using this channel model we
observed similar structural changes in the flow to that observed experimentally for the L-array
where we have the most experimental results to compare with. For all the arrays there are
flow differences between experiments and numerics (particularly for the straight line array)
which we hypothesise are mainly due to the absence of side walls in the numerical model.
Further work could include adding side walls to our numerical model, by using the method of
images to calculate the effect of these additional walls on our leading order 2D Stokes doublet
approximation of the AMB between the top and bottom wall, and then linearly superposing
the flow fields of all the AMBs within the array.





Chapter 4

Optimising AMB arrays for mixing

The main results from this chapter are included in our published paper: “Bubble-based acous-
tic micropropulsors: active surfaces and mixers”, Nicolas Bertin, Tamsin A. Spelman, Thomas
Combriat, Hervé Hue, Olivier Stéphan, Eric Lauga and Philippe Marmottant, Lab on a Chip,
17:1515-1528 , 2017 [66] (adapted by permission of the Royal Society of Chemistry).

In this chapter we will analyse the mixing potential of our AMB arrays in our microchan-
nel. Ultimately, diffusion will cause two fluids to mix on a molecular scale and generate a
homogeneous fluid. However, at high Reynolds numbers, diffusion is assisted by turbulence,
which can inter-disperse fluids quickly, rapidly increasing the surface area [77, 78]. Numerical
models by E. Lunasin et. al. have ignored diffusion and looked for the optimal flow field to
inter disperse multiple fluids, to identify optimal mixing [79]. A different numerical model
uses probabilistic methods, where the concentration is taken as a probability density function
(PDF) and its mean value and the mean values of its moments are analysed [80, 81]. This PDF
can also be used to analyse particular mixing protocols, such as stirring a blob of dye with a
flapping plate [82]. On the theoretical side, the Batchelor scale, named after George Batchelor,
describes the smallest length scale of flow variation before diffusion dominates [83].

On the microscale flows are laminar, so turbulence will not help mixing, and diffusion
plays a larger role. However, the mixing process can be sped up by exploiting shear effects, for
example, through Taylor-Aris dispersion [84, 85], or at high Reynolds number, through shear
instabilities [86]. Microfluidic mixers [87, 88] are largely broken up into two types: active
and passive mixers. In active mixers, a moving part such as an oscillating bubble actuates
the flow to cause mixing [50, 89]. In a passive mixer, the channel geometry splits and folds
the flow to increase the effects of diffusion [90–92]. In these microfluidic mixers, there are
multiple methods for measuring the mixing experimentally [93] including: using two fluid
streams with one or both dyed different colours [94]; using two chemicals that interact with
each other [95] and using photometric and fluorescent methods (or Raman techniques) to study
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the concentration change directly in 1D [96].

Here, we will analyse the mixing potential of the AMB arrays introduced in Chapter 3
for mixing two streams of fluid in a confined channel, focusing on variations of the experi-
mental arrays introduced in Fig.3.2. Most theoretical studies of mixing use detailed numerical
simulations [90, 97] or scaling arguments [98, 99]. Here we present an alternative approach,
namely a numerical method applied to a simplified array-channel setup. The advantage of
our method is that, due to its simplicity, it can analyse hundreds of AMB arrays a day, and
is designed to identify groups of good arrays, which can then undergo further numerical and
experimental study. In §4.1 we describe the experimental motivation, in §4.2 we outline our
mixing measure, in §4.3 we discuss the effect of the fluid-fluid boundary line position on mix-
ing and boundary lines becoming caught in vortices, in §4.4 the best arrays identified by our
model are discussed and finally in §4.5 we compare two of these best arrays for mixing with
experimental results.

4.1 Experiments

Our mixing analysis was motivated by experiments undertaken by our collaborators. They
used the experimental setup introduced in Chapter 3 §3.1, to analyse the ability of the five
armoured microbubble (AMB) arrays, introduced in Fig.3.2, to mix two continuous streams
of fluid within a confined channel of dimensions 80 µm in height and 1mm in width (although
they have also considered a thinner channel of width 0.5mm but we do not study that case
in this thesis). The experimental protocol involved actuating the array under ultrasound for 2
seconds, and then turning the ultrasound off for 2 seconds. Experimentally, mixing was quan-
tified using the Relative Mixing Index (RMI) [100], which compares the standard deviation
of the light intensity from the fluid in the mixed and unmixed states. Mathematically, RMI is
calculated from a video frame as

RMI = 1− σ

σ0
= 1−

√
1
N

N
∑

i=1
(Ii −⟨I⟩)2√

1
N

N
∑

i=1
(I0i −⟨I⟩)2

, (4.1)

where σ is the standard deviation of the light intensity, σ0 is the standard deviation in the
unmixed state light intensity, N is the number of pixels in the analysis box, i is the pixel
number, Ii is the grey scale intensity of the pixel, ⟨I⟩ is the average light intensity in the analysis
box and I0i is the intensity of the ith pixel in the unmixed state. RMI=100% corresponds to
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perfect mixing and RMI= 0 corresponds to no mixing. The RMI was measured in an ‘analysis
box’, which spanned the width of the channel, and was positioned sufficiently far downstream
so as to not be significantly effected by the AMB array. The RMI was analysed at a range of
driving pressures Pac. Experimentally, the L-array was the best for mixing at higher driving
pressures and obtained nearly perfect mixing at a lower driving pressure of Pac = 1 MPa than
the other arrays (if they reached perfect mixing). At lower driving pressures the V-array was
best reaching an RMI of 59% at Pac = 224kPa but the L-array performed particularly poorly.
Experimentally, problems arose with AMBs pointing into the flow having very short bubble
lifespans. This interfered with experiment using the straight-line and V-array, with greater
problems at higher driving pressures.

In this experimental setup the Reynolds number is low so the mixing is caused solely by
diffusion [101]. To increase the rate of mixing between two fluids, the two-fluid boundary can
be stretched, thus increasing the surface area for diffusion. Therefore, there is a correlation
between the rate of mixing and the stretching of the two-fluid boundary. To numerically study
the mixing ability of AMB arrays, we will ignore diffusive effects for simplicity and solely
consider the stretching of the two-fluid boundary, which we expect to correlate with the rate
of mixing.

4.2 Numerical mixing measure

Our numerical setup is different to the experimental setup in that: we will ignore side wall
effects; focus our mixing analysis at the lower acoustic driving pressures and focus on the
stretching (so mixing) of fluid, which starts outside the array when it is turned on. These
differences are implemented for simplicity, but in §4.5 we will compare our results to experi-
ments to demonstrate our theoretical work still has some physical correspondence.

For our numerical analysis we use the same model for the flow field as we introduced in
Chapter 3. In summary, we model each AMB as the regularised far field solution of a Stokeslet
between two plane walls, which is a regularised 2D Stokes Doublet. We linearly superpose
the effects of each AMB and the background flow to obtain the total flow field. We identified
in Chapter 3 that every plane within the channel was structurally the same in the far field, thus
we will focus our mixing analysis on one plane.This is equivalent to depth averaging, because
we have the same flow field in each plane so depth averaging gives a constant multiplied by
the one plane flow field. This is a far field approximation and is inaccurate close to the AMBs
where there is vertical motion of the fluid and vertical circulations can be seen, indicating
different flow fields in each plane. However, this approximation will capture the larger flow
fields, which cause the flow mixing. Separately, although the structure of each plane is similar,
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the average speed varies between each plane so in slower planes diffusion will have had longer
to smooth out the concentration field at the fluid-fluid boundary before it reaches the array.
Thus behaviour in the near-field region of the original fluid-fluid boundary is more significant
in these planes. This approximation also removes information about vertical shear, which
can increase the mixing rate, although our measure of mixing does not account for shearing
anyway.

Regularising the Stokes Doublet approximation for the AMB introduces difficulties for our
mixing analysis, which were not problematic when we were only considering the streaming
flow in Chapter 3. The regularisation breaks the Stokes Doublet into a source and sink, thus
we choose our regularisation length of δ = 0.5 × 10−5 such that these are contained well
within the AMB radius. To prevent fluid non-physically becoming trapped in a sink, we add a
small Ae−B/(r−r0)

2
velocity contribution in the direction of the Stokes Doublet within the AMB

radius r0 (where A, B are constants) to push flow from the sink to the source. The maximum
velocity within the AMB increases from 0.02ms−1 to 0.07ms−1 due to this correction but is
maintained at the same order of magnitude. This contribution is continuous at all derivatives
on the boundary of the AMB and is added only within the AMB. The AMB strength is taken as
0.45nN (which corresponds to a low experimental pressure forcing as we justified in Chapter
3 §3.3.1 and §3.5) with a base flow in the AMB plane of 1.2mm/s to match experiments.

Diffusion ultimately causes the mixing but its effectiveness is dependent on the size of
the surface area between the two fluids. As the fluid passes through the AMB array this two
fluid boundary will be stretched, increasing in size, and thus improving mixing. Therefore, we
measure mixing ability by considering the stretching of the fluid-fluid boundary. This ignores
Taylor-Aris dispersion effects and the smoothing of the boundary caused by diffusion by the
time the boundary has passed through the mixer. However, it will capture the increase in
mixing caused by diffusion, due to the greater surface area between the two fluids.

In our plane, this fluid boundary will be a line extending down the channel, and we consider
a section of line 3.2mm in length. We measure mixing capability as Λ, the ratio of the length
of line after it has partially passed through the array to its initial length at time t = 0 of 3.2mm
(similar to some measures for simple passive mixing such as for duct flow in a channel [101]).
In general, Λ will be greater than one, indicating the boundary has stretched over time by the
AMB array but it can be less than one if the boundary line contracts, such as if it is caught
in a sink or the flow is slows down. We take our stretch of line starting a long distance away
from the array (about 1mm) where the base flow dominates, and thus we can assume that each
point on the line follows the same path, only time delayed. We note this assumption ignores
the possibility for chaotic advection on the fluid-fluid boundary to improve mixing. Chaotic
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advection can occur in the flow, for example, when flow splits to go either way around a vortex.
The analysis is terminated when the end of this line element reaches the starting position of the
front of the line element, at which point the front of the line element will have well passed out
the other side of the array (if not caught in an array circulation). Line lengths are calculated
assuming straight lines between data points. We note that our measure takes the stretch of
boundary line we analyse starting a long way from the array, and that this ignores effects such
as chaotic advection, which will most prominently effect the boundary line starting within the
array when the array is turned on. Experimentally, the ultrasound is turned on for two seconds
then off for two seconds, which is a time modulation that introduces time dependence to the
flow. This modulation would allow for chaotic advection, as often seen in 2D time dependent
flows, as when the array is switched on fluid close to the array will behave differently to that
further downstream, allowing fluid that starts close together to become widely separated very
quickly. This could allow very good mixing of the fluid close to the array when the array is
switched on, but this behaviour is not captured by our numerical model and mixing measure.

Using the experimental arrays as templates we considered variations on their design. Spe-
cifically, we consider three array designs: an L-array, a same direction V-array and an opposite
direction V-array, as shown in Fig.4.1, maintaining the array centre at a similar distance down-
stream. We vary these designs by changing the parameters θ1, θ2 and θ3. The parameter θ3

always represents rotating the array around the centre of the array. For the L-array, θ1 and
θ2 represent rotating the direction of the AMBs on the corresponding AMB line while keep-
ing the centre of each AMB constant. For the same direction V-array and opposite direction
V-array, θ1 and θ2 represent rotating the position of the corresponding rows of AMBs about
the point of the V, while keeping the direction of the AMBs constant. This is explained in
more detail in Fig. 4.1. We also vary the starting position of the two fluid boundary relative
to the AMB array across the width of the channel (i.e. from Fig.3.1a, varying the x position
of the boundary), considering Λ at every 10 µm position across a 1mm width. We define
Λ̄ = max(Λ) where we maximise over all these positions of the fluid boundary, and will use
that to identify the best arrays for mixing.

4.3 Boundary line and vortices

We will first consider the effect of varying the x position of the two fluid boundary, and the
effect of that boundary becoming trapped in vortices using the array shown in Fig.4.2a as an
example.
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(a) Numerical L-array. The parameter θ1 dictates the
direction of the six AMBs in the column below it,
where each of these AMBs is rotated around its own
centre. The parameter θ2 dictates the direction of the
five AMBs in the adjacent row, where each AMBs is
rotated around its own centre. The corner AMB points
in a direction which is an average of the direction of its
two adjacent AMBs. The position of the AMBs remain
constant for all values of the parameters θ1 and θ2. We
consider the mixing ability of all configurations of this
array with θ1,θ2,θ3 = 0,π/2,π,3π/2.

(b) Numerical same direction V-array. The parameter
θ1 rotates the position of the AMBs in the left hand
line anticlockwise about the AMB at the point of the
V while keeping the AMB direction constant. Sim-
ilar to θ1, θ2 rotates the position of the AMBs in the
right hand line clockwise about the AMB at the point
of the V while keeping the AMB direction constant.
The AMB at the point of the V remains stationary for
all values of θ1 and θ2. We consider the mixing ability
of all array configurations with θ1,θ2 = 0,−π/4,−π/2
and θ3 = 0,π/2,π,3π/2.

(c) Numerical opposite direction line array. The parameter θ1 rotates the position of the AMBs in the left hand line
anticlockwise about the (empty) point of the V while keeping the AMB direction constant (for example, a rotation of
−π/4 would make the left hand line horizontal). Similar to θ1, θ2 rotates the position of the AMBs in the right hand
line clockwise about the (empty) point of the V, while keeping the AMB direction constant. We consider the mixing
ability of array configurations with θ1,θ2 = 0,−π/4,−π/2 and θ3 ranging from 0 to 7π/4 in divisions of π/4.

Figure 4.1: The three AMB array designs we analyse for their mixing ability. The centre of
each black arrow marks the centre of an AMB and the arrow direction indicates the direction
the AMB opening points. For each of the three designs, multiple values will be prescribed for
the parameters θ1,θ2 and θ3, so that we can study multiple variations of these three starting
configurations. For all designs, θ3 rotates the entire array (so all the AMBs) around a point in
the centre of the array. The three designs in these sub figures correspond to θ1 = θ2 = θ3 = 0.
The green arrow marks the direction of the base flow, which remains in this direction for all
values of θ1,θ2 and θ3.
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Our theoretical results indicate that the position of the two fluid boundary relative to the
AMB array affects the mixing efficiency. If there is a circulation in the flow, it will benefit
mixing if it is able to pull in both fluids rather than just rotating one of them. The position of
the boundary affects which local features stretch and contract and by how much (see Fig.4.2),
although some arrays (like the long left/right array) do have wide bands of similar boundary
stretching. The two biggest differences in behaviour is that either the boundary is stretched
but passes out the other side of the array or it is pulled and caught in local vortices. These
vortices are close to the AMBs and behave like sinks, which do not conserve mass. The
sinks arise due to inaccuracies in our numerical model close to the AMBs (as we used the
far-field approximation for the AMBs) and in this region, vertical motion in particular is more
important so flow would have been able escape the circulation by moving out of plane, but this
is not captured by our numerical model since it only evolves the material surface in a single
plane.

We expect vortices to create the best mixing, particularly when the array is turned ‘on’ and
‘off’ as in the experiments. Local vortices can cause large stretching, however the boundary
then became tightly wrapped (close to the AMBs where our model is weakest) so the diffusion
length scale becomes significant. Using experimental values for the diffusivity D and the time
T , the diffusion length scale 2

√
DT ≈ 2

√
10−9 ×2 ∼ 10−4 m after two seconds, which is

much larger than the gap size of order 10−6 m between folds of the boundary in the tightly
wrapped vortices (see Fig.4.2c). Thus for tightly wrapped vortices our mixing measure will
overestimate the mixing ability. If the AMB strength is increased, corresponding to higher
driving pressures, vortices would become larger in size thus potentially reducing this issue.
However, unconstrained large vortices throw flow out sideways rather than capturing it thus
the side walls became significant, but as these are not included in our model we do not consider
higher driving pressures here.

Our analysis best compares the cases where the boundary passes completely through the
array, which is particularly useful for a continuously actuated array as vortices trap fluid,
delaying fluid from progressing out of the mixing region and down the channel even once it
is mixed. In what follows we will focus on the cases where the boundary passes completely
through the array by excluding any boundary lines where the front of the boundary remains
within 30×10−6 µm of the last AMB in the array by the end of the simulation.
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(a) The L-array with θ1 =
3π/2,θ2 = π/2 and θ3 = π/2.
The circles indicates the AMB
positions and the arrows the dir-
ection the bubble cap of the
AMB points.

(b) Shape of the boundary as it passes
through the array in (a) for three bound-
ary starting positions.

(c) Zoom in on the local vortex of b

Figure 4.2: Different line stretching around the AMB array.
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4.4 Stretching to find best arrays

We will now use our mixing measure to study the mixing ability of the range of arrays in
Fig.4.1. The time of each simulation will effect Λ since the boundary will spend more time
away from the array. Therefore, the absolute value of Λ is unimportant but its relative size
for different arrays and setups is important. Simulations ran for 2s at a base flow rate of
1.2mms−1 to best match experiments.

4.4.1 Local stretching

We first consider Λ for the experimental arrays for a range of boundary line positions (Fig.4.3).
In this scenario we found the best of the experimental arrays, from Fig.3.2, for mixing was

a long left/right array followed closely by the tilted left/right array and then the experimental
L-array. In addition the left/right array has a wide band of over 300 µm where a similar high
level of stretching is observed, very useful for mixing when diffusion had smoothed out the
concentration field at the fluid-fluid boundary.

The experimental V-array and line array, from Fig.3.2, have AMBs pointing into the flow,
reducing the downstream flow speed and not significantly bending the flow (at this relatively
low AMB strength), causing contraction of the boundary line. The V-array has a wide central
band of 400 µm where the flow is caught in small local vortices. This might indicate a region
of strong mixing (particularly for the case of the ultrasound turned on and off) since a wide
band of fluid is caught there in local vortices. This does agree with experimental results where
at low driving pressures the V-array is best. However, our numerical model cannot accurately
analyse small local vortices (as discussed in §4.3) thus preventing rigorous comparison of the
mixing effects of this feature with experiments.

As the starting position of the boundary line moves across the channel, the stretching
mostly varies smoothly, with sharper spikes indicating sudden changes where the flow is
caught by a new flow feature. The larger spikes further from the array distinguishes between
the boundary line going through rather than around the array. Smaller spikes are caused by the
boundary bending around local flow features differently (see Fig.4.4). Variations of O(0.01)
are errors arising from our numerical approach, namely the fineness of our line discretisation.
This lack of smoothness of Λ impacts the optimisation of the mixers as experimentally the
setup will vary from the theoretical optimal, and if that optimal is unstable because it is at one
of the spikes so that small position perturbations significantly reduce the mixing, the experi-
mental realisability of the theoretical optimal may be difficult. Also, experimentally diffusion
causes the fluid-fluid boundary to become a region rather than a distinct line, thus stretching in
a thin band could be physically important, so this is another reason why a theoretical optimum
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at a spike could impact experimentally realising the optimum. Therefore, trying to identify
an optimum with a band of good mixing is important but the best width of band to use would
require further analysis.

4.4.2 Comparing arrays for mixing

Comparisons of the relative stretching for the orientations of the numerical configurations
introduced in Fig.4.1 are shown in Fig.4.5, 4.6 and 4.7. We aim to identify groups of arrays
that have large relative length, and thus we predict will produce better mixing. We will not
specifically order the array origination from best to worst based off small variations in their
stretching, as due to the number of assumptions with our model this cannot be justified.

The numerical L configuration reaches a maximum Λ̄=1.45 (to 2dp), see Fig.4.5. A similar
maximum is reached for each θ3 when the two rows of AMBs point along their own line with
both lines pointing towards their corner or away. (Although only one of these two orientations
provides the maximum Λ̄ at each θ3 the other only has a slightly lower Λ̄.) Two of these best
L-arrays are shown in Fig.4.8. These arrays are optimum because the flow is pushed around
the circulation created by one row of AMBs and then into the circulation of the other AMB
row before continuing downstream. The minima occurs when the row of AMBs across the
channel are pointing into the flow and the other row across the flow, so the flow is slowed by
one row and only slightly bent by the other row.

The numerical V configuration obtains a slightly lower Λ̄ than the numerical L configura-
tion of Λ̄ = 1.39 (to 2dp). This occurs when the experimental or inverted V (see Fig.4.9a) is
perpendicular to the base flow, and the flow pushes the boundary line down one of the rows
of AMBs and across the channel. This is only slightly less with a jinked V (see Fig.4.9b)
and the V jinked the other way so θ1 and θ2 are −π/4 smaller. (We note that due to the
system symmetry θ3 = π/2, 3π/2 are analogous). Configurations perpendicular to the base
flow on average produced better mixing . However, this setup has many cases where flow gets
caught in small vortices close to the array, similar to the experimental V, for example when
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(a) Numerical L-array with θ1 = θ2 = 0 with θ3 =
3π

2 corresponding to the experimental L-array.
(b) Numerical opposite line mixer with θ1 = −π

4 ,
θ2 =−π

4 and θ3 =
3π

2 corresponding to the experi-
mental left/right array.

(c) Numerical opposite line mixer with θ1 = −π

4 ,
θ2 = −π

4 and θ3 = π

4 corresponding to the experi-
mental tilted left/right array.

(d) Numerical V-array with θ1 =−π

4 , θ2 =−π

4 and
θ3 = π corresponding to the experimental line array

(e) Numerical V-array with θ1 = 0, θ2 = 0 and θ3 =
π corresponding to the experimental V-array.

Figure 4.3: Numerical mixing for each of the arrays studied experimentally.
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Figure 4.4: Example of variations causing a local spike
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Figure 4.5: Line stretching for rotations of the numerical L-array
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Figure 4.6: Line stretching for rotations of the numerical V-array. Then setting θ3 = 3π/2 is
equivalent to θ3 = π/2 due to channel symmetry so is not shown here.
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Figure 4.7: Line stretching for rotations of the numerical opposite direction array. Setting
θ3 = π is equivalent to θ3 = 0, θ3 = 3π/2 is equivalent to θ3 = π/2, θ3 = 5π/4 is equivalent
to θ3 = π/4 and finally θ3 = 7π/4 is equivalent to θ3 = 3π/4 due to channel symmetry so are
not shown here
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(a) Configuration corresponding to θ3 =
0, θ1 = 3π/2, θ2 = π/2

(b) Configuration corresponding to
θ3 = π,θ1 = π/2,θ2 = 3π/2

Figure 4.8: The two L arrays producing the greatest stretching.

θ1 = −π/2,θ2 = 0,θ3 = 3π/2 for most boundary starting positions. Although,θ3 = π has
very low Λ̄ for a different reason, in that the AMBs pointing into the flow slow the flow down
and push incoming fluid (and the boundary line) around the array instead, and while there are
small circulations close to the array, the downstream flow does not interact with these.

The opposite direction array has the largest Λ̄ of Λ̄ = 1.46 (to 2dp). This maximum is
obtained by a left/right V (see Fig.4.10a) and a jinked left/right V (see Fig.4.10b). In these
cases, the boundary is pushed across the channel in one direction by the first row of AMBs and
then across the channel in the opposite direction by the second row of AMBs pointing in the
opposite direction. We note that due to the system symmetry θ3 = π/2,3π/2 are analogous, as
are θ3 = 0,π and θ3 = 5π/4,π/4 and θ3 = 7π/4,3π/4. In general, better mixing is obtained
by having the AMBs pointing perpendicular to the direction of flow. The worst mixing is
generally obtained when θ3 = 0, so the AMBs are pointing parallel to the direction of flow.
Here the boundary is either sped up as it is pushed through the array where the AMBs are
pointing with the flow, or the AMBs pointing against the flow slow the boundary down but
push the boundary around this half of the array. Both cases only cause slight stretching and
the movement around AMBs pointing into the flow suggest small circulations forming close
to these AMBs.
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(a) Inverted V (b) Configuration corresponding to θ1 =
0,θ2 =−π/4,θ3 = π/2 .

Figure 4.9: Two better V-arrays.

(a) Left/right V (b) Jinked V: θ1 = −π/2, θ2 = −π/4, θ3 =
3π/2.

Figure 4.10: Two best opposite direction arrays
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(a) Long left/right array (b) Configuration corresponding to θ1 = 3π/2,θ2 =
3π/2,θ3 = π/2

Figure 4.11: Two best average arrays

Therefore, the best arrays, with similar levels of stretching, are obtained by the opposite
direction arrays and the L array variations shown in Fig.4.8 and Fig.4.10.

In general these best arrays only obtain this maximum relative length within a small width
of boundary position across the channel, with the stretching dropping off quickly away from
the optimal boundary position or having the flow caught in local vortices instead. This is a
problem once diffusion has smudged the boundary significantly and if, for example, these the-
oretically good mixing arrays were used as blueprints for constructing large arrays with high
efficiency through replication. To analyse this we took an average of the stretching for bound-
ary starting positions within a 100 µm band, for every band contained within the 1mm chan-
nel, and compared this maximum average relative length for every configuration. The average
maximum stretching is still achieved by the opposite direction and L arrays. The maximum
stretching is 1.38 for the opposite direction array, with the long experimental left/right array.
The maximum stretching by the numerical L-array is 1.39 obtained with both lines of AMBs
pointing along their row length but in opposite direction (decreasing to 1.38 depending on
which row points towards the centre and which away for each θ3) see Fig.4.11.
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(a) Modified left/right array, Pac = 537 kPa (by Nicolas Bertin) (b) Mixing efficiency against acoustic driving
pressure Pac (by Nicolas Bertin).

Figure 4.12: Mixing efficiency of the modified left/right array

4.5 Comparison to experiments

To demonstrate physical correspondence of this method, two of the best theoretical arrays were
tested in the experimental setup discussed in §4.1. When choosing which of our theoretically
best arrays to test experimentally, we chose ones where the AMBs did not point into the
flow as experimentally AMBs pointing into the base flow had a shorted bubble lifespan. The
experiments were performed for the left-right array of Fig.4.10a and an L-array with the AMBs
pointing along each row of AMBs away from the corner, a 90 degree rotation of Fig.4.8a.

Experimentally, the modified left-right array demonstrated very strong mixing at low driv-
ing pressures (see Fig.4.12) reaching RMI= 65.5% at the low acoustic pressure of Pac =

537kPa. This is one of the highest RMIs of the experimental arrays at this driving pressure.
However, at higher pressures the AMBs pointing to the right lost their bubbles. The modified
L-array only reached RMI=37% at Pac = 448kPa (see Fig.4.13) but this is better than the ori-
ginal experimental L-array at low driving pressures. However, it suffered severely from the
unexpected issue of the horizontal row of AMBs pointing across the channel having a short
bubble lifespan.
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(a) Modified L-array (by Nicolas
Bertin)
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(b) Mixing efficiency against Pac(by Nicolas Bertin).

Figure 4.13: Mixing efficiency of a modified L-array

4.6 Conclusions and future outlooks

In this chapter, we have presented a numerically method for analysing the mixing potential of
AMB arrays by studying the stretching of the boundary between the two fluids. Our method is
fast so can analyse many AMB arrays quickly. However, the flow field model ignores the con-
centration field and the side walls of the channel, which introduces inaccuracies, particularly
at later times when diffusion has had longer to smooth out the fluid-fluid boundary and close
to the side walls. Also, in our numerical model, vortices appear as sinks (due to out-of-plane
motion being ignored), which is unphysical, thus we limited this study by ignoring all cases
where the fluid-fluid boundary becomes trapped in vortices. Additionally, our simple mixing
measure ignores shear near the fluid-fluid boundary and also the concentration field, and thus
ignores multiple physical features, which contribute to the mixing. These inaccuracies mean
only general trends and results should be drawn from the data, and small differences and vari-
ation should be ignored. From our results we identified groups of theoretically good arrays in
Fig.4.8 and Fig.4.10. Two of these were tested experimentally to demonstrate physical corres-
pondence of the numerical model, and the modified left/right array in particular, demonstrated
very strong mixing experimentally at low driving pressures.

We have identified a number of weaknesses with our model, and future work could extend
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the model to address some of these weaknesses and more accurately capture behaviour within
vortices. Also, adding the side walls to our numerical flow field would additionally allow
us to model the mixing at higher driving pressures, where the confining effects of the side
walls are more noticeable. Also, the mixing measure could be adapted to incorporate fluid
already within the AMB array when the ultrasound is turned on. Further experimental work
may include making the printed capsules hydrophobic to tackle the bubble lifespan issues.





Part III

Artificial Cilium





Chapter 5

Magnetically actuated permanently
magnetised cilium

In this chapter we model the motion and optimal working conditions of a permanently mag-
netised cilium driven by a magnetic field. We shall first present the experimental motivation
for this work in §5.1. We shall then consider our cilium setup in §5.2 before discussing our
force model in §5.3 followed by the equilibrium model and asymptotics we use primarily to
validate it in §5.4. Finally in §5.5, we consider the force exerted by the beat pattern of the
cilium on the surrounding fluid, as the two important non-dimensional parameters are varied.

5.1 Experimental motivation

The theoretical work in this chapter was motivated by an experimental cilium designed by
Tsumori et. al [1]. They mixed pure iron powder filings (of diameter 4.3 µm) with liquid
PDMS to reach 5 vol%, and then spread this mixture on a substrate to a make a 90 µm thick
sheet. They then applied a magnetic field to the sheet so the iron filings became aligned in
the same direction, and then cured it. Cilia of height and width 1.5mm×4mm were then cut
from the sheet, and stuck to a substrate.

These cilia are not microscale so in order to reduce the Reynolds number, experiments
were performed in glycerol at a Reynolds number of 2.6× 10−3. When a magnetic field is
turned on, a force is applied to the iron filings pushing them to align with the magnetic field,
causing the cilium to bend. Under a magnetic field rotating in a plane containing the cilium,
the cilium undergoes a beat pattern (see Fig.5.1 ) similar to that observed in nature [27].

The iron filings can be aligned at any angle to the cilium tangent (within the plane of the
rotating magnetic field). In Ref.[1] they specifically consider 3 different angles of ±30o and
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Figure 5.1: Actuation of the experimental artificial cilium reproduced from: Development of
actuation system for artificial cilia with magnetic elastomer, F. Tsumori, A. Saijou, T. Osada
and H. Miura, Jpn. J Appl Phys., 2015, 54:06FP12 [1]. Copyright 2015 The Japan Society of
Applied Physics.

0o. The angle causes a phase delay in the response of the cilium to the rotating magnetic
field. As such this provides an inbuilt mechanism to generate a metachronal wave with many
adjacent cilia, by having the iron filings aligned at an increasing angle for cilia based further
along the line, as demonstrated in Ref.[6].

There is further experimental work to be undertaken in improving the fabrication method
and decreasing the cilium size. However, this is a new design for an artificial cilium, whose
physical behaviour in different conditions is not known. We will now consider a similar cilium
numerically and analytically, with the goal of determining its stroke shape and the net force
the cilium applies to the surrounding fluid across the full range of ζ and Sp (the two important
non-dimensional parameters).

5.2 Setup

In this section we will present the general setup for the problem and the important non-
dimensional parameters. All the experiments with the discussed cilium design used iron fil-
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ings, which are ferromagnetic [102]. However, in this analysis, we will consider embedded
permanently magnetised powder.

The mathematics for a ferromagnetic cilium contains a singularity. The moment on an iron
filing in a fixed magnetic field pushes the filing to align with the magnetic field. Mathematic-
ally the moment is µ ×B, for µ the magnetic dipole of the iron filing and B the magnetic field.
Due to the geometry of an iron filing (long and thin), it can only be magnetised along its length,
but which way along its length will change so that the magnetic dipole always has a positive
component in the direction of the magnetic field. A cross product is theoretically maximal
when the two vectors are perpendicular, so when the iron filing is perpendicular to the mag-
netic field. If the iron filing is perturbed clockwise away from this perpendicular position , the
direction of the magnetic dipole will be in a direction such that the filing will continue rotating
clockwise to align with the magnetic field, and if it is perturbed anti-clockwise the magnetic
dipole will be in the opposite direction so the filing will continue rotating anti-clockwise to
align with the magnetic field. Thus there is a singularity in the numerics whenever any of the
iron filings in the cilium are perpendicular to the magnetic field., as such permanently mag-
netised powder (which has no such singularity) is a simpler first step, and future work could
include extending this model to the experimental ferromagnetic cilium.

5.2.1 Cilium parametrisation

We will model our cilium in 2D, in the plane of the magnetic field rotation. We model a cilium
of length L and of negligible width and depth, see Fig.5.2. We assume that the metal filings are
at an additional anticlockwise angle χ to the cilium tangent, and that this angle is fixed for any
one cilium. We assume the cilium has uniform elastic properties, despite it being a composite
of metal filings and PDMS, with constant Young’s modulus E. The moment of inertia of the
cilium cross-section, I, is also assumed to be constant along the length of the cilium.

We define the vertical direction, ey, as the direction parallel to the cilium base and we
define the horizontal direction, ex, as the direction perpendicular to the cilium base. These are
shown in Fig.5.2.

The magnetic field B will force the cilium. At any time t it will be at an angle Φ(t) to
the horizontal and it rotates with a fixed angular frequency ω . The magnetic field remains at
constant magnitude and at any fixed time is taken to be uniform. The magnetic dipole, µ of
the magnetic filings in the cilium, is in the direction of the metal filings, which is χ +α , and
has strength µ0 so

µ = µ0

(
cos(α +χ)

sin(α +χ)

)
. (5.1)
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We will then define H = µ0|B|/L, which is the quantity determining the total strength of the
magnetic field acting on our cilium.

This cilium is working at low Reynolds number so the hydrodynamic drag from the fluid
can be estimated using CN and CT , the normal and tangential drag coefficients [103].

We parametrise the distance along the cilium by s and we define α(s, t) as the angle of
the cilium tangent to the horizontal at time t. The position of the cilium given by r(s, t) =
(x(s, t),y(s, t)) is determined by α, where

x(s, t) =
∫ s

0
cos(α(s′, t))ds′, (5.2)

y(s, t) =
∫ s

0
sin(α(s′, t))ds′, (5.3)

where we assume the base of the filament is at the origin. Then, taking derivatives, gives the
tangent

t =
∂ r
∂ s

=

(
cos(α)

sin(α)

)
, (5.4)

and normal

n =

(
−sin(α)

cos(α)

)
, (5.5)

to the cilium, which are both shown in Fig.5.2. This parametrisation with respect to α is useful
since it satisfies the condition of no-extension of the cilium length, so t · t = 1.

5.2.2 Non-dimensional Parameters

There are three non-dimensional parameters important to this problem: ζ is the ratio of elastic
to magnetic forces

ζ =
EI

HL2 ; (5.6)

the Sperm number is the ratio of elastic to drag forces

Sp = L
(

CNω

EI

) 1
4

; (5.7)
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Figure 5.2: A cilium of length L and clamped at its base, parametrised by α , being bent under
a magnetic field B which is at an angle Φ to the horizontal (at any fixed time) and rotating
at an angular frequency ω . The coordinate system is defined by the normal n and the tangent
t to the cilium.
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and finally, the ratio of the normal to tangential drag coefficient

CNT =
CN

CT
. (5.8)

Throughout this chapter we will keep CNT = 2. This is a standard approximation for a long
thin filament [29, 103], although other values as low as 1.4 have also been used [30, 104].

5.2.3 Effect of the angle of the magnetic filings

The torque exerted on each magnetic filing individually by the magnetic field is given by
µ ×B. Multiplying out the cross product, rearranging and factorising gives

µ ×B = µ0

(
cos(α +χ)

sin(α +χ)

)
×

(
|B|cos(Φ)

|B|sin(Φ)

)
(5.9)

= µ0

(
cos(α)

sin(α)

)
×

(
|B|cos(Φ−χ)

|B|sin(Φ−χ)

)
. (5.10)

Therefore, having the metal filings at an angle χ to the cilium when a magnetic force B is ap-
plied at an angle Φ is equivalent to having the metal filings parallel to the cilium and applying
the magnetic field at an angle Φ− χ . So having the metal filings at an angle only causes a
phase lag on the magnetic field direction. Since we are rotating the magnetic field at a constant
speed and are interested in the steady state position of the cilium we will now assume χ = 0
so the metal filings are aligned with the tangent of the cilium.

We are aware that the phase delay would also have affected the relative starting potion
of the magnetic field when it is turned on so affects our initial condition, which could affect
the speed and which steady state the cilium approaches. At small Sperm number we do not
believe alternative steady states exist due to the equilibrium validation we will discuss in §5.4,
and at high Sperm number it takes many rotations to settle to a steady state, so again we do
not anticipate other stable states. Although it is a possibility we feel it is unlikely other steady
states exist even at middle Sperm number and the existence of alternative cilium steady states
is not considered here.

5.3 Force model

To determine the cilium motion we use a force model balancing the magnetic forces driv-
ing the cilium motion, the cilium elastic properties resisting bending and hydrodynamic drag
forces. Our model is based on that derived by Hines et. al. [29] for a biological self-propelled
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flagellum confined to a plane (as such the derivation will only be outlined below). Our vari-
ation is in choosing boundary conditions appropriate for a cilium fixed at its base (similar to
[30]) and the addition of a magnetic forcing term, in place of a biological internal forcing
mechanism.

5.3.1 Force model governing equations

5.3.1.1 Force, moment and velocity equations

The requirement that the cilium does not accelerate (due to the low Reynolds number) gives
the force balance

∂F
∂ s

=CNVNn+CTVT t, (5.11)

where F is the force on the filament, VN is the normal velocity and VT is the tangential velocity.

The next requirement is that the cilium has no angular acceleration and thus the total torque
acting on it is zero. We consider cutting the cilium at a distance s along its length and calculate
the moment at its new end, around the out of plane axis. The moments acting at this new end
can be separated into moments from the magnetic field Mm, drag Md and the internal moment
M (arising from the the stiffness of the cilium, which we define later in Eq. 5.26). To meet
the torque free condition at the cut end, Mm +Mt +M = 0. On each magnetic filing within
the cilium, the magnetic field applies a moment, pushing the filing to align with the magnetic
field. We assume the centre of this rotation is the centre of the filing, thus the magnetic filing
feels the effect of a couple, providing a total moment of µ ×B (where the magnetic filings
are aligned along the cilium so µ = µ0t). Since the magnetic filings have a couple acting on
them, this is the moment irrespective of where the moment is calculated around. Thus, the
total moment generated by the magnetic field is a summation of the magnetic moments on all
the filings within the cilium, but using a continuum assumption on the density of the filings
gives the integral

[ 1
L
∫ s

0 µ0(t ×B)ds′
]
, so

∂Mm

∂ s
=

µ0

L
(t ×B) · z, (5.12)

where z is the vector out of the plane (with direction given by the right-hand rule). Following
the work of Hines et. al. [29], the moment from the drag coefficients can be calculated. We
define φδ s =−(CNVNn+CTVT t)δ s, so φ =−∂F

∂ s . The moment from the drag is then

Mt = z �
∫ s

0

[
(r(s′, t)− r(s, t))×φ(s′, t)

]
ds′, (5.13)
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so that differentiating gives
∂Mt

∂ s
= (t ×F) · z. (5.14)

Therefore, the moment balance equation is

∂M
∂ s

+
[
t ×F +

µ0

L
t ×B

]
� z = 0. (5.15)

We can define the velocity of the cilium, alternatively to Eq. 5.11, as

∂ r
∂ t

=VNn+VT t, (5.16)

and taking spatial derivatives (with respect to ds) of both sides gives

∂α

∂ t
n =

(
∂VN

∂ s
+VT

∂α

∂ s

)
n+
(

∂VT

∂ s
−VN

∂α

∂ s

)
t, (5.17)

giving us two equations for VN and VT ,

∂VT

∂ s
=VN

∂α

∂ s
, (5.18)

∂α

∂ t
=

∂VN

∂ s
+VT

∂α

∂ s
. (5.19)

This now gives us five equations Eq.5.15, Eq.5.11, Eq.5.18 and Eq.5.19 for five unknowns
VN ,VT , α and F (where F and Eq. 5.11 both have two components).

5.3.1.2 Rearranging to numerically solvable form

We decompose the force into its normal and tangential components

F = FNn+FT t. (5.20)

The force balance, Eq.5.11, then becomes

∂FN

∂ s
+FT

∂α

∂ s
=CNVN , (5.21)

∂FT

∂ s
−FN

∂α

∂ s
=CTVT . (5.22)
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Substituting these forms for VN and VT into Eq.5.18 and Eq.5.19 gives

∂ 2FT

∂ s2 =

(
1+

CT

CN

)(
∂FN

∂ s

)(
∂α

∂ s

)
+

(
CT

CN

)
FT

(
∂α

∂ s

)2

+FN

(
∂ 2α

∂ s2

)
, (5.23)

∂ 2FN

∂ s2 =CN
∂α

∂ t
−
(

1+
CN

CT

)(
∂FT

∂ s

)(
∂α

∂ s

)
+

(
CN

CT

)
FN

(
∂α

∂ s

)2

−FT
∂ 2α

∂ s2 . (5.24)

Rewriting the moment equation (Eq.5.15) in terms of Φ and α ,

∂M
∂ s

+FN +H sin(Φ−α) = 0. (5.25)

We can alternatively determine the moment in terms of the stiffness of the filament giving a
relationship between the moment and the curvature of the filament κ (where the curvature is
defined through the cilium tangent ∂ t/∂ s = κn so κ2 =

∣∣∂ 2r/∂ s2
∣∣2) giving

∂M
∂ s

= EI
∂κ

∂ s
= EI

∂α2

∂ s
. (5.26)

Then equating the two forms of the moment equation gives

−FN = EI
∂α2

∂ s2 +H sin(Φ−α). (5.27)

Substituting Eq.5.27 into Eq.5.23 and Eq.5.24 gives two equation for FT and α

∂ 2FT

∂ s2 =
(
1+C−1

NT
)(

−EI
∂ 3α

∂ s3 +H
∂α

∂ s
cos(Φ−α)

)(
∂α

∂ s

)
+

(
C−1

NT
)

FT

(
∂α

∂ s

)2

+

[
−EI

∂ 2α

∂ s2 −H sin(Φ−α)

](
∂ 2α

∂ s2

)
, (5.28)

−EI
∂ 4α

∂ s4 +H
∂ 2α

∂ s2 cos(Φ−α)+H
(

∂α

∂ s

)2

sin(Φ−α) =CN
∂α

∂ t
− (1+CNT )×(

∂FT

∂ s

)(
∂α

∂ s

)
+(CNT )

[
−EI

∂ 2α

∂ s2 −H sin(Φ−α)

](
∂α

∂ s

)2

−FT
∂ 2α

∂ s2 , (5.29)

which, after non-dimensionalising, we will solve simultaneously, using an implicit numerical
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method.

5.3.1.3 Non-dimensionalising the governing equation

We assume distance scales with L and time scales with ω−1. We have FN ∼ H, so from
Eq.5.20 it is implicit that FT ∼ FN ∼ H as it would not make physical sense for them to scale
differently. Then Eq.5.28 becomes

∂ 2F∗
T

∂ s∗2 =
(
1+C−1

NT
)(

−ζ
∂ 3α

∂ s∗3 +
∂α

∂ s∗
cos(Φ−α)

)(
∂α

∂ s∗

)
+C−1

NT F∗
T

(
∂α

∂ s∗

)2

+

[
−ζ

∂ 2α

∂ s∗2 − sin(Φ−α)

](
∂ 2α

∂ s∗2

)
, (5.30)

where * indicates a non-dimensional parameter, and Eq.5.29 becomes

−ζ
∂ 4α

∂ s∗4 +
∂ 2α

∂ s∗2 cos(Φ−α)+

(
∂α

∂ s∗

)2

sin(Φ−α) = ζ ×Sp4 × ∂α

∂ t∗

− (1+CNT )

(
∂F∗

T
∂ s∗

)(
∂α

∂ s∗

)
+CNT

[
−ζ

∂ 2α

∂ s∗2 − sin(Φ−α)

](
∂α

∂ s∗

)2

−F∗
T

∂ 2α

∂ s∗2 . (5.31)

The motion is now dependent solely on our three non-dimensional quantities Sp, ζ and
CNT . For the rest of this section all quantities will be non-dimensional but the stars will be
dropped for notational convenience.

5.3.1.4 Boundary conditions

We are solving a fourth-order equation in α and a second order equation in FT , thus we require
6 boundary conditions. The cilium is force-free at the distal end giving

FN(1, t) = 0, (5.32)

FT (1, t) = 0. (5.33)

No drag at the anchor of the cilium gives, from Eq.5.21 and Eq.5.22, that

∂FN

∂ s
(0, t)+FT (0, t)

∂α

∂ s
(0, t) = 0, (5.34)
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∂FT

∂ s
(0, t)−FN(0, t)

∂α

∂ s
(0, t) = 0. (5.35)

We assume the anchor of the cilium is vertical,

α(0, t) =
π

2
. (5.36)

There is also zero moment at the distal end,

∂α

∂ s
(1, t) = 0. (5.37)

5.3.1.5 Numerical particulars

These equations were solved numerically in MATLAB using the implicit in time Crank-
Nicolson finite difference method. This implicit method was chosen since it is well known
these equations have strict stability criteria with an explicit method [29]. We took n = 121
discretised points on the cilium (as will be justified in more detail in §5.5.2). For the rotating
magnetic field we increased the angle in gaps of 0.03 radians, allowing for 1000 time steps for
each magnetic field direction. The magnetic field was rotated multiple times until the cilium
stroke had settled to its steady state, taken as when the norm (accounting for the number of
discretised points) of the difference in the start and end cilium position (of one rotation) was
less than 10−4.

5.3.2 Cilium beat shape

The cilium beat pattern over one cycle changes as the Sperm number and ζ are varied and
examples displaying some major features are given in Fig.5.3, where the cilium position is
plotted at multiple time stamps. The blue cilia indicate the forward or effective stroke, where
the cilium is moving anticlockwise, which we numerically distinguish as when the motion of
the cilium at its base is anticlockwise. The red cilium positions indicate the recovery stroke,
where the cilium is moving clockwise, which we numerically distinguish by clockwise motion
at the cilium base.

The forward and backward stroke can be very similar, particularly at low ζ (see Fig.5.3a).
Asymmetries can be introduced by higher ζ where the stronger magnet force causes the cilium
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(a) ζ = 0.5 and Sp = 0.56 (b) ζ = 0.1 and Sp = 0.56

(c) ζ = 0.135 and Sp = 1.78 (d) ζ = 0.018 and Sp = 3.16

Figure 5.3: Examples of the range of cilium beat shapes at varying ζ and Sp. Blue cilia are
part of the forward anticlockwise stroke and red cilia the clockwise recovery stroke.
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to loop around itself and become temporarily trapped (see Fig.5.3b), or at higher Sperm num-
ber where the hydrodynamic drag contributes to asymmetries (see Fig.5.3c). The cilium steady
state does not always centre around its starting vertical position (see Fig.5.3c and 5.3d). The
cilium can also become wrapped around itself, maintaining a permanent, sometimes signi-
ficant bend throughout the entire stroke (see Fig.5.3d). (However, at this extreme, issues of
physical accuracy, and the accuracy of the model due to our assumption of small curvature
should be noted.) In general, the recovery stroke is faster than the effective stroke, being par-
ticularly fast when the cilium becomes tightly wrapped (see Fig.5.3b and 5.3d) but there is
a much smaller difference in speed when the effective and recovery stroke are similar (see
Fig.5.3a).

5.4 Equilibrium model and asymptotics

In order to validate the force model and understand the behaviour of the cilium in the limit of
low Sperm number we will compare our force model to an equilibrium model. This equilib-
rium model will balance magnetic forces against elastic forces to identify the minimal energy
position and thus where the cilium would settle given an infinite amount of time and a fixed
direction of the uniform magnetic field.

5.4.1 Equilibrium model governing equation

5.4.1.1 Elastic and magnetic energy formulations

The elastic energy held when the cilium is bent, assuming bending in one axis, no twist and
small strain, is

1
2

∫ L

0
EIκ

2(s)ds, (5.38)

where κ is the radius of curvature [105].

Magnetic energy is held when the magnetic dipoles (corresponding to the magnetic filings
in the cilium) are not aligned with the magnetic field and the total magnetic energy of the
cilium is

−1
L

∫ L

0

(
µ ·B

)
ds. (5.39)

(We note this quantity can be negative due to ignoring an additional constant which will not
affect our energy minimisation.) This energy is minimised when the magnetic dipole and
magnetic field are parallel and pointing in the same direction. It is largest when they are
parallel but in opposite directions.
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5.4.1.2 Magnetic field equivalent to a point force

It is interesting to note that Eq.5.39 can be directly integrated since µ ·B= µ0t ·B= µ0(∂ r/∂ s)·
B giving the magnetic energy as

−µ0

L
r(L) ·B, (5.40)

if the base of the cilium is at the origin. As such the magnetic energy contained in a cilium in
a uniform magnetic field is equivalent to the energy of a cilium with a point force on its end
pointing in the same direction.

5.4.1.3 Minimising energy equation

The total energy contained in the cilium is

∫ L

0

[
−µ0

L
∂ r
∂ s

·B+
EI
2

(
∂ 2r
∂ s2

)
·
(

∂ 2r
∂ s2

)]
ds. (5.41)

This non-dimensionalises to∫ 1

0

[
−∂ r∗

∂ s∗
·B∗+

ζ

2

(
∂ 2r∗

∂ s∗2

)
·
(

∂ 2r∗

∂ s∗2

)]
ds∗, (5.42)

where stars represent non-dimensional quantities. Similar to previously, the stars will now be
dropped but all quantities in the rest of this chapter will be non-dimensional.

Substituting the dependence on Φ and α this equation reduces to

∫ 1

0
−

[
cos(α −Φ)+

ζ

2

(
∂α

∂ s

)2
]

ds. (5.43)

This is the energy function, which we are to minimise. We minimise it by applying standard
calculus of variational methods, so the energy minima (and maxima) positions of the cilium
solve

ζ
∂ 2α

∂ s2 − sin(α −Φ) = 0, (5.44)

subject to the boundary conditions that the cilium end is force free

∂α

∂ s
(1) = 0, (5.45)

and the cilium is vertical at its base
α(0) =

π

2
. (5.46)
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We numerically solved this boundary value problem by using ‘bvp4c’ in MATLAB. We
take initial conditions first as the vertical cilium to obtain global energy minima.We also stead-
ily increased Φ (the angle of the magnetic field) solving the boundary value problem for each
Φ but using the position of the cilium at the previous slightly smaller value of Φ as the initial
condition.

5.4.2 Comparison to the force model

The comparison of the cilium position from the force model and the equilibrium model
are shown in Fig.5.4. In the force model the magnetic field direction is rotated in discrete in-
crements, and the cilium is plotted, just prior to increasing the magnetic field by an increment.
The two are in good agreement for the forward stroke of the cilium so the force model follows
the local energetic minima of the cilium, as would be expected physically, thus validating the
force model.

At high ζ the entire stroke follows the energetic global minima (see Fig.5.4a). This is
because there is a continuous change in the position of the global minima as the magnetic
field is rotated. This changes at ζ = 0.417 where there is supercritical pitchfork bifurcation in
the position of the cilium when the magnetic field is vertically downwards. For this magnetic
field direction, at high ζ the energetically optimal cilium position is unbent. But as ζ is
decreased, at ζ = 0.417 this position becomes unstable and two global minima appear, one
bent to the left and one to the right. Therefore, at low ζ , as the magnetic field is rotated past
the vertically downwards position, the global minimum jumps from being bent to the left to
being bent to the right. The existence of this bifurcation is well known since for a vertically
downwards magnetic field our energy equation is the well known problem of a point weight
on the end of a flexible rod [105].

At lower ζ the global minima are separated, see Fig.5.4b, but initially the jump between
global minima occurs very soon after the angle of the magnetic field is rotated past vertically
downwards. But at lower ζ a local energetic minimum becomes important as seen as in
Fig.5.4c. Rather than immediately jumping between global minima there is a curled local
minimum, which the cilium follows. This behaviour must be a local energy minimum due to
the asymmetry, since the global minimum would give symmetric cilium positions. Therefore,
the cilium stays in the local minimum till the magnetic field has rotated far enough, then it
jumps to the global minimum for that magnetic field direction.

During the jump between energetic minima hydrodynamic forces become significant, al-
lowing the forward and recovery strokes to become very different, see Fig.5.4c. Most of the
cilia in the recovery stroke have not been plotted in Fig.5.4b and 5.4c since the stroke happens
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(a) ζ = 1

(b) ζ =0.3

(c) ζ = 0.1

Figure 5.4: Comparison between the force and equilibrium model during the stroke for in-
creasing angle of the magnetic field. For the force model Sp = 0.32. For the equilibrium
model the previous position of the cilium at a small magnetic field angle is used to update
the position at the new magnetic field angle. Blue cilia are part of the forward anticlockwise
stroke and red cilia the clockwise recovery stroke. The equilibrium model is represented by
crosses and the force model by solid lines.
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very quickly so the recovery stroke only represents a very small change of the magnetic field
direction.

5.4.3 Asymptotics

In this limit of low Sperm number we can additionally study the the two cases ζ → 0 and
ζ → ∞ analytically, to more explicitly determine the shape of the cilium in each limit and the
total energy contained by the bent cilium.

5.4.3.1 Limit of ζ → ∞

In this limit Eq.5.44 reduces to

∂ 2α

∂ s2 = 0, α(0)=π

2 ,
∂α

∂ s
(1) = 0, (5.47)

which has the simple solution
α =

π

2
, (5.48)

so the cilium remains vertical at leading order.

We can calculate a first order correction by assuming α = π

2 +ζ−1α1 +O(ζ−2) so at next
order in ζ

∂ 2α1

∂ s2 − cos(Φ) = 0, α1(0)=0,
∂α1

∂ s
(1) = 0, (5.49)

with the solution

α(s) =
π

2
+ζ

−1
[

cos(Φ)

2
s2 − cos(Φ)s

]
+O(ζ−2), (5.50)

and therefore the cilium position a distance ŝ along the cilium is

y =
∫ ŝ

0
sin (α(s))ds = ŝ+O(ζ−2), (5.51)

x =
∫ ŝ

0
cos(α)ds =−ζ

−1
(

cos(Φ)

6
ŝ3 − cos(Φ)

4
ŝ2
)
+O(ζ−2). (5.52)

Therefore, the cilium remains vertical in this regime with the first order correction being of
O(ζ−1) and determined by the magnitude of the horizontal magnetic force.
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The natural logarithm of the total bending energy this cilium has is

ln

[
1
2

∫ 1

0

(
∂α

∂ s

)2

ds

]
= ln

[
(ζ−1 cos(Φ))2

2

∫ 1

0
(s2 −2s+1)ds

]
=−2ln(ζ )+ ln

[
cos(Φ)2

6

]
. (5.53)

5.4.3.2 Limit of ζ → 0

In this limit (5.44) reduces to

sin(α −Φ) = 0, (5.54)

with the solution α = Φ+nπ i.e. the cilium aligns with the magnetic field. However, although
this obeys the boundary condition ∂α

∂ s (1) = 0, it does not obey α(0) = π

2 . As such we require
a boundary layer about s = 0.

We take a boundary layer length scale λ and a new boundary length-scale s̃ so s = λ s̃
which reduces Eq.5.44 to

ζ

λ 2
∂ 2α

∂ s̃2 (s̃)− sin(α(s̃)−Φ) = 0, (5.55)

where requiring both terms to be of the same order of magnitude in the boundary layers gives
λ ∼ ζ

1
2 . Therefore, in the boundary layer

∂ 2α

∂ s̃2 − sin (α −Φ) = 0, α(0) =
π

2
, α(∞) = Φ. (5.56)

This equation is similar to Eq.5.44 but the changed form of the boundary conditions means an
analytic solution exists. Shifting α by defining α̂ = α −Φ− π

2 gives

∂ 2α̂

∂ s̃2 − cos (α̂) = 0, α̂(0) =−Φ, α̂(∞) =−π

2
. (5.57)

This equation has the known exact solution [105] of

α̂ =
π

2
−4tan−1

[
tanh

(
s̃+ s̃0

2

)]
, (5.58)
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where

s̃0 = 2tanh−1
[

tan
(

π/2+Φ

4

)]
. (5.59)

Therefore,

α = π +Φ−4tan−1
[

tanh
(

s̃+ s̃0

2

)]
. (5.60)

Eq.5.60 can be integrated using results from [105] to give the x and y position of the cilium in
this sharply bent section

x(s) = ζ
1
2

[
cos
(

π

2
+Φ

)(
x0 −2

(
1+

1
cosh(ζ 1/2s+ s̃0)

))
−sin

(
π

2
+Φ

)(
y0 +2tanh(ζ 1/2s+ s̃0)− (s+ s̃0)

)]
, (5.61)

y(s) = ζ
1
2

[
sin
(

π

2
+Φ

)(
x0 −2

(
1+

1
cosh(ζ 1/2s+ s̃0)

))
−
(

π

2
+Φ

)(
y0 +2tanh(ζ 1/2s+ s̃0)− (s+ s̃0)

)]
, (5.62)

where x0 and y0 are constants of integration chosen to fix the base of the rod. Therefore, over a
small region the cilium bends significantly to line up with the magnetic field and the remainder
of the cilium is straight.

The total bending energy this cilium generates can be approximated by only considering
bending within the boundary layer, since outside the boundary layer the cilium is straight.
Therefore, the natural logarithm of the total bending energy is

ln

(
ζ−1/2

2

∫
∞

0

(
∂α

∂ s̃

)2

ds̃

)
=−1

2
ln(ζ )+ ln

[
2−4

(
tanh( s̃0

2 )

1+ tanh2( s̃0
2 )

)]
. (5.63)

5.4.4 Comparison of asymptotics to numerics

Fig.5.5 validates the equilibrium model against the asymptotic solutions for the two magnetic
field directions of Φ =±3π/8. At both extremes of ζ the bending energy of the asymptotics
and equilibrium model agree well and the shapes of the cilium obtained from the equilibrium
model matches the shapes predicted by the asymptotics. At high ζ the x component of the
magnetic field for both Φ = 3π/8 and Φ = −3π/8 tends towards the same cilium shape and
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bending energy value, as was predicted by our asymptotics since the x component of the
magnetic field is the same in both cases.

5.5 Force variation with non-dimensional parameters

We will now use our force model to analyse how the force applied to the surrounding fluid by
the cilium during one cycle varies with the two non-dimensional parameters of ζ and Sperm
number.

5.5.1 Calculating force

The non-dimensional force applied to the fluid by the cilium at any instance of time F̃(t) is

F̃(t) = Sp4 ×ζ ×
∫ 1

0

(
VN n̂+

1
CNT

VT t̂
)

ds. (5.64)

We then average over one cilium stroke to obtain the force in the x direction Fx, the force in
the y direction Fy and the total force F imparted by the cilium to the surrounding fluid as

Fx =
∑t F̃x

ttot
, Fy =

∑t F̃y

ttot
, F =

√
F2

x +F2
y , (5.65)

for ttot the total number of time steps.

5.5.2 Variation with number of discretised points

The number of points n to discretise the cilium by needs to be sufficient to accurately
calculate the force but not excessive due to the increased computational time. At ζ = 0.1
and log(Sp) = 0.85, near the maximum F for changing Sperm number, Fig.5.6 shows as n
increases there is clear convergence in the total applied force. Indeed the percentage error is

F121 −F271

F271
= 0.0019, (5.66)

which is an error of 0.2% (where here subscripts of F denote the truncation size).

For the ζ and Sperm number comparisons undertaken below, we take n = 121.
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Figure 5.5: Comparison of the bending energy of the asymptotic and equilibrium numerical
solution. The two green dashed lines are the asymptotics solutions in the limits ζ → ∞ and
ζ → 0. The equilibrium models is plotted with solid lines. The inserts show the cilium shape
at each extreme.
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Figure 5.6: Variation in the numerically calculated force with the number of discretised points,
n.

5.5.3 Varying ζ

The maximum magnitude of the force is observed at an intermediate ln(ζ ), decreasing to
0 force as ln(ζ )→±∞ (Fig.5.7a). This behaviour can be explained with a physical argument.
The limit ln(ζ )→ ∞ corresponds to the relative magnetic driving force tending to zero. Thus
in this limit the cilium will not move and hence generate no force. The limit ln(ζ ) → −∞

corresponds to a very strong relative magnetic force. In this limit of ln(ζ ), the cilium will
rotate while remaining completely straight, except for a small region of sharp curvature near
the cilium base, keeping the base of the cilium vertical. Due to the symmetry of such a stroke
shape, this stroke must generate negligible force. Stroke shapes containing a partial circle (and
tending towards this limit) are visible in Fig.5.8. We also observe that the value of ζ at which
the maximum force magnitude occurs, decreases with increasing Sperm number, since greater
relative magnetic field strength is required to move the cilium.

In an engineering application we expect the cilium to be mounted on a wall and used to
transport fluid, for which the applied horizontal force Fx will determine the effectiveness of the
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(a) Total force

(b) Components of Force as ζ is varied . Solid lines with crosses represent Fx and
dashed lines with circles represent Fy

Figure 5.7: Variation in force generated at a range of zeta at different Sperm number
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Figure 5.8: Stroke shape as ζ is varied at Sp = 1.78. Blue cilia are part of the forward
anticlockwise stroke and red cilia the clockwise recovery stroke. The solid line with crosses
represents Fx and the dashed line with circles represents Fy
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cilium. The horizontal force, Fx, has its maximum at a similar intermediate ln(ζ ) as F . Fx is
generally positive, which is unexpected considering the magnetic field rotates anticlockwise.
However, this behaviour can be explained by the difference in area swept out by the effective
stroke and recovery stroke (which is a common method for estimating the force applied by a
cilium, as this area linearly corresponds to the volume of displaced fluid [54, 106]). Looking
at this region where these two strokes differ in Fig.5.8(which we will call the swept out region
difference), the effective stroke is pushing fluid to the right and thus suggests a positive Fx.
This arises, particularly at large ζ , as our cilium firstly sweeps out a large segment of a circle
and then uncurls during the recovery stroke. Therefore, the difference in the region swept out
by the forward stroke and the recovery stroke, tends to be in that the effective stroke sweeps
out extra area near the end of its stroke. Normally, this is in a quadrant below (or only just
above) and to the left of the base of the cilium and it is pushing fluid in the ex direction.

The relative position of the swept out region difference and the cilium can change signi-
ficantly. This causes the sharp changes in Fx and Fy, as seen at low ζ and high Sperm number
in Fig.5.7b for Sp = 3.16. A physical problem arising from the large curvature in the cilium
at lower ζ is that it moves through itself. Also, our condition of small curvature, which allows
us to use linear elasticity theory, starts to break down.

At high Sperm number, a secondary local maximum of force magnitude is visible. This
maximum appears at a higher value of ζ than the global maximum (see Fig.5.7a). There is
no significant feature in the cilium beat pattern to account for this secondary maximum, but
we note that at higher Sperm number, smaller changes in beat pattern correspond to a greater
change in force.

5.5.4 Varying Sperm number

The maximum magnitude of the force occurs at an intermediate Sperm number and de-
creases as ln(Sp)→±∞ (see Fig.5.9a). This behaviour can be explained with a physical argu-
ment. The limit ln(Sp)→ ∞ corresponds to a relative increase in the amount of drag. Thus,
in this limit, the cilium will not move and so apply no force to the surrounding fluid. The
limit ln(Sp)→−∞ corresponds to a relative decrease in the amount of drag. Thus, although
the cilium beat pattern sweeps out al larger region in this limit, there is less resistance so the
cilium applies less force to the surrounding fluid. This change in beat pattern with increasing
sperm number is visible in Fig.5.10. As ζ increases, the value of ln(Sp) at which the force is
maximal, increases slowly (see Fig.5.9a).
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(a) Force magnitude

(b) Components of force (Fx and Fy) . Solid lines with crosses represent Fx and dashed lines with
circles represent Fy.

Figure 5.9: Force as Sperm Number is varied for three fixed values of ζ .
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Figure 5.10: Cilium stroke when ζ = 0.05 at a range of Sperm numbers. Blue cilia are part
of the forward anticlockwise stroke and red cilia the clockwise recovery stroke. The solid line
with crosses represent Fx and dashed line with circles represent Fy.
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The magnitude of the horizontal force, Fx, varies in a similar way to the total force, with its
maximum at a similar Sperm number (see Fig.5.9b). The horizontal force, Fx, is also primarily
positive for the same reasons as discussed in §5.5.3. Similarly regions of sharp change in Fx

and Fy are observed for the same reasons as in §5.5.3 and can be seen in Fig.5.10. Similar to
§5.5.3, we see small secondary local maxima in F but there is no significant physical feature
in the cilium pattern to explain these.

5.6 Conclusion

We have analysed the beat pattern of an artificial, permanently magnetised cilium actuated by
a rotating magnetic field. At low Sperm number, we identified that the effective stroke was
in energetic equilibrium, whereas for the recovery stroke, hydrodynamic effects are important
when ζ is small enough. Using a force model, we observed that the cilium applies the largest
total force (and horizontal force) to the surrounding fluid at an intermediate Sperm number
and ζ . Unexpectedly, for an anticlockwise stroke, the force was generally to the right, due
firstly to the cilium stroke encompassing a large circle sector, and secondly, due to the early
uncurling of the cilium during the recovery stroke.



Part IV

Conclusion
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This thesis was motivated by two sets of experimental work on armoured microbubbles
and an artificial cilium.

For the armoured microbubbles (AMBs) we worked in direct collaboration with the exper-
imentalists, Philippe Marmottant’s group in Grenoble, France. We first built a general model
using asymptotic matching to calculate the streaming generated by a spherical body under-
going known arbitrary small-amplitude oscillations, with the streaming given by Eq. (1.75)−
(1.78). We found there was a net force on the spherical body only when it was forced at two
adjacent modes.

Next, we focussed on the AMB explicitly in order to understand the motion of its surface.
We used a potential flow model to analyse the resonances, identifying the relationship between
its resonance frequency f and the size of the opening θ0 as

f ∼
(

n3γ

ρa3θ 3
0

) 1
2

. (5.67)

This gave a resonance frequency of 334kHz for a standard bubble of radius 10 µm and opening
of 5 µm, in good agreement with the experimental resonance of 320kHz.

Using our previously derived general streaming model, and applying boundary conditions
for the AMB we identified the streaming flow its generates, with the strong frontal jet (see
Fig.2.9), in good agreement with experiments. By including the image of the leading order
Stokeslet (and next order Stresslet correction), we identified the streaming for the AMB near a
wall (see Fig.2.11), which correctly predicted the two large circulations in front of the AMB.

We next analytically studied the collective streaming flow generated experimentally by ar-
rays of AMBs placed in a long channel with an 80 µm× 1mm cross-section. We modelled
this system by linearly superposing the leading order Stokeslet behaviour (with a Stresslet cor-
rection when only modelling one wall) for each AMB individually. We found the two closest
channel walls (above and below) cause the large circulations seen experimentally (compare
Fig.3.4 to Fig.3.7). We then analysed the development of the array’s collective flow as the
base flow strength was increased for the five experimental setups, demonstrating good experi-
mental agreement for an L-array.

We next analysed the ability of AMB arrays to mix two streams of adjacent fluid in a
channel, by analysing the extension of the streams’ boundary line. The numerical simplicity
allows fast testing of AMB arrays to determine which arrays should face more rigorous nu-
merical and experimental analysis. Of the arrays identified by this method as good mixers,
two were tested experimentally, with the left/right V array of Fig.4.10a showing very good
mixing at low driving pressures (see Fig.4.12).
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We concluded this thesis by studying a different microdevice: an artificial cilium. Our
analysis studied a paramagnetic cilium actuated by a rotating magnetic field, motivated by a
ferromagnetic cilium designed by Tsumori et. al. [1, 6]. We used a force model balancing
magnetic, elastic and hydrodynamic forces to calculate the stroke shape (see Fig.5.3), which
we validated using an equilibrium model (see Fig.5.4). At low Sperm number, the forward
stroke is in energetic equilibrium, balancing magnetic and elastic forces, whereas the hydro-
dynamics effect the recovery stroke when we also have small ζ (the ratio of elastic to magnetic
forces). We analysed the force the cilium applies to the surrounding fluid for a range of sperm
numbers and ζ and identified that the force is highest for an intermediate sperm number and
ζ , dropping off at very high and low ζ and Sperm number (see Fig.5.7a and 5.9a).

Building on the work presented in this thesis, there are opportunities for further work
with both the AMB and the artificial cilium, both experimentally and numerically. Extend-
ing the numerical work on AMB array mixing includes adding the two side walls so a high
pressure forcing can be modelled, as well as modelling the extension of the boundary within
the array. Extending the experimental work using AMBs includes constructing a working
multi-directional swimmer, and making AMBs within a channel more hydrophobic. For the
cilium, further work includes extending the numerical study to a ferromagnetic cilium, while
experimental further work involves miniaturising the cilium.
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