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Abstract

The low-Reynolds number hydrodynamics of slender ribbons is accurately captured by slender-

ribbon theory, an asymptotic solution to the Stokes equation which assumes that the three length

scales characterising the ribbons are well separated. We show in this paper that the force distribu-

tion across the width of an isolated ribbon located in a infinite fluid can be determined analytically,

irrespective of the ribbon’s shape. This, in turn, reduces the surface integrals in the slender-ribbon

theory equations to a line integral analogous to the one arising in slender-body theory to determine

the dynamics of filaments. This result is then used to derive analytical solutions to the motion of

a rigid plate ellipsoid and a ribbon torus and to propose a ribbon resistive-force theory, thereby

extending the resistive-force theory for slender filaments.
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I. INTRODUCTION

Stokes flows problems are appealing to mathematicians because of the large array of

asymptotic tools available to solve them [1]. There are, however, relatively few exact solu-

tions [1–3]. These analytical solutions are usually found in one of three ways: (a) solving the

Stokes equations directly [1, 4]; (b) analytically inverting a boundary integral formulation

[5]; or (c) using judiciously-placed flow singularities [6]. Both methods (a) and (b) require

the use of a clever coordinate system that matches the geometry of the problem (such as

spherical, ellipsoidal, toroidal or bi-spherical coordinates), in order to derive analytical so-

lutions; in contrast, method (c), a singularity representation, requires only a guess at the

type of flow singularities needed and where these singularities are located.

The boundary integral formulation (b) is very powerful and is often used for numerical

calculations [7], while the singularity method (c) lends itself better to series expansions or

situations where a numerical discretisation of the body surface would become difficult [8, 9].

An example of such a shape, for which discretisation is difficult, is a long thin cylindrical

filament since an appropriate a computational mesh needs to resolve both the width and

the length of the filament. Slender filaments abound in the biological world, for example the

flagella that many microorganisms use to propel themselves [10]. Therefore it is important

to have appropriate models to capture their low-Reynolds number dynamics.

The main mathematical technique used to accurately capture the hydrodynamics of slen-

der filaments in a flow is called slender-body theory (SBT)[11–13]. This technique relies on

slender-body having two regions of behaviour: a local cylindrical region that scales with the

filament’s width, 2rb, and a long range hydrodynamic interaction region that scales with

the filament length, 2`,. These two regions are then matched together to capture the total

flow. This matching can be done in a number of ways, thereby creating multiple versions of

the theory. For example Keller and Rubinow’s SBT [13] matches the Stokes flow around an

infinite cylinder, method (a) above, to a line of stokeslets (point forces), method (c). This

creates a physically intuitive version of SBT that is accurate to rb/`. Alternatively Johnson’s

SBT [12] mathematically represents the total flow around a slender filament by placing a

series of singularity solutions to the Stokes equations along the filament’s centreline, method

(c), and then expanded the solution in orders of the thickness over length. Though less in-

tuitive, this method also determines the structure of the higher order corrections exactly.
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This enabled Johnson to show that his leading order equation predicted the force accurately

to order (rb/`)
2 ln(rb/`). Hence Johnson’s SBT is considered the most accurate. Specifically

he found that the leading-order velocity of the filament at arclength s along the centerline,

U(s), is given by

8πµU(s) =

∫ `

−`

[
I + R̂0R̂0

|R0|
· f(s′)− I + t̂t̂

|s′ − s|
· f(s)

]
ds′

+ ln

(
4`2(1− s2)
r2bρ(s)2e

)(
I + t̂t̂

)
· f(s) + 2

(
I− t̂t̂

)
· f(s), (1)

where f(s) is the (unknown) force distribution along the body’s centreline [12, 14]. In the

above equation, e is the exponential, ρ(s) is the dimensionless radial surface distribution (so

that the surface of the body is located at r = rbρ(s)), R0 = r(s)−r(s′) is the vector between

points at s and s′ on the centreline and t̂ is the unit tangent to the centreline at location s.

Johnson’s SBT has been very successful in capturing the hydrodynamics of slender filaments

in a variety of settings [10, 15–19] and can be used to determine the hydrodynamics of

thin prolate ellipsoids [12, 16] and slender tori [8] analytically. The use of slender-body

theory, combined with accurate experimental measurements, has significantly improved our

understanding of the motion of swimming microorganisms [10, 20–22]. This understanding

has then prompted the scientific community to create artificial microswimmers [23–25].

As a difference with biological swimming cells, many artificial swimmers use slender ap-

pendages in the shape of ribbons rather than filaments [23, 26]. These slender-ribbons are

seen to exhibit different physics to a slender-filament [27–30], thereby requiring new tools

to mathematically model their behaviour. Fundamentally, many problems in the natural or

industrial world are concerned with slender bodies shaped like ribbons, including swimming

sheets [31, 32], curling ribbon membranes [33, 34] and carbon nano-ribbons [35]. Recently

we derived a slender-body theory-like expansion to describe the hydrodynamics of ribbons

[36]. This theory, which we called slender-ribbon theory (SRT), was seen to give accurate nu-

merical results and capture the dynamics of ribbon shaped artificial microswimmers. While

the derivation of the method was all done analytically, the final result was a double integral

equation which had to be inverted numerically. Since, in the case of filaments, some analyt-

ical solutions to SBT exist, we consider in this paper the extension to the case of ribbons

and show that analytical solutions to SRT do exist as well.

Specifically we show in this paper that the force distribution across a slender ribbon’s
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Figure 1. Sketch of a slender-ribbon of length 2`, width 2b and thickness 2a: t̂ is the tangent vector

to the ribbons centerline, T̂ is a unit vector pointing in the direction of the ribbons width, ρ(s1) is

the cross-sectional shape of the ribbon width, and s1 and s2 are the arclengths along the ribbon’s

centreline and width, respectively.

width can be solved exactly for any arbitrary isolated ribbon. This significantly simplifies

the general SRT equations, reducing the surface integrals to a line integral. By considering

the hydrodynamics and settling behaviour of a long flat ellipsoid and a ribbon torus we

show that the line integrals can be solved exactly in these cases, thus providing analytical

solutions.

The paper is organised as follows. In Sec. II we briefly summarise the derivation of

slender-ribbon theory before discussing the challenges in solving the final integral equations

analytically in Sec. III A. We then solve for the force distribution across the ribbons width

arbitrarily (Sec. III B) and use this result to simplify the general SRT equations for an

arbitrary isolated ribbon (Sec. IV). Finally in Sec. V we analytically determine the rigid-

body hydrodynamics and settling behaviour of a long flat ellipsoid (Sec. V A) and of a ribbon

torus (Sec. V B).
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II. SLENDER-RIBBON THEORY

A. Finite ribbons

Consider a slender ribbon defined by its centreline, r(s1), and a unit vector T̂(s1) which

is perpendicular to the centrelines tangent vector, t̂(s1), and points in the direction of the

ribbon’s width (see sketch in Fig. 1). The slenderness of the ribbon is enforced by assuming

that the centreline length of the ribbon, 2`, is much larger than the width, 2b, which itself is

much larger than the thickness 2a, i.e. `� b� a. The hydrodynamics of the ribbon is then

determined by placing stokeslet singularities (point forces) over an imaginary plane which

lies within the ribbon and expanding the resulting velocity on the ribbon surface in orders

of b` ≡ b/`� 1 and a` ≡ a/`� 1 [36].

This expansion is performed similarly to that of Johnson’s slender-body theory [12, 37]

in order to accurately quantify the error and higher order corrections of the expansion [38].

Similarly to all slender-body theories, slender-ribbon theory also exhibits multiple regions of

behaviour. However unlike slender-body theory, three relevant regions are found: an outer

region, capturing the long range physics of the fluid, a middle region, where the body is

locally a flattened cylinder, and an inner region, where the body is locally an infinite flat

sheet. In accounting for each of these regions, the relevant physics from the limits b` → 0

and a/b → 0 is captured and the result becomes independent of the order of limits taken.

Mathematically this is supported by the fact that a/b only occurs in product with b` within

the expanded functions [36]. This derivation generates an integral equation, valid to O(b`),

with the form

8πU(s1, s2) =

∫ 1

−1
ds′1

[
I + R̂0R̂0

|R0|
· 〈f〉 (s′1)−

(
I + t̂t̂

)
|s′1 − s1|

· 〈f〉 (s1)

]

+

∫ 1

−1
ds′2

[
ln

(
4(1− s21)

b2`ρ(s1)2(s2 − s′2)2

)(
I + t̂t̂

)
· f(s1, s

′
2)

]
+2
(
T̂T̂− t̂t̂

)
· 〈f〉 (s1), (2)

where U(s1, s2) is the velocity on the surface of the ribbon at arclengths (s1, s2), ρ(s1) is the

cross-sectional shape of the ribbon width, f(s1, s2) is the force distribution over the stokeslet

plane, s1 is the arclength along the centreline, s2 is the arc-length along the ribbons width,

R0 = r(s1)− r(s′1) and 〈·〉 ≡
∫ 1

−1 ds2 denotes the total across the width of the ribbon. The

beyond O(b`) corrections to this equation are of O(b2`) or O(a`) depending on the relative
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dimensions of the ribbon. Note that the integral equation in Eq. (2) is dimensionless; lengths

have been scaled by `, velocities by a typical ribbon velocity U , forces by µ`U and torques

by µ`2U . Furthermore, in order to obtain Eq. (2) one assumes that ρ(s1) is locally ellipsoidal

near the ends of the ribbon.

The total force and torque on the fluid from the ribbon are then given by

Fh =

∫ 1

−1
ds1

∫ 1

−1
ds2 f(s1, s2), (3)

Lh =

∫ 1

−1
ds1

∫ 1

−1
ds2 Y(s1, s2)× f(s1, s2), (4)

where Y(s1, s2) = r(s1) + b`s2ρ(s1)T̂(s1) is the scaled ribbon plane. These equations have

been shown to accurately capture both known theoretical results and experimental measure-

ments [36].

B. Looped ribbons

The above equations characterise the hydrodynamics of a finite ribbon of total length 2`.

The extension to looped ribbons is found through a similar derivation to that of Ref. [36],

but with s′1 replaced by a s1 + q where q is now the integration variable (see details in

Appendix A). This substitution describes a looped system as the integration becomes inde-

pendent of the choice of origin (s1 = 0). As shown in Appendix A, the SRT equations for

looped ribbons are equivalent to substituting

s′1 → s1 + q, (5)∫ 1

−1
ds′1 →

∫ 1

−1
dq, (6)

ln

(
4(1− s21)

b2`ρ
2(s1)(s2 − s′2)2

)
→ ln

(
4

b2`ρ
2(s1)q2

)
, (7)

into Eq. (2), with the understanding that ρ(s1) remains non-zero anywhere along the cen-

treline.
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III. ANALYTICAL SOLUTIONS

A. The potential difficulty

Due to the first and second integrals on the right hand side of Eq. (2), it is unclear if the

SRT integral equation has any rigid-body analytical solutions. The first integral, which we

term the outer integral, closely resembles the outer integral in slender-body theory (integral

in Eq. 1). In the case of slender bodies, this integral can be simplified for simple shapes such

as rods [12, 16] and tori [8], and an analogous simplification is probably doable for ribbons

as well.

The second integral on the right-hand side of Eq. (2), which we call the logarithm integral,

is however new to the SRT equations. This integral is done over the width of the ribbon,

only depends on the scaled-ribbon plane locally (i.e. it is independent of s′1) [36], and is the

only term involving s2 on the right hand side of Eq. (2). As a consequence, any velocity of

the surface of the ribbon with non-zero s2 dependence is generated from this integral. The

requirement to generate the s2 motion therefore determines the force distribution across the

ribbons width (the s′2 dependence) for all ribbons. Splitting the logarithm integral as∫ 1

−1
ds′2 ln

(
4(1− s21)

b2`ρ
2(s2 − s′2)2

)(
I + t̂t̂

)
· f(s1, s

′
2)

= ln

(
4(1− s21)
b2`ρ

2

)(
I + t̂t̂

)
· 〈f〉 (s1) +

(
I + t̂t̂

)
·
∫ 1

−1
ds′2 ln

(
1

(s2 − s′2)2

)
f(s1, s

′
2), (8)

explicitly separates the behaviour which depends on s2 (second term) to that without (first

term). Since this second integral, in combination with the s2 dependence of the velocity,

defines the force distribution in s′2 to within an arbitrary proportionality constant we can

focus on the integral

I(s1, s2) =

∫ 1

−1
ds′2 ln

(
1

(s2 − s′2)2

)
f(s1, s

′
2), (9)

instead of the full logarithm integral without any loss of generality. This above integral

has no dependence on the scaled-ribbon plane, indicating that the force distribution in s′2 is

independent of the ribbon’s shape. Hence using I(s1, s2) the force distributions in s′2 can be

determined generally and then inserted into Eq. (2) to simplify the general slender-ribbon

equations.
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B. The force distribution along the width (in s2)

Analytical solutions to SRT require knowledge of the dependence of the force density

across the width of the ribbon, i.e. along the s2 direction. As discussed above, this distri-

bution is independent of ribbon’s shape and when inserted into Eq. (9) it produces the s2

dependence of ribbon’s velocity (i.e. the left-hand side of Eq. 2). It is therefore important

to determine how the velocity of the ribbon depends on s2 for an arbitrary motion and

deformation.

One of the important underlying assumptions of SRT is that the surface of the slender

ribbon moves rigidly with the scaled-ribbon plane. Since a scaled-ribbon plane undergoing

an arbitrary deformation is described by

Y(s1, s2, t) = r(s1, t) + b`s2ρ(s1)T̂(s1, t), (10)

the surface velocity of a slender ribbon undergoing rigid-body translation at speed Ur and

angular rotation at speed Ωr becomes

U(s1, s2, t) = Ur + Ωr ×Y(s1, s2, t) + ∂tY(s1, s2, t)

= Ur + Ωr × r(s1, t) + ∂tr(s1, t) + b`s2ρ(s1)
[
Ωr × T̂(s1, t) + ∂tT̂(s1, t)

]
,(11)

where t denotes time. The above equation shows that, for an arbitrary deformation and

rigid-body motion, the ribbon’s velocity is at most linear in s2. With this in mind we may

redefine the force as

f = f1(s1)g1(s2) + f2(s1)g2(s2), (12)

where the functions g1(s2) and g2(s2) satisfy∫ 1

−1
ln

(
1

(s′2 − s2)2

)
g1(s

′
2) ds

′
2 = 2π ln(2), (13)∫ 1

−1
ln

(
1

(s′2 − s2)2

)
g2(s

′
2) ds

′
2 = 2πs2. (14)

In the above f1(s1) represents the force distribution along the centreline generated from

motions that do not involve the width arclength s2, f2(s1) represents the force distribution

along the centreline from motions that involve s2 linearly, and the proportionality constants

of the integral equations where chosen for future simplicity.
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The above integral equations are special cases of Carleman’s equation [39, 40]. Carleman

showed that for integral equations of the form

∫ 1

−1
ln |s′2 − s2| g(s′2) ds

′
2 = f(s2), (15)

g(s′2) can be written in terms of integrals of f(s2), where g(s′2) is the unknown function and

f(s2) is the arbitrary forcing [39]. These general integrals are listed Ref. [40], Eqs. 3.4.2-4,

and can easily evaluated in the case of linear or constant f(s2). Hence, using these results,

the g1 and g2 distributions are

g1(s2) =
1√

1− s22
, (16)

g2(s2) =
s2√

1− s22
· (17)

The above 1/
√

1− s2 force dependence is likely a result of taking the asymptotically thin

limit of the ribbons surface, ` � b � a. Though this dependence gives an infinite force

density at the edges, this force distribution lies on an imaginary plane within the ribbon and

therefore no actual point over the surface of the ribbon experiences this force. Furthermore,

the total force across the ribbons width, s2, is finite and so measurable values of the force and

moments are finite. A similar divergence is seen for an infinitely thin flat plate in potential

flow where the velocity profile has a s/
√

1− s2 velocity distribution along the plates surface

[41].

IV. THE REDUCED SLENDER-RIBBON THEORY EQUATIONS

In the previous section, we determined that the force distribution across a ribbon’s width

can be written as Eqs. (16) and (17). These functions are integrable and simplify the

logarithmic integral, Eq. (9), to generate the relevant ribbon motion. The gi(s2) functions

can therefore be used to considerably simplify the SRT equations for an arbitrary isolated

ribbon.

Inserting Eqs. (12), (16) and (17) into Eq. (2) the equations for an arbitrary isolated
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slender-ribbon reduce to

8πU(s1, s2) = π

∫ 1

−1
ds′1

[
(I + R̂0R̂0) · f1(s′1)

|R0|
− (I + t̂t̂) · f1(s1)

|s′1 − s1|

]
+π
[
LSRT (I + t̂t̂)− 2t̂t̂ + 2T̂T̂

]
· f1(s1)

+2π(I + t̂t̂) · (ln(2)f1(s1) + s2f2(s1)) , (18)

for finite bodies with ρ =
√

1− s21 or

8πU(s1, s2) = π

∫ 1

−1
dq

[
(I + R̂0R̂0) · f1(s1 + q)

|R0|
− (I + t̂t̂) · f1(s1)

|q|

]
+π
[
LSRT (I + t̂t̂)− 2t̂t̂ + 2T̂T̂

]
· f1(s1)

+2π(I + t̂t̂) · (ln(2)f1(s1) + s2f2(s1)) , (19)

for looped bodies. In these equations we have denoted LSRT = ln(4/b2`).

Comparing Eq. (2) with the SRT equations above, Eq. (18), we see that it has now been

reduced from a series of line and surface integrals into a single line integral with additional

constant terms. Not only is this structure very similar to the slender-body theory equations,

the line integral is identical to the line integral in slender-body theory, Eq. (1), with an added

pre-factor of π. This correspondence allows any centreline, r(s1), previously calculated using

slender-body theory to be easily adapted to the case of slender ribbons. Furthermore, since

slender-body theory is known to possess analytical solutions in the case of rigid motions, we

expect analytical slender-ribbon analogues to also exist.

V. RIGID-BODY ANALYTICAL SOLUTIONS TO SLENDER-RIBBON THEORY

There exists two classic analytical solutions to slender-body theory: the thin prolate

ellipsoid [12, 16] and the cylindrical torus [8]. In this section we take advantage of the

correspondence between the SBT and SRT equations to characterise theoretically the rigid-

body motion of long flats ellipsoids and of a ribbon torus.

A. Rigid-body motion of a long flat ellipsoid

The long flat ellipsoid is the simplest shape that slender-ribbon theory can describe. In

this case, the centreline is straight and the vector T̂ is constant. Formally this ellipsoidal
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Figure 2. (a) A long flat ellipsoid with all the parameters describing the ribbon illustrated; (b)

Image depicting the ribbon resistance coefficients: translation (left) and rotation (right).

structure is given by

r(s1) = s1x̂, (20)

T̂ = ŷ. (21)

This shape illustrated in Fig. 2a. With this parametrisation the remaining integral in

Eq. (18) has eigenfunctions of Legendre polynomials with known eigenvectors [15, 36, 37].

In addition, only the zeroth (P0(s1) = 1) and first (P1(s1) = s1) Legendre polynomial will

be needed to solve these equations for rigid motion.

1. Translation

We first consider the rigid translation of the long flat ellipsoid. For all rigid translations

the velocity is constant across the sheet. Therefore f1 should be constant and f2(s1) = 0.

The equations to solve then are

8πU = π [(LSRT + ln(4))(I + x̂x̂)− 2x̂x̂ + 2ŷŷ] · f1. (22)
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The total force, Fh, and torque, Lh, acting on the fluid (i.e. opposite to the drag) as a result

of the rigid-body translation of a long flat ellipsoid are thus

Fh = 16π [(LSRT + ln(4))(I + x̂x̂)− 2x̂x̂ + 2ŷŷ]−1 U, (23)

Lh = 0. (24)

The above force exhibits a structure ∝ 1/(ln(`/b)+ξ), where ξ is some constant, very similar

to the forces exerted by a thin prolate ellipsoid, ∝ 1/(ln(2`/b)± 1/2) [6]. These coefficients

are identical to previously calculated drag coefficients for an ellipsoid using SRT [36](not

shown).

2. Rotation

The hydrodynamics of rigid rotation is now considered for plate ellipsoids. In the case

of rigid-body rotation the velocity is proportional to s1 and s2. Hence f1(s1) = s1c1 and

f2(s1) 6= 0, where c1 is an unknown constant vector. Separating the constant terms from

those proportional s2, the equations become

8πs1Ω× x̂ = πs1 [(LSRT + ln(4)− 2)(I + x̂x̂)− 2x̂x̂ + 2ŷŷ] · c1, (25)

8πblρ(s1)s2Ω× ŷ = 2πs2(I + x̂x̂) · f2(s1). (26)

thereby providing the body with a net force and torque of

Fh = 0, (27)

Lh =
16π

3
x̂×

{
[(LSRT + ln(4)− 2)(I + x̂x̂)− 2x̂x̂ + 2ŷŷ]−1 Ω× x̂

}
+

8πb2l
3

ŷ ×
[
(I + x̂x̂)−1Ω× ŷ

]
. (28)

Again these coefficients agree with the previously numerically calculated resistance coeffi-

cients [36]. Also we note that the final term of the torque is very small; however this term

was shown to be accurate numerically in Ref. [36].

3. The resistance matrix and a ribbon resistive-force theory

The resistance coefficients of slender-bodies with ellipsoidal cross sections has been inves-

tigated previously by Batchelor [9]. This was done by using stokeslets to derive an integral
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equation for the force, accurate to order b` ln(b`), and then solving this equation iteratively

in powers 1/ ln(b`). In the ellipsoidal limit this expansion could then be solved to order

b` ln(b`). This gave an ellipsoid with semi-axes lengths 1, b` and a` a resistance matrix, RB,

of

RB =



8π

2 ln
[

4
b`+a`

]
−1

0 0 0 0 0

0 8π

ln
[

4
b`+a`

]
+

b`
b`+a`

0 0 0 0

0 0 8π

ln
[

4
b`+a`

]
+

b`
b`+a`

0 0 0

0 0 0 0 0 0

0 0 0 0 8π

3
(
ln
[

4
b`+a`

]
− b`
b`+a`

) 0

0 0 0 0 0 8π

3
(
ln
[

4
b`+a`

]
− b`
b`+a`

)


.

(29)

The results in Eq. (29) are identical to our SRT analytical solutions in the limit a` → 0, to

O(b`), thereby confirming our results.

With these results, a resistive-force theory for ribbons (RRFT) can be proposed. These

theories are practical, as they can provide physical insight and analytical approximations of

the drag and dynamics of a system [10, 42]. Fundamentally resistive-force theories assume

that the local hydrodynamics of any point along a slender body is similar to a the dynamics

of a straight body with the same cross section. As a result the force and torque per unit

length, at given point on the body, is approximately equal to the force and torque per

unit length experienced by a straight body for the same motion. This produces a linear

relationship between the local force and motion of the body. In this classic derivation

for slender cylindrical filaments (RFT) [10, 42], the asymmetric cross section creates two

proportionality coefficients, however for ribbons three coefficients are needed to capture the

three dimensional cross sectional shape. Therefore the local force and torque can be written

as

fRRFT (s1) =
[
ζRFTt t̂t̂ + ζRFTT T̂T̂ + ζRFTn (̂t× T̂)(̂t× T̂)

]
·U, (30)

`RRFT (s1) =
[
λRFTt t̂t̂ + λRFTT T̂T̂ + λRFTn (̂t× T̂)(̂t× T̂)

]
·Ω, (31)

where fRRFT is the approximate force per unit length at s1, `RRFT is the approximate torque

per unit length at s1, ζ
RFT
t , ζRFTT , and ζRFTn are the local resistance coefficients relating
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the force to the linear velocity at s1, and λRFTt , λRFTT , and λRFTn are the local resistance

coefficients relating the torque and angular velocity at s1. The subscripts on the resistance

coefficients denote their directionality, subscript t relating to the tangent direction, subscript

T relating to the T̂ direction and subscript n relating to the normal direction (̂t× T̂). The

total force and torque on a body, in RRFT, is therefore given by

FRRFT =

∫ 1

−1
ds1fRRFT (s1), (32)

LRRFT =

∫ 1

−1
ds1 [r(s1)× fRRFT (s1) + `RRFT (s1)] , (33)

where FRRFT and LRRFT are the total force and torque, respectively. These resistive-force

theories require the body to be exponentially thin. This is because the resistance from

the long range hydrodynamics interactions, present in the outer expansion region, is ln(b`)

smaller than the terms found in the inner region. The logarithms in Eqs. (1), (18), (19) are

a manifestation of this. As a result it is typically used to only capture the governing physics

qualitatively.

To determine the local resistance coefficients for RRFT we refer to the force and torque

distributions found for a long flat ellipsoid. Since RRFT assumes that any point is a locally

straight ribbon, the force an torque per unit length experienced by a point is therefore

equivalent to the force and torque per unit length of the long flat ellipsoid at its center,

s1 = 0. Therefore by integrating the force and torque distributions at s1 = 0 over s2, and

comparing the resultant drag with the structure of Eqs. (30) and (31), we find

ζRFTt =
4π

2 ln(4/b`)− 1
, (34)

ζRFTT =
4π

ln(4/b`) + 1
, (35)

ζRFTn =
4π

ln(4/b`)
, (36)

λRFTt = 2πb2` , (37)

λRFTT = 0, (38)

λRFTn = πb2` . (39)

Note that the classic resistive-force theory for slender filaments does not include a torque

relation equivalent to Eq. (31). This is due to these coefficients typically being negligible.

We however have included it here for the sake of completeness. Furthermore, it is possible
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Figure 3. A settling long flat ellipsoid. Top: Side view; Bottom: Ellipsoid viewed down −t̂; θ is

the angle between the centreline of the ellipsoid and the gravitational force, φ is the angle between

T̂ and the plane of the force and centerline and θd is the angle between the sedimentation velocity

and the gravitation force. The blue translucent image shows the ellipsoid with φ = 0, while the

orange solid image shows the ellipsoid when φ 6= 0.

to modify these coefficients to handle ellipsoidal cross sections using the results of Batchelor

[9], without any loss of generality.

4. The sedimentation of a long flat ellipsoid

The resistance coefficients for the long flat ellipsoid allow us to consider how these shapes

sediment under the action of gravity. It is well known that anisotropic bodies, such as rods,

settle in general at an angle to the applied gravitational force, which we term deflection

angle. In his famous “Low-Reynolds-number flows” movie, G. I. Taylor showed that the

maximum deflection angle for rods, with drag coefficient perpendicular to the road twice the

parallel drag coefficient, was approximately 19◦ [43].

The sedimentation velocity of a body of mass m can be found by balancing the gravita-
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tional force, −mgẑ, with the hydrodynamic forces. The flat ellipsoid under gravity is then

described by two angles: θ which measures the angle between the centreline of the ellipsoid

and the gravitational force and φ which gives the angle of the ribbons width, the vector T̂,

to the plane of the force and centreline (see sketch in Fig. 3). For convenience we define the

plane with the force and centreline to be in the ẑ-x̂ plane. The sedimentation velocity, Used,

of a long flat ellipsoid with length 2` then is

Used = − mg

2µζtζT ζn`


−1

4
sin(2θ) [ζt(ζT + ζn)− 2ζT ζn + ζt(ζn − ζT ) cos(2φ)]

−ζt [(ζn − ζT ) sin θ cos(φ) sin(φ)]

ζT ζn cos2(θ) + ζt sin2(θ)
[
ζn cos2(φ) + ζT sin2(φ)

]
 , (40)

in the (x, y, z) frame.

The deflection angle, θd, is defined as the angle between Used and −mgẑ and is solution

to

tan2(θd) =
U2
x + U2

y

U2
z

, (41)

where Ui is the velocity component in direction i. From this equation the maximum value

of θd can be found by maximising the right hand side with respect to θ and φ. Since

ζn > ζT > ζt, U
2
x + U2

y is maximised, and U2
z is minimised, for φ = π/2, irrespective of θ.

The maximum deflection occurs therefore when the motion is two dimensional and depends

only on ζt and ζn. This motion is identical to a settling rod and so the maximum deflection

angle, between the settling velocity and gravity, is given by

tan(θmax
d ) =

ζt − ζn
2
√
ζnζt

, (42)

when the angle between the ellipsoid’s centerline and gravity, θ, satisfies cos(2θ) = (ζt −

ζn)/(ζt+ζn) [44]. This orientation maximises the deflection as it creates the largest difference

between the drag parallel and perpendicular to gravity with the three resistance coefficients

available.

B. Rigid-body motion of a ribbon torus

After having addressed rigid ellipsoids, we now consider another shape for which slender-

ribbon theory can provide analytical solutions, namely the ribbon torus. Indeed, such a

shape has circular symmetries which can be exploited to simplify the outer integral.
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Figure 4. The scaled-ribbon plane of a ribbon torus: t̂ is the tangent vector to the centreline, n̂ is

the normal vector to the centreline, b̂ is the bi-normal vector, and T̂ is a vector pointing towards

the major axis of the ribbon’s cross section. This torus has a width of 2b`, a radius of 1/π and the

angle between the ribbons plane and the centerline’s normal vector is denoted θ.

The shape of a ribbon torus, illustrated in Fig. 4, is mathematically described by

r(s1) =
1

π
{cos(πs1), sin(πs1), 0} , (43)

t̂(s1) = {− sin(πs1), cos(πs1), 0} , (44)

T̂(s1) = cos (θ) n̂(s1) + sin (θ) b̂, (45)

where n̂(s1) = {− cos(πs1),− sin(πs1), 0} is the normal vector to the centreline and b̂ =

{0, 0, 1} is the bi-normal vector to the centreline. In this parametrisation θ determines how

the ribbon sits relative to the r plane: When θ = 0 the ribbon lies completely in the r plane,

while when θ = π/2 the ribbon sits perpendicular to it. The circular symmetries of this

shape prompts us to divide the force into components along t̂, n̂ and b̂, and to write

fi = fi,t(s1)̂t + fi,n(s1)n̂ + fi,b(s1)b̂. (46)

This parametrisation allows the rigid-body hydrodynamics of a ribbon torus to be found

from Eq. (19). Furthermore f2 is neglected for all these calculations as it always of order

b` or higher. This due to all the terms proportional to s2 in the surface velocity, Eq. (11),

also being proportional to b`. Since the system is linear and f2 must account for the terms

proportional to s2, f2 must also be proportional to b`, thereby making it negligible.
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1. Translation along torus axis (ẑ)

We first consider rigid translation in ẑ, in which case the system is axisymmetric. There-

fore the components of the force are constant, f1,i(s1) = Ci and the equations become
0

0

8πU

 = π [Γ + Θ]


Ct

Cn

Cb

 , (47)

where

Γij =

∫ 1

−1
dq x̂i(s1) ·

[
I + R̂0R̂0

|R0|
· x̂j(s1 + q)−

(
I + t̂t̂

)
|q|

· x̂j(s1)

]

≡


4L− 6 0 0

0 2L− 6 0

0 0 2L

 , (48)

Θ = L2

(
I + t̂t̂

)
+ 2

(
T̂T̂− t̂t̂

)
, (49)

and x̂i(s1) represents t̂, n̂ or b̂. Solving this equation the total force and torque on the torus

is

Fh =
8πU [cos(2θ) + 2L3 − 5]

3 cos(2θ)− 2L3 (2− L3)− 3
ẑ, (50)

Lh = 0, (51)

where

β1 = 6 cos(2θ) + 4L2 + 4L(L2 − 2) + (L2 − 4)L2 − 6, (52)

L = ln(4/π), L2 = ln(16/b2`), and L3 = ln(16/πb`). The above result shows that the force

from translation in ẑ is maximised when θ = 0 (T̂ = n̂) and minimized when θ = π/2

(T̂ = b̂) with a roughly sinusoidal dependence between the two. This is shown clearly in

Fig. 5a where we plot all resistance coefficients of the ribbon torus in the case b` = 10−2 and

compared it to that of a slender filament.

2. Rotation around torus axis (ẑ)

We now turn to the other axisymmetric motion of a torus, rotation in ẑ. For rotation

around ẑ the force distribution is still constant but the surface velocity is now U = Ω/πt̂.
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Figure 5. The non-zero resistance coefficients of a ribbon torus (solid lines) and a torus filament

(dashed lines) as a function of the angle θ. (a) The force along ẑ from motion in the same direction;

(b) The torque from rotation in ẑ; similarly (c) and (d) plot the force and torque from translation

in x̂, respectively; and (e) and (f) show the force and torque from rotation in ŷ respectively. Both

the ribbon torus and the torus filament have have rb/` = b` = 10−2.

The equations to solve are


8Ω

0

0

 = π [Γ + Θ]


Ct

Cn

Cb

 , (53)
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which gives a net force and torque of

Fh = 0, (54)

Lh =
4Ω

π (L3 − 2)
ẑ. (55)

Therefore, to leading order, the resistance felt from the rotation around ẑ is independent

of the slant of the ribbon, θ (Fig. 5b). This is unsurprising since, regardless of how T̂ is

orientated, the surface is always moving along the tangent direction.

3. Translation perpendicular to torus axis (x̂)

We next consider linear translation in x̂, while the result for translation along ŷ can

be deduced through a rotation of π/2. When a torus moves in x̂ the system is no longer

axisymmetric and the velocity is given by

U x̂ = −U sin(πs1)̂t− U cos(πs1)n̂. (56)

The sinusoidal nature of this velocity suggests that the force coefficients should take the

form

f1,i(s1) = Cc,i cos(πs1) + Cs,i sin(πs1). (57)

The orthogonality of the trigonometric functions then reduces the SRT equations to

−8U



0

1

0

1

0

0


=

 Γcc + Θ Γcs

Γsc Γss + Θ





Cc,t

Cc,n

Cc,b

Cs,t

Cs,n

Cs,b


, (58)
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where

Γcc = Γss =


4L− 6 0 0

0 −2(L+ 1) 0

0 0 2(L− 2)

 , (59)

Γcs =


0 4 0

4 0 0

0 0 0

 , (60)

Γsc =


0 4 0

−4 0 0

0 0 0

 , (61)

and these Γ tensors are derived from the outer integral using the orthogonality of trigono-

metric functions; i.e. the value of Γsc is found by multiplying the outer integral by sin(πs1)

and integrating over s1, when only the cos(πs1) component of the force was considered.

The other Γ tensors above are found similarly with the first letter in their superscript rep-

resenting the multiplying trigonometric function, s ≡ sin(πs1) and c ≡ cos(πs1), and the

second superscript representing the considered component of the force, s ≡ sin(πs1) and

c ≡ cos(πs1). Solving the above equation the total force and torque on the translating

ribbon torus is

Fh = −8π[6L2
3 − 2L3(2L+ 13) + 6L− (L2 − 7) cos(2θ) + 25]

β2
U x̂, (62)

Lh =
16(L3 − 3) sin(2θ)

β2
U ŷ, (63)

where

β2 = 4
{

[L3 (1− 2L) + 4L− 4] cos(2θ)− 2L3
3 + 4L2

3(2 + L)

−L3(14L+ 5) + 4(3L− 1)} . (64)

A slender ribbon moving in the plane therefore experiences a net force in the direction

of motion and a torque perpendicular to the motion (still in the plane). The magnitude of

the force felt is minimized for θ = 0 and maximised for θ = π/2 converse to the behaviour

seen for translation in ẑ (see Fig. 5c). The non-zero torque depends on the orientation of

the ribbon through sin(2θ) and so is zero when the ribbon width is aligned with n̂ or b̂ (as

expected by symmetry), and is maximised when θ = π/4 (Fig. 5d). This torque is due to

the asymmetric displacement of the fluid over the ribbon when it is slanted.
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4. Rotation perpendicular to torus axis (ŷ)

The final motion to consider is rotation around ŷ (here also, rotation around x̂ may be

deduced by symmetry). The velocity for rotation around ŷ is given by

U = −Ω
cos(πs1)

π
b̂, (65)

and the force is again decomposed as in Eq. (57). The slender-ribbon equations therefore

become

−Ω

π



0

0

1

0

0

0


=

 Γcc + Θ Γcs

Γsc Γss + Θ





Cc,t

Cc,n

Cc,b

Cs,t

Cs,n

Cs,b


, (66)

Hence the net force and torque on the torus is

Fh =
16(L3 − 3) sin(2θ)

β2
Ωx̂, (67)

Lh = −16 [(L3 − 2) cos(2θ) + 2L2
3 − L3(4L+ 5) + 2(4L− 1)]

πβ2
ŷΩ. (68)

These results are illustrated numerically in Fig. 5e and f. We see the same coupling

between the force and rotation in ŷ as for torque and motion in x̂ as expected from the

symmetries of the resistance matrix. Furthermore, the results reveal a sinusoidal dependence

on torque, which is maximal at θ = 0 and minimal at θ = π/2.

5. Comparison to a slender torus

The ribbon torus is the ribbon extension to a cylindrical torus. These shapes have been

thoroughly studied and have a resistance matrix, to order rb/`, of [8]

Rslender =



2π(6L4−17)
(2L4−1)(L4−2)−4 0 0 0 0 0

0 2π(6L4−17)
(2L4−1)(L4−2)−4 0 0 0 0

0 0 16π
2L4+1

0 0 0

0 0 0 8
π(2L4−3) 0 0

0 0 0 0 8
π(2L4−3) 0

0 0 0 0 0 4
L4−2


, (69)
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where L4 = ln (8`/πrb) and rb is the radius of the cylinder. We plot in Fig. 5 the cylindrical

torus coefficients (dashed lines) for rb/` = b` = 10−2. These coefficients are simpler than

that of the ribbon torus but show a similar logarithmic dependence on body’s aspect ratio.

Furthermore, these resistance coefficients are seen to be systematically larger that of a

slender ribbon with the same ratio b` = rb/` (Fig. 5). This is expected as the surface area

of a cylinder with radius rb is greater than that of a thin ribbon with width rb = b``; hence

the cylinder should experience greater drag.

6. The sedimentation of a ribbon torus

The resistance coefficients obtained above allow us to consider the settling dynamics of

a ribbon torus. The motion of a settling ribbon torus is two dimensional but for non-trivial

values of θ the translation-rotation coupling will rotate the body as it settles. We orientate

the ribbon such that the angle between its axis of symmetry and the gravitational force,

−mgẑ, is given by φ (Fig. 6b inset). Keeping the motion in the ẑ-x̂ plane the velocity of

the torus in the laboratory frame is given by

Used =
mg

Ra,z(R2
b −RcRa,x)


[R2

b + (Ra,z −Ra,x)Rc] cos(φ) sin(φ)

0

Ra,zRc sin2(φ)− (R2
b −RcRa,x) cos2(φ)

 , (70)

Ωsed = − mg

R2
b −RcRa,x


0

Rb sin(φ)

0

 , (71)

for a fixed value of φ. In the above equations Ra,z is the resistance coefficient relating force

and translation parallel to the axis of symmetry, Eq. (50), Ra,x is the coefficient relating

force and translation perpendicular to the axis of symmetry, Eq. (62), Rb is the coupling

resistance coefficient, Eq. (63), and Rc is the rotational resistance coefficient, Eq. (68).

Given the motion is two dimensional we can then write the evolution equation for φ as

dφ

dt
= −mgRb sin(φ)

R2
b −RcRa,x

, (72)

which has the solution

φ(t) = 2 acot

[
exp

(
mgRbt

R2
b −RcRa,x

)]
, (73)
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Figure 6. Settling of a ribbon torus for different θ. (a) The angle between the torus axis of symmetry

and gravity; (b) The position in ẑ divided by time; (c) The position in x̂; (d) The displacement

experienced for different θ at t = 1, 10 (dashed), and 100 (dotted). In (a), (b) and (c) the gray

solid line is θ = 0, the red dotted line is θ = π/8, the yellow dash-dotted line is θ = π/4, the purple

dashed line is θ = 3π/8, and the solid black line is θ = π/2. All plots use b` = 0.01, mg = 1, scaled

time and start with φ(0) = π/2, X(0) = 0. The inset in (b) demonstrates the orientation of the

settling torus.

where acot represents the inverse of the cotangent and we have set φ(0) = π/2. This function

asymptotes to either φ = 0 for Rb/(R
2
b −RcRa,x) > 0, or φ = π for Rb/(R

2
b −RcRa,x) < 0, in

the limit t → ∞. Therefore for non-trivial values of θ the ribbon torus will rotate to make

its axis of symmetry parallel to the gravitational force.

Inserting φ(t) into Used and integrating, the change in position is obtained analytically

for all times as

X(t)−X(0) =
1

Ra,zRb


[R2

b + (Ra,z −Ra,x)Rc]
[
sech

(
mgRbt

R2
b−RcRa,x

)
− 1
]

0

−mgRbt+ [R2
b + (Ra,z −Ra,x)Rc] tanh

(
mgRbt

R2
b−RcRa,x

)
 , (74)
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where sech(x) = 1/ cosh(x). This position equation inherently assumes that Rb 6= 0. If

Rb = 0 the system would behave similar to a settling rod and so would be trivial. At

relatively long times the torus translates in the direction of gravity while for shorter times

it translates in both x̂ and ẑ. In Figs. 6a, b, and c we show the change in orientation and

position with time for different θ and in the case b` = 0.01. In particular, Fig. 6b shows

that the displacement in ẑ initially starts off similarly to a torus falling in along its side but

then slows down as the axis of symmetry aligns with gravity. This is a result of the drag for

motion parallel to the axis of symmetry being larger then the drag for motion perpendicular.

Similarly the displacement in x̂ is seen to only occur during the reorientation, as would

be expected. In addition, the x̂ displacement is also seen to have a maximum between θ = 0

and θ = π/4 (Fig. 6d). This is due to tori for which θ close to 0 or π/2 rotating slower,

thereby giving longer displacement times, and the displacement rate in x̂ going to zero as

φ→ π/2. We note that there is a second smaller peak between θ = π/4 and θ = π/2. This

is caused by the same features; however the drag from translation perpendicular to the axis

of symmetry is higher for θ between π/4 and π/2 thereby reducing the net displacement.

VI. CONCLUSION

Slender-ribbon theory provided a means to investigate the hydrodynamics of a wide class

of ribbon configurations numerically [36]. In this paper we showed that the force distribution

across the width of an isolated ribbon located in a infinite fluid can be determined analyt-

ically, irrespective of how the ribbon twists and turns. This reduces the surface integrals

in the slender-ribbon theory equations to a line integral which is commonly calculated to

determine the hydrodynamics of slender filaments (Eqs. 18 and 19). This reduction makes

slender-ribbon theory much easier to implement. Note that when other bodies, or surfaces,

are present, hydrodynamic interactions will change the force distribution across the ribbon’s

width (i.e. in the s2 direction), potentially making the problem intractable analytically.

The reduction in complexity has then allowed analytical solutions to slender-ribbon theory

to be found. This was done for a long flat ellipsoid and a ribbon torus. The resistance

coefficients for a long flat ellipsoid matched the values reported in the literature [9], could

be used to create a resistive-force theory for ribbons, and allowed us to characterise their

sedimentation under gravity. The force and torque on a ribbon torus, however, exhibited a
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sinusoidal dependence on the plane in which the ribbon sits and exhibited coupling between

force and rotation. This coupling caused a settling ribbon torus to rotate as it settles,

aligning the axis of symmetry with the direction of gravity. Furthermore, while the resistance

coefficients of a ribbon torus are algebraically tedious when compared to the resistance

coefficients for a slender cylindrical torus, they have been all derived analytically and show

a similar logarithmic dependence on body’s aspect ratio.

The simplification of the equations of slender-ribbon theory and the development of a

ribbon resistive-force-theory will allow the dynamics of various new physical and biophysical

problems to be tackled. For example, some eukaryotic microorganisms are known to use

ribbon-like swimming appendages, called flagella vanes [45]. It is still unclear if these provide

any fitness advantage to the cells, an issue which could be addressed using slender-ribbon

theory. In the physical world, the reduction the equations of slender-ribbon theory to a single

line integral will allows the elasto-hydrodynamics of slender ribbons to be characterised

similarly to the classical problem of elasto-hydrodynamics of slender filaments [46].
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Appendix A: Slender-ribbon theory for looped ribbons

The slender-ribbon theory derived in Ref. [36] determined the leading order hydrody-

namics for finite bodies with ellipsoidal ends. If instead we wanted the hydrodynamics of a

looped ribbon the resulting equations will be different. Much of the derivation is the same

and so we will only point out the differences here. When the ribbon forms a closed loop R

remains the same but s′1 is replaced with s1 + q. The integrals over s′1 are then replaced

with integrals over q. The regions to expand in remain the same and exhibit no difference

in the expanded kernels. The integrals within the different regions now take the form∫ 1

−1

χi√
χ2 + h2

j dq (A1)
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i=0 i=1 i=2

j=1 ε ln
(

4
ε2h2

)
+O(ε2)

j=2 επ
h +O(ε2) O(ε2)

j=3 2ε
h2

+O(ε2) O(ε3) ε
[
ln
(

4
ε2h2

)
− 2
]

+O(ε3)

Table I. Table of asymptotic integral forms of Eq. (A1) for the looped ribbon SRT expansion.

where εχ = q, h is an arbitrary function that does not depend on q, i and j are positive

integers and ε is a small parameter. These integrals can be evaluated exactly and then

expanded to get their asymptotic behaviour. To do so we make the substitution χ =

h sinh(φ) and reduce the equations to

ε

∫ arcsinh( 1
εh

)

arcsinh(−1
εh

)

hi−j+1 sinhi(φ)

coshj−i(φ)
dφ. (A2)

These integrals have known solutions [47] and table I lists the relevant leading order terms.

Using these asymptotic integrals, the equation to describe the leading order hydrodynamics

of a looped ribbon becomes

8πU(s1, s2) =

∫ 1

−1
dq

[
I + R̂0R̂0

|R0|
· ρ(s1 + q) 〈f〉 (s1 + q)−

(
I + t̂t̂

)
|q|

· ρ(s1) 〈f〉 (s1)

]

+

∫ 1

−1
ds′2 ln

(
4

b2l ρ
2(s1)(s2 − s′2)2

)(
I + t̂t̂

)
· ρ(s1)f(s1, t2)

+2
(
T̂T̂− t̂t̂

)
· ρ(s1) 〈f〉 (s1) +O(bl) +O(al), (A3)

where ρ > 0 for all s1. These equations differ to the finite SRT equations in three ways: (a)

all locations with s′1 has been replaced with s1 + q; (b) the integrals over s′1 are now over q;

and (c) the logarithm no longer has a 1− s21 term within it. Note that these loops can take

any form desired, provided the curvature does not become too large.
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