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Turbulent mixing plays a major role in enabling the large scale ocean circulation. The11

accuracy of mixing rates estimated from observations depends on our understanding12

of basic fluid mechanical processes underlying the nature of turbulence in a stratified13

fluid. Several of the key assumptions made in conventional mixing parameterizations14

have been increasingly scrutinized in recent years, primarily on the basis of adequately15

high resolution numerical simulations. We add to this evidence by compiling results from16

a suite of numerical simulations of the turbulence generated through stratified shear17

instability processes. We study the inherently intermittent and time-dependent nature18

of wave-induced turbulent life cycles and more specifically the tight coupling between19

inherently anisotropic scales upon which small scale isotropic turbulence grows. The20

anisotropic scales stir and stretch fluid filaments enhancing irreversible diffusive mixing21

at smaller scales. We show that the characteristics of turbulent mixing depend on the22

relative time evolution of the Ozmidov length scale LO compared to the so-called Thorpe23

overturning scale LT which represents the scale containing available potential energy24

upon which turbulence feeds and grows. We find that when LT ∼ LO, the mixing is25

most active and efficient since stirring by the largest overturns becomes ‘optimal’ in the26

sense that it is not suppressed by ambient stratification. We argue that the high mixing27

efficiency associated with this phase, along with observations of LO/LT ∼ 1 in oceanic28

turbulent patches, together point to the potential for systematically underestimating29

mixing in the ocean, if the role of overturns is neglected. This neglect, arising through30

the assumption of a clear separation of scales between the background mean flow and31

small scale quasi-isotropic turbulence, leads to the exclusion of an highly efficient mixing32

phase from conventional parameterizations of the vertical transport of density. Such an33

exclusion may well be significant if the mechanism of shear-induced turbulence is assumed34

to be representative of at least some turbulent events in the ocean. While our results35

are based upon simulations of shear instability, we show that they are potentially more36

generic by making direct comparisons with LT−LO data from ocean and lake observations37

which represent a much wider range of turbulence-inducing physical processes.38

1. Introduction39

Diapycnal turbulent mixing plays a primary role in enabling the large scale ocean40

circulation (Wunsch & Ferrari 2004). Over the past several decades, significant investment41

has been made in estimating the strength of diapycnal mixing on the basis of observations42

of ocean turbulence (see e.g. St. Laurent & Simmons 2006; Waterhouse et al. 2014, for43
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reviews). Four common assumptions concerning density stratified turbulence, made for44

practical purposes in conventional methods employed for the estimation of mixing from45

observations are that the turbulence is (I) fully developed, (II) stationary, (III) and46

isotropic, and that (IV) there exists a clear separation of scales between the background47

mean flow and the superposed isotropic turbulence. In recent years, numerical simulations48

have become just powerful enough to aid in quantification of inaccuracies associated with49

these assumptions (Ivey et al. 2008; Pham & Sarkar 2010; Mashayek & Peltier 2013;50

Mashayek et al. 2013; Salehipour et al. 2015; Salehipour & Peltier 2015; Salehipour et al.51

2016a).52

A common hypothesis is that shear-driven mixing in the ocean is at least partially in-53

duced by the breaking of internal waves excited by tides and geostrophic motions in the54

deep ocean or by winds at the surface (Garrett 2003; Nikurashin & Ferrari 2011; Alford55

& Pinkel 2000). Such mixing comprises many individual breaking events each of which is56

non-stationary in time. It is at least plausible that some of these breaking events may be57

considered to be generated by shear instabilities on scales small compared to the internal58

waves. Such shear instability generated mixing may be characterised by a multi-stage life-59

cycle. A preparatory period of growth of the internal wave amplitude leads to an initial60

period of shear instability growth, break down through secondary instabilities triggering61

a transition to turbulence. This initial period is followed by an intermediate period of62

what might be considered to be fully-developed turbulence, followed ultimately by a final63

decay period. Contrary to common assumptions in parameterization schemes (Mashayek64

& Peltier 2013), in this scenario of shear instability generated mixing the contribution65

of the intermediate ‘fully-developed’ period does not necessarily dominate the net ver-66

tical cross-density flux of mass and tracers, even at very high flow Reynolds numbers.67

Furthermore, even in the most turbulent intermediate period, turbulence can be highly68

non-stationary and anisotropic comprising a range of scales between that of small scale69

quasi-isotropic turbulence and that of the background mean flow, particularly when there70

is a dominant shear direction imposed by some ‘external process’, for example through71

the intensification of an appreciably larger scale internal wave (Fritts et al. 2003; Ivey72

et al. 2008; Mashayek & Peltier 2013; Mashayek et al. 2013). Figure 1, produced from73

results of a numerical simulation to be discussed in detail later, illustrates the cascade of74

instabilities which form upon a shear instability overturn and which eventually destroy75

billow coherence. As we will discuss in the paper, this anisotropic highly time-dependent76

turbulence transition phase of flow makes a major contribution to the net vertical mixing77

of mass over the entire life cycle of this type of turbulence.78

Recently, Mashayek & Peltier (2013) (hereafter MP13) and Mashayek et al. (2013)79

(hereafter MCP13) presented computation-based evidence for breakdown of assumptions80

I-III when the turbulence is triggered by a initial shear instability. In two important81

papers (Smyth & Moum 2000b,a), Smyth & Moum effectively addressed assumptions III82

and IV (though they did not couch the discussion in precisely those terms) Crucially,83

their simulations were at signficiantly lower Reynolds number than is now achievable,84

and thus in particular the shear instabilities they simulated were not prone to the full85

‘zoo’ of secondary instabilities identified in Mashayek & Peltier (2012a) and Mashayek &86

Peltier (2012b), and so the subsequent analysis of the turbulence properties is inevitably87

affected by the absence of physical processes present in geophysically relevant higher88

Reynolds number flows. In this study, we build on the work of Smyth & Moum (2000b)89

(hereafter SM00) to focus on assumption IV. analyzing data from a more complete set90

of numerical simulations at substantially higher Reynolds number closer to values repre-91

sentative of energetic ocean mixing zones. In particular we will extend their analysis of92

scales of turbulence. Through this analysis, we demonstrate that assumption IV may at93
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Figure 1. Snapshot of turbulence breakdown and mixing due to breaking of an overturning by
shear instability in a stably stratified layer (case 12 in table 1). Purple and blue represent light
and heavy density iso-surfaces, respectively. The snapshot corresponds to time t = 80h/∆u,
where h is half the initial shear layer depth and ∆u is half the total velocity difference.

best hold in only a rather narrow part of the lifecycle for rather special shear instabilities,94

implying that extending a model based fundamentally on this assumption over the whole95

turbulence life cycle may well introduce large uncertainty and/or inaccuracy in estimates96

of net turbulent mixing over the life cycle of an individual wave breaking event, if that97

wave breaking is generated by the onset of shear instabilities. Wave-induced turbulence98

in energetic oceanic regions is determined by the combination of many individual break-99

ing events, both essentially isolated in space and time and yet dynamically coupled in100

some way. Therefore, there is no a-priori basis upon which it can be assumed that the101

inaccuracies we discuss in this work will have negligible effect in the much more complex102

real ocean. Of course, it is always important to remember that our results are based103

on modelling individual wave breaking events in the highly idealized configuration that104

the vertical shear and density distribution induced by the intensification of the internal105

waves may be taken to be at least quasi-steady on the time scale of the development of106

shear instabilities on those distributions.107

There has been an increasing recent interest in description of shear induced density108

stratified turbulent mixing in terms of key physical length scales (see e.g. Mater et al.109

2013; Scotti 2015), and we will focus herein on the critical importance of the time depen-110

dence of characteristic length scales for mixing in a stratified shear flow. Understanding111

the relative time dependence of length scales within the flow is of general interest, as112

estimates of diapycnal mixing are often constructed from instantaneous measurements113

of specific length scales (see Thorpe 2005, for an overview).114

Employing shear instability as a canonical mixing agent, our focus will be upon the115

lasting effect of the primary ‘overturning’ associated with the primary shear instability116

which leads to ‘efficient’ (in a way we define precisely in section 6) irreversible mixing. An117

important implication of our analyses is that mixing efficiencies may be under-estimated118
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in regions of the ocean in which large overturns are expected since they provide a signifi-119

cant reservoir of energy upon which a broad inertial subrange of turbulence may draw so120

as to support efficient irreversible mixing. The most or ‘optimal’ efficient mixing will be121

shown to occur at the instant during flow evolution when the scale at which energy is in-122

jected, through overturning into the turbulence cascade at the upper bound of the inertial123

subrange becomes sufficiently small to avoid suppression by the ambient stratification.124

This core idea (as we discuss further below) is consistent with the arguments presented125

by Ivey & Imberger (1991), though for our flows, the associated value of the mixing126

efficiency in this ‘optimal’ situation is found to be higher. Of course it will remain an127

important issue as to whether the specific model of shear instability generated turbulence128

that we will employ as basis for our analyses, relying upon the classical Kelvin-Helmholtz129

instability (KHI), may be considered sufficiently representative of spatio-temporally in-130

termittent, relatively large scale wave breaking processes in general to enable our results131

to stand without caveat. For example, one key issue is the role of ambient, larger-scale132

background stratification in the development and break down of shear instabilities. There133

does exist evidence, however, in support of the relevance of KHI-based analysis for the134

understanding of stratified turbulence in general (Smyth et al. 2001; Bouffard & Boeg-135

man 2013; Scotti 2015). We will provide some of the evidence of the generality of the136

utility of this model of stratified turbulent processes by comparing results from direct137

numerical simulations with observations.138

This paper is organized as follows. In section 2 we briefly describe the suite of turbu-139

lence simulations upon which our analyses will be based. Section 3 will provide definitions140

of the important length scales that may be employed to characterize shear-driven strat-141

ified mixing events. Section 4 presents a detailed discussion of the time dependence of142

the evolution of these scales, focusing especially on what may be considered their generic143

behaviour in stratified shear-driven mixing at sufficiently high Reynolds number. In sec-144

tion 5 we discuss the importance of the relative evolution of the Ozmidov and Thorpe145

length scales for quantification of the age of turbulence. In section 6 we briefly discuss146

the implications of our results and in particular discuss in section 5 the quantitative147

representation of mixing in geophysically relevant circumstances. Conclusions are offered148

in the final section 7.149

2. Primary shear instability150

In this section we discuss the numerical datasets that will be employed to study turbu-151

lence transition of primary shear instabilities as well as the bulk dimensionless parameters152

which characterize them.153

2.1. Numerical simulations154

We employ a suite of high resolution direct numerical simulations (DNS) of the turbulence155

life cycle of finite-amplitude Kelvin-Helmholtz (KH) billows in stratified shear layers, a156

common mechanism leading to turbulence transition in the ocean (Smyth & Moum. 2012;157

Mashayek 2013). The data to be employed are summarized in table 1 and consist of the158

same set of numerical simulations as were previously analyzed in MP13 and MCP13159

for other purposes, augmented by three new simulations, as noted in the table. Each of160

these simulations describes the three dimensional temporal evolution of a horizontally161

periodic stably stratified shear layer with the initial background velocity profile ū(z) and162

Boussinesq density profile ρ̄(z) defined as163

ū(z) = ∆u tanh
( z

h

)

; ρ̄(z) = ρa −∆ρ tanh
( z

h

)

, (2.1)
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case Re0 Ri0 Ret Reb η3D
c pairing allowed source

1 750 0.04 5200 998 0.24 yes this study
2 4000 0.04 27500 7012 0.44 yes MP13
3 10000 0.04 68750 12261 0.62 yes MP13
4 750 0.12 1700 135 0.18 yes this study
5 1000 0.12 2300 180 0.22 yes MP13
6 2000 0.12 4600 300 0.32 yes this study
7 4000 0.12 9200 640 0.32 yes MP13
8 6000 0.12 13750 704 0.36 yes MP13
9 8000 0.12 18350 817 0.40 yes MP13
10 10000 0.12 22900 1012 0.42 yes MP13
11 6000 0.14 11800 614 0.30 no MCP13
12 6000 0.16 10300 586 0.29 no MCP13
13 6000 0.18 9200 413 0.28 no MCP13
14 6000 0.20 8250 131 0.23 no MCP13

Table 1. Parameter values for the numerical simulations analyzed in this paper. Pr = 1 for all
cases. The initial Reynolds number Re0, the initial minimum Richardson number at z = 0 Ri0,
the effective Reynolds number Ret at the start of the fully-developed turbulent period tS3D, and
the cumulative turbulent mixing efficiency η3D

c are all defined in the text.

where ∆u and ∆ρ are half the velocity and density variation, h is half the shear layer164

thickness, and ρa ≫ ∆ρ is the reference density. As reviewed in MP13, this configuration165

has come to be seen as a the standard model problem for the study of mixing induced166

by large-scale, overturning shear instabilities. As noted in the introduction, there is an167

underlying assumption that this background flow distribution may be taken to be steady,168

and so if it is induced by the intensification of an even larger-scale internal wave, the169

evolution of that wave occurs on time scales which are long compared to the time scales170

of the evolution of the primary shear instability of this flow distribution.171

2.2. Governing dimensionless parameters172

Three nondimensional numbers characterize the flow for each case, namely an appropri-173

ate Reynolds number Re, quantifying the ratio of inertial to viscous forces, an appropri-174

ate Richardson number Ri, quantifying the ratio of buoyancy to inertial forces and the175

Prandtl number Pr = ν/κm, the ratio of molecular kinematic viscosity to molecular ther-176

mal diffusivity. The initial Reynolds number Re0 = ∆u h/ν for each of the simulations177

of turbulent collapse to be analyzed is listed in Table 1, and is defined based on a length178

scale that is half the shear layer thickness and a velocity scale that is half the velocity179

difference across the initial density inversion upon which the shear is imposed prior to180

its evolution through primary instability into the classical Kelvin-Helmholtz billow form.181

Indeed, since we are primarily interested in the turbulent phase of flow evolution, the182

nonlinear Kelvin-Helmholtz billow itself being an essentially laminar structure, a more183

relevant definition of the Reynolds number might be one based upon a length scale de-184

termined by the half shear layer thickness at the onset of turbulence (to be defined in185

(3.2)), which is larger than the initial layer’s half thickness. This modified Reynolds num-186

ber is denoted by Ret > Re0 in the table and might usefully be viewed as the relevant187

parameter for comparison with shear instabilities observed in nature.188

Turbulent mixing events associated with the evolution of a Kelvin-Helmholtz billows189

are strongly time-dependent and transient. Therefore, it is appropriate to define a cri-190

terion to identify the time of onset of turbulence which may be considered to be ‘fully-191

developed’. Following Caulfield & Peltier (2000) and MP13, we monitor the inherently192

three-dimensional turbulent kinetic energy at scales smaller than the Ozmidov scale193



6 A. Mashayek, C.P. Caulfield and W. R. Peltier

(representing the size of the largest eddies not suppressed by stratification; to be defined194

in the next section). Generically, this scale-selected turbulent kinetic energy reaches a195

maximum magnitude (with respect to time) following a rapid growth during turbulence196

transition associated with the break down of the primary Kelvin-Helmholtz billow. We197

identify the onset of what we refer to as fully-developed turbulence with this time of max-198

imum magnitude, which time was named tS
3D (or t3D when context allowed) in Mashayek199

et al. (2013), and Ret is also evaluated at this time.200

It is important to remember that our convention for the definition of Re0 is different201

from that used by SM00, which used the total shear layer depth and the total velocity202

difference. Using our convention, their simulations had 340 < Re0 < 1250, with the203

majority of the simulations being conducted at Re0 ≃ 500. As we demonstrate further204

below, the absence of the full ‘zoo’ of instabilities discussed in Mashayek & Peltier (2012a)205

and Mashayek & Peltier (2012b). means the properties of flows with such Reynolds206

numbers are qualitatively different from flows with Re0 & 4000 in this ‘fully-developed’207

turbulence stage of flow evolution, and so it is of value to revisit and extend their analyses208

at such larger Re0.209

The (minimum) bulk Richardson number, Ri0 = g∆ρ h/(ρa(∆u)2), which applies210

initially at the midpoint of the shear layer, is also listed in the table. To keep the problem211

tractable, for practical reasons we avoid varying the Prandtl number and set Pr =212

ν/κm = 1. It is important, however, to appreciate that there is recent evidence that213

the small-scale characteristics of turbulent mixing are affected by larger, more physically214

relevant values of Pr (Klaassen & Peltier (1985a), SM00, Mashayek & Peltier (2011);215

Bouffard & Boegman (2013); Salehipour et al. (2015); Salehipour & Peltier (2015)) even216

at relatively high values of the Reynolds number. A further important nondimensional217

parameter, insofar as the characteristics of stratified turbulent mixing are concerned, is218

the so-called buoyancy Reynolds number Reb:219

Reb = E/(νN2), (2.2)

where here we defin this parameter in terms of an appropriately externally-determined220

buoyancy frequency ‘N ’ and the (total) kinetic energy dissipation rate E , defined as221

E =
ν

2V

∫
(

∂ui

∂xj
+

∂uj

∂xi

)2

dV, (2.3)

where V is the volume of the part of the domain that encompasses the mixing layer222

(to be defined in the next section), and the Einstein summation convention has been223

employed. Consistent with the scaling arguments originally presented by Gibson (1980)224

in support of his concept of ‘fossil turbulence’, energetic stratified turbulence can be225

maintained in a form not substantially affected by viscosity for Reb ∼ O(102) or higher226

with viscous suppression occurring once Reb falls below∼ O(10) (Ivey & Imberger (1991),227

SM00, Thorpe (2005); Ivey et al. (2008)). While O(102) < Reb < O(103) is estimated228

to be relevant to mixing events in the thermocline and upper (pelagic) ocean, values229

of Reb ∼ O(103) and larger have been reported in the energetic abyssal oceans where230

mixing plays a key role in maintaining the ocean meridional overturning circulation231

(Gargett et al. 1984; Itsweire et al. 1993; Smyth & Moum 2001; Thorpe 2005; Mashayek232

et al. 2017).233

Despite many attempts to characterize stratified turbulence in terms of Reb alone, it is234

well-known that on the basis of both dimensional argument and physical understanding235

it is not sufficient(Mater & Venayagamoorthy 2014; Mashayek 2013; Salehipour et al.236

2016b). A key issue concerning the use ofReb alone to classify and parametrize turbulence237

properties in a stratified flow is the time-dependence of the dissipation rate E (and indeed238
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the spatial dependence of dissipation when not spatially averaged), making it problematic239

to identify a particular value of Reb with a specific mixing event. Indeed, for shear-driven240

turbulence, the dissipation rate E varies strongly with time, and does not actually exhibit241

any period when it is not varying strongly. Therefore, it is appropriate to think of a242

particular mixing event as sampling a range of Reb, typically growing to a maximum243

value rapidly as the flow undergoes the transition to turbulence, before decaying with244

time as the flow relaminarises.245

Finally, the range of Ri0 considered in this study is 0.04 < Ri0 < 0.2. For the particular246

velocity and density profiles defined in (2.1), Ri0 is the minimum initial value of the247

(local) gradient Richardson number Rig(z, t) defined as248

Rig(z, t) =
− g

ρa

∂〈ρ〉
∂z

(

∂〈u〉
∂z

)2
, (2.4)

where angle brackets denote horizontal averaging. The bound Ri0 = 0.2 is chosen to be249

below the classical value of 1/4 for the global minimum value of Rig associated with250

linear stability of stratified shear flows, according to the Miles-Howard criterion (Miles251

1961; Howard 1961). Ri0 represents the minimum Richardson number in the preturbulent252

shear layer and so cannot be directly compared to observation-based local estimates of253

Ri0, since such observation-based estimates are inevitably bulk estimates, due tothe254

lack of resolution in the measurement of background shear. An effective bulk measure255

of the Richardson number Ri based on velocity and density jumps across the entire256

vertical extent of the mixing region in our simulations is typically ∼ O(1) throughout257

the turbulent phase of flow evolution.258

Cases in Table 1 are divided into two categories with respect to the possibility of an259

upscale cascade through pairing instability. The simulations previously reported in MP13260

extended over two wavelengths of the primary shear instability in the streamwise direc-261

tion, thus allowing for pairing to occur. However, it was shown in MP13 (for Pr = 1)262

and Salehipour et al. (2015) (for Pr > 1) that the pairing instability is suppressed as the263

Reynolds number increases, and that for Pr = 1, it becomes significantly diminished for264

Re0 > 6000. Thus, the simulations in MCP13 (which were all for Re0 = 6000) imposed265

streamwise periodicity over only one wavelength of the primary instability. However,266

as we discuss below in more detail, the degree to which pairing is diminished at high267

Re influences the properties of turbulence sufficiently to bring previously suggested pa-268

rameterizations of turbulence into question. Therefore, we have included both types of269

simulations here, clearly marking those simulations for which pairing is allowed and rec-270

ognizing that if these simulations were to be repeated at even higher relevant Reynolds271

number the residual influence of an upscale component of the turbulent cascade could272

be further mitigated, if not completely eliminated.273

It is important to note that in the limit of extremely small Richardson number cor-274

responding to effectively unstratified shear layers, the transition to turbulence may be275

dominated by vortices which grow on the braid of KH billows rather than in the ‘eye-276

lids’. Such braid-centred vortices have a much longer spanwise length scale than the277

core-centered convective or shear instabilities (Klaassen & Peltier 1985b; Caulfield &278

Peltier 1994; Smyth & Peltier 1994; Potylitsin & Peltier 1999, 1998; Caulfield & Peltier279

2000). The spanwise extent of the computational domains were selected according to their280

corresponding Richardson number in such a way as to resolve the expected developing281

secondary perturbations.282
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3. Definition of length scales of turbulence283

In this section we introduce various length scales which we invoke to characterize284

certain aspects of shear-driven stratified mixing events. As discussed in SM00, a natural285

way to compare length scales for shear flows with different initial minimum Richardson286

numbers is to nondimensionalise with the (constant for a particular simulation) length287

scale Lsc defined as288

Lsc = ρa∆u2/(4g∆ρ) = h/(4Ri0), (3.1)

i.e. the notional length scale expressed in terms of the initial velocity difference and289

density difference which amounts to an initial (bulk) Richardson number with the Miles-290

Howard marginal value of 1/4.291

We consider four dynamically determined and, crucially, inherently time-dependent292

characteristic length scales, namely the Kolmogorov (LK), Ozmidov (LO), Corrsin (LC)293

and Thorpe (LT ) scales. All of these scales typically vary significantly during the three294

distinct periods of the turbulence life cycle discussed in the introduction: an initial or295

early period of transition to turbulence in which energy is transferred from the back-296

ground kinetic energy into turbulent kinetic energy (TKE) due to the ‘break down’ of297

the organized flow; an intermediate period of sustained energetic stratified turbulence;298

and a final or late period during which this turbulence decays and the flow relaminarises.299

We note that while LK , LO and LC are most relevant during the fully turbulent phase300

of the flow, their formal consideration in earlier phases is helpful for the purposes of the301

discussions to follow.302

To define these characteristic scales in an internally consistent way, it is necessary to303

obtain an estimate of evolution of the thickness of the initial shear and density layers304

upon which turbulence grows. Following SM00, we define two integral scales Iρ and Iu305

which track the evolution of both thicknesses during the three periods of the shear layer’s306

turbulent evolution:307

Iρ(t) =

∫ Lz/2

−Lz/2

[

1−

(

2
〈ρ〉

∆ρ

)2
]

dz, Iu(t) =

∫ Lz/2

−Lz/2

[

1−

(

2
〈u〉

∆u

)2
]

dz. (3.2)

where angle brackets denote horizontal averaging. Both scales are defined to have the308

same thickness as the initial density and shear layers at the onset of the flow evolution,309

and will vary with time as a consequence of turbulent mixing. Since in our study the310

Prandtl number is 1, the ratio of these two scales is close to 1. In all definitions and311

analysis to be provided from this point on, spatial and volume averages are limited in312

the vertical to the mixing layer as defined by the above-defined time-dependent length313

scale Iu(t), i.e. over the interval [−Iu/2, Iu/2]. In particular Ret in table 1 is defined using314

Iu/2 at the time when the inherently three-dimensional turbulent kinetic energy reaches315

its maximum value (i.e. tS
3D as discussed in more detail in Mashayek et al. (2013)).316

Using these integral scales, the instantaneous representations of background velocity317

shear, background buoyancy frequency, and Richardson number become:318

Sb(t) =
∆u

Iu(t)
, Nb(t) =

√

g∆ρ

Iρ(t)
, Ri(t) =

g∆ρ/Iρ(t)

(∆u/Iu(t))2
=

N2

b

S2

b

. (3.3)

3.1. Thorpe scale LT319

The first of the four scales we discuss is the so-called ‘Thorpe scale’ LT , which is a measure320

of net vertical parcel displacements associated with turbulent mixing. The Thorpe scale321

calculated from the 3D numerical simulations (L3D
T ) is determined by a sorting of the322

density field ρ(x, y, z, t) into a temporally evolving statically stable staircase of fluid323
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parcels. LT
3D is then the rms of the vertical displacement of the particles from their actual324

position to the vertical position in the sorted density field. This approach follows previous325

studies (Winters et al. 1995; Caulfield & Peltier 2000). During the sorting process, the326

horizontal area of each fluid parcel in the mesh in terms of which the numerical simulation327

is described is set to that of the full domain, and its vertical thickness is adjusted so328

as to conserve mass. This method leads to a statically stable vertical distribution of329

density within the domain with the same volume (and hence mass due to the Boussinesq330

approximation) as the unsorted domain, but one which possesses the minimum potential331

energy that any adiabatic re-ordering of the discrete fluid particles in the domain could332

achieve at a given time during flow evolution. The rms of the vertical displacement that333

each fluid parcel experiences in this sorting procedure is by definition the 3D Thorpe scale334

L3D
T . As discussed in SM00, this estimate will differ from the Thorpe scale calculated335

by sorting entire individual water columns, but typically that difference is found to be336

relatively small. More specifically, the column wise estimate is a measure of overturnings337

in the flow, whereas the 3D Thorpe scale is a more general representation of density338

displacements and is meaningful even in the absence of overturnings or when recognizably339

large scale overturnings have collapsed into fine scale turbulence. Hereafter we will choose340

L3D
T to be the appropriate time-dependent characteristic measure of overturning and will341

simply refer to it as LT . This is a different convention from that employed in SM00,342

who used LT to refer to the column-wise estimate, which must be distinguished from our343

full 3D estimate L3D
T . In Appendix II we discuss differences between the two and their344

implications for the relevance of our work to oceanographic estimates of the Thorpe scale345

based on column sorting.346

In so far as evolution of LT in shear instabilities of KH type is concerned, LT is347

expected to grow during the initial growth of the primary billows (either precursory348

to or concurrent with turbulence transition) and it is expected to decrease as the flow349

mixes thoroughly and relaminarises. As will be discussed in what follows, the evolution350

of LT also depends on whether vortex pairing occurs or not. Thus, our simulations differ351

from those in SM00 since their simulations were initiated with an eigenmode of pairing352

instability. In the subset of our simulations in which the domain is sufficiently large to353

house vortex pairing, pairing occurs at low Reynolds number but its onset is a function354

of Richardson number and pairing also gets increasingly suppressed at higher Reynolds355

numbers. These subtle differences between the various cases discussed herein and in SM00356

(independently of the wide differences in Re0) have implications for LT evolution and357

the relevance of LT /LO as a proxy for turbulence age. We return to this in section 5.358

3.2. Ozmidov length LO, Corrsin length LC & Kolmogorov length LK359

The Thorpe scale LT is a purely geometrical construct, and is defined in terms of prop-360

erties of the evolving density field alone, with no explicit dependence on the flow velocity361

field, with the connection being entirely implicit due to the evolving flow dynamics. To362

characterize turbulence, it is helpful to resort to length scales constructed based on both363

intrinsic properties of turbulence such as the spatially averaged total kinetic energy dis-364

sipation rate E and bulk external properties such as the background density gradient and365

velocity shear. Ozmidov and Corrsin scales are defined in terms of such quantities. The366

(total) dissipation rate has dimensions L2T−3, and so we define LO and LT as the two367

natural length scales relating the dissipation rate to the background buoyancy frequency368

Nb(t) and the background shear Sb(t) given in (3.3) through369

LO(t) =

(

E

N3

b

)1/2

; LC(t) =

(

E

S3

b

)1/2

→ Ri(t) =

(

LC

LO

)2/3

. (3.4)
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Physically, for vertical scales larger than both Ozmidov and Corrsin scales, turbulence370

with sufficiently elevated values of the dissipation rate noticeably ‘feels’ the influence of371

stratification and shear.372

As discussed in SM00, the temporal evolution of LC and LO are broadly similar,373

although in general LC < LO, unsurprisingly due to the relationship to Ri(t) as defined374

in (3.4). In a shear layer of the kind considered here, both Nb and Sb decrease with375

time, due to the thickening of the mixing layer captured by the increases in the integral376

length scales Iρ and Iu respectively. Therefore, the time evolution of both LO and LC is377

dominated by the time dependence of the (total) dissipation rate E , as defined in (3.4)378

with both reaching their peak values during the most energetic intermediate period of379

turbulence in which the flow is replete with secondary and higher order instabilities.380

Similarly to LT , we also expect LO (and LC) to decay as the turbulence decays, as E381

markedly decreases from its peak value.382

The total dissipation rate may also be used to define a further natural length scale,383

namely the Kolmogorov dissipation scale LK , where384

LK =

(

ν3

E

)1/4

, (3.5)

and represents the scale below which the smallest eddies in the momentum field are385

viscously dissipated. Since in our casesPr = 1, this is also the scale at which diffusion386

completely homogenizes the density field (i.e. LK = LB = (νκ2/E)1/4 where the latter387

is the Batchelor scale). Unlike LO and LC , LK reaches its minimum value during the388

intermediate period when the turbulence is most energetic and hence the dissipation389

rate is largest. Before the flow is turbulent, or during the late turbulent decay period390

of the flow, LK tends to an asymptotic value set by the small finite rate of dissipation391

of kinetic energy associated with the laminar shear layer, since here we choose to define392

LK using the total dissipation rate E , which does not tend to zero when the flow is393

laminar. Similarly, LO and LC are also defined using E , and so these length scales are394

still well-defined during the stage of flow evolution when the transition to turbulence is395

occuring.396

3.3. Relative magnitudes of the scales397

Consistently with the results of SM00 for flows with substantially smaller Re0, early in398

the flow evolution, LT can be substantially larger than LO, even when LO is defined using399

the total dissipation rate. We investigate this scale separation in the next section. The400

turbulent dynamics at this early stage are highly anisotropic due to the influence of shear401

and stratification on scales above the Ozmidov scale, and the properties of the turbulence402

can be changing rapidly. The scales between LO and LC are still anisotropic, but largely403

influenced by shear alone, while the scales between LC and LK may be considered to404

exhibit nearly isotropic three-dimensional turbulence, provided of course that there is405

sufficient scale separation between LC and LK to allow for an inertial cascade. Indeed,406

since we expect LC . LO, this requirement for sufficient scale separation to allow for407

an inertial cascade of isotropic turbulence is typically unaffected by the background408

stratification. LT , LO, LC and LK are all strongly dependent on Re0 and Ri0, as well as409

typically strongly time-dependent. In section 6 we will show that the extent to which these410

various sub-ranges vary, and indeed even exist in any meaningful sense, has important411

implications for the irreversible mixing properties of the flow.412

It is important to note that while LC , LK and LO are mathematically well defined even413

in the laminar state of the flow, they only become dynamically relevant when the total414

dissipation is dominated by turbulent dissipation rather than the laminar phase which is415
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Figure 2. Time variation of buoyancy Reynolds numberReb for: a) cases 4-10 of table 1, showing
the variation with Re0 for Ri0 = 0.12, all with vortex pairing allowed (noting that pairing
is increasingly suppressed as Re0 increases); b) cases 11-14 of table 1, showing the variation
with Ri0 for Re0 = 6000 for simulations with vortex pairing prohibited by design. Time is
non-dimensionalised by the eddy turnover timescales h/∆u where ∆u and h are characteristic
scales of the shear flow as defined in (2.1). The onset of fully-developed turbulence for each case
corresponds to the time tS3D when the inherently three-dimensional turbulent kinetic energy
peaks following a rapid growth during the transition to turbulence (see Caulfield & Peltier
(2000) and Mashayek et al. (2013) for details). This time approximately coincides with first
peak of LO and also of Reb as defined here. The dashed line in the second panel marks Reb = 20
which nominally marks the lower bound of stratified turbulence, even if not truly fully-developed
(see SM00 for a further discussion).

only weakly dissipative. As we will show, the sharp increase in the total kinetic energy416

dissipation rate E during the rapid transition to turbulence marks sharp changes in these417

scales in a way which will allow us to employ their evolution through the transition418

process to understand the mixing properties of the flow better.419

3.4. The buoyancy Reynolds number in terms of length scales420

It is instructive to note that the buoyancy Reynolds number can now be naturally in-421

terpreted as a ratio of length scales. If we choose to use Nb as defined in (3.3) as the422

appropriate choice for the buoyancy frequency in the definition for the buoyancy Reynolds423

number Reb as defined in (2.2), we obtain424

Reb =

(

LO

LK

)4/3

. (3.6)

Therefore, the already noted observation that Reb & O(100) is required for stratified425

turbulence to be sufficiently vigorous to be largely unaffected by viscosity is equivalent426

to the requirement that there is a sufficiently wide range of turbulent scales unaffected427

by both viscosity and stratification (Gargett et al. 1984; Thorpe 2005; Bartello & Tobias428

2013). As discussed in detail in Salehipour et al. (2016a), there are a variety of different429

ways in which a buoyancy Reynolds number may be defined, depending on the spe-430

cific choice of the dissipation rate, and in particular the buoyancy frequency. Therefore,431

specific numerical comparisons of Reb between different studies must be treated with432

caution.433
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4. Time evolution of length scales in direct numerical simulations434

In this section we consider the temporal evolutions of Reb and the various length scales435

defined above. We consider these evolutions in our series of DNS simulations, covering a436

range of Richardson and Reynolds numbers.437

4.1. Time evolution of Reb438

Figure 2 illustrates the time evolution of Reb for simulations with different Re0 at Ri0 =439

0.12 (panel a) and for simulations with different Ri0 at Re0 = 6000 (panel b). The non-440

stationary nature of intermittent mixing by shear instability is clearly shown in the figure441

through the non-monotonic temporal evolution of Reb.442

Figure 2(a) shows a qualitative change in the evolution of Reb for sufficiently large443

Re0 & 4000. At this intermediate Ri0, energetic time-dependent turbulence (i.e. with444

Reb > 200) is maintained over a considerable fraction of the intermediate phase of the445

turbulence life cycle only for Re0 = 4000 and larger. This is a critical difference from446

the simulations reported in SM00. It is apparent that any extrapolation on the basis of447

the results of lower Re0 experiments or simulations (such as those reported in SM00) to448

geophysical flows which occur at much larger Re must be treated with caution. Quanti-449

tatively, while Reb (defined in the fashion we use here) never exceeds 150 for Re0 = 750,450

(typical of the simulations reported in SM00) Reb remains above 200 for ∼ 75% of the451

turbulence life cycle for Re0 = 6000, when Ri0 = 0.12. The structure of the time evo-452

lution of Reb also exhibits qualitative differences between the simulations with lower453

Re0 and higher Re0 & 4000. This observation is consistent with our hypothesis that a454

rich ‘zoo’ of secondary instabilities (only present at sufficiently high Re0) qualitatively455

modifies the subsequent turbulent evolution once those instabilities have broken down.456

We now turn our attention to the dependence on Ri0 of the behaviour of the flow at457

such sufficiently high Re0 to sustain vigorous turbulence. We consider a range of Ri0458

for that turbulence to be non-trivially affected by stratification. As shown in figure 2(b),459

it is clear that this ‘energetic’ turbulence (i.e. with Reb > 200) remains long-lived (i.e.460

spans a significant portion of the turbulence life cycle) for all Ri0 except Ri0 = 0.2. At461

this stage it is not clear why this qualitatively different behaviour occurs. One possibility462

is that the behaviour is associated with the Reynolds number being too small for this463

particular choice of Ri0, associated as it is with a primary instability with a growth464

rate so small that it may be adversely affected by the diffusion of the mean profiles,465

even at these Reynolds numbers. Alternatively, the behaviour may be due to the fact466

that the Richardson number is so close to the critical value of 0.25 that the saturation467

amplitude of the nonlinear billow may so small that it leads to a qualitative change468

in the flow dynamics. Observational evidence (see for example the recent discussion469

of turbulence in the eastern equatorial Pacific by Smyth & Moum (2013) and in the470

Romanche Fracture zone by Van Haren et al. (2014)) suggests that at the very large471

Re0 characteristic of geophysical situations, instability and the ensuing turbulence onset472

soon after the Richardson number drops below 0.25, although it is extremely difficult to473

trace the dynamics precisely at the critical value, and so further investigation of shear474

instability for high Re0, and Ri0 ‘close’ in some sense to the critical value of 1/4 is475

warranted.476

Indeed, when considering geophysical relevance, it may be necessary to treat with cau-477

tion the dynamics of flows with initially small values of Ri0, as it is not at all clear how478

such shear instability would be realizable in reality, as discussed above. And as mentioned479

earlier, the treatment of such low Ri0 cases numerically requires particular care in terms480

of the choice of the spanwise extent of the domain to accommodate the braid instabilities481

which dominate turbulence transition in the limit of vanishing stratification. The impor-482
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tance of this issue is clearly connected to the rate at which the shear is diminished in a483

region of fixed background density stratification. If this time scale is sufficiently short, it484

is certainly at least plausible that a low Richardson number regime would be relevant.485

4.2. Influence of Richardson number486

The fundamental requirement that Re0 be sufficiently large and (perhaps also that Ri0 is487

a range where the flow is non-trivially affected by stratification) to capture geophysically488

realistic turbulent dynamics can also be observed in the way that the time evolution of489

the various length scales defined above vary in time for our different simulations. We are490

particularly interested in identifying what we believe should be ‘generic’ behaviour for491

high Re0 −Ri0 flow, and what is affected by either Re0 or Ri0 being too ‘small’ in some492

sense. We showed in MCP13 that, in agreement with earlier theoretical predictions, for493

Ri0 = 0.16 ∼ 1/6 mixing is most ‘efficient’ at sufficiently high Reynolds number. Here,494

efficiency is the fraction of energy available to turbulence that irreversibly increases495

the potential energy of the system. (We define efficiency precisely, and discuss this issue496

further in section 6.) This efficient mixing (at Ri0 = 0.16, Re0 = 6000, Pr = 1 in MCP13)497

is due to an optimal excitation of secondary instabilities. Ri = 0.16 is sufficiently high498

to induce a large number of baroclinically-induced secondary instabilities yet it is not499

too high to suppress the turbulence. Therefore, here we choose to consider that flow500

simulation as the ‘canonical’ case.501

In figure 3b, we plot the various length scales defined above for this simulation (case502

12 in table 1). For completeness, we have also included the cases with Ri0 = 0.14,503

Ri0 = 0.18 and Ri0 = 0.20. Similarly to figure 2(b), the evolution of the flow with504

Ri0 = 0.2 is qualitatively different from the other three simulations.505

Focusing on figure 3(b) for the simulation with Ri0 = 0.16, certain generic character-506

istics are as expected. Firstly the Kolmogorov length scale LK (plotted with a dotted507

line) decreases rapidly at turbulence onset, and then recovers relatively slowly towards508

its laminar value as the turbulence decays after the turbulent kinetic energy saturates509

(i.e. peaks for the first time). Similarly, both the Ozmidov scale LO (plotted with a solid510

line) and the Corrsin scale LC (plotted with a dashed line) rapidly increase at transition,511

and then decay slowly towards their initial laminar values. Remembering that for clarity512

we are plotting 10LK and 2LC , it is clear that there is a wide scale separation between513

LO and LK as expected throughout the period (up to approximately t ≃ 125) when514

Reb > 200, demonstrating that there appears to be the possibility for a range of the515

turbulent length scales which are unaffected by both viscosity and stratification.516

Perhaps more surprising is the evolution of the Thorpe scale LT (plotted with a dashed-517

dotted line). LT grows during the initial roll-up of the primary billow, and it grows518

substantially before turbulent motions onset, signaled by the marked drop of LK . After519

reaching a peak before the transition to turbulence, LT actually decreases rapidly during520

the period of most intense turbulent motion, indicative of vigorous irreversible, and521

inherently small-scale mixing, associated with the rich ‘zoo’ of secondary instabilities522

discussed in detail in Mashayek & Peltier (2012a,b). We observe that LT > LO during523

the transition to the turbulent phase of flow evolution while LT < LO beyond the point of524

most intense turbulence (i.e. the time tS
3D with largest LO and smallest LK). Consistently525

with the recent detailed analysis of Mater & Venayagamoorthy (2014), this demonstrates526

that it is by no means appropriate to assume that LO is ‘the limiting size’ of overturns in527

strongly stratified turbulence during the turbulence growth phase. That LT > LO in this528

phase actually suggests that the shear-driven turbulent mixing events considered here529

may be a candidate for creating the canonical layered structures within the previously530
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Figure 3. Time variation of the various turbulent length scales (normalized by LSC as defined
in (3.1)) for a) Ri0 = 0.14 (case 11 of table 1), b) Ri0 = 0.16 (case 12), c) Ri0 = 0.18 (case 13),
and d) Ri0 = 0.2 (case 14), all cases for Re0 = 6000.

proposed ‘strongly’ stratified turbulence scaling regime (see for example Brethouwer et al.531

(2007)).532

Furthermore, the relative time dependence of the Thorpe scale and the Ozmidov scale533

is also of interest. Typically at these Reynolds numbers and Richardson numbers, LT534

‘flares’, in that it increases rapidly and in turn decreases rapidly before undergoing a535

slower decay once it has reached very small values. LO also increases rapidly, but effec-536

tively only when LT has reached its maximum. Interestingly, it appears that LO reaches537

its maximum (when the turbulence is most intense, in that E is largest) very close to538

the time when LO ≈ LT . Subsequently, LO ‘burns’, in that it decreases at a noticeably539

slower rate than LT , suggesting a much more extended period of strong turbulence as540

opposed to strong overturning. We will further discuss the importance of evolution of LT541

relative to LO in section 5.542

Figure 3(d) shows that the behaviour is qualitatively different when Ri0 is increased543

to 0.2 (noting the dramatic reduction in the extent of the vertical axis with increase in544

Ri0). The turbulence is undoubtedly much less intense, with the Ozmidov scale peaking545

at a markedly reduced maximum value as Ri0 increases. The relative time dependence546

of LO and LT is also qualitatively different. For Ri0 = 0.2, the Thorpe scale similarly547

peaks later and at lower values, and decays more slowly. These properties are indicative548

of a reduction in amplitude and delay and slowing of the primary overturns upon which549
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Figure 4. Time variation of the various turbulent length scales (normalized by LSC as defined
in (3.1)) for: a) case 8 of table 1, with Re0 = 6000 and Ri0 = 0.12; b) case 4 of table 1, with
Re0 = 750 and Ri0 = 0.12.

turbulence grows and decays. They also imply a qualitatively different mixing dynamics550

from the other three cases shown. Indeed, unlike the Ri0 = 0.16 case, at Ri0 = 0.2551

the time scale over which LO increases and that over which it subsequently decays are552

similar. Furthermore, the dissipation rate does not grow as much above its laminar value553

in this simulation compared to the Ri0 = 0.16 simulation, and so there is not such a wide554

length scale separation between the Kolmogorov scale LK and the Ozmidov scale LO,555

indicating that both stratification and viscosity are likely to be modifying the turbulence556

dynamics substantially. This is all constitutes evidence that the transition to turbulence557

is relatively weak in this flow, and so may well not be typical of the behaviour of intense558

geophysical turbulence at very high Reynolds number.559

4.3. Influence of Reynolds number560

We now investigate how the generic behaviour for the time dependence of the various561

length scales shown by the simulation with Ri0 = 0.16 and Re0 = 6000 in figure 3(b) is562

affected by variations in Re0 and Ri0. Considering the effect of variations in Re0 first,563

in figure 4 we plot the time evolution of the various length scales for simulations with564

Re0 = 6000 and 750 both with Ri0 = 0.12. The time dependence of the various length565

scales for the higher Re0 is generally similar to the Ri0 = 0.16 case shown in figure 3(b).566

There is once again a ‘flare’ in LT which appears to trigger a rapid increase in LO (and567

LC) followed by a slower decay towards laminar values. Indeed for this value of Ri0,568

there is essentially a period of relatively constant LO, indicative of sustained turbulence,569

and there is only a local (as opposed to global) maximum in LO as LT drops steeply570

indicating the break down of the primary billow related overturning.571

Clearly, the lower Reynolds number simulation with Re0 = 750 (of the same order as572

in the flows described in SM00) shown in figure 4(b) is qualitatively different. There is573

a substantially smaller scale separation between LO and LK . Perhaps even more signifi-574

cantly, the temporal evolution of the Thorpe scale LT , both taken in isolation and relative575

to the time evolution of LO is also qualitatively different. The initial rapid decrease in576

LT is not associated with a peak in LO, with the most active turbulence occurring sub-577

stantially later, principally because of the absence, at this Reynolds number of the ‘zoo’578

of secondary instabilities which affects the simulations shown in figure 3. This is yet more579

data demonstrating that the evolution of length scales in a stratified shear flow changes580
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Figure 5. Time variation of the various turbulent length scales (normalized by LSC as defined
in (3.1)) for: a) case 2 of table 1, with Re0 = 4000 and Ri0 = 0.04; b) case 1 of table 1, with
Re0 = 750 and Ri0 = 0.04.

markedly as Re0 becomes sufficiently large. Therefore, we believe it is clearly necessary581

to consider flows with Re0 & 4000 to investigate assumption IV discussed in the intro-582

duction, i.e. that there is a clear separation of scales between the background flow and583

the superposed (assumed) isotropic turbulence.584

4.4. Summary of evolution of various scales585

In summary, we wish to stress three key aspects of the results presented in this section.586

First, figures 2–5 show that the assumption of stationary stratified isotropic turbulence587

is very rarely satisfied, at best only in the energetic turbulence phase of flow for Reynolds588

numbers sufficiently large and close to a Richardson number ‘sweet spot’ at which mixing589

is optimal. According to MCP13, this sweet spot value of Ri0 is defined by two compet-590

ing effects: Ri0 is sufficiently small so that turbulence is not completely suppressed by591

stratification and yet is sufficiently large for the flow to be replete with buoyancy-driven592

secondary and higher order instabilities, which are only possible at sufficiently high Re0.593

From a length scale perspective this regime is characterized by the existence of a suf-594

ficiently wide separation between LO and LK . Importantly, these scales are turbulent595

length scales, by construction distinct from the length scales of the background mean596

flow. Second, over the entire parameter space we cover herein, the turbulence growth597

and decay periods of flow evolution, in which assumptions of isotropy and stationarity598

are clearly violated (as discussed in Smyth & Moum (2000a) and Mashayek & Peltier599

(2013)), together constitute a large fraction of the typical turbulence life cycle. And fi-600

nally, at sufficiently high Re0 and Ri0 in the correct range, there appears to be a typical601

or generic coupled time-dependence of LT and LO. LT increases rapidly initially before602

undergoing a slow decay at very small values. LO, on the other hand, begins to grow603

rapidly when LT starts to decrease. LO reaches its maximum when it is ∼ LT , and then604

decays noticeably more slowly than LT in the decay period of turbulence. In the next605

section we turn our attention to the ratio between these two length scales, in particular606

when in this apparently generic regime for Ri0 sufficiently large, but not too large, in607

flows at high Re0.608
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5. LO/LT as a proxy for turbulence age & efficiency609

As originally argued by Thorpe (1977), (see e.g. Scotti (2015) for a detailed discussion)610

direct measurements of LT can be used to infer dissipation if LT can be shown to be a611

simple function of LO. In such a case, the dissipation rate can be calculated from the612

expression613

E = R2

OTL
2

TN
3, (5.1)

where614

ROT =
LO

LT
. (5.2)

Indeed, further progress can be achieved by making the further (though not always615

justified, see for example MCP13) assumption due to Osborn (1980) that the buoyancy616

flux B, defined as617

B =
1

V

∫

g

ρr
ρwdv, (5.3)

can be linearly related to the dissipation rate E through a ‘universal’ turbulent flux618

coefficient Γ (sometimes referred to as ‘mixing efficiency’). Using this assumption, a619

measurement of the Thorpe scale LT along with an appropriate buoyancy frequency N620

are commonly used in the oceanographic research literature (see e.g. Dillon (1982); Kunze621

et al. (2006); Thorpe (2005)) to estimate diapycnal eddy diffusivity through622

κT ≡
B

N2
=

B

E

E

N2
= ΓR2

OTL
2

TN. (5.4)

As discussed in detail by Mater et al. (2015) and Scotti (2015), estimates of the ratio ROT623

are very sensitive to the existence of large-scale overturnings within the flow, and since624

the ratio is squared in (5.4), uncertainty in its value has a marked effect on estimates of625

diapycnal diffusivity.626

Furthermore, the time-dependent properties of the ratio ROT are also very important,627

as its particular value is often used to infer the ‘age’ of the turbulence involved in observed628

mixing events (SM00, Smyth et al. (2001); Ivey & Imberger (1991); Bouffard & Boegman629

(2013)). Based on direct numerical simulations of Kelvin-Helmholtz billows at relatively630

low Re0, SM00 reported that ROT was typically observed to increase with time (see for631

example their figure 15) and argued in favour of the observational and entropy-based632

arguments of Wijesekera & Dillon (1997), that ‘older’ overturnings should be character-633

ized by large values of ROT > 1. We also observe the same qualitative trend as is shown634

in figure 6 which shows the time evolution of ROT for the same two groups of cases635

shown in figure 2. This is consistent with our ‘generic’ observation that, after its initial636

flare to very large values, LT decreases rapidly, to very small values, and in particular637

to values smaller than the more slowly decaying ‘burning’ LO. For the single-wavelength638

simulations in the right panel, ROT is indeed an increasing function of time. Conversely,639

for simulations shown in the left panel which include two wavelengths of the primary640

Kelvin-Helmholtz instability and span an order of magnitude increase in Re, ROT grows641

rapidly at transition, reaching a maximum around the time tS
3D when the inherently642

three-dimensional turbulence saturates, and then decays rapidly before showing a second643

oscillatory growth phase driven by variations in the rate of decay of LT and LO, due to644

the complicating merging dynamics. As already discussed, such merging dynamics are645

suppressed for flows with higher Re0, and so we do not believe that dynamics associated646

with merger of primary KHI billows are characteristic of geophysically relevant flows.647

This belief is reinforced by the fact that perturbations in real flows are highly unlikely to648

be ‘tuned’ to trigger merger events, and are typically much more broad-band and noisy649
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the same cases as those shown in Fig. 2: the left panel shows results from simulations with
Ri0 = 0.12 and 750 < Re0 < 104 (with pairing), while the right panel shows results from
simulations with Re = 6000 and 0.12 < Ri0 < 0.2 (with no pairing).

in structure, characterised by low amplitude or residual turbulent motions. Indeed, we650

are unaware of observations of merging billows in geophysical flows in the atmosphere651

and ocean, though there is much evidence of observations of long trains of individual652

billows.653

We note that while SM00 simulations were also conducted with streamwise extent654

which allowed for the development of two wavelengths of the primary instability, similarly655

to those shown in figure 6(left), their ROT evolution differs qualitatively and quantita-656

tively from our results. They found a more monotonic increase in ROT with time during657

the decay phase of turbulence. We believe that the difference between their results and658

ours is due to differences in the simulations’ initializations. SM00 initialized their simu-659

lations with non-trivial amplitude in the eigenfunction of pairing instability, leading to660

a relatively rapid pairing of KH billows early in the simulation, which amounts to an661

initial pre-turbulent significant increase in LT , and subsequently a marked decrease in662

LT in the turbulent phase of flow once vortices have paired. This apparently leads to a663

monotonic increase in ROT in the turbulent phase of the flow. On the other hand, our664

two-wavelength simulations are not forced explicitly with the pairing mode eigenfunction665

and also are conducted at very high Reynolds number. As discussed above, flows with666

such higher Re0 are associated both with a significant suppression of the pairing insta-667

bility, and with fundamentally different character in the transition mechanisms (i.e. the668

full ‘zoo’ of secondary instabilities) and the intensity (quantified by the elevated values of669

Reb) of the ensuing turbulence. Perhaps unsurprisingly, such differences lead to a char-670

acteristically different ROT behaviour during the later stages of flows in which pairing671

(even if highly suppressed) manifests.672

In summary, our results in this section suggest that the evolution of ROT in turbulence673

life cycles initiated by shear instability is very sensitive to details of the flow evolution674

such as the existence or lack thereof of an upscale cascade through pairing instability flow675

initialization. Therefore, it is at least plausible that the time-dependence of ROT is likely676

to vary according to the degree of ambient or residual turbulence within a flow in which677

KH billows develop, as is to be expected for a realistic geophysical flow. In spite of the678

relevance of ROT as a proxy for turbulence age, details of its evolution play an important679

role in characterizing the properties of the turbulence itself. Essentially, LT represents680

the vertical overturning scale of turbulence and so represents the large scale stirring681

at which energy is being injected into the perturbation fields, while LO represents the682

largest eddies which are not strongly influenced by stratification, remembering that eddies683

smaller than LO and larger than LC are still affected by the ambient shear. Therefore, an684

optimal injection scale for the cascade of energy from larger scale stirring to dissipation685
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is expected. This corresponds to the stirring injection scale (LT ) occurring at the largest686

scale not suppressed by stratification (LO), i.e. precisely when LO ∼ LT . Precisely this687

behaviour was observed by Ivey & Imberger (1991), as this relationship corresponds to688

the optimal value for mixing of their turbulent Froude number FrT = (LO/LT )
2/3 ≃ 1.689

As we see next, in this phase of flow evolution mixing is very efficient. Full discussion690

of the turbulence cascade and anisotropy in turbulence induced by KH instability over a691

wide range Reynolds and Richardson numbers is provided in Mashayek & Peltier (2013).692

Here we have built upon that study to connect it to the turbulent length scales discussed693

in this section and through that connection to mixing.694

6. Implications for the quantification of mixing695

The ‘mixing efficiency’ η is an important quantity which is commonly used for quanti-696

fying diapycnal mixing rates from observations of shear-induced turbulence in the ocean697

and atmosphere. We define η within a Boussinesq framework as the ratio of the kinetic698

energy converted to potential energy irreversibly via a net irreversible vertical buoyancy699

flux, to the total irreversible conversion of kinetic energy to both potential energy and700

internal energy via viscous dissipation. This quantity is sometimes also referred to as the701

flux Richardson number, although the two quantities are not exactly the same at finite702

Reynolds numbers, as the denominator of the flux Richardson number is usually defined703

to be the production of turbulent kinetic energy (see Peltier & Caulfield (2003), MCP13704

and Rahmani et al. (2014) for more discussion). The mixing efficiency is widely assumed705

to be η ∼ 0.15 − 0.2, equivalent to the canonical model due to Osborn (1980) that the706

turbulent flux coefficient Γ (as defined in (5.4) is given by Γ ≃ η/(1 − η) 6 0.2 despite707

the growing evidence demonstrating that it is highly variable in shear-induced mixing708

(see the recent results of MCP13 and Rahmani et al. (2014)).709

As discussed in more detail in Caulfield & Peltier (2000) and Peltier & Caulfield710

(2003), mixing efficiency can be considered to be a time-dependent quantity, and so it711

is natural to consider both instantaneous values ηi(t), and some appropriate cumulative712

mixing efficiency ηc for a given mixing event. To calculate ηi from our simulation results,713

we calculate the net instantaneous irreversible increase in the potential energy of the714

system, which represents diapycnal mixing M, and then define715

ηi =
M

(M+ E)
, (6.1)

where E is the total dissipation rate as defined in (2.3), and M is determined using the716

sorting algorithm as initially described by Winters et al. (1995) and slightly modified717

in Caulfield & Peltier (2000). More specifically, M is defined as the net change in the718

background potential energy of the system which may be calculated by an adiabatic719

sorting of the fluid parcels in the whole domain as was described earlier in calculation720

of the Thorpe scale. Since the background potential energy may only be increased, any721

change in it will correspond to diapycnal mixing in our setup with periodic boundary722

conditions. We can also define a cumulative mixing efficiency ηc as is now conventional723

as724

ηc =

∫ te
ts

M dt
∫ te
ts

M dt +
∫ te
ts

E dt
, (6.2)

for appropriately chosen start time ts and end time te. We set ts = tS
3D, and te to be725

the end of the simulation (when the flows have typically relaminarised) to define η3Dc ,726

which we list in table 1 for each of the simulations. (See Mashayek et al. (2013) for more727
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discussion.) In what follows we divide the turbulent life cycle of each simulation into a728

number of intervals and average η over each period to obtain a locally-averaged efficiency729

ηa for each interval. Each period is set to be of 10 eddy turnover time scales (defined730

as h/∆u where ∆u and h are characteristic scales of the shear flow as defined in (2.1)),731

keeping in mind that the turbulent life cycle of the simulations in table 1 (nominally732

defined as the period over which 20 < Reb) typically extends over 200 to 400 turnover733

timescales.734

In figure 7(a) we show the results of calculations for simulations 6-14 of table 1. This735

subset includes cases with Re0 sufficiently high to represent sustained turbulence for a736

considerable fraction of flow evolution, and with Ri0 sufficiently large for the behavior737

to share the key ‘generic’ characteristics of the simulation with Ri0 = 0.16 as discussed738

above. To connect the interpretation of evolution of efficiency of mixing in the simulations739

with the time dependence of the various length scales as described in the previous section,740

figure 7 shows a scatter plot of LT vs LO, with the symbol colours representing ηa. The741

lines in the figure represent LT = LO, LT = 4× LT and LT = 0.25× LO, the latter two742

providing bounds on the LO/LT ratio in observations (see Thorpe 2005, for discussion and743

references). As discussed earlier, symbols for which LT > LO correspond to the period in744

flow evolution in which eddies (of scales L 6 LO) associated with secondary instabilities745

grow rapidly and efficiently within the primary overturn, while symbols with LT < LO746

correspond to the final period of the flow evolution when the turbulence is decaying747

and stirring is suppressed by ambient stratification. It is apparent that mixing is most748

efficient during the earlier period, particularly when LT ∼ LO, (precisely as assumed749

by Ivey & Imberger (1991)) since the inertial subrange is very efficiently energized at750

the upper bound (stirring scale) by the available potential energy reservoir stored in the751

primary overturn. As stirring by large eddies becomes suppressed by stratification in the752

later period of turbulence, mixing is less efficient. Thus, the high efficiency of mixing753

at LO ∼ LT appears to be a direct consequence of the nature of turbulence induced754

by shear instability at high Reynolds number. Importantly, this violates assumption755

IV as described in the introduction, because the length scale of the overturning is most756

definitely notwidely separated from the important length scales of the turbulent motions.757

Furthermore, since this most efficient mixing occurs when LO 6 LT , which is also758

in the build up to the instant when both LO and Reb are maximum, the actual total759

amount of mixing in the build up to LO ∼ LT is also maximized. In other words, since760

Γ ≃ ηa/((1−ηa)) (for caveats see MP13 and Salehipour & Peltier (2015)), the observation761

that ηa is maximum whenReb is maximum strongly suggests that the turbulent diffusivity762

κ is also maximum at that time, since using (2.2) and (5.4) we have,763

κT = Γ
E

N2
≃ ν

ηa
(1− ηa)

Reb. (6.3)

This suggests that the flow at this time is so organised as to maximise the amount of764

vertical mass flux, because of the combined effects of the turbulence being most intense765

(i.e. with largest Reb) and most efficient (i.e. with largest ηa and hence largest Γ).766

The above description of the dependence of mixing on the temporal evolution of LO767

and LT was based on simulations of Kelvin-Helmholtz instabilities that form the basis768

of our work. So, it is legitimate to question their generality insofar as the much more769

dynamically diverse ocean mixing process is concerned. However, we conjecture that the770

observation that the existence of distinct overturns provides sufficient available potential771

energy that can feed efficient turbulent mixing is not a special phenomenon only occuring772

in KHI flows, but is a more generic property of high Reynolds-number stratified mixing773

processes, triggered by a wider range of mechanisms, including other shear instabilities,774
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hydraulically controlled flows, or breaking internal waves. Clearly further work is war-775

ranted to test this conjecture by investigating the mixing associated with these wider776

range of mechanisms.777

To explore this further, panels (b) through (d) of figure 7 show similar scatter plots to778

that from our DNS in panel (a). The data for panels (b,c) come from observations made in779

the thermocline of the ocean while the data for panel (d) come from one of the great lake.780

Mixing in these natural environments is induced by a mixture of dynamical processes781

including vertically propagating internal waves and shear instabilities of different types.782

Panels (b-d) share the same pattern with panel (a) in that mixing efficiency is larger for783

LT > LO, further highlighting the role of natural overturns in determining the efficiency784

of mixing.785

We acknowledge that our simulations are highly idealized and that the observational786

data used in figure 7 are based on a number of crude assumptions made for practical787

reasons; importantly, the calculation of mixing efficiency from data is difficult and involves788

large inaccuracies. Furthermore, there seem to be some systematic and as yet unexplained789

differences between how data are skewed about the LO = LT line in the four panels. For790

example, the lake data in figure 7(d) appear to be more qualitatively similar to the791

numerical data in figure 7(a) than to the two oceanographic data sets in figures 7(b)792

and (c). Nevertheless, our main point here is neither dependent on the actual value of793

mixing efficiency nor is it sensitive to the above-mentioned inaccuracies and idealizations.794

Essentially, as long as distinct overturns exist throughout turbulence evolution, they play795

a non-negligible role in determining the efficiency of mixing. This point is one of the main796

messages of this paper.797

We stress that this point is important for two reasons. First, as discussed earlier, con-798

ventional parameterization schemes are based on assumptions which are typically better799

satisfied during the turbulence decay period (i.e. towards the left in each panel). Second,800

the majority of studies of DNS of shear instabilities have focused on the decay period801

by filtering the earlier period based on the (at times implied) justification that the early802

period does not conform to a plausible ‘ocean turbulence regime’, assumed by (for ex-803

ample) Osborn (1980) to be well-modelled as stationary isotropic turbulence where the804

steady turbulence production is balanced by an isotropic dissipation rate and a relatively805

small (positive) buoyancy flux. In combination, these assumptions appear to have led to806

a circular argument for filtering the part of simulations that does not fit the parameteri-807

zations even though the simulations are carried out for the very purpose of improving the808

parameterizations. It was shown in Mashayek & Peltier (2013) that in direct numerical809

simulations of shear instabilities, the early period of turbulence makes a non-negligible810

contribution to the net buoyancy flux over a turbulence life cycle. Furthermore, the anal-811

ysis of Smyth et al. (2001) showed that the LO < LT patches in data used in figure 7812

make a large contribution to net mixing as well. So, as long as large overturns exist,813

the contribution of the earlier period of turbulence in which distinct overturns and su-814

perimposed turbulence co-exist needs to be taken into account in both parameterization815

schemes and in analysis of numerical simulations. Of course, it is important to remember816

that in the observational data there is no ‘time-stamp’, in that unlike the simulation817

data there is no way to follow the time evolution of an individual mixing event. However,818

the observational data are at least consistent with the idea that LO < LT patches are819

associated with vigorous overturnings that will subsequently lead to increased turbulent820

mixing, and hence LO remaining larger for a longer time than LT , i.e. that LT ‘flares’821

while LO ‘burns’, analogously to our simulations.822

The contribution of overturns is partially filtered in conventional parameterizations by823

assumptions of isotropic stationary small scale turbulence existing at a scale distinctly824
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separated from that of the background flow. It has also often been left out of analysis of825

DNS data for several reasons. Distinct overturns observed in early DNS are often thought826

to be artifacts of the low Re idealized nature of such simulations, (Peltier & Caulfield827

2003), and furthermore, the argument has been advanced that the later-time turbulence is828

more likely to be representative of stratified turbulence events, not necessarily generated829

by flows initially strongly unstable to Kelvin-Helmholtz billows (Salehipour et al. 2015;830

Salehipour & Peltier 2015; Salehipour et al. 2016a).831

However, recent direct numerical simulations at high Reynolds number and numerous832

recent observations of deep ocean turbulence have clearly shown that distinct overturns833

not only can exist, but in fact are typical in strong mixing zones. It almost appears as834

if the flow is trying to maximize efficiency of mixing by providing an efficient energy835

pathway into turbulence by stirring and storage of potential energy through overturns.836

Recent field experiments focused on abyssal ocean mixing (where mixing plays a key role837

in closure of abyssal branch of ocean meridional overturning circulation) have all found838

turbulence to be induced by continuous excitations of large overturns scaling from a few839

meters up to 500 meters (Ferron et al. 1998; Frants et al. 2013; Mater et al. 2015; Voet840

et al. 2015). Thus, we conjecture that underestimation of mixing due to partial neglect of841

the role of overturns may well obscure significantly the apparent tendency of turbulence842

to maximize its mixing efficiency through such overturns.843

We think it useful to reiterate our reasoning for not adding data from low Ri0 cases844

to figure 7(a). Since the growth rate of the primary Kelvin-Helmholtz instability is a845

monotonically decreasing function of Ri0, it is tempting to decrease Ri0 to reduce com-846

putational cost since the simulation will in principle need to be conducted for a shorter847

time interval for a given computational domain. However, this reduction in computational848

cost is likely to be swamped by the need to consider larger computational domains, to849

capture at least some of the merging dynamics, which inevitably introduces large scale850

stirring. Furthermore, as discussed earlier, the spanwise extent of the domain may pos-851

sibly need to be expanded to host braid instabilities dominating turbulence transition852

in the weak stratification limit. Suppressing the stirring associated with such large scale853

streamwise and spanwise secondary instabilities inevitably reduces the amount of mix-854

ing which apparently occurs in a simulation in a smaller domain. Indeed, it is entirely855

possible that as Re is increased, the relative intensity of secondary instabilities at such856

smaller Ri0 may change in as yet not fully understood ways. Since the extent to which857

such considerations can influence our low Ri direct numerical simulations has not been858

fully explored due to computational limitations, we refrain from presenting quantitative859

arguments about mixing properties of such simulations. A detailed discussion of the po-860

tentially misleading nature (at least insofar as geophysically relevant mixing is concerned)861

of low Ri numerical simulations designed to produce high Reb during the flow evolution862

is presented in Bartello & Tobias (2013).863

In summary, while a number of studies have attempted to parameterize mixing effi-864

ciency as a function of Reb or in terms of LO/LT (see Bouffard & Boegman 2013, for a865

review), we find neither approach to be sufficient. Essentially, Reb includes information866

concerning LO and LK , while the ratio LO/LT clearly lacks explicit information about867

LK . As demonstrated here, knowledge of all three scales is needed for characterizing868

shear-driven stratified turbulent mixing, and so we believe that the large discrepancies869

between various attempts at parameterizing mixing based on either Reb or LO/LT are due870

to a lack of such additional knowledge. Despite such discrepancies, we have demonstrated871

here that the specific role in the efficiency of mixing of the large overturns themselves872

is significant, corresponding to a non-negligible portion of the turbulence life cycle in873

which LT > LO. The role of overturns also appears to be similar for the data from our874
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Figure 7. Scatter plot of LT versus LO from DNS (a) and observations(b,c,d). (a) From DNS
cases 6-14 of table 1. (b) From FLX91 oceanic dataset collected ∼1000 km off the coast of
northern California. (c) From the TIWE oceanic dataset collected at the equator at 140oW. (d)
From lake observations made at thermocline depth in lake Erie in 2008-2009. More information
about the sources of these datasets are provided in Appendix I. The lines in each panel represent
LT = LO , LT = 4 × LO and LT = 0.25 × LO . Symbol colors and colorbars represent mixing
efficiency ηa. Note that the axes in panel (a) are normalized by Lsc as was the case throughout
this paper while in panels (b-d) they are in units of meters.

simulations and for ocean and lake data. Such efficient mixing is inherently associated875

with the presence of large-scale overturns. The clearly more efficient mixing associated876

with such overturns is systematically left out of conventional parameterizations (based877

around the classical model of Osborn (1980) assuming Γ 6 0.2) that are used to infer878

mixing rates from observations.879

7. Discussions880

We have analyzed a sequence of direct numerical simulations of stratified turbulent881

mixing events driven by classical shear instability, focusing on a consideration of the882

relative time-dependence of various natural length scales of turbulence and the impli-883

cations of aspects of this relative time-dependence for the irreversible vertical mixing884

of density. Our analyses demonstrate that for ‘small’ stratification, the turbulence and885
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ensuing mixing is dominated by large density overturns and pairing interactions and so886

any parameterization based on the assumptions of stationary fully developed isotropic887

turbulence does not hold, in the specific sense that the assumptions I-IV mentioned in888

the Introduction do not hold. It is important to note, however, that there is evidence889

that the upscale cascade due to pairing instability may well be suppressed at sufficiently890

high (perhaps more geophysically relevant) Reynolds numbers, a regime that we have891

been unable to access with the currently employed suite of direct numerical simulation892

analyses, although there is always the possibility that other processes may become more893

important as Re increases markedly.894

Conversely, for ‘large’ stratification with minimum Richardson number sufficiently close895

to the critical Miles-Howard value of 1/4, mixing is highly time-dependent and a pro-896

longed intermediate period of isotropic stationary turbulence is absent, corresponding to897

the break down of assumptions II-III mentioned in the Introduction. In this regime, the898

scale separation between LO and LK is relatively narrow and turbulence is greatly influ-899

enced by the suppressing influence of stratification. However, it is unclear whether this900

behaviour is affected by finite Reynolds number effects, as the growth rate of the primary901

instability is so small that diffusion of the background flow may be affecting adversely902

the maximum saturated amplitude of the primary instability, in as yet poorly-understood903

ways.904

We argue that the behaviour at slightly smaller intermediate levels of stratification,905

where pairing events are suppressed, and yet the primary instability is sufficiently vigor-906

ous to allow for the onset of a large ‘zoo’ of secondary instabilities which trigger energetic907

turbulence leads to a ‘generic’ shear-driven stratified mixing behaviour. Specifically, this908

generic behavior exhibits a very efficient turbulence downscale cascade through the iner-909

tial subrange when LT > LO due to the large pool of potential energy available to sub-LO910

eddies due to the large initial overturn, whose vertical scale is characterized by LT . This911

translates into high mixing efficiency, which peaks when LT ∼ LO as at that particu-912

lar time stirring becomes ‘optimal’ since it is occurring at the largest energy injection913

scale possible that is not suppressed by stratification. Although we refer to this behavior914

as ‘generic’, it is important to note that the existence of the early LT > LO regime,915

particularly associated with relatively large-scale overturnings, is not guaranteed in the916

evolution of all shear-unstable flows, and is likely to be environment-dependent. For ex-917

ample, Kelvin-Helmholtz billows in an energetic estuary have been shown not to evolve918

distinct vorticity cores which store potential energy with the effective LT being relatively919

small(Geyer et al. 2010) while other forms of shear instability (such as the Holmboe in-920

stability, see Salehipour et al. (2016a) for further details) are not characterized by large921

overturns, but rather drive mixing principally through ‘scouring’ (Woods et al. 2010).922

However, energetic overturning billows similar in structure to those described here have923

been observed growing on low-frequency internal tides in the abyssal ocean (van Haren924

& Gostiaux 2010, 2012), in deep ocean fracture zones (Van Haren et al. 2014) and in925

the thermocline (Thorpe 2005). And as we discussed earlier, several deep-ocean field pro-926

grams have repeatedly shown that abyssal diapycnal mixing is faciliated through large927

overturns which can range in size from a few to hundreds of meters (Ferron et al. 1998;928

Frants et al. 2013; Mater et al. 2015; Voet et al. 2015).929

We show not only that mixing efficiency depends upon LO/LT , but that it also de-930

pends on the scale separation between LO and LK , i.e. the width of the inertial subrange931

of turbulence, or equivalently the magnitude of the buoyancy Reynolds number Reb.932

Fundamentally, the key constituents of efficient and vigorous mixing are that LT & LO933

and LO/LK is sufficiently large. Therefore, we argue that parameterization of mixing934

efficiency based on Reb = (LO/LK)4/3 alone is insufficient as it misses the important935
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relative properties of LT and LO, while parameterization based on LT /LO alone is also936

insufficient as it misses the Reb contribution. We conjecture that the key physics of both937

an optimal injection scale and a wide inertial subrange are required. Such flows also vio-938

late assumption IV presented in the introduction, as there is not a large scale separation939

between the external forcing (characterized by LT ) and the turbulence (characterized at940

the largest scale by LO).941

It is important to note that while some parameterization schemes for inferring mixing942

from observations assume isotropy of the turbulence (Osborn 1980; Osborn & Cox 1972),943

a large number of observational studies which measure both LT and LO suggest that LT >944

LO, implying non-negligible anisotropy (Dillon 1982; Crawford 1986; Ferron et al. 1998;945

Smyth et al. 2001; Mater et al. 2015). In fact, LO/LT = 0.8 is a standard choice made to946

obtain the dissipation rate E from LT calculated based upon finestructure measurements947

of temperature or salinity and when microstructure estimates are unavailable (see for948

example Waterhouse et al. (2014)). It is particularly important to note that while 0.8949

might be a reasonable turbulence lifecyle mean for LO/LT , the fact that the ratio is likely950

much higher during the intermediate period of flow evolution in which buoyancy flux is951

maximized (as a result of the coexistence of distinct overturns upon which turbulence is952

superimposed) implies an underestimation of mixing when a constant ratio is used in the953

finescale parameterization based on the Thorpe scale. Just how large this underestimation954

is, and how parameterizations may be modified to capture the mixing associated with955

large-scale overturnings are both topics of ongoing research (see for example Mashayek956

et al. (2017)).957

Appendix I: data sets958

The first two oceanic datasets employed for construction of panels (b) and (c) in figure959

7 were introduced in Smyth et al. (2001). Panel (b) corresponds to the FLX91 dataset960

which was collected during the FLUX STATS cruise in 1991 approximately 1000 km off961

the coast of northern California (Moum 1996). The dataset used in panel (c) is from962

the Tropical Instability Wave Experiment (TIWE) and was collected at the equator at963

140oW in 1991 (Lien et al. 1995). The dataset used in the construction of panel (d) in964

figure 7 was introduced in Bouffard & Boegman (2013) and corresponds to observations965

made at thermocline depth in Lake Erie during the summers of 2008-2009.966

Appendix II: L3D
T vs LT and caveats for oceanographic implications967

Our focus in this paper was upon the role of overturns on turbulent mixing in geo-968

physical shear flows, and more specifically a focus on conditions relevant to oceans and969

lakes. The main message of the paper was based on analysis of energy conversion from970

the mean kinetic energy (provided by large scale forcing from a variety of sources includ-971

ing estuarine exchanges, low frequency internal wave shear etc.) to available potential972

energy and from there to a cascade of overturns that take energy down to scales at which973

diapycnal mixing and viscous dissipation occur. Our main message is that the existence974

of an intermediate nontrivial overturning scale between the mean background flow and975

small scale turbulence allows for an efficient energy pathway into diapycnal mixing by976

providing additional stirring and filamentation, thereby enhancing the efficiency of mix-977

ing. To convey this message and its sensitivity to variations in Reynolds and Richardson978

numbers, we employed a definition of the Thorpe scale, referred to as L3D
T , which is only979

really practical in three-dimensional numerical modeling. In this appendix we provide a980

number of caveats highlighting the differences between this measure of overturning and981
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the one-dimensional classical Thorpe scale LT , which for practical limitations is used to982

infer mixing rates and is constructed from localized profile measurements in oceanic and983

lake environments. We emphasize that the main message of our work does not depend984

on the differences we highlight here. Indeed, the importance of taking into account the985

existence of such an intermediate overturning scale in parameterization of mixing in the986

oceanographic context has already been pointed out by Kunze (2014). Our research pro-987

vides a further fluid mechanical basis for such an argument. Furthermore, we note that988

while L3D
T cannot be obtained from observations, certain observational techniques such989

as those employed by Geyer et al. (2010) provide a series of parallel profiles measured990

through turbulent wave trains. Such measurements can provide a means for constructing991

a L2D
T to fill in the gap between our study and the majority of observational studies992

based on one-dimensional LT .993

While physically meaningful and suitable for diagnosis from numerical models, the994

rms three-dimensional Thorpe scale L3D
T obtained in this work by full three-dimensional995

sorting of the density field has important differences from the one-dimensional LT . Im-996

portantly, while the L3D
T can be nonzero in the presence of a propagating wave without997

any overturns, or even in the presence of an overturn riding on a background low fre-998

quency internal wave, just to take two examples, the one-dimensional LT is only nonzero999

in the presence of true overturns. In our study, however, we have only considered flows1000

strongly susceptible to the Kelvin-Helmholtz instability, which overturns upon initiation1001

of (exponential) growth. Thus, this caveat (that L3D
T may return a ‘false positive’ of1002

overturning) does not concern our specific application and so we are safe in using L3D
T1003

as a surrogate for an overturning scale.1004

A close comparison of the three-dimensional and one-dimensional Thorpe scales was1005

provided by SM00. They found that the three-dimensional scale exceeds the one-dimensional1006

scale in the decay period of turbulence (induced by shear instability) when the Thorpe1007

scale is small. The generality of this argument in a more complex environment in which1008

vertical displacements are not entirely or even partially driven by overturning instabilities1009

is unclear, especially noting that (as mentioned above) there are scenarios in which the1010

three-dimensional displacement scale might be nonzero while the one-dimensional scale1011

remains zero due to lack of overturning. Nevertheless, this difference is not of central1012

importance in the class of flows which we are considering, since in the case of shear in-1013

stability both scales are measures of the physical overturning scale, are not too different1014

during the most energetic phase of turbulence over which most of the contribution to the1015

net buoyancy flux is made, and can be employed to provide a measure of the width of1016

the spectral gap between the energy injection scale and the upper bound of the inertial1017

subrange.1018

However, during the decay period of turbulence, the one-dimensional Thorpe scale is1019

smaller than the three-dimensional Thorpe scale. Therefore, it is to be expected that1020

LO/LT grows larger with time than LO/L
3D
T . This has implications for our discussion1021

of figure 6: while LO/LT is likely a monotonically increasing function of time and hence1022

might be more naturally treated as a proxy for turbulence age, LO/L
3D
T is not as clear1023

a proxy. From a physical point of view, the difference between LO/L
3D
T and LO/LT1024

in the decay period of turbulence in a flow susceptible to Kelvin-Helmholtz instability1025

is testament to the shortcomings of LT in capturing the totality of the significant flow1026

physics. A close look at figure 6(a) (which represents cases that, unlike those in panel (b),1027

allow for interactions between adjacent billows) reveals that the ratio ROT = LO/L
3D
T1028

remains O(1) during the decay period of the turbulence. This suggests that as turbulence1029

decays and the energy injecting eddies shrink, so does the Ozmidov scale accordingly.1030

This further suggests that the eddies associated with the dominant energetic injection,1031
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which are decaying in amplitude and magnitude since the turbulent kinetic energy and1032

the Thorpe scale are both dropping, may also be thought of as the largest eddies not1033

yet suppressed by turbulence. Conversely, ROT ≡ LO/LT (based on the one-dimensional1034

Thorpe scale) suggests that LT can become much smaller than LO in this period, which1035

implies that energy injection eddies are much smaller than the maximum size which1036

is not suppressed by stratification, which seems somewhat inconsistent from a physical1037

perspective.1038

As we discussed above, despite these subtle differences, there are at least two further1039

leading order issues with this proxy. First, it is overly sensitive to the initial conditions of1040

shear instability, in particular whether adjacent billows can interact or merge. Second, it1041

remains to be shown if the evolution of the ratio in observations of more complex nature1042

agrees with that based on shear instability analysis such as ours and that of SM00. While1043

we have provided evidence that scatter plots of LO versus LT from observations have1044

certain similarities with our data based on direct numerical simulations, as already noted1045

in section 6, there is no explicit information about time evolution and turbulence age in1046

such observational data. Adding such ‘time-stamp’ information clearly warrants future1047

study.1048
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