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Abstract

Micro-devices are developed for uses in targeted drug delivery and microscale manipulation.
Here we numerically and analytically study two promising devices in early stages of develop-
ment. Firstly, we study Armoured Microbubbles (AMBs) which can self-propel as artificial
microswimmers or facilitate microfluidic mixing in a channel when held stationary on a wall.
Secondly, we study an artificial cilium, which due to its unique design, when placed in an
array, easily produces a metachronal wave for fluid transportation.

The Armoured Microbubble was designed by our experimental collaborators (group of
Philippe Marmottant, University Grenoble Alpes) and consists of a partial hollow sphere, in-
side which a bubble is caught. Under ultrasound the bubble oscillates, generating a streaming
flow in the surrounding fluid and producing a net force. Motivated by the AMB but consider-
ing initially a general setup, using matched asymptotic expansions we calculate the streaming
flow around a spherical body undergoing arbitrary, but known, small-amplitude surface shape
oscillations.

We then specialise back to the AMB and consider its excitation under ultrasound, using a
potential flow model with mixed boundary conditions, to identify the resonant frequencies and
mode shapes, including the dependence of the resonance on the AMB shape parameters. Re-
turning to our general streaming model, we applied the mixed boundary conditions directly to
this model, calculating the streaming around the AMB, in good agreement with experiments.
Using hydrodynamic images and linear superposition, this model was extended to incorporate
one wall, and AMB compounds.

We then study the streaming flows generated by arrays of AMBs in confined channels,
by modelling each AMB as its leading order behaviour (with corrections where required)
and superposing the individual flow fields of all the AMBs. We identified the importance
of two confining walls on the streaming flow around the array, and compared these flows to
experiments in five cases. Motivated by this setup, we theoretically considered the extension
of a two fluid interface passing through an AMB array to quickly identify good AMB arrays
for mixing.

We then studied the second artificial micro-device: an artificial cilium. Tsumori et. al. pro-
duced a cilium of PDMS containing aligned ferromagnetic filings, which beat under a rotating
magnetic field. We modelled a similar cilium but assumed paramagnetic filings, using a force
model balancing elastic, magnetic and hydrodynamic forces identifying the cilium beat pat-
tern. This agreed with our equilibrium model and asymptotic analysis. We then successfully
identified that the cilium applies the most force to the surrounding fluid at an intermediate

value of the two dimensionless numbers quantifying the dynamics.
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Part I

Introduction






The behaviour of engineered microscopic actuators and microswimmers, whose size is of
the order of 1 um-1000um, is the focus of this thesis. The long-term goal of microdevice
development is medical equipment, in the form of micro-diagnostic appliances and also tools
used for targetted drug delivery, [2, 3] as well as for biodetoxification [4]. In the short-term, the
aim is to develop efficient designs for microfluidic mixing [5], fluid transportation [6], particle
transportation [7] and self-propulsion [8]. Initially these will be used in lab-on-chip micro-
devices. These offer many advantages over laboratory testing in the form of automation, low
cost, less risk of contamination, reduced reagent consumption, fast response times and control
of flow over small length scales [3, 9, 10]. However, developing devices at this micro-scale
provides a number of challenges including power supply, control mechanism, life span and

stability.

Power supply is an interesting conundrum for a micro-device. Even small batteries are
millimetres in size [11], which is still too large, and biological chemical conversion to kinetic
energy is too complex to reproduce artificially. Therefore, different methods are required. One
option is to use the surrounding environment. Janus particles consist of two parts which react
differently with the environment, and self-propel by generating an asymmetric distribution
of charge or solute which propels the particle by electrophoresis [12, 13] or diffusiophoresis
[14]. If the environment is active matter, and thus contains many moving microorganisms, this

random motion can be harnessed and asymmetric gears will rotate [15].

An effective alternative option is to use an external forcing. Two examples are an ul-
trasound field and a magnetic field, which both need to be used slightly differently and on
suitable objects to provide continuous power. More specifically, an ultrasound field can drive
oscillations of microbubbles [16—18] and thin beams [8, 19, 20], which act as a focusing agent
for the ultrasound so that the ultrasound wave, with a wavelength on the order of Imm, can
control behaviour on the micrometer scale. A magnetic field can be used to actuate artificial
cilia [1, 21-23], which are hair like appendages, for which the cilium needs to be made of a
magnetic material and the magnetic field itself needs to be either oscillating [24] or rotating
[6, 23]. However, there are also undesirable side effects of using an external forcing such as
temperature rises and bubble formation, which need to be carefully monitored and controlled.

In this thesis an ultrasound field and a magnetic field are used to power the two devices.

It is not just the power supply of these machines which is different on the microscale.
Their behaviour and the difficulties our designs have to overcome are significantly different
to those on the macroscale, where fish swim with a repetitive motion, and mixing is achieved
through stirring. At the microscale the Reynolds number is low so viscous effects dominate
over inertial effects. The Scallop Theorem [25] says time irreversible body motion is necessary

for propulsion, so the fish would go nowhere, and indeed unstirring the liquid (time reversing)



would return it to its unmixed state.

Nature has had millions of years to evolve optimal methods to overcome these microscale
difficulties so can act as good blueprints when designing artificial products. A natural append-
age that has motivated the development of a similar artificial product, are natural flagella and
cilia. The green alga Chlamydomonas [26] has two slender flexible rod appendages whose
length is of the same order of magnitude as its body length, called flagella, which beat to pro-
pel the microorganisms. Rabbit Tracheal Epithelium [27] has thousands of tiny cilia, small

hair-like appendages, on its surface, which beat in a pattern to generate net flow.

Where the artificial design is based off a natural mechanism and there are significant phys-
ical similarities, modelling mechanisms for both are related so the biological models are help-
ful when studying the man-made systems. Also whereas micro-devices have only been being
built for a few decades, study of the biological system dates back a lot further, sixty years or
more, and thus forms the foundation of work on these systems. This is the case for our flagella
and cilia, and additionally the modelling mechanisms for a flagellum and cilium are similar
but with different boundary conditions. The earliest analytic models of biological flagella by
G. I. Taylor [28] considered the swimming speed of an infinite waving sheet and how adja-
cent sheets interact. More modern methods assume cilium slenderness and a 2D stroke shape
to model the beat pattern and force applied by a single finite length flagellum [29] and cilium
[30]. But sometimes very simple theoretical models are sufficient, with a three Stokeslet (point
force) model giving the flow field around Chlamydomonas [31]. At the other extreme using
large computational models, boundary element methods has shown the flow field around long

thin waving microrganisms [32], and arrays of cilia in more complicated geometries [33].

When densely packed cilia beat, there is a phase delay between adjacent cilia, which causes
a metachronal wave to form. A standard modelling approach then consists of considering the
dynamics of the enclosing envelope of the cilia. For microorganisms covered with these cilia
(e.g the multicellular alga Volvox or the protozoon Opalina) that are approximately spherical,
this reduces the problem to that of a spherical body inducing a surface wave of deformation
[34, 35]. The first of such analytic models was proposed by Lighthill [36] and later corrected
by Blake [34], who calculated the net flow generated by small-amplitude axisymmetric oscil-
lations of a spherical surface in a Stokes flow. This model is now refereed to as the “squirmer”
model. More recent studies have extended this model to include non-axisymmetric motion

[37], the presence of nearby boundaries [38, 39] and large-amplitude oscillations [40].

While most microsystems are low Reynolds number, inertial effects are significant when
an ultrasound forcing is applied. The kilohertz driving frequency of ultrasound increases the
local Reynolds number, making inertia important locally, and thus allowing time-reversible

oscillatory motion to generate net flow. This motion is the classical phenomenon of steady



(or acoustic) streaming, whereby a time-periodic forcing is non-linearly rectified by inertia to
induce a non-zero net flow [41]. Theoretical studies of steady streaming flows have focused
on shape oscillations in simple geometries, including a translating sphere [42], a translating
bubble [43, 44], a bubble both translating and pulsating [44], and more recently a bubble both
pulsating and oscillating with one higher-order Legendre mode [45]. For free microbubbles,
the external acoustic energy is focused into the first few surface modes of oscillation hence
these classical studies are sufficient to model streaming. However, as setups become more
complicated, for example in the case of solid capsules partially enclosing three-dimensional
bubbles [46—48], it is important to be able to model the complex shape dynamics and accur-

ately compute the resulting streaming flows and forces.

In this thesis two micro-devices are studied in detail: an armoured microbubble (AMB) and
an artificial cilium. We will thus now briefly discuss the uses and development of microbubbles

and artificial cilia separately.

Early experiments on microbubbles were performed by Elder in 1958 looking at the stream-
ing flow generated by oscillating microbubbles [49]. Since then they have been used to trans-
port particles either in the streaming flow when the microbubble is held stationary [7, 16] or
where the microbubble carries the particle [3, 46]. They can be fixed on the edge of chan-
nels in small indents and interactions between multiple oscillating bubbles may be used to
increase mixing flows [18, 50, 51]. In the last couple of years microbubbles have been used
for micropropulsion by containing them within small solid capsules [46—48]. The experi-
mental armoured microbubble we study in this thesis consists of a hollow partial sphere inside
which a microbubble is captured (see Fig.1a), which is different from other similar devices
in that it is far smaller, of 20 um diameter rather than with a length of 150 or 250 um [47] or
750 um x (2 —4)mm in size [46].

One of the earliest artificial cilia was a curled filament actuated with electrostatics, which
had a symmetric stroke but non-negligible local inertia, so the different speeds of the effective
and recovery stroke generate a net force [5]. Since then, driving mechanisms have moved
away from electrostatics as the voltage necessary can be problematic in biological settings
and if the surrounding fluid is conductive, it interferes with the operation of the device. More
recently a number of magnetic artificial cilia have been designed experimentally for pumping
and mixing, actuated by a rotating magnetic field [52] (with such systems having been studied
solely analytically and numerically too [53]), or actuated by more complex or asymmetric
motions of the magnetic field [54, 55]. A particularly promising artificial cilium consists of
superparamagnetic particles, which are guided to trenches allowing self-assembly, and are
then actuated under a rotating magnetic field [22]. However, generating a metachronal wave

for an array of cilia, as found in nature, is difficult without having a different driver for each
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(a) The armoured microbubble (b) The artificial cilium reproduced
(by Nicolas Bertin) from: Metachronal wave of artificial

cilia array actuated by applied mag-
netic field, F. Tsumori, R. Marume,
A. Saijou, K. Kudo, T. Osado and H.
Miura, Jpn. J Appl. Phys., 2016,
55:06GP19. [6]. Copyright 2016
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Figure 1: Experimental designs motivating this thesis.

cilium. The artificial cilium motivating the study in this thesis overcomes this difficulty. It
is a PDMS cilium with aligned magnetic filings, and by changing the angle of the filings in
adjacent cilia, a metachronal wave will appear when a rotating magnetic field is applied [1, 6].

In this thesis, part I focuses on our first micro-device, the Armoured Microbubble (AMB).
We will first consider the streaming flow generated by arbitrary but known small amplitude
oscillations of a spherical body in Chapter 1. We will then study the resonances and streaming
flow generated by a single armoured microbubble, and multipropulsor compounds in Chapter
2. Next, we consider arrays of AMBs and the shape of the large collective flows they can
generate in Chapter 3 and their mixing ability in Chapter 4. Then we move to our second
micro-device in part III and study the beat pattern of a paramagnetic cilium in Chapter 5. We

finish with a conclusion and discuss the direction of future studies in part IV.
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Chapter 1

Acoustic Streaming around a Spherical
Body

This chapter, with some edits, was published in: “Arbitrary axisymmetric steady streaming:
flow, force and propulsion”, Tamsin A. Spelman and Eric Lauga, Journal of Engineering Math-
ematics, 1-35, 2016 (reproduced with permission of Springer).

In this first chapter, we develop the mathematical framework to quantify the steady stream-
ing of a spherical body with arbitrary axisymmetric time-periodic boundary conditions (see
Fig.1.1 for setup). We compute the flow asymptotically under two assumption: (1) the amp-
litude of surface oscillations are small relative to the size of the body (ratio of amplitude
€ < 1); and (2) the acoustic frequency is large such that the viscous penetration length scale
is small compared to the body size (ratio penetration length to body size 6 < 1). Mathematic-
ally, we solve the problem as a regular perturbation expansion in €, with each term expended
in turn in powers of 8. We thus focus implicitly on the limit € < § < 1, which is the rel-
evant one for micron-size bubbles forced by ultrasound (frequencies in the hundreds of kHz
range) and millimetre-sized organisms. Similarly to classical work, the flow is shown to have
a boundary layer structure and the problem is solved by asymptotic matching. Our results,
which assume that the body is fixed in space, are presented in the case of no-slip boundary
conditions and extended to include the motion of vibrating free surfaces, also recover clas-
sical work as particular cases. We then illustrate the flow structure given by our solution and
propose one application of our results, discussing the adaptation for a force-free body, on
small-scale force-generation and synthetic locomotion.

This chapter is organised as follows. In §1.1 we set up the problem of the fluid flow gener-
ated by arbitrary surface motion of a no-slip spherical body. In §1.2, we derive the first-order
solution. The second-order Eulerian steady streaming is derived in §1.3, which is extended

to give the Lagrangian steady streaming in §1.4. The special case of a squirming microor-
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ganism is then discussed in §1.5. This no-slip general model can be extended to incorporate
other surface motion such as a no tangential stress boundary as shown in §1.6. The special
case of a bubble is then considered in §1.7. In §1.8 our general solution is validated against
classical results for spheres and bubbles. In §1.9, we illustrate examples of streaming flows.
In all previous sections, the body was assumed to be held stationary at the origin. In §1.10
the time-averaged force induced by the flow on the fixed body is calculated, along with the
translational velocity of the spherical body if it was instead free to move.

1.1 Axisymmetric steady streaming: setup

In this first section we present the general setup for our calculation. The body is taken to be
spherical with an imposed axisymmetric, radial and tangential time-periodic deformation of
its surface. In the following sections we will use asymptotic matching to first characterise the
flow in the case of no-slip between the fluid and the surface, and then we generalise to allow
the formulation to be adapted to other boundary conditions, in particular no tangential stress

for a clean bubble.
1.1.1 Statement of the Mathematical Problem

The sphere has mean radius @ and is contained within an unbounded Newtonian fluid
of constant kinematic viscosity v and uniform density p (Fig.1.1). Working in a spherical
coordinate system centred on the sphere, with radial distance r and polar angle 6, the axis
0 = 0 is the axis of rotational symmetry. The surface of the body is assumed to oscillate at
angular frequency @ with small amplitude €a, where € < 1 is formally specified below. We
define t = cos 0 and since the flow is axisymmetric, a stream function y can be introduced to

give radial u, and angular uy velocities as

1 dy

Ur:—r—zm, (1.1)
-1 0
” :—la—w- (1.2)
r(l—p?)z or

The governing equation is then given by the vorticity equation [56]

dD%y) 1 [(y.Dy)

5 e T +2D*yLy | = vD* (D*y), (1.3)
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?Z ?Z

Figure 1.1: A sphere of rest radius a (left) undergoes arbitrary axisymmetric vibrations of
amplitude €a, with € < 1 (right). Spherical coordinates are used with radial distance r and
polar angle 6. The surrounding fluid is Newtonian with kinematic viscosity v and density p.

where we have defined the operators

02 (1 _ “2) 02

2_ 7 -
D= 372 + 2 ou?’ (1.4)

__n 9,10
L_(l—u2)8r+r8u’ (1.5)

and 5 5 5
Aw.DY) _dwaDy) a(D’y)dy w6
a(r,u) dr du dr Ju’ '

In order to non-dimensionalise the problem, we take the relevant time scale to be o~ ! and

the relevant length scale to be a, so that the sphere now has a rest radius of 1. The stream

function thus has dimensions aw and the vorticity equation becomes

ID%y) 1 [d(w.D%y)
at r2 | ad(nu)

\%
+2D2wLw] - <@> D* (Dy). (1.7)

Eq.1.7 introduces a non-dimensional quantity: the ratio of the viscous penetration length scale,

~(v/ a))l/ 2, to the radius of the body, a. Specifically, we define a dimensionless number & as
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1
5= 2V (1.8)
a
thus reducing the governing equation to
dt r2 | ad(nu) 2 ' '

The second dimensionless quantity in this problem is the ratio € between the amplitude of
oscillation and the body radius. To use notations similar to those in classical steady streaming
calculations, we use U to denote the maximum velocity at the surface of the oscillating body,
such that € can be defined as

£=—: (1.10)

We will look to solve this problem as a regular expansion in € for small values of &, and
then take a regular expansion in 6. We will thus assume the asymptotic limit € < § < 1. Im-
portantly, this assumption is sufficient for our asymptotic solution to be valid. As explained be-
low, we will solve this problem using asymptotic matching between an inner solution (bound-
ary layer of size 8) and an outer solution. For the inner asymptotic solution, ¥, we will have

an expansion of the form
v =e(y ¥4+ 5yl 4 45y 42yl 4 sylV) 4 0(e67 €282 €%),  (1.11)

with n > 2. The solution in Eq.1.11 is a valid approximation provided the errors are smaller
than the order of our solution O(&2§). So we require § < 1, € < & and 8" < €. But n can be
chosen to be as large as required, thus reducing down to the condition € < § < 1 only. We
note that we can easily obtain the O(¢g) solution up to order n in J since € is introduced into
our equations only through assuming y is a power series in € so mathematically higher orders

of € cannot effect lower orders in €.

Physically, a small value of € indicates small-amplitude motion while a small value of &
means that the viscous penetration length is small compared to the rest size of the body. For
which practical situations will these limits be relevant? To fix ideas, let us take a value for
the relative amplitude of € ~ 1072, A ciliated microorganism in water (V = 10~%m?/s) would
have intrinsic frequencies of about 50 Hz, so @ ~ 300rad/s, leading to a penetration length of
(2v/ a))% ~ 80 um. In order to satisfy the limit € < 6 < 1, the organism size would need to

be just below 1 mm, which is achieved for the largest ciliated organisms such as Spirostomum
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which can grow up to 4mm in length [57]. For a micro bubble actuated by ultrasound the
frequency is about @ ~ 10°rad/s, so the penetration length is (2v/ a))% ~ 1 um and thus the
bubble would have to be about 10 um in diameter.

1.1.2 Boundary conditions

We apply, in this first part of the chapter, the no-slip boundary condition. Thus, the fluid
velocity has to match the velocity of the material points on the surface of the body, which
is arbitrary and decomposed along an infinite sum of surface modes. Using a Lagrangian
formulation, the motion of the boundary can be described by its radial position, R, and angular

position measured from the axis of axisymmetry, ®, which are functions of time ¢ and the rest

angular position 6 (through u) as

R=1-¢Y V,B(n)e'"*2) + 0(e?), (1.12)
n=0
1
- s P,(x)dx\ . &
O=0+c) W, M 12 1 0(e?), (1.13)
n=1 (1—u?)2

where V,, and W, are arbitrary complex constants determined by the surface motion of the
spherical body and P,(x) is the Legendre Polynomial of degree n. Throughout this chapter,
complex notation will be used and it will always be implied that only the real part is taken;
when an explicit real part appears we will denote it K.

The u-dependence of R and ® was chosen in order to match the form of the first-order
solution, as seen below. More specifically, assuming R and hence u, has Legendre polynomial
udependence, Eq. 1.1 suggests the u-dependence y should have and hence, from Eq. 1.2,
the dependence ug (and so ®) should have. Therefore, this form of @ is suggested by the
relationship between u,, ug and y. We also note <fﬁ P, (x)dx) /(11— /.Lz)% =Pl(u)/(n(n+1))
so our formulation for ® gives its -dependence as Associated Legendre Polynomials of order
one. Additionally, ® has the same p1-dependence at leading order as ug on the boundary, and
this form of ug is consistent with the classical work of Riley [42] and Longuet-Higgins [44].

Since V,, and W, can each take any value within the complex plane, a wide range of bound-
ary motions can be studied. At leading order, R(0) is equivalent to the radial position of
the surface at an angle 0 from the axis of symmetry. As such, V,, will be determined by the
shape of the surface oscillation, and since the Legendre polynomials form a basis, any arbit-
rary axisymmetric small amplitude radial oscillation can be written in this form. At leading

order, ®(0) captures the tangential motion at an angle 0 from the axis of symmetry, and thus
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W, will be determined by the appropriate in-surface motion. We note that the use of Legendre
polynomials as a basis for 4 was expected due to the axisymmetry of the problem and such a

basis has appeared in other work based in similar regimes [34].

At O(€?) only terms in R and ®, which time-average to a non-zero value, would contribute
to the streaming. However, such terms would indicate that the body was slowly growing
or shrinking over time, and would also stretch or contract tangentially, violating the small-
amplitude assumption on long time scales. We therefore do not allow for steady Lagrangian
terms at order O(&?). The boundary condition can thus be written in a Lagrangian form as

_ aR _ s it 3
Uy === = en;)VnPn(u)e +0(¢e”), (1.14)
pele)
Ug —RW
1
o Py(x)dx\ . o .
=R|-e) W, (M) N R|1—ei Y VP, (n)e" | +0(&?), (1.15)
n=1 (1 _‘u2)§ n=0

and both of which have to be evaluated at (r,0) = (R(u,t),0(u,t)).

Finally, we require that the flow decays to zero from the body and thus u,g — 0 as r — .

We note here that we are assuming the spherical body is fixed in space and as such is
not force free. A force-free condition may be incorporated with the same setup in a suitable
reference frame, whereby it limits the possible surface shape oscillations through restrictions
on the choice of constants V,, and W,,. This is discussed in detail in § 1.10.

1.1.3 Rearranging the surface boundary conditions

The current Lagrangian form of the surface conditions of the body Eqs.1.14—1.15 needs
to be transformed into Eulerian boundary conditions of the fluid motion. This is achieved by

Taylor expanding them about the average oscillation position (1,0) so
uy, = up + (8x- V)uy + 0(8x%), (1.16)

where u; gives the Lagrangian surface velocity, up the Eulerian velocity and dx the change

in position. The relationship between these variables is illustrated in Fig. 1.2. In spherical
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Figure 1.2: Comparing the Lagrangian and Eulerian boundary conditions

coordinates this gives

du,
or

o = s + R [(R— 1)] [

} +R[(O-0)R Kf;é —ue)

r=1

and

8u9

wolr—r = glr—1 + R [(R— 1)] R { e

|

oo | (G )

+0(&%).

Looking for the dimensionless velocities and stream function as power series in € as

urzsug )-1—8 u, (83)

u9=8u(9)—|—8 ”9 +0( %),
¥ =eyi+eyr+0(e%),

then at leading order Eq.1.17 and Eq.1.18 give

= i ViPa()e !
n=0

(1.18)

(1.19)

(1.20)
(1.21)

(1.22)
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- dx\ .
-y W ( P(x) f)e”, (1.23)

n=1 (1—p?)2

at r = 1 and for all values of 6. Similarly from Eq.1.17 and Eq.1.18 the O(&?) boundary
condition can be calculated. However, due to the non-linear terms arising from the Taylor
expansions, the first-order flow needs to be first evaluated in order to determine the O(€?)

boundary conditions explicitly. This will be discussed in §1.3.1.

1.2 First-order Asymptotic solution

1.2.1 General solution

Based on the oscillatory nature of the boundary condition at first order, Eq.1.22-1.23, we look

for a solution y o< e, At leading order the governing equation reduces to

Jd &
(E —~ 71)2) (D*y;) =0. (1.24)

This is easily solved using separation of variables D>y = f(r)g(u)e” to find D>y as

Dy =" [i (/ulpn(x)dx) (Bn\/TfKM(ar))] , (1.25)

n=1

where K, (x) is the modified Bessel function of the second kind of order a.

We then use separation of variables with the definition of the operator Eq.1.4 to solve
Eq.1.25 for w1 noting that Eq.1.25 gives the particular solution of y;. Hence we finally obtain

. 1
vy = el {(Aogli(ar) +Bog—§K;(ar) +C0r—|—D0> (/u Po(x)dx—l—eo) +
- \/’7 n+1 —n !
Z 2 iy (@) + B, 2K, (@) + G 4Dy /M P(x)dx )|, (1.26)

where a = (1+i)67!, I,(x) is the modified Bessel function of the first kind of order a, and

Ap, By, Cy,, D, are constants to be determined using the boundary conditions.
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1.2.2 Enforcing the boundary conditions

Since I,,(ar) increases to infinity exponentially as r — oo, we first see that the boundary con-
ditions at infinity impose that A,, = O for all n and similarly C,, = 0 for n > 0.

Secondly, singularities in the velocity profile should be removed. This is not a problem
for u, but it is for ug. Indeed, we have the scaling ug ~ (1 — ,LLZ)*% <f“l P, (x)dx) , which has
formal singularities at 4 = 1. Using the identity

: _ (=R W)
/‘u Pn(X)dx— W forn;éO, (127)

we see that the singularities are removable for n > 0 but not for n = 0. Since ep provides
only one degree of freedom, it can be used to remove at most one singularity. Therefore, in
order to prevent any singularity in ug at g = 41, it is required that Cy = By = 0. The only
term remaining in Y containing e is proportional to egDg, which is an arbitrary constant and

hence e( can be set to 0.

With these results, y is reduced to

<D0 /u 1 Po(x)dx) +; (BngKH(ar) +Dnr"> ( /,1 1 Pn(x)dx)] . (1.28)

Applying the two first-order boundary conditions, Eq.1.22 and Eq.1.23, finally allows the

W] — ell‘

determination of the remaining constants B,, D,, and Dy. This solution for the constants B,
D, and Dy is a closed-form solution, which has dependence on 6. However, a 6 expansion is
required for our second order calculation, to calculate the streaming flow. Thus, we expand this
closed-form solution in powers of &, and this form of the constants B,,, D,, and D is expressed
below in Eq.1.29-1.31. For the standard second order calculation, only the two leading orders
terms in 6 for each constant (B, and D,,) are required, but three are included here as the third
is necessary to calculate the in-phase streaming around a bubble discussed in §1.14, due to the
significant cancellation of terms in that case so that the leading order streaming flow occurs
at a higher order of 6. The Bessel function factor evaluated at o has been left formally in the
definition of the constants, as Bessel function terms will appear in the second-order streaming
equations and the expansion of that term has to be performed careful (as discussed in §1.3.3),
which is simpler when this Bessel function term is left in B,,. We obtain the solution for By,
D,, and Dy as

1
By=——|<(140)+n+9

(i—1)n?

: ) (W, +nVy)
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52
+0| ———| forn>1, (1.29)
(’%;(“))
D, =V,+ 5(1—;’)(% +nV,) — 62§(Wn +nV,) (1.30)

+0(83) forn>1,
Dy =V). (1.31)

For simplicity of notation in what follows, we define Wjy = 0 so that Eq.1.29 and similarly
Eq.1.30 remain valid for n = 0.

1.3 Second-order asymptotic solution

At O(£?), a net fluid motion will arise and from this we will obtain the streaming flow. The
first-order solution determines the explicit second order boundary conditions (§1.3.1) and
provides a non-zero forcing term (§1.3.2) at O(e?). Unfortunately, the governing equation
with this forcing is too complex to solve explicitly analytically. We will thus employ asymp-
totic matching in order to solve for the flow inside the boundary layer of size 1 = 1+ 6r
(§1.3.3) and for the flow in the far field (§1.3.4) where exponential decay of this forcing leads
to a Stokes flow. Upon matching these two solutions (§1.3.5) the outer solution will give the

Eulerian streaming flow around the body.

1.3.1 Second-order boundary conditions

Eqs.1.28-1.31 give the full solution for y;. Using Eq.1.17 and Eq.1.18 we can now time-
average the boundary conditions at order £2. Note that the product of two terms of the form
fe' and ge' time average to fg/2 or fg/2 where the real part is assumed and overbars denote
complex conjugates. Simplifying the 1 dependence of the result to a sum over the appropriate
basis functions, i.e. (1 — ,uz)’%f‘i P,(x)dx for ug and P,(u) for u, and using the classical

identities

11(x) = (n4+1)Py(x), (1.32)
_1(x) + (2n+1)By(x), (1.33)
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we explicitly obtain time-averaged boundary conditions

¥ {% lzvovk ST Y Gt (Wi 2020
r=1 k=1

n=0m=1

> _ - 1
1fknm (Vnn(n+ 1) - Wn) Wmn(n+ 1)m(m+ 1)

}Pk(ﬂ), (1.34)

_ & Gy -
—VWu(m+1)—-W,W,, + —
n m( ) n¥m ;](]‘*‘D mYVj

1
} (fqu—(x)dlx> . (1.35)
(1-p2)?

where we have used triangular brackets to indicate time-averaging.

In these equations, the series of coefficients Cyj, dkum, finm and gium are defined by

0 if (j < n) or (n and j have different parity),
Chj=1qn if j =n, (1.36)
(2n+1) otherwise,

and

P(1) ( /M 1 Pm(x)dx) =Y i ( / lPk(x)dx) , (1.37)

k=1 H

Py ()P () = Y. fiamPi(1t), (1.38)
k=0

Po(t)Pu(l) = Y. gknmPre(), (1.39)
k=0

where P! (1) is the associated Legendre polynomial of degree n and order 1. Recall that
associated Legendre polynomials of degree n and order m are defined by

%dmRAX)
dxm

P (x) = (1—x%) (1.40)

n
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and have the useful orthogonality property

2 (n+m)!
(2n+1) (n—m)!

l /
/ P (x)PY (x)dx = 8,8 (1.41)
—1

Using the orthogonality property together with Eq.1.27, the formulae for ay,,,,, in Eq.1.37, fiumn
in Eq.1.38 and gk, in Eq.1.39 can be rearranged into a more useful form to calculate their

numerical value

k(k+1) 1) Pa(x)Py ()P} (x)dx

nm — s 1.42
= (1) [T PP (x)dx (142)
__@k+1) ! 1\ pl
2k+1) !
fknm,z—( 2+ ) /_ 1P,}(x)P,;(x)Pk(x)dx, (1.44)
2k+1) !
gknm:( ;L )/_lPk(X)Pn(x)Pm(X)dx. (1.45)

The constants dy,, finm and gr.m, are Gaunt Coefficients, which have been extensively studied
due to their appearance in theoretical physics. Gaunt’s formula [58] for the triple product

integral and fast numerical algorithms [59] exist to evaluate such coefficients.

1.3.2 Nonlinear Forcing

The governing equation at order € is given by

52 (D) 1 (8(1//1,D21//1)

7(D41V2)—T:ﬁ 200) +2Ll//1D1//1>. (1.46)

Time averaging equation (1.46) leads to

1 <8(W17D2W1)

5
—D <l[/2> = r—2 a(r,‘u) +2LI//1DI//1> . (1.47)

2

A general second order solution that is valid throughout the domain, cannot be found due
to the complexity of the right-hand side of Eq.1.47. However, for small values of 9, solutions
can be found separately within the viscous boundary layer and in the far field, and they can be
asymptotically matched to provide a full outer solution. This is the method we will be using

in this chapter. In either case, an indication of the form of the non-linear forcing is required.
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The term Dy is given in Eq.1.25. We also have

n=1

- B, ﬁ’ / _ —(n+1) M
Ly =e [Z (2azﬁKn+;<W>+Bna’%;(“’) Dunr n(n+1)

and
8(1//1,D l[/]) . 1l & & B, B, -
< a(r, 1) _Qngbm:l a2 Kn+5(ar)K (ar)
Banl" — / m
+2-" K, (@)K, (ar) = BuDymK, , y (0r)r~ ")
Dan —(n—|—1

Using the coefficient ay,,, defined in Eq.1.37, Eq.1.49 can then be transformed to the
appropriate (integral polynomial) basis. Similarly the quantity given by 2 x Eq.1.48 x Eq.1.25
can have its basis transformed using ayy,,, and Cy,; defined in Eq.1.36. These two quantities

can then be added, which gives the total non-linear forcing as

<2Ll[/1D21//1 + 8(151(;_—‘u)> Z [Z Z Afenm X

n=0m=1

1 3 C(na ]
(BB P 2Kn+2(ar)Km+%((xr)—ZDanr (2K (ar)

_ r — /

—B,Bn—K 1(Oér)Km+%(Ocr)+

_ _ _ 1
ma ntd B,,DmmK,H%(Ocr)r (m+2)

1
2

1_ —(n—1
+ 5 DnBnatr (n 2>Km+%(

"L (j<j+ 1>) (‘BmezT.ﬂKm+;<“r> r+4(07)
]:

Km+1(ar)lg/j+( r)—BuDjjK,, . ( )"_(ﬂ—%)))] </u

!/

or)

1

+B,.B; Pk(x)dx> . (1.50)

Q| ~
(S]]
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1.3.3 Solution inside the boundary layer

The rest boundary is located at » = 1 with a boundary layer of size 6. We thus define an
inner variable 1 related to r by r = 1 4+ 81. The boundary layer is small, § < 1, and within
the boundary layer the inner variable 1 varies from O to 1. We now write the second-order
equation in terms of 1 and expand in ascending powers of o.

First consider expanding the right-hand side of Eq.1.47, i.e. Eq.1.50 divided by >. When
the first-order boundary conditions were applied above, we obtained in Eq.1.29-1.31 Taylor
expansions of the coefficients Dy and By in terms of 6. The powers of r can also be Taylor
expanded about r = 1 to also obtain a powers series in 6.

However, the Taylor expansions of the Bessel functions have to be done more carefully.
A useful identity [60] for expanding the Bessel function is that, for non-negative integer n we

have
Te * & (j+n)! .
K@ =1\5—72)X ;27 (1.51)
ntz 2\/2;()@1—])!]!
Next, notice that when the expansions for D; and By are substituted into Eq.1.47, the Bessel
functions always appear in ratios of the form
K e+ % (OCI”)
—_—, (1.52)
Kn-i—% (OC)
where K represents a derivative or complex conjugate of the Bessel function. As such, taking

f(r) as the appropriate power series in r gives

I?j+%(ocr)

K.

— WD p(p) = oM (1 4 §7), (1.53)
4

o)
where & can be « or its complex conjugate. The exponential part of the Bessel function can
clearly not be Taylor expanded in powers of 8. Hence to obtain the correct expansion, the
power series part of the Bessel function should be Taylor expanded in powers of 6 and the
negative exponential part should only have the appropriate 1 substitution carried out.

Upon completion of the substitution and expansion in &, we obtain inside the boundary

layer
1 (y1,D°y1) SRR
= ( 2Ly, D? =
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- _ - 112 - 1
—Dme =N L 2| i (22
(W, + 1V, ) Vi (1 — i)me t5 {52 Vai+ 5 (—2V,inn+

V(1 4-1) — (W +n¥,) (1 =) + %Vn(l +i) —4Vnin>} (Wyy + V) (1400

N i ( e ) {_%(Wm+mvm)(wj+j‘7j)(l—|—i)e_2"

1 _ . 1
+§(Wm—i—me)ij(1 —i—i)e(”’)”] —1—0(1)} </ Pk(x)dx) . (1.54)
u

This expansion has been performed to the two leading orders in 8, order § 2 and § . Two
orders of & will be required when the matching conditions are applied, to obtain the leading

order streaming behaviour, similar to the work of Longuet-Higgins [44].

Inside the boundary layer, the D* operator on the left hand side of Eq.1.47 is asymptotically
given by

a1

64 ont

and therefore Eq.1.47 finally simplifies to

+0(572), (1.55)

PN _ee e ([3 e
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{5 (—2\7,,mn +Vum(1+1i) — (W, +nV,) (1 —i) + %Vn(l +1i) — 4\7,,1'17) —|—2Vni} X
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(Wi +mVy)e” 40 4 3 ( G - 1)) (=28 (Wo+mVi) (W + jV;) (1+i) e "
j=1

28 (W V) V(1 + e+ | +0(1)) ( /“ 1 Pk(x)dx) , (1.56)

where l//é is the second order stream function inside the boundary layer.

Using the elementary indefinite integrals (where c is the constant of integration)

R
/ / / / e dxd§dids = S +c, (1.57)
v J5 5 Js a

L s ye e
//:f/xeaxczxdydydyzy%—e—s+c, (1.58)
yJyJyJy a a

allows us to integrate Eq.1.56 explicitly. We take the resulting solution to its first two leading

orders, of order 1 and & (as will be required for calculating the leading order outer streaming
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flow), giving the general inner solution of

’_‘(\T
—

l5(Wn + 1V )Vum(1 — i)~ (1M

<1lf§> = i {Z Z Alnm {——SV W, +mV,, )(1+i)e—(l+i)n
4

n=0m=1
{5[ ni(n+2) (n+2(1—1)) + Vm( i) —
}( Wy +mV,y e~ (10 (

~8(Wiy +mVy)V; (1 +i)e” (1M ) } Lk+Mkn+Nk712+an3)}><

1
2
1
( / Pk(x)dx) . (1.59)
u

where L, My, N; and Qy are constants of integration to be determined. Of those, two will

5(W +1V,) (Wi +mV,) (1 —i)e > 4

(W, +nV)(1—i)+%Vn(1+i)]

l\)l*—*
-bl*—‘

+ ) (——6 Wi +mVy, )(Wj+j\7j)(1+i)e_2n

be determined by enforcing the two second-order boundary conditions Eq.1.34 and Eq.1.35,
namely L; and M. Since these boundary conditions must hold for all —1 < u <1, the coef-
ficient of each basis function (i.e. P,(u) or |, ‘i P,(x)dx) must obey these boundary conditions

term by term, giving a countably infinite number of equations with solution

L, = {[Z Z aknm W, +mV,, )+2VOVk—

n=0m=1
Z Z gknm‘_/n (Wm - zvm) + Z Z fknm X
n=0m=1 n=1m=1
_ - 1 i
(Von(n+1) _Wn)Wmmn(n+ Do 1)1 5} +0(8), k>0, (1.60)

[o=] [o] 1 _ _ 1 _
M, = § (Z Y awum {—E(Wn—i—nVn)Vmim—i— 5Vn(WmJr;m/m)i(4+3n—m)
n=0m=1

- _ 1_ 1_

= . - an 1 = o .
+ = W Wini — Z ( (]H)) [Z(Wm+mvm)(Wj+JVj)(l+l)

+ (W, +mV, )V u+;W Wl] }) +0(8%), k>0. (1.61)

Both L; and M are given to leading order in &, and although their order in § is different, both
contribute their leading order behaviour to the leading order outer streaming flow. Asymptotic
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matching will determine the values of the remaining coefficients.

1.3.4 Solution Outside the Boundary Layer

Looking at equation Eq.1.50, we see that all the terms in the non-linear forcing are multiples
of modified Bessel functions of the second kind or their derivatives. As such, this forcing
decays away exponentially fast as r — oo and can be neglected outside the boundary layer. In
the outer region we therefore have an unforced Stokes flow and the governing equation for the
outer stream function, Y73, is

D*D?(y8) =0, (1.62)

with exponentially small errors.

Given the form of the inner solution Eq.1.59, and anticipating the asymptotic matching,

we can look for the outer solution with a known u dependence as

(y) = i £ulP) < /u 1 Pn(x)dx) + fo(r) ( /ﬂ 1 Po(x)dx+e0) . (1.63)

The value of (DZI,U§> can be found by differentiating Eq.1.63 as well as by solving Eq.1.62
for (D? y$) using separation of variables. Equating these gives a second order differential

equation for f with power-law solutions. The general outer solution is thus given by

(W8) = (Ro+ Tor + Yor* + Sor) (/u] Po(x)dx+eo>

o 1
+ ¥ (R T 4 5,072 ( /
n=1 u

P, (x)dx) . (1.64)

Applying the boundary condition at infinity gives R, =Y, =0 for n > 1 and Sp = Yy = 0.
Furthermore, in order to avoid a singularity in ug at u = %1 it is required 7y = 0, and as (y5)
is a stream function it can be set that ey = 0 without affecting u, or ug. Hence we obtain the
outer solution as
1 oo 1
(W3) = Ry ( /ﬂ Po(x)dx) + <an_”+Snr_(”_2)> ( / Pn(x)dx) . (1.65)
=1 H

n
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1.3.5 Matching

The final part of determining the solution for the flow consists of carrying out the asymptotic
matching between the inner Eq.1.59 and outer solutions Eq.1.65. We first need to evaluate
the inner solution, Eq.1.59, in the limit 11 > 1 which, because of the negative exponentials,
simplifies to

. i 1
(v3) = Y (Le+Mn +Nen> + Qin’) (/ﬂ Pk(x)dx> : (1.66)
k=1

The outer solution, Eq.1.65, then needs to be evaluated in the limit » — 1. Writing the outer
solution in terms of the inner variable 1 and Taylor expanding the expression about n = 0
then gives

(W) = Ry (/ dx>+2 [ (Ty+S,) — 8(nTy + (n—2)S,)1M
+52< (”jl)TnJr(”—z)z(”—l)Sn) n?

L (”("“é(”“) Tn+”("_lé("_2)sn> n3+0(n4)} (/“1 Pn(x)dx). (1.67)

Here <1//§’ > has been given to its four leading orders in 1. The first two orders are required for
the matching conditions, to calculate the outer streaming flow. The third and fourth orders can
be used to explicitly determine N; and Qy, which are used in §1.10.

Equating the two highest orders of 1) gives

Li=Ti+58 (k>1), (1.68)
My =—8[kTi+ (k—2)S] (k>1), (1.69)
Ry=0. (1.70)

If we use M ,ga) to denote the O(§) term of My, the outer constants are thus given by

-k, m_11 M
Ty 5L —55M +0(8) (k>1), (1.71)
_ky 11 ) S
Sk=5Lp +55M +0(8) (k>1). (1.72)

Notice that 7} and S; are now known so they can be used to determine Nj and Q; by matching
to third and fourth order; if one carries out this matching, one obtains that N, and Qy, are 0(52)
and O(87) respectively.
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1.4 Lagrangian streaming

The solution derived so far has focused on the Eulerian streaming, i.e. the time-averaged
Eulerian velocity field at a fixed position in the laboratory frame of reference. In order to
compare with future experimental results tracking the motion of passive tracers in the flow,
it is necessary to calculate the Lagrangian streaming instead. The difference between the
Eulerian and the Lagrangian streaming is the so-called Stokes drift, which arises because the
Lagrangian particles are advected by the Eulerian velocities at all the positions the particles
move through, and not just fixed positions in the laboratory frame, and thus velocity gradients
need to be accounted for.

Longuet-Higgins [44, 61] showed that the stream function for the non-dimensional time

averaged Stokes drift (@s) at O(&?) is given by

_ Yy , dy
(@s) = <— e ——dt Em > (1.73)

Ignoring exponentially-decaying terms, the outer solution for the Stokes drift is thus

k=1 \n=0m=1

>° > ® 1
(ps) = —82% Y (Z Y akn,nVanmr(”+’"+3>) ( /“ Pk(x)dx) +0(5). (1.74)

Adding this expression to the outer time-averaged Eulerian solution y3 from Eq.1.65 leads to

the final expression for the outer leading order time averaged Lagrangian streaming as

[

(yr) = Z (Tkr +Skr B i 3 Yium? n+m+3)> </1Pk(x)dx), (1.75)
1 u

k=1 n=0m=

where
akananim> , (1.76)

| =

Yknmzcﬁ(

and the coefficients S; and 7} are given by
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Since the inner solutions is only valid in a J-sized region about the spherical body this
gives the Lagrangian solution in the bulk of the fluid.

We note that in the far field, the flow will be dominated by the slowest spatially decaying
term. In the stream function Eq.1.75 this is the (yz) ~ S;r term. The velocities associated
with this term decay as ~ 1/r and are associated with a net force acting on the fluid (stokeslet).

This will be further discussed §1.10 in the context of force generation and propulsion.

1.5 Special case: squirming

As discussed in the introduction, the squirmer model of low-Reynolds number swimming is
a popular mathematical model to address the motion of nearly spherical ciliated cells (e.g.
Opalina, Volvox) [34, 36]. The array of deforming cilia is modelled as a continuous envel-
ope where the effective tangential component is deemed far more significant than the radial
component of motion. As such, the position of the surface can be modelled as fixed at its

average position, and imposing steady velocities along it. Models of this form have been used



1.5 Special case: squirming 29

to study nutrient uptake by microorganisms [62], interaction of microorganisms [63], optimal
locomotion and were recently generalised [37, 40]. Some versions of the squirming model do
also allow a radial velocity to be applied through the fixed boundary as a model for a porous
surface with normal jets of fluid through it [64].

The squirming approximation significantly increases the ease of theoretical calculations.
However, and as expected, it has its limitations. A prescribed forcing through the boundary
cannot be used to accurately model a moving boundary. If there is a non-zero radial velocity
at the fixed boundary, the streaming flow will become one order of magnitude larger since
the boundary conditions are no longer cancelling the leading-order term. In the very specific
case of solely radial motion where all the radial modes are exactly /4 out of phase with each
other the solution will be at the right order, but other important terms will still be missing from
the streaming. This demonstrates that the physical movement of the boundary, and hence the
physical displacement of the fluid in that region, is as important as the prescribed velocities it

is imparting to the fluid around it.

For angular motion alone, however, the squirmer streaming is identical to the full solution,
demonstrating such an approximation is valid. Furthermore, in that situation the Lagrangian
and Eulerian streamings are the same since the Stokes drift depends only on the radial motion
of the surface. We thus focus on the standard tangential squirmer model where there is no
radial motion at leading-order and V,, = O for all n. In that setup, the generated streaming is of
the same form as has already been derived, Eq.1.75, but the constants are much simpler with
Yium = 0 and

S =% { i i Qo [%anm(l - i (J(JC—+’1)> %Wij(l )

n=0m=1 j=1 |
+i i {—lfkannWm i, +0(8), (1.79)
n—tmm1 L4 mn(n+1)(m+1)
and
=% i i Qknm —EWnWm(l— )+i ( : C’ >1WmW,-(1—l)
n=0m=1 8 j=1 ](]+1) 8

(2 — k)i
mn(n+1)(m+1

)} } +0(8). (1.80)
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1.6 Allowing slip on the boundary

In previous sections we assumed that the fluid satisfied the no-slip boundary condition and
thus exactly matched the motion of our deforming body. Slip can however be systematically
incorporated into this model through a small change of boundary conditions. The general form
of the solution remains the same but the constants of integration gain an extra contribution.
This will then extend the model to include other spherical bodies, in particular bubbles.

In the case of no-slip, the motion of the boundary was described by its radial position, R,
and angular position, ®. Our new, more general, R and ® can be interpreted as describing the
motion of the fluid on the boundary of the spherical body. If we allow streaming at second

order on the boundary, we can then write

R=1—2 Y V()5 122 ¥ GuP()g(0) + O(e), (1.81)
n=0 n=0
o 'P(x)dx\ . . o 'P.(x)d
@=0+c) W, (f”—(x),x) et 12 Y F, (f“—w> f(O)+o0(», (1.82)
n=1 (1—p2)2 =0\ (1—-p?)2

which now has the extra second-order contributions where F,, and G,, are known constants
determined by the motion of the spherical body and f(¢) and g(¢) are unknown functions of
time. This new R and © are a more general form of R and © since imposing no-slip boundary
conditions sets G, = F, = 0, which reduces R and ® to R and ®. The equations relating R
and O to the velocities u, and ug are the same as those relating R and ® to these velocities
(Eq.1.14 -1.18), hence the form of the final solution is similar to before with the addition, at

second order, of terms containing F;, and G, .

The new definition of R is equivalent to the previous one since the fluid and spherical
body cannot encompass the same space. Therefore, V,, is still determined by the shape of the
surface oscillation and there is still no net motion of the boundary, we thus have G, = 0 for all
n. The new definition of ® does, however, allow for net motion of the fluid along the surface
of the body, and the coefficients W, are then chosen so that the appropriate surface boundary
condition is obeyed at first order. Similarly the value of F;, is determined by ensuring that this
same surface boundary condition is obeyed at second order. As such F;, may be nonzero and

without loss of generality we assume that d f/dt time averages to one.

The addition of the coefficients F;, is a second-order contribution so Y is unchanged from
Eq.1.28. The form of the second-order inner solution Eq.1.59 is unchanged with L; as in
Eq.1.60 but M; now has an extra Fj contribution so we obtain the revised equation
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The new boundary condition considered, such as that of no angular stress along the surface
of a bubble, would now be applied to this new second order inner solution allowing us to
determine the value of the coefficients Fj.

Similarly the form of the outer solution Eq.1.75 remains the same but through the asymp-
totic matching there is an extra contribution to its constants of integration so that the revised

formulae for the S}, and 7} coefficients are now
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with the coefficients Y, remaining the same as in Eq.1.76. Naturally, through the asymptotic
matching outlined above, as 7; and Sy have an extra contribution, the inner constants N; and
Oy will also include a contribution proportional to the constants F;.

1.7 Special case: free surfaces

In the case of an oscillating bubble, the extra boundary condition is that of no tangential stress
on the bubble surface
-L'=0 atr=RO=0, (1.86)

H .

lla

where I is the tangent vector in the plane through the axis of axisymmetry, n is the normal
vector and o is the Newtonian stress tensor. There is still no penetration on the bubble surface
and the shape of the bubble oscillation (via the coefficients V,)) is prescribed. Ensuring that the
no-tangential stress conditions holds at first order and at second order (when time averaged)
determines the values of W,, and F,,. This calculation is quite involved and its details are given
in the appendices of §1.13 and §1.14 with the main results quoted in what follows.

1.7.1 General case

In this subsection we calculate the leading-order streaming provided the result is non-zero
(in which case see §1.7.2). The generated streaming is of the same form as the one already
derived, Eq.1.75, with Yy, defined as in Eq.1.76 and Ry = 0, with the difference that the
constants 7; and S; now take new values

_ (1K) &5 (2 —k—1) (n+2)i
Tk—EK{Vka 2k+1) +,,Zlmzlfk”mvv 22k +1)(n+1)(m+1)
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;;)mzl "2(2k+1) = =202k +1)
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This solution is derived in detail in the appendix of §1.13.

1.7.2 Special case - In-phase motion

If the V}, coefficients are chosen such that the real part of iV,,V,,, = 0 for all valued of n and m
(i.e. all modes are in phase or 7 out-of-phase with each other) then 7; = S; = Y3, = 0 and the
steady streaming is identically zero at O(1). This of course includes the case where only one
mode is being forced. The net streaming in that case occurs at order 8. In order to determine
this streaming the solution derived in §1.1 needs to be taken to third order, to give one more
power of 8, and then have the no-stress condition applied to it. The details for this calculation
are in the appendix of §1.14. The generated streaming is still of the same form as has already
been derived, Eq.1.75 but with Y,,,, = 0, Ry = 0 and with the constants 7; and S; now taking

new values as
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1.7.3 Discussion

Our results thus show that a bubble, for any in-phase oscillation of its shape, generates a
streaming of O(J) or lower, and therefore at least one order of magnitude weaker than that of
a deformable no-slip surface (such as an elastic membrane) undergoing the same sequence of
shape change. Thus the net flows generated by the angular velocities are of similar magnitude
to those induced by the radial velocities and they cancel at leading order.

Longuet-Higgins observed that a bubble undergoing translational oscillation produced a
force of O(J), one order of magnitude less than the out-of-phase translational and pulsating
oscillations, which is O(1) [44]. Our calculations allow us to generalise this result to all shape
changes, and thus suggests that ensuring there are at least two modes of oscillation out of
phase leads to stronger streaming flows.

For bubbles forced by external fields, this raises an interesting question of whether a res-
onance mode of oscillation, which is solely at one mode, would produce a weaker streaming
flow than out-of-phase forcing, which excites multiple modes. From a practical standpoint,
microbubbles are often fixed to a wall, which enforces that the centre of the bubble has to

move and as such is naturally excited at a second mode.

1.8 Comparison with past work

Our calculations have allowed us to compute the streaming generated by any specified, fixed,
oscillating spherical object (and in particular we solved for a bubble). Past work has charac-
terized the streaming flow for simple shape oscillations of bubbles and rigid spheres, to which

we can compare our model in order to validate it.

1.8.1 Translating Bubble

In the case of a bubble undergoing translational oscillations, we have V; = 1 and V,, = 0 for
n # 1, The angular boundary conditions W, and F,, are determined by the no stress boundary

condition. This case was studied by Longuet-Higgins [44] and the solution we obtain here is
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(a) Streaming from current model (b) Longuet-ngglns S streaming, reproduced
by permission of the Royal Society from: M. S.
Longuet-Higgins, “Viscous streaming from an
oscillating spherical bubble”, Proc.Roy.Soc.A,
1998, 454, n0.1970, pp.725-742. [44]

Figure 1.3: Streaming, in the form of a stresslet, generated by the translational oscillations of
a bubble.

identical to his, namely
27 (1 1
(i) =855 (-1 /Pz(x)dx, (1.91)
20 m

as further illustrated in Fig.1.3. This streaming flow is a stresslet with fluid pulled in along the

axis of oscillation and pushed out along the equator.

1.8.2 Translating Sphere

In the case of a solid sphere undergoing translational oscillations we have V; =1, V,, =0
forn#1, Wy =2, W, =0forn+# 1, and F,, = 0. This case was studied by Riley [42] and the

streaming we obtain is identical to his solution, namely

v =1 (1) [ o (1.92)

as further illustrated in Fig.1.4. Similarly to the oscillating bubble, this streaming flow is a

stresslet but with opposite direction.
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(a) Streaming from the current mode (b) Riley’s streaming, reproduced
by permission of Oxford University
Press from: N. Riley, “On a sphere
oscillating in a viscous fluid”, Q. J.
Mech. Appl. Math., 1966, 19, no.4,
pp.461-472, [42]

Figure 1.4: Streaming, in the form of a stresslet, generated by the translational oscillations of
a sphere.

1.8.3 Bubble Translating and Radially Oscillating

Finally, in the case of a bubble undergoing radial and lateral oscillations only Vj and V; can be
non-zero. Then the pairs W,, and F;, are determined by the no stress boundary condition. We
obtain W) = —V|, W, = 0 for n # 1, F; = 4iVyV; and F, = 0 for n # 1. In this case there is a
contribution from the Stokes drift with one non-zero component of Y, Y191 = iVpV; /2 leading

to the final Lagrangian streaming as

(w1) = R (Tovai) (—i+f—i) (1-p?), (1.93)

4r 2 414
which matches the result of Longuet-Higgins [44] (note that in Ref.[44], R (iVyV}) is written
as sin(¢) with ¢ denoting the phase difference between modes 0 and 1). At leading order this
streaming flow is a stokeslet, with direction parallel to the axis of axisymmetry, and with a

sign determined by the phase difference between Vj and V.
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1.9 Illustration of steady streaming and far-field behaviour

With the calculations above, we can now illustrate the streaming patterns, which can be ob-
tained from surface oscillations. We consider a range of surface boundary conditions (V;, and
W,,) and assume for simplicity that the surface streaming is zero (F, = 0). The steady stream-
ing flow splits naturally into two regions with different behaviours: the fluid motion close
to the spherical body, which often contains recirculation regions, and the far-field behaviour,

which is dominated by the slowest decaying term in the velocity.

First we consider the streaming generated by a few simple surface shape oscillations. In
Fig.1.5a we illustrate the streaming when only the mode V| # 0 is being forced. In all cases,
the flow being axisymmetric, we only need to display streamlines in the plane of symmetry to
illustrate the whole flow. Here S; = 0 so the slowest decaying term is S,/ r2, which produces
the pattern of flow coming in in the equatorial plane of the spherical body and pushed away
along the vertical axis (stresslet, see below). Furthermore, as there are few higher order terms
this behaviour in fact dominates the flow throughout the domain.

Differences between the far-field flow and the fluid motion close to the body can be seen
with higher modes. This is illustrated in Fig.1.5b, which shows the streaming generated by
forcing mode V, only. On the edge of the figure the dynamics seen in Fig.1.5a is apparent as
the term S, /72 is still dominant in the far field. However, close to the spherical body, we see
circulation zones, which extend about one body diameter into the fluid. The number of these
circulations regions increase as higher modes are being forced. A similar pattern is observed
when only oscillating at one angular mode (i.e. W, # 0 for one choice of n).

Let us now consider the behaviour in the far field. Far from the sphere, the steady streaming
is dominated by the slowest decaying term. If S; # O then the slowest decaying flow is the
stokeslet with the velocities decaying as S;/r. This produces a non-zero force along the axis
of rotational symmetry and this gives a clear movement of flow parallel to this axis - either in
the positive (Fig.1.5¢c) or negative direction (Fig.1.5d). If §1 = 0 the body has no force acting
on it, as seen in Fig.1.5a and Fig.1.5b where the symmetry of the system prevents a net force
from being induced. Generally, a net force is created only if two adjacent modes are non-zero,
as otherwise aum, &knm» finm are all zero and the ay,,,c,j combinations cancel.

If the stokeslet coefficient, Sy, is zero the far field behaviour is dominated by a slower
decaying term. In most cases it will be a stresslet with associated velocities decaying as S, /2.
This is the flow seen in Fig.1.5a. If §| = S = 0 are both zero then the far-field behaviour is
dominated by the (T; + Si2)/r**? term for the lowest value of k > 1 such that (T} + Sj») is
non-zero.

Close to the spherical body, circulation regions will form. If there is a stokeslet, this term
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Figure 1.5: Patterns of steady streaming for the first few surface oscillation modes.
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tends to dominate the flow and even close to the body circulation regions rarely appear. The
one exception is close to the axis of symmetry where a pair of large circulations will sometimes
form, either just above or just below the sphere (see Fig.1.5¢ and Fig.1.5d). Since the flow is
axisymmetric, this corresponds to a recirculation torus.

Intuitively, one would expect that the shape of the volume physically displaced by the
spherical body (set by the modes V},) would have a significant effect on the features of the flow
field. But as discussed in §1.7, the angular motion on the surface can produce a flow of similar
magnitude, and in fact it can change the direction of the circulations and the streaming flow
(and hence the direction of the body force applied to the spherical object) as demonstrated in
Fig.1.5d and Fig.1.5c. Another example of this, already seen in §1.8, displayed the streaming
flow difference between a translating bubble (Fig.1.3) and a translating sphere in (Fig.1.4).

1.10 Application: force generation and propulsion

In our current setup, the sphere is held fixed, and the force exerted by the oscillations of the
surface of the spherical body on the fluid is computed. However, by Newton’s law, an equal
and opposite force is being applied to the spherical body from the fluid. If the spherical body
is not held in place then this would cause it to move. Mathematically, a net motion of the body
is necessarily a second-order effect as all leading-order effects are oscillatory and produce
no net motion or forces. Hence allowing the body to move will only slightly modify our
mathematical approach. In this section we characterise the force induced by a fixed body and

then adapt the calculation for the case where the body is free to move.

1.10.1 Force generation

Due to the axisymmetry of the system a net force can only be exerted along the axis of rota-
tional symmetry, taken to be e, using traditional notation from spherical coordinates. We thus
write F = Fe,, for F the magnitude of F.

The time averaged force on the spherical body is equal to the force across the boundary of

our spherical object at r = R, 1.e.

F= < [ (cn) |rR(,L)dS> . (1.94)

This force must match the force across the boundary “r = o and thus

F= —</ (o-n) |,:wds>. (1.95)
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Across r = oo, if the time average is taken then there will only be a contribution from the second
order term as all first-order terms are oscillatory. Also, the region r = oo is now outside the
boundary layer, where, due to the exponential decay of the non-linear terms, the time-averaged
behaviour is a Stokes flow. Outside the boundary layer, the slowest decaying velocity is the

1 /r term. This velocity field at leading order in r is

0

= 8122 L 0(r %), (1.96)
in@

1y = —S; Sl; +0(r?). (1.97)

This is the stokeslet discussed above. Indeed a non-dimensional stokeslet due to a force F

applied at the origin induces a flow U with components

F; 6i]' XiXj
N et 1.98
! 8r < r + r3 (1.98)
With a force in the e, direction this gives
F
Uy =-—cos6, (1.99)
4mr
U, P 0 (1.100)
= ———-sin6. .
0 8rr

Equating these two forms of the stokeslet shows the non-dimensional force exerted on the
spherical body by the surrounding fluid is

F=—8me*2le.. (1.101)

This force is the result of a dominant pressure field, thus the dimensional scaling for the
pressure indicates the scaling for the force. The Navier-Stokes equations indicate that the
pressure scales with time varying inertia so p ~ pUa® ~ pa®®* implying that the dimensional
force is

F = —47e’s (pa‘o?)e,. (1.102)

1.10.2 Force-free swimming

If the spherical body is no longer held in place but is free to move, it will translate with an

O(&?) velocity in the direction of this force. However, the constraint of force-free motion
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needs to be carefully enforced at both O(¢g) and O(€?) and being free to move will in general

also impact the first-order oscillatory motion.

1.10.2.1 Force-free motion at O(¢)

At O(¢€) the motion of the spherical body is completely determined by the constants V,, and
W,. Up to now these coefficients could be chosen arbitrarily to represent any surface motion.
The extra constraint of force-free motion will now restrict the allowed motion of the spherical
body, therefore restricting choices of V,, and W,,.

Mathematically, force-free motion is written as
F= / (g-@) k(a0 dS =0. (1.103)

The normal vector to the surface of the spherical body is

OR
—e

YA 2
e, — 50+ 0(€%). (1.104)

|

Knowing that the direction of F is in the e, direction by symmetry, this becomes

F = {/(G,,cos@ — 0p,sin0) |,—1dS+ 0(82)} e.. (1.105)

This can then be non-dimensionalised and the integral expanded to give

2 du, 32 1du, OJdug u
2 r _9 0
p= {77 (o eoso -5 (155 + G-t )sine »

sinfd0dg  + 0(82)}gz. (1.106)

The first-order pressure can be calculated by substituting the first-order solution for yq, Eq.1.28,
into the Navier-Stokes equation to obtain

iD
it n
Then notice, using integration by parts and Legendre identities, that
T 2
/ Pn(u)cosesin6d9:§61n forn >0, (1.108)
0

T 1 2
/ (1—u?) (/ Pn(x)dx> sin’ 046 = 3y, for n > 1. (1.109)
0 u
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Therefore the force-free condition will only affect the n = 1 mode. Then as we have the

scalings
u, u, dug 1

at the two leading orders in § only pressure and the viscous stress ~ dug/dr will contribute
to the force, leading to
4w

F = ?e” —%v1+5¥(wl+vl)+0(52) e.. (1.111)

For the spherical body to be force-free we thus need Vi = W; = 0. In other words, if the
boundary conditions are such that V; # 0 and W, # 0 for a fixed sphere, then the force-free
sphere will undergo additional oscillatory motion to compensate and lead to V| = W; = 0 over-
all. Physically the V| mode corresponds to the sphere undergoing translational oscillations. So
for the body to be force free the translational oscillations are suppressed. At O(€), since the
behaviour is linear, for most angular surface boundary conditions, W; will be directly depend-
ent on the value of V| so a condition restricting translational oscillations would be anticipated

to effect the angular motion at this mode too.

1.10.2.2 Force-free motion at O(&?)

In order for the motion of the sphere at O(¢€) to be force-free, we saw that two of the surface
coefficients become zero. Beyond that, the model has not fundamentally changed. We can
thus use our mathematical framework to calculate the velocity of translation at O(£?) in terms
of the force generated by the oscillating body, which was force-free at first order.

We use V to denote the non-dimensional time-averaged velocity of the body at order €.
In order to use the same formulation as above, we move into a frame of reference where the
body undergoes no net motion at O(&?) in the z direction. Mathematically, this keeps all the
boundary conditions the same as above except now requires in the far field that

2
ww—ezV%(l—uz), F — oo, (1.112)

As this is an outer boundary condition, the form of the second-order inner solution remains
unchanged. Therefore, the main change is in the second-order outer solution. The general
form of this outer streaming is still given by Eq.1.64 (which is still a Stokes approximation

since the non-linear forcing term can be neglected due to its exponential decay rate). The
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difference is that applying the new boundary condition Eq.1.112 allows one more term than

before to be non-zero so we have

1

(W3) =Ro </ul Po(x)dx) +(=VrA+Tir '+ 81r) (/u P (x)dx)
C (Foon & —(n— !
+’§2<an + 8, 2>> (/“ Pn(x)dx). (1.113)

Then when comparing this outer solution to the inner solution Eq.1.68, Eq.1.69 and Eq.1.70
all still hold for k ## 1 but for k = 1 we instead have

Li=T,+85 -V, (1.114)
My . .
%:Sl—n—zv. (1.115)

In order to determine the value of V we enforce that the time-averaged second-order solu-
tion be force-free so we have

F= </ (gn) |r=R(u,t)dS> =0. (1.116)

Contributions to this integral will come from linear terms involving the internal second-order

solution, l;/é', as well as non-linear terms involving the first order solution y;.

As the form of the first-order solution has not changed, the contributions from those non-
linear terms remain the same as when we restrict V = 0 (i.e. no second-order translation).
However, the second-order internal solution will give a slightly different contribution as the
values of the constants of integration N; and Qy have changed.

Looking at the second-order internal solution only the constants of integration Ly, M}, Ni
and Qy, could be different. But changes will only occur for k = 1 since for other values of & the
outer solution is as before. Furthermore, the constants L; and M, are the same as before since
their values were determined by the boundary conditions on the surface of the body, which are
the same. We use the asymptotic matching in order to determine the values of 77 and S; in
terms of the known values L and M, and this is then used to calculate the new values of N;
and Q.

In this new system we have

.V .3V
L= <T1 +5) + (S1 —7) , (1.117)
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M - 3V .V
Fl — (51_7> - (T1+5’)’ (1.118)
N . . Vy 3V
5= 1_V:( 1+5)_7, (1.119)
O ~ . VN,V
gz_n:_( 1+§)+§. (1.120)

Compared to S; and T in the first-order force-free case, Ty = 71 +V /2 and S; = S, =3V /2.
Therefore, the drag force on the sphere will be the same as before, —47muS e, plus an extra
contribution from the —3V /2 extra term in N} and the V /2 term in Q.

Knowing 7 from Eq.1.104 and that the direction of F is still in the e, direction means we
have

JdR IR
F= </ |:(Grr_8%69r> cosf — (Ger aeG@e) sm@} l—r “,)dS> (1.121)

We see that the extra contributions to F' can only come from the linear terms evaluated at r = 1
(son =0)1e.

GrrCOSG_GGrSiHGZ|:<_p+628ur>co 60— & (la”%a”e—”")sme] (1.122)

or rode 0 r

In oy, there will only be an extra N| contribution arising from the dug /Jdr term. Any extra
contribution from o,, will come from the pressure term. The non-dimensional second-order
equation for the pressure is

2
g(u-Vu) = -V (p) +%HV2 (u), (1.123)

where the pressure scales as p ~ paU @. Then (u- Vu) gives a contribution in terms of y; only.
There is however an extra contribution coming from V2 (x). By looking at the § component
of this equation, and noticing that we are evaluating at » = 1 in the integral, we see we are
only interested in terms with no dependence of 1. Then it can be found that the additional

contribution comes from Qy only (with none from Ny), and is given by

—52 (%)P (1) (1.124)
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The extra contribution to F' coming from the dug /dr term in 0y, and from the pressure is

2% T - ~
62/ / |:<_3TV) Sin39 — (?ZTV> COSZQSin9:| ded(]) _ —377562‘/. (1.125)
0 0

Therefore, the total non-dimensional force on the spherical body is
F =& (—4nS$) —3n6%V)e,. (1.126)

For the body to be force free its dimensional velocity must therefore be

- 4
1% —@(aa))Sl, (1.127)
which we can use to calculate a numerical value for V.

The relationship between the force on the body and its velocity is given by substituting

this value of S into Eq.1.102 giving
F =37e*5%V (pd’ w)e,. (1.128)
Then substituting the scaling for 82 given by Eq.1.8 finally leads to
F =67me’V (apv)e,. (1.129)

We recognise the standard result for a solid sphere translating at speed €2V in a Stokes flow.
Since outside the boundary layer the flow is a Stokes flow, such a similarity was in fact expec-

ted (corrections for non-sphericity are expected at higher orders in €).

1.11 Conclusion

In this chapter we have mathematically derived the steady streaming flow generated by arbit-
rary axisymmetric shape oscillations of a spherical body. The final solution, and thus the main
result of this chapter, is quantified in Eqs.1.75 —1.78.

Our model, which agrees with classical results, shows that a net force is generated in the
far field only when two adjacent surface modes are excited. If the body is free to move, this
force will cause the body to move with a net velocity, which we derived, given by a balance
between that streaming force and the Stokes drag (Eq.1.127).

Having kept the boundary forcing arbitrary makes our model applicable to a wide range of

microorganisms and microfluidic devices. Future work could involve determining the impact
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of inertia on the optimal swimming shape and associated efficiency of larger microorganisms
(such as Spirostomum [57]), which may swim in regimes with non-negligible convective iner-
tia. In addition, using this framework the study of active colloids could be extended to inertial
regimes, from the extensively studied low Reynolds number regimes [65].

Recent experimental work has used bubbles embedded in free-moving hollow bodies to
generate propulsion [46] and our formalism will be directly applicable to this new class of syn-
thetic swimmers. In particular, in Chapter 2 we use our calculations to determine the streaming
flow induced by such micron-sized “Armoured Microbubbles”. Our analysis could be exten-

ded to a wider range of experimental parameters and could help improve future designs.

Since this model calculates the streaming flow around a spherical body, it could be used
to study collective flows of these “Armoured Microbubbles” or other spherical bodies with
complex surface shape oscillations where inertia is non-negligible, by linearly superposing
their individual flows and correcting for other close bodies where necessary, using methods
similar to Faxen’s corrections for example. However, this model would need adapting to allow
the spherical body to move rather than holding it stationary. The main problem, which may
prevent this model being used to study (in particular, dense) collective flows, is in determining
the effects when two bodies become close enough so that they significantly effect each others
non-linear boundary layer (such as during collisions), and that scenario may require a different
model to study it.

1.13 Appendix A: Out-of-phase streaming around a bubble

In order to apply the general steady streaming model Eq.1.75 specifically to a bubble the
boundary condition of tangential stress on the boundary of the spherical body,

.T=0 at r=R, 0=0, (1.130)

ﬂ.

lla

needs to be applied. This will determine the angular motion on the surface of the bubble W,
and F, in terms of a prescribed radial motion V,,.

1.13.1 Boundary condition

We denote the unit tangent vector to the body’s surface in the plane through the axis of sym-

metry, I', and the normal vector n. Both can be calculated in terms of ¢, and e measured from
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the centre of the rest position of the body giving

| 9R
L=¢g+5ge,+0(E 3, (1.131)
OR
n=e,~5oco+0(E). (1.132)

Using these equations the no stress condition can be expanded in terms of € giving the first

two terms as

JdR
%+ 35 (6, — 0gg) +0(e°) =0 at r=R, 6=0, (1.133)
becoming
d 0oy, d0y, JOR
Cor+ (R—1)=5 " + (O — )~ " + (0, — Ggg) 55 +O(e7) =0

at r=1,0=20p. (1.134)

1.13.2 Leading-order solution

At O(¢), Eq.1.134 reduces to the non-dimensional equation

1du, Jdug ug
——+—=———]=0 at r=1,0=06,. 1.135
(r 6 * ar r ) areh 0 ( )
By substituting in the known first-order solution v, Eq.1.28, this equation can be used to

determine W,, giving

2n(n+2)

i S 2 3
TR + 8%in(n+2)%V, + 0(83). (1.136)

1.13.3 Second-order solution

At 0(82), after Taylor expansion of oy, Eq.1.134 reduces to the non-dimensional equation

(e2) oy oy 8R< © (o)
20 96

oy = —(R-1)Z% — (0 6) F—oyy) at r=R, 6=0, (1.137)
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where superscripts indicate the order at which each term is to be taken. Upon substitution of

R, ® and o, Eq.1.137 becomes

azwi awi azwi oo )
_y? 2 2 _ 2) ; it
((1 K5 25, ~ 9 ) WL Vabu()et|

1’y I’yr Py A?yr  dyy
2 _ _ _y2 _ r
9‘{“ W) owar 2 am UG 48r]+

- ! . Py oy 9
: i u ~2%%w dw Ay
&EW(A&@“% %h—w(“’”am+2w aﬂ)

d 2 9%y 2%y 2y
(0 ) 25— st

~R leini‘bn(n +1)V, (/ﬂl Pn(x)dx> e”]

X[6al[/1_4allll , B 9‘/’1} at r=10=0y. (1.138)

R

ou ordu (1 —pu2) or

The forcing on the right-hand side of Eq.1.138 can be calculated explicitly from the derivatives
of y1, Eq.1.28, simplifying the equation to

82y/i awi 321,lli [ 22 = _
2 2 2 WO\ _ ¢t _ 2
<<1 T > ZE)E)nglak”m{ ToVom(m® +2) +

VW (m+2)% — 4W,V,um(m + 1) 4V, (W, + mV,,,) {2i%+%(m+3)(1+i)+
%m(Zm—l— 3)} - %(Wn ) Win(1— )+ T Wy (n+2) — WaWn(n+2)
> Gy (1 (1-4) ooy U+2)
W (W V) = Won (W — j77) =
+Y o { (J+JJ)J<]+1)+ (W; JJ)J(J+1)

1
+2Vijm(m+1)]} / P(x)dx. (1.139)
u

The left hand side of Eq.1.138 can be evaluated using 1//5 from Eq.1.59 and the value of
the three constants of integration, L, M} and N, are needed. The constants L; and M were
calculated in Eq.1.60 and Eq.1.61. From the asymptotic matching L; and M} are known in
terms of 7y and S, Eq.1.68 and Eq.1.69. Matching at one higher order determines Ny in terms



1.13 Appendix A: Out-of-phase streaming around a bubble 49

of Ty and Sy, then using Eq.1.68 and Eq.1.69, Ny can be written in terms of L; and M}, giving

(2_k)kLk+ (1- 2k>M"} 2. (1.140)

N, —
k 2 2 5

Using Eq. 1.138 leads to an equality for } ;> | Fx ( J J Py (x)a’x) at leading order, O(1). As

this must hold for all u € [—1,1], the coefficients of ( J, ﬁ Pk(x)dx> must equate for each &,
and thus this will give an equation for every Fj separately. Upon substitution of Eq.1.136 the
equation for Fj at order 0 reduces to

. C, 1.
Z Zaknm[ VoViem(m+4 +n)i —1—2( +1)2V Vimi

n=0m=1

(1.141)

+2(

)V Vim(3m+5)i

Then substituting Fk(é) into Eq.1.77 and Eq.1.78 finally gives

o oo

k> —k—1) (n+2)i

== 22k+1)(n+1)(m+1)
S & _ 31 -K)i & & Ak 5
+r;)r’;18kanan—2(2k+l) +n;),,;1—(2k+1) {VV (n —4nm —4n
+m? m—3)im—|—;(J 1>v Vim(3m+5)i }+0(5), (1.142)
and
B S k(k+2)i & & (2k+4)k(n+2)i
Sk_%{ Vg 1) ~ & LSV o D (o 1)
> _ 3k(k+2)i

ViV o D20 a1y, — dnm— 4
T L SV "2kt 1) )} 202k 1) | (" — dnm —4n

n=0m=1
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[o<] C . B
+m*—m—3)+ Y (H’ffl> ViuVim(3m+5)i
j=1

} +0(8), (1.143)

which with Eq.1.76 gives the value of all the constants in the streaming solution Eq.1.75.

1.14 Appendix B: In-phase streaming around a bubble

Notice, from the solution of the steady streaming around a bubble given in Appendix A
(§1.13), that all terms in Eq.1.143, Eq.1.142 and Eq.1.76 are multiplies of iV;,V, for some
integers m,k > 0. As such Appendix A (§1.13) only gives the solution for out-of-phase mo-
tion of the bubble, as otherwise that solution is identically zero. Therefore, for these cases, the

steady streaming needs to be calculated to the next order, namely O(J).
Since here the analysis is to one higher order in § this could require more stringent condi-

tions than € < § < 1 relationship. However, the order change is due to terms being identically

zero, which we expect to continue at higher orders in € so the same relationship should hold.

Inner-solution at third order in 0

In order to find the steady streaming at O(9), the asymptotic matching must be carried out
at one higher order. As such the inner second-order solution must be calculated to an extra
order in 8. Therefore, more terms will be required in the & expansions, so we first return to

the second-order, inner governing equation

_ 1 /9(y1,D’y)
rr\ d(ru)

When expanding the left hand side in &, the O(1) terms in & now contribute to the streaming

8, 4
- (D*y3)

2 +2L‘V1Dll/1> : (1.144)

as well as the O(82) term so we have

& 4 1 84<W5> 2 84<W5>

+0(8). (1.145)

From Eq.1.59, the O(1) (leading-order) solution of (y3) is known. The second term in

Eq.1.145 will only make an O(1) or lower contribution from this term so the governing equa-
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tion for the first three orders of (y}) can be simplified to

o*(ys) 267 <8(W1,Dzvn>
a(ru)

an4 - 72
- e | 1
+62 % Y Y i [2Vn(vvm+mw>k<k+1)(“*”"] ( / Pk(x)dx)+o<53). (1.146)
u

k=1n=0m=1

+2LII/1DII/1>

Expanding the term (9 v1,D%y1) /9 (r 1) + 2Ly Dy ) to O(68?) and then substituting into
Eq.1.146 gives an equation for (9*y}/dn*), which can be integrated twice to find that the
0(8?) (only) term in (9?yi /an?) is

a2w5><52> = = o
= nmy\ Wi+ nVy) Vi ~—m—3
<8n2 ; Zmz_’lak { ( nV,) ml<2 m )

k=1n=0

+ (Wi 1) (Wi + 1V (%(1 —m+n)—2— f)

2
_ 5n2 21 2
4 4 4
- Cn' - = . m l] .
+ L N (W +mVy) Wi+ Vi) (1 +i— = — =+
j;(](]+1)) [( m V)Wt j)( 2 2 J)

1
+(Wm+mvm)\7jij(2j+6—m)”/ Pu(x)dx. (1.147)
u

The O(8?) contribution to(y4) can be calculated by integrating twice more but in order to
satisfy the no tangential stress boundary condition only {9y} /dn?) is required at O(5?).
Notice that every term in () up to and including O(1) is a multiple of W,, +nV,, for some
n so every term will drop an order when the first order stress condition W,, = —nV,, + O(9)
is applied. Similarly, higher-order terms in ( l[/§> will also be multiples of W, 4 nV,, since
in (d(y1,D?y1)/9(r,t) + 2Ly Dy ) every term is a multiple of B, o< (W, +nV,) and in
(D*yh) extra terms in its delta expansion will be in terms of lower orders of (i), which are
also proportional to W, + nV,,. Therefore, even when calculating the streaming to O(6) for a

bubble, only the first three terms up to O(1) are needed in the equation for the inner streaming.

Constants of integration

The second order inner solution (y) is of the form
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(y5) = i [fe(n) + 8gk(n) + 82he(N) + Ly + Myn + Nen* + 0(87)] x

k=1
1
</ Pk(x)dx), (1.148)
u

where f and g are known from Eq.1.59 and & could be found by integrating Eq.1.147. The

no-tangential stress boundary condition then gives

I’y dyl 9%y > 10%f 1 (. dfc 02
2 2 2 2\ _ I S ) SR 13
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0 2%h 1
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1
o "o %5 2— Np—k(k+ 1)Lk} } x
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1
</ Pk(x)dx) . (1.149)
u

The O(672) terms will cancel with the O(§~2) quantity in Eq.1.139. The O(6~!) terms do
not cancel exactly but when taking W,, = —nV,, + O(9) (the first order bubble condition) they
do. Therefore, the O(1) terms will give the leading-order behaviour for which the value of the
constants Ly, My and N; are needed. The constants L; and M} were calculated in Eq.1.60 and
Eq.1.61 and Ny, can be written in terms of L; and M}, Eq.1.140.

Next, Eq.1.149 can then be equated with Eq.1.139 to give the algebraic condition for no
tangential stress. This will give a condition on M} and L; but L; is uniquely determined by
the boundary condition: the radial velocity of the bubble equals the radial velocity of the fluid
adjacent to the bubble. The constant M} was also determined but is a function of the unknown
Fi., which this no tangential stress condition will determine. However, F; uniquely determines

M, so this equation can be considered as just determining M}, giving

1 1
— ng(2k+1 = —3Lk+ Z Z Aknm (—{ (Wy + Vi) (Wi +mVy ) (i — 1)

n=0m=1
1_ = 1 - _
+§Vn(Wm+me)(l—z ) (2n+3)+ { Win +mVi)(W; + jV;) (1 +1)
]—l
_ 1 _ —\ (1+13)
— (W4 Vi) V5 (1 = ) = =Wy (W + j7;) =
w0ty 0
- _ | _
{(Wn+nVn)Vm (g—m—2>mi—E(Wn—i—nVn)(Wnﬁ—me)(in—im+n—1)

_ 50 9 m? 3 1
V(W mV,y) i [—%—I”Jr nm +— 7 +1—§k(k+l)+z(2m2+3m)]
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When applying the first-order stress boundary condition of Eq.1.136, all terms drop by one
order in 6. Then assuming the O(1) terms cancel (which is required for the result in the first
appendix of §1.13 not to give the solution) this gives My at O(0). Then L; can be calculated
at O(8) by applying Eq.1.34 at O(8) to () of Eq.1.59. This gives

oo (oo} 1 _
Ly = { Z Z akan me(m+2)(1 -+ i) — Z Z Egkananm(m+2>(] + i)
n=0m=0

n=0m= l
=1 (ne2)(1—i)
1,,;1 g fham¥nl’ (n+1)(m+1)}’ (L1>h

Mg

o y (12 2)(1+)
22 VY Y £ 1)

n

and the simplified M} expression

%Mk—L (Zk-l—l) Z Z zclile {—Vannm(n+2)(2m+1)(1—i)

1.
+ ZVan (n* +9n —Sm* +6t(t +1) — 5m) (1 +i)m(m+2)

)V Vimj[(m+1)(j+2)(1—1i) — (m+2)(j+4)(1—|—i)]}. (1.152)

Outer streaming constants

Using the matching conditions Eq.1.71 and 1.72 gives

- o o (=) (n+2) [(m+2)(1+i)— (1—1)]
Tk_59{ (Z Z fkanan 2(2k—|—1)(n—|—1)(m+1)
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aknm I 2 2
+Z Z 2kt T) {ZVan(n +9n—5m” —5m+4
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and
SRS k(k+2)(n+2)[(m+2)(1+4) — (1 —i)]
9{(); X SoamVaVi 2(n+1)( D2kt 1) B
o = _ (m+2)k(k+2 O e aknm 1
g;ogknmvnvm 2k D) AT {_Z m(m+2)
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—Z (]+1> Vilm (m+1)(j+2)(1—i)—m(m+2)(j+4)(1+i)]}>, (1.154)

which, with Yy, = 0, give the value of all the constants in the Lagrangian streaming solution
of Eq.1.75.



Chapter 2

Resonances and streaming of an
armoured microbubble

The main results presented in this chapter have been published in: “Bubble-based acous-
tic micro-swimmers”, Nicolas Bertin, Tamsin A. Spelman, Olivier Stephan, Laetitia Gredy,
Michel Bouriau, Eric Lauga and Philippe Marmottant, Physical Review Applied, 4:064012,
2015 [48] (copyright 2015 by the American Physical Society). The work on double and triple
multipropulsors is included in our published paper: “Bubble-based acoustic micropropulsors:
active surfaces and mixers”, Nicolas Bertin, Tamsin A. Spelman, Thomas Combriat, Hervé
Hue, Olivier Stéphan, Eric Lauga and Philippe Marmottant, Lab on a Chip, 17:1515-1528 ,
2017 [66] (adapted by permission of the Royal Society of Chemistry).

This chapter focuses on studying the Armoured Microbubble (AMB) built by our exper-
imental collaborators Nicolas Bertin and Philippe Marmottant, based at the University Gren-
oble Alpes, studying its resonances and streaming flow. We will first give details of the exper-
iments in §2.1, then discuss the resonances of the AMB in §2.2. We then use the streaming
model from Chapter 1 to calculate the streaming flow around the AMB in §2.3 and finally look

at the streaming flow and resonances of multipropulsor compounds in §2.4.

2.1 Experiments

An AMB is a hollow partial sphere inside which a microbubble can be caught, see Fig.2.1a.
Therefore, the surface of the device is mostly solid with a spherical bubble cap. Under ultra-
sound forcing, the spherical bubble cap oscillates applying a net force to the surrounding fluid,

which generates a streaming flow in the fluid.
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The capsule is constructed using two-photon polymerisation, attached to a wall by a tower
of height H, see Fig.2.1a. If the AMB is being used for free-swimming, it can then be disat-
tached from the tower. When a liquid is poured over the capsule, an air bubble can become
trapped inside. In deionised water the AMB lasted approximately 15min without ultrasound
and 1 min under ultrasound forcing. Thus, experiments were conducted in 25 —wt% NaCl
solution, which increased the life-span of the AMBs to hours. (It was also later discovered

that salianising the capsule improved bubble lifespan.)

The minimum shell thickness a capsule can be fabricated with is approximately 0.5 um.
However, we generally used capsules with shell thicknesses of 1 ym, for the additional strength
provided by the thicker shell. The standard experimental AMB had a radius a =9 — 10um
and aperture opening b = 5 um. These dimensions can be changed but these sizes were exper-
imentally found to be good for bubble life-span. In the extreme when b/a becomes too large

the bubble either never becomes trapped or escape very quickly.

The streaming flow around the AMB was experimentally observed by tracking the motion
of 2 um spherical particles in the flow using a Phantom v2511 high-speed camera. We assume
the paths of the tracer particles are the streamlines of the flow, but we note that the tracer
particle has a non-zero size so due to the interactions between themselves and the AMB or
the wall when they are close, the tracer particle paths will not perfectly match the streamlines
of the flow. You observe this effect when tracer particles become stuck on the AMB surface,
particularly on the bubble interface. However, in the bulk of the flow, we expect these effects
to be small due to the small size of the tracer particles. In theoretical calculations, Faxon’s
corrections can be used to calculate corrections to the particle velocity due to interactions with
a nearby sphere or wall. Also, this disparity between particle paths and streamlines can be
used to sort particles based on their size, such as in the work of Thameem et. al. [67], but their
particles were much larger than our tracer particles with diameters of 5 um and 10 um.

Experimental ease and accuracy were increased by keeping the AMB attached to its tower
of height H = 10 um, 20 um or 30 um. For these experiments the AMB was forced at an
ultrasound frequency close to its resonance frequency, as the AMB only generates significant
streaming at a driving frequency close to its resonance. For an AMB on a H = 30 um tower
(where wall effects are minimal) the AMB generates a streaming pattern with flow being
pulled in from behind and then pushed away in a strong jet in front of the orifice, see Fig.2.1b.
When separated from the tower, the net force causing the strong jet propels the AMB.

Our aim was to model these experiments in order to validate and better physically under-
stand the observed behaviour of the AMB, focusing particularly on their generated streaming

flow and resonances.
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Orifice

m

(a) A scanning-electron- (b) Streaming around the AMB with H = 30 um.
microscopy image of the
AMB.

Figure 2.1: The Armoured Microbubble (by Nicolas Bertin)

2.2 Resonant modes

In this section, using a potential flow model, we will calculate the resonant modes of the
AMB by applying mixed boundary conditions and solving the resulting eigenvalue problem.
Our potential model will apply boundary conditions at the surface and in the far-field, thus
assuming the validity of the model throughout the entire space, in contrast to our streaming
analysis, which has a boundary layer and is performed in the limit as the size of the boundary
layer tends to zero. Additionally, due to parameter limits, angular boundary conditions cannot
be captured by the potential model. However, we expect the potential model to provide a good
approximation to the resonances, since we focus on behaviour close to the AMB surface, and
expect the radial surface motion to be most significant. We will specifically consider these
modes for the preferred experimental AMB with inner radius @ = 10 um and opening radius
b=35um.

Before performing that analysis, we will estimate the importance of the surface tension
forces and the volume forces using a scaling argument, to determine which is dominant. In an
isentropic scenario, P; /P, = (V| /V,)* for P; and P, pressures at two stages of the oscillation;
Vi and V, the associated volumes and k = 1.4 is the adiabatic index (in this chapter). Thus,

assuming P> and V; are small perturbations of their respective quantities when the AMB is at
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Figure 2.2: Setup for calculating the resonances of the AMB

rest, Taylor expanding gives the change in pressure as

K(5V)P() K(%bzb‘a)P()

OP ~ ~
\% %ﬂcﬁ

) 2.1

where 0P is the change in pressure from the rest state to the perturbed state, 8V the equivalent
change in volume, V the volume of the capsule and Fy atmospheric pressure. We can estimate

the pressure change coming from the surface tension as

2ny(€a)

oP
h?

(2.2)

Inserting values for our experimental AMB gives the pressure from the surface tension as
being approximately four times bigger than that from the change in volume. (The basis of this
analysis was done by our collaborators and details of it are included in [48].)

2.2.1 Setup

We will use a spherical coordinate system centred on the AMB with radial coordinate r and
azimuthal angle 6. This setup is shown in Fig.2.2. The AMB is modelled as a axisymmetric
spherical body, where for azimuthal angles 8 > 6 the body has a solid stationary surface but
for 8 < 6y the body has a free surface. We assume the AMB thickness is negligible and take
the AMB radius as a and the radius of the capsule opening as b, so b = asin 8y. We assume that
the fluid density of the air inside the spherical body is negligible relative to the liquid outside
the body where the density is p. The surface tension of the fluid-fluid interface is y. We
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are looking to identify the resonances so the AMB will be oscillating at the resonant angular
frequency @, which is the dominant time scale to the problem. The resonance frequency f is
then f = @/27. We assume small amplitude oscillations and thus that € < 1 (where €a is the
amplitude of oscillation as in Chapter 1).

2.2.2 Governing equations

As with the classical Lamb calculation for the resonances around a bubble [68], we assume

the flow is potential so our governing equation is
Vi =0, (2.3)

where ¢ is a velocity potential, with a spherical axisymmetric solution of the form

o)

0r0)=Y (anr"+bnr*<"+1>>Pn(cos(e)). 2.4)
n=0

The spherical body undergoes small amplitude oscillations so the surface’s radial position R

1s of the form

R=a (1 ey VnPn(cos(e))e"“”> , (2.5)
n=0

where V,, are constants to be determined. As the Legendre polynomials are an orthogonal basis

this incorporates all axisymmetric oscillatory surface motions.

There are three boundary conditions for the problem. Firstly, that the radial motion of the
fluid matches the radial motion of the body’s surface (at leading order in €)

g—?:%atr:a. (2.6)

Secondly, that the system has finite energy

¢ —0 asr— oo, 2.7

Finally there are the mixed boundary conditions: in 8 < 6y the normal surface stress is bal-

anced by surface tension (at leading order in €)

+
[ﬂ‘g‘ﬂ] =y(V-n)atr=awhen0< 6 < 6, (2.8)
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and when 6 > 6 the body’s surface does not move (at leading order in ¢€)

a—q):0.'¢1tr:awhen60§9§7t. (2.9)
p

Applying the boundary conditions in Eq.2.6 and Eq.2.7 reduces Eq.2.4 to

> a?@V, rayntl iot
o= _8nZ::0m <;> Pn(,u)e . (2.10)

Then applying the mixed boundary conditions of Eq.2.8 and Eq.2.9 to Eq.2.10 gives the ei-

genvalue equations of

Yo oiViuP(1)el® (nfl) —(n—=1)(n+2)| =0 when0< 6 < 6, o1

Yoo o VaPu(1)e'® =0 when 6 < 0 < ,

where Q is the non-dimensional quantity Q = pa’®?/y, which are the eigenvalues we aim to
determine (to determine the resonance angular frequencies ).

Using the same method as used for some other Legendre polynomial mixed boundary
value problems [69] , by using the integral form of the Legendre polynomial these equations

can be simplified to

Yo oVacos [(n+1)6] [(nfl) —(n— 1)(n+2)] =0 when0<0 < 6,

— Yoo Vn(zn—lﬂ)cos [(n—i—% 9] =0 when 6y < 0 < 7.

(2.12)

This system cannot be solved analytically so a numerical approach will be taken.

2.2.3 Solving numerically

Numerically Eq.2.12 can be solved by taking the inner product (multiplying by cos ( (m+ %) 6)
for Vm) and integrating over 8. Rearranging, then reduces this to the generalised eigenvalue

equation.

ApnVi = -QanVm (2.13)
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with
(n—1)(n+2)+ 51 ) [sin((n+m+1)6 in((n—m)8 i
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m+1n+1 — ((nfl)(n+2)+%) in((n+m+1)6) i .
R [S (ntm+1) ; +90} _Z(THH) if n = m,
1 sin((ntm+1)6p) | sin((n—m)6) | .
B _ ) 2(n+D) ( (n+m+1) =+ (n—m) } > ifn 7 m, (2.15)
m+1n+1 = 1 sin((n+m-+1)6p) 6, if n= .
FICESY ( (ntmt1) T 0) R

where our eigenvalues are Q.

This is a system of infinitely many equations in infinitely many unknowns so to solve
numerically it needs to be truncated. However, information is lost in truncation. But 8 = 6 is
an important angle as it marks the sharp change from no motion to the free surface moving cap,
so it is useful to retain information about this point. Therefore, when this system is truncated
at size N the highest order resonance equation (the N’ equation) will be replaced with the

condition of no motion at 8 = 6

N
VP, (cos(6p) = 0. (2.16)
n=0

This finite generalised eigenvalue problem will then be solved numerically using the QZ
algorithm through Matlab’s eig function, which uses the LAPACK library routine ZGGEV.

2.2.4 Resonant frequency and mode shape

For the experimental AMB 6y = 0.52 radians, which we use throughout this subsection.

2.2.4.1 Convergence of eigenvalues and eigenvectors

As N is increased the eigenvalues converge. As seen in Fig.2.3a for the first eigenvalue this
convergence is smooth and consistent, although for larger eigenvalues larger truncation sizes
are necessary to obtain an accurate estimate.

The eigenvector convergence is shown in Fig.2.3b. Here vy is the N’ eigenvector. The
quantity |1 —vy.vy1| is analysed for increasing N, since |1 —vy.vyy1| tends to zero as
the eigenvectors converge and become parallel. There is a power law convergence giving
|1 —vy.vyi1| ~ N~!17. Therefore, this convergence is slow but consistent. Looking at the
mode shapes (see Fig.2.5) there is slow convergence near 8 = 7 and 6 = 6.

The rate of convergence changes depending on 6y, with slower convergence at smaller
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straight line with a gradient of —1.704

Figure 2.3: Convergence of the first eigenvalue and eigenvector

values of 6 (see Fig.2.4 ). However, even for 8y = 0.1 the first eigenvalue has converged to at
least one significant figure by N = 500.

2.2.4.2 Mode Shapes

The non-dimensional eigenvalues for 8y = 0.52 are obtained numerically to be Q = 63.2, 987,
4060, 10600, 21800, 39100.

For the experiments p = 10°kgm™>, y=69.7 x 1073 Nm~! and ¢ = 10 x 10~®m and as
f= \/W /2m, this gives the first six resonance frequencies as f = 334kHz, 1320kHz,
2680kHz, 4330kHz 6200kHz, 8310kHz with the mode shapes displayed in Fig.2.5.

The first resonance frequency of 334kHz agrees well with the experimentally identified

resonance of 320kHz, giving a 4% error.

2.2.4.3 Range of 6

We will now analyse the eigenvalue dependence on the size of the capsule opening, 6y. The
correlation for the four smallest eigenvalues are shown in Fig.2.6a. As 6 increases away from
0, the eigenvalues decrease, initially very rapidly away from infinity. This rate of decrease

lessens sharply until very close to 6y = 7 where it becomes steeper again. These larger gradi-
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Figure 2.4: Convergence of the first eigenvalue with 6.

ents near the two extremes can be physically explained as the results are tending towards the
resonances at the two limits of a completely solid surface and a complete bubble, but these are
physically quite different systems to our mixed boundary system.

Fitting a curve of the form Q =A/ 9(’)‘ indicates a good correction in Fig.2.6a . The log-log
plot in Fig.2.6b indicates Q ~ 6, 3 is an accurate scaling. The log-log plot in Fig.2.7 indicates

the coefficient A scales with mode number 7 such that A ~ n®. Therefore,

1
n3,}, 2
f (pa393> : 2.17)

2.3 Streaming around AMBs

In this section, we will calculate the streaming flow around the AMB using our model from
Chapter 1. For this we need to know the surface motion of the AMB. The motion in §2.2
provides the radial motion of the surface near each resonant mode but this can be improved
by applying our mixed boundary conditions directly to our streaming model from Chapter
1 to additionally obtain the angular surface motion. We will then compare the numerically

obtained streaming flow to experiments and consider the effects of a nearby wall.
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Figure 2.5: First six resonant mode shapes of the AMB. Blue marks the solid capsule and the
red the bubble’s free surface. The radial lines mark the edge of the cap at an angle 8y = 0.52
from the axis of symmetry.
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Figure 2.7: Coefficient A with increasing mode number n. Numerical results are +. The
theoretical line is fitted for mode numbers > 10 with a gradient of 3.
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2.3.1 Viscous approximation of the surface motion of the AMB

Our two radial boundary conditions are the same as for the resonant modes: normal stress
balanced by surface tension on the bubble cap (when 6 < 6y) and the radial velocity zero on
the solid shell (when 6 > 6;)

Q-gﬂ:}/(v-g) for 6 < 0y, (2.18)
u, =0 for 6 > 6. (2.19)

An external pressure forcing is included inside Eq.2.18. However, now that we are using our
viscous streaming model, we can also apply the angular boundary conditions: no tangential
stress on the bubble cap (when 6 < 6y) and no angular velocity on the solid shell (when
0 > 6)

ng-Q:0f0r6<90, (2.20)
ug =0 for 6 > 6. 2.21)

These conditions are all applied on the surface of the AMB at r = R.

2.3.1.1 Pressure field

In order to calculate the radial stress in Eq.2.18 the pressure field needs to be evaluated in
terms of the boundary constants V,, and W,,.

The non-dimensional Navier-Stokes equation is

du R Z 52 2
<E) +e(u-Vu) = alo (—=Vp)+ > (Vou). (2.22)

Pressure p can either scale with the viscosity or the time dependent inertia but inertia is im-
portant close to the AMB.
We evaluate the r and 8 component of Eq.2.22 at leading order in € using our solution for

v in Eq.1.28. There is significant cancellation of terms so at O(¢€) this gives

it [ © iDy,
p=e (I;)Pn(u) (W)) + £(9), (2.23)
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for £(0) an unknown function of 6. Then similarly evaluating the 8 component of Eq.2.22

gives f(6) as a constant, which must be zero.

2.3.1.2 Radial boundary conditions

The two radial boundary conditions can now be written in terms of the constants V,, and W,,.
Using Eq.1.28 for y; (and hence u,) reduces the radial boundary condition (see Eq.2.18) to

i V,Py(1t) = 0. (2.24)
n=0

To apply the boundary condition in Eq. 2.19 we require the direction of the normal away
from the AMB, which is calculated using the radial position of the AMB surface R given in

Eq 1.12 . Then n = V(r — R) and thus the non-dimensional surface curvature is

o)

Von=2-Y e(n—1)(n+2)V,P(n)e*2) +0(e?). (2.25)
n=0
Using Eq. 2.23 (with f = 0) and Eq. 1.28 the LHS of Eq. 2.19 can be evaluated since in the

fluid
du,

ar
The external ultrasound pressure forcing is included through a Ape® forcing term. Therefore,
at O(g) we obtain

+0(e?). (2.26)

n_OPn(H)( o ZOCZK’“L%(O”)JFS aKH%(ar) 0%(n+2)Dy (n+1)
_ Y N
+Ap = Py nE_Ol(n ) (n+2)V,P,(1), (2.27)

which, upon Taylor expansion, gives the leading order behaviour in 0 as

= i ARy
,;)Pn(.u) <mvn) —Ap - W,;)l(”_ 1)(”+2)Vnpn(“)- (2-28)



68 Resonances and streaming of an armoured microbubble

2.3.1.3 Angular boundary conditions

Similar to the previous subsection, using Eq.1.28 reduces Eq.2.21 to

Ju Palx)dx )dx

-Y W, =0. (2.29)
neN 1 —H )
The tangential stress condition of Eq. 2.20 reduces at O(¢€) to 6,9 = 0, which (at leading order
in 9) gives
1
2i P,(x)dx
Z(Wn+nVn)< ’,) (f“ ") : ) —0. (2.30)
neN i/ \ (1-p2)2

2.3.14 Leading-order surface conditions

Therefore, having the same non-dimensional quantity as before of Q = pa’®?/y at leading

order in 6 we have

Z‘E)VnPn(u) =0on @< O<m, 2.31)

gVn ((ni - éi(n - 1)(n+2)) Po(it) = Ap,on 0 < 6 < 6, (2.32)
—’%Wn {nfi(fi)} =0,0n6) <6<, (2.33)

n%(wwm) (12+ii) [nf;(fi)] —0.0n0<6 < 6. (2.34)

To solve these equations, the first pair of equations can be solved for V,,, which then
provides the forcing for the second pair of equations to solve for W,,. We can multiply Eq.2.34
through by (1+1)/2i to reduce it to a real equation. Similarly we can multiply Eq.2.32 through
by —i which gathers the complex part, physically the phase change, into the pressure forcing
term Ap. Since the only effect of this is on the phase of the pressure forcing, which is arbit-
rary, the phase of the pressure forcing can be adapted so that the quantity is real. We note this
suggests the response is then /2 out of phase with the pressure forcing but this is not the case
as a /2 phase difference is included in the definition of the radial position R in Chapter 1
(which we used here). This then reduces the system to a set of real equations. This therefore
implies that out-of-phase surface motion is not a leading order effect, and will also not effect

the steady streaming.
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Thus our equations reduce to the real pair of equations to solve for the radial motion

< o VuPy =0 onfy<0<m,
Yoo Vabu(1t) 1 h <6 < 2.35)
Y= o Vi <(n+1)—ﬁ(n—l)(n+2)>Pn(u):Ap on0 < 8 < 6,
and the real pair of equations to solve for the angular motion
—E W ] =0 on 6 <0<,
n=1 Wa n(n+1 1) (2.36)
Yo (W+nV)[(+l)]— on0 <0 < 6.

2.3.1.5 Radial surface motion

This radial motion is solved from Eq.2.35, similarly to with the resonant modes, by taking
inner products and then truncating a size N, then many numerical routines exist to solve a

finite series of N + 1 linear equations in N + 1 unknowns.

The constant Q was calculated for the experimental parameter of f = 320kHz (giving @
through ® = 27f), y=69.7 x 1073Nm~! p = 10°kgm > and ¢ = 9 x 107 %m. We took
the non-dimensional change in pressure as Ap = 1. Numerically this non-dimensional value
only effects the amplitude of the oscillation, not the shape of the oscillation. Thus, the same
shape will be obtained whatever value Ap takes, and once the shape has been obtained, the

coefficients can be scaled to give the appropriate amplitude.

The predicted radial surface motion for this forcing is shown in Fig.2.8a. As expected it
is a very similar shape to the first resonant mode predicted by the potential model shown in
Fig.2.5a. For a fixed maximum number of modes N we observe |V, | oscillates in size as n — N
but its amplitude of oscillation decreases on the order of n~'>. This justifies the accuracy of
truncating our system at N coefficients. Similarly, the quantity |1 — VWL yWED| 0 as
N — oo , with its amplitude decaying like N~24, which indicates convergence (where here
V) indicates the predicted radial modes V of length N). We also note this is faster than the

eigenvalue solution of our potential model converged in § 2.2.4.1.
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(a) Shape of the radial oscillation. (b) ug on the spherical
body. The amplitude away
from the rest position r =
1 indicates the relative
strength and direction of
Uug.

Figure 2.8: Surface motion of the AMB. The solid line gives the surface shape, with red
indicating the solid capsule surface and blue the bubble surface The red dotted line indicates
the rest position of the AMB.

2.3.1.6 Angular surface motion

The angular motion can now be solved using Eq. (2.36). Similar to before, taking the inner

product of Eq. (2.36) reduces to a set of linear equations

2 [ee]
6 = — E

where again we solve numerically by truncating the sum at n = N and consider equations up
tom=N.

1 Pl I)1
fcos(@o)( n(nu’) m(nu’)] Vm, (237)

n+1)

This gives the angular motion indicated in Fig. 2.8b. Here we do not observe a decrease
in |W, |but instead |WT”‘oscillates as n — N with the amplitude of oscillation decreasing on the
order of n=0%. Since W, is a cofactor of P!(u)/[n(n+ 1)] this still corresponds to larger
coefficients having a smaller impact on the surface angular velocity and hence the steady
streaming, justifying the accuracy of truncating our system at N coefficients. Similar to V we
observe that ‘ 1—wW) . W+ ‘ — 0, with its amplitude decaying like N~0, as N — oo. The

order of convergence of WZ—"' is thus lower than V,, and similarly |1 — w W)y (VD decays

more slowly than ’1 —yW) -V(N“)’ :



2.3 Streaming around AMBs 71

2.3.2 Streaming around the AMB

Now that we have both the angular and radial motions on the AMB surface, we will calculate

the acoustic streaming of O(&?).

2.3.2.1 Second-order boundary conditions

When using this model to study the streaming generated by a bubble we obtained an O(1) in
5 steady streaming, which was a result of the O(82) and O(6~!) terms cancelling out when
calculating F; (or equivalently the matching coefficients M;) . But here, because of the mixed
boundary conditions, this does not occur. The O(8~2) terms still cancel but the O(5~') term
does not.

Here we will refer to determining the matching coefficient M;, which is equivalent to
calculating F; as the two are dependent on each other, but we note that the explanations in
Chapter 1 were performed using Fy. As the O(5~!) term does not cancel,when applying the
boundary conditions the motion is dominated by the value of M; where it obeys the mixed
boundary conditions

Ii(Zk—H) (%) M =- i i i Aknm (l {(Wm—i—me)(Wn—i—nVn) (i=1)
=1

o (1—u?)2 f=1n=0m=1 o 2
V. . ; L P (x)dx
—(Wm+me)\7jj(1—i)—Wm (W’f,]V-’)(Hl) <f“ K 1) for 0 < 0 < 6,
2j(j+1) (1—u?)2
(2.38)
and 1
oo P.(x)dx
Z (Aﬂ) M =0 forfy<0<m. (2.39)
N0 (1-p?)p

This is one order higher than L; and other streaming terms, and as such this value will domin-
ate the streaming flow. At leading order in §, this means Sy = —T; = M} /26 so our streaming
is of the simpler form

1
P, (x)dx) ) (2.40)

(yr) = Sk}; (r*(kfz) — r’k> </ﬂ

The pair of equations for M; can be transferred to associated Legendre polynomials and then
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by taking the inner product with P} (x) this gives the set of linear equations

¥ iy (5 )+ E oMt | [ RGrwau]

k=1 k=1 0s(6o)
= Z Z Z Aknm ({(Wm+me)(Wn+nVn) <l_2 1)
k=1n=0m=1
Vn . - Cn T T (1 +l)
+ (Wm—i—me)?(l —i)(2n+3) +JZ] (j(j—l—jl)) {(Wj—i—]Vj)(Wm—i—me)T

— (Wi +mV,, )V j(1—i) —

} st ()P () dp
Vg. (2.41)

Similar to first order, this is truncated at k = K and ¢ = K to give K equations to find the first
K coefficients M;. The constants are then used to calculate S and 7j, which gives the acoustic
streaming flow shown in Fig. 2.9. We observed 5 coefficients for M were sufficient to display

the main features of the streaming flow.

2.3.2.2 Streaming around a single AMB

We have now calculated the numerical streaming flow around a single, stationary AMB in free
space, which is shown in Fig. 2.9. The flow shows fluid being pulled in towards the AMB
slowly from behind and the sides, and then pushed away from the AMB at the front, where
the aperture opening is located, in the form of a strong jet. Small circulations are also visible
close to the AMB.

We next compare this numerical model to the experimental streaming flow for an AMB
held on a H = 30 um tower, where we focus the microscope on a plane parallel to the wall
and through the centre of the AMB. This experimental streaming flow is shown in Fig. 2.9.
The experimental streaming image is obtained by stacking the frames of a video showing the
motion of the 2 um tracer particles when the AMB is forced under ultrasound. Here we see
flow being pulled in from a wide region behind the AMB and pushed out in a wide region in
front of the AMB.

The overall flow shape of the numerical and experimental streaming patterns agree. How-
ever, there are differences. Circulations close to the AMB are only seen numerically, which is
likely due to errors in the numerical model since neglected higher order terms make a greater
contribution close to the AMB. The exact shape of the jet also differs slightly. This additional
difference could be attributed to the tower and tracer particles impacting the experimental flow
or the neglecting of higher order terms in the numerical flow. Nevertheless the good overall

agreement in flow shape indicates that wall effects are small for a tower of height H = 30 um.
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(a) Experimental Streaming (by Nicolas Bertin) (b) Numerical Streaming

Figure 2.9: Comparing numerical and experimental streaming around an AMB

Indeed, this is supported by the fact that if we include leading order wall effects in our numer-
ical model (see §2.3.3) for a tower of height H = 30 um there were minimal changes to the

numerical streaming pattern.

2.3.3 AMB near a Wall

For towers of height of H = 30 um the effect of the wall on the flow was small, however, we
expect wall effects to be more significant for smaller towers of heights H = 10um and H =
20 um. This is reflected by changes in the experimental streaming patterns for these lower
heights. At H = 20 um small circulations have started to appear behind the AMB (see Fig.
2.10a). The general flow shape is otherwise similar to H = 30 um although the shape of the
bend in the flow as it moves from behind the capsule to in front is sharper. At H = 10 um a
very different flow field has been established with two circulations in front of the AMB and
two behind, although the strong jet at the capsule opening, seen at larger tower heights, is still
visible (Fig. 2.11a). Comparing the sharp clear flow fields of H = 30 um and H = 10 um, to
that of H = 20 um we see that the H = 20 um flow has flow features that are similar to those
observed at H = 30 um, such as flow being pulled around the AMB with a sharp jet but no
circulations at the front, and, more weakly, similar to those observed at H = 10 um, such as
an area of back flow behind the AMB. This giving the impression that at H = 20 um the flow
is in a transitional state between these two flow fields.
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We incorporated the wall computationally by adding the image system for the leading-
order Stokeslet flow decaying as 1/r [70] and next order Stresslet decaying as 1/r% [71], which
both have well known image systems. This wall approximation will become less accurate very
close to the wall since the 1/r> and higher order terms are then relevant. The computational
flow for a 20 um tower is similar to that with no wall, although the circulations behind the
AMB are slightly larger (see Fig. 2.10b). However, for H = 10um we see significant changes
in the flow computationally (see Fig. 2.11b ). Two large circulations have formed out the front
of the AMB, and behind the AMB there are small circulations still but with the flow being
bent more strongly behind the AMB.

Comparing the computational and experimental flow fields for a H = 20 um tower, we see
the overall shape of the flow fields are very similar, with flow being pulled in from behind and
pushed out in a strong jet in front. The small pair of circulations seen behind the AMB ex-
perimentally is seen numerically, however, more circulations are seen numerically, and given
these circulations were present numerically when there was no wall it is unlikely the numer-
ical and computational cause are the same. Also there is a definite change experimentally in
the flow field from a 30 um to a 20 um tower, but numerically the flow fields at these two wall
heights are more similar. For H = 10 um, the pair of circulations near the opening of the AMB
are seen numerically and computational. This is a very significant flow feature given that the
flow velocities are largest here, in front of the capsule opening. However, the flow behind the
capsule does not agree computationally and experimentally, with a large pair of circulations
seen only experimentally. One explanation for this is that the flow velocities are low here
and thus the higher order terms neglected in our numerical model are more significant behind
the capsule than in front. Thus, for 10 um tower, there is agreement between the computa-
tional model and experiments for the flow field at the front of the AMB, near the opening, but
disagreement in flow shape behind the AMB.

When the tower height is 0 um, so the AMB is sitting on the wall, our computational wall
approximation becomes invalid but experimentally there are also problems with tracer beads

getting stuck. As such towers of lower than 10 um have not been studied.

2.4 Combining AMBs

Up until this point only single AMBs have been studied. We will now consider combinations
of AMBs first by considering two multipropulsor compounds (created by attaching together
equally sized AMBs) and then briefly discussing combining different sized AMBs to build a
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(a) Experimental Streaming (by Nicolas Bertin) (b) Numerical Streaming

Figure 2.10: Comparing numerical and experimental streaming around an AMB with a H =
20 um tower

(a) Experimental Streaming (by Nicolas (b) Numerical Streaming
Bertin)

Figure 2.11: Comparing numerical and experimental streaming around an AMB with a H =
10 um tower
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(a) Double AMBs (b) Triple AMBs

Figure 2.12: Set up of double and triple capsule configurations. Blue arrows indicate the
direction of the aperture opening.

multi-directional swimmer.

24.1 AMB Compounds

Experimental work has been conducted studying pairs and triples of AMBs (see Fig.2.12) and
the streaming flow they generate in the surrounding fluid (Fig.2.13a and 2.14a respectively).
Double propulsors consist of two AMBS attached to each other, built on the same tower,
with their aperture opening pointing in the same direction perpendicular to the line joining
their centres (see Fig.2.12a). Triple propulsors consist of three capsules arrayed in a triangle
with aperture openings pointing outwards at 0°, 120° and 240° from each other (see Fig.
2.12b). The constituent parts of both setups are standard capsules of inner radius a = 9 um

and aperture opening b = 5 um.

To model these multipropulsors compounds we use our previous model describing the
streaming flow around one AMB (see §2.3). We note that applying a rotation or translation to
our original flow field generated by one AMB gives the streaming around an AMB at any po-
sition and orientation. To approximate the flow field around the double and triple propulsors,
we linearly superpose the flow fields generated by each AMB individually. However, this in-
troduces errors since we are superposing individual solutions, which only obey the boundary
conditions on their own AMB, and thus the resulting streaming flow approximation is not valid
close to where the AMBs meet. In the external Stokes flow, adding two solutions obeying the
same boundary conditions will produce a third solution, however within the boundary layer

convective inertia is important so in the boundary layer using linear superposing to obtain new
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solutions does not work. Within the boundary layer there are additional contributions to the
flow field, beyond linear superposition, from the flow of one AMB affecting the boundary
layer of a different AMB. This in turn will affect the boundary layer matching conditions and
the external Stokes flow, thus providing additional contributions to the flow field beyond linear
superposition, which is not accounted for by our method.

Additional errors are added close to the AMBs due to the importance of inertia in the
boundary layer close to the AMBs. But outside the boundary layer the streaming flow is a
Stokes flow and so a short distance from the AMBs our approximation is valid.

The comparisons of experimental and numerical streamlines for the double AMB is shown
in Fig.2.13. Experimentally the double propulsors showed a pair of circulations in front of
the opening and a pair of circulations behind, similar to a single AMB on a 10 um tower.
However, the jet in front of the aperture openings is wider than the jet seen for a single AMB.
All the double AMBs in Fig. 2.13a show the circulations in front of the opening, but the
circulations behind the AMB are not always clear due to the slower velocities behind the
AMB and the positioning of the tracer beads. This experimental streaming flow compares
well to the numerical streaming flow in front of the double AMB, where the wide jet and
frontal circulations are seen numerically. However, behind the AMB no pair of circulations
are observed numerically, in disagreement with experiments. This was unsurprising as our
model for a single AMB also did not capture this feature of circulations behind the AMB.

The comparison between experiments and numerics for the triple AMB is shown in Fig.
2.14. Experimentally, the triple propulsor shows three pairs of circulations around itself, with
each capsule opening having one pair of AMBs, one circulation on either side of a strong jet.
Not all the circulations are the same size, which could be attributed to small variation in the
hole strengths due to tracer particles becoming stuck near the capsule openings. This experi-
mental flow agrees well with the numerical streamlines, which show six pairs of circulations
(although all equally sized) with a strong jet in front of each opening. The better agreement
can be attributed to the flow behind the AMBs having a smaller overall effect on the flow field,

and this was the portion of flow the numerics modelled badly

2.4.2 Multidirectional swimmer

The AMBs free swim when detached from their tower. This was studied experimentally (by
our collaborators). Initially there were issues with the AMBs sinking to the bottom of the

tank or floating to the top. This was dealt with by attaching the AMB to a ring on a tower.
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(a) Experimental results (by Nicolas Bertin). (b) Computational prediction.

Figure 2.13: Flow field around the double AMB configuration
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(a) Experimental results (by Nicolas Bertin) (b) Computational prediction

Figure 2.14: Flow field around the triple AMB configuration
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(a) AMB on the ring/tower setup for (b) Free swimming AMB with additional weight for buoyancy
circular swimming and stability

Figure 2.15: Free swimming AMB ( by Nicolas Bertin)

The AMB then swims around the tower at a constant distance maintained by the ring, and
the “hat” on the tower stopped the AMB from floating away (Fig.2.15a). Using this setup the
force generated by the AMBs was estimated, but due to friction with the tower this is believed
to be an underestimate. Free-swimming was later demonstrated by attaching the AMB to a
40 um x 40 um x 30 um cuboid so it was neutrally buoyant (Fig.2.15b).

Experiments then moved to building multidirectional swimmers from AMBs of different
sizes by containing AMBs in different sides of a cuboid (Fig.2.16). Upon applying an ultra-
sound field, a significant response is generated only by the AMBs (if any) whose resonance
is close to the frequency of the ultrasound field, pushing the device away from the active
AMB. As such AMBs with sufficiently separated resonances were required so they could be
be separately activated.

For this purpose, additional sizes of AMBs were studied, two in particular. Both had radius
a =9 um with an aperture opening radius of b = 7.5 um and b = 3 um. We can use our AMB
resonance model from §2.2 to predict the resonances for these cases under the same physical
conditions. For b = 7.5 um our resonance model predicts the first resonance at 133kHz ,
whereas it has an experimentally observed resonance frequency of 160kHz. This gives a
higher error than for our standard capsule size of 17%. However, as the aperture opening gets
larger our approximation of a spherical rest position becomes less accurate.

For the b = 3 um capsule our resonance model predicts 725kHz whereas the experimental
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(a) Schematic (b) Actual Swimmer

Figure 2.16: Multidirectional Swimmer created by combining AMBs (by Nicolas Bertin)

resonance was 510kHz, which is a percentage error of 42%. This large error can be explained
by noticing that for small openings, slight changes in 6y have large effects on the resonance (as
seen in Fig.2.6a). To illustrate, for b = 5 um if the AMB radius a is increased from a =9 um
to a = 10 um the difference in resonance is of the order of 10kHz, whereas the difference
in resonance between an AMB of size b = 2.8 um and a = 8.8 um compared to one of size
b=32um and a =9.2um is of the order of 200kHz. Therefore, a numerically sensitive
resonance combined with small experimental inaccuracies could account for differences in

the experimental and theoretical results.

2.5 Conclusion

For the AMB, we have determined the resonance frequency dependence on the aperture open-
ing size, f ~ 93, and found the exact resonances. For the preferred experimental AMB size
the theoretical prediction of 334kHz was in good agreement with experiments. Applying
mixed boundary conditions, to our streaming model introduced in Chapter 1 we calculated
the streaming around the experimental AMB in free space, predicting the strong frontal jet
in good agreement with experiments. By adding the two leading-order images for the wall
and linearly superposing the effects of multiple AMBs we accurately calculated: the frontal
circulations generated close to a wall; the wider jet produced by double propulsors and the
three pairs of circulations produced by triple propulsors.



Chapter 3

Streaming flows around AMB arrays

The main results from this chapter are included in our published paper: “Bubble-based acous-
tic micropropulsors: active surfaces and mixers”, Nicolas Bertin, Tamsin A. Spelman, Thomas
Combriat, Hervé Hue, Olivier Stéphan, Eric Lauga and Philippe Marmottant, Lab on a Chip,
17:1515-1528 , 2017 [66] (adapted by permission of the Royal Society of Chemistry).

In this chapter we will study the flow fields generated by Armoured Microbubbles (AMBs),
introduced in Chapter 2, placed in a pattern short distances apart, inside a confined channel.
We are interested in such arrays as they generate large collective flows, which can be used
for mixing, although their mixing potential is not considered in this chapter. In §3.1 we in-
troduce the experimental setup and experimentally studied AMB arrays, which we will focus
our theoretical analysis on. We will first consider the effect of the confined channel by ana-
lysing the L-array when just one wall is present (§3.2) before extending this analysis to two
walls in §3.3, and discussing the effects of the additional wall. In §3.4 we will use this two
wall numerical model to discuss the numerical flow fields generated by the five experimental
arrays and how they change as the relative strength of the AMBs is decreased, comparing to
experimental results. In §3.5 we will briefly discuss how our results validate our estimate of
the AMB strength.

3.1 Experimental arrays

Our experimental collaborators Nicolas Bertin and Philippe Marmottant constructed a mi-
crochannel with an AMB array printed on its base. To do this, they first printed an array of
AMBs, each on 10 um poles, onto a glass coverslip, which they drew marker lines on. The
microchannel was then placed on top after plasma treatment. Plasma treatment is a technique
used to change the surface properties of a material. Here it is used to change the polydi-

methylsiloxane (PDMS) channel from a hydrophobic to a hydrophilic material, which prevents
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bubbles becoming stuck on the surface of the channel and interfering with the fluid flow. The
channel cross section was 80 tm in height and 1 mm in width (although 0.5 mm wide channels
were also considered experimentally only). The channel had a Y shaped entrance (Fig.3.1).
This allows fluid dyed different colours to enter from the two entrances so this setup can be
used for microfluidic mixing (although this use is not discussed further in this chapter). This
size of channel is not expected to cause any cell streaming as the observed resonant frequen-
cies in other microchannels are on the order of megahertz [72], whereas these experiments
used a driving frequency of 350kHz. Additionally, significant cell streaming would have been
noticeable experimentally when ultrasound was applied to the channel and any AMBs con-
tained no air. A driving frequency of 350kHz corresponds to an ultrasound wavelength of
4.2 mm, four times the width of the channel. The acoustic beam width is the same order of
magnitude as the wavelength. Thus, multiple AMBs in the channel can be actuated by our
generated ultrasound wave. A different experimental setup of a circular tank with one or two

confining walls was also used for the L-array only to observe the effects of confinement on the
flow field.

For the microchannel experiments, the ultrasound was produced by a focussed transducer.
The voltage applied to the transducer was steadily increased and this corresponds to a rise in
the acoustic pressure. A separate experiment was performed with a hydrophone inside a ring
of PDMS, where the PDMS thickness was similar to that of the microchannel, so the loss of
pressure from transmitting sound through water to PDMS to PBS could be determined. This
experiment measured P, and thus determined the relationship between the driving voltage and
the acoustic pressure, so comparison to driving pressure rather than voltage could be made in
the results.

Experimentally, they studied five AMB configurations in detail (see Fig.3.2): aL,aV,
a straight line perpendicular to the flow, a short line parallel to the base flow with half the
AMBs pointing in opposite directions and a diagonal line with half of the AMBs pointing in
opposite direction. The AMBs are in general separated by gaps of 50 um centre-to-centre.
The exception is for the two arrays where half the AMBs point in different directions, then
between the two AMBs where the direction changes the gap is 100 um centre-to-centre. The

AMBs have an inner radius of 9 um and are 1 um thick so have an outer radius of 10 m.

It was experimentally observed that these AMB arrays produce large collective flows, such
as for the L-array shown in Fig.3.3. Here the L-array is positioned closer to one of the side
walls than the L-array design in Fig. 3.2, where the L-array is centred in the middle of the

channel. The confining effects caused by both walls has the largest impact on the flow but
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(a) Top-down view of the channel containing a small v-array

(b) Vertical arrangement in channel cross
section (by Nicolas Bertin)

Figure 3.1: Experimental setup

Tilted left/right

Figure 3.2: Configuration of the 5 experimental arrays in 1 um wide and 80 um high mi-
crochannel (adapted from original figure by Nicolas Bertin)
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Figure 3.3: Experimental streaming around the L-array, in a confined channel 1 ym wide and
80 um high, when P,. = 216kPa (by Nicolas Bertin)

smaller differences, such as the right hand circulations being smaller than the left, are likely
attributed to the array being closer to one wall than the other. It can be difficult experimentally
to position the array in the centre of the microchannel, this is why the straight line array was
the first array to be studied since a longer line of capsules could be built and the microchannel
placed over a subset of capsules.

In Fig. 3.3 there are two circulations (with the right one smaller than the other likely due
to the closer right hand wall ). The circulations are far larger than those seen around single
AMBs in Chapter 2 and it is these large flow features, generated by the AMB arrays, which
we will build a model to study in this chapter.

3.2 Flow field with only one wall

The arrays are contained with a microchannel, but three of the walls are a long distance away
from most of the AMBs. The wall they are closest to is the base they are attached to, which is
only 20 um away fro the AMB centre. Therefore, we will initially model the AMBs adjacent

to just one plane wall to see if this generates the large collective flows. .
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3.2.1 Numerical model for an array near one wall

For the arrays of AMBs considered in this section, the length scales of the relevant patterns
are O(100 um) as opposed to O(10 um) for the individual AMBs in Chapter 2, and therefore
we approximate each AMB as its leading order flow in the far field, namely a Stokeslet. The
next order correction is a Stresslet, which we will include here when modelling one wall.

We then model the flow induced by each AMB above a flat plate using the regularised
version [73, 74] of the well known Blake solution for a Stokeslet above a no-slip wall [70]
plus the Stresslet with its known solution near one wall [73, 74]. The Stokeslet strength for
an AMB, f;, was chosen so the flow velocity ~ 10 um from the Stokeslet was of the order
of 1 —100 mms~!, the range of velocities observed in front of an AMB experimentally (we
discuss this in more detail in §3.3.1). The flow field of the Stresslet is determined by a tensor,
that for an AMB pointing in the x direction, is modelled at leading order by a Stokeslet of

strength f; in the x-direction, is given by

—8/3 0 0
il o 43 o |. 3.1)
0 0 4/3

This form and relative strength of the Stresslet is given by the full solution of the flow field
around the AMB, calculated in Chapter 1. To regularise, the delta function is replaced by a
smoothed finite function, of similar shape. We used a standard algebraic blob of

15A%
po_ A (3.2)

87(r2+A2)2
taking the regularisation factor as A = 107, the radius of the AMB. The blob & tends to the
delta function as A — 0 and thus with a non-zero A is used as a non-singular approximation to
the delta function.
To obtain the full flow field around the AMB array, we then linearly superpose the flow
field generated by each AMB individually. Additionally if there is a base flow we linearly add
it to the full flow field generated by the AMBs.

3.2.2 L-array with one wall

Using our one wall numerical model, we will now study the flow induced by the L-array when
we account only for the wall it is closest to in the microchannel (i.e. the one it is attached to,

20 um away from the AMB centre). The numerical flow field bends as it passes through the
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array with a small circulation at the end of each line of AMBs (see Fig.3.4a). This numerically
obtained flow field does not contain the large circulations we observe experimentally when
the L-array is in the microchannel (see Fig.3.3). We note that the base flow in these compared
numerical and experimental cases are different, but we would expect the additional base flow
in the experimental case to reduce the size of the circulations, as happens numerically, so this
base flow difference does not account for the absence of the large circulations numerically.

If we remove the first order Stresslet correction and modelled each AMB solely as their
leading order Stokeslet, we see a similar numerical flow field to Fig.3.4a where the Stokeslet
and Stresslet were included. However, we included the Stresslet correction, as the Stresslet
incorporates the small circulations found locally near the AMB, which could have contributed
to generating the large circulations seen experimentally in the microchannel. This suggests the
errors from our approximation of the AMB flow field is not the reason why large collective
flows are not observed with our current numerical model.

We can check whether the lack of large circulations is due to the walls rather than inac-
curacies in the numerical model by comparing to an experiment where there was only one wall
close to the array. When the L-array was placed in a circular tank with no base flow and only
one wall (see Fig.3.4b), the flow shows fluid being pulled through the array with circulations
off the ends of the two AMB rows, matching our numerical flow field (in Fig. 3.4a) for the L-
array above one wall with no base flow. Thus, this suggests that the confinement effects caused

by the second side wall of the microchannel is important for generating the large circulations.

3.3 Flow field with two walls

We will now consider building a numerical model for the array flow field which includes two
confining walls. We will include the base of the channel (same as our previous model) and we
will add the top wall to the channel, as for the majority of the AMB arrays this is the second

closest wall and thus, we expect, the second most influential.

3.3.1 Model for an array between two walls

To model the AMBs between two walls, we approximate each AMB by its leading order
Stokeslet only (so we ignore the Stresslet correction). Between two walls a Stokeslet has a

well known solution [75]. To obtain the flow field in a vertical cross section of the channel,
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Figure 3.4: Streamlines around the L-array with no side walls

we linearly superpose this individual solution for each AMB between two walls. However,
this solution cannot be regularised, so the ODE solver breaks down near the singularities, thus
streamlines may end abruptly and computational plotting time will be higher.

We can simplify this model, when we are not focusing on studying the vertical flow. The
solution for a Stokeslet parallel to two confining walls has a vertical component of velocity,
which decays exponentially, whereas the planar component of the velocity decays as a power
law. Therefore, in the far field, the vertical velocity component is negligible. The horizontal

velocity is then given by

4
Z(X,y) = ﬁz(h _Z)E(xuy)a (33)

where z = 0 1s the bottom plate, z = £ is the position of the top plate, and i is the 2D Stokes
Doublet that for an AMB pointing in the x direction is

~1 3f; H_ 1 |:16 rjr1:|, (34)

a2 |20

where j = 1,2, H is the height of the Stokeslet above the bottom plate, t is the dynamic
viscosity of the fluid, (y1,y2,H) is the position of the Stokeslet, p = \/(x —y)2+ (y —y2)2
is the distance in the plane from the Stokeslet, and r; = (x —y1), r» = (y —y2) is the straight

line distance from the Stokeslet in the x and y direction. We see that in the far field the flow is

equal to a 2D Stokes Doublet (Eq. 3.4) with a magnitude, which varies quadratically across the



88 Streaming flows around AMB arrays

channel as in Eq. 3.3 [75]. We can then regularise this Stokes Doublet to remove singularities
using the technique described in Refs. [73, 76]. We then linearly superpose this individual
solution for each AMB to obtain the total flow field around the AMB array. Note that the
result in Eq.3.3 shows that the choice of horizontal plane (i.e. the value of z) only affects the
total magnitude of the flow field, thus the flow field is structurally the same in every plane (at
leading order). The flow field is similar to those in a