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ABSTRACT

We study the effect of dynamical tides associated with the excitation of gravity waves

in an interior radiative region of the central star on orbital evolution in observed

systems containing Hot Jupiters. We consider WASP-43, Ogle-tr-113, WASP-12, and

WASP-18 which contain stars on the main sequence (MS). For these systems there

are observational estimates regarding the rate of change of the orbital period. We also

investigate Kepler-91 which contains an evolved giant star. We adopt the formalism

of Ivanov et al. for calculating the orbital evolution.

For the MS stars we determine expected rates of orbital evolution under different

assumptions about the amount of dissipation acting on the tides, estimate the effect

of stellar rotation for the two most rapidly rotating stars and compare results with

observations. All cases apart from possibly WASP-43 are consistent with a regime in

which gravity waves are damped during their propagation over the star. However, at

present this is not definitive as observational errors are large. We find that although

it is expected to apply to Kepler-91, linear radiative damping cannot explain this dis-

sipation regime applying to MS stars. Thus, a nonlinear mechanism may be needed.

Kepler-91 is found to be such that the time scale for evolution of the star is

comparable to that for the orbit. This implies that significant orbital circularisation

may have occurred through tides acting on the star. Quasi-static tides, stellar winds,

hydrodynamic drag and tides acting on the planet have likely played a minor role.

Key words: hydrodynamics - celestial mechanics - planetary systems: formation,

planet -star interactions, stars: binaries: close, oscillations
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2 S. V. Chernov, P. B. Ivanov, J. C. B. Papaloizou

1 INTRODUCTION

In recent years the discovery of many extrasolar planets orbiting in close proximity to their central

stars has highlighted a situation where tidal interactions are likely to have been important in deter-

mining the formation and subsequent orbital evolution of the systems (e.g. Terquem et al. 1998;

Barker & Ogilvie 2009).

In particular, Hot Jupiters may be formed by a tidal capture into a highly eccentric orbit fol-

lowed by orbital circularisation. During this process tidal dissipation both in the planet and the

star can be significant (see e.g. Rasio & Ford 1996; Ivanov & Papaloizou 2007, 2010, 2011, and

references therein). In the latter case the tidal dissipation may lead to the planet merging with the

central star at a later stage of its evolution (e.g. Villaver & Livio 2009).

An understanding of these processes requires an analysis of the tidal interaction of the planet

with the central star and its calibration through comparison with observations. In particular, the

rate of orbital evolution can be inferred from observed orbital period changes (see Hebb et. al.

2009; Hellier et. al. 2009; Hoyer et.al. 2016a; Jiang et al. 2016; Maciejewski et al. 2016) mak-

ing such a calibration possible in principle. In order to proceed with this we consider tides raised

on the central star by planets on near circular orbits as these are relevant to observed systems.

Orbital circularisation can also occur but tides raised on the planet could also play a role there. We

also focus on dynamical tides as we anticipate that quasi-static tides are unlikely to be important

on account of the mismatch of the tidal forcing frequency and the inverse convective turn over

time (see Section 5.2.1 below). Dynamical tides are found to be associated with the excitation of

potentially resonant gravity or g modes.

Ivanov et al. (2013) (IPCh) determined the tidal response associated with the excitation of a

regular dense spectrum of normal modes, such as provided by the low frequency rotationally mod-

ified g modes, by a perturbing tidal potential. They obtained expressions from which the orbital

evolution could be obtained. These depend on the amount of dissipation present. Two regimes

were highlighted. The regime of moderately large damping (MLD) for which the excited waves

are damped before reaching an appropriate boundary, the centre for a radiative core, and the sur-

face for a radiative envelope. In this regime the effect on the orbit is independent of the details of

the dissipation process. Note that the same assumption of the validity of MLD regime is implied

in the well known theory of dynamical tidal interactions of Zahn (1970) and Zahn (1977) which is

⋆ E-mail: chernov@td.lpi.ru (SVCh)

† E-mail: pbi20@cam.ac.uk (PBI)

‡ E-mail: J.C.B.Papaloizou@damtp.cam.ac.uk (JCBP)
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Dynamical tides in systems containing Hot Jupiters 3

however, contrary to the IPCh approach, formally valid only in the asymptotic limit of tidal forcing

frequency tending to zero, and for stars with an idealised structure. In addition, the expressions for

the orbital evolution are applicable to the case of very weak dissipation where resonant responses

may occur.

It is the purpose of this paper to apply the formalism of IPCh for determining the effect of

dynamical tides on orbital evolution to observed exoplanet systems containing close orbiting Hot

Jupiters. In particular we consider WASP-43, Ogle-tr-113, WASP-12, and WASP-18 which contain

stars on the main sequence (MS) with Hot Jupiter companions for which there are observational

estimates of, or upper bounds for, the magnitude of the rate of change of their orbital periods.

In addition we consider the system Kepler-91 which contains a star that has evolved up the giant

branch and a Hot Jupiter companion.

For the MS stars we determine the expected rates of orbital evolution, assuming the orbit to be

circular, either under the assumption that the MLD regime applies, or under the assumption that

damping is weak with the system having evolved so that the tidal forcing frequency is mid way

between neighbouring potentially resonant normal mode frequencies and compare results with

observations. We also estimate the effect of rotation for the two most rapidly rotating cases by

simply allowing for the shift of forcing frequency. All cases apart from WASP-43 can be viewed

as being consistent with being in the MLD regime, however it has to be emphasised that in general,

limits on observational errors are large so that this is not definitive. We remark that although we

find that can be applied to the giant in Kepler-91, we find that the MLD regime is not expected

to operate in the MS stars if linear radiative damping is the only available dissipation mechanism.

Thus, a nonlinear mechanism may also be required.

Kepler-91 is found to be in a configuration where the time scale for evolution of the star is

comparable to the time scale for evolution of the orbit. In particular this implies that significant

orbital circularisation may have occurred as a result of tides in the past.

The plan of this paper is as follows. We begin by giving some basic equations and definitions

in Section 2, moving on to present the equations governing the evolution of orbital parameters

induced by tides in Section 2.1. We evaluate the decay rate due to radiative damping of the high

order g modes, that are expected to be excited in tidal interactions, in Section 2.2, developing a

criterion for the excited modes to be in the the moderately large damping (MLD) limit in Section

2.3.

We describe the procedure we use to obtain solutions of the equations determining orbital

evolution under tides in Section 3, giving properties of the stars, and the orbits of their planetary

c© 2010 RAS, MNRAS 000, 1–35



4 S. V. Chernov, P. B. Ivanov, J. C. B. Papaloizou

companions, for the systems we study in this paper in Sections 4, 4.1, and 4.1.1. The decay rates

of the normal modes expected to be excited by tides acting on the stars on the main sequence, and

the appropriateness of the MLD limit for them, are then considered in Section 4.1.2.

We move on to describe our modelling of the evolved star in Kepler-91 in Section 4.2. We

consider the properties of appropriate normal mode decay rates in Section 4.2.1, establishing that

the MLD limit applies to the current configuration of star and planet.

We determine the expected tidal evolution for the systems we study in Section 5, giving results

for systems with stars on the main sequence in Section 5.1 and for the orbital evolution of Kepler-

91b in Section 5.2. For Kepler-91 we consider effects due to quasi-static tides, a possible stellar

wind, and hydrodynamic drag, which are discussed in Sections 5.2.1, 5.2.2, and 5.2.3, respectively.

Finally, we discuss our results and conclude in Section 6.

2 BASIC DEFINITIONS AND EQUATIONS

We consider a binary system consisting of a star of mass M with radius R∗ that is orbited by a

planet of mass m, the mass ratio being q = m/M. The star may in principal be rotating, but we

assume that angular velocity of rotation is much smaller than the characteristic angular frequency

of the normal modes excited by tides, the latter being expected to be comparable to the orbital

mean motion.

The planet moves around the star on an approximately circular orbit with period Porb of the

order of days. The orbital semi-major axis is a = (GM/Ω2
orb)

1/3, where G is gravitational constant

and Ωorb = 2π/Porb is the Keplerian mean motion or angular velocity. The orbital eccentricity, e,

is such that e ≪ 1. We assume that the stellar rotation axis is aligned with the direction of orbital

angular momentum, and that the star rotates uniformly and relatively slowly with angular velocity,

Ω, such that Ω ≪ Ωorb ≪ Ω∗, where we have introduced a characteristic frequency associated

with the star, Ω∗ =
√

GM/R3
∗.

2.1 Evolution of orbital parameters induced by tides

Following Ivanov et al. (2013) (IPCh) we write the equations governing the evolution of the semi-

major axis a, and the eccentricity, e, as

ȧ

a
= − 2

Ta

and
ė

e
= − 1

Te

, (1)

where Ta and Te are characteristic timescales for the evolution of the semi-major axis and eccen-

c© 2010 RAS, MNRAS 000, 1–35



Dynamical tides in systems containing Hot Jupiters 5

tricity, respectively. For a non-rotating primary and near circular orbit IPCh give expressions for

Ta, and Te in terms of quantities characterising the orbit and the star in the form

Ta =
40T∗

3π

[

Q−2D−1
]

2
and Te =

20

π
T∗/F(Ωorb). (2)

Here

F(Ωorb) =
{

49

18

[

Q2D
]

3
− 3

4

[

Q2D
]

2
+

15

2

[

Q2D
]

1

}

, (3)

and

T∗ =
1

16π3

(1 + q)5/3

q

(

PorbΩ∗

2π

)4/3
∣

∣

∣

∣

∣

dωj

dj

∣

∣

∣

∣

∣

j=j(k)

P 2
orb. (4)

Quantities enclosed in square brackets [..]k, with the subscript, k, being an integer, are func-

tions of an eigenfrequency ωj=j(k). This is found by evaluating the frequency offset ∆ωj

∆ωj = kΩorb − 2Ω− ωj , (5)

for each normal mode eigenfrequency, ωj (j = 1, 2, ..) and choosing j(k) to be the value of

j for which the magnitude of the frequency offset is minimal. This corresponds to selecting the

particular mode that is closest to being resonant with a component of the perturbing tidal potential.

Note that only the modes that are actually excited for a specified k should be considered in this

determination. Let us stress that in practice we always have |∆ωj=(k)| ≪ kΩorb − 2Ω ≈ ωj=j(k),

corresponding to a sufficiently dense spectrum of eigenmodes.

The quantity Qk in (2) and (3) is the overlap integral evaluated for the normal mode with

ω = ωj=j(k) (see equation (47) of IPCh and the discussion that follows there ). In principle, stellar

rotation affects the form of expressions (2-4), see IPCh. However, as we have indicated above, we

consider only the case of a relatively slowly rotating star, and, therefore, take into account only

the dominant effect for high order modes, namely, the frequency shift due to the presence of Ω in

equation (5) (e.g. Goodman& Dickson 1998) .

We set |dωj/dj|j=j(k) ≡ ωj+1 − ωj , being the frequency difference between two neighbouring

modes which are such that kΩorb − 2Ω lies in between ωj and ωj+1. This is written as a derivative

which is appropriate in the limit of modes of high order (j ≫ 1). It was explicitly evaluated in

IPCh for the case of high order g-modes in Sun-like stars. In this case the expression (4) can be

rewritten as

T∗ =
(1 + q)5/3√

6q

(

PorbΩ∗

2π

)4/3
(

∫

D

dr

r
N

)−1

, (6)

where N is the Brunt - Väisälä frequency and the integral is over a domain D which defines a

radiative region in which g modes can propagate. Note that we assume that k = 2 in 6 and below.

c© 2010 RAS, MNRAS 000, 1–35



6 S. V. Chernov, P. B. Ivanov, J. C. B. Papaloizou

Thus, we use (6) when considering stars with radiative interior and convective envelope, and in all

other cases a more general expression (4) is used.

We remark that equations (2) - (4) with D = 1 corresponding to the limit of ’moderately large

viscosity’, or moderately large dissipation (MLD) described below, can be found from equations

(128), (131), (137) and (138) of IPCh. The function D accounts for the influence of mode damping

rate, γ, assumed to originate from the action of either linear radiative damping 1 or non-linear

effects. Note that γ replaces νj(k), the decay rate of a normal mode, as used in IPCh. Explicitly, D

has the form

D =
sinh(πκ) cosh(πκ)

sinh2(πκ) + sin2(πδ)
, (7)

where δ = |∆ωj|/|dωj/dj|j=j(k), κ = γ/|dωj/dj|j(k). We remark that D may be written as D =

(κ/π)Aκ, where Aκ is given by equation (44) of IPCh.

When κ > 1, D ≈ 1. In this MLD limit, tidal evolution does not depend on the mode damping

rate. Physically, this corresponds to a situation when a wave packet excited in a star by tides decays

in course of its propagation over the star. This limit was implied in the old theory of dynamic tides

(Zahn 1970, 1977). Expressed quantitatively, the condition to be in this regime is that the time for a

gravity wave to propagate through the radiative region should exceed the mode damping time ( for

more detail see below). When this is not satisfied, the full expression for D must be used in (2) and

(3). In what follows we discuss whether the MLD limit applies, both from the theoretical point of

view, and whether this is supported by observational data on the orbital evolution of exoplanetary

systems containing Hot Jupiters, under the assumption that this evolution is caused by tides.

We first make theoretical estimates in order to determine the applicability of the MLD limit to

systems with exoplanets. We find that although the mechanism of radiative damping allow us to

justify it in the case of evolved stars this is inadequate for our models of main sequence stars. In

the latter case some non-linear mechanism of mode energy dissipation has to be invoked to justify

it. In the absence of such a mechanism the opposite limit κ ≪ 1 corresponding to weak dissipation

is valid. Then we have

D ≈ πκ

(πκ)2 + sin2(πδ)
. (8)

We see from the tidal evolution equations (1)-(4) that in this case tidal evolution rate is proportional

to the mode damping rate unless the system is very close to an exact resonance such that δ ≪

1 But note that any dissipative process that results in a radiation boundary condition for waves propagating through the radiative domain of interest

results in behaviour corresponding to the MLD regime (see IPCh).

c© 2010 RAS, MNRAS 000, 1–35
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κ. This can be extremely rapid, but only near the centre of a resonance. In such cases unless

resonances can be maintained by a locking process (see Witte & Savonije 1999, 2002; Fuller et al.

2016) systems would rapidly evolve away from such a configuration so that they would be most

likely to be found between resonances. From the definitions just below equation (7), we see that

mid way between resonances δ = 1/2 and accordingly in the limit of weak dissipation

D = πκ = πγ/|dωj/dj|j=j(k). (9)

This is the factor by which the evolution rates assuming that the MLD limit holds has to be multi-

plied when the system is in fact in the regime of very weak dissipation.

If resonances can be maintained through locking, tidal dissipation and evolution can be very

rapid. This cannot occur in the MLD regime as standing waves and strong resonances cannot be

set up. We remark that Witte & Savonije (1999, 2002) find that this mechanism is effective mainly

for eccentric orbits and then it can lead to efficient circularization. For short period planets in near

circular orbits, they find that orbital period evolution occurs on long time scales and is very much

slower than expected were the MLD regime to operate. We now go on to develop estimates for

the magnitude of radiative damping which may be used to determine the regime of dissipation that

applies and evaluate D when dissipative effects are very small.

2.2 Decay rate due to radiative damping

The decay rate is given of a g mode with frequency ω is given by Unno et al. (1989) as

γ =
1

2ω2

∫

V (δρ
∗/ρ)(Γ3 − 1)∇ · F′dτ
∫

V ρ|ξ|2dτ . (10)

The density is ρ and the radiation flux is F. Eulerian perturbations are donated with a prime and

the Lagrangian variation is indicated by a preceding δ. The normal modes we consider are such

that the angular dependence of ρ′ is through a spherical harmonic with indices l = |m| = 2. This

will be taken as read in what follows. All quantities in the integrals may in principle be expressed

in terms of ξ. This is facilitated in the quasi-adiabatic approximation. We then have

δρ = ρ′ + ξ · ∇ρ =
1

Γ1P
ρ(P ′ + ξ · ∇P ), (11)

where P is the pressure and Γ1 the first adiabatic exponent. We remark that for g modes in the

asymptotic low frequency limit we can set P ′ = 0 in the above, then after use of hydrostatic

equilibrium we obtain

δρ =
1

Γ1P
ρξ · ∇P = −ρ2(Γ1P )−1ξ · g, (12)

c© 2010 RAS, MNRAS 000, 1–35



8 S. V. Chernov, P. B. Ivanov, J. C. B. Papaloizou

where g is the acceleration due to gravity. We also have

δT = T ′ + ξ · ∇T = (Γ2 − 1)T (Γ2P )−1(P ′ + ξ · ∇P ), (13)

where T is the temperature and Γ2 and Γ3 are the second and third adiabatic exponents respectively.

In the low frequency asymptotic limit this similarly yields

δT = −(Γ2 − 1)ρT (Γ2P )−1ξ · g. (14)

The radiative flux is given by

F = −4acT 3

3κρ
∇T, (15)

where κ is the opacity, a is the radiation constant and c is the speed of light. Linearizing and noting

that as very short radial wavelengths are expected in the limit of low frequency g modes, we may

retain only the highest order radial derivatives of perturbations, we may write

F′ → −4acT 3

3κρ
∇T ′ (16)

and

∇ · F′ → −4acT 3

3κρ
∇2T ′ → 4acT 3

3κρ
k2
rT

′, (17)

where kr is the radial wavenumber. Making use of the above approximations in (10) we estimate

the damping rate through

γω2
∫

V
ρ|ξ|2dτ = 2

∫

V

ρξ∗ · g(Γ3 − 1)ack2
rT

4ξ · g(−∇ +∇ad)

3Γ1P 2κ
dτ, (18)

where ∇ = d log T/d logP and ∇ad = (Γ2 − 1)/Γ2. Note that the integral on the right hand

side contains only the radial component of the displacement, ξr, whereas the integral on the

left hand side contains in addition ξ⊥ ≡ |ξ − ξrr̂| ≡ |ξ ⊥| and we expect ξ⊥ ≫ |ξr|. For

g modes in the asymptotic low frequency limit we have |krξr|2 ∼ |∇ · ξ ⊥|2 and we may set

|ξ|2 ∼ (k2
rr

2/(l(l + 1)) + 1)|ξr|2. Using this in (18), we get

γω2
∫

V
ρ(r2k2

r + l(l + 1))|ξr|2dτ = 2l(l + 1)
∫

V

ρ|ξr|2g2(Γ3 − 1)ack2
rT

4(−∇ +∇ad)

3Γ1P 2κ
dτ. (19)

To proceed further, we note that from the WKBJ approximation (see eg. IPCh)

k2
r =

l(l + 1)

r2

(

N2

ω2
− 1

)

(20)

and that for real kr,

ξr ∝ ρ−1/2r−3/2(N2/ω2 − 1)−1/4 exp(iΦ). (21)

Here the proportionality factor includes the angular dependence of the mode through a spherical

harmonic and the phase

c© 2010 RAS, MNRAS 000, 1–35
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Φ =
∫ r

r0
krdr + C0, (22)

with r0 and C0 being constants depending on the boundary conditions.

Using (20) and (21) in (19) we obtain an expression from which the decay rate may be readily

calculated in the form

γ
∫

D

N2

r(N2/ω2 − 1)1/2
dr = 2l(l + 1)

∫

D

g2(Γ3 − 1)acT 4(−∇ +∇ad)(N
2/ω2 − 1)1/2

3Γ1r3P 2κ
dr. (23)

In this work the domain of integration D is restricted to the wave propagation region in the interior

radiative region for which k2
r > 0 and we recall that for the modes of interest l = 2.

2.3 Criterion for being in the MLD limit

In order for the quasi-adiabatic approximation to be applicable to a mode, we require γ/ω ≪ 1.

However, the condition for a disturbance excited externally to be damped before it passes through

the radiative region where g modes can propagate is that the time to move across the region with

the group velocity be ≫ γ−1. This condition for being in the regime of MLD can be satisfied while

the quasi-adiabatic approximation is valid. An expression for estimating it can be found by first

noting that in the WKBJ approximation the normal modes satisfy (see eg. IPCh)

∫

D
krdr = nπ + δ, (24)

where n is a positive integer and δ is a constant determined through the boundary conditions and

WKBJ connection formulae. Making use of (20), from (24) we find that

dω

dn

∫

D

∂kr
∂ω

dr = π. (25)

Thus

πγ/(dω/dn) = γ
∫

D

(

∂ω

∂kr

)−1

dr. (26)

The right hand side of (26) is the product of the time to propagate through the region with the

group velocity and the mode decay rate. Accordingly we shall adopt the criterion to be in the

moderately dissipative regime that γ/(dω/dn) > 1. When it is marginally satisfied a wave pulse

has an amplitude reduction by a factor, exp(π), on propagating through the propagation zone. We

remark that when γ/(dω/dn) = 1, at the centre of a resonance, from (7) we find consistently that

D = coth π = 1.004.

c© 2010 RAS, MNRAS 000, 1–35
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3 SOLUTION OF THE EQUATIONS DETERMINING THE EVOLUTION OF THE

ORBIT UNDER TIDES

Equations (1)-(4), which govern the evolution of the orbital elements, are solved numerically ac-

cording to the following procedure (Chernov 2017). We initially generate a stellar model with

parameters appropriate to a particular system we wish to study. We then calculate eigenfrequen-

cies and overlap integrals corresponding to normal modes with frequencies in the range required

to evaluate the terms in equations (1)-(4), for the range of orbital periods of interest, using the ap-

proach described in Christensen-Dalsgaard (1998). Since these are relatively low frequency modes

they belong to g-mode branch of stellar pulsations. For these modes, self-gravity plays a minor role

and we neglect it, thus adopting the Cowling approximation (Cowling 1941).

We then integrate equations (1-4) numerically in order to determine the tidal evolution of

the orbit after having specified initial values for the orbital period, eccentricity and age of the

system. In this paper we consider tidal evolution in systems containing both main sequence stars

and evolved stars that have moved off the main sequence and along the giant branch. In the latter

situation the stellar evolution time scale can be comparable with the time scale for orbital evolution

under tides. For such cases we generate a grid of models with different ages so that time derivatives

of a and e can be calculated for a stellar model that self-consistently has the correct age.

4 PROPERTIES OF THE STARS AND THEIR PLANETARY COMPANIONS IN THE

SYSTEMS STUDIED

4.1 Main sequence stars

In this section we consider the three systems containing main sequence stars, WASP-43, Ogle-tr-

113 and WASP-12 in some detail. Each of these systems contains a planet with mass of around

one Jupiter mass. There is also a measured rate of change of orbital period with time. In order to

construct models we use the publicly available stellar evolution code MESA (Modules for Experi-

ments in Stellar Astrophysics), (see Paxton et al. 2011, 2013, 2015, and http://mesa.sourceforge.net/.)

We give the main observational parameters for the stars we have considered in table 1 together with

the corresponding quantities for our associated numerical models. In table 2 we show masses, radii,

orbital periods, and their published observed rates of change, Ṗorb, together with corresponding er-

ror bars.

Additionally, we consider the system WASP-18. For this system only an upper limit for or-

bital change is available, see Wilkins et. al. (2017). We check whether or not this upper limit is

c© 2010 RAS, MNRAS 000, 1–35
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Dynamical tides in systems containing Hot Jupiters 11

M R∗ [Fe/H] Teff age

WASP-43 0.717±0.025M⊙ 0.667±0.01R⊙ -0.01±0.012 4520±120 K > 0.4Gyr

Model 0.717M⊙ 0.667R⊙ -0.011 4384 K 0.75Gyr

Ogle-tr-113 0.78±0.02M⊙ 0.765±0.025R⊙ 0.14±0.14 4751±130 K 0.7

Model 0.78M⊙ 0.721R⊙ 0.14 4753 K 0.69Gyr

WASP-12 1.35±0.14M⊙ 1.599±0.071R⊙ 0.3±0.1 6300±150 K 1.7± 0.8Gyr

Model A 1.32M⊙ 1.631R⊙ 0.243 6445 K 1.53Gyr

Model B 1.32M⊙ 1.696R⊙ 0.243 6350 K 1.77Gyr

WASP-18 1.25±0.13M⊙ 1.216±0.067R⊙ 0.0±0.09 6400±100 K 1.0± 0.5Gyr

Model A 1.24M⊙ 1.245R⊙ 0.0 6279 K 0.68Gyr

Model B 1.24M⊙ 1.358R⊙ 0.19 6398 K 1.08Gyr

Table 1. Upper line: Mass, radius, metallicity, effective temperature and an estimate of the age of the stars,

WASP-43 (see Hoyer et.al. 2016a; Jiang et al. 2016),

Ogle-tr-113 (see Adams et al. 2010; Hoyer et.al. 2016a),

WASP-12 (see eg. Hebb et. al. 2009; Maciejewski et al. 2016) and WASP-18 (see Hellier et. al. 2009).

In each case the same quantities obtained from our numerical models of the stars are given below

the observational parameters. Note that for WASP-12 and WASP-18 there are two models A and B.

m Rpl Porb dPorb/dt

WASP-43b 2.052±0.0534MJ 1.036±0.019RJ 0.8135 d -0.0289±0.0077 s/yr; -0.00002±0.0066 s/yr

Ogle-tr-113b 1.24±0.17MJ 1.11±0.05RJ 1.4325 d -0.001±0.006 s/yr

WASP-12b 1.404±0.099MJ 1.736±0.092RJ 1.0914 d -0.0256±0.0040 s/yr; -0.029± 0.003s/yr

WASP-18b 10.30±0.69MJ 1.106±0.072RJ 0.9415 d < 0.02s/yr

Table 2. Mass, radius, orbital period and the observed rate of change of orbital period of exoplanets, WASP-43b (see Hoyer et.al. 2016a; Jiang et al.

2016), Ogle-tr-113b (see Hoyer et.al. 2016a), WASP-12b (see Hebb et. al. 2009; Maciejewski et al. 2016; Patra et al. 2017) and WASP-18b (see

Hellier et. al. 2009). In the case of WASP-43b the larger value of the orbital decay rate quoted was taken from Jiang et al. ( 2016) and the smaller

value was obtained from Hoyer et al. (2016b).

consistent with the assumption that MLD regime operates. Main observational parameters of the

star and the planet as well as properties of our two numerical stellar models are shown below in

tables 1 and 2. In order to obtain the upper limit for Ṗorb given in table 2, we use the estimate of

Wilkins et. al. (2017) that the effective modified tidal quality factor, Q
′

, should be larger than 106

together with the expression from for the rate of change of semi-major axis due to tides given by

Birkby et. al. (2014). This gives |Ṗorb| < 0.02s/yr.

We show the dependence of the density and Brunt - Väisälä frequency on radius for each

of the stellar models in Figs. 1 and 2. One can see that the models of WASP-12 and WASP-

18 are more centrally condensed than those of the others. The difference between the models of

WASP-12 and WASP-18 and those of WASP-43 and Ogle-tr-113b is even more prominent when

the respective distributions of the Brunt - Väisälä frequency are compared. The Brunt - Väisälä

frequency is expressed in units of the inverse of the characteristic stellar dynamical time scale
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Figure 1. Distributions of the ratio of the density ρ to the mean density ρ∗ = 3M/(4πR3
∗) shown as functions of the dimensionless radius r/R∗.

Solid, dashed, dotted, dot dashed, dot dot dashed and dot dashed dashed lines correspond to WASP-43, Ogle-tr-113b, models A and B of WASP-12

and models A and B of WASP-18, respectively.
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Figure 2. Same as for Fig. 1, but the distributions of the square of the Brunt - Väisälä frequency are shown.

Ω∗ =
√

GM/R3
∗. While the latter models have convective envelopes and radiative cores, and are

in general similar to solar models the former models have small convective cores and radiative

envelopes. This distinction is a consequence of the difference in stellar masses and is expected

for stars on the main sequence. The masses of WASP-43 and Ogle-tr-113b are approximately
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equal to 0.7M⊙, while WASP-18 and WASP-12 are significantly more massive, having masses

M ≈ 1.2− 1.3M⊙.

4.1.1 Stellar rotation

For Ogle-tr-113, WASP-12 and WASP-18 we use the data on projected rotational velocities listed

in Schlaufman (2010) and assume that the inclination angle between rotational axes and the line

of sight is close to π/2. We thus respectively obtain rotational periods, Pr, approximately equal

to 7.79d, 37d and 5.39d for these systems. In case of WASP-43 we use the result quoted in

Hellier et. al. ( 2011) that Pr ≈ 15.6d. Of these the rotation periods of Ogle-tr-113 and WASP-18

are closest to the orbital period, thus indicating that for these two systems is there a possibility that

the effect of rotation could weaken tidal interactions appreciably. Accordingly, we consider this

effect only for these two systems below.

In addition we remark that there are indications that the orbit of WASP-12 is strongly mis-

aligned with the stellar equatorial plane (Albrecht et al. 2012). This means that additional tidal

effects to those we consider can play a role. However, the stellar rotation period is estimated to

exceed the orbital period by more than an order of magnitude. Accordingly, as indicated above,

it should be reasonable to neglect rotation when considering orbital decay. Nonetheless the mis-

alignement will result in tidal forcing associated with azimuthal mode number, m = 1, in addition

to that with m = 2 considered in this paper. This will excite stellar modes leading to dissipation

that is expected to cause evolution towards alignment (see eg. Papaloizou & Pringle 1982). As

long as tides remain linear this effect should be decoupled from orbital decay.

4.1.2 Properties of normal mode decay rates

Following the procedure outlined in sections 2.2 and 2.3 we evaluated the normal mode decay

rates as a function of forcing frequency, ω, corresponding to the excited mode frequency. This is

twice the orbital angular velocity in the case of a circular orbit, which will be assumed for the

purpose of estimating whether the MLD limit applies in this section.

The ratio of the decay rate of a normal mode to its angular frequency, γ/ω, and the ratio of

the decay rate of a normal mode to the mode angular frequency interval, γ/(dω/dn) is shown

for main sequence models as a function of the putative orbital period 4π/ω in Fig. 3. Note that

these are considered as continuous functions of ω, even though the normal modes take on discrete

c© 2010 RAS, MNRAS 000, 1–35
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Figure 3. Each of the panels shows the ratio of the decay rate of a normal mode to its angular frequency, γ/ω ( black curve ) and the ratio of the

decay rate of a normal mode to the mode angular frequency interval, γ/(dω/dn) (red curve) for stellar models in the vicinity of the main sequence,

as functions of the orbital period 4π/ω in days. The upper left panel corresponds to WASP-18, the upper right panel to WASP-12, the lower left

panel to WASP-43 and the lower right panel to Ogle-tr-113 respectively.

values. However, the frequency interval separating consecutive modes is small such that viewing

the relevant quantities as continuous functions is reasonable.

The models considered are for WASP-43, Ogle-tr-113, model A for WASP-12 and model A

for WASP-18. We remark that models B give very similar results to models A. We see that the

models for WASP-43 and Ogle-tr-113 produce similar results as do the models for WASP-12 and

WASP-18. The latter pair have values for γ/ω, and γ/(dω/dn) that are characteristically 30 larger

at a given orbital period than those appropriate to the former pair. For all models and periods less
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M R∗ [Fe/H] Teff age

Kepler-91 1.31±0.1M⊙ 6.3±0.16R⊙ 0.11±0.07 4550±75 K 4.86±2.13Gyr

Model 1.31M⊙ 6.30R⊙ 0.10 4735 K 4.26Gyr

HD32518 1.13 ± 0.18 M⊙ 10.22 ± 0.87R⊙ -0.15 ± 0.04 4580 ± 70 K 5.83 ±2.58 Gyr

Model 1.13M⊙ 10.20R⊙ -0.15 4612 K 6.76Gyr

Table 3. Same as for table 1, but for the stars, Kepler-91 (see e.g. Lillo-Box et al. 2014)

and HD32518 (see Döllinger et al. 2009) .

m Rpl Porb e

Kepler-91b 0.73±0.13MJ 1.384±0.054RJ 6.2466 d 0.066±0.013

HD32518b 3.04±0.68MJ N/A 157.54 d 0.01±0.03

Table 4. Same as for table 2 but for the exoplanets, Kepler-91b

(see e.g. Lillo-Box et al. 2014; Barclay et al. 2014) and

HD32518b (see Döllinger et al. 2009).

than 100 days, γ/ω <∼ 0.03, indicating validity of the quasi-adiabatic approximation. However

note that this quantity <∼ 10−8 at periods of, ∼ 3d, characteristic of Hot Jupiters. The quantity

γ/(dω/dn) that we use to indicate whether the MLD regime applies exceeds unity only for periods

exceeding about 80 days in the case of WASP-43 and Ogle-tr-113 and for periods exceeding about

35 days in the case of WASP-12 and WASP-18. Thus the MLD limit does not apply to any of

these systems for the period range appropriate to Hot Jupiters if linear radiative dissipation alone

is considered.

4.2 Kepler-91: an example of an evolved star

We now consider Kepler-91 which is an example of a star which has evolved off main sequence

to move along the giant branch. The main parameters of the observed star are summarised in table

3 and the physical and orbital parameters of its companion close-in planet, Kepler-91b, are given

in table 4 The evolution of the radius of Kepler-91 as a function of time is illustrated in Fig. 4.

It will be seen that Kepler-91 is currently evolving with a rapidly increasing radius. Therefore,

as indicated above it is important to consider a set of models with different ages, Tage, and to

calculate the overlap integrals and orbital evolution rates corresponding to this set of models.

We have checked that tidal evolution is essentially insignificant for Tage < 3.5Gyr. Accordingly

we consider 14 stellar models with ages in the range 3.51Gyr < Tage < 4.26Gyr, with the time

interval between them decreasing at later times to account for more rapid evolution of the star (see

Fig. 4). In Figs. 5 and 6 we show, respectively, the density and Brunt - Väisälä frequency as a

function of radius. Solid, dashed, dotted and dot dashed curves correspond to Tage = 4.26, 4.21,

c© 2010 RAS, MNRAS 000, 1–35
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Figure 4. The evolution of the radius of Kepler-91 (shown in units of the Solar radius) as a function of time. Circles show the positions of particular

stellar models used in our computations.
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Figure 5. The dependence of density of the model of Kepler-91 specified in table 3 expressed in units of the mean density ρ∗ on dimensional radius

r/R∗. See the text for a description of particular curves.

4.11 and 3.7Gyr, respectively. One can see that at the latest time the stellar structure assumes a

typical red giant form with a highly centrally condensed core and an extended convective envelope.
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Figure 6. Same as for Fig. 5, but for the square of the Brunt - Väisälä frequency expressed in units of ω2
∗ = GM/R3

∗.

Figure 7. The left panel shows γ/ω ( black curve )and γ/(dω/dn) (red curve) as functions of the orbital period in days (see the caption to Fig. 3)

for the model of Kepler-91 listed in table 3. The corresponding plots for the model of HD32518 also listed in table 3 are shown in the right panel.

4.2.1 Properties of normal mode decay rates

Following the procedure outlined in sections 2.2 and 2.3 we evaluated the normal mode decay rates

as a function of forcing frequency, ω, for the model of Kepler-91 listed in table 3. For reference

purposes we also did this for the model of HD32518 also listed in table 3. This is also on the giant

branch. The ratio of the decay rate of a normal mode to its angular frequency, γ/ω, and the ratio
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Figure 8. Overlap integrals as functions of mode eigenfrequency for the main sequence stellar models.for which orbital evolution was considered.

Solid, dashed, dotted, dot dashed, dot dot dashed and dot dashed dashed curves correspond to WASP-43, Ogle-tr-113, WASP-12, models A and B,

and WASP-18, models A and B, respectively.

of the decay rate of a normal mode to the mode angular frequency interval, γ/(dω/dn) is shown

as a function of ω for these models in Fig.7.

For Kepler-91, γ/ω <∼ 0.1, for periods less than 10 days justifying validity of the quasi-

adiabatic approximation. Note that this quantity ∼ 0.03 at a period of 6.25 days corresponding

to Kepler-91b. The quantity γ/(dω/dn) > 1 for periods exceeding 1.5 days, indicating that the

MLD regime applies for orbital periods characteristic of Hot Jupiters. In the case of HD32518,

γ/ω < ∼ 1, for periods < 8 days with γ/(dω/dn) > 1 for periods of a few days showing

again that the MLD regime holds. Note that for an orbital period of 157.5 days corresponding to

HD32518b, γ/ω ∼ 104 demonstrating a dramatic failure of the quasi-adiabatic approximation. In

this case g modes are not excited indicating that an equilibrium tide approach should be followed.

5 TIDAL EVOLUTION

5.1 Results for Main sequence stars

In order to calculate the orbital evolution by solving (1) - (4) it is necessary to evaluate the overlap

integrals for the stellar model under consideration (Chernov 2017). We show overlap integrals, Qk,

obtained for our models of main sequence stars in Fig. 8. For all models Qk is found to sharply

decrease as ωj=j(k) decreases.
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ω = 2Ωorb |dωj/dj||j(k)

WASP-43 1.7879e-4 1.1086e-5

WASP-12A 1.3326e-4 3.7050e-06

WASP-12B 1.3326e-4 4.0569e-06

Ogle-tr-113 1.0153e-4 3.4381e-6

Table 5. Values of the forcing frequency and the frequency separation between successive normal modes in its vicinity for some non-rotating stellar

models in seconds−1 .

In case of WASP-43 and Ogle-tr-113 the shape of the curves is very similar to what is obtained

from a Solar model, while in the case of WASP-12 and WASP-18 the results are closer to those

obtained for more massive stars (see e.g. Chernov et al. 2013, (ChIP)). At a given frequency, Qk is

markedly smaller in the latter case as compared to the former case. This is attributed to a smaller

relative size of the convective envelope in the models of WASP-12 (see ChIP).

We also give, for a reference, the values of the forcing frequency ω = kΩorb and the fre-

quency difference between two neighbouring modes for the mode which is closest to resonance,

|dωj/dj|j(k), for the stellar models considered in detail in table 5. We take k = 2, which is the

case of interest for our calculations and neglect the effect of rotation. We note that the decay

rate of the mode nearest to resonance is given by γ = κ|dωj/dj|j(k). From table 5 we see that,

|dωj/dj|j(k) ≪ 2Ωorb, is small corresponding to a dense spectrum of modes, thus justifying the

use of formalism developed in IPCh.

We use these overlap integrals in equations (1)-(4) to enable the orbital evolution to be calcu-

lated together with the time derivative of orbital period, Ṗorb. Results of the calculations of, Ṗorb,

together with data inferred from observations, are shown in Figs. 9, 10 and 11, for the models

of WASP-43b, Ogle-tr-113b and WASP-12b, respectively. Solid, dashed, dotted and dot dashed

curves respectively correspond to a formally infinite value of κ making D = 1, implying the MLD

regime, κ = 0.1, 0.01 and 0.001. We have checked that the result corresponding to κ = 1 gives a

curve almost indistinguishable from the solid one. In addition, for values of κ < 0.001, Ṗorb ∝ κ,

as follows from equation (8).

Two different values of Ṗorb obtained from analysis of observational data are indicated in Fig.

9. A relatively large value of |Ṗorb| ∼ 0.03s/yr was reported by Jiang et al. ( 2016), whereas

Hoyer et al. (2016b) claim that |Ṗorb| is significantly smaller and consistent with zero. As seen

from Fig. 9 the larger value of |Ṗorb| can be easily explained by as resulting from tidal evolution in

the MLD regime. On the other hand if the result of Hoyer et al. (2016b) holds, the action of tides

in this systems is very much weaker than that predicted within the framework of that regime.

c© 2010 RAS, MNRAS 000, 1–35



20 S. V. Chernov, P. B. Ivanov, J. C. B. Papaloizou

0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5
P

orb
 (days)

-0,05

-0,04

-0,03

-0,02

-0,01

0

d
P

o
rb

/d
t 

(s
/y

r)

Figure 9. Results related to our model of WASP-43 are shown. Different curves represent the time derivative of orbital period, Ṗorb, in units of

s/yr as functions of orbital period in days, for different values of the quantity κ parametrising mode dissipation rate. See the text for a description

of particular curves. The black circle and red square show the positions of two proposed values of Ṗorb inferred from analysis of observational data

by Jiang et al. ( 2016) and Hoyer et al. (2016b), respectively.

In the limit of weak dissipation, when the system is mid way between resonances, the evolution

rates, including, |Ṗorb|, have to be multiplied by a factor πκ = πγ/(|dωj/dj|j=j(k)) (see equation

(9) and discussion above). For WASP-43 we find that this quantity is ∼ 4 × 10−8 resulting in

an extremely small |Ṗorb| ∼ 10−9s/yr. Thus, the observational result of Hoyer et al. (2016b) is

consistent with tides being in the linear regime with radiative damping operating in the weakly

dissipative limit. 2

In the case of Ogle-tr-113b, which is a relatively fast rotator, we show Ṗorb calculated in the

MLD regime for a non-rotating star, and for a star with rotational period Pr = 7.79d in Fig. 10,

with solid curves taking on respectively smaller and larger values at a given Porb. Note that in the

latter case we assume that the resonant frequency is expressed in terms of the orbital frequency

and the angular frequency of rotation, Ωr = 2π/Pr, through ω = 2(Ω− Ωr).

In the case of Ogle-tr-113b, Fig. 10 shows that the value of |Ṗorb|, obtained from observations

is consistent with the system operating in the MLD regime, with the mean value being very close

to the theoretical curve for the non-rotating case. However, the reported observational errors are so

2 In this connection we remark that much larger values of |Ṗorb| could be formally obtained by bringing the system closer to resonance but non

linear effects should then be considered.
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Figure 10. Same as Fig. 9, but for the star Ogle-tr-113. Note that in this case there are two solid curves corresponding to the MLD regime, the curve

taking on smaller (larger) values at a given Porb corresponds to the non-rotating (rotating) star. The value of Ṗorb obtained from observations and

its error bar are taken from Hoyer et.al. ( 2016a).

large that even positive values of Ṗorb are not excluded. Accordingly, no definite conclusion about

the regime in which tides operate can be made in this case.

The results presented in Fig. 11 for WASP-12 indicate that the MLD regime is fully compatible

with the available data. Model A gives a slightly smaller value of |Ṗobs| than that is obtained from

observation, while model B gives a slightly larger value. It is evident that one could obtain a perfect

agreement using a model of WASP-12 with parameters intermediate to those have been employed

in models A and B.

Since WASP-12 is a star possessing a convective core, albeit a small one, as a matter of interest

we can apply the theory of Zahn (1970, 1977) to this star and compare results. This comparison

is shown in Fig. 12, where we plot absolute values of Ṗorb calculated in the framework of our

formalism, under the assumption of the MLD regime, as solid and dashed lines and in the Zahn

theory as dotted and dot dashed lines, for models A and B, respectively. One can see that our

approach gives very much larger tidal evolution rates, being ∼ 109 times larger than given by the

the Zahn theory. This result is, however, expected since this discrepancy arises because the Zahn

theory is based on the modes being excited at the outer boundary of convective core, which has

small radius (see Fig. 2 ), whereas in our case the important region is near the inner boundary of

the convective envelope, see also Goodman& Dickson (1998).

Finally, let us discuss the system WASP-18. For this system we present theoretical dependen-
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Figure 11. Same as Fig. 9, but for the star WASP-12. The solid curve with smaller (larger), |Ṗorb|, corresponds to model A (B). The other

curves correspond to model A. The indicated positions of the value of Ṗorb obtained from observations and their error bars are taken from

Maciejewski et al. (2016) and Patra et al. (2017), with smaller and larger absolute values of Ṗorb corresponding to the former and latter references,

respectively.

cies of Ṗobs on Pobs in Fig. 13. All curves are obtained assuming that the MLD regime operates.

We see that the results obtained for the non-rotating star are clearly incompatible with the ob-

servational limits. However, when the effect of stellar rotation is taken into account both models

considered are within the limits. Interestingly, these models predict |Ṗorb| ≈ 0.01 − 0.015s/yr,

which is just slightly smaller that the published upper bound |Ṗorb| < 0.02s/yr. Thus, observa-

tions should allow us to either confirm or discard the possibility that tidal interactions occur in the

MLD regime in this system in the near future.

In summary, the limited observations available suggest that main sequence stars orbited by

close giant companions could sometimes be in the MLD regime and sometimes not. The latter case

is what would be expected from the linear theory of tides for which radiative damping operates.

In the former case non-linearity needs to be invoked in order to provide adequate dissipation (see

eg. Barker & Ogilvie 2011). It is clear that more observations are needed in order to make a robust

conclusion about whether and how often tidal evolution operates in the MLD regime in systems

containing main sequence stars and close-in Hot Jupiters.
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Figure 12. |Ṗorb| as a function of orbital period. Solid and dashed curves, obtained with the use of our formalism, respectively correspond to

models A and B for WASP-12. The dotted and dot dashed curves are calculated according to the Zahn prescription, applied to models A and B,

respectively. All curves have been calculated in the assumption that the MLD regime applies.

5.2 Kepler-91b

We now consider the tidal evolution of Kepler-91b. As can be seen from Figs. 5 and 6 the star

Kepler-91 is a red giant with an extended convective envelope. This means that in addition to g

modes being excited by tides there could be other significant factors influencing orbital evolution

including effects due to quasi-static tides, as well as effects associated with a powerful stellar

wind, namely stellar mass loss, mass accretion by the planet and hydrodynamic drag exerted on

the planet by the wind. To take account of these, we write the equations governing orbital evolution

in the form

ȧ

a
= − 2

Ta
− 2

Ta,QSt
+
(

ȧ

a

)

W
and

ė

e
= − 1

Te
− 1

Te,QSt
+
(

ė

e

)

W
, (27)

where Ta and Te are given by equations (2) - (4) and the quantities subscripted with, QSt, and, W,

represent rates of change of the orbital parameters due to the action of quasi-static tides and the

stellar wind, respectively. We note that as discussed in Section 4.2.1, the MLD regime is expected

to apply for the current model of Kepler-91 and the orbital periods we have considered. Thus

standing waves and resonant modes cannot be set up (see Section 2.1). This means that resonance

locking is not expected to be occurring at the present evolutionary stage. We go on to discuss

quasi-static tides and the stellar wind in turn.
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Figure 13. Ṗorb as a function of orbital period calculated for the system WASP-18. The vertical solid line indicates the published observational

limits on the orbital evolution of the system. All theoretical curves are calculated assuming the MLD regime. Solid and dashed lines show the

theoretical results for models A and B and assuming a non-rotating star respectively The dotted and dashed lines are respectively for models A and

B but with the star assumed to have Pr = 5.39d.

5.2.1 Quasi-static tides

We follow Zahn (1977) and assume that tidal dissipation takes place as a result of turbulent viscos-

ity acting on the quasi-static equilibrium tide in the convective envelope. We treat quasi-static tides

in the simplest possible approximation using the results of Zahn (1989), namely, we use equation

(17) of that paper for the evolution of semi-major axis and equation (18) of that paper for the evo-

lution of eccentricity. We set the angular velocity of stellar rotation and the orbital eccentricity to

zero in the right hand side of these equations. The characteristic time scales of orbital evolution due

to quasi-static tides, Ta,QSt and Te,QSt, are shown in Appendix as euqations (A1) and (A2), respec-

tively. They depend on parameters λl defined in equations (A3) and (A4), for l = 1, 2, 3,, where l

are numbers of Fourier harmonics in the decompostion of the perturbing potential in Fourier series

in time. They in turn depend on the quantities ηl = 2ltf/Porb. Here tf is the characteristic time of

turnover of convective eddies defined as

tf =

(

M∗R
2
∗

L

)1/3

. (28)

The weakening of turbulent viscosity in the regime of ηl ≫ 1 as noted by eg. Goldreich & Nicholson

(1989), results in reduction of λl with increasing ηl. The form of the dependence of λl on ηl

that should be used is unknown. In the past a power-law dependence with either λl ∝ η−2
l (eg.

Goldreich & Nicholson 1989) or λl ∝ η−1
l ( e.g. Zahn 1989) has been assumed. However, the ac-
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tual situation may be more complex with the effective viscosity even being negative in some cases

(see Ogilvie & Lesur 2012). Here, for simplicity, we shall treat this dependency in the simplest

possible way. Namely, when ηl < 1 we use equation (13) of Zahn (1989) when calculating λl.

Then these quantities are found not depend on ηl and l so we may write λl ≡ λ. When ηl > 1 we

adopt λl = λ/ηl.

In order to calculate λ we use parameters such as radius of the base of convective envelope, etc.

for a grid of models with different ages, that is used for our calculation of the effect of dynamic

tides on the orbit. We find Ta,QSt and Te,QSt for these models and use linear interpolation to obtain

them for intermediate ages of the star. In following the procedure outlined above, we stress the

considerable uncertainty in estimating the effects of turbulence acting on quasi-static tides and that

the effective turbulent viscosity and consequent effects on orbital evolution may be significantly

overestimated.

5.2.2 Stellar wind

In order to evaluate the rate of mass loss from stellar wind, ṀW , we use the Reimers law (Reimers

1975)

ṀW = 4 · 10−13ηR

(

L

L⊙

)(

M

M⊙

)

(

R⊙

R∗

)

M⊙/yr
−1, (29)

where L is the stellar luminosity. From the conservation of angular momentum it follows that the

semi-major axis will evolve as a result of the mass loss according to

(

ȧ

a

)

W
=

ṀW

M
. (30)

Thus it will take on larger values as a result of a positive rate of mass loss.

One can see that the change of the gravitational field of the star due to mass loss does not

lead to an appreciable change of orbital eccentricity since both the eccentricity and the angular

momentum are adiabatic invariants when the orbit changes on account of the changing mass of the

central star. Accordingly, we set ėW = 0.

5.2.3 Hydrodynamic drag

Let us estimate the effect of hydrodynamical drag exerted on the planet. We first calculate the

ratio of Bondi-Hoyle radius RBH = 2Gm/(v2k + c2s), where vk is Keplerian velocity taken to

be vk =
√

GM/a for a near circular orbit, and cs the sound speed of the wind, to the planet
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radius Rpl. This is easily done with help of tables 3 and 4 together with the assumption that

cs ∼ 30km/s ≪ vk, with the result that RBH/Rpl ∼ 0.163.

This means that gas trajectories are not significantly deflected by the planet’s gravitational field

before meeting the planet. Thus, to make a rough estimate of the rate of energy exchange with the

planetary orbit per unit of time, ĖHD, we can simply calculate the rate of energy flow due to gas

elements moving with Keplerian velocity through a target with cross-section equal to πR2
pl. This

gives

ĖHD ∼ −π

2
ρR2

pl

(

GM

a

)3/2

= −1

8

(

Rpl

a

)2 (GM

a

)3/2 1

vW
ṀW , (31)

where the negative sign occurs because hydrodynamic drag decreases the orbital energy, ρ is the

wind density and we have used the law of mass conservation for the wind in the form ρ = ṀW/(4πa2vW ).

The rate of change of orbital semi-major axis is then found from setting

ĖHD =
GmM

2a2
ȧHD, (32)

where ȧHD is the rate of change of semi-major axis due to hydrodynamic drag. Combining (32)

(31) and (32) we obtain

(

ȧ

a

)

HD
∼ −1

4

(

Rpl

a

)2 vK
vW

ṀW

m
. (33)

It is convenient to express (ȧ/a)HD in terms of (ȧ/a)W by writing (ȧ/a)HD = −f(ȧ/a)W , where

the explicit form of the parameter f follows from (30) and (33) as

f =
1

4

(

Rpl

a

)2 vK
vW

M

m
≈ 0.1

(

30km/s

vW

)

, (34)

where we have used the parameters given in table 4 in order to obtain the last equality.

Equation (34) tells us that effects due to hydrodynamic drag are expected to be smaller than

those associated with the change of mass of the star unless the wind velocity is unrealistically

small vW < 3km/s. Therefore, we shall neglect hydrodynamic drag in our analysis of the orbital

evolution of Kepler-91b.

5.2.4 Orbital evolution

As already stated above we calculated Ta and Te for the set of models of Kepler-91 with different

ages and linearly interpolated them to be able to find these time scales at an arbitrary intermediate

3 The ratio of the gravitational drag force to the hydrodynamic drag force is proportional to the product of the square of RBH/Rpl and the usual

Coulomb logarithm, see e.g. Thun et al. (2016). Assuming that the largest and the smallest scales in the problem are respectively the semi-major

axis and Rpl, which have a ratio ∼ 100, the ratio of two the drag forces is found to be of order ∼ 0.1.
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Figure 14. The evolution of orbital period obtained using our model of the tidal interaction of Kepler-91b. Solid, dashed and dotted curves

correspond to different initial orbital periods taken when the age of the star was Tin = 3.5Gyr and evolution of the system was derived from

equation (27). The dot dashed curves are for the same initial periods, but with the influence of effects associated with the stellar wind and quasi-static

tides being neglected.
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Figure 15. Same as Fig. 14, but for the evolution of eccentricity with time. The initial eccentricity ein was taken to be equal to 0.36 in all cases.

age. Then, we integrated equation (27) numerically, taking into account, in addition to the excita-

tion of g modes in the MLD regime, the effect of quasi-static tides in the approximation specified

above, and the effect of changing gravitational field of the star due to mass loss. The results for the

evolution of orbital period and eccentricity are respectively shown in Fig. 14 and Fig.15.
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Figure 16. |Ṗorb| as a function of orbital period for a star with parameters of the present day model of Kepler-91 and a planet with the mass of

Kepler-91b.

Our evolutionary tracks depend on the values of the orbital period and eccentricity adopted at

the initial time taken to be when the age of the star was Tin = 3.5Gyr. These were chosen in such

a way that the solid curves in Figs. 14 and 15 reproduce the observed values, Porb(Tfin) ≈ 6.25d

and e(Tfin) ≈ 0.066 at final time when the age of the star was Tfin = 4.26Gyr as currently

estimated (see table 3). This requires Porb(Tin) ≈ 6.8d and e(Tin) ≈ 0.36. Thus tidal evolution

can diminish a rather large value of initial eccentricity to the small observed value, while the value

of orbital period changes by less than 10 per cent. Dashed and dotted curves show the results

corresponding to slightly smaller and slightly larger initial orbital periods, Porb(Tin) ≈ 6.4d and

Porb(Tin) ≈ 7.2d, respectively. One can see from Figs. 14 and 15 that the evolution looks rather

different for these cases as compared to the case fitting the data. While the case with smaller

initial period shows a violent tidal evolution at late times leading to a strong decrease of orbital

period, the case with larger initial period is such that the period increases at late times due to

the effect of mass loss from the star. This feature could lead to an understanding of the present

day orbital parameters of Kepler-91b, since tidal and mass loss effects on the evolution of the

semi-major axis can be nearly balanced, while at the same time, tidal effects lead to significant

decrease of eccentricity. Note that the results plotted in Figs. 14 and 15 show that quasi-static

tides considered in our approximation, which we argued are likely to be overestimated, do not

significantly influence the evolution of the system.

Finally, for reference and comparison with the main sequence models, we show the dependence
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of the absolute value of Ṗorb on the orbital period for a system containing a star with parameters

appropriate to the present day state of Kepler-91 and a planet with the mass of Kepler-91b. Only

dynamic tides in the MLD regime are taken into account in this calculation. One can see that at

orbital periods of ′ ∼ 6d corresponding to Kepler-91b, |Ṗorb| is rather small, being of the order of

0.001s/yr. Note too that the effect of mass loss would reduce it still further.

6 DISCUSSION AND CONCLUSIONS

In this Paper we have applied our general formalism for determining effects due to dynamical tides

developed in Ivanov et al. (2013) (IPCh) to calculate the expected orbital evolution in observed

systems containing a Hot Jupiter. Our formalism is based on the normal mode approach to the

problem, it contains within it the well known Zahn theory of dynamical tides. Contrary to the

Zahn theory, which applies only in the asymptotic limit of small tidal forcing frequencies and only

for hot stars with convective cores and radiative envelopes (see Zahn 1970, 1977), our formalism

allows one to consider more general and realistic stellar models together with forcing frequencies

that are not asymptotically small. We pay special attention to the question of whether or not the

assumption that the propagation time of wave trains excited by tides through propagation zones,

is longer than their dissipation time, corresponding to the regime of moderately large dissipation

(MLD), is supported by the analysis of present day observations. We note in passing that the Zahn

theory is applicable in this regime also.

We consider several main sequence (MS) stars with Hot Jupiter companions, for which either

the rate of change of orbital period, Ṗorb, or an upper limit for it have been reported, as well as

the evolved star Kepler-91, which has a Jupiter mass companion, Kepler-91b, on a close in orbit.

We demonstrate that although the linear mechanism of radiative damping of tidally excited modes

is not effective enough to justify the assumption of the MLD regime for the systems containing a

main sequence star, it results in the Kepler-91 system evolving in the MLD regime. We recall that

in cases for which the MLD regime does not operate, relatively weak dissipation is implied unless

there is a resonance with a normal mode.

6.1 Systems with stars on the main sequence

The systems containing MS stars and Hot Jupiters we considered in Section 5.1 were WASP-43,

Ogle-tr-113, WASP-12 and WASP-18. The former two contain Sun-like stars with radiative in-

teriors and convective envelopes, while the latter two are relatively more massive and have the
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complimentary structure with convective cores and envelopes which are for the most part radia-

tive with there being a relatively small convective region near the surface. We remark that on

account of their low mass and the mismatch between the convective turn over time and the inverse

tidal forcing frequency, tidal dissipation in these envelopes is expected to be ineffective (see eg.

Barker & Ogilvie 2011). In addition, the stars, Ogle-tr-113 and WASP-18 appear to be rotating

sufficiently rapidly that the effect of rotation should to be taken into account when calculating

Ṗorb. Note that this weakens the tidal interaction when the angular momentum vectors associated

with stellar rotation and the orbital motion are aligned as has been assumed in this paper.

Values of Ṗobs have been obtained for WASP-43 by Jiang et al. ( 2016) and Hoyer et al. (2016b).

Although the former authors give an absolute value of Ṗorb, which is consistent the assumption of

MLD regime, the value given by the latter authors is too small to be consistent with it. WASP-43

appears to be a slow rotator, and, therefore, the inconsistency of this assumption with the analysis

of Hoyer et al. (2016b) cannot be alleviated by taking rotation into account. On the other hand it is

consistent with being in a weak dissipation regime and the tidal forcing frequency being mid way

between neighbouring normal mode frequencies.

In case of Ogle-tr-113, models with tides operating in the MLD regime with and without

rotation are consistent with the present observations. However, error bars are so large that even

positive values of Ṗobs are not necessarily excluded.

WASP-12 appears to show the best consistency with the assumption of being in the MLD

regime. Errors bars are small enough in this case to accommodate results provided by both of

our models for this star. Note, however, that Patra et al. (2017) also consider another scenario

for the observed changes in occulation times base on apsidal precession giving it, however, less

probability that the one based on the orbital decay due to tides. It is of interest to note that a direct

application of the Zahn theory to this system gives values of Ṗobs that are orders of magnitude

smaller ( see Fig. 12) .

Finally, in the case of WASP-18 only an upper limit given by |Ṗobs| < 0.02s/yr is inferred from

the lower limit on the modified tidal quality factor, Q
′

> 106, recently published by Wilkins et. al.

(2017). Although this limit certainly excludes MLD tides operating in non-rotating stars, MLD

tides in the star rotating with rotational period ∼ 5.4d are in marginal agreement with the published

bound on |Ṗobs| giving |Ṗobs| ≈ 0.01− 0.015s/yr, depending on the stellar model. Thus in case of

this system, a relatively minor reduction in the magnitude of the observational error, could either

confirm or exclude the MLD regime.

As we have discussed in Section 4.1.2, the assumption of the MLD regime, cannot be justified
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assuming the theory of linear damping of tidally excited modes due to radiative diffusion applies

to the considered MS stars. Thus, some mechanism of non-linear mode damping must be invoked

to account for the possibility of this regime applying for these objects. Since both WASP-43 and

Ogle-tr-113 are Sun-like we can check whether or not they satisfy the criterion for wave breaking

in their radiative cores given by Barker & Ogilvie (2011) . We found out that this criterion is not

satisfied, with characteristic mode amplitudes near the centre being several orders of magnitude

smaller than needed. This is explained by relatively young ages of WASP-43 and Ogle-tr-113. As

discussed in Barker & Ogilvie (2011) the wave amplitude near the centre of a MS star is propor-

tional to a positive power of the gradient of the Brunt - Väisälä frequency, and this is relatively

small for young MS stars. A possible non-linear mechanism that could work in the objects with the

considered parameters is mode decay through non-linear interactions that produce a large number

of ’daughter’ modes. This was recently discussed by Essick & Weinberg (2016), who indeed found

that it can operate in systems with Hot Jupiters with periods of the order of one day.

In summarising our results for MS stars, we would like to stress that the possibility of the

MLD regime operating generically in systems containing Hot Jupiters with periods of the order

of one day, has not been definitively established at the present time. When theory and observation

are compared, it seems that all except WASP-43 are consistent with being in the MLD regime.

However, observational error bars are large so this may not in fact be the case. However in the

case of WASP-18, observational bounds on |Ṗorb| are very close to theoretically predicted values,

so that a modest improvement in the former could provide important clarification on this issue.

6.2 Evolved stars

We considered the case of an evolved star with a close in companion of approximately one Jupiter

mass, Kepler-91, in Section 4. For this star we have shown in Section 4.2.1, the existence of linear

radiative damping implies that the MLD regime holds. This is because of the dense normal mode

spectra found for the models of this star, in the frequency ranges of interest leading to a resonant

mode of very high order. Accordingly, dynamical tides associated with g modes of very high order

are expected to play a role in the orbital evolution of this system.

We found that the time scale for orbital evolution induced by these tides becomes comparable

to the time scale for evolution of the star during the later stages. Therefore, stellar evolution must

be fully incorporated in the calculations of the evolution of the orbit which will be significant over

the lifetime of the star. We found that quasi-static tides appear to give only a minor contribution, at
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least within the framework of the simple model adopted. This assumed that the effective turbulent

viscosity is reduced by the ratio of tidal forcing period to the characteristic turn over time of

convective eddies, when this ratio is less than unity. Note that it has been argued that there should

be a quadratic reduction in the efficiency of turbulent viscosity in this regime ((eg. Villaver & Livio

2009; Goldreich & Nicholson 1989) (see Section 5.2.1). In that case orbital evolution due to quasi-

static tides would be completely negligible for this system. The effect of stellar wind could have

been significant for a planet, with present day orbital period slightly larger than that of Kepler-91b,

through the effect of mass loss from the system. On the other hand, the effects of hydrodynamic

drag exerted on the planet by the wind and gas accretion onto the planet appear to play only a

minor role. Note, however, that these effects have been considered having adopted a procedure

which may have been oversimplified (see Section 5.2.2). This deserves further investigation as

well as a possibly influence of mass loss from the planet due to e.g. its heating by the star.

We find the following orbital evolution is likely to have taken place during the lifetime of

Kepler-91b (see Section 5.2.4). It starts to become significant when the star is approximately 3.5

Gyr old with the orbital period Porb ∼ 6.8d being only slightly larger than the current value

Porb ∼ 6.2d, and the eccentricity being rather large ∼ 0.35. Since the time scale for the evolution

of the eccentricity is shorter than that for the evolution of the semi-major axis, the eccentricity

relaxes to its present day small value ∼ 0.066, while the orbital period changes only by a small

amount.

We remark that this circularisation occurs independently of effects due to tides raised on the

planet which are also expected to lead to circularisation. However, in this context we note that

the current orbital period of Kepler-91b is large enough that such tides may not have operated

significantly during the life time of the star (see eg. Ivanov & Papaloizou 2007, 2010). Note that

for slightly larger and slightly smaller initial orbital periods the evolution would be qualitatively

different. In the former case the orbital period actually increases during the late stages of stellar

evolution due to the effect of mass loss from the system. In the latter case dynamical tides are

very efficient and the orbit rapidly shrinks during the later evolutionary stages. Thus, the orbital

parameters of the present day Kepler-91b are rather special, since within the framework of our

model, only for such parameters do we expect efficient orbital circularisation, while strong prior

evolution of the semi-major axis is not expected.
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APPENDIX A: TIME SCALES OF TIDAL EVOLUTION DUE TO QUASI-STATIC

TIDES

Here we show, for completeness, the time scale for the evolution of the semimajor axis, Ta,QS , and

the eccentricity, Te,QS, due to quasi-static tides, following the paper of Zahn (1989). They have the

form
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Ta,QS =
1

6λ2

(

M∗

m

)(

a

R∗

)8

tf (A1)

and

Te,QS =
1

3

(

5

8
λ1 − λ2 +

49

8
λ3

)−1 (M∗

m

)(

a

R∗

)8

tf , (A2)

where

λl =
1

max (1, ηl)
λ (A3)

and

λ = 0.8725E2/5
∫ 1

xc

x22/3(1− x)2dx. (A4)

The dimensionless radius is x = r/R∗, with xc being its vallue corresponding to the inner bound-

ary of the convective envelope. Note that we set the mixing length parameter α
′

as defined in Zahn

(1989) to be unity in (A4). The factor E entering (A4) is obtained by matching the density ρc at the

convective envelope boundary to that obtained from a density distribution in the envelope region,

which is assumed to correspond to the structure of an n = 1.5 polytrope, thus

E = 3
ρc
ρ̄

(

5

2

xc

1− xc

)3/2

, (A5)

where ρ̄ = (3/4π)(M∗/R
3
∗) is the mean density. We obtain ρc, xc, R∗ and ρ̄ using the set of

numerical stellar models described above.
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