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Quantum Stochastic Processes and
Quantum Many-Body Physics
Johannes Karl Richard Bausch

This dissertation investigates the theory of quantum stochastic processes and its applications in quantum

many-body physics. The main goal is to analyse complexity-theoretic aspects of both static and dynamic

properties of physical systems modelled by quantum stochastic processes. The thesis consists of two parts:

the first one addresses the computational complexity of certain quantum and classical divisibility questions,

whereas the second one addresses the topic of Hamiltonian complexity theory.

In the divisibility part, we discuss the question whether one can efficiently sub-divide a map describing

the evolution of a system in a noisy environment, i.e. a cptp- or stochastic map for quantum and classical

processes, respectively, and we prove that taking the nth root of a cptp or stochastic map is anNP-complete

problem. Furthermore, we show that answering the question whether one can divide up a random variable

X into a sum of n iid random variables Yi, i.e.X =
∑n
i=1 Yi, is poly-time computable; relaxing the iid

condition renders the problemNP-hard.

In the local Hamiltonian part, we study computation embedded into the ground state of a many-body

quantum system, going beyond “history state” constructions with a linear clock. We first develop a series of

mathematical techniques which allow us to study the energy spectrum of the resulting Hamiltonian, and

extend classical string rewriting to the quantum setting. This allows us to construct the most physically-

realisticQMAEXP-complete instances for the localHamiltonian problem (i.e. the question of estimating

the ground state energy of a quantum many-body system) known to date, both in one- and three dimensions.

Furthermore, we study weighted versions of linear history state constructions, allowing us to obtain tight

lower and upper bounds on the promise gap of the localHamiltonian problem in various cases. We

finally study a classical embedding of a Busy Beaver Turing Machine into a low-dimensional lattice spin

model, which allows us to dictate a transition from a purely classical phase to a Toric Code phase at arbitrarily

large and potentially even uncomputable system sizes.
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Introduction
The freedom of human thought is very limited. We all live

in a very narrow cage, the “zeitgeist”, in which we have very

little freedom of motion. If, in different ages, people

thought differently, this was not because the cage got wider,

but because the cage moved.

—Albert Szent-Györ�i, The Crazy Ape

1 Many-Body Quantum Physics
If |Ψt〉 describes the state of a quantum mechanical system at time t, its time evolution is dictated by the

time-dependent Schrödinger equation

∂

∂t
|Ψt〉 = −iH |Ψt〉 , (1)

where H is the Hamiltonian operator, i.e. a Hermitian matrix acting on state vectors such as |Ψt〉 in some

Hilbert spaceH. We generally assume that all Hilbert spaces are finite-dimensional, if not specified otherwise,

and we use natural units (c = kB = ~ = 1). For time-independent problems, the eigenvalue equation

H |Ψ〉 = E |Ψ〉

yields the energy levelsE of the system described by the Hamiltonian H, where |Ψ〉 are the corresponding

eigenstates at that energy level. The time-evolution of a quantum system can be obtained by solving the

differential equation 1; one finds that |Ψt〉 = exp(−iHt) |Ψ0〉 for some initial state |Ψ0〉 is a valid solution.

Since the Hamiltonian H is Hermitian, the operator Ut = exp(−iHt) is unitary for all times t, i.e.

UtU
†
t = 1.

Many-body problems address the case where the system contains more than one distinguishable con-

stituent, e.g. when there are two independent electrons, coupled by H. In this case, the Hilbert space

factorises into a product spaceH = H1 ⊗ · · · ⊗Hn, where n is the number of particles, and dimHi is the

local dimension of the ith particle. In case H describes particles which are non-interacting, the Schrödinger

equation can be solved by a simple combinatorial reconstruction from the energy levels of the local systems.
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The by far more interesting case is when at least some of the spins interact, i.e. when they are coupled

by some non-trivial terms in the Hamiltonian H. Such interacting quantum many-body systems appear

ubiquitously in all areas of physics, and an important subclass are local Hamiltonians: if

H =
∑
i

hi (2)

where hi acts non-trivially on at mostk subsystems for somek, we call Hk-local. Observe that this definition

makes no assumption on the geometric layout of the system, or how long-range the interaction is. Local

Hamiltonians can be nearest-neighbour, but we may also encounter highly-contrived interaction graphs

without any nice geometric structure.

In nuclear physics, for example, protons and neutrons in the nuclei are held together by an attractive

interaction (the strong force), counteracting the electromagnetic repulsion of the positively-charged protons.

Various descriptions and effective Hamiltonians exist that model nuclei, see [ERS75]. A well-known example

in this context, widely-used in quantum chemistry, is the famous Born-Oppenheimer approximation

[ERS75, appdx. L], factoring the wave function of the molecules into nuclei and electrons, i.e. |Ψt〉 =∣∣Ψelectrons
t

〉
⊗
∣∣Ψnucleus

t

〉
. Under this assumption, one can write down the interaction Hamiltonian H which

contains terms that bind the electrons to a static Coulomb potential arising from the nuclei’s positions, but

neglecting the nuclear kinetic energy itself; in this way the electronic wave function can be approximated

independently.

Many-body physics is also the foundation for condensed matter physics, i.e. the study of condensed

phases of matter, such as liquids or solids. An important class of solids are crystals, where the particles sit

at the intersections of a fixed lattice, and with interactions that are translationally-invariant under a shift

by a lattice vector (i.e. the interactions are “the same” irrespective of the position of the lattice, where the

boundaries are potentially excluded).

The Schrödinger equation describes the evolution of a quantum system under the assumption that there

is no outside world interacting with it, e.g. in the form of noise; such systems are called closed. But what about

a more realistic scenario, where environmental effects cannot be neglected—i.e. what about open quantum

dynamics? Mathematically, we describe open quantum systems with so-called quantum operations. An

excellent overview can be found in [NC10, ch. III]; let us summarise the major concepts briefly. Quantum

operations can be used in a broad array of cases, both to describe weakly-coupled systems—where the

environment is a mere perturbation to the closed system dynamics—as well as strongly-coupled systems. We

denote the action of a quantum operation E on a quantum state ρ simply via E(ρ). But which class of maps

E is a valid quantum operation? For closed dynamics, E(ρ) = UρU† represents closed-system evolution

under the unitary matrix U; measurements can similarly be represented via E(ρ) = MρM†, where for

example M is now a projective measurement operator.
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A convenient way of thinking about the more general case of open system dynamics is to consider the

environment ρ′ as part of the system ρ that we aim to model, perform a unitary evolution, and then trace

out the environment. Mathematically, and under the assumption that system and environment start out in

a product state, we can describe the dynamics via

E(ρ) = trenvironment
(
Uρ⊗ ρ′U†

)
. (3)

This characterisation of a quantum operation is also known as Stinespring dilation [Sti55]. It can be shown

that for all possible quantum operations, it suffices to assume that dim ρ′ = (dim ρ)2, and that the

environment starts out in a pure state1, i.e. ρ′ = |e〉〈e|. If we expand the partial trace in eq. (3)—denoting

with {|i〉}i a basis for the environment, we obtain

E(ρ) =
∑
i

〈i|U(ρ⊗ |e〉〈e|)U† |i〉 =:
∑
i

EiρE
†
i , (4)

which is also known as the operator-sum representation of the quantum operation E , and the Ei are called

Krauss operators [Cho75]. It is straightforward to show that
∑
i E
†
iEi = 1, as long as tr E(ρ) = 1—i.e.

for operations which are trace-preserving—in [NC10] the authors include the case when tr E(ρ) ≤ 1, which

e.g. describes a measurement on the joint system and environment; for the purposes of this thesis we will not

need to consider this case. There is also a natural way to translate an operator-sum expression as in eq. (4)

into a physical system-environment model; we refer the interested reader to [NC10, sec. 8.2.3]. •
Given some quantum operation E(ρ) =

∑
i EiρE

†
i and a positive operator A on some arbitrary

extended system (referring to A’s eigenvalues being nonnegative), it is immediate to show that for an identity

operationI on the extended system, the joint operation (I⊗E)(A) yields a positive map as well—a property

of E which we call complete positivity. In brief, a quantum operation is thus a cptp map—completely

positive and trace preserving.

A bottom-up classification for cptp maps is given e.g. in [Wol08]; [NC10, Th. 8.1] •: if we want to

construct the most general map from density operators to density operators T : B(H)→ B(H′)—where

B(H) denotes the bounded linear operators onH—we need to require three properties that make such a

mapping reasonable.

1. Linearity: ∀c ∈ C and ρ, ρ′ ∈ B(H) : T (ρ+ aρ′) = T (ρ) + aT (ρ′).

2. Trace-Preservation: tr T (ρ) = 1 if tr ρ = 1, which together with linearity implies ∀A ∈ B(H) :

tr (A) = trA.

3. Complete Positivity: preserves nonnegative eigenvalues (i.e. T (A†A) ≥ 0 ∀A ∈ B(H)); this
1We can always enlarge the environment to purify it.
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necessarily has to hold true if the channel describes part of the evolution of a bigger system, which

does not itself interact. More explicitly, T ⊗ In ≥ 0 for all n ∈ N, where In is the identity on an

n-dimensional auxiliary system.

These assumptions together precisely specify cptp maps.

In contrast to closed system dynamics, time evolution under a quantum operation is not necessarily

unitary. Yet under the assumption that the evolution is Markovian (see [Pre15, sec. 3.5]), there exists an

analogue to the evolution described by the Schrödinger equation. More specifically, if ρ(t) is to be governed

by a differential equation comparable to the Schrödinger equation, we know that ρ(t+ dt) can only depend

on ρ(t).2 In this case, and if we want to describe the open quantum evolution for all times t ≥ 0, we can

then use a so-called Markovian quantum master equation [CEW12b], i.e. we describe the dynamics of a

density matrix ρ via the LiouvillianL in Lindblad form

dρ

dt
= −i[H, ρ] +

∑
i

(
2LiρL

†
i − {L†iLi, ρ}

)
. (5)

Here, H is the usual Hamiltonian with the system’s internal interactions (including, potentially, the unitary

part of the open system dynamics generated byL); the Li are the Lindblad operators describing the coupling

of the system with the environment. The Li form an orthogonal linear basis of the operator space; {·, ·}
denotes the anti-commutator. Such a Lindblad equation naturally generates a semi-group of cptp maps

Et, which describes the open quantum evolution of a system for time t ≥ 0, as a solution of the form

ρ(t) = Et(ρ(0)). The converse direction is not true in general, and deciding whether or not some cptp

map E ′ is Markovian or not is computationally hard [CEW12b]. In chapter 1, we study a related question,

i.e. in which cases one can efficiently sub-divide a cptp evolution into smaller but discrete sub-steps, without
requiring semi-group structure.

The spectral gap of a Hamiltonian H defined via

∆(H) := λ1(H)− λmin(H),

i.e. as the energy difference between H’s ground and first excited state energies. It plays a central role in

studying the physical properties of the system it describes. “Gapped” and “gapless” are, strictly speaking,

only well-defined properties in the large system limit: if for a family of Hamiltonians (Hn), where n is the

system’s size, has a finite gap in the limit n → ∞, then the system is gapped; otherwise it is gapless—to

avoid ambiguity, we often demand that the spectrum above the ground state is continuous in the latter case.

We for example know that the transverse Ising model has an exponentially-closing gap; [LSM61] showed
2If the system is strongly coupled to the environment, Markovianity is often not the case, as information can be exchanged with the

environment for a period of time—the history of the evolution starts to play a role, i.e. the evolution deviates from the case where
the initial conditions are product.
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that this extends to the half-integer spin Heisenberg model for spins aligned on a chain, which [Has04]

extended to arbitrary-dimensional lattices. The case of integer spins remains open; for the one-dimensional

anti-ferromagnetic Heisenberg model this problem is known as the Haldane conjecture [Hal83].

2 Quantum Stochastic Processes
A Markov chain is probably the most intuitive-to-understand example of a stochastic process [Bas11]. Assume

you stand on a tiled floor, and with a certain probability—decided e.g. through rolling a few dice—you

either take a step forward, or backward. Such a discrete random walk is an example of a Markov chain,

where your position on the tiles is the state s ∈ S, and the probabilities associated with moving in a certain

direction are the transition probabilities pij between states i 7→ j, with i, j ∈ S. The transition matrix

P = (pij)i,j∈S is thus such that the row sums are 1, and every entry satisfies 0 ≤ pij ≤ 1.

Markov chains are used ubiquitously in a broad range of fields. In chemistry, equilibria of reactions

can be computed by analysing the steady states of the corresponding Markov chain; an example are

Michaelis–Menten kinetics of enzymes, E + S 
 ES → E + P for some enzyme E, substrate S

and product P . The equilibrium betweenE + S and the enzyme-substrate-complexES can be calculated

from the individual transition probabilities p1 = P(E + S → ES) and p2 = P(ES → E + S) for a

specific time interval. In the language of Markov chains and transition matrices,

P :=

1− p1 p1

p2 1− p2


describes this process; the steady state is the stationary vector—the left eigenvector of P corresponding

to the maximal eigenvalue of 1—which in this case is simply 〈s| = (p2/p1 1). Adding in the reaction

ES → E + P with probability q and without inverse reaction, the steady state of the matrix

P′ :=


1− p1 p1 0

p2 1− p2 − q q

0 0 1


is simply 〈s′| = (0 0 1), as the product reaction acts as a sink from which there is no escape.

Stochastic processes also play a major role in data compression (such as the Lempel-Ziv-Markov chain

algorithm LZMA, see [Sal07]), search (Google’s PageRanktm algorithm for weighting search results [Fer08])

or for modelling other random processes in finance, biology or statistics, see chapter 1.

Such classical Markov chains also play a fundamental role in encoding quantum computation into the

ground state of a (local) Hamiltonian operator. A detailed and rigorous introduction can be found in
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chapter 2, but let us give a short overview over this technique. Assume you are given the following short

quantum circuit that can be used to prepare a GHZ state (|000〉+ |111〉)/
√

2:

|0〉

|0〉

|0〉

H

The circuit consists of three unitaries: a Hadamard gate U1 = Hadamard, and two controlled not gates

U2 = U3 = Cnot. Our goal is to write a Hamiltonian H, which in its ground state |ψ0〉 “encodes” the

action of the quantum circuit. It is an interesting question to ask what “encoding” means precisely in this

context: here, it would supposedly be sufficient to be able to access the output of the quantum circuit, say

by measuring the ground state in a specific basis, and to some precision that we are satisfied with. This

immediately opens the question, however, whether we can trust the ground state: how do we guarantee

that the output is the one given by the quantum circuit?

A trivial way of ensuring this is by writing U = (14⊗U1)(12⊗U2)(U3⊗12) for the overall quantum

circuit, and then defining a Hamiltonian

H := U(18 − (|0〉〈0|)⊗3)U†. (6)

It is straightforward to verify that the state U |0〉 is the unique ground state with eigenvalue 0, and all other

states have eigenvalue 1. However, H will not, in general, be a local operator as in eq. (2), even though the

gates U1,U2 and U3 are local in the sense that they only touch at most two qubits at the same time.

Following an argument from [Cub15], a second attempt would be to partition the circuit into intermediate

steps:

|0〉

|0〉

|0〉

H

Each dot now represents one qubit with Hilbert spaceC2, and we can hope to define local Hamiltonian

operators acting on the in- and output qubits of each gate that ensure that the overall Hamiltonian ground

state still encodes the computation output. This, however, is not possible in general. To prove this, consider
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the Hadamard gate only, for which we want to define a local Hamiltonian term h1 acting on spins labelled

i and o:

|0〉

|0〉

|0〉

H
h1

i o

|φi〉 |φo〉

The states |φi〉 and |φo〉 represent the initial state for the circuit—i.e. |φi〉 = |0〉⊗3—and the state after the

first gate application, i.e. |φo〉 = (14 ⊗U1) |φi〉 = |0〉⊗2 ⊗U1 |0〉. What the Hamiltonian term h1 thus

has to accomplish is that

ker(1⊗2
4 ⊗ h1) = span{|φi〉 ⊗ |φo〉}, (7)

where we assumed without loss of generality that h1 is positive semi-definite3. One can verify that h1 =

14 − |0〉〈0| ⊗U1 |0〉〈0|U†1 satisfies eq. (7); but note how this Hamiltonian term depends on the input to

the computation step (i.e. the state |0〉). We could go ahead and define a different Hamiltonian for every

input, which would not be particularly interesting. A general term h1 which works independent of the input
is what we ultimately seek—and this is where the construction breaks down. In fact, one can prove a no-go

theorem forbidding an embedding in this fashion in generality4.

To do this, assume you want to encode an even simpler circuit as eq. (7), i.e. for two general input qubits

|φ12〉 7→ 1⊗U |φ12〉 =: |φ34〉, where U is some single-qubit gate; in the following, subsets on states and

operators will denote the qubits that the objects are defined on, according to the following assignment (and

for the sake of clarity we will drop the subscript on 1 that indicates the identity matrix size, which will be

clear from context):

|0〉

|0〉

U

h

2 4

1 3

|φ12〉 |φ34〉

In particular, this should also hold for a Bell state |φ12〉 = |Φ+〉 = (|00〉 + |11〉)/
√

2. We pick the

3Substitute h1 with h1 − λmin(h1)1 otherwise.
4It is worth pointing out that this approach clearly works when the computation is classical, since the classical gate never sees the

entanglement of the input state.
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corresponding state from span{|φ12〉 ⊗ |φ34〉}, namely

∣∣Φ+
〉

12
⊗
[
(1⊗U)

∣∣Φ+
〉]

34
= ((1)123 ⊗ (U)4)

∣∣Φ+
〉

12
⊗
∣∣Φ+

〉
34

=: |ψ〉 ,

where the subscripts mark which qubits the state denotes; observe that the subsystems are ordered 1−2−3−4

here. According to eq. (7), the state should be in the kernel of (1)13 ⊗ (h)24. A direct calculation of the

corresponding expectation value then yields

〈ψ| (1)13 ⊗ (h)24 |ψ〉

= tr
(

(1)13 ⊗ (1⊗U)†24(h)24(1⊗U)24

∣∣Ψ+
〉〈

Ψ+
∣∣
12

∣∣Ψ+
〉〈

Ψ+
∣∣
34

)
= tr

(
(h′)24 tr1

∣∣Ψ+
〉〈

Ψ+
∣∣
12

tr3

∣∣Ψ+
〉〈

Ψ+
∣∣
34

)
= tr ((h′)24(1)2 ⊗ (1)4)

= tr(h′) = 0

and thus h′ = 0, since a unitary similarity transformation preserves the operators spectrum—i.e. h and h′

have the same eigenvalues; since the trace is the sum of the eigenvalues of h, which is positive semi-definite

by assumption. We can thus conclude h = 0, which contradicts eq. (7): the span is non-empty, whereas

ker(1⊗ 0) = {0}, and the claim follows.

It is a curious property of quantum computation that seems to render it too complicated to be embedded

in this “local Hamiltonian checks”-type embedding, while preserving a tensor product structure of the

computational history as a witness to the computation, i.e. a ground state of the type |φ1〉⊗|φ2〉⊗. . .⊗|φT 〉.
But is there an alternative, which still allows us to encode a quantum computation into the ground state of

a local Hamiltonian? In fact there is, but it requires a modification of what we deem an embedding of a

computation.

In 1986, Feynman proposed to build a Hamiltonian where the computational history is instead preserved

as a so-called history state, i.e.
∑T
i=1 |t〉⊗|φt〉, which is defined on the bipartite Hilbert spaceCT ⊗(C2)⊗n,

where n denotes the number of qubits in the circuit [Fey86]. The first subspace acts as a clock register,

which keeps track of the current computational step.
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To be a bit more precise, consider again the GHZ circuit from before:

|0〉

|0〉

|0〉

H

|φ1〉 |φ2〉 |φ3〉 |φ4〉

Then the Hamiltonian

H :=− (|2〉〈1| ⊗U1 + |1〉〈2| ⊗U†1)

− (|3〉〈2| ⊗U2 + |2〉〈3| ⊗U†2)

− (|4〉〈3| ⊗U3 + |3〉〈4| ⊗U†3) (8)

has a ground space spanned by states of the form
∑4
t=1 |t〉 ⊗ |ψt〉, where |ψ1〉 ∈ (C2)⊗n is an arbitrary

quantum state; |ψ2〉 = U1 |ψ1〉, |ψ3〉 = U2U1 |ψ1〉 etc., which if we could ensure that |ψ1〉 = |φ1〉 =

|0〉⊗3 is correctly initialised would precisely be the history state we want5.

Luckily, we already know how to properly initialise the ground state computation, see eq. (6): by adding

a local term of the form P := |1〉〈1| ⊗ (18 − |φ1〉〈φ1|), we ensure that at time t = 1 all states in a

configuration not equal to |φ1〉 obtain a penalty. The ground state of H is then non-degenerate, i.e.

ker(H + P) = span{|1〉 ⊗ |φ1〉+ |2〉 ⊗ |φ2〉+ |3〉 ⊗ |φ3〉+ |4〉 ⊗ |φ4〉},

as required. This method obviously works for any quantum circuit, and as long as one manages to write the

clock in a local fashion—which was accomplished by [KSV02] in 2002. The difficult parts of translating

these constructions into statements on how hard it is to estimate the Hamiltonian’s ground state energy

(known as the LocalHamiltonian problem, see definitions 2.1, 2.16 and 3.1) stems from the fact that if in

addition to the input penalty P, we also give an output penalty P′ = |4〉〈4| ⊗Π, the Hamiltonian will in

general be frustrated, which complicates a systematic analysis of the spectrum of

Htotal := H + P + P′. (9)

5We can add diagonal terms to H to make it a positive semi-definite operator; H then has a similar structure to a graph Laplacian,
which is in fact how the full eigenspectrum of H becomes accessible; for details we refer the reader to section 4 and chapter 2.
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Obtaining lower- and upper bounds for the ground state energy of Htotal has been an active field of research

ever since Kitaev’s seminal result proving that estimating the ground state energy of a local Hamiltonian is

QMA complete.

The connection between this embedding of quantum computation into the ground state of a local

Hamiltonian and a classical Markov chain becomes apparent when looking at eq. (8): on the clock register,

H takes the form

H|clock = −


0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

 =: 2T,

which is the adjacency matrix for a path graph of length 4; T is stoquastic, and we could say that this (almost,

up to normalization)• transition matrix on the clock register “drives” the quantum computation, as a step

from say t = 2 to t = 3 implies an application of the corresponding unitary U2 to the quantum register.

We will address this connection in greater detail in section 4. We need to point out that this “quantum

stochastic process” is not the same—nor technically related—to the notion of a quantum Markov process,

which is a generalisation of a classical Markov process where the transition matrix is a cptp map repeatedly

acting on an initial density matrix ρ0, see Gudder2008

Since we will discuss the history of this problem in great detail in chapter 2, we instead turn our attention

to a survey of (quantum) complexity theory, and how it comes into play in the context of condensed matter

theory and quantum stochastic processes.

3 Complexity Theory
Assume you are looking for a book in a library, but the electronic catalogue is out of service, the front desk is

closed and the shelves are not sorted. How would you go about finding it? A naı̈ve way would be to just

walk by every shelf and scan the back of every book, until you find the one you seek. Assuming the library

has N books on the shelves, the worst-case scenario is that you will find the book after looking at every

single one in the library, i.e.N . Realistically, the expected number of books you have to check isN/2. The

runtime scaling—in this case linear—is what complexity theory addresses: in this case, to be more specific,

we are talking about the time complexity, i.e. the number of primitive steps (reading book titles) one needs

to undertake in order to answer the question.

The computational model used in this procedure is of course important. In fact, the Church-Turing

thesis6 states that any model of computation should be equivalent to a Turing machine [Wol02, Ch. 12]—

which we will introduce rigorously in chapter 2—but only in the sense that if a (deterministic) computation
6The Church-Turing thesis is, strictly speaking, a conjecture, and there are many subtleties in proving any such equivalence explicitly.
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can be performed on one device, it can also be done on a (deterministic) Turing machine. The runtime

might obviously differ, depending on the computational power of the device at hand; assuming one could

e.g. read three book titles at once, the worst-case runtime for our book hunt isN/3 rather thanN ; if one

has access to an oracle—a magic black-box that solves a sub-problem without additional cost—the runtime

is often reduced.

A Turing machine is a simple computational model introduced by Alan Turing in 1936, mentioned in

many standard textbooks on complexity theory [AB09]; [NC10]; [Wat12a] both in a classical and quantum

setting. In brief, a Turing machine consists of a two-way infinite tape of symbols from a fixed set S, a

head positioned somewhere on the tape and with some internal state q ∈ Q, and a transition function

δ : S ×Q→ S ×Q× {left, right}. At each step, the transition function tells the head to read a symbol

si ∈ S from the tape at the head’s position, and depending on the heads internal state qi at that point

write a symbol so ∈ S, update its internal state to qo ∈ Q, and move in direction d ∈ {left, right}, where

(so, qo, d) = δ(si, qi). There are obviously some subtleties to consider in this definition, but we defer a

precise formulation to section 2.2.1. The runtime of such a Turing machine is then simply the number of

steps required from some input written out on the tape, to some halting configuration qf ∈ Q—which is

well-defined only if the Turing machine terminates, a problem that is undecidable in general [Dav58] and

often referred to as the halting problem.

From a complexity-theoretic point of view, one tries to capture different runtimes within so-called time

complexity classes. Search is clearly in linear time7, and thus belongs to the class P, see section 2.2.1.2: P is the

class of algorithms which, on an input of sizeN , terminates successfully within polyN steps, where it is

important to point out that the polynomial itself has to be the same for all inputs. Similar classes can be

defined for exponential runtime, denoted EXPTIME, or logarithmic time, which we write asDLOGTIME,

see [AB09]. When working with problems in P (or other super-polynomial classes), one commonly allows

so-called Karp- or poly-time reductions for algorithms to show that they are still contained in P. Reduction,

in this context, simply means that one can cast the instances of some problem A into instances of some

other problemB, with the property that the answer remains the same; a poly-time reduction then says that

the overhead introduced by the cast is upper-bounded by a fixed polynomial for all instances. Whether an

algorithm has runtimeN orN56 has no bearing for this classification into P (as either are polynomials),

even though the difference might be striking for any practical applications.

Examples for recent complexity-theoretic results for deterministic algorithms are, amongst others, the

Agrawal–Kayal–Saxena primality test [AKS04] shown to be in P, and the graph isomorphism problem

(trivially contained in EXPTIME): in 2015 László Babai announced that he discovered a quasi-polynomial

time algorithm for this problem (i.e. with a run-time of O(exp((logN)c)) for an input of size N , and

7Naturally, one can speed up all subsequent searches by first sorting the shelves—e.g. using block merge sort, which has an
O(N logN) worst-case runtime [KK08]. Performing a search through an ordered list then has a logarithmic runtime.
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some fixed c > 0), a claim that was retracted earlier this year but with a promised amendment which would

save the result [Bab15]; [Bab17].

While complexity theory is rarely discussed outside of science, the (in)famous P vs.NP conjecture has

found its way into pop culture8. NP—non-deterministic poly-time—is the class of problems that can be

answered with a non-deterministic Turing machine [AB09, sec. 2.1.2]. Such a Turing machine has two

distinct transition functions δ0 and δ1, and, at each step, picks one or the other; the problems that can be

answered with such a machine are those for which there exists at least one path through the computation—i.e.

a sequence of choices—for which the computation accepts the input. Before explaining this further, it is

worth spending a few words on how to rigorously define the term “problem”. It is common to talk of

decision problems in this context, i.e. YES orNO questions. The question “Where is Nielsen&Chuang in

the library?” is not a decision problem, but the question “Is it on the second floor?” qualifies as such. For

a Turing machine which could answer this question (e.g. if it has knowledge of the library stored in the

internal head configurations), we obviously need to specify the input following a specific encoding on the

tape, e.g. by writing the book title in the Cyrillic alphabet in a specific direction, or an UTF-8 encoded

little-endian null-terminated binary sequence on an otherwise blank tape. And here is the problem: what if

an invalid input is given? Answering whether a Turing machine halts on an arbitrary input is, in general,

undecidable, as we already discussed. We can sidestep this problem by talking of promise problems, where the

promise is that the input is from a set of validly-formatted strings s ∈ Π and such that Π = ΠYES∪̇ΠNO, i.e.

s is either a YES or aNO instance. A promise-NPTuring machine is then said to accept s if it outputs YES
on some path (in which case s ∈ ΠYES), andNO otherwise (s ∈ ΠNO), a notion which is now well-defined9.

Equivalently, we can characterise an NP promise problem by saying that there exists a deterministic

poly-time Turing machineM , such that for any s ∈ ΠYES, there exists a witness or certificatew such that

M(s, w) = YES, and if s ∈ ΠNO, for all strings w′, we have M(s, w′) = NO• (it is worth pointing out

that whenNP is not defined on promise problems, there is no statement for theNO case).

The most fundamentalNP-complete problem (meaning it is inNP, and as hard as any other problem

inNP under poly-time reductions) is Boolean satisfiability, i.e. the question whether a Boolean formula is

satisfiable, see section 1.1.2 and [Coo71].

Another important extension to the complexity zoo are probabilistic classes, such as BPP or StoqMA.

Imagine you and your friend Bob both hold binary strings s, s′ ∈ {0, 1}n, respectively, and you want to

determine whether the strings are equal. Assuming n can be large, you may not want to communicate the

entire string s over a network (e.g. due to bandwidth limitations), so a character-to-character comparison is

out of question. However, with access to a source of randomness on at least one side, you can still check

whether the strings are identical or not, at least with high enough probability [Bel10]. In brief, the protocol

8P vs.NP is e.g. featured in the film Travelling Salesman, one episode of The Simpson’s and an episode of Elementary.
9Strictly speaking we should use “promise-NP” throughout the thesis, but for the sake of brevity we will generally drop it.
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works by viewing the string •as an integer s ∈ {0, 1, 2, . . . , 2n−1}, and building a “fingerprint” (i, fi),

where i is a random number between 1 and n, and fi := s (mod p)i, where pi is the ith prime. This

fingerprint is sent to Bob, who compares it with the corresponding fingerprint f ′i := s′ (mod p)i. One

can show that in case s 6= s′, the number of primes on which this method fails is upper-bounded by

n/2—which in turn means the acceptance probability is upper-bounded by 1/2. Repeating the protocol

100 times gives a failure probability of 2−100, which gives sufficient confidence for any practical purposes.

Such randomised algorithms play a major role in computer science; before the deterministic primality

test [AKS04], a probabilistic BPP algorithm was the state of the art. Polynomial identity testing [AB09,

sec. 7.2.2]—i.e. the question whether a polynomial p ≡ 0—is one of the most important open problems

in algebraic computing complexity [Sax14];[AB09, sec. 7.2.3], with implications for circuit depth lower

bounds, and which played a crucial role in proving that IP = PSPACE [Sha92]10. Another important

example is the question of testing perfect matchings in bipartite graphs, for which randomised algorithms

exist that perform particularly well on dense graphs [AB09, sec. 7.2.3]. And in Hamiltonian complexity

theory, BPP plays a role e.g. in a recent algorithm by [LVV15] for finding the ground state of a local 1D

gapped quantum system. The class StoqMA is then to BPP what NP is to P, used e.g. in the hardness

classification of interactions for the local Hamiltonian problem [CM14]; [PM15].

Instead of listing more complexity classes, we want to focus on BPP’s quantum analogue, the class BQP
[AB09, ch. 20.3]; In short, BQP is the class of promise problems solvable in poly-time and with high

probability using a quantum Turing machine. This definition sounds very intuitive, yet it hides almost

all of the subtleties that arise when trying to construct a quantum version of classical Turing machines11,

and we refer the reader to [BV97a] for an extensive discussion. For the purpose of this introduction, we

just point out that a quantum Turing machine is one with a unitary transition function (i.e. in particular

reversible, a property Bernstein and Vazirani call well-formed), where the tape and internal configuration

live in a Hilbert space, and where by poly-time quantum Turing machine we mean the machine halts with

probability 1 (i.e. transitions to a final superposition) on all input strings with the head in the same position,

and in polynomially many steps (called well-behaved).

Assume we consider a promise problem Π ∈ BQP. While we require that the quantum Turing machine

M for this problem halts deterministically in poly-time on any l ∈ Π, the output will be a quantum state,

and we have to measure it in order to obtain an answer. As for the class BPP, we thus demand that for

l ∈ ΠYES,

Pr(M(l) = YES) ≥ 2

3

10IP is the class of interactive poly-time proof systems, and PSPACE the class of problems solvable using a polynomial amount of
space, without any explicit runtime restrictions.

11In fact, the way we choose to define BQP rigorously in this work is not through quantum Turing machines, but uniform classes of
quantum circuits, see definition 2.11.
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and for l ∈ ΠNO,

Pr(M(l) = YES) ≤ 1

3
.

These probabilities can be amplified under a poly-time reduction, see fact 2.12. Analogously to above,QMA
is to BQPwhatNP is to P. It is easy to see that P ⊆ BPP ⊆ BQP, yet none of the inclusions is known to be

strict. While also P ⊆ NP, it is not known in which way BQP andNP are related [Ben+97].

4 Putting it all Together
So far, the introduction addressed seemingly disjoint topics. Quantum many body physics one one hand, a

theory that aims to describe composite systems comprising our physical reality, and stochastic processes on

the other hand, a mathematical tool to model random dynamics and steady state properties. These two topics

are in fact tightly linked, and become particularly fruitful when approached from a complexity-theoretic

direction.

To exemplify this connection, consider the family of cptp maps generated by a master equation in

Lindblad form eq. (5), which in linear operator representation

E(i,j),(k,l) := 〈i, j|
(
E(|k〉〈l|)Γ

)
can be written as Et = eLt, where L is the linear operator representation ofL; the reshuffling operation• ·Γ

is defined in eq. (1.1), and we direct the interested reader to section 1.1 and [BŻ06] for an extensive discussion.

Open quantum evolution that has such a generator L is called Markovian, and as we learned, deciding

whether or not a particular quantum channel arises from such a generator is computationally hard (NP-hard)

to answer. In a similar fashion, a classical stochastic process can be generated by an operator, i.e. if Pt is a

semi-group of stochastic maps describing the transition probabilities in a Markov chain, whether or not

Pt = eQt for some generator12 Q is an old open question known as the embedding problem for stochastic

matrices, andNP-hard to answer computationally (see [Elf37]; [CEW12b]).

This also shows how complexity theory enters the picture, and how we can utilise this connection to make

statements about the real world. Using quantum process tomography, one can measure a quantum channel

E to within some precision. Yet even the weak membership variant of the problem—meaning deciding

whether or not there is a Markovian channel “close” to the one at hand—isNP-hard to answer. It is thus

computationally intractable in any practical sense to decide whether the channel E is Markovian, in general,

and assuming P 6= NP. In this work, we address a similar question: given this channel E , can we at least

“sub-divide” it into smaller step, in order to interpolate the evolution between two measurements? More

12Q has a number of conditions attached, similar to the Lindblad generator L: nonnegative off-diagonal, and zero row sums.
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specifically, does there exist a channelF such that

E = F ◦ . . . ◦ F︸ ︷︷ ︸
n times

for some given n > 1 (definition 1.29)? Or in the classical setting, can we write a stochastic map P as

the power of another stochastic map Q (definition 1.31)? And what about probability distributions: in

which cases can a random variableX be written as the sum of independent random variables Y1, . . . , Yn

(definitions 1.66 and 1.79)? What if we only care about an approximation (definitions 1.67 and 1.80)? There

is a plethora of related questions, and we address the computational complexity of them in chapter 1.

Another connection between many-body quantum physics and quantum stochastic processes becomes

important when considering the local Hamiltonian problem from a graph-theoretic angle; we will

briefly discuss this here and extend upon section 2, but refer the reader to sections 2.2.1 and 2.2.3 for an

extensive discussion. If we write the Hamiltonian in eq. (8) in a slightly different form and add diagonal

terms,

H :=
∑
i

[
(|1〉 ⊗ |i〉 − |2〉 ⊗U1 |i〉)( Hermitian conjugate )

+(|2〉 ⊗ |i〉 − |3〉 ⊗U2 |i〉)( h. c. )

+(|3〉 ⊗ |i〉 − |4〉 ⊗U3 |i〉)( h. c. )
]
,

we can define the partially-diagonalising unitary W via (see lemma 2.41)

W : =

3∏
t=1

(
|t+ 1〉〈t+ 1| ⊗U1 · · ·Ut + (1− |t+ 1〉〈t+ 1|)⊗ 1

)
= |4〉〈4| ⊗U3U2U1 + |3〉〈3| ⊗U2U1 + |2〉〈2| ⊗U1 + |1〉〈1| ⊗ 1,

such that W†HW = ∆4 ⊗ 1. Here, ∆4 is the graph Laplacian of a path graph with four vertices

G4 :=
1 2 3 4

,

see claim 2.27. We can calculate ∆4 as the difference between degree matrix D = diag(1, 2, 2, 1) and

adjacency matrix ofG4,

∆4 =


1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 1

 .
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The ground state of ∆4 is—as aforementioned—a uniform superposition over all vertices, i.e. |Ψ0〉 =∑4
t=1 |t〉, with eigenvalue zero. For H, we can thus calculate the ground state via

W(|Ψ0〉 ⊗ |i〉) = |1〉 ⊗ |i〉+ |2〉 ⊗U1 |i〉+ |3〉 ⊗U2U1 + |4〉 ⊗U3U2U1.

Naturally, we can use a Markov chain instead of a graph, and its Markov chain Laplacian instead; for a

discrete Markov process on the same graph, the transition matrix

T4 =


0 1 0 0

1
2 0 1

2 0

0 1
2 0 1

2

0 0 0 1


is not symmetric, but still only has real eigenvalues{−1,−1/2, 1/2, 1}. Its stationary vector—corresponding

to the largest eigenvalue—is |Ψ0〉, i.e. identical to the ground state of ∆4. The matrix 1−T4 should thus

be equally suited for embedding computation, in a similar fashion as for graph Laplacians; by going to a

Markov chain on
1 2 3 4

we obtain a symmetrised version of T4, denoted T′4, such that in this case—coincidentally—2(1−T′4) =

∆4. However, the language of Markov chains allows us to go beyond uniformly-weighted history states, an

important modification to Feynman’s original construction. We explore such extensions in chapter 5.

Embedding quantum computation into the ground state of a local Hamiltonian can serve multiple

purposes. In this thesis, we mainly focus on the local Hamiltonian problem: we prove that local,

translationally-invariant interactions on open boundary spin lattices in 1D (chapter 2, with local spin

dimension 42 and nearest-neighbour couplings) and 3D (chapter 3, with local spin dimension 4 and 4-local

couplings) give rise toQMAEXP-hard to approximate ground state energies. Foremost, this is a complexity-

theoretic result, yet it has implications for the physics of the material described: if we assume that not

all easy-to-verify problems on an exp-time quantum system can also be solved in the same runtime—i.e.

QMAEXP 6= BQEXP, analogous toNP 6= P—then we also assume that we cannot physically build a device

which solvesQMAEXP-hard problems efficiently. However, if we have an actual sample described by either

the 1D or 3D Hamiltonians we construct, and we cool the system down, there are two possible outcomes.

1. The system quickly assumes its ground state, i.e. in a time that scales polynomially in the system size.

2. The system remains in a meta-stable low-energy local minimum.

In the first case, we actually build a device that solvesQMAEXP-hard problems efficiently; depending on
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Figure 1: Difference between spectral gap and promise gap. On the left hand side, the Hamiltonian HYES
has spectral gap ∆1 := λ1(HYES) − λmin(HYES), and analogously ∆2 for HNO. The promise
gap β − α is the minimal difference between the two ground states for YES and NO instances,
respectively, minimised over all Hamiltonians encoding instances of the same size. The higher
energy spectrum plays no role in either definition.

the fidelity and specific runtime, this could showcase a complexity-theoretic collapse such asQMAEXP =

BQEXP—although one has to be careful to claim empirical evidence as a proof. From a practical perspective,

this would of course be a fascinating result; since e.g.NEXP ⊆ QMAEXP. More realistic is the second case:

systems like this behave in a spin-glass-like fashion, taking substantial time to equilibrate13, see [McG14].

Let us be more precise here, and connect this back to stochastic processes. For this we need a slightly more

formal definition of the localHamiltonian problem. Given an integer n and a k-local Hamiltonian

H on a multipartite Hilbert space (Cd)⊗n, and two real numbers β > α such that β − α ≥ 1/p(n),

13The equilibration time until the ground state is reached will generally depend on the spectral gap of the system, which we discuss
below. Depending on the type of embedded computation—e.g. a BQP or BQEXP circuit—this gap will generally shrink along
with the runtime. •It is an interesting question how experimental cooling rates compare to the complexity-theoretic lower bounds
on the spectral gap, but it isn’t quite as straightforward to answer. In [KO17], for instance, the authors show that rapid cooling
in some condensed matter systems takes the system to a meta-stable low energy state different from its ground state, since the
procedure allows the system to avoid a first order phase transition (see also [Liu+01]; [Ryl+16] for more examples). The cooling
rate thus becomes a parameter of the phase that the system ends up in; a lower cooling rate could, in principle, take the system to
its ground state faster. For optical lattices, which have been proposed as a method for simulating condensed matter systems of
strongly correlated particles which lies beyond the capabilities of current numerical approaches, another major obstacle seems to lie
in the challenge of cooling the system down far enough to e.g. reach magnetic order (see Block2008; [MD11]); such optical lattices
would also be excellent candidates for a Feynman-Kitaev type embedding of quantum computation due to the very high control
experimentalists have for tuning the spin couplings and the relatively large number of local degrees of freedom. A rough estimate
for the temperature necessary to embed, say, 100 gates into the ground state of a Hamiltonian and to be able to distinguish between
YES andNO instances with a sufficient fidelity of e.g.≈ 0.1 can be obtained from [Bau+16, eq. 10]: assuming an effective coupling
strength of geff ≈ 10−14 eV (see [CPC17, eq. 1], where we assume geff ∝ 10ER/∆c withER = ~2k2/2M ≈ 10−12 eV
as recoil energy and a detuning of ∆c ≈ 20 MHz, and [Aid16, ch. 4.3] for some experimental numbers) and a promise gap of
∆ ≈ 100−2geff (see theorem 5.6) we get a temperature T ≈ 10−15K. This lies five orders of magnitude below the lowest
ever achieved temperature in a Bose Einstein condensate at the time of writing this thesis [Lea03]. Obviously this is just a very
rough estimate, but it demonstrates the difficulties arising from a quickly-closing gap and a realization of the Feynman-Kitaev
Hamiltonian in an experimental setup for the purposes of extracting computational power.
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Figure 2: Classical, Gaussian-shaped random walk distribution on a line of length 50 after 20 steps (red),
compared to a quantum walk (dark grey)—both with 1/3 probability for left, right, or no step.

for some fixed polynomial p(n), distinguish between λmin < α, or λmin > β. We are promised that the

smallest eigenvalue λmin of H is either smaller thanα or greater than β (whether or not this promise is hard

to satisfy is not important, as mentioned in section 3). The polynomial promise gap here is crucial, and part

of the definition of the localHamiltonian problem; it has nothing to do with the spectral gap of the

Hamiltonian at hand, see fig. 1.

The Feynman-Kitaev type history state embedding has a 1/ poly T promise gap, where T is the number

of steps of the embedded computation, or, more specifically, the number of vertices that make up the

classical clock part of the computation. While, as we have seen, the propagation part of the Hamiltonian is

unitarily equivalent to some graph or Markov chain Laplacian, adding both in- and output penalty will

perturb the energy spectrum depending on the content of the computational register, see eq. (9).

An interesting question is whether such history state Hamiltonians are suitable for an adiabatic computa-

tion approach, i.e. by interpolating

Hλ := λHtotal + (1− λ)Htrivial

for λ between 0 and 1. Htrivial is then a Hamiltonian whose ground state is easy to compute or to reach in

an experiment. By increasing λ sufficiently slowly, the adiabatic theorem says that the system described by

Hλ will remain in its ground state, or close to it [Far+00]; [GTV15]; Hλ=1 then contains the output to the

computation embedded in Htotal. The speed of interpolation again depends crucially on the spectral gap

along the path ∆(Hλ), a question that depends on the particular interpolation scheme and the computation

Hamiltonian used; we address this in chapter 5.
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Another proposed scheme is Hamiltonian quantum computation, where the initial state is prepared, and

then time-evolved under Ut = exp(iHt)—in this case there is no need for in- and output penalties [NW08];

[Nag12]; [WL15], but yet again the time until the output can be measured with high probability scales

polynomially in the size of the embedded circuit. The connection between computation and complexity,

and many-body physics implementing the stochastic process that drives the quantum computation is

particularly obvious in this case, as the dynamics of such a system—i.e. the time evolution of the initial state

|ψt〉 := Ut |ψ0〉—is very similar to a quantum diffusion process as illustrated in fig. 2. Beyond chapter 5,

the interested reader finds an excellent survey of adiabatic and Hamiltonian quantum computation in

[Nag08].

Last but not least, we construct a many-body quantum system on a two-dimensional lattice with a peculiar

size-dependent transition from classical phase to topologically ordered (the Toric code, see chapter 4): the

encoded “computation” differs from the history state construction, in that it is constructed from diagonal

projectors representing a so-called Wang tiling; we present two constructions, one with a fixed but large

period, and another one allowing an embedding of a classical Turing machine into the ground state of the

system. As we noted before in section 3, such an embedding of classical computation as a tensor product over

the computational history—as opposed to a superposition—can indeed be done, and does not contradict

the no-go theorem we proved there.

This transition from classical to quantum low-energy spectrum is abrupt: there is no prior warning or

level-crossing effect, or different energy scales in the Hamiltonian’s coupling constants, which could give

away the length scale at which the transition occurs. We further prove that the transition is thermally robust,

in the sense that there exists a finite temperature at which the Gibbs state is sufficiently close to the ground

state of the system to observe said effect. Moreover, by taking the large-system limit and then lowering the

temperature to zero, we uniquely recover the embedded topological model.

To summarise this introduction, it is worth emphasising that the topic of Hamiltonian complexity theory

is intrinsically inter-disciplinary. The results e.g. on the complexity-theoretic side (novel computational

models) often stand by themselves, but help our understanding and analysis of quantum many-body systems.

The latter, in turn, offer a plethora of paths to go along, if we try to improve how computation can be

embedded; and the general theme in this thesis is to work towards “physical relevance” wherever possible. I

hope that my research accomplishes this goal, at least to some extent.

5 Structure of Thesis
Every chapter in this thesis (apart from introduction and conclusion) represents an independent paper;

since most—if not all—of my work is done in collaborations, I summarise my co-authors contributions in

the next section.
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I begin this thesis with a discussion of divisibility problems (chapter 1) as outlined in section 1. This

chapter is self-contained. Chapters 2 and 3 then contain two QMAEXP-hardness proofs for the Local

Hamiltonian problem, once for a family of Hamiltonians in 1D, and then on 3D lattice crystals; the

latter one heavily depends on the machinery introduced for the 1D case. In chapter 4, I present the novel

size-driven phase transitions. The chapter is self-contained. Finally, in chapter 5, I consider modifications to

Feynman’s history state construction, and applications to adiabatic quantum computation. The chapter has

some links to chapter 2, but is largely independent otherwise.

We conclude the thesis in chapter 6 with a short outlook section.

6 Authors and Contribution
Chapter 1 is co-authored with Dr. Toby Cubitt and published ([BC16b]). Both the maps and distribution

divisibility research idea is my supervisor’s; the proof method for embedding 1-in-3SAT into a matrix

(section 1.1.6) is inspired by the infinite divisibility case ([CEW12b]), but the actual proof itself is my work,

as is the remainder of the reduction. In the distribution chapter (section 1.2), both proof ideas as well as

their rigorous formulation for divisibility and decomposability are my work.

Chapter 2 is joint work with Dr. Toby Cubitt and Dr. Maris Ozols, and accepted for publication ([BCO17]).

The idea to reduce the local dimension of Gottesman and Irani was my supervisor’s. The central techniques

(Quantum Ring Machines, Unitary Labelled Graphs and Quantum Thue Systems) are my work, and

have been refined with the help from both co-authors. The actual QMA-hardness construction (Turing’s

Wheelbarrow) emerged from numerous iterations together with Dr. Ozols; the final version including the

idea of ghosts and the hardness proof are my work.

Chapter 3 is joint work with Stephen Piddock, and accepted for publication ([BP17]).• Proving a 3D

version of the local Hamiltonian problem was my idea, as was using tiling constructions to lower the

dimension. Dr. Ozols contributed lemma 3.3. The history state construction emerged from joint discussions,

and the final versions of the proofs are my work.

Chapter 4 is a collaboration together with Dr. Toby Cubitt, Dr. Angelo Lucia, Prof. David Perez-Garcia

and Prof. Michael M. Wolf ([Bau+16]). The idea of size-driven phase transitions is Prof. Perez-Garcia’s, Prof.

Wolf’s, and my supervisor’s. Both the periodic tiling and the Turing machine embedding are my ideas. Dr.

Lucia and Prof. Perez-Garcia helped significantly with the thermal stability section.

Finally, chapter 5 is joint work with Dr. Elizabeth Crosson, and most ideas emerged from joint discussions

([BC16a]). The notion of non-uniform history states was introduced by me, as is the Ω(T−2) scaling proof

both for the weighted case, as for Kitaev’s original construction (sidestepping the geometrical lemma). The

limitations on further improvements is Dr. Crosson’s work.

All figures are my work, with the exception of fig. 2.10 (Ozols) and fig. 5.3 (Crosson).
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1 Divisibility
Zeno’s arguments about motion, which cause so much

disquietude to those who try to solve the problems that

they present, are four in number. The first asserts the

nonexistence of motion on the ground that that which is in

locomotion must arrive at the half-way stage before it

arrives at the goal.

—Aristotle, Physics

People have pondered divisibility questions throughout most of western science and philosophy. Perhaps

the earliest written mention of divisibility is in Aristotle’s Physics in 350BC, in the form of the Arrow

paradox—one of Zeno of Elea’s paradoxes (ca. 490–430 BC). Aristotle’s lengthy discussion of divisibility (he

devotes an entire chapter to the topic) was motivated by the same basic question as more modern divisibility

problems in mathematics: can the behaviour of an object—physical or mathematical—be subdivided into

smaller parts?

For example, given a description of the evolution of a system over some time interval t, what can we

say about its evolution over the time interval t/2? If the system is stochastic, this question finds a precise

formulation in the divisibility problem for stochastic matrices [Kin62]: given a stochastic matrix P, can we

find a stochastic matrix Q such that P = Q2?

This question has many applications. For example, in information theory the stochastic matrices model

noisy communication channels, and divisibility becomes important in relay coding, when signals must be

transmitted between two parties where direct end-to-end communication is not available [Lor78]. Another

direct use is in the analysis of chronic disease progression [CWG08], where the transition matrix is based

on sparse observations of patients, but finer-grained time-resolution is needed. In finance, changes in

companies’ credit ratings can be modelled using discrete time Markov chains, where rating agencies provide

the transition matrix based on annual estimates—for valuation or risk analysis, a transition matrix for a

much shorter time periods needs to be inferred [Jar97].

We can also ask about the evolution of the system for all times up to time t, i.e. whether the system can

be described by some continuous evolution. For stochastic matrices, this has a precise formulation in the

embedding problem: given a stochastic matrix P, can we find a generator Q of a continuous-time Markov
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process such that P = exp(Qt)? The embedding problem seems to date back further still, and was already

discussed by Elfving in 1937 [Elf37]. Again, this problem occurs frequently in the field of systems analysis,

and in analysis of experimental time-series snapshots [CEW12a]; [Lju87]; [NKL98].

Many generalisations of these divisibility problems have been studied in the mathematics and physics

literature. For example, the question of square-roots of (entry-wise) nonnegative matrices is an old open

problem in matrix analysis [Min88]: given an entry-wise nonnegative matrix M, does it have an entry-wise

nonnegative square-root? In quantum mechanics, the analogue of a stochastic matrix is a completely-positive

trace preserving (CPTP) map, and the corresponding divisibility problem asks: when can a CPTP map T

be decomposed as T = R ◦R, where R is itself CPTP? The continuous version of this, whether a CPTP

can be embedded into a completely-positive semi-group, is sometimes called the Markovianity problem
in physics [CEW12b]—the latter again has applications to subdivision coding of quantum channels in

quantum information theory [MRW15].

Instead of dynamics, we can also ask whether the description of the static state of a system can be subdivided

into smaller, simpler parts. Once again, probability theory provides a rich source of such problems. The most

basic of these is the classic topic of divisible distributions: given a random variableX , can it be decomposed

intoX = Y +Z whereY,Z are some other random variables? What ifY andZ are identically distributed?

If we instead ask for a decomposition into infinitely many• random variables, this becomes the question of

whether a distribution is infinitely divisible.

In this work, we address two of the most long-standing open problems on divisibility: divisibility of

stochastic matrices, and divisibility and decomposability of probability distributions. We also extend our

results to divisibility of nonnegative matrices and completely positive maps. Surprisingly little is known

about the divisibility of stochastic matrices. Dating back to 1962 [Kin62], the most complete characterisation

remains for the case of a 2 × 2 stochastic matrix [HG03]. The infinite divisibility problem has recently

been solved [CEW12b], but the finite case remains an open problem. Divisibility of random variables, on

the other hand, is a widely-studied topic. Yet, despite first results dating back as far as 1934 [CW34], no

general method of answering whether a random variable can be written as the sum of two or more random

variables—whether distributed identically, or differently—is• known.

We focus on the computational complexity of these divisibility problems. In each case, we show which

of the divisibility problems have efficient solutions—for these, we give an explicit efficient algorithm. For

all other cases, we prove reductions to the famous P = NP-conjecture, showing that those problems are

NP-hard. This essentially implies that—unless P = NP—the geometry of the corresponding divisible and

non-divisible is highly complex, and these sets have no simple characterisation beyond explicit enumeration.

In particular, this shows that any future concrete classification of theseNP-hard problems will be at least as

hard as answering P = NP.

The following theorems summarise our main results on maps. Precise formulations and proofs can be
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found in section 1.1.

Theorem 1.1. Given a stochastic matrix P, deciding whether there exists a stochastic matrix Q such that
P = Q2 is NP-complete.

Theorem 1.2. Given a cptp map B, deciding whether there exists a cptp map A such that B = A ◦A is
NP-complete.

In fact, the last two theorems are strengthenings of the following result.

Theorem 1.3. Given a nonnegative matrix M, deciding whether there exists a nonnegative matrix N such
that M = N2 is NP-complete.

The following theorems summarise our main results on distributions. Precise formulations and proofs

can be found in section 1.2.

Theorem 1.4. Let X be a finite discrete random variable. Deciding whether X is n-divisible—i.e. whether
there exists a random variable Y such that X =

∑n
i=1 Y—is in P.

Theorem 1.5. LetX be a finite discrete random variable, and ε > 0. Deciding whether there exists a random
variable Y ε-close to X such that Y is n-divisible is in P. •

Theorem 1.6. LetX be a finite discrete random variable. Deciding whetherX is decomposable—i.e. whether
there exist random variables Y,Z such that X = Y + Z—is NP-complete.

Theorem 1.7. LetX be a finite discrete random variable, and ε > 0. Deciding whether there exists a random
variable Y ε-close to X such that Y is decomposable is NP-complete. •

It is interesting to contrast the results on maps and distributions. In the case of maps, the homogeneous

2-divisibility problems are alreadyNP-hard, whereas finding an inhomogeneous decomposition is straight-

forward. For distributions, on the other hand, the homogeneous divisibility problems are efficiently solvable

to all orders, but becomesNP-hard if we relax it to the inhomogeneous decomposibility problem.

This difference is even more pronounced for infinite divisibility. The infinite divisibility problem for

maps is NP-hard (shown in [CEW12b]), whereas the infinite divisibility and decomposibility problems

for distributions are computationally trivial, since indivisible and indecomposible distributions are both

dense—see section 1.2.4.8 and 1.2.3.5.

The chapter •is divided into two parts. We first address stochastic matrix and cptp divisibility in section 1.1,

obtaining results on entry-wise positive matrix roots along the way. Divisibility and decomposability of

probability distributions is addressed in section 1.2. In both sections, we first give an overview of the history

of the problem, stating previous results and giving precise definitions of the problems. We introduce the

necessary notation at the beginning of each section, so that each section is largely self-contained.
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1.1 CPTP and Stochastic Matrix Divisibility
Mathematically, subdividing Markov chains is known as the finite divisibility problem. The simplest case

is the question of finding a stochastic root of the transition matrix (or a cptp root of a cptp map in the

quantum setting), which corresponds to asking for the evolution over half of the time interval. While the

question of divisibility is rather simple to state mathematically, it is not clear a priori whether a stochastic

matrix root for a given stochastic matrix exists at all. Historically, this has been a long-standing open

question, dating back to at least 1962 [Kin62]. Matrix roots were also suggested early on in other fields, such

as economics and general trade theory, at least as far back as 1967 [WA67], to model businesses and the flow

of goods. Despite this long history, very little is known about the existence of stochastic roots of stochastic

matrices. The most complete result to date is a full characterisation of 2× 2 matrices, as given for example in

[HG03]. The authors mention that “. . . it is quite possible that we have to deal with the stochastic root problem
on a case-by-case basis.” This already suggests that there might not be a simple mathematical characterisation

of divisible stochastic matrices—meaning one that is simpler than enumerating the exponentially many

roots and checking each one for stochasticity.

There are similarly few results if we relax the conditions on the matrix normalisation slightly, and ask

for (entry-wise) nonnegative roots of (entry-wise) nonnegative matrices—for a precise formulation, see

definitions 1.10 and 1.11. An extensive overview can be found in [Min88]. Following this long history

of classical results, quantum channel divisibility recently gained attention in the quantum information

literature. The foundations were laid in [WC08], where the authors first introduced the notion of channel

divisibility. A divisible quantum channel is a cptp map that can be written as a nontrivial concatenation of

two or more quantum channels.

A related question is to ask for the evolution under infinitesimal time steps, which is equivalent to existence

of a logarithm of a stochastic matrix (or cptp map) that generates a stochastic (resp. cptp) semi-group.

Classically, the question is known as Elfving’s problem or the embedding problem, and seems to date back

even further than the finite case to 1937 [Elf37]. In the language of Markov chains, this corresponds to

determining whether a given stochastic matrix can be embedded into an underlying continuous time Markov

chain. Analogously, infinite quantum channel divisibility—also known as the Markovianity condition for

a cptp map—asks whether the dynamics of the quantum system can be described by a Lindblad master

equation [Lin76]; [Gor76]. The infinite divisibility problems in both the classical and quantum case were

recently shown to beNP-hard [CEW12b]. Formulated as weak membership problems, these results imply

that it isNP-hard to extract dynamics from experimental data [CEW12a].

However, while related, it is not at all clear that there exists a reduction of the finite divisibility question

to the case of infinite divisibility. In fact, mathematically, the infinite divisibility case is a special case of finite

divisibility, as a stochastic matrix is infinitely divisible if and only if it admits an nth root for all n ∈ N
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[Kin62].

The finite divisibility problem for stochastic matrices is still an open question, as are the nonnegative

matrix and cptp map divisibility problems. We will show that the question of existence of stochastic roots

of a stochastic matrix isNP-hard. We also extend this result to (doubly) stochastic matrices, nonnegative

matrices, and cptp maps.

We start out by introducing the machinery we will use to prove theorem 1.3 and 1.1 in section 1.1.1. A

reduction from the quantum to the classical case can be found in section 1.1.4, from the nonnegative to

the stochastic case in section 1.1.5 and the main result—in a mathematically rigorous formulation—is then

presented as theorem 1.34 in section 1.1.6. Note that in this chapter, in contrast to the rest of the thesis,

we will not use bra-ket notation, as the results are more on the pure mathematical side, and keeping with

convention, we denote vectors as e.g. ei instead of |ei〉.

1.1.1 Preliminaries
1.1.1.1 Roots of Matrices
In our study of matrix roots we restrict ourselves to the case of square roots. The more general case of pth

roots of matrices remains to be discussed. We will refer to square roots simply as roots. To be explicit, we

state the following definition.

Definition 1.8. Let M ∈ Kd×d, d ∈ N, whereK is a field which we will always take to be either R or C •.
Then we say that R ∈ Kd×d is a root of M if R2 = M. We denote the set of all roots of M with

√
M.

Following the theory of matrix functions—see for example [Hig87]—we remark that in the case of

nonsingular M,
√

M is nonempty and can be expressed in Jordan normal form via
√

M = ZJZ−1 for

some invertible Z, where J = diag(J±1 , . . . ,J
±
m). Here J±i denotes the±-branch of the root function

f(x) =
√
x of the Jordan block corresponding to the ith eigenvalue λi,

J±i =


±f(λi) ±f ′(λi)/1! . . . ±f (mi−1)(λi)/(mi − 1)!

0 ±f(λi)
. . .

...
...

. . . . . . ±f ′(λi)/1!

0 . . . 0 ±f(λi)

 .

In particular, every such Jordan block has precisely two choices for the square root branch, which can

be chosen individually for each block (see [Hig87, lem. 1]). •If M is diagonalisable, J simply reduces

to the canonical diagonal form J = diag(±
√
λ1, . . . ,±

√
λm), where again the signs can be chosen

independently for each (nonzero) eigenvalue. The sign choices are in

fact individual.
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If M is derogatory—i.e. there exist multiple Jordan blocks sharing the same eigenvalue λ—it has continu-

ous families of so-called nonprimary roots
√

M = ZUJU−1Z−1, where U is an arbitrary nonsingular

matrix that commutes with the Jordan normal form [U,J] = 0.

Can we always find roots of matrices? For non-singular M, or singular M where the algebraic multiplicity

of the kernel equals its geometric multiplicity, the answer is always yes (see [HL11, sec. 1.5]). For the sake of

completeness, and although we will not need it in this chapter, we mention the following theorem which

allows us to establish whether a square root of an arbitrary complex matrix exits in general.•

Theorem 1.9 ([HL11]). Let M ∈ Cd×d have the Jordan canonical form ZΛZ−1, where Λ = diag(J0,J1),
such that J0 collects all Jordan blocks corresponding to the eigenvalue 0, and J1 collects the remaining ones.
Assume further that

di := dim(ker Mi)− dim(ker Mi−1)

has the property that for all i ∈ N>0• , no more than one element of the sequence satisfies di = 2i+ 1. Then
√

M = Z
√

ΛZ−1, where
√

Λ = diag(
√

J0,
√

J1).

If M is a real matrix, a similar theorem holds and there exist various numerical algorithms for calculating

real square roots, see for example [Hig87].

1.1.1.2 Roots of Stochastic Matrices
Remember the following two definitions.

Definition 1.10. A matrix M ∈ Kd×d is said to be nonnegative if 0 ≤Mij ∀i, j = 1, . . . , d.•

Definition 1.11. A matrix Q ∈ Kd×d is said to be stochastic if it is nonnegative and∑d
k=1 Qik = 1 ∀i =

1, . . . , d.•

In contrast to finding a general root of a matrix, very little is known about the existence of nonnegative

roots of nonnegative matrices—or stochastic roots of stochastic matrices—if d ≥ 3. For stochastic matrices

and in the case d = 2, a complete characterisation can be given explicitly, and for d ≥ 3, all• stochastic roots

that are functions of the original matrix are known, as demonstrated in [HG03]. Further special classes of

matrices for which a definite answer exists can be found in [HL11]. But even for d = 3, the general case is

still an open question—see [Lin11, ch. 2.3] for details.

Indeed, a stochastic matrix may have no stochastic root, a primary or nonprimary root—or both. To

make things worse, if a matrix has a pth stochastic root, it might or might not have a qth stochastic root if

p - q—p is not a divisor of q—, q > p or q - p, q < p.

A related open problem is the inverse eigenspectrum problem, as described in the extensive overview in

[ELN04]. While the sets Ωn ⊂ D—denoting all the possible eigenvalues of an n-dimensional nonnegative
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matrix—can be given explicitly, and hence also Ωpn, almost nothing is known about the sets for the entire

eigenspectrum. Any progress in this area might yield necessary conditions for the existence of stochastic

roots.

In recent years, some approaches have been developed to approximate stochastic roots numerically, see

the comments in [HG03, sec. 4]. Unfortunately, most algorithms are highly unstable and do not necessarily

converge to a stochastic root. A direct method using nonlinear optimisation techniques is difficult and

depends heavily on the algorithm employed [Lin11].

It remains an open question whether there exists an efficient algorithm that decides whether a stochastic

matrix Q has a stochastic root.

In this chapter •, we will prove that this question is NP-hard to answer.

1.1.1.3 The Choi Isomorphism
For the results on cptp maps, we will need the following basic definition and results.

Definition 1.12. Let A : H −→ H be a linear map on H = Cd×d. We say that A is positive if for all
Hermitian and positive definite ρ ∈ H, Aρ is Hermitian and positive definite. It is said to be completely
positive if A⊗ 1n is positive ∀n ∈ N.

A map A which is completely positive and trace-preserving—i.e. tr(Aρ) = tr ρ ∀ρ ∈ H—is called a
completely positive trace-preserving map, or short cptp map.

In contrast to positivity, complete positivity is easily characterised using the well-known Choi-Jamiolkowski

isomorphism—see [Cho75, Th. 2].

Remark 1.13. Let the notation be as in definition 1.12 and pick a basis e1, . . . , ed ofCd. Then A is completely
positive if and only if the Choi matrix

CA := (1d ⊗A)ΩΩT =

d∑
i,j=1

eie
T
j ⊗A(eie

T
j )

is positive semidefinite, where Ω :=
∑d
i=1 ei ⊗ ei.

The condition of trace-preservation then translates to the following.

Remark 1.14. A map A is trace-preserving if and only if tr2(CA) = 1d, where tr2 denotes the partial trace
over the second pair of indices.

7



1.1.2 NP-Toolbox
1.1.2.1 Boolean Satisfiability Problems
Definition 1.15 (1-in-3SAT).

Instance: nv Boolean variables m1, . . . ,mnv
and nc clauses R(mi1,mi2,mi3) where i = 1, . . . , nc, usu-

ally denoted as a 4-tuple (nv, nc, {mi}1≤i≤nv
, {mij}1≤i≤nc,1≤j≤3), where eachmij ∈ {m1, . . . ,mnv

}
denotes the three Boolean variables occuring in the ith clause.• The Boolean operator R satisfies

R(a, b, c) =

True if exactly one of a, b or c is True

False otherwise.

Question: Does there exist a truth assignment to the Boolean variables such that every clause contains exactly
one true variable?

Note that we can without loss of generality assume that none of the R terms contains negations.• In order

to translate a given 1-in-3SAT instance to this case, assume one is given a term R(a, b,¬c). By adding an

auxilliary variable c′ and a term R(c, c, c′), c is forced to be negative in order for the clause to be satisfiable.

1.1.2.2 Subset Sum Problems
We start out with the following variant of a well-knownNP-complete problem—see for example [GJ79] for

a reference.

Definition 1.16 (Subset Sum, Variant).

Instance. Multiset S of integer or rational numbers, l ∈ Q.•

Question. Does there exist a multiset T ( S such that |∑t∈T t−
∑
s∈S\T s| < l?

From the definition, we immediately observe the following rescaling property.

Corollary 1.17. Let a ∈ Q \ {0}• and (S, l) a Subset Sum instance. Then Subset Sum(S, l) = Subset
Sum(aS, |a|l).

We define two variants of Subset Sum where we demand one of the subsets to contain a certain number

of elements.•

Definition 1.18 (Subset Summ,m ∈ Z).

Instance. Multiset S of reals with |S| even, l ∈ R.

Question. Does there exist a multiset T ( S with |T | = m and such that |∑t∈T t−
∑
s∈S\T s| < l?
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Definition 1.19 (Signed Subset Summ).

Instance. Multiset S of positive integers or reals, x, y ∈ R : x ≤ y.

Question. Does there exist a multiset T ⊂ S with |T | = m and such that x <∑t∈T t−
∑
s∈S\T s <

y?

We observe the following.

Lemma 1.20. Subset Summ ←−Subset Sum.

Proof. If (S, l) is a Subset Sum instance, then

Subset Sum(S, l) =

|S|∨
m=1

Subset Summ(S, l).

Remark 1.21. It is clear that Subset Summ(S, l) = False for |S| ≤ m ∨ 0 ≥ m. Furthermore, Subset
Summ(S, l) = Subset Sum|S|−m(S, l).

Observe that this remark indeed makes sense, as Subset Sum0 should give False, which is the desired

outcome form = |S|.
We define yet another variant of Subset Sum, which captures the special case when we require both

subsets to have the same number of elements. •

Definition 1.22 (Even Subset Sum).

Instance. Multiset S of reals with |S| even, l ∈ R.

Question. Does there exist a multiset T ( S with |T | = |S|/2 and such that |∑t∈T t−
∑
s∈S\T s| <

l?

We further reduce Subset Sum to Even Subset Sum.

Lemma 1.23. Even Subset Sum←−Subset Sum.

Proof. Let (S, l) be an Subset Sum instance. Define S′ := S ∪ {0, . . . , 0} : |S′| = 2|S|. Then if Even

Subset Sum(S′, l) = True, we know that there exists T ′ ⊂ S′ : |∑t∈T ′ t −
∑
s∈S′\T ′ s| < l. Let

then T := T ′ without the 0s. It is obvious that then |∑t∈T t−
∑
s∈S\T s| < l. The False case reduces

analogously, hence the claim follows.

For Even Subset Sum, we generalise corollary 1.17 to the following scaling property.

Lemma 1.24. Let a ∈ Q \ {0}, c ∈ Q •, and (S, l) an Even Subset Sum instance. Then Even Subset
Sum(S, l) = Even Subset Sum(aS+c, |a|l), where addition and multiplication is defined element-wise.
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Proof. Straightforward, since we require |S| = 2|T | = 2|S \ T |.

For definition 1.19, we finally show

Lemma 1.25. Signed Subset Summ ←−Subset Summ.

Proof. Immediate from Signed Subset Summ(S,−l, l) = Subset Summ(S, l).

1.1.2.3 Partition Problems
Another well-knownNP-complete problem which will come into play in the proof of theorem 1.88 is set

partitioning.

Definition 1.26 (Partition).

Instance. Multiset A of positive integers or rationals.•

Question. Does there exist a multiset T ( A with∑t∈T t =
∑
s∈A\T s?

Lemma 1.27. For the special case of Subset Sumwith instance (S, l), where the bound l ∈ R equals the total
sum of the instance numbers l =

∑
s∈S s, we obtain the equivalence Subset Sum(·,Σ·)←→Partition(·).

Proof. Let S be the multiset of a Subset Sum instance (S, l), where we assume without loss of generality

that all S 3 s ≥ 0. Now first assume ΣS = 0. In that case the claim follows immediately, since the

problems are identical.

Without loss of generality, we can thus assume ΣS > 0 and consider the setS′ := S∪{−ΣS/2,−ΣS/2},
such that ΣS′ = 0.

If now Subset Sum(S′, 0) =True, we know that there existsT ( S′ : |∑t∈T t−
∑
s∈S′\T s| = 0.

Now assume T contains both copies of−ΣS/2. Then clearly

|
∑
t∈T

t −
∑

s∈S′\T

s| = | − ΣS +
∑

t∈T\{−ΣS}

t −
∑
s∈S\T

s| > 0,

since |S \ T | > 0. The same argument shows that exactly one −ΣS/2 ∈ T, S \ T , and hence Parti-

tion(S) = True.

On the other hand, if Partition(S) =True, then it immediately follows that Subset Sum(S,ΣS) =

True.

Finally observe the following extension of lemma 1.27.

Lemma 1.28. Let ε > 0, f a polynomial. Then Subset Sum(·,Σ· + f(ε))←→ Partition(·).

Proof. The proof is the same as for lemma 1.27, but we considerS∪{−ΣS/2−f(ε)/2,−ΣS/2−f(ε)/2}
instead.
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1.1.3 Equivalence of Computational Questions
In the following we denote with S some arbitrary finite index set, not necessarily the same for all problems.

We begin by defining the following decision problems.

Definition 1.29 (cptp Divisibility).

Instance. cptp map B ∈ Qd×d.

Question. Does there exist a cptp map A : A2 = B?

Definition 1.30 (cptp Root).

Instance. Family of matrices (As)s∈S that comprises all the roots of a matrix B.

Question. Does there exist an s ∈ S : As is a cptp map?

Definition 1.31 (Stochastic Divisibility).

Instance. Stochastic matrix P ∈ Qd×d.

Question. Does there exist a stochastic matrix Q : Q2 = P?

Definition 1.32 (Stochastic Root).

Instance. Family of matrices (Qs)s∈S comprising all the roots of a matrix P.

Question. Does there exist an s ∈ S : Qs stochastic?

Definition 1.33 (Nonnegative Root).

Instance. Family of matrices (Ms)s∈S comprising all the roots of a matrix N, where all Ms have at
least one positive entry.

Question. Does there exist an s ∈ S : Ms nonnegative?

•We want to point out that the input size for the Root problems is at most polynomial in the binary

size of the index set S, i.e. poly log |S|; in particular, the families are not given as an explicit list of |S|
matrices (which would correspond to an Ω(|S|) instance size). This is a natural assumption: since the

index set is finite but we demand that the family lists all roots, we know that no degenerate (continuous

families of) roots exist, so we are in the realm where the matrices are non-degenerate (see the discussion

below definition 1.8). We reduce the general case to the non-degenerate case in lemma 1.47. This allows us to

state the following central theorem.

Theorem 1.34. The reductions as shown in fig. 1.1 hold.
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1-in-3SAT

Nonnegative
Root

Nonnegative
Divisibility

Stochastic
Root

Stochastic
Divisibility

cptp
Root

cptp
Divisibility

Doubly Stochastic
Root

Doubly Stochastic
Divisibility

section 1.1.6

section 1.1.5

section 1.1.4

Figure 1.1: Complete chain of reduction for our programs. The dashed line between the Divisibility
and Root problems hold for non-derogatory matrices, respectively. The dotted line between
Stochastic Root and Nonnegative Root holds only for irreducible matrices. The dou-
bly stochastic and nonnegative branch are included for completeness but not described in detail
here—see corollary 1.41.

Proof outline. We give here a high-level overview over the line of reduction, and refer the reader to the

corresponding rigorous proofs later in the chapter.•
The implication Stochastic Divisibility←−Stochastic Root is immediate, and we rigorously

state it here. If P is not stochastic, the answer is negative. If it is stochastic, we can apply Stochastic

Divisibility. The opposite direction holds for non-derogatory stochastic P: in this case we can enumerate

all roots of P as a finite family which forms a valid instance for Stochastic Root.

The reductionStochasticRoot←−NonnegativeRoot can be resolved by lemmas 1.39 and 1.40—

we construct a family of matrices (Qs)s∈S that contains a stochastic root iff (Ms)s∈S contains a nonneg-

ative root. The result then follows from applying Stochastic Root.

• A special case is when our stochastic matrix P is irreducible, i.e. when it can be written as

SPST =

P11 P12

0 P22


under a permutation S, and such that P11 and P22 are square and nonzero. In this case, any nonnegative

root Qs′ : Q2
s′ = P is stochastic, and thus Stochastic Root←→Nonnegative Root—see [HL11,

sec. 3,sec. B.11] for details.

The link cptp Divisibility←−cptp Root again needs the following intermediate step. If A is not

cptp, the answer is negative. If it is cptp, then we can apply cptp Divisibility. Similarly, if A is non-

derogatory, the reduction works in the opposite direction as well.

The direction cptp Root←−Stochastic Root follows from corollary 1.38. We start out with a

family (Qs)s∈S comprising all the roots of a stochastic matrix P. Then we define an embedding map to
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define a new •family of cptp maps (As := emb Qs)s∈S (see definition 1.36) •—this family then comprises

all of the roots of B := A2
k ≡ A2

s ∀k, s. Furthermore, by lemma 1.37, there exists a cptpAs if and only

if there exists a stochastic Qs, and the reduction follows.

Finally, we can extend our reduction to the programs Doubly Stochastic Root and Doubly

Stochastic Divisibility as well as Nonnegative Divisibility, defined analogously, see our com-

ment in corollary 1.41 and the complete reduction tree in fig. 1.1.

The heavy lifting is done in the reduction from 1-in-3SAT to Nonnegative Root, which we address

in section 1.1.6. •

At this point, we observe the following fact.

Lemma 1.35. All the above Divisibility and Root problems in definition 1.29 to 1.33 are contained in NP.

Proof. It is straightforward to come up with a witness and a verifier circuit that satisfies the definition of

the decision classNP. For example in the cptp case, a witness is a matrix root that can be checked to be a

cptp map using remark 1.13 and squared in polynomial time, which is the verifier circuit. Both circuit and

witness are clearly poly-sized and hence the claim follows.

By encoding an instance of 1-in-3SAT into a family of nonnegative matrices (Ms)s∈S , we show the

implication 1-in-3SAT−→Nonnegative Root and 1-in-3SAT−→(Doubly) Stochastic/cptp Divis-

ibility, accordingly, from whichNP-hardness of (Doubly) Stochastic/cptp Divisibility follows.

The entire chain of reduction can be seen in fig. 1.1.

1.1.4 Reduction of STOCHASTIC ROOT to CPTP ROOT
This reduction is based on the following embedding.

Definition 1.36. Let {ei} be an orthonormal basis ofKd. The embedding emb is defined as

emb : Kd×d ↪−→ Kd
2×d2 ,

A 7−→ B :=

d∑
i,j=1

Aij(ei ⊗ ei)(ej ⊗ ej)T =

d∑
i,j=1

Aij(eie
T
j )⊗ (eie

T
j ).

We observe the following.

Lemma 1.37. We use the same notation as in remark 1.13. Let A ∈ Kd×d and B := emb A. Then A is
positive (nonnegative) if and only if the Choi matrix CB is positive (semi-)definite. Furthermore, the row
sums of A are 1—i.e. ∑d

j=1 Aij = 1 ∀j = 1, . . . , d—if and only if tr2(CB) = 1d. In addition, the
spectrum of B satisfies σ(B) ⊆ {Aij} ∪ {0}. •
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Proof. The first claim follows directly from the matrix representation of our operators. There, the Choi

isomorphism is manifest as the reshuffling operation•

·Γ : Kd
2×d2 −→ Kd

2×d2 ,
[
(eie

T
j )⊗ (eie

T
j )
]Γ 7−→ (eie

T
i )⊗ (eje

T
j ). (1.1)

For more details, see e.g. [BŻ06].

The second statement follows from

tr2(CB) = tr2

 d∑
i,j=1

Aij(eie
T
j )⊗ (eie

T
j )


=

d∑
i,j=1

Aijeie
T
i = diag

 d∑
j=1

A1j , . . . ,

d∑
j=1

Adj

 .

The final claim is trivial.

This remark immediately yields the following consequence.

Corollary 1.38. For a family of stochastic matrices (Qs)s∈S parametrised by the index set S, there exists a
family of square matrices (As)s∈S := (emb Qs)s∈S , such that (Qs)s∈S contains a stochastic matrix if
and only if (As)s∈S contains a cptp matrix.

1.1.5 Reduction of NONNEGATIVE ROOT to STOCHASTIC ROOT
The difference betweenNonnegativeRoot and StochasticRoot is the extra normalisation condition

in the latter, see definition 1.11. The following two lemmas show that this normalisation does not pose an

issue, so we can efficiently reduce the problem Nonnegative Root to Stochastic Root.

Lemma 1.39. For a family of square matrices (Ms)s∈S parametrised by the index set S, all of which
with at least one positive entry, there exists a family of square matrices (Qs)s∈S such that (Ms)s∈S con-
tains a nonnegative matrix if and only if (Qs)s∈S contains a stochastic matrix and such that rank Qs =

rank Ms + 2 ∀s ∈ S. Furthermore, (Qs)s∈S can be constructed efficiently from (Ms)s∈S .

Proof. We explicitly construct our family (Qs)s∈S as follows. Pick an s ∈ S and denote M := Ms. Let d

be the dimension of M. We first pick a ∈ R+ such that amaxij Mij = 1/2 (the value of 1/2 is arbitrary,
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and any finite number≤ 43/81 works here), and define •

Qs :=
1

1764d


1764aM + 637 735− 1260aM 392− 504aM

735− 1260aM 900aM + 1029 360aM

392− 504aM 360aM 144aM + 1372


≡ a

d
AAT ⊗M +

1

d

(
BBT + CCT

)
⊗ 1,

where by sum of matrix M and scalar xwe mean M + x1. 1 := (1)1≤i,j≤d ∈ Rd×d, and

A :=

(
1,−5

7
,−2

7

)T

, B :=

(
1

6
,

1

2
,−2

3

)T

, C := − 1√
3

(1, 1, 1)
T
.

Observe that {A,B,C} form an orthogonal set—if one wishes, normalising and pulling out the constant

as eigenvalue to the corresponding eigenprojectors would work equally well.

By construction, Qs is nonnegative if and only if Ms is. Since the row sums of Qs are always 1, Qs is

stochastic if and only if Ms is nonnegative, and the claim follows.

Lemma 1.40. Let the notation be as in lemma 1.39 and write
√

N for the set of roots of N, see definition 1.8.
Assume (Ms)s∈S =

√
N for some N ∈ Cd×d. Then there exists a P ∈ Cd×d, such that Q2

s = P ∀s ∈ S
and (Qs)s∈S ⊂

√
P. Furthermore, the complement of (Qs)s∈S in

√
(P does not contain any stochastic

roots.

Proof. The first statement is obvious, since for all s ∈ S,

Q2
s =

a2

d2

78

49
AAT ⊗M2

s +
1

d

(
13

18
BBT + CCT

)
⊗ 1 =: P,

and hence clearly (Qs)s∈S ⊂
√

P.

The last statement is not quite as straightforward—it is the main reason our carefully crafted matrix Qs

has its slightly unusual shape. All possible roots of P are of the form

√
P =

a

d
AAT ⊗

√
N± 1

d

(
BBT ± CCT

)
⊗ 1.

It is easy to check that none of the other sign choices yields any stochastic matrix, so the claim follows.1

Corollary 1.41. The results of lemma 1.39 and 1.40 also hold for doubly stochastic matrices—observe that our
construction of Qs is already doubly stochastic.

1The reader may try to find a simpler matrix that does the trick.
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1.1.6 Reduction of 1-IN-3SAT to NONNEGATIVE ROOT
We now embed an instance of a Boolean satisfiability problem, 1-in-3SAT—see definition 1.15 for details—

into a family of matrices (Ms)s∈S in a way that there exists an s such that Ms is nonnegative if and only if

the instance of 1-in-3SAT is satisfiable. The construction is inspired by the one in [CEW12b].

We identify

true←→ 1, false←→ −1. (1.2)

Denote with (mi1,mi2,mi3) ∈ {±1}3 the three Boolean variables occurring in the ith Boolean clause,

and letmi ∈ {±1} stand for the single ith Boolean variable. Then 1-in-3SAT translates to the inequalities

−3

2
≤ mi1 +mi2 +mi3 ≤ −

1

2
∀i = 1, . . . , nc. (1.3)

Theorem 1.42. Let (nv, nc, {mi}, {mij}• ) be a 1-in-3SAT instance. Then there exists a family of matrices
(Ms)s∈S such that ∃s : Ms nonnegative i� the instance is satisfiable.

To prove this, we first need the following technical lemma.

Lemma 1.43. Let (nv, nc, {mi}, {mij}• ) be a 1-in-3SAT instance. Then there exists a family of matrices
(Cs)s∈S such that ∃s : the first nc on-diagonal 4 × 4 blocks of Cs are nonnegative i� the instance is
satisfiable. In addition, we have C2

s = C2
t ∀s, t. Furthermore, (Cs)s∈S ⊂

√
C2
s, and the complement

contains no nonnegative root.

Proof.• We begin with a simple example. Consider the matrix

A :=

 1 1

−1 1

 ≡ (1 + i)

1 −i

i 1

+ (1− i)

 1 i

−i 1

 .

A is clearly non-degenerate; f we take the square of A, and then list its four square-roots, we obtain the

four matrices

a(1 + i)

1 −i

i 1

+ b(1− i)

 1 i

−i 1

 =

 (1 + i)a+ (1− i)b (1− i)a+ (1 + i)b

(−1 + i)a− (1 + i)b (1 + i)a+ (1− i)b

 ,

where a, b ∈ {±1}. Like this, we can enforce conditions on the choice of signs for a, b: if a and b have

opposite sign, for instance, this matrix will be complex-valued; for a = b = 1 we recover A, and for

a = b = −1 we obtain−A. By combining a list of such matrix blocks with orthogonal projectors, we can

encode more complicated conditions on the sign choices, and obtain an overall matrix with a list of roots

such that precisely one of the roots is non-negative if and only if the encoded 1-in-3SAT instance—where
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the boolean variables correspond to the sign choices—is satisfiable.

For every Boolean variablemk, define a vector vk ∈ Rd such that their first nc elements are defined via

(vk)i :=

1 mk occurs in ith clause

0 otherwise.

We will specify the dimension d later—obviously d ≥ nc, and the free entries are used to orthonormalise

all vectors in the end. For now, we denote the orthonormalisation region with ~o. We further define the

vectors c1, c2 ∈ Rd to have all 1s in the first nc entries, i.e. c1,2 = (1, . . . , 1, ~o1,2). Let then

•C′s :=c1c
T
1 ⊗


1 1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0

+
1

2
c2c

T
2 ⊗


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0



+

nv∑
k=1

pkvkv
T
k ⊗


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 . (1.4)

•The subscript s stands for a specific choice of sign for every eigenvalue in this matrix; in this case, all signs

are positive, but taking the square of C′s and then the square-root leaves this sign choice free for each eigen-

value.

The variables pk denote a specific choice of the rescaled Boolean variablesmi, which—in order to avoid

degeneracy—have to be distinct, e.g. •via

pk =

(
1− 1

N
− k

Nnv

)
mk ∀k = 1, . . . , nv. •(1.5)

The pij are defined accordingly from themij andN ∈ N is large but fixed.

•
To exemplify this embedding, consider thekth 4×4 on-diagonal block corresponding to thekth Boolean

clause involving the variables pk1, pk2 and pk3. All 4× 4 matrices in eq. (1.4) are rank 2 and thus provide

us with two independent sign choices in front of the two projectors comprising it: we denote them with

c11, c12 ∈ {±
√

2} for the first projector, and c21, c22 ∈ {±1} for the second projector, respectively. For

the third projector, we denote the sum of the sign choices with m ∈ {−3,−1, 1, 3} (and for the sake of
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1
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Figure 1.2: C′s for various sign choices of the eigenvalues cij , i, j = 1, 2 corresponding to the eigenvectors
c1,2. Only all positive signs and m :=

∑
jmij = −1 yields a nonnegative block (third from

right in top row). Hatching signifies complex numbers, the colour scale is the same as in fig. 1.3.

clarity we drop the rescaling from eq. (1.5)). Overall, we obtain the nonzero entries

c11
1 + i√

2

1 −i

i 1

− c12
1− i√

2

 1 i

−i 1

+ c21
1

2

 1 −1

−1 1

− c22
1

2

1 1

1 1

+

 0 m

−m 0

 .•

To avoid complex entries, c11
!
= −c12. The two off-diagonal entries encode the 1-in-3SAT inequalities

from eq. (1.3); by demanding nonnegativity, we obtain the inequalities

3

2
+ pi1 + pi2 + pi3 ≥ 0 and − 1

2
− pi1 − pi2 − pi3 ≥ 0.

It is straightforward to verify that no other sign choice for the eigenvalues of the first two terms in eq. (1.4)

yields nonnegative blocks, which we demonstrate in fig. 1.2. From this, the first claim of the lemma follows.

We can always orthonormalise the vectors c1,2 and vk using the freedom left in ~o, hence we can achieve

that C2
s = C2

t ∀s, t, from which the last two claims follows.

1.1.7 Orthonormalisation and Handling the Unwanted Inequalities
As in [CEW12b], we have unwanted inequalities—the off-diagonal blocks in the first 4nc entries and the

blocks involving the orthonormalisation region ~o. We first deal with the off-diagonal blocks in favour of

enlarging the orthonormalisation region, creating more—potentially negative—entries in there, and then

fix the latter.
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For this, we first pad C′s

Cs :=

C′s 0

0 0

 ∈ Cd×d,
where we have used an obvious block notation to pad C′s with zeroes. •

1.1.7.1 Off-Diagonal Blocks
We begin with the following lemma.

Lemma 1.44. Let the family (Cs)s∈S be defined as in the proof of lemma 1.43, and (nv, nc, {mi}, {mij} •)

the corresponding 1-in-3SAT instance. Then there exists a matrix E ∈ Cd×d such that the top le� 4nc×4nc

block of Cs + E has at least one negative entry ∀s i� the instance is not satisfiable. Furthermore, im Cs ⊥
im E ∀s, and Cs + E′ has negative entries ∀s, ∀E′ ∈

√
E2 \ {E}.

Proof. Define

E1 := E1E
T
1 ⊗


1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

 where E1 := (1, . . . , 1, ~o)T.

Then E1 has rank 1.

From this mask, we now erase the first nc on-diagonal 4× 4-blocks, while leaving all other entries in the

upper left 4nc × 4nc block positive. Define bi := (ei, ~o) ∈ Cd for i = 1, . . . , nc where ei denotes the

ith unit vector, and let

E :=
7

2
E1 −

7

2

nc∑
i=1

tibib
T
i ⊗


1 1 −1 0

1 1 −1 0

0 0 0 0

0 0 0 0

 .

The variables ti are chosen close to 1 but distinct, e.g.

ti :=

(
1− 1

M
− i

Mnc

)
, (1.6)

where M ∈ N large but fixed. Then E has rank nc + 1, and adding E to Cs trivialises all unwanted

inequalities in the upper left 4nc × 4nc block. By picking M large enough, the on-diagonal inequalities

are left intact.
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One can check that all other possible sign choices for the roots of E create negative entries in parts of

the upper left block where Cs is zero ∀s. Furthermore, Cs and E have distinct nonzero eigenvalues by

construction—the orthogonality condition is again straightforward, hence the last two claims follow.

1.1.7.2 Orthonormalisation Region
Lemma 1.45. Let 4n < d and δ � 1. There exists a nonnegative rank 2 matrix D ∈ Cd×d such that
the top le� 4n × 4n block of D has entries Dij ∈ O(δ−2) if j - 4 and the rest of the matrix entries are
Ω(δ−1). If D′ ∈

√
D2, either the same holds true for D′, or D′ij < 0 ∀j < 4n+ 1, j | 4.

Proof. Define

E2 :=

(
1

δ
, . . . ,

1

δ︸ ︷︷ ︸
n times

, 1, . . . , 1

)
∈ Cd

and let E2 := E2E
T
2 ⊗ 14, where 14 := (1)1≤i,j≤4. Let further

∆ :=

(
1

δ
, . . . ,

1

δ︸ ︷︷ ︸
n times

,−1

δ
, . . . ,−1

δ
, a

)
∈ Cd,

where 0 < a < 1 is used to orthonormalise ∆ andE2, which is the case if

a = − n
δ2

+
d− n− 1

δ
.

By explicitly writing out the rank 2 matrix

D := E2 ±∆∆T ⊗


1 1 1 0

1 1 1 0

1 1 1 0

1 1 1 0

 ,

it is straightforward to check that D fulfils all the claims of the lemma—see fig. 1.3 for an example.

1.1.8 Lifting Singularities
The reader will have noted by now that even though we have orthonormalised all our eigenspaces, ensuring

that the nonzero eigenvalues are all distinct, we have at the same time introduced a high-dimensional kernel

in Cs, E and D. The following lemma shows that this does not pose an issue.

Lemma 1.46. Let (As)s∈S be the family of primary rational roots of some degenerate B ∈ Qd×d. Then
there exists a non-degenerate matrix B′, such that for the family (A′s)s∈S of roots of B′, we have As positive

20



i� A′s positive. Furthermore, the entries of A′s are rational with bit complexity r(A′s) = O(poly(r(As)).

Proof. Take a matrix A ∈ (As)s∈S . We need to distort the zero eigenvalues {λ(0)
i } slightly away from

0. Using notation from definition 1.50, a conservative estimate for the required smallness without affecting

positivity would be

λ
(0)
i 7−→ λ

′(0)
i : 0 < λ

′(0)
i ≤ 1

C · d3 ·maxij{|Zij |, |Z−1
ij |}

,

where we used the Jordan canonical form A = ZΛZ−1 for some invertible Z and Λ = diag(J0,J1),

such that J0 collects all Jordan blocks corresponding to the eigenvalue 0, and J1 collects the remaining

ones.

This will lift all remaining degeneracies and singularities, without affecting our line of argument above.

Observe that all inequalities in our construction were bounded away from 0 with enough head space

independent of the problem size, so positivity in the lemma is sufficient.

We thus constructed an embedding of 1-in-3SAT into non-derogatory and non-degenerate matrices,

as desired. It is crucial to note that we do not lose anything by restricting the proof to the study of these

matrices, as the following lemma shows.

Lemma 1.47. There exists a Karp reduction of the Divisibility problems when defined for all matrices to
the case of non-degenerate and non-derogatory matrices.

Proof. As shown in lemma 1.35, containment inNP for this problem is easy to see, also in the degenerate or

derogatory case. Since 1-in-3SAT isNP-complete, there has to exist a poly-time reduction of the Divisibil-

ity problems—when defined for all matrices—to 1-in-3SAT. Now embed this 1-in-3SAT-instance with

our construction. This yields a poly-time reduction to the non-degenerate non-derogatory case.

1.1.9 Complete Embedding
We now finally come to the proof of theorem 1.42.

Theorem 1.42. •Construct the family (Cs + E)s∈S using lemma 1.43 and lemma 1.44, ensuring that all

orthonormalising is done, which preliminarily fixes the dimension d. By lemma 1.45, we now construct a

mask D(δ) of dimension d+ d′, where d′ > 0 is picked such that we can also orthonormalise all previous

vectors with respect toE2 and δ.

By lemmas 1.43, 1.44, 1.45 and 1.46, the perturbed family (M′
s)s∈S := (Cs+E+ND(δ))′s—whereN

and δ ∈ Q are chosen big enough so that all unwanted inequalities are trivially satisfied—fulfils the claims

of the theorem and the proof follows.
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We finalise the construction as follows. In theorem 1.42, we have embedded a given 1-in-3SAT instance

into a family of matrices (Ms)s∈S , such that the instance is satisfiable if and only if at least one of those

matrices is nonnegative.

By rescaling the entire matrix such that maxij(Ms)ij = 1/2, we could show that this instance of

1-in-3SAT is satisfiable if and only if the normalised matrix family (Qs)s∈S , which we construct explicitly,

contains a stochastic matrix.

As shown in section 1.1.3, this can clearly be answered by Stochastic Divisibility, as the family

(Qs)s∈S comprises all the roots of a unique matrix P. If this matrix is not stochastic, our instance of

1-in-3SAT is trivially not satisfiable. If the matrix is stochastic, we ask Stochastic Divisibility for an

answer—a positive outcome signifies satisfiability, a negative one non-satisfiability.

1.1.10 Bit Complexity of Embedding
To show that our results holds for only polynomially growing bit complexity, observe the following proposi-

tion.

Proposition 1.48. The bit complexity r(Ms) of the constructed embedding of a 1-in-3SAT instance (nv, nc, {mi}, {mij}• )

equals O(poly(nv, nc)).

Proof. We can ignore any construction that multiplies by a constant prefactor, for example lemma 1.39 and

lemma 1.40. The renormalisation for lemma 1.39 to maxij Ms,ij = 1/2 does not affect r either.

The rescaling in eq. (1.5) and eq. (1.6) yields a complexity ofO(log nv), and the same thus holds true for

lemma 1.43 and lemma 1.44.

The only other place of concern is the orthonormalisation region. Let us writeai for all vectors that need

orthonormalisation. In the nth step, we need to make up forO(n) entries with our orthonormalisation,

using the same amount of precision to solve the linear equations (aT
i an = 0)1≤i<n. This has to be done

with a variant of the standard Gauss algorithm, e.g. the Bareiss algorithm—see for example [Bar68]—which

has nonexponential bit complexity.

Together with the lifting of our singularities, which has polynomial precision, we obtain r(Ms) =

O(poly(nv, nc)). Completing the embedding in section 1.1.9 changes the bit complexity by another poly-

nomial factor, at most, and hence the claim follows.
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(a) coding part Cs (b) mask E

(c) mask D (d) combined matrix Ms

0 10.25 0.5 0.75−1 −0.25−0.5−0.75

(e) color scale, clamped

R(m1,m2,m4) ∧ R(m2,m3,m4) ∧ R(m1,m3,m4) ∧ R(m1,m2,m3)
(f) 1-in-3SAT instance

Figure 1.3: One branch of an unsatisfiable instance of 1-in-3SAT encoded into a matrix of total rank 19.
The negative entries—two bright dots—in the upper left block in the combined matrix (d) in-
dicate that this branch does not satisfy the given instance. By looking at all other blocks, one
sees that none translates to a nonnegative matrix. Observe that in this naı̈ve implementation the
orthonormalisation region is sub-optimally large.
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1.2 Distribution Divisibility
Underlying stochastic and quantum channel divisibility, and—to some extent—a more fundamental topic,

is the question of divisibility and decomposability of probability distributions and random variables. An

illustrative example is the distribution of the sum of two rolls of a standard six-sided die, in contrast to the

single roll of a twelve-sided die. Whereas in the first case the resulting random variable is obviously the sum

of two uniformly distributed random variables on the numbers {1, . . . , 6}, there is no way to achieve the

outcome of the twelve-sided die as any sum of nontrivial “smaller” dice—in fact, there is no way of dividing

any uniformly distributed discrete random variable into the sum of non-constant random variables. In

contrast, a uniform continuous distribution can always be decomposed2 into two di�erent distributions.

To be more precise, a random variableX is said to be divisible if it can be written asX = Y + Z , where

Y andZ are non-constant independent random variables that are identically distributed (iid). Analogously,

infinite divisibility refers to the case whereX can be written as an infinite sum of such iid random variables.

If we relax the condition Y d
= Z—i.e. we allow Y andZ to have different distributions—we obtain the

much weaker notion of decomposability. This includes using other sources of randomness, not necessarily

uniformly distributed.

Both divisibility and decomposability have been studied extensively in various branches of probability

theory and statistics. Early examples include Cramer’s theorem [Cra36], proven in 1936, a result stating

that a Gaussian random variable can only be decomposed into random variables which are also normally

distributed. A related result on χ2 distributions by Cochran [CW34], dating back to 1934, has important

implications for the analysis of covariance.

An early overview over divisibility of distributions is given in [SK79]. Important applications of n-

divisibility—the divisibility inton iid terms—is in modelling, for example of bug populations in entomology3

[Kat77], or in financial aspects of various insurance models4 [Tho77a]; [Tho77b]. Both examples study

the overall distribution and ask if it is compatible with an underlying subdivision into smaller random

events. The authors also give various conditions on distributions to be infinitely divisible, and list numerous

infinitely divisible distributions.

Important examples for infinite divisibility include the Gaussian, Laplace, Gamma and Cauchy distribu-

tions, and in general all normal distributions. It is clear that those distributions are also finitely divisible, and

decomposable. Examples of indecomposable distributions are Bernoulli and discrete uniform distributions

2All continuous uniform distributions decompose into the sum of a discrete Bernoulli distribution and another continuous uniform
distribution. This decomposition is never unique.

3• If X is the number of bugs collected over a certain time period and in some area, and the assumption is that X =
∑5

i=1 0Yi
for iid Yi representing a small part of the area, respectively, the question is whether one can deduce from X ∼ Log that the
Yi ∼ Log as well, i.e. whether the bug distribution of a smaller lot could be deduced from the overall distribution.

4• If X is the overall money paid out throughout a year, the question is whether an assumption on X ’s distribution—e.g. a Pareto
distribution—would be compatible with an assumption that X =

∑5
i=1 2Yi, i.e. that the money paid over the year can be

sub-divided into weekly iid payments.
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on {1, . . . , p} for p prime. •
However, there does not yet exist a straightforward way of checking whether a given discrete distribution

is divisible or decomposable. We will show in this work that the question of decomposability isNP-hard,

whereas divisibility is in P. In the latter case, we outline a computationally efficient algorithm for solving

the divisibility question. We extend our results to weak-membership formulations (where the solution

is only required to within an error ε in total variation distance), and argue that the continuous case is

computationally trivial as the indecomposable distributions form a dense subset.

We start out in section 1.2.1 by introducing general notation and a rigorous formulation of divisibility and

decomposability as computational problems. The foundation of all our distribution results is by showing

equivalence to polynomial factorisation, proven in section 1.2.2. This will allow us to prove our main

divisibility and decomposability results in section 1.2.3 and 1.2.4, respectively.

1.2.1 Preliminaries
1.2.1.1 Discrete Distributions
In our discussion of distribution divisibility and decomposability, we will use the standard notation and

language as described in the following definition.

Definition 1.49. Let (Ω,F ,p) be a discrete probability space, i.e. Ω is at most countably infinite and the
probability mass function p : Ω −→ [0, 1]—or pmf, for short—fulfils ∑x∈Ω p(x) = 1. We take the
σ-algebra F to be maximal, i.e. F = 2Ω, and without loss of generality assume that the state space Ω = N.
Denote the distribution described by p with D. A random variable X : Ω −→ B is a measurable function
from the sample space to some set B, where usually B = R.

For the sake of completeness, we repeat the following well-known definition of characteristic functions.

Definition 1.50. Let D be a discrete probability distribution with pmf p, and X ∼ D. Then

φX(ω) := E(eiωX) =

∫
Ω

eiωxdFX(x) =
∑
x∈Ω

p(x)eiωx

defines the characteristic function of D.

It is well-known that two random variables with the same characteristic function have the same cumulative

density function.

Definition 1.51. Let the notation be as in definition 1.49. Then the distribution D is called finite if p(k) =

0 ∀k ≥ N for some N ∈ N.
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Remark 1.52. Let D be a discrete probability distribution with pmf p. We will—without loss of generality—
assume that p(0) 6= 0 and p(k) = 0 ∀k < 0 for the pmf p of a finite distribution. It is a straightforward
shi� of the origin that achieves this.

1.2.1.2 Continuous Distributions
Definition 1.53. Let (X ,A) be a measurable space, where A is the σ-algebra of X . The probability dis-
tribution of a random variable X on (X ,A) is the Radon-Nikodym derivative f , which is a measurable
function with P(X ∈ A) =

∫
A
fdµ, where µ is a reference measure on (X ,A).

Observe that this definition is more general than definition 1.49, where the reference measure is simply

the counting measure over the discrete sample space Ω. Since we are only interested in real-valued univariate

continuous random variables, observe the following important

Remark 1.54. We restrict ourselves to the case of X = R withA the Borel sets as measurable subsets and the
Lebesgue measure µ. In particular, we only consider distributions with a probability density function f—or
pdf, for short—i.e. we require the cumulative distribution function P(x) := P(X ≤ x) ≡

∫
y≤x f(y)dy

to be absolutely continuous.

Corollary 1.55. The cumulative distribution function P of a continuous random variable X is almost ev-
erywhere di�erentiable, and any piecewise continuous function f with

∫
R
f(x)dx = 1 defines a valid

continuous distribution.

1.2.1.3 Divisibility and Decomposability of Distributions
To make the terms mentioned in the introduction rigorous, note the two following definitions.

Definition 1.56. Let X be a random variable. It is said to be n-decomposable if X = Z1 + . . . + Zn

for some n ∈ N, where Z1, . . . , Zn are independent non-constant random variables. X is said to be
indecomposable if it is not decomposable.

Definition 1.57. Let X be a random variable. It is said to be n-divisible if it is n-decomposable as X =∑n
i=1 Zi and Zi d= Zj ∀i, j. X is said to be infinitely divisible if X =

∑∞
i=1 Zi, with Zi ∼ D for some

nontrivial distribution D.

If we are not interested in the exact number of terms, we also simply speak of decomposable and divisible.

We will show in section 1.2.4.7 that—in contrast to divisibility—the question of decomposability into more

than two terms is not well-motivated.

Observe the following extension of remark 1.52.
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Lemma 1.58. Let D be a discrete probability distribution with pmf p. If p obeys remark 1.52, then we can
assume that its factors do as well. In the continuous case, we can without loss of generality assume the same.

Proof. Obvious from positivity of convolutions in case of divisibility. For decomposability, we can reach

this by shifting the terms symmetrically.

1.2.1.4 Markov Chains
To establish notation, we briefly state some well-known properties of Markov chains

Remark 1.59. Take discrete iid random variables Y1, . . . , Yn ∼ D and write P(Yi = k) = pk := p(k)

for all k ∈ N, independent of i = 1, . . . , n. Define further

Xi :=

Y1 + . . .+ Yi i > 0

0 otherwise.

Then {Xn, n ≥ 0} defines a discrete-time Markov chain, since

P(Xn+1 = kn+1|X0 = k0 ∧ . . . ∧Xn = kn) = P(Yn+1 = kn+1 − kn)

≡ pkn+1−kn .

This last property is also called stationary independent increments. •

Remark 1.60. Let the notation be as in remark 1.59. The transition probabilities of the Markov chain are
then given by

Pij :=

pj−i j ≥ i

0 otherwise.

In matrix form, we write the transition matrix

P :=


p0 p1 p2 · · ·

p0 p1 · · ·
p0 · · ·

. . .

 .

Working with transition matrices is straightforward—if the initial distribution is given byπ := (1, 0, . . .),

then obviously (πP)i = pi. Iterating P then yields the distributions of X2, X3, . . ., respectively—e.g.

(πP2)i = P(X2 = i) ≡ P(Y1 + Y2 = i).
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We know thatX2 is divisible—namely intoX2 = Y1 + Y2, by construction—but what if we ask this

question the other way round? We will show in the next section that there exists a relatively straightforward

way to calculate if an (infinite) matrix in the shape of P has a stochastic root—i.e. if D is divisible. Observe

that this is not in contradiction with theorem 1.1, as the theorem does not apply to infinite operators.

In contrast, the more general question of whether we can write a finite discrete random variable as a sum

of nontrivial, potentially distinct random variables will be shown to beNP-hard.

1.2.2 Equivalence to Polynomial Factorisation
Starting from our digression in section 1.2.1.4 and using the same notation, we begin with the following

definition.

Definition 1.61. Denote with S the shi� matrix Sij := δi+1,j . Then we can write

P = p01+ p1S + p2S
2 + . . . =

∞∑
i=0

piS
i ∈ R[0,1][S].

Since S just acts as a symbol, we write

fD(x) :=

N∑
i=0

pix
i ∈ R where R := R≥0[x]/∼,

and f ∼ g :⇔ f = cg, c > 0. We call fD the characteristic polynomial of D—not to be confused
with the characteristic polynomial of a matrix. The equivalence space R defines the set of all characteristic
polynomials, and can be written as

R =

∞⋃
i=n

Ri where Rn := {f ∈ R : deg f = n}.•

We mod out the overall scaling in order to keep the normalisation condition
∑
k p(k) = 1 implicit—if

we write fD, we will always assume fD(1) = 1. An alternative way to define these characteristic polynomials

is via characteristic functions, as given in definition 1.50.

Definition 1.62. fD(eiω) = φX(ω).

The reason for this definition is that it allows us to reduce operations on the transition matrix P or

products of characteristic functions φX to algebraic operations on fD. This enables us to translate the

divisibility problem into a polynomial factorisation problem and use algebraic methods to answer it. Because

we will make use of it later, we also observe the following.
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Definition 1.63. We define norms on the space of characteristic polynomials of degreeN—RN—via ‖fD‖N,p :=

‖(pi)0≤i≤N‖`p •. If N is not explicitly specified, we usually assume N = deg fD.

First note the following proposition.

Proposition 1.64. There is a 1-to-1 correspondence between finite distributions D and characteristic polyno-
mials fD, as defined in definition 1.61.

Proof. Clear by definition 1.62 and the uniqueness of characteristic functions.

While this might seem obvious, it is worth clarifying, since this correspondence will allow us to directly

translate results on polynomials to distributions.

The following lemma reduces the question of divisibility and decomposability—see definition 1.56 and

1.57—to polynomial factorisation.

Lemma 1.65. A finite discrete distribution D is n-divisible i� there exists a polynomial g ∈ R such that
gn = fD. D is n-decomposable i� there exist polynomials g1, . . . , gn ∈ R such that∏n

i=1 gi = fD.

Proof. Assume thatD isn-divisible, i.e. that there exists a distributionD′ and random variablesZ1, . . . , Zn ∼
D′ such that X =

∑n
i=1 Zi. Denote with Q the transition matrix of D′, as defined in remark 1.60, and

write q for its probability mass function. Then

P(X = j) = P

(
n∑
i=1

Zi = j

)
= (Qnπ)j ,

as before. Write gD′ for the characteristic polynomial ofD′. By definition 1.61, gn(S) ≡ fD(S), and hence

gnD′ = fD. Observe that

1 =
∑
i

p(i) = fD(1) ≡ gnD′(1) =

(∑
i

q(i)

)n
,

and hence
∑
i q(i) = 1 is normalised automatically.

The other direction is similar, as well as the case of decomposability, and the claim follows.

1.2.3 Divisibility
1.2.3.1 Computational Problems
We state an exact variant of the computational formulation of the question according to definition 1.57—i.e.

one with an allowed margin of error—as well as a weak membership formulation.

Definition 1.66 (Distribution Divisibilityn).
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Instance. Finite discrete random variable X ∼ D.

Question. Does there exist a finite discrete distribution D′ : X =
∑n
i=1 Zi for random variables

Zi ∼ D′?

Observe that this includes the case n = 2, which we defined in definition 1.57.

Definition 1.67 (WeakDistribution Divisibilityn,ε).

Instance. Finite discrete random variable X ∼ D with pmf pX(k).

Question. If there exists a finite discrete random variableY with pmf pY (k), such that ‖pX − pY ‖∞ <

ε and such that

1. Y is n-divisible—return Yes

2. Y is not n-divisible—return No.

1.2.3.2 Exact Divisibility
Theorem 1.68. Distribution Divisibilityn ∈ P .

Proof. By lemma 1.65 it is enough to show that for a characteristic polynomial f ∈ RN , we can find a

g ∈ R : gn = f in polynomial time. In order to achieve this, write (f)1/n as a Taylor expansion with

rest, i.e.
n
√
f(x) = p(x) +R(x) where p ∈ RN/n, R ∈ RN .

IfR ≡ 0, then g = p n-divides f , and then the distribution described by f is n-divisible. Since the series

expansion is constructive and can be done efficiently—see [Mül87]—the claim follows.

If the distribution coefficients are rational numbers, another method is to completely factorise the polynomial—

e.g. using the LLL algorithm, which is known to be easy in this setting—sort and recombine the linear

factors, which is also in O(poly(ord f)), see for example [HHN11]. Then check if all the polynomial root

coefficients are positive.

We collect some further facts before we move on.

Remark 1.69. Let p be the probability mass function for a finite discrete distribution D, and write supp p =

{k : p(k) 6= 0}. If max supp p−min supp p =: w, then D is obviously not n-divisible for n > w/2,
and furthermore not for any n that do not divide w, n < w/2. Indeed, D is not n-divisible if the latter
condition holds for either max supp p or min supp p.

Remark 1.70. Let X ∼ D be an n-divisible random variable, i.e. ∃Z1, . . . , Zn ∼ D′ :
∑n
i=1 Zi = X .

Then D′ is unique.

Proof. This is clear, becauseR[x] is a unique factorisation domain.
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1.2.3.3 Divisibility with Variation
As an intermediate step, we need to extend theorem 1.68 to allow for a margin of error ε, as captured by the

following definition.

Definition 1.71 (Distribution Divisibilityn,ε).

Instance. Finite discrete random variable X ∼ D with pmf pX(k).

Question. Do there exist finite random variablesZ1, . . . , Zn ∼ D′ with pmfs pZ(k), such that ‖ pZ ∗ . . . ∗ pZ︸ ︷︷ ︸
n times

−pX ‖∞ <

ε?

Lemma 1.72. Distribution Divisibilityn,ε is in P.

Proof. Let f(x) =
∑N
i=0 pix

i be the characteristic polynomial of a finite discrete distribution, and ε > 0.

By padding the distribution with 0s, we can assume without loss of generality thatN = deg f is a multiple

of n. A polynomial root—if it exists—has the form g(x) =
∑N
i=0 aix

i, where ai ≥ 0 ∀i. Then

g(x)n = (. . .+ a3x
3 + a2x

2 + a1x+ a0)n

= . . .+ ((n− 1)a2
1 + nan−2

0 a2)x2 + nan−1
0 a1x+ an0 .

Comparing coefficients in the divisibility condition f(x) = g(x)n, the latter translates to the set of in-

equalities

an0 ∈ (p0 − ε, p0 + ε)

nan−1
0 a1 ∈ (p1 − ε, p1 + ε)

(n− 1)a2
1 + nan−2

0 a2 ∈ (p2 − ε, p2 + ε)

...

Each term but the first one is of the form hi(a1, . . . , ai−1)+nan−i0 ai ∈ (pi−ε, pi+ε), where hi ≥ 0∀i
is monotonic. This can be rewritten as ai ∈ Uε/nan−i

0
((pi − hi(a1, . . . , ai−1))/nan−i0 ). •It is now easy

to solve the system iteratively, keeping track of the allowed intervals Ii for the ai.

If Ii = ø for some i, we return No, otherwise Yes. We have thus developed an efficient algorithm to

answer DistributionWeak Divisibilityn,ε, and the claim of lemma 1.72 follows.

Remark 1.73. Given a random variable X , the algorithm constructed in the proof of lemma 1.72 allows us
to calculate the closest n-divisible distribution to X in polynomial time.

Proof. Straightforward, e.g. by using binary search over ε.
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1.2.3.4 Weak Divisibility
For the weak membership problem, we reduce Weak Distribution Divisibilityn,ε to Distribution

Divisibilityn,ε.

Theorem 1.74. Weak Distribution Divisibilityn,ε ∈ P.

Proof. Let D be a finite discrete distribution. If DistributionDivisibilityn,ε answers Yes, we know

that there exists an n-divisible distribution ε-close to D. In case of No, D itself is not n-divisible, hence we

know that there exists a non-n-divisible distribution close to D.

1.2.3.5 Continuous Distributions
Let us briefly discuss the case of continuous distributions—continuous meaning a non-discrete state space

X , as specified in section 1.2.1.2. Although divisibility of continuous distributions is well-defined and

widely studied, formatting the continuous case as a computational problem is delicate, as the continuous

distribution must be specified by a finite amount of data for the question to be computationally meaningful.

The most natural formulation is the continuous analogue of definition 1.57 as a weak-membership problem.

However, we can show that this problem is computationally trivial.

First observe the following intermediate result.

Lemma 1.75. Take f ∈ C+
c,b with supp f ⊂ A ∪ B, where A := [0,M ], B := [2M, 3M ], M ∈ R>0.

We claim that if f is divisible, then both f |A and f |B are divisible.

Proof. Due to symmetry, it is enough to show divisibility for f |A. Assuming f is divisible, we can write

f = r ∗ r, i.e. f(x) =
∫
R
r(x− y)r(y)dy. It is straightforward to show that r(x) = 0 ∀x < 0. Define

r̄(x) =

r(x) x ∈ A/2

0 otherwise,
(1.7)

whereA/2 := {a/2 : a ∈ A}. Then

(r̄ ∗ r̄)(x) =

∫
R

r̄(x− y)r̄(y)dy

=

∫
R

dy

r(x− y) x− y ∈ A/2

0 otherwise
·

r(y) y ∈ A/2

0 otherwise.

We see that (r̄ ∗ r̄)(x) = 0 for x 6∈ A. For x ∈ A, the support of the integrand is contained in {y : y ∈
x−A/2∧y ∈ A/2} = x−A/2∩A/2 := Sx, and hence we can write (r̄∗r̄)(x) =

∫
Sx
r(x−y)r(y)dy.
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Figure 1.4: (a) Integration domains in lemma 1.75 for r̄ ∗ r̄ (purple) and f |A (light green), respectively. (b)
Example for integration domains in proposition 1.96 for r̄ ∗ s̄ (purple) and f |A (light green),
respectively.

It hence remains to show that f |A(x) =
∫
Sx
r(x − y)r(y)dy ∀x ∈ A. The integrand r(x − y)r(y) =

0 ∀y < 0 ∨ y > x. The difference in the integration domains can be seen in fig. 1.4. We get two cases.

Let x ∈ A. Assume ∃y′ ∈ (M/2,M) such that r(x − y′)r(y′) > 0. Let x′ := 2y′. We then have

r(y′)2 = r(x′− y′)r(y′) > 0, and due to continuity f(x′) > 0, contradiction, because x′ ∈ (M, 2M).

Analogously fix x′ ∈ (M/2,M). Assume ∃y′ ∈ (0, x′ −M/2) such that r(x′ − y′)r(y′) > 0, and

thus r(x′ − y′) > 0, where a := x′ − y′ > M/2, 2a ∈ (M, 2M). Then r(a)2 = r(2a− a)r(a) > 0,

due to continuity f(2a) > 0, again contradiction.

Proposition 1.76. Let C+
c,b denote the set of piecewise continuous nonnegative functions of bounded support.

Then the set of nondivisible functions, I := {f : @r ∈ Cc,b : f = r ∗ r} is dense in Cc,b.

Proof. It is enough to show the claim for functions f ∈ C+
c,b with inf supp f ≥ 0. Let ε > 0, and

M := sup supp f . Take j ∈ Cc,b to be nondivisible with supp j ⊂ (2M, 3M), and define

g(x) :=


f(x) x < M

εj(x)/‖j‖∞ x ∈ (2M, 3M)

0 otherwise.

By construction, ‖f−g‖∞ < ε, but g|(2M,3M) ≡ j is not divisible, hence by lemma 1.75 g is not divisible,

and the claim follows.

Corollary 1.77. Let ε > 0. Let X be a continuous random variable with pdf pX(k). Then there exists a
nondivisible random variable Y with pdf pY (k), such that ‖ pX − pY ‖ < ε.
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Proof. Let ε > 0 small. Since Cc,b ⊂ {f integrable} =: L, we can pick fM ∈ L : supp fM ∈
(−M,M), ‖ pX −fM‖ < ε/3 and ‖fM‖ = 1 + δ with |δ| ≤ ε/3. Then∥∥∥∥pX −

fM
‖fM‖

∥∥∥∥ =

∥∥∥∥pX −
fM

1 + δ

∥∥∥∥ ≤ ‖pX −fM‖+
ε

2
‖fM‖ ≤ ε.

and proposition 1.76 finishes the claim.

Corollary 1.78. Any weak membership formulation of divisibility in the continuous setting is trivial to an-
swer, as for all ε > 0, there always exists a nondivisible distribution ε close to the one at hand. Similar
considerations apply to other formulations of the continuous divisibility problem.

1.2.3.6 Infinite Divisibility
Let us finally and briefly discuss the case of infinite divisibility. While interesting from a mathematical point

of view, the question of infinite divisibility is ill-posed computationally. Trivially, discrete distributions

cannot be infinitely divisible, as follows directly from theorem 1.68. A similar argument shows that neither

the ε, nor the weak variant of the discrete problem is a useful question to ask, as can be seen from lemma 1.72

and 1.74.

By the same arguments as in section 1.2.3.5, the weak membership version is easy to answer and thus

trivially in P.

1.2.4 Decomposability
1.2.4.1 Computational Problems
We define the decomposability analogue of definition 1.66 and 1.67 as follows.

Definition 1.79 (Distribution Decomposability).

Instance. Finite discrete random variable X ∼ D.

Question. Do there exist finite discrete distributions D′,D′′ : X = Z1 + Z2 for random variables
Z1 ∼ D′, Z2 ∼ D′′?

Definition 1.80 (WeakDistribution Decomposabilityε).

Instance. Finite discrete random variable X ∼ D with pmf pX(k).

Question. If there exists a finite discrete random variableY with pmf pY (k), such that ‖pX − pY ‖∞ <

ε and such that

1. Y is decomposable—return Yes
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Subset Sum(·,Σ· + poly ε)

Finite Discrete
Distribution

Decomposabilityε
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Finite Discrete
Distribution
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Finite Discrete
Distribution

Decomposability

Signed Subset Summ

Subset Sum

Subset Summ(·,Σ·)

Finite Discrete
Distribution

Decomposabilitym

Even Subset Sum

Finite Discrete
Distribution Even
Decomposability

Figure 1.5: Complete chain of reduction for our discrete programs. The dashed lines are obvious and not
mentioned explicitly.

2. Y is indecomposable—return No.

In this section, we will show that Distribution Decomposability isNP-hard, for which we will

need a series of intermediate results. Requiring the support of the first random variableZ1 to have a certain

size, i.e. | supp(pD′)| = m, yields the following program.

Definition 1.81 (Distribution Decomposabilitym,m ≥ 2).

Instance. Finite discrete random variable X ∼ D with | supp(pD′)| > m.

Question. Do there exist finite discrete distributions D′,D′′ : X = Z1 + Z2 for random variables
Z1 ∼ D′, Z2 ∼ D′′ and such that | supp(pD′)| = m?

We then define Distribution Even Decomposability to be the case where the two factors have

equal support.

The full reduction tree can be seen in fig. 1.5.

Analogous to lemma 1.35, we state the following observation.

Lemma 1.82. All the above Decomposability problems in definition 1.79 to 1.80 are contained in NP.

Proof. It is straightforward to construct a witness and a verifier that satisfies the definition of the decision

classNP. For example in definition 1.89, a witness is given by two tables of numbers which are easily checked

to form finite discrete distributions. Convolving these lists and comparing the result to the given distribu-

tion can clearly be done in polynomial time. Both verification and witness are thus poly-sized, and the claim

follows.

1.2.4.2 Even Decomposability
We continue by proving that Distribution Even Decomposability isNP-hard. We will make use of

a •variant of the well-known Subset Sum problem, which isNP-hard—see lemma 1.23 for a proof. The

interested reader will find a rigorous digression in section 1.1.2. •
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This immediately leads us to the following intermediate result.

Lemma 1.83. Distribution Even Decomposability is NP-hard.

Proof. Let (S, l) be an instance of Even Subset Sum. We will show that there exists a polynomial f ∈ R
of degree 2|S| such that f is divisible into f = g ·hwith deg g = deg h iff (S, l) is a YES instance. We will

explicitly construct the polynomial f ∈ R. As a first step, we transform the Even Subset Sum instance

(S, l), making it suited for embedding into f .

Let N := |S| and denote the elements in S with s1, . . . , sN . We perform a linear transformation on

the elements si via

bi := a

(
si −

1

|S|
∑
s∈S′

s

)
+

al

2|S|• for i = 1, . . . , N, (1.8)

where a ∈ R>0 is a free scaling parameter chosen later such that |bi| < δ ∈ R+ small. Let B :=

{b1, . . . , bN}. By lemma 1.24, we see that Even Subset Sum(S, l) = Even Subset Sum(B, al). Since

further
∑
i bi = al/2 > 0, we know that (B, al) is a YES instance if and only if there exist two non-empty

disjoint subsetsB1 ∪B2 = B with |B1| = |B2| such that both•

∑
i∈B1

bi > 0 and
∑
i∈B2

bi > 0. (1.9)

The next step is to construct the polynomial f and prove that it is divisible into two polynomial factors

f = g · h if and only if (B, al) is a YES instance. We first define quadratic polynomials g(bi, x) :=

x2 + bix + 1 for i = 1, . . . , N , and set fT (x) :=
∏
b∈T g(b, x) for T ⊂ B. Observe that for suitably

small δ, the g(bi, x) are irreducible overR[x]. With this notation, we claim that fB(x) has the required

properties.

In order to prove this claim, we first show that for sufficiently small scaling parameter a, a generic subset

T ⊂ B with n := |T | and fT (x) =:
∑2|T |
i=0 cix

i,• the coefficients ci satisfy

c0 = 1, (1.10)

sgn(c1) = sgn(Σ), (1.11)

c2j > 0 for j = 1, . . . , |T |, (1.12)

sgn(c2j+1) ≥ sgn(Σ) for j = 1, . . . , |T | − 1, (1.13)

where Σ :=
∑
t∈T t. Indeed, if then fB = g · h, where g, h ∈ R, then g = fB1

and h = fB2

for aforementioned subsets B1, B2 ( B, and conversely if (B, al) is a YES instance, then fB = fB1
·

fB2
—remember thatR[x] is a unique factorisation domain, so all polynomials of the shape fT necessarily
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decompose into quadratic factors.

By construction, c0 = 1 and c1 = nΣ, so the first two assertions follow immediately. To address

eq. (1.12) and 1.13, we further split up the even and odd coefficients into

cj =:

cj,0 + cj,2 + . . .+ cj,j if j even

cj,1 + cj,3 + . . .+ cj,j if j odd,
(1.14)

where cj,k is the coefficient of xjbi1 · · · bik . We thus have cj,k = O(δk) in the limit δ → 0—we will

implicitly assume the limit in this proof and drop it for brevity. Our goal is to show that the scaling in δ

suppresses the combinatorial factors, i.e. that cj is dominated by its first terms cj,0 and cj,1, respectively.

In order to achieve this, we need some more machinery. First consider g(δ, x) = x2 + δx + 1. It is

imminent that for an expansion

g(δ, x)n =:

2n∑
j=0

xj
n∑
k=0

dj,kδ
k,

we get coefficient-wise inequalities

|cj,k| ≤ dj,k ∀j = 0, . . . , 2n, k = 0, . . . , n. (1.15)

We will calculate the coefficients dj,k of g(δ, x)n explicitly and use them to bound the coefficients cj,k of

fT (x).
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Using a standard Cauchy summation and the uniqueness of polynomial functions, we obtain

g(δ, x)n =

n∑
j=0

1

j!
(1 + x2)n−jxj(n)jδ

j

=

n∑
j=0

δj

j!
(n)jx

j

n−j∑
k=0

(
n− j
k

)
x2k

≡
∞∑
j=0

∞∑
k=0

δj

j!
(n)j

(
n− j
k

)
xj+2k

=

∞∑
j=0

j∑
l=0

δl

l!
(n)l

(
n− l
j − l

)
x2j−l

≡
n∑
j=0

j∑
l=0

δl

l!
(n)l

(
n− l
j − l

)
x2j−l

=

n∑
j=0

2j∑
l=j

δ2j−l

(2j − l)! (n)2j−l

(
n− 2j + l

l − j

)
xl.

With (n)l we denote the falling factorial, i.e. (n)l = n(n − 1)(n − 2) · · · (n − l + 1). By convention,

(n)0 = 1.

Addressing even and odd powers of x separately, we can thus deduce that

g(δ, x)n =

2n∑
j=0

xj



b j2 c∑
k=0

δ2k+1

(2k + 1)!

(n)d j2 e+k

(b j2c − k)!
if j odd

j
2∑

k=0

δ2k

(2k)!

(n) j
2 +k

( j2 − k)!
if j even

=

2n∑
j=0

xj


(n)d j2 e

b j2 c∑
k=0

δ2k+1

(2k + 1)!

(n− d j2e)k
(b j2c − k)!

if j odd

(n) j
2

j
2∑

k=0

δ2k

(2k)!

(n− j
2 )k

( j2 − k)!
if j even.

A straightforward estimate shows that for the even and odd case, we obtain the coefficient scaling

g(δ, x)n =

2n∑
j=0

xj


(n)d j2 e

b j2 c∑
k=0

δ2k+1O(nk) if j odd

(n) j
2

j
2∑

k=0

δ2kO(nk) if j even,
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which means that e.g. picking δ = O(1/n2) is enough to exponentially suppress the higher order combi-

natorial factors.

We will now separately address the even and odd case—eq. (1.12) and 1.13.

Even Case. As the constant coefficients cj,0 = O(1) in δ, it is the same as for g(δ, x)n and by eq. (1.15),

we immediately get
|cj,2 + . . .+ cj,j |

cj,0
= O(δ).

Odd Case. Note that if Σ < 0, we are done, so assume Σ > 0 in the following. A simple combinatorial

argument gives

cj,1 =

(
n− 1

(j − 1)/2

)
Σ,

so it remains to show that cj,1 > −cj,3−. . .−cj,j . Analogously to the even case, by eq. (1.15), we conclude

|cj,3 + . . .+ cj,j |
cj,1

= O(δ),

which finalises our proof.

1.2.4.3 m-Support Decomposability
In the next two sections we will generalise the last result to DistributionDecomposabilitym. As a

first observation, we note the following.

Lemma 1.84. Let f(n) be such that (f(n)β(f(n), n+ 1− f(n)))−1 = O(poly(n)). Then Distribu-
tion Decomposabilityf(|·|) ∈ P.

Proof. See proof of theorem 1.68, and an easy scaling argument for
(
n

f(n)

)
completes the proof. As in

remark 1.21, this symmetrically extends to Distribution Decomposability|·|−f(|·|) ∈ P.

Observe that f(n) = n/2 yields exponential growth, hence the remark is consistent with the findings in

section 1.2.4.2.

We now address the general case. As in the last section, we need variants of the Subset Sum problem,

Subset Summ, and Signed Subset Summ, see definitions 1.18 and 1.19. •Both are shown to beNP-hard in

lemmas 1.20 and 1.25, or by the following observation. In order to avoid having to take absolute values in the

definition of Subset Summ, we reduce it to multiple instances of Signed Subset Summ, by using the

following interval partition of the entire range (−l, l).
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Remark 1.85. For every a > 0, l > 0, there exists a partition of the interval (−l − 2a, l + 2a) =⋃N−1
i=0 (xi, xi+1) with suitable N ∈ N such that xi+1 − xi = 2a and

(−l, l) =

(
N−2⋃
i=1

(xi, xi+1)

)
\ ((x0, x1) ∪ (xN−1, xN )) .

This finally leads us to the following result.

Lemma 1.86. Distribution Decomposabilitym is NP-hard.

Proof. We will show the reduction Distribution Decomposabilitym ←− Subset Summ. Let m

be fixed. Let (S, l) be an Subset Sum instance. For brevity, we write ΣS :=
∑
s∈S s. Without loss of

generality, by corollary 1.17, we again assume ΣS ≥ 0. Now definea := 2(|S|l+2mΣS−|S|ΣS)/(2m−
|S|). Using remark 1.85, pick a suitable subdivision of the interval (−l − 2a, l + 2a), such that

Subset Summ(S, l) =

(
N−2∨
i=1

Signed Subset Summ(S, xi, xi+1)

)
∧ ¬Signed Subset Summ(S, x0, x1)

∧ ¬Signed Subset Summ(S, xN−1, xN ).

One can verify that

Signed Subset Summ(S, xi − a, xi + a)

= Signed Subset Summ(S + c(m, i),−ΣS+c(m,i),ΣS+c(m,i))

= Subset Summ(S + c(m, i),ΣS+c(m,i)),

where we chose c(m, i) = xi/(2m − |S|). The latter program we can answer using the same argument

as for the proof of lemma 1.83, and the claim follows.

As a side remark, this also confirms the following well-known fact.

Corollary 1.87. Let f(n) be as in lemma 1.84. Then Subset Sumf(|·|) ∈ P.

1.2.4.4 General Decomposability
We have already invented all the necessary machinery to answer the general case.

Theorem 1.88. Distribution Decomposability is NP-hard.
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Proof. Follows immediately from lemma 1.83, where we consider the special set of Subset Sum instances

for which (S, l) is such that l =
∑
s∈S s. We show in lemma 1.27 that Subset Sum(·,Σ·) is stillNP-hard,

thus the claim follows.

1.2.4.5 Decomposability with Variation
As a further intermediate result—and analogously to definition 1.71—we need to allow for a margin of error

ε.

Definition 1.89 (Distribution Decomposabilityε).

Instance. Finite discrete random variable X ∼ D with pmf pX(k).

Question. Do there exist finite discrete random variables Z1 ∼ D′, Z2 ∼ D′′ with pmfs pZ1
(k),

pZ2
(k), such that ‖ pZ1

∗ pZ2
−pX ‖∞ < ε?

This definition leads us to the following result.

Lemma 1.90. Distribution Decomposabilityε is NP-hard.

Proof. First observe that we can restate this problem in the following equivalent form. Given a finite

discrete distribution D with characteristic polynomial fD, do there exist two finite discrete distributions

D′,D′′ with characteristic polynomials fD′ , fD′′ such that ‖fD−fD′fD′′‖d < ε? Here, we are using the

maximum norm from definition 1.63, and assume without loss of generality that deg fD = deg fD′ deg fD′′ .

As fD is a polynomial, we can consider its Viète map v : Cn −→ Cn, where n = deg fD, which

continuously maps the polynomial roots to its coefficients. It is a well-known fact—see [Whi72] for a

standard reference—that v induces an isomorphism of algebraic varietiesw : Ank/Sn
∼−→Ank , where Sn

is the nth symmetric group. This shows that w−1 is polynomial, and hence the roots of fD′fD′′ lie in an

O(ε)-ball around those of fD. By a standard uniqueness argument we thus know that if fD =
∏
i fi with

fi = x2 + bix + 1 as in the proof of lemma 1.83, then fD′ =
∏
i gi with gi = aix

2 + b′ix + ci, where

ai = ci = 1 +O(ε), b′i = bi +O(ε)—we again implicitly assume the limit ε→ 0.

We continue by proving the reduction Distribution Divisibilityε ←− Subset Sum(·,Σ· +

poly ε), which is NP-hard as shown in lemma 1.28. Let S = {si}Ni=1 be a Subset Sum multiset. We

claim that it is satisfiable if and only if the generated characteristic function fS(x)—where we used the no-

tation of the proof of lemma 1.83—defines a finite discrete probability distribution and the corresponding

random variableX is a Yes instance for Distribution Divisibilityε.

First assume fS is such aYes instance. Then
∑
s∈S s ≥ 0, and there exist two characteristic polynomials

g =
∏
i gi and h =

∏
i hi as above and such that ‖fS − gh‖d < ε. We also know that if gi = aix

2 +

bix + ci, then ∃T ( S such that {bi}i ∈ Bε(T ) ⊆ R|T |, where T ( S and Bε(T ) denotes an ε ball

41



around the set T , and analogously for hi = a′ix
2 + b′ix+ c′i, with {b′i}i ∈ Bε(S \ T ) ⊆ R|S|−|T |. For

the linear coefficients, we thus have∣∣∣∣∣∣
∑
s∈S

s−
∑
t∈T

t−
∑
s∈S\T

s

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
s∈S

s−
|T |∑
i=1

bi −
|S\T |∑
i=1

b′i +O(ε)

∣∣∣∣∣∣
≤ O(ε) ≤

∑
s∈S

s+O(ε).

(1.16)

Now the case if fS is a No instance. Assume there exists a nontrivial multiset T ( S satisfying∣∣∣∣∣∣
∑
t∈T

t−
∑
s∈S\T

s

∣∣∣∣∣∣ <
∑
s∈S

s+O(ε).

Then by construction
∑
t∈T t,

∑
s∈S\T s ≥ −O(ε) and fT · fS\T = fS , contradiction, and the claim

follows.

1.2.4.6 Weak Decomposability
Analogously to section 1.2.3.4, we now address the weak membership problem of decomposability.

Theorem 1.91. Weak Distribution Decomposabilityε is NP-hard.

Proof. In order to show the claim, we prove the reductionWeakDistributionDecomposabilityε ←−Distribution

Decomposabilityg(ε), where the function g = O(ε). It is clear that the polynomial factor leaves the

NP-hardness of the latter program intact.

We use the same notation as in the proof of lemma 1.90. Let fS be a Yes instance of Distribution

Decomposabilityε, and define S′ := {s+O(ε) : s ∈ S}. From eq. (1.16) it immediately follows that

then fS′ is a Yes instance of DistributionDecomposabilityg(ε), where we allow g = O(ε). We have

hence shown that there exists anO(ε) ball around each Yes instance that solely contains Yes instances.

A similar argument holds for the No instances. It is clear that these cases can be answered using Weak

Distribution Decomposabilityε, and the claim follows.

1.2.4.7 Complete Decomposability
Another interesting question to ask is for the complete decomposition of a finite distribution D into a sum

of indecomposable distributions. We argue that this decomposition is not unique.

Proposition 1.92. There exists a family of finite distributions (Dn)n∈N with probability mass functions
pn(k) : max supp pn(k) = 4n and such that, for each Dn, there are at least n! distinct decompositions
into indecomposable distributions.
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Figure 1.6: Counterexample construction of proposition 1.92. The dashed line shows a normal distribution
for comparison.

Proof. We explicitly construct the family (Dn)n∈N. Let n ∈ N. We will define a set of irreducible

quadratic polynomials {pk, nk for k = 1, . . . , n} such that nk are not positive, but pknl are positive

quartics ∀k, l—and thus define valid probability distributions. Since R[x] is a unique factorisation do-

main the claim then follows.

Following the findings in the proof of lemma 1.83, it is in fact enough to construct a set {ak, bk : 0 <

|ak| < 2,−2 < bk < 0 for k = 1, . . . , n} ⊂ R2n and such that ak + bl > 0 ∀k, l—then let

pk := 1 + akx+ x2, nk := 1 + bkx+ x2. It is straightforward to verify that e.g.

ak := 1 +
k

2n
and bk := − k

2n

fulfil these properties.

Remark 1.93. Observe that for bk := −k/2n2, the construction in proposition 1.92 allows decompositions
into m indecomposable terms, where m = n, . . . , 2n.

Corollary 1.94. R is not a unique factorisation domain.

Proposition 1.92 and remark 1.93 show that an exponential number of complete decompositions—all of

which have different distributions—do not give any further insight into the distribution of interest–indeed,

as the number of positive indecomposable factors is not even unique, asking for a non-maximal decomposi-

tion into indecomposable terms does not answer more than whether the distribution is decomposable at

all.
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Indeed, the question whether one can decompose a distribution into indecomposable parts can be

trivially answered with YES, but if we include the condition that the factors have to be non-trivial, or for

decomposability into a certain number of terms—say N ≥ 2 or the maximum number of terms—the

problem is also obviouslyNP-hard by the previous results.

In short, by theorem 1.88, we immediately obtain the following result.

Corollary 1.95. Let D be a finite discrete distribution. Deciding whether one can write D as any nontrivial
sum of irreducible distributions is NP-hard.

1.2.4.8 Continuous Distributions
Analogous to our discussion in section 1.2.3.5, the exact and ε variants of the decomposability question are

computationally ill-posed. We again point out that answering the weak membership version is trivial, since

the set of indecomposable distributions is dense, as the following proposition shows.

Proposition 1.96. Let C+
c,b denote the piecewise linear nonnegative functions of bounded support. Then the

set of indecomposable functions, J := {f : @r, s ∈ Cc,b : f = r ∗ s} is dense in Cc,b.

Proof. We first extend lemma 1.75, and again take f ∈ C+
c,b : supp f ⊂ A ∪ B. While not automatically

true that r(x), s(x) = 0 ∀x < 0, we can assume this by shifting r and s symmetrically. We also assume

inf supp f = 0, and hence inf supp r = inf supp s = 0—see lemma 1.58 for details.

Since f(x) = 0∀x ∈ (M, 2M), we immediately get r(x) = s(x) = 0∀x ∈ (M, 2M). Furthermore,

∃m ∈ (0,M) : r(x) = s(y) = 0 ∀x ∈ (m,M ], y ∈ (M −m,M ]. Analogously to eq. (1.7), we define

r̄(x) =

r(x) x ∈ [0,m]

0 otherwise
and s̄(x) =

r(x) x ∈ [0,M −m]

0 otherwise.
(1.17)

The integration domain difference is derived analogously, and can be seen in an example in fig. 1.4. We again

consider the two cases separately.

Letx ∈ A. Assume∃y′ ∈ (M−m,M) such that r(x−y′)s(y′) > 0. Then s(y′) > 0, contradiction.

Now fix x′ ∈ (m,M), and assume ∃y′ ∈ (0, x′ − m) : r(x′ − y′)s(y′) > 0. Since x′ − y′ >

x′ − x′ +m = m, r(x′ − y′) > 0 yields another contradiction.

The rest of the proof goes through analogously.

Corollary 1.97. Let ε > 0. Let X be a continuous random variable with pmf pX(k). Then there exists a
indecomposable random variable Y with pmf pY (k), such that ‖ pX −pY ‖ < ε.

Proof. See corollary 1.77.
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1.3 Chapter Summary
In section 1.1, we have shown that the question of existence of a stochastic root for a given stochastic matrix

is in general at least as hard as answering 1-in-3SAT, i.e. it isNP-hard. By corollary 1.41, thisNP-hardness

result also extends to Nonnegative and Doubly Stochastic Divisibility, which proves theorem 1.1.

A similar reduction goes through for cptp Divisibility in corollary 1.38, proving NP-hardness of the

question of existence of a cptp root for a given cptp map.

In section 1.2, we have shown that—in contrast to cptp and stochastic matrix divisibility—distribution

divisibility is in P, proving theorem 1.4. On the other hand, if we relax divisibility to the more general

decomposability problem, it becomesNP-hard as shown in theorem 1.6. We have also extended these results

to weak membership formulations in theorem 1.5 and 1.7—i.e. where we only require a solution to within ε

in the appropriate metric—showing that all the complexity results are robust to perturbation.

Finally, in section 1.2.3.5 and 1.2.4.8, we point out that for continuous distributions—where the only

computationally the only meaningful formulations are the weak membership problems or closely related

variants—questions of divisibility and decomposability become computationally trivial, as the nondivisible

and indecomposable distributions independently form dense sets.

As containment in NP for all of the NP-hard problems is easy to show (lemma 1.35 and 1.82), these

problems are alsoNP-complete. Thus our results imply that, apart for the distribution divisibility problem

which is efficiently solvable, all other divisibility problems for maps and distributions are equivalent to the

famous P = NP conjecture, in the following precise sense: A polynomial-time algorithm for answering any

one of these questions—(Doubly) Stochastic, Nonnegative or cptp Divisibility, or either of the

Decomposability variants—would prove P = NP. Conversely, solving P = NPwould imply that there

exists a polynomial-time algorithm to solve all of these Divisibility problems.

In the next chapter, we will be discussing another static problem of quantum many-body systems—

the question of approximating ground state energies of local Hamiltonians to within a certain precision.

Interestingly, as we will see, this will firmly move us into the realm of quantum complexity classes likeQMA
and BQP, and away fromNP and P. However, since the quantum world is intrinsically probabilistic, this

should not come as a surprise.
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2 Hamiltonian Complexity:
Turing’s Wheelbarrow

If I seem to wander, if I seem to stray,

remember that true stories

seldom take the straightest way.

—Patrick Rothfuss, the Name of the Wind

Complex physical behaviour can emerge from even very simple rules. Yet if the system is too simple, one can

often rule out the possibility of any exotic behaviour. Just how simple can a system be to nonetheless feature

complex properties? Much of the progress in Hamiltonian complexity and related areas over the last decade

can be viewed as improving our understanding of where this boundary between simple and complex lies.

For example, consider 1D spin chains with translationally-invariant nearest neighbour interactions. Hast-

ings proved that if the Hamiltonian describing the system is gapped, the ground state entanglement has

to follow an area law [Has07]. In 1D, the area law means that the entanglement entropy between any

contiguous region and its complement is upper-bounded by a constant, independent of the size of the

region. It was believed that even for non-gapped Hamiltonians, area-law violations would contribute at

most log corrections in the system size. Such long-range correlations in a spin chain’s ground state which

scale with the system’s size are a common indicator of criticality, i.e. they show that the system is close to a

quantum phase transition. The entanglement entropy is then expected to scale logarithmically with the

number of spins, since critical spin chains can often be related to a conformal field theory.

However, using Hamiltonian complexity techniques, Irani [Ira07] constructed an example of a spin

chain in 1D that exhibits violation of the area-law beyond logarithmic corrections, indicating that one cannot

describe such behaviour by a conformal field theory. Irani’s construction breaks translational-invariance,

so it cannot directly be compared to systems satisfying area laws. A later construction [GI13] can give a

similar area-law violation whilst preserving translational-invariance. However, the required local dimension,

O(106), is vast. It is therefore at best questionable whether this area-law violation could ever be observed

in practice. Does this mean that such violations only occur for some peculiar theoretical models with

non-translationally-invariant couplings, or unrealistically large Hilbert space dimensions?
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We now know that the answer to this question is negative. First, it was shown by Bravyi2012a that, even

for frustration-free spin-1 chains (i.e. local dimension 3), one can construct interactions that yield highly

entangled ground states, indicating critical behaviour. In fact, this result delineates a strict dimension

threshold for the presence of• ground-state entanglement in frustration-free systems. For frustration-free

spin-1/2 chains (i.e. local dimension 2) with translationally-invariant nearest neighbour interactions, it was

already known that ground states are unentangled [Che+11]. Building on this, Movassagh et al. [MS14]

constructed models which give power-law violation of the area-law for translationally-invariant spin-5/2

chains (i.e. local dimension1 6), significantly improving on the bound on the local dimension threshold for

power-law area-law violation from Gottesman and Irani’s result.

Similar dimension-related physicality questions also surround Cubitt et al.’s result which proves that

deciding whether a system is gapped or gapless in the thermodynamic limit is an undecidable problem, even

for 2D spin lattices with translationally-invariant local interactions [CPW15a]. Again, the local Hilbert space

dimension in the model they describe is vast. Bravyi and Gossett recently derived necessary and sufficient

conditions for a gapped or gapless phase for frustration-free spin-1/2 chains [BG15]. So at the other end of

the local dimension scale, the spectral gap problem is decidable in some cases. However, there is evidence

that an astronomical local dimension may not be a fundamental ingredient in the emergent behaviour that

gives rise to undecidability of the spectral gap. The abrupt change in the spectrum at very large system sizes

that is behind the undecidability, can also occur on 2D lattices of far lower-dimensional spins [Bau+16].

Again, this poses an immediate question of whether there is some local dimension threshold above which

undecidability can occur, but below which it cannot.

The original and most widely-studied question in Hamiltonian complexity theory, however, is that

of estimating the ground state energy of a local Hamiltonian. Kitaev showed that this problem isQMA-

hard [KSV02] (i.e. at least as hard as every other problem in the complexity class QMA—the quantum

generalisation of NP). Similar to a spin glass, when cooled down theseQMA-hard systems are predicted

to get stuck in one of their many meta-stable configurations, and will take exponentially long (in the

system size) to find their global minimum-energy configuration.• QMA-hardness-inspired constructions lie

behind all the results mentioned above. Yet even though the parameters describingQMA hard ground state

Hamiltonians have been improved successively [KKR06]; [OT05]; [Aha+09b]; [HNN13]; [GI13], a lower

local dimension threshold below which systems cannot feature spin-glass-like frustration is not known; for

non-translationally-invariant systems we know that this bound can be at most 8. For the more physically

relevant case of spin chains with translational symmetry, however, the best-known bound isO(106), due to

Gottesman and Irani [GI13], which is unphysically large. From a physical perspective it makes a dramatic

1[MS14] in fact prove their result for local dimension 5 but breaking strict translational invariance by adding boundary terms at the
ends of the chain. Using a trick due to [GI13], the boundary terms can be removed at the cost of increasing the local dimension
by 1.
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difference if the complexity threshold is e.g. 7, or 1000.

In this work, we improve the best-known upper bound on the local Hilbert space dimension required

forQMA-hardness in translationally-invariant spin chains by several orders of magnitude, showing that

the question of estimating the ground state energy of a local translationally-invariant Hamiltonian with

nearest-neighbour interactions remains hard, even for spins on a chain with local dimension≈ 40.

2.1 Extended Introduction and Overview of Results
2.1.1 Historical Context
Hamiltonians are the one-stop shop for describing physical properties of multi-body quantum systems, and

are of paramount interest for an array of disciplines ranging from experimental condensed matter physics to

theoretical computer science [OT05]; [KKR06]; [Aha+09b]; [GI13]; [BH12]; [CM14]; [PM15]; [CPW15a];

[WL15]. While computer scientists are interested in the computational power of different models, for

physicists it is important to calculate the structure of the low-energy spectrum of quantum systems, in

particular to approximate the minimum energy of the system, i.e. the ground state energy.

The decision problem of determining whether such a local Hamiltonian operator has lowest energy—or

eigenvalue—below some α or above some β, with β > α, can be thought of as the quantum analogue of

the maximum satisfiability problem Max-Sat. Similar to the well-known 3-Sat, this asks for the maximum

number of clauses of a Boolean formula in conjunctive normal form that can be satisfied simultaneously. In

the quantum case, each local term h of H is analogous to a clause while a global state |ψ〉 is analogous to a

global variable assignment, and the smaller 〈ψ|h |ψ〉 is, the closer |ψ〉 is to satisfying the corresponding

clause h. The LocalHamiltonian problem formalises the notion of maximizing the number of local

terms of H which can be simultaneously minimised by some global state |ψ〉, in the sense that 〈ψ|H |ψ〉 is

small. Physically, this minimum is equal to the lowest energy of the system.

Formally, we can state the Local Hamiltonian problem as the following promise problem.

Definition 2.1 (k-Local Hamiltonian).

Input. An integer n and a k-local Hamiltonian H on a multipartite Hilbert space (Cd)⊗n, and two real
numbers β > α such that β−α ≥ 1/p(n), for some fixed polynomial p(n). The smallest eigenvalue
λmin of H is promised to be either smaller than α or greater than β.

Question. Is λmin < α? •

The ground state energy of a many-body quantum system plays a crucial role in physics, and the ques-

tion of providing an estimate for it for a system at hand—as captured by this definition of the k-Local

Hamiltonian problem—is an active field of research. But how hard is it as a computational problem?
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locality local dimension geometry and symmetries
Kitaev (1999) 5 2 arbitrary

Kempe, Kitaev,
Regev [KKR06]

2 2 arbitrary

Oliveira, Terhal [OT05] 2 2 2D, planar, nearest-neighbour
interactions

Aharonov, Gottesman, Irani,
Kempe [Aha+09b]

2 12 line, nearest-neighbour

Hallgren, Nagaj,
Narayanaswami [HNN13]

2 8 line, nearest-neighbour

Gottesman, Irani [GI13] 2 huge (≈ 106) line, nearest-neighbour,
translationally-invariant

Table 2.1: Brief historic overview of QMA (QMAEXP for [GI13]) completeness results in Hamiltonian com-
plexity.

• The complexity of k-Local Hamiltonian has a track record of long-standing interest (cf. table 2.1). The

foundations were laid with Feynman’s paper [Fey86] on encoding quantum circuits into the ground state of

a Hamiltonian, which motivated a whole series of interesting and increasingly sophisticated results showing

that variants of this problem areQMA- orQMAEXP-complete.2

On the other hand, just as in classical computer science 2-SAT is solvable in polynomial time, its quantum

analogue—the Quantum 2-SAT, a special case of the 2-LocalHamiltonian problem3—can also be

solved deterministically in polynomial time: [Bra11] proved anO(n4) runtime bound, and later a linear-time

algorithm was discovered independently by [Ara+15] and [BG16]. Yet the resemblance with classical results

goes further: Quantum 4-SAT and later Quantum 3-SAT were shown to beQMA1-complete [Bra11];

[GN13]. In the same spirit, a recent result shows that in case of one-dimensional gapped local Hamiltonians,

there exists an efficient randomised algorithm for approximating the ground state as a matrix product

state [LVV15] (this result is independent of the local dimension).

However, the Local Hamiltonian problem, as defined in definition 2.1, allows the Hamiltonian to be

frustrated (e.g. by going beyond local projectors• ), and encompasses Hamiltonians whose gap closes inverse-

polynomially in the system’s size. It is thus a natural question to ask whether this more general Local

Hamiltonian problem remains computationally hard, even under restrictions motivated on physical
grounds (e.g. for translationally-invariant interactions and for qubits), or whether there is a fundamental

local dimension threshold below which it becomes tractable.
2QMAEXP is to QMA what NEXP is to NP. This is a necessary technicality whenever the input has to be specified in unary. The

energy gap still scales inverse-polynomially with system size n, and the physical implications are exactly the same as for QMA-
completeness. We define these complexity classes rigorously in section 2.2.1.2, and explain their difference in detail in section 2.2.1.4.

3More specifically,Quantum 2-SAT asks whether a sum of 2-local terms, where each term is a 2-qubit projector that acts on any pair
of qubits, is frustration-free, i.e. has a 0-energy eigenstate or, equivalently, a state that simultaneously satisfies all local constraints.
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To motivate this further, it is crucial to note that Hamiltonian constructions in the spirit of [Fey86] are a

proof-of-concept and may not necessarily be natural, in the sense that we would not encounter them in

nature describing an actual physical system. There are three fundamental criteria for judging the “physicality”

of a Hamiltonian: the interactions should be geometrically local, the dimension of the interacting subsystems

should be small, and the interactions should exhibit translational invariance. These properties apply to

physical systems we typically encounter in nature. For example, translational invariance means that if the

Hamiltonian is specified on a lattice, the interactions are the same independently of the location within the

lattice.

Starting with Kitaev’s original proof of QMA-completeness of 5-local Hamiltonian [KSV02],

the locality and local dimension of the constructions were improved successively [KKR06]; [OT05];

[Aha+09b], see table 2.1. For spins of local dimension 8 coupled by nearest-neighbour interactions on a

chain,QMA-hardness was proven by Hallgren et al. [HNN13]. All of these results make heavy use of the

non-translationally-invariant nature of interactions, which vastly simplify the encoding of the problem

instance and verifier circuit into the local structure of the Hamiltonian. TheQMAEXP-hardness result by

Gottesman and Irani [GI13], which features a 2-local Hamiltonian on a line with translationally-invariant

nearest-neighbour interactions, shows that having translational symmetry does not change the complexity

class of the localHamiltonian problem. But one caveat remains: the local dimension is unphysically

large, on the order of 106.

2.1.2 Main Result
Our goal is to significantly improve on this best-known upper bound on the local dimension. We develop a

set of new methods to prove that the complexity threshold above which theLocalHamiltonian problem

is computationally hard is at most 42, even under the strict physicality constraints outlined above. More

precisely, we prove the following main theorem.

Theorem 2.2. The local Hamiltonian problem with translationally-invariant interactions between
neighbouring spins on a chain with local dimension 42 is QMAEXP-complete. This holds true even for Hamil-
tonians with local terms of the form h + p(n)b, were h and b are fixed 2-local interactions and p(n) is a
fixed polynomial in the chain length n.

Following the notation in [GI13], we label this class of problems 2-TILH, for translationally-invariant

2-localHamiltonian. Analogous to all past hardness constructions, we prove our result by explicitly

defining a family of QMAEXP-hard instances of 2-TILH. More precisely, the instances we construct are so-

called history state Hamiltonians: by choosing the local constraints in H suitably, one can create a Hermitian

operator with a ground state spanned by states that are a uniform superposition over the history of a

computation, such that the state at step t is entangled with a corresponding state |t〉 in a separate time
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register (i.e.
∑
t |t〉 ⊗ |ψt〉). Measuring the time register at time t then yields the state of the computation at

this step. This “program counter”, as Feynman describes it, can be thought of as a clock or a finite automaton

driving the application of quantum gates. Originally, only linearly-evolving clock constructions were used,

since analysing the spectrum of a Hamiltonian with branching computational paths is more difficult. More

recently, QMA-hardness constructions in 1D and 2D have used limited branching and cycles [HNN13];

[BT14a]. These have also been exploited in the slightly different context of adiabatic and Hamiltonians

quantum computation [NW08]; [Nag12]; [GTV15].

Whereas recent results [PM15] make use of perturbation gadgets—approximating higher-order interac-

tions in the low-energy subspace of the system by an effective high-energy theory—it is known that this

does not work in one-dimensional systems [Aha+09b]. The improvements in [HNN13] over [Aha+09b]

are possible however by approximating 4-local interactions by a sum of 2-local interactions, effectively

introducing illegal transitions that have to be penalised. Perturbation gadgets and locality reduction both

depend on introducing a large energy scale to project out illegal subspaces. Our results, on the other hand,

do not use perturbation theory4.

Our findings are based on the following three main technical contributions:

1. All previous constructions encode one of the standard models of quantum computation (almost

always the circuit model, with the exception of [GI13] which encodes a quantum Turing machine),

which are not optimised for this task. We design a new universal model of quantum computation—a

quantum ring machine (QRM)—which we prove to be quantum Turing-complete. The periodicity

of the QRM’s computational steps make it particularly well-suited for local Hamiltonian construc-

tions.

2. We next introduce unitary labelled graphs and their associated Hamiltonians, which can accommo-

date a non-deterministic clock construction to drive quantum computation. This vastly generalises

Feynman’s original clock construction [Fey86], which corresponds to a path graph in our setup.

Mirroring Kitaev’s analysis [KSV02], our Hamiltonian is also equivalent to a Laplacian of the cor-

responding graph, which allows us to analyse its spectrum using a combination of spectral graph

theory and matrix analysis techniques. These techniques let us analyse ground states of much more

complicated Hamiltonians than previously possible.

3. We define yet another computational model—a quantum Thue system, or a quantum string rewriting

system—that on the one hand is particularly well-suited for embedding a computational model into

local interactions of a Hamiltonian; and on the other hand, under simple local constraints on the

4The polynomial in theorem 2.2 is an artefact of the construction. A standard trick from [GI13] can reduce the Hamiltonian to fixed
O(1) interactions by slightly increasing the local dimension, see remark 2.73.
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rewriting rules, necessarily produces Hamiltonians that correspond to unitary labelled graphs. Quan-

tum Thue systems can in a sense be thought of as an assembly language for compiling computational

models into local translationally-invariant Hamiltonians, which could also be used for adiabatic

quantum computation, or Hamiltonian quantum computers (cf. [NW08]; [WL15]).

In light of our result being rather involved and technical, we want to give a poor man’s overview of our

findings, which—without any proofs—outline the technical contributions in this chapter •. We want to

emphasise that we made an effort to keep each section largely self-contained; in particular the section on

spectral analysis of graphs with unitary edge labels, quantum ring machines, and quantum Thue systems

can be read independently of each other. TheQMAEXP-hardness proof in section 2.2.5 of course utilises

all of our developed machinery, but in such a way that the proof of existence of QMAEXP-hard instances

themselves are given a separate section.

Since the latter part is somewhat technical and specific, we want to point out that one does not need to

understand the construction itself to follow the idea behind the hardness proof, which hopefully facilitates

an understanding of the result.5

2.1.3 Proof Ideas and Techniques
2.1.3.1 Spectral Analysis for Hamiltonians Encoding Non-Deterministic

Computation
As briefly explained in the introduction, the fundamental idea behind encoding quantum computation

into the ground state of a Hamiltonian is based on the concept of history states, introduced by Feynman in

1986. For some quantum circuit represented by local gates U1, . . . ,UT on a Hilbert spaceH, we define a

Hamiltonian on the product spaceCT ⊗H as

H :=

T−1∑
t=1

(|t〉〈t| ⊗ 1+ |t+ 1〉〈t+ 1| ⊗ 1− |t+ 1〉〈t| ⊗Ut − |t〉〈t+ 1| ⊗U†t). (2.1)

The ground state of this Hermitian operator is spanned by states of the form
∑
t |t〉 ⊗ |ψt〉, where |ψt〉 =

Ut · · ·U1 |φ〉 for some |φ〉 ∈ H. For any |φ〉, ker H thus encodes the uniform superposition over the

history of the quantum circuit acting on |φ〉. An intuitive way of thinking about these ground states is that

they represent quantum computation driven by a clock, i.e. for each increment of the clock register, the

corresponding quantum gate is applied to the computational register.6

5The reason behind unhitching the explicit construction of QMAEXP-hard instances in this way is to allow for further optimisation
of the local dimension to go through without having to re-prove all of the claims; in fact, we encourage the interested reader to
have a stab at finding a quantum Thue systems following the four properties given in lemma 2.59, but with an alphabet that is
smaller than ours.

6The notion of time in this context is meaningless, but simplifies an intuitive understanding on how computation is embedded into
the ground state of H.
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Essentially all past result employ such history state Hamiltonians with a linear clock, i.e. for every com-

putational step, there exists precisely one unique forward and backward transition. For local Hamiltonian

constructions—i.e. where H is a sum of local terms—this implies that each local rule has to know the exact

location within the overall computation.

To be more specific, consider a spin chain of length n as the Hilbert spaceH⊗nloc . The interactions on

this chain then take the form of a set of local rewriting rules acting on neighbouring sections of spins: for

|ψi〉 , |φi〉 ∈ H⊗kloc for some constant k < n, we encode the evolution |ψi〉 7→ |φi〉 by a local Hamiltonian

term hi = (|ψi〉 − |φi〉)(〈ψi| − 〈φi|). The overall Hamiltonian is then a sum of these local interactions

over all spins, i.e.

H =
∑
j

11,...,j−1 ⊗
(∑

i

hi

)
j,...,j+k−1

⊗ 1j+k,...,n. (2.2)

If the global evolution defined by the terms hi is unique, this implies that it is always possible to locally

determine the global state of the computation.7 This means that locally, we have to store this state in one

way or another: under this requirement it is difficult to push the limits of local Hilbert space dimension

down, and much could be gained if we could e.g. allow the local computational state to be ambiguous to

some extent (but such that if the wrong transition is applied, the computation does not proceed to tamper

with the actual outcome of the embedded circuit).

In our work, we go beyond linear clock constructions, and prove a series of spectral graph-theoretic results
which allow us to analyse more complicated history state Hamiltonians. We outline these novel techniques

below.

If all |ψi〉 and |φi〉 in eq. (2.2) are standard basis vectors, then each rule corresponds to an edge in a graph

Gwith vertices labelled by the canonical basis of the spin chain. H thus equals the Laplacian of the graph

G (whose spectrum is accessible) and the ground state of H is given by the uniform superposition over

connected graph components ofG. We call ground states of such Hamiltonians as in eq. (2.2) history states,
since they encode the closure of states reachable under the given rewriting rules.

To analyse the spectrum of more general non-basis transitions |ψi〉 7→ |φi〉, one needs to prove that this

choice still allows H to be at least unitarily equivalent to a graph Laplacian ∆, e.g. by explicitly constructing

a unitary similarity transform W such that W†HW = ∆⊗ 1. Most if not allQMA-hard construction

since Kitaev’s go along this route; however, in the language of graphs, the unitary equivalence could only be

proven if ∆ is the Laplacian of a path graph.8 Just as in eq. (2.2), this graph essentially corresponds to the

7Hamiltonians such as in eq. (2.2) are combined with a series of local projectors which single out a computationally valid ground
state, so strictly speaking the local rules will only have to discriminate the current computational state locally within this valid
subspace—cf. [HNN13], where this is exploited to break down 4-local interactions to 2-local ones.

8A more complex construction with a local clock was considered in [BT14a], where the authors consider a 2D surface and allow
executing transitions in parallel, as long as the execution front behaves in a time-like fashion. To analyse the spectrum of the
resulting Hamiltonian, they relate the propagation terms to the diffusion of a string on a torus, corresponding to a ferromagnetic
Heisenberg model with partially twisted periodic boundary conditions. Their analysis, while elegant, is specific to their string
diffusion-type execution order of quantum gates. These Hamiltonians cannot generally be translationally-invariant, as the circuit
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Figure 2.1: Example of a unitary labelled graph (ULG) with vertices {1, 2, 3, 4, 5} and three non-trivial
unitaries X,Y,Z ∈ U(H). The associated Hamiltonian for this ULG, as defined in eq. (2.3),
is unitarily equivalent to the Laplacian of the underlying graph if ZYX = 1. We provide an
explicit description of this change-of-basis unitary.

finite state automaton “driving” the computation; if it is a path graph, the computational path is limited to

a sequential application of transition rules |ψi〉 7→ |φi〉 or gate applications encoded therein.

We extend this notion to allow much more complicated branching in the computational path to occur. In

particular, we prove a series of results which guarantee the existence of the partially diagonalising unitary W

solely based on properties of the rewriting rules, without the need to explicitly analyse the overall evolution

of the system. This has two major benefits: it allows more powerful state transitions which are not necessarily

unique for every step, and it drastically simplifies the spectral analysis of H for whichever construction we

choose to work with, as we do not need to construct the equivalence between H and ∆ explicitly. As an

important example, our model is the first to allow multiple threads of computation to run in parallel, which

then join at some common state.

In a bottom-up approach, we formalise the notion of a Hamiltonian associated with a graph. Starting

from a simple directed graph G = (V,E) we associate a Hilbert spaceH to each vertex v ∈ V , and a

unitary U(a,b) : H −→ H for every directed edge (a, b) ∈ E. We call such a graph with Hilbert space and

family of unitaries a unitary labelled graph, or ULG for short. As an example, consider fig. 2.1.

The associated Hamiltonian for the ULG is then defined as

H(G) :=
∑

(a,b)∈E

∑
i

(|a〉 ⊗ |i〉 − |b〉 ⊗U(a,b) |i〉)( herm. conj. ), (2.3)

where the |i〉 label a basis ofH. Observe that this construction is more general than a local Hamiltonian

on a spin chain as in eq. (2.2): H(G) is simply a Hermitian operator on the overall Hilbert spaceCV ⊗H
where the vertex labels are completely arbitrary, and not necessarily make H(G) local in any sense.

The associated Hamiltonian H(G) bears some structural resemblance with a graph Laplacian, as already

mentioned. We prove the following theorem.

Theorem 2.3. If the product of unitaries along any loop in the graph G is 1, a property we call simple, then
H(G) is unitarily equivalent to ∆⊗ 1n, where n = dimH and ∆ is the Laplacian of G.

must be laid out on the 2D surface.
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Fig. 2.1 satisfies this theorem if and only if the product of unitaries in the loop are ZYX = 1. We

provide an explicit expression for this diagonalising unitary, which can be constructed in poly time using a

breadth-first search algorithm along a spanning tree ofG.

2.1.3.2 Quantum String Rewriting
In order to reintroduce locality to our Hamiltonian construction, we further develop a notation which

facilitates embedding transition rules as in eqs. (2.2) and (2.3) into the ground state of a local Hamiltonian.

This notation is heavily motivated by string rewriting models, and we extend this notion to introduce a

new quantum Turing-complete model based on transitions able to perform quantum gates on part of the

string’s alphabet.

As mentioned, past hardness constructions (summarised in table 2.1) encode computation in local tran-

sition rules that act on spins connected by some underlying graph of interactions. While some of these

transitions are classical—i.e. basis-preserving—others act on the spin states with a non-diagonal unitary

operator, performing the actual quantum computation. Inspired by classical string rewriting systems, we in-

terpret these quantum interactions as local quantum rewriting rules, and introduce a new abstract rewriting

system called quantum Thue system. This extends an already-existing model of string rewriting—semi-Thue

systems9—which are well-studied classically [Tho10].

A (classical) semi-Thue system consists of a finite alphabet Σ and length-preserving replacement rules for

strings over this alphabet. Similar to the word problem, computation can be encoded in the question whether

there exists a connecting path between some input and output strings si and sf . It is straightforward to

simulate universal classical Turing machines with a Thue system, which shows that the latter is a Turing-

complete model for classical computation. But what about quantum computation?

For quantum Thue systems, we require that the alphabet splits into a classical and a quantum part,

i.e. Σ = Σcl t Σq . Transition rules can be purely classical—between elements of Σ∗cl, quantum—between

elements of Σ∗q , or a mixture thereof, in which case we require that the rule preserves the number of quantum

symbols |s|q of a string s ∈ Σ∗. In addition, every rule r acting on at least some quantum symbols has a

unitary Ur ∈ U(H⊗|s|q ) attached, whereH• is some fixed, finite-dimensional Hilbert space.

Starting on some string s and a state vector |v〉 ∈ H⊗|s|q , we apply any matching string rewriting

rule s r7−→ s′ in turn. For every replacement, we also apply the corresponding unitary to the state vector,

i.e. Ur |v〉 = |v′〉. In this fashion, we can model quantum computation, driven by a finite automaton:

if we make the underlying classical Thue system implement a Turing machine that writes out a quantum

circuit description on the string, and then perform this quantum circuit on a separate set of qubits attached

to some quantum symbols, the final state vector will contain the output of a quantum computation.

9Named after the Norwegian mathematician Axel Thue. We require all rule sets for quantum string rewriting to be symmetric; a
symmetric semi-Thue is simply called Thue system, explaining the name quantum Thue system.
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Figure 2.2: Schematic of a quantum ring ma-
chine. A fixed unitary R is cycli-
cally applied to a ring of qudits
until one of the qudits indicates a
halting configuration.
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Figure 2.3: Ring machine’s evolution implementing a uni-
form quantum circuit. Double lines carry clas-
sical while single lines carry quantum informa-
tion. Classical wires encode where the next
quantum gate from a small universal set will be
applied.

One can then show that a quantum Thue system is itself a special case of a unitary labelled graph, which

allows us to translate it into a Hamiltonian. We show that the locality of the resulting Hamiltonian only

depends on the range of the largest replacement rule, e.g. if one at most replaces a 3-character string, the

resulting Hamiltonian will also be 3-local and translationally-invariant.

As replacement rules are not necessarily unique, the computation will have potential ambiguities. As

such, we consider all strings connected to the initial starting string si via some arbitrary combination of

rules, and the size of this set corresponds to the number of basis states that the corresponding history state
(the ground state of the associated Hamiltonian of the unitary labelled graph defined by the quantum Thue

system) is comprised of.

2.1.3.3 A Simpler Computational Model
The complexity class QMAEXP is usually defined in terms of the circuit model, i.e. as a uniform family

of verifier circuits: a promise problem Π = (ΠYES,ΠNO) is in QMAEXP if there exists a classical Turing

machine, such that the verifier circuit for a problem instance l ∈ ΠYES ∪ ΠNO can be written out by the

Turing machine inO(exp |l|) steps where |l| is the instance size. Being used as an all-purpose computational

model, Turing machines have significant downsides: they have complicated transition functions, need a lot

of internal states (which translates to an enormous local dimension when encoded in a Hamiltonian) and are

rarely written out explicitly (so it is hard to get tight bounds on the required dimension). On the other hand,

in past constructions, embedding a circuit directly required the use of non-local clock states marking the

position within the circuit, or non-translationally-invariant terms that encode the circuit unambiguously.

We introduce a new computational model which allows us to circumvent the direct use of complicated

Turing machines or quantum circuits. The so-called quantum ring machine consists of a cyclic ring of qudits
(i.e. d-dimensional quantum systems) and a unitary R describing a head that acts on two qudits at a time.
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At each time-step, the head moves in the same direction along the ring and cyclically acts on adjacent cells.

We give the following definition (see section 2.2.2 for more details).

Definition 2.4 (Quantum ring machine). A quantum ring machine consists of a ring of n qudits, each
of dimension d, and a unitary operator R acting on a pair of qudits. The n-qudit ring is initialised in
state |ψin〉 and the machine proceeds by applying R cyclically to pairs of adjacent qudits along the ring—see
figure 2.3—until one of the qudits indicates halting: its reduced density matrix has support completely inside
a certain halting subspace Hhalt, while the reduced states of all qudits up to this point were orthogonal to
Hhalt.

To show that a quantum ring machine is computationally equivalent to a uniform family of quantum

circuits, we encode a classical Turing machine’s transition function into R, where the internal states, includ-

ing the Turing machine’s halting flag, are stored as a classical information on the ring. Such ring machine

can be used to write out and execute a quantum circuit “on-the-go”: it is universal for whichever uniform

circuit class is encompassed by its allowed runtime. Quantum ring machines thus bridge the gap between

circuits, which are particularly simple to specify locally but have a complex global structure, and Turing

machines, which are difficult to specify locally due to a possibly large number of internal states, but have a

straightforward global evolution as the tape only changes in at most one location at each step. A schematic

of the ring machine can be found in figs. 2.2 and 2.3.

The ring machine’s simple mechanism allows its evolution to be described by a set of local quantum

rewriting rules. These rules operate at a physical level while the ring machine operates at a logical level—each

application of ring machine’s head R on a pair of logical qubits is implemented by a sequence of physical

operations acting on a much larger number of qubits. At any given time the ring machine’s head is positioned

on a specific pair of logical qubits, and after each application of R this location is updated in a similar fashion

as Turing machine’s head—it is shifted either up or down along the ring by one position. Overall, R is a

large controlled unitary that acts at a given logical location only if the ring machine’s internal state—stored

as a classical bit on the physical tape—is in an active configuration.

2.1.3.4 QMAEXP hardness of 2-TILH
The final proof of theorem 2.2 is based on the following lemma.

Lemma 2.5. There exists aBQEXP-universal quantum Thue system with 39 symbols, 3 of which are quantum,
with attached Hilbert space C2 and 2-local rules.

We prove this by writing out a quantum Thue system which executes a BQEXP-universal quantum ring

machine. The quantum Thue system makes heavy use of the new possibilities of ambiguous replacement

rules, which allow the history state path to branch. For theQMAEXP hardness proof itself we combine this
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Figure 2.4: Illustration of Turing’s wheelbarrow construction (see section 2.2.6 for more details). It consists
of a tape that stores a program string on the left- and data qubits on the right-hand side. Two
types of actions are supported: application of a quantum gate (left figure) and rewinding of the
tape (right figure). The rightmost program bit always indicates the next action. For example, 0
indicates that a unitary gate U0 should be applied to the two leftmost data qubits, and the ring
of qubits should then be cyclically rotated one position to the left. On the right, the action of
the special symbol is depicted: it signals the rightmost qubit to move back to the left end of
the tape. After each action the program string is cyclically rotated one position to the right.

Thue system with a series of local penalty terms, which allow us to single out the history state as lowest-energy

ground state for any encoded YES instance.

Furthermore, we prove that the quantum Thue system has a simple history state in the sense of theorem 2.3,

which allows us to analyse the spectrum of the resulting Hamiltonian. More specifically, we prove a variant of

Kitaev’s geometrical lemma (see lemmas 2.30 and 2.44) which facilitates the spectral analysis of Hamiltonians

that are sums of a unitary labelled graph Hamiltonian and local projectors. This finally allows us to prove our

main result, theorem 2.2, that 2-Local-Hamiltonian isQMAEXP-hard, even for translationally-invariant

nearest-neighbour interactions between spins of local dimension 42.

For completeness, we also want to give a brief overview over the family of hard QTS instances that

we construct, but—as mentioned before—theQMAEXP hardness proof does not depend on the precise

workings of it; assuming that lemma 2.5 can be proven, theorem 2.2 stands independently.

Treating the Hilbert space of the 2-TILH problem as a physical tape of lengthn—some symbols quantum,

some classical—we write a set of transition rules to perform the following steps that simulate the quantum

ring machine.

1. As in the construction by Gottesman and Irani [GI13], we use a counter to translate the chain length

n into a program string of lengthO(log n) on the left hand side of the chain, while on the right hand

side we store the physical data qubits, i.e. the ring of qubits our ring machine is executed on.

2. The program on the left hand side contains a physical-level description of a quantum circuit (over

a small, finite, universal gate set) for implementing one step of the quantum ring machine, i.e. one

application of the ring machine’s head R. The program’s rightmost bit always indicates the next gate

in the circuit, and this gate is always applied to the two leftmost data qubits on the physical ring (see

fig. 2.4).
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3. Using the two types of basic commands—“apply gate” and “rewind tape”—shown in fig. 2.4, the

quantum circuit implementing R can be executed cyclically on the physical data qubits, some of

which are initialised to ancillary |0〉’s to be used in the computation.

4. The computation runs until a certain internal classical counter (stored on the ring) terminates. In

our construction, we explicitly encode transitions for the gates Swap, Toffoli and a controlled

quantum-universal unitary; since Swap and Toffoli are also universal for classical computation,

the classical control machinery in the ring machine’s head R (i.e. the Turing machine used to write

out the quantum circuit) can be executed exactly (without error). This means that the computation

will halt deterministically (as otherwise there could be some overlap with a non-halting state). The

transition rules for applying a gate as in fig. 2.4 then have another control gate which only proceeds if

the data bit to its right is in a specific configuration, terminating the machine’s execution otherwise.

5. The length of the chain is chosen so that the program encodes a quantum ring machine equivalent

to a BQEXP verifier circuit. It discriminates between YES andNO instances of the corresponding

QMAEXP language depending on whether the ring machine accepts or rejects, and a special symbol

in the program description allows us to locally penalise a wrong initialisation of ancillas and aNO
output of the computation.

Our construction is universal in the sense that it can be used to implement an arbitrary quantum compu-

tation without the need to increase the local dimension (in the same spirit as a universal Turing machine can

implement any computation without the need to increase the number of internal states). Since we leave

parts of the input unconstrained, we conclude from BQEXP-completeness of these instances that they can

be used as aQMAEXP verifier, finalising our claims.

2.1.4 Structure of the Chapter
We summarise several standard definitions in section 2.2.1. In section 2.2.2, we define the aforementioned

quantum ring machine and show that it is indeed Turing-complete for quantum computation. Section 2.2.4

formalises the notion of quantum replacement rules and introduces the model of quantum Thue systems.

Section 2.2.6 contains a constructive proof of a universal quantum Thue system, and section 2.2.5 combines

everything into our main hardness result.
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2.2 Turing’s Wheelbarrow
2.2.1 Preliminaries
2.2.1.1 Reversible Turing Machines
We give the following standard definition of a (non-deterministic) Turing machine (for more background

on Turing machines, see chapter 8 of [ED79]).

Definition 2.6 (Turing machine). A Turing machine—or TM for short—is a triple (Q,Σ, δ), where Q is
a finite set of internal states containing a distinct initial and halting state q0 and qf , respectively, and Σ is a
finite set of tape symbols containing a designated blank symbol 0. LetD := {left, right} be the two possible
movement directions of the TM’s head. Then each element of the transition set δ ⊆ Q×Σ×Σ×D×Q
is a quintuple of the form (q, s, s′, d, q′), which means that if the Turing machine reads a symbol s under
its head while in state q, it overwrites the symbol by s′, moves the head in direction d ∈ D and transitions
to state q′. At the beginning of the computation, the TM’s initial state is q0 and the tape is initialised to all
0s, except for a finite block of consecutive cells containing the input. The machine halts once its internal state
is qf , for which there is no forward transition.

As we aim to implement TMs using quantum mechanics, we need them to be deterministic and reversible.

The following is based on definition 10 from [Mor08].

Definition 2.7 (Deterministic and reversible Turing machine). Consider a Turing machine (Q,Σ, δ), and
let (q1, s1, s

′
1, d1, q

′
1) and (q2, s2, s

′
2, d2, q

′
2) be any two distinct quintuples in δ. This TM is

• deterministic if (q1 = q2) =⇒ (s1 6= s2),

• reversible if (q′1 = q′2) =⇒ (s′1 6= s′2) ∧ (d1 = d2).

The first condition of definition 2.7 rules out the possibility that q1 = q2 and s1 = s2, meaning that the

current TM’s state and tape symbol should unambiguously determine the rest of the transition. Similarly,

the second condition rules out the possibility that q′1 = q′2 and s′1 = s′2, as well as the possibility that

q′1 = q′2 and d1 6= d2, meaning that the reverse transition also is uniquely determined by the current state

and tape symbol, and that the direction of the TM’s head movement in reverse is uniquely determined by

the current state.

For a deterministic TM, one can regard δ as a partial function, namely δ : Q × Σ → Σ × D × Q,

since all combinations of internal state q and tape symbol s have at most one forward transition. For a

reversible TM, δ is injective since all combinations of internal state q′ and tape symbol s′ have at most one

backwards transition (whenever such transition exists, it uniquely determines the head movement direction

d backwards). In fact, according to definition 2.7, each state of a reversible TM can be entered only from
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one direction (this property is referred to as unidirectionality in [BV97b]). In other words, it is sufficient to

know only the TM’s current state (as opposed to both the state and the tape symbol) to answer the question

“From which direction did the TM’s head arrive?”.

Due to unidirectionality, it is often natural to restrict the range of δ to Q × Σ. In fact, the transition

function δ of a deterministic reversible Turing machine can be replaced by a permutation matrix onQ× Σ

without affecting the TM’s behaviour. For our convenience, we state this observation more formally (see

also cor. B.2 and thm. 4.2 in [BV97b]).

Lemma 2.8. For any deterministic reversible Turing machine (Q,Σ, δ), the partial transition function δ
can be replaced by a pair (Tδ, d), where Tδ is a permutation matrix on Q × Σ and d : Q → D is a
function that determines, for each internal state q ∈ Q, the direction from which the TM’s head arrived
in q. If we update the TM’s internal state and the current tape symbol according to Tδ , and then move the
TM’s head in the direction opposite to d(q′), where q′ is the updated state, the behaviour is identical to the
original transition function δ.

Proof. The function d is readily obtained because of unidirectionality. A blueprint of Tδ is obtained by

restricting the range of δ toQ×Σ and describing δ’s action on the elements of this set by a binary matrix.

Since the TM is deterministic and reversible, this matrix contains at most one entry 1 in each row and

column, so it can be easily extended to a permutation matrix.

From now on we will consider only deterministic Turing machines and implicitly assume that they are

reversible—this is justified by the following result due to Bennett [Ben73] (see [S P13]; [Mor08] for more

background on reversible computation).

Theorem 2.9 (Bennett [Ben73]). Any deterministic TM can be made reversible with at most polynomial
overhead in terms of space and time.

2.2.1.2 Quantum Complexity Classes
In this section, we formally define the quantum complexity classes BQP, BQEXP,QMA andQMAEXP in

terms of the circuit model, and refer reader to [BV97b]; [Wat12b]; [VW16] for more details on quantum

computational complexity.

In what follows, we fix some finite universal set of 2-qubit quantum gates, such as {Hadamard,

Cnot, R(π/4)}—see [NC10, ch. 4.5]. We first define a uniform family of quantum circuits over this

gate set.

Definition 2.10 (Uniform family of quantum circuits). Let f : N→ N be a function and (Cn)n∈N be a
family of quantum circuits where each Cn
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• acts on n qubits and has a distinct output qubit,

• requires at most f(n) additional ancilla qubits initialised in |0〉,

• contains at most f(n) gates from our universal set.

We say that (Cn)n∈N is f(n)-uniform if there exists a TM that on input 1n produces an explicit description
of Cn in less than f(n) steps.

Let Σ be a finite set (alphabet), and let Σn and Σ∗ :=
⋃
n≥0 Σn denote the sets of all length-n and all

finite-length strings over Σ, respectively. A promise problem over alphabet Σ is a pair Π = (ΠYES,ΠNO)

such that ΠYES ∩ ΠNO = ∅, where ΠYES,ΠNO ⊆ Σ∗ are the sets of input strings corresponding to YES
andNO instances, respectively. We will sometimes write l ∈ Π meaning that l ∈ ΠYES ∪ΠNO.

Definition 2.11 (Complexity class BQ(f)). A promise problem Π = (ΠYES,ΠNO) is in BQ(f), bounded-

error quantum f(n)-time, if there exists an f(n)-uniform family of quantum circuits (Cn)n∈N such that

Pr(Cn(s) = YES) ≥ 2

3
for s ∈ ΠYES and Pr(Cn(s) = YES) ≤ 1

3
for s ∈ ΠNO,

where Cn(s) denotes the random variable obtained by executing Cn on input s ∈ Π of size |s| = n and
measuring the output qubit (the encoding of s as well as the measurement are performed in the computational
basis).

We introduced the notation BQ(f) to emphasise the fact that the definitions of classes BQP and BQEXP
are essentially the same up to the bounding function:

BQP :=
⋃
k∈N

BQ(nk) and BQEXP :=
⋃
k∈N

BQ(exp(nk)).

Trivially, BQP ⊆ BQEXP since a longer runtime can only help.

It is well-known (see [Wat12b, Prop. 3]) that for BQP the probabilities of 2/3 and 1/3 in definition 2.11

can be exponentially amplified while still remaining in the same complexity class. The same argument

works for BQEXP as well, since we only need a polynomial number of repetitions to achieve the desired

amplification.

Fact 2.12 (Error-reduction for BQP and BQEXP). For any polynomial p, we can assume that Pr(Cn(s) =

YES) ≥ 1 − 2−p(n) for s ∈ ΠYES and Pr(Cn(s) = YES) ≤ 2−p(n) for s ∈ ΠNO in the definitions of
BQP and BQEXP.

Intuitively,QMA(f) is the class of promise problems for which the YES/NO answers can be verified by a

BQ(f) verifier.
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Definition 2.13 (Complexity class QMA(f)). A promise problem Π = (ΠYES,ΠNO) is in QMA(f),
f(n)-time quantum Merlin-Arthur, if there exists an f(n)-uniform family of verifier quantum circuits10

(Cn)n∈N such that

• if s ∈ ΠYES, ∃ a witness state ρ on at most f(n) qubits such that Cn(s, ρ) = YES with probability
at least 2/3. This condition is known as completeness.

• if s ∈ ΠNO, ∀ witness states ρ on at most f(n) qubits Cn(s, ρ) = YES with probability at most 1/3.
This condition is called soundness.

Observe that the witness size is implicitly constrained by the size of the quantum circuit family, cf. defini-

tion 2.10, e.g. for BQP verifiers the witness is poly-sized while for BQEXP verifiers it can be exp-sized. As

before, we define

QMA :=
⋃
k∈N

QMA(nk) and QMAEXP :=
⋃
k∈N

QMA(exp(nk)).

In particular, note thatQMA ⊆ QMAEXP since aQMA verifier can be easily promoted to aQMAEXP verifier.

Indeed, while aQMAEXP verifier gets an exponential-size witness and can run for an exponential amount

of time, it does not have to (it can instead discard all witness qubits, except for a polynomial number, and

verify them in polynomial time).

Soundness and completeness probabilities forQMA andQMAEXP can also be amplified: see theorem 10

in [Wat12b], section 3.2 of [VW16], or lemma 14.1 in [KSV02] (these techniques were originally devised for

QMA, but they can be easily adapted also forQMAEXP).

2.2.1.3 Geometrically k-Local Hamiltonians
In this section we introduce basic notions relating to local Hamiltonians and formally state the TILH

problem that will play central role. For more background on Hamiltonian complexity, see [Gha+14];

[YSN02]; [Wat12b].

Definition 2.14. An n-qudit Hamiltonian is a Hermitian operator H = H† acting on a multipartite
Hilbert space (Cd)⊗n consisting of n systems (qudits), each of local dimension d.

We will label the individual systems by elements of S := {1, . . . , n}. Whenever we talk of a subset of

systemsA ⊆ S, we mean an ordered tuple of distinct elements of S. If h is a k-qudit Hamiltonian for some

k ≤ n andA ⊆ S is a subset of |A| = k systems, we write hA to denote the n-qudit Hamiltonian that

acts as h on quditsA and trivially (i.e. as 1) on the remaining qudits S \A. We also writeA+ i ⊆ S to

denoteA shifted by i ∈ N positions.
10Here we use a slight variation of definition 2.10: we also allow for at most f(n) extra input qubits to store the witness state ρ (this

is in addition to the n original input qubits and f(n) ancillary qubits that are initialised in |0〉).
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Definition 2.15. Let H be an n-qudit Hamiltonian. Then

• H is k-local if H =
∑
i h(i)Ai with |Ai| ≤ k ∀i;

• H is k-local and 1D if each Ai ⊆ {1, . . . , k}+ ti for some shi� ti;

• H is translationally-invariant if H =
∑
i hA+i for some A ⊆ S where h is fixed.

In particular, H is a 1D translationally-invariant k-local Hamiltonian if H =
∑
i h{1,...,k}+i for some

fixed k-qudit Hamiltonian h.

Our central problem of interest is deciding the ground energy of 1D translationally-invariant k-local

Hamiltonians of local dimension d. For brevity, we will refer to this as the TILH problem, following the

convention by [GI13].

Definition 2.16 ((k, d)-TILH). Let H =
∑
i h{1,...,k}+i be a 1D translationally-invariant k-local Hamil-

tonian on a qudit chain of length n, where each qudit has local dimension d and h is some fixed k-qudit
Hamiltonian.

Input. The chain length n and the matrix entries of h, as well as two real numbers α and β, all up to
log n •bits of precision.

Promise. The operator norm of each local term is bounded, ‖h‖ ≤ 1, and either λmin(H) ≤ α or
λmin(H) ≥ β, where λmin(H) denotes the smallest eigenvalue of H and β−α ≥ 1/p(n) for some
fixed polynomial p(n).

Output. YES if λmin(H) ≤ α, else NO.

We emphasise that the input in definition 2.16 is just the description of the k-local term h and the chain

lengthn, not the entire (exponentially-sized) Hamiltonian H. An equivalent variant of the definition relaxes

the norm bound to ‖h‖ ≤ poly n and gives a promise that either λmin(H) ≤ α or λmin(H) ≥ β for

some fixed constants β > α. We can always rescale the overall Hamiltonian by a polynomial factor to switch

between the two definitions.

Theorem 2.17 (Kitaev [YSN02]). (k, d)-TILH is in QMAEXP.

Proof. This does not trivially follow from the inclusionQMA ⊆ QMAEXP since the input size for TILH is

just poly log n. However, Kitaev’sQMA verifier for the standard Local Hamiltonian problem runs in

time poly n, which is not polynomial in the input size for TILH. However, the exponential-time verifier of

QMAEXP offsets the logarithmically small input size, so the same random sampling argument as presented

forQMA in e.g. [YSN02, prop 14.2] goes through.
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2.2.1.4 QMA versus QMAEXP
In this section, we clarify whyQMAEXP is the natural class when considering the LocalHamiltonian

problem with translationally-invariant interactions on a system of size n. When specifying a k-local Hamil-

tonian H =
∑
i∈I hi, for some set of interactions I with |I| = poly n, we have to specify each term hi

individually. Since the locality k and the local dimension d are constant, the total input size in definition 2.1

is thus l = poly n bits. In contrast, specifying a translationally invariant Hamiltonian H requires only a

logarithmic number of bits: since all local terms hi are identical and do not vary with the system size n, the

only part of the input that varies with n and can thus be used to encode different instances of the problem is

the system size n itself.

A fact which we will discuss in great detail in section 2.2.4 is that the gap of a Hamiltonian encoding

computation as a superposition of basis states—a so-called history state construction—scales inversely poly-

nomially in the runtime, i.e. 1/ poly(f(l)) for an input of size l and an f(l)-time computation. Contrasting

this with the 1/ poly n gap required by definitions 2.1 and 2.16 independently—inverse polynomially in the

system size, not the input size—we conclude the following core differences betweenQMA andQMAEXP in

the context of the Local Hamiltonian problem (recall that n denotes the length of the spin chain and l

denotes the total size of the input).

QMA. ABQP verifier has poly l runtime on an input of size l, so the gap of the Hamiltonian that encodes

the verifier scales as 1/ poly l. This agrees with 1/poly n in definition 2.1 since l and n are poly-related.

QMA is thus the natural class for the Local Hamiltonian problem.

QMAEXP. The BQEXP verifier can run for exp poly l steps in the input size l. The gap therefore scales

as 1/ exp poly l, which agrees with 1/ poly n in definition 2.16 since l = poly log n. QMAEXP is thus the

natural class for TILH.

One fact we have glossed over is that even though each instance of TILH is translationally invariant, we

could still vary the local interaction for each system size n. As an example, assume that the Hamiltonian H

is specified by a single local term,

H :=

N−1∑
i=1

hi,i+1 where h =

1 0

0 α(m)

 with α(m) = 3.1415926 . . . 42︸ ︷︷ ︸
m digits of π

.

Then the bit complexity of this input isO(m), and the overall input size—i.e. the possible information

specifiable using the two parameters, the system size n and a varying parameterm, is thusO(m+ log n).

In order not to overspecify a Local Hamiltonian or TILH problem, in each case we have to require
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both bit precision and size of the input parameter to be of the same order (within polynomial factors). We

conclude with the following remark.

Remark 2.18. It is natural to allow poly n precision of the entries in the local terms of the Hamiltonian
when working with QMA, whereas for QMAEXP local terms need to be precision-limited by poly log n.

However, we want to emphasise that we will only make use of uniformly scaling local interaction terms,
as in [GI13]: this in particular allows us to use coupling constants that scale polynomially in n. We also want

to note that the polynomially-closing promise gap of history state constructions might not be the end of the

story; at this point in time it is not known whether quantum computation can be encoded into the ground

state of a local Hamiltonian for which the promise gap e.g. scales in a sub-linear fashion in the number of

computational steps (cf. chapter 5 for an extended discussion).

In [CPW15a], the authors use a phase-estimation algorithm to extractO(n) bits of information from a

fixed Hamiltonian term. However, in their construction, the speed at which the gap closes is irrelevant, as

long as it remains nonzero in the gapped phase.

With a poly(n)-bounded computation and a 1/ poly(n) gap, however, it is not clear how to do this

computation in a translationally-invariant manner. For phase estimation ofm bits, one requires gates of

precision O(exp(−m)), cf. [NC10]—the algorithm depends on being able to perform a unitary U an

exponential number of times, i.e. U,U2,U4, . . . ,U2m−1

. Without having direct access to all powers of

this gate—which we do not, if we require bounded local dimension and locality—we need to approximate

them in some way: using the Solovay-Kitaev theorem with the required exponential precisionO(exp(−m))

results in a circuit of size poly log 1/(exp(−m)) = polym, which limits the amount of information we

can extract tom = O(log n).

It is clear that this is a problem of bootstrapping. For TILH, we only haveO(log n) information available

to start the computation with, and again it is not known whether there exists a more direct way of extracting

a phase without having to go through the Solovay-Kitaev theorem, which only gives a sufficient upper

bound to approximate the phase estimation algorithm.

2.2.1.5 Laplacian Matrix and Algebraic Connectivity of Graphs
In this section we revise general notation and basic results from graph theory. For more background,

consult the standard references [Tru13]; [Die10] and [GR01] on graph theory and algebraic graph theory,

respectively.

Definition 2.19. An undirected simple graph G = (V,E) consists of a set of vertices V and a set of edges
E, each edge being an unordered pair of distinct elements of V (in particular, there are no self-loops and no
multiple edges). If the number of vertices is n = |V | and we label them as V = {v1, . . . , vn}, then the
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adjacency matrix of G is A(G) := (aij)1≤i,j≤n where

aij :=

1 {vi, vj} ∈ E,

0 otherwise.

We further define the degree matrix D(G) := diag((deg vi)1≤i≤n) where deg vi :=
∑n
j=1 aij .

We will usually omit the qualifiers “undirected” and “simple” in the rest of this thesis. We proceed to

introduce basic notions and facts from algebraic graph theory [GR01].

Definition 2.20 (Laplacian matrix). The Laplacian matrix of a graph G is defined as ∆(G) := D(G) −
A(G).

Since A(G) and ∆(G) are linear operators onCn where n = |V |, it will often be convenient to label

the basis vectors of this space by |v〉where v ∈ V and denote the space itself byCV .

Definition 2.21. We write λmin(M) to denote the smallest eigenvalue of Hermitian operator M. If M ≥ 0

then λmin(M|suppM) denotes the smallest non-zero eigenvalue of M.

Claim 2.22. For any graph G, ∆(G) is real symmetric. In fact, ∆(G) is positive semi-definite with smallest
eigenvalue λmin(∆(G)) = 0 and corresponding eigenvector (1, . . . , 1).

Proof. By construction, A(G) and D(G) are real symmetric and so is ∆(G). The second claim follows

by observing that ∆(G) is symmetric and diagonally dominant. Alternatively, ∆(G) can be expressed as a

sum of positive semi-definite matrices:

∆(G) =
∑
{a,b}∈E

(|a〉 − |b〉)(〈a| − 〈b|), (2.4)

where each term is a principal submatrix of the form 1 −1

−1 1


and encodes the Laplacian of a single edge. The last statement follows from the fact that the row sums of

∆(G) are zero.

Definition 2.23 (Algebraic connectivity). The second smallest eigenvalue of the Laplacian ∆(G) is denoted
with a(G) and called the algebraic connectivity of graph G. The corresponding eigenvector is known as the
Fiedler vector.
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Claim 2.24 (Fiedler [Fie73]). For any graph G, a(G) > 0 if and only if G is connected.

Lemma 2.25. If G = G1 t · · · t Gm is a disjoint union of connected components Gi then ∆(G) has
eigenvalue 0 with multiplicity exactly m and the next smallest eigenvalue is λmin(∆(G)|supp ∆(G)) =

mini a(Gi). Furthermore, {|Φ1〉 , . . . , |Φm〉} with

|Φi〉 :=
1√
|Vi|

∑
v∈Vi

|v〉

is an orthonormal basis of the 0-eigenspace (ground space) of ∆.

Proof. Note that ∆ = ∆1 ⊕ · · · ⊕ ∆m where ∆i is the Laplacian of Gi. Recall from claim 2.22 that

∆i ≥ 0 and λmin(∆i) = 0, hence the m smallest eigenvalues of ∆ are equal to 0. Since each Gi is

connected, a(Gi) > 0 for every i by claim 2.24. Hence the multiplicity of eigenvalue 0 must bem and the

(m+1)-st smallest eigenvalue of ∆ is positive and equal to a(Gi) for some i. Finally, recall from claim 2.22

that the uniform superposition over all vertices Vi of Gi is a 0-eigenvector of ∆i, thus ∆ |Φi〉 = 0 for

each i ∈ {1, . . . ,m}. There are no further vectors in the ground space of ∆ since ∆ has eigenvalue 0 with

multiplicitym.

Corollary 2.26. If ∆ is the Laplacian of graph G = (V,E) and U ⊆ V is some connected component
of G, then |ΦU 〉 :=

∑
v∈U |v〉 /

√
|U | is a 0-eigenvector of ∆. In fact, any 0-eigenvector of ∆ is a linear

combination of such vectors.

Claim 2.27 (Fiedler [Fie73]). Let GL be the path graph on L vertices:

GL :=
1 2 3 L− 1 L

.

Then a(GL) = 2(1− cos(π/L)) ∼ π2/L2. In particular, a(GL) = Θ(1/L2).

Corollary 2.28. Let G be a connected graph with L vertices. Then a(G) = Ω(1/L2).

Proof. The algebraic connectivity is non-decreasing under adding edges [Fie73, corollary 3.2], so for any

connected graph onL vertices it is lower-bounded by that of a path graph onL vertices, which is given by

claim 2.27.

2.2.1.6 Kitaev’s Geometrical Lemma for Graphs
We will need Kitaev’s geometrical lemma (see Lemma 14.4 in [YSN02]) whose proof is reproduced below.

Lemma 2.29 ([YSN02], p. 147). Using notation from definition 2.21, assume A,B ≥ 0 are such that
λmin(A|suppA) ≥ µ and λmin(B|suppB) ≥ µ, and the null spaces of A and B have no vector in
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common other than 0, i.e. ker A ∩ ker B = {0}. Then λmin(A + B) ≥ 2µ sin2 θ
2 , where θ is the angle

between subspaces ker A and ker B, i.e.

cos θ := max
|α〉∈kerA
|β〉∈kerB

|〈α|β〉|

where |α〉 and |β〉 are unit vectors.

Proof. We define ΠA to be the projector onto ker A, and analogously for ΠB. It follows fromλmin(A|suppA) ≥
µ that A ≥ µ(1−ΠA) and similarly for B. It is hence enough to show that (1−ΠA) + (1−ΠB) ≥
(2 sin2 θ

2 )1, which is equivalent to (1 + cos θ)1 ≥ ΠA + ΠB. In other words, we want to show that

every eigenvalue λ of ΠA + ΠB satisfies

1 + cos θ ≥ λ. (2.5)

Let |ψ〉 be a normalised eigenvector of ΠA + ΠB with eigenvalue λ ≥ 0. Since eq. (2.5) holds trivially

for λ = 0, we can assume λ > 0. Since ΠA projects onto ker A, we can find a unit vector |ψA〉 ∈ ker A

such that ΠA |ψ〉 = a |ψA〉 for some a ∈ C; we can adjust the global phase of |ψA〉 to guarantee that

a ≥ 0. Similarly, ΠB |ψ〉 = b |ψB〉 for some unit vector |ψB〉 ∈ ker B and b ≥ 0. Since ΠA and

ΠB are projectors, 〈ψ|ΠA |ψ〉 = 〈ψ|Π†AΠA |ψ〉 = a2 〈ψA|ψA〉 = a2 and 〈ψ|ΠB |ψ〉 = b2. From

λ |ψ〉 = (ΠA + ΠB) |ψ〉we get by linearity that

λ = 〈ψ| (ΠA + ΠB) |ψ〉 = a2 + b2.

Furthermore,

λ2 = 〈ψ| (ΠA + ΠB)2 |ψ〉 = a2 + b2 + 2abRe 〈ψA|ψB〉

≤ λ+ 2ab|〈ψA|ψB〉| ≤ λ+ (a2 + b2)|〈ψA|ψB〉| = λ(1 + |〈ψA|ψB〉|)

≤ λ
(

1 + max
|α〉∈kerA
|β〉∈kerB

|〈α|β〉|
)

= λ(1 + cos θ),

and hence λ ≤ 1 + cos θ, which proves eq. (2.5).

We want to use Kitaev’s geometrical lemma to lower bound the smallest eigenvalue of a graph Laplacian

when certain vertices are penalised. To be more specific, for a graphG = (V,E) and a set of verticesP ( V ,

we write a penalising matrix
P(G,P ) :=

∑
v∈P
|v〉〈v| .
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Figure 2.5: Quantum ring machine (QRM). Starting from a ring of qudits H = (Cd)⊗n in an initial
configuration |ψin〉 ∈ H, a unitary R ∈ U(Cd ⊗ Cd) is applied to pairs of adjacent qudits
until one of them is completely in some halting subspaceHhalt ⊆ Cd.

A priori, it is not clear at all what the spectrum of the penalised Laplacian ∆ + P is, however we can obtain

a lower bound on the smallest eigenvalue.

Lemma 2.30 (Kitaev’s geometrical lemma for graphs). Let G = (V,E) be a connected graph. Pick a non-
empty subset of penalised vertices P ( V and write the penalised Laplacian as ∆P (G) := ∆(G) +

P(G,P ). Then λmin(∆P ) = Ω(1/|V |3).

Proof. Let us first verify that ∆ and P satisfy the prerequisites of lemma 2.29. Since G is connected,

λmin(∆|supp ∆) = a(G) > 0 by claim 2.24. Moreover, ker ∆ is spanned by the all-ones vector |ΦV 〉 :=∑
v∈V |v〉 /

√
|V | according to corollary 2.26. Clearly, λmin(P|suppP) = 1 and |ΦV 〉 /∈ ker P since

P 6= ∅, so ker ∆ ∩ ker P = {0}. We can take the constant in lemma 2.29 to be µ := min{a(G), 1} =

Ω(1/|V |2), where we used the lower bound a(G) = Ω(1/|V |2) from corollary 2.28 on the algebraic con-

nectivity ofG. It remains to compute the angle θ between ker ∆ = span{|ΦV 〉} and ker P = span{|v〉 :

v /∈ P}. We have:

cos θ = 〈ΦV |
(

1√
|V | − |P |

∑
v/∈P

|v〉
)

=
|V | − |P |√
|V |(|V | − |P |)

=

√
1− |P ||V |

and hence

2 sin2 θ
2 = 1− cos θ = 1−

√
1− |P ||V | ≥

1

2

|P |
|V | ≥

1

2|V | .

We conclude by lemma 2.29 that λmin(∆P ) ≥ 2µ sin2 θ
2 = Ω(1/|V |3).

2.2.2 Quantum Ring Machine
2.2.2.1 Definition
We define a new computational model, a quantum ring machine (QRM), and show that it is poly-time

equivalent to a uniform class of quantum circuits. Recall that any uniform class of circuits—such as poly-

time circuits or exponential-time circuits—inherits its uniformity condition from the corresponding class of
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classical Turing machines producing these circuit families. To prove that QRMs are quantum-universal, we

will encode the given Turing machine into a specific instance of a QRM whose inner workings correspond

to those of the original Turing machine, but with an additional quantum tape. In other words, the local

Hilbert space of our QRM will be partitioned into two parts: a classical part, storing individual cells of the

TM’s tape and the internal state of the TM, and a quantum part, storing one qubit per cell. However, since

a general QRM does not need to have this specific internal structure, we first give an abstract definition.

Definition 2.31. A quantum ring machine (QRM) is a tuple (R, n, |ψin〉 ,Hhalt), where

• R ∈ U(Cd ⊗ Cd) is a unitary operator on a pair of qudits, each of dimension d,

• n ∈ N is the total number of qudits on the ring,

• |ψin〉 ∈ H is the initial state whereH := (Cd)⊗n denotes the joint Hilbert space,

• Hhalt ⊆ Cd is the halting subspace of each qudit.

Starting from a ring of n qudits initialised in |ψin〉, the operation R is applied cyclically to adjacent pairs
of qudits—see fig. 2.5—until some qudit indicates halting: its reduced density matrix has support completely
within the halting subspace Hhalt; up until that point, the probability of finding any qudit within Hhalt is
zero11.

Fig. 2.6 visualises a QRM as a quantum circuit. Because the ring is cyclic, we can arbitrarily mark a starting

position on the ring. Starting at this position, part of the initial state |ψin〉 contains the input while the rest

will be used as a workspace. The input size is thus upper bounded by the ring size.

In the following definition, we consider a slight extension of QRMs from definition 2.31 where |ψin〉 is

replaced by a family of input states {|ψin(x)〉}x∈I for some index set I .

Definition 2.32. A QRM terminates on {|ψin(x)〉}x∈I if it halts, in finitely many steps, on any initial state
|ψin(x)〉 for x ∈ I . Let (Mn)n be a family of QRMs where Mn has a ring of size n. This family is poly-

time terminating if there exists a polynomial p such thatMn terminates in p(n) steps on all states |ψin(x)〉;
similarly, it is exponential-time terminating if there exists an exponential function f(n) = O(exp(cn)),
for some c > 0, such that Mn terminates in f(n) steps on all states |ψin(x)〉.

11In particular this means that if, after every application ofR, the corresponding two qudits are measured, each with respect toHhalt

and its orthogonal complementH⊥halt, then the probability of finding the reduced state inHhalt should always be either zero
or one, with the latter case indicating halting.
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Figure 2.6: Circuit diagram of a QRM with a ring of size 4. The double lines indicate classical wires that are
used to store the TM’s internal states and tape, as well as a flag indicating either the TM’s halting
or the direction of its next head movement (see the proof of lemma 2.33 for more details). The
internal details of the QRM’s unitary operation R are shown in fig. 2.7.

2.2.2.2 Universality
Lemma 2.33. Let Π = (ΠYES,ΠNO) be a promise problem in BQP. Then there exists a polynomial p and
a poly-time terminating family of QRMs (Mn)n,

Mn = (R, n, {|ψin(x)〉}x∈In ,Hhalt),

with the following properties:

1. All Mn share the same unitary R and the same terminating subspaceHhalt. The ring size of Mn is
n.

2. The input states {|ψin(x)〉}x∈In of each Mn consist of trivial12 encodings of instances In := {x ∈
Π : p(|x|) = n}, so that the whole computation fits on a ring of size n.

3. If x ∈ ΠYES, the reduced density matrix of the cell that signals halting satisfies an extra constraint: if
measured, it collapses to an accepting subspaceHacc ⊆ Hhalt with probability ≥ 2/3.

4. If x ∈ ΠNO, it collapses toHacc ⊆ Hhalt with probability ≤ 1/3.

Proof. Our goal is to construct a QRM for simulating a classical Turing machine (TM) that produces a

description of a uniform quantum circuit. In addition to computing the circuit’s description, the QRM

also executes it one gate at a time. More formally, the QRM simulates a deterministic and reversible TM

(see definition 2.7) augmented with the following quantum features:

• in addition to the classical data, each cell of the TM’s tape stores one qubit,

12One must be able to produce |ψin(x)〉 from x ∈ Π with a constant-depth quantum circuit (in particular, one cannot cheat by
allowing the input to contain the answer to the problem), e.g. see eq. (2.6). This is similar to the types of input encodings one
would allow for a poly-time classical TM.
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• a special subset of the TM’s states is associated with a universal set of two-qubit quantum gates;

whenever the TM enters one of these states, the corresponding gate is applied on the two adjacent

qubits that are stored in the pair of cells between which the TM’s head just moved.

It is straightforward to verify that such quantum-enhanced TM is equivalent to a uniform family of quan-

tum circuits.

Let us now describe the simulation procedure more formally. We write the complex linear span of a finite

set S asCS := span{|s〉 ∈ C|S| : s ∈ S} and refer to (CS)⊗n as a ring of size n ∈ N, where each copy

of CS represents one cell of the ring. Each cell further consists of three registers: a quantum bit (labelled

by {0, 1}), a classical data register (labelled by elements of some finite set Γ), and a flag register (labelled by

another set F ). The standard basis of each ring cell is thus labelled by triples of the form

S := {0, 1} × Γ× F.

Using the notation from definition 2.7, let (Q,Σ, δ) be the deterministic TM we want to simulate (it is

reversible without loss of generality, see theorem 2.9). The first register of the QRM stores the quantum

state obtained by executing the quantum circuit produced by the TM. The second register Γ stores the

TM’s internal state and tape, so Γ := Q × Σ where Q is the set of internal states and Σ is the TM’s

alphabet. The flag symbols F in the third register are used to mark the location of the TM’s head.

The flag register’s alphabet is given by

F := {←,→,−, h}

and is used as follows. At any time, exactly one cell on the ring contains an active flag (either “←”, “→”, or

“h”) while the rest are padded with “−”. The TM’s internal state is always stored in the active cell. Unless

the TM has halted (indicated by flag “h”), the active flag shows in which direction (“←” for le� and “→”

for right) the TM’s head must be moved before the simulation of the next step can begin. Every time the

TM’s head moves or its internal state changes, the QRM updates the flag registers and the description of the

TM’s internal state accordingly. Whenever the TM enters one of the special “quantum” states, the QRM

applies the corresponding two-qubit unitary.

Recall from definition 2.31 that QRM operates by cyclically applying a fixed unitary R on pairs of consec-

utive cells along the ring (see fig. 2.6). Most of the time R acts trivially, since a non-trivial action is triggered

only when either of the two active flags “←” or “→” is encountered. Note that R acts on two adjacent cells,
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one of them marked by the active flag and the other indicated by the direction of the flag’s arrow:

· · · − −←︸︷︷︸
R

− · · · · · · −→−︸︷︷︸
R

− · · ·

It is crucial that R is two-local for the following two reasons. First, updating the active location requires

changing two symbols (e.g. when the TM’s head moves left, we need to replace “−←” by “←−” or “→−”,

depending on the direction the head will move next). For applying a two-qubit gate, we clearly also need a

two-local interaction (we use the same convention as above to determine on which two qubits the gate is

applied).

Recall from lemma 2.8 that, instead of quintuples δ, we can work with a permutation matrix Tδ on Γ

and a function d : Q → {left, right} telling us where the TM’s head came from. For convenience, we

include a special dummy state “⊥” inQ and a designated blank symbol “ ” in Σ: the dummy state is stored

in all cells (except the active cell which stores the actual state of the TM) while the blank symbol is used to

initialise the TM’s tape. We accordingly extend Tδ so that it acts trivially on |⊥, σ〉 for any σ ∈ Σ, and we

define d(⊥) := − so that dummy states do not trigger any action in our simulation.

We take the ring size to ben = p(|x|) for an instance x ∈ Π, since the TM can access at most that many

tape cells. We require that the ring starts out in a well-formed state, i.e. for some binary representation

x = x1x2 · · ·xl and l = |x|, a state of the form

|ψin(x)〉 :=

n−l−1⊗
j=1

(|0〉 ⊗ |⊥, 〉 ⊗ |−〉)⊗
l⊗
i=1

(|xi〉 ⊗ |⊥, 〉 ⊗ |−〉)⊗ (|0〉 ⊗ |q0, 〉 ⊗ |→〉), (2.6)

i.e. where all cells but the last are initialised as follows: the TM is in the dummy state “⊥”, the TM’s tape

is initialised to a designated blank symbol “ ”, and the flag is set to “−”. The last cell contains the TM’s

initial state q0 and the “→” flag. The input x ∈ Π is written on the qubit part of the tape, i.e. the first

register of each cell.

We can now describe in more detail the steps involved in our simulation, and how to perform them

reversibly (see figs. 2.7 and 2.8 for more details):

1. If the active cell has the halting flag “h”, the TM has halted so nothing happens.

2. If the active cell has one of the other two flags “←” or “→”:

a) The Q part of the Γ registers of the active cell and its neighbour—indicated by the flag—are

exchanged, thus simulating the movement of the TM’s head.

b) The flag register of the active cell is uncomputed using the function d.

c) Description of the TM’s internal state and the current tape symbol is updated using Tδ .
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computation
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states and a
classical tape

U

ψa
γa

fa

ψ′a
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ψb
γb

fb
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f ′b

Figure 2.7: Circuit diagram for implementing the QRM’s head unitary R (double wires are classical while
single wires are quantum). All computation is classical except for a single classically-controlled
quantum gate U that can be triggered by either of the two Γ registers. A classical circuit for
implementing C is shown in fig. 2.8.

d) Based on the updated internal state, a new flag register is computed using d (it belongs to the

same cell where the TM’s new state is stored, and it indicates in which direction the TM’s head

will move before the next iteration begins).

e) If the TM is in one of the special states indicating a quantum gate, the corresponding unitary

is applied on the two data registers.

We now describe the unitary operator R that acts on two adjacent QRM’s cells:

• For a = (ψa, γa, fa) ∈ S, write the corresponding basis state as |a〉 := |ψa, γa, fa〉 ∈ CS where

ψa ∈ {0, 1}, γa ∈ Γ, fa ∈ F , and analogously for |b〉. Then |a〉⊗ |b〉 ∈ CS×S is also a basis state

and we require, up to reordering the registers (see fig. 2.7), that

R(|a〉 ⊗ |b〉) = |Ψ〉 ⊗ |γ′a, f ′a〉 ⊗ |γ′b, f ′b〉

for some γ′a, γ′b ∈ Γ and f ′a, f ′b ∈ F , i.e. R acts classically on each register except for the quantum

data registers |ψa〉 and |ψb〉 (in particular, we allow |Ψ〉 ∈ C2 ⊗ C2 to be entangled).

• Using the same notation, if fa 6= → and fb 6= ←, we further demand |γ′a, f ′a〉 = |γa, fa〉,
|γ′b, f ′b〉 = |γb, fb〉, and |Ψ〉 = |ψa〉 ⊗ |ψb〉, i.e. if neither fa nor fb signal “apply head here”,

R acts as the identity operator on all registers.

• The active flag always moves in the direction indicated by the arrow. If fa = → then f ′a = − and

f ′b 6= −, meaning that the head has moved right. Similarly, if fb = ← then f ′b = − and f ′a 6= −,

76
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Tδγa =

{
qa
σa

fa

= γ′a

}
q′a
σ′a

f ′a

γb =

{
qb
σb

fb

= γ′b

}
q′b
σ′b

f ′b

Figure 2.8: Circuit diagram for implementing the classical permutation C in fig. 2.7 (all wires are classical
and all gates are reversible). Conditioned on the flag registers being either “→ −” or “− ←”,
the controlled-controlled-Swap gate exchanges the internal state registers of the two cells. The
Cnot gates in the first layer are conditioned on the value of d(q), for state q, and they un-
compute the flag register of the opposite cell (the cell where the TM’s head came from). The
permutation Tδ acts on Γ registers of both cells to update the TM’s internal state and the cur-
rent tape symbol. Recall that Tδ acts trivially if the state is dummy (at most one of the cells is
in a non-dummy state). The final layer of Cnot gates again condition on d(q′), where q′ is the
new state, and update the flag registers to indicate where the TM’s head will move next. These
flags will be uncomputed by the next iteration.

meaning that the head has moved left. In each case there are three possible transitions—they indicate

whether the TM has halted or in which direction its head has to move next:

fafb fafb

→ − − ←

⇓ ⇓

f ′af
′
b f ′af

′
b

− → → −
− ← ← −
− h h −

Fig. 2.7 shows how R acts on two adjacent cells. For each cell, the halting subspaceHhalt is spanned by all

standard basis vectors with the last register in the halting state |h〉:

Hhalt := C2 ⊗ CΓ ⊗ |h〉 .

Fig. 2.8 provides details on how to implement C reversibly.

We construct the desired family of QRMs (Mn)n in the special form described above. It is straightfor-

ward to verify that this ring machine executes the circuit written out by the TM, and the runtime overhead
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Figure 2.9: Unitary labelled graph from example 2.36. Observe that we mark the direction for the unitaries
with an arrow, despite working with undirected graphs.

ofMn as compared to the circuit is at most quadratic.

Corollary 2.34. Using an exponential-time terminating family of QRMs, lemma 2.33 holds for BQEXP as
well.

2.2.3 Unitary Labelled Graphs
2.2.3.1 Definitions
The following definition introduces graphs whose vertices are labelled by Hilbert spaces and whose edges

are labelled by unitaries between these spaces.

Definition 2.35. Given an undirected graphG = (S,E) without self-loops, a unitary labelled graph (ULG)
is a triple (G, (Hv)v∈S , g) where

• (Hv)v∈S is a family of Hilbert spaces, one spaceHv for each vertex v ∈ S,

• g is a function that assigns to each directed13 edge ab ∈ E some unitary operator g(ab) ∈ U(Ha) so
that g(ab) = g(ba)† (this requires thatHa ∼= Hb whenever ab ∈ E).

To facilitate notation, we will write an edge and its associated unitary jointly as (a↔ b,U) and call it

a rule. By definition, the rule (a↔ b,U) is equivalent to the rule (b↔ a,U†). With this notation, it is

convenient to specify a unitary labelled graph byG = (S,R) whereR := {(a↔ b, g(ab)) : ab ∈ E} is

the corresponding set of rules.

Example 2.36. Let S := {1, 2, 3, 4, 5},H = C2 for all vertices, and consider the following set of rules:

R := {(1↔ 2,U), (2↔ 3,V), (3↔ 4,W), (4↔ 1,1), (4↔ 5,1)}.

The underlying graph for this example is shown in fig. 2.9.

13WhileG is an undirected graph, we need to arbitrarily direct its edges so that we can discern between labels U and U† assigned to
edges ab and ba, respectively.
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Definition 2.37. Let G = (S,R) be a ULG. If the product of unitaries along any directed path connecting
a and b is equal, and this property holds for all a, b ∈ S, we call the ULG simple. Equivalently, for a ULG
to be simple, the product of unitaries along any directed cycle should be 1.

The ULG in example 2.36 is simple if and only if WVU = 1.

The following definition assigns a Hamiltonian to each ULG. This Hamiltonian extends the notion of

a graph Laplacian, see definition 2.20, to ULGs (while this might not be immediately obvious from the

definition, it will be made more clear in lemma 2.41 below).

Definition 2.38. Let G = (S,R) be a connected ULG, H denote the Hilbert space attached to each of
its vertices, n := dimH be the dimension of H, and let {|ei〉}ni=1 be some orthonormal basis of H. The
Hamiltonian associated toG is the following Hermitian operator on CS ⊗H:

H(G) :=
∑

(a↔b,U)∈R

n∑
i=1

(|a〉 ⊗ |ei〉 − |b〉 ⊗U |ei〉)(〈a| ⊗ 〈ei| − 〈b| ⊗ 〈ei|U†). (2.7)

This is reminiscent of eq. (2.4) for ∆(G), the Laplacian of graphG. Furthermore, it also explains why

we excluded self-loops in definition 2.35: just as they have no effect on the graph Laplacian, they also impose

no changes in the associated Hamiltonian of a simple ULG—the only possible self-loop unitary for such

ULG is 1, making the corresponding term in eq. (2.7) vanish.

Proposition 2.39. The Hamiltonian H = H(G) of a connected UGL G = (S,R), see definition 2.38, is
invariant under replacing any rule (a ↔ b,U) ∈ R with the corresponding inverse rule (b ↔ a,U†).
Moreover, the matrix entries of H do not depend on the choice of the basis {|ei〉}ni=1.

Proof. SinceG is connected, the Hilbert spaces attached to all its vertices are isomorphic. Observe further

that

H ≡
∑

(a↔b,U)∈R

(|a〉〈a| ⊗ 1n + |b〉〈b| ⊗ 1n − |a〉〈b| ⊗U† − |b〉〈a| ⊗U), (2.8)

hence the claim follows.

•One can extend the notion of an associated Hamiltonian to a non-connected ULG as well by taking

a direct sum of the Hamiltonians for each component of the graph (equivalently, one can assume that

the Hilbert spaces associated to different components of the graph are mutually orthogonal and take the

new Hilbert space to be their direct sum). Either way, such extension yields a block-diagonal associated

Hamiltonian.
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Figure 2.10: Terms of H, see eq. (2.10), grouped according to how far the corresponding edges are from the
chosen vertex a. For this ULG to be simple, the labels of edges forming the triangle abc must
satisfy U†cUUb = 1. We have omitted the labels of all other edges.

2.2.3.2 Semi-Classical Unitary Labelled Graphs
A ULG is semi-classical if its Hamiltonian is equal to a graph Laplacian (see definition 2.20), after a unitary

change of basis.

Definition 2.40. A ULGG is semi-classical if its associated Hamiltonian can be expressed as H = W(∆⊗
1n)W†, where W is some unitary operator, ∆ is the Laplacian of G, and 1n acts on the n-dimensional
Hilbert space attached to each vertex of G.

We note that the specific form of W is left open on grounds of generality; in our case, however, W will

be block-diagonal in the time register basis. This definition can be easily extended• to non-connected ULGs.

The following lemma is important for analysing the spectrum of any Hamiltonian coming from a simple

ULG. It reduces the problem to analysing instead the spectrum of the corresponding graph Laplacian.

Lemma 2.41. Any simple ULG is semi-classical.

Proof. Denote the UGL by G = (S,R) where S and R are the sets of vertices and rules, respectively. If

G has disjoint components, H is block-diagonal and we can deal with each block separately, hence we can

assume without loss of generality thatG is connected and all its vertices have isomorphic attached Hilbert

spacesH.

Pick an arbitrary vertex a ∈ S and denote its set of neighbours by Sa. Using proposition 2.39, rewrite

R in a form where a only has outgoing edges. Following eq. (2.8), define the term that encodes rule (a↔
b,Ub) ∈ R as follows:

hab := |a〉〈a| ⊗ 1+ |b〉〈b| ⊗ 1− |a〉〈b| ⊗U†b − |b〉〈a| ⊗Ub, (2.9)

where the subscript of Ub identifies the vertex with incoming edge. Then the terms of H can be grouped
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as follows (see fig. 2.10):

H =
∑

(a↔b,Ub)
b∈Sa

hab +
∑

(b↔c,Uc)
b,c∈Sa

hbc +
∑

(b↔d,Ud)
b∈Sa∧d/∈Sa∪{a}

hbd + F

=: Ha + Hn + Hnn + F, (2.10)

where F denotes the rest of the terms and all sums range over R, with some restrictions on the endpoints

of the edges. Our strategy now is to apply a sequence of unitary transformations to bring the Hamiltonian

H to the desired form, a few terms at a time.

First, for the given vertex a ∈ S, define the following unitary:

Wa :=
∏

(a↔b,Ub)
b∈Sa

(
|b〉〈b| ⊗Ub + (1− |b〉〈b|)⊗ 1

)
.

Observe that all terms in the product commute. Moreover, W†
aFWa = F and, by eq. (2.9),

W†
ahabWa = (|a〉〈a|+ |b〉〈b| − |a〉〈b| − |b〉〈a|)⊗ 1 •

for all b ∈ Sa, so Wa takes care of all terms of Ha simultaneously.

For the terms in Hn, pick any edge (b↔ c,U) ∈ R, with b, c ∈ Sa, and note from eq. (2.9) that

W†
ahbcWa = |b〉〈b| ⊗ 1+ |c〉〈c| ⊗ 1− |b〉〈c| ⊗U†bU

†Uc − |c〉〈b| ⊗U†cUUb.

However, since abc is a cycle and the ULG is simple, the product of unitaries along the cycle must be 1,

i.e. U†cUUb = 1 (see fig. 2.10), so the formula simplifies to

W†
ahbcWa = (|b〉〈b|+ |c〉〈c| − |b〉〈c| − |c〉〈b|)⊗ 1

= (|b〉 − |c〉)(〈b| − 〈c|)⊗ 1.

By a similar argument, we can show that the rules in Hnn change their unitary by a factor of Ub when

outgoing, or U†b when incoming, respectively. We are left with a ULG with a new set of rules, namely, every

edge that is either attached to a or between two different neighbours of a is trivial, i.e. the edge unitary is

the identity operator 1.

We will apply the same procedure to different vertices until all edges become trivial. More specifically,

we consider an arbitrary sequence of subsets S1 ⊂ S2 ⊂ · · · ⊂ Sm ⊂ S, starting from any vertex

{a1} = S1 and ending with the set of all verticesS, such that each subsequentSk+1 can be obtained from
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Sk by including all neighbours of some vertex ak ∈ Sk. The overall unitary is then W =
∏m
k=1 Wak ,

where the product is over the sequence of vertices a1, a2, . . . , am ∈ S. Each successive unitary Wak is

obtained from the current set of rulesRk, whereR1 = R is the original set while all rules in the final set are

trivial. Our goal is to show that, at every step k, we can guarantee that each rule inRk has a trivial unitary

whenever both endpoints of the corresponding edge are in Sk.

We proceed by induction. Since there are no edges between vertices inS1 = {a1}, the induction basis is

trivial. Assuming the inductive hypothesis holds for k, we take ak ∈ Sk and apply the unitary Wak that

acts non-trivially to all neighbours of ak (recall that Sk+1 is formed by Sk together with the neighbours

of ak). As discussed above, Wak trivialises all edges between ak and any of its neighbours. By simplicity

of the ULG, it trivialises also all edges between any two different neighbours of ak. Moreover, it does not

affect any edges within Sk (they are trivial already by the inductive assumption). In other words, all edges

between vertices in Sk+1 are trivial, thus completing the induction.

Since all edge unitaries have now been transformed to the trivial unitary 1, all terms in W†HW are of

the form

(|a〉〈a|+ |b〉〈b| − |a〉〈b| − |b〉〈a|)⊗ 1 = (|a〉 − |b〉)(〈a| − 〈b|)⊗ 1, (2.11)

for some a, b ∈ S. Comparing this to eq. (2.4), the overall Hamiltonian is in fact equivalent to the Lapla-

cian ∆ ofG, i.e. W†HW = ∆⊗ 1.

Lemma 2.42. Let G be a simple ULG with vertices S and rules R. Write G = G1 ⊕ · · · ⊕ GN ,
Gi = (Vi, Ei) for the associated Laplacian of the induced classical graph (S,R′) with R′ := {a ↔
b : (a ↔ b,U) ∈ R}, and pick an arbitrary vi ∈ Vi ∀i. Let further ni := dimHi and choose a basis
{|ei,j〉}j ofHi for all connected graph components Gi. Then the ground space ker H is spanned by the set
{|Ψi,0〉 , . . . , |Ψi,ni

〉}Ni=1, where

|Ψi,j〉 :=
1√
|Vi|

∑
s∈Vi

|s〉 ⊗ |qs〉 and |qs〉 =

|ei,j〉 if s = vi,

U |qr〉 if (r ↔ s,U) ∈ Ei.

Furthermore, the |Ψi,j〉 form a basis of ker H.

Proof. Because the ULG is simple, by lemma 2.41, there exists a unitary W and a classical Laplacian ∆ such

that W†HW = ∆⊗ 1n, and hence ker H = ker ∆⊗ 1n. By lemma 2.25, the ground space of ∆⊗ 1n
has a basis given by

|Φi,j〉 :=
1√
|Vi|

∑
s∈Vi

|s〉 ⊗ |ei〉 , i = 1, . . . , N and j = 1, . . . , n.
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Observe that

W |Φi,j〉 =
1√
|Vi|

∑
s∈Vi

∏
a∈Vi

Wa |s〉 ⊗ |ei〉 = |Ψi,j〉 ,

which can be easily verified.

2.2.3.3 Kitaev’s Geometrical Lemma for Unitary Labelled Graphs
Analogous to section 2.2.1.6, we extend the notion of penalising vertices to ULGs. First we state an immediate

corollary from lemma 2.30.

Corollary 2.43. Take a connected simple ULG with Hilbert spaceH for all vertices s ∈ S. Pick a non-empty
subset of vertices P ( S and write the penalised associated Hamiltonian HP (G) := H(G)+P(G,P )⊗
1dimH. Then λmin(HP (G)) = Ω(1/|S|3).

Proof. G is simple and H(G) has the same spectrum as ∆(G), up to multiplicity. Now use lemma 2.30 on

∆(G) + P(G,P ).

A more interesting case is when one does not want to penalise the entire Hilbert space attached to a vertex,

but only a subspace. This is captured in the following lemma.

Lemma 2.44. Take a connected simple ULG with Hilbert space H for all vertices s ∈ S. Pick a non-
empty subset of vertices P ( S and a set of projectors Π = {Πp}p∈P on H. For HP (G,Π) := H(G) +∑
p∈P |p〉〈p|⊗Πp, we haveλmin(HP (G,Π)) ≥ µΩ(1/|S|3), whereµ = 1−max{|λmax(Πc

iUijΠ
c
j)| :

pi, pj ∈ P, i 6= j} and Uij is the product of unitaries of a path connecting vertices pi and pj .

Proof. First note that the Uij are well-defined, since the ULG is simple and connected. Construct W such

that the root of the sequence S1 ⊂ S2 ⊂ . . . is one of the •penalised vertices, namely r with projector Πr .

Then

W†HP (G,Π)W = ∆(G)⊗ 1+ |r〉〈r| ⊗Πr +
∑
p 6=r

|p〉〈p| ⊗RpΠpR
†
p

=: ∆⊗ 1+ A

where the Rp are the product of unitaries connecting vertex p with the root r. Following the notation of

lemma 2.30, we want to calculate the angle between the kernels of the Laplacian and the penalty terms. We

write ΠA := 1⊗ 1−∑p |p〉〈p|Πp for the projector onto the kernel of the penalty terms. Then

W†ΠAW = |r〉〈r| ⊗Πc
r +

∑
p 6=r

|p〉〈p| ⊗RpΠ
c
pR
†
p +

∑
v 6∈P

|v〉〈v| ⊗ 1.
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Noting that the kernel of ∆(G)⊗ 1 is spanned by {|ΨV 〉 ⊗ |φ〉 : |φ〉 ∈ H}, we get

cos θ = max
|φ〉
〈ΦV | 〈φ|W†ΠAW |ΦV 〉 |φ〉 =

1

|V | max
|φ〉

∑
|v〉,|v′〉

〈v| 〈φ|W†ΠAW |ΦV 〉 |v′〉 |φ〉

=
|V | − |P |
|V | +

1

|V | max
|φ〉
〈φ|Πc

r +
∑
p 6=r

RpΠ
c
pR
†
p |φ〉

≤ |V | − |P ||V | +
|P | − 1

|V | (1 + cosϑ) ≤ 1− 1

|V | (1− cosϑ),

where we used eq. (2.5) in lemma 2.29 in the last line with a bound on the angle between subspaces cosϑ =

maxp6=r ^(supp Πc
r, supp RpΠ

c
pR
†
p) and |P | ≥ 2. We can bound this further by

cos2 ϑ = max
p 6=r

max
|ξ〉∈supp Πc

r

|η〉∈suppRpΠc
pR
†
p

| 〈ξ|η〉 |2• = max
p 6=r

max
|ξ〉,|η〉

| 〈ξ|Πc
rRpΠ

c
pR
†
p |η〉 |2

≡ max
p 6=r

max
|ξ〉,|η〉

| 〈ξ|Πc
rRpΠ

c
p |η〉 |2 ≤ max

p 6=r
|λmax(Π

c
rRpΠ

c
p)|2 =: λ2

max.

The rest follows lemma 2.30:

2 sin2 θ

2
= 1− cos θ ≥ 1− 1 +

1

|V | (1− λmax) =
1− λmax

|V | ,

and the claim follows.

2.2.4 Quantum Thue Systems
2.2.4.1 Thue Systems
Let us briefly recall the idea behind classical Thue systems, also known as string rewriting systems.

Definition 2.45. A Thue system—TS for short—is a tuple (Σ, R) of a finite alphabet Σ and a finite sym-
metric binary relationR ⊂ Σ∗×Σ∗, where Σ∗ :=

⋃∞
i=0 Σi denotes the set of all strings over the alphabet

Σ.

The binary relationR is usually written as a set of rewrite rules a↔ b and they are naturally extended

to other strings in Σ∗: if a ↔ b ∈ R, then c ↔ d in R if there exist u, v ∈ Σ∗ such that c = uav and

d = ubv. Thue systems with this extension—denoted by R∗—are a special case of abstract reduction

systems and well-studied as computational models—see [Tho10].

Thue systems are multiway systems, i.e. starting from an initial string a ∈ Σ∗, exactly one substring is

replaced at a time—in particular, this means that there might be branching points when the substitution

is not unique. For our purpose, it is enough to consider length-preserving substitutions, i.e. any space
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Figure 2.11: Undirected graph associated to strings of length 3 for the Thue system in example 2.47.

Σi should be invariant underR; we denote the length of any string s with |s|. In this case, there exists a

natural representation of the Thue system over strings of lengthN as a finite, undirected and not necessarily

connected graph.

Definition 2.46. Let (Σ, R) be a TS and N ∈ N. The associated graph G = (V,E) for strings of length
N has vertices V := ΣN and edges E := {(a, b) : a ↔ b ∈ R∗}. The Laplacian of the TS is defined as
the discrete Laplacian of the associated graph G. For brevity we just write G = (Σ, R).

Example 2.47. Take the alphabet Σ := {a, b, c} and R := {c ↔ b, ab ↔ cc}. For example, starting
from string aab, we can obtain a chain aab ↔ acc ↔ acb ↔ abb ↔ ccb ↔ bcb ↔ bbb. The entire
graph for strings of length 3 for this example is shown in fig. 2.11.

Definition 2.48. Let (Σ, R) be a TS. We call a nonempty subset U ⊆ Σ∗ a valid evolution if U is closed
under the transition rules R∗. We call U irreducible if there exists no valid evolution U ′ ( U .

Example 2.49. In example 2.47, the set {caa, baa, aaa} is a valid evolution, but it is not irreducible. The
only irreducible evolutions for strings of length 3 in this example are the sets formed from the connected
components.

It is immediate to see this one-to-one correspondence between connected associated graph components

and irreducible evolutions.

We want to introduce a sense of locality to TS relations.

Definition 2.50. A TS (Σ, R) is k-local, where k is the maximum length of any of its replacement rules. •

Observe how this definition is well-defined, as we requiredR to be finite, cf. definition 2.45.
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2.2.4.2 Quantum Thue Systems and their Hamiltonian
We begin by generalising the notion of Thue systems to the case where our alphabet has special quantum

symbols, with rewriting rules being unitary operators between them. To work with these two alphabets,

consider Σ = Σcl t Σq as the union of two disjoint—classical and quantum—alphabets. For a string

s ∈ Σ∗, write |s|q for the number of letters from Σq in s. This allows the following definition.

Definition 2.51. A quantum Thue system (QTS) is a quadruple (Σ, R, {Ur}r∈R,H) of a bipartite al-
phabet Σ = Σq t Σcl, a relation R, a unitary operator Ur for each rule r ∈ R and a finite-dimensional
Hilbert spaceH with the following properties:

• (Σ, R) is a TS,

• |·|q is invariant under any rule r ∈ R,

• Ur ∈ U(H⊗|r|q ) for all r ∈ R.

The invariance of |·|q under a rule r = s1 ↔ s2 allows to abbreviate |r|q := |s1|q = |s2|q , which

indicates the number of quantum letters the rule r acts on.

We can again use the QTS to form sequences of strings: starting from a string s ∈ Σ∗, apply rules

consecutively as for TSs. In addition, to each string s ∈ Σ∗, we attach a Hilbert spaceHs := H⊗|s|q :

starting from some vector v ∈ Hs, each time a rule r is applied to a substring, the corresponding unitary

acts on the subspace wherever the rule matches, acting as identity everywhere else.

Analogous to fig. 2.11, we can build a graph for strings of length L for any QTS—where each edge is

labelled by the acting unitary. The following lemma should therefore not come as a surprise.

Lemma 2.52. Any k-local QTS (Σ, R, {Ur},H) restricted to strings of a certain length N ≥ k is also
a ULG. Furthermore, the associated Hamiltonian for strings of length N is isomorphic to a geometrically
k-local and translationally-invariant Hamiltonian on a chain (CΣ ⊗H)⊗N with the same spectrum.

Proof. We explicitly define the ULG (S,R′) for strings of length N ≥ k. The vertex set S := ΣN is

straightforward. For every r ∈ R denoted s1 ↔ s2, define the ULG edges (us1v ↔ us2v,1
⊗|u|
H ⊗Ur⊗

1
⊗|v|
H ) for any u, v ∈ Σ∗—potentially extending Ur toH⊗N−k acting trivially on classical substrings—

such that us1v ∈ ΣN . It is straightforward to verify that this defines a valid ULG.

The second claim follows from the canonical isomorphism between the two Hilbert spaces (CΣ)⊗N ⊗
H⊗N ∼−→(CΣ⊗H)⊗N , i.e. a simple rearrangement. Conjugating the associated Hamiltonian of the ULG

with this isomorphism proves the second claim.

As QTSs are also ULGs, we will be—without always specifying the string length restriction explicitly—

using ULG terminology for QTSs, e.g. associated Hamiltonians, irreducible evolutions or speak of QTSs

being simple.
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Lemma 2.53. Let the setup be as in lemma 2.52. Then the isomorphism extends to a Hamiltonian on the
chain (CΣcl ⊕ (CΣq ⊗H))⊗N with the same spectrum up to multiplicities.

Proof. Any rule on a classical substring acts identically onH, hence on the set of Hamiltonians with this

property a conjugation of the isomorphic Hamiltonian in lemma 2.52 H with the projector (CΣ⊗H)⊗N ↪−→
(CΣcl⊕(CΣq⊗H))⊗N is an isomorphism. The projector preserves the spectrum, up to multiplicities.

In the following, we often gloss over the fact and simply assume that the associated Hamiltonian of a

QTS is local in the sense of lemma 2.53. Observe however that a ULG induced from a QTS is not necessarily

simple, and it is easy to find a counterexample.

2.2.4.3 Quantum Thue Systems as a Computational Model
To use a QTS for computation, we need to mark some strings that have special meaning, e.g. are input or

output of the computation.

Definition 2.54. For a QTS with alphabet Σ and Hilbert space H, a marker is any tuple (s, π) where
s ∈ Σ∗ and π is a projector on some subspace of H⊗|s|q . The set of markers on strings of length k—called
k-local markers—is denotedM(k), andM :=

⋃
kM(k).

That is, we can specify a string s and a configuration of the quantum part of this string as a specific

state in the computation. It is useful to think of using one marker sinp to mark a string as the start of

the computation, and a second one sout to mark the end; the quantum parts of the markers—Πinp and

Πout—then define the valid input and output of the computation.

Definition 2.55. Let (Σ, R, {Ur},H) be a QTS and Π = (ΠYES,ΠNO) a promise problem. We introduce
an encoding function enc : Π → Σ∗, input and output markers (sinp,Πinp), (sout,Πout) ∈ M(n) for
some n ∈ N. Then the QTS

• rejects an instance l ∈ Π if there exists a chain of rules in R connecting enc(l) with two strings
containing sinp and sout, respectively, and 〈ψ|Πinp + U†ΠoutU |ψ〉 ≥ ε for all |ψ〉 ∈ H—here
U = U(l) stands for the product of unitaries along this chain, and Πinp and Πout are extended
trivially to the entire chain in case |sinp|q > |enc(l)|q or |sout|q > |enc(l)|q .

• accepts l if there exists a |ψ〉 ∈ H such that 〈ψ|Πinp + U†ΠoutU |ψ〉 ≤ ε/2.

• decides Π if for all l ∈ Π, l is accepted if l ∈ ΠYES, and rejected for l ∈ ΠNO.

The rejection and acceptance threshold εwill depend on the class of promise problems that we want to

decide. In particular, we want to allow this threshold to scale with the problem instance size, i.e. ε = ε(|l|),

and thus indirectly with the time that a computation can take, as specified in the following definition.
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Definition 2.56. Let Q be a QTS that decides Π. For an instance l ∈ Π, the history state is defined as the
irreducible evolution of the ULG containing enc(l).

For a QTS with unambiguous transition rules—i.e. where the history state is a line—the size of the

history state simply corresponds to the runtime of the underlying computation.

We now want to describe a simple example for a QTS which can decide the following simple promise

problem.

Definition 2.57 (Even Natural Number).

Instance. Natural number n ∈ N.

Output. YES if n even, otherwise NO.

Example 2.58. Let the alphabet Σ := {−, ?, ‖}, where ? is the only quantum symbol with Hilbert space
C2. We define sout = ?‖ and Πout = |1〉〈1|. Let further

enc : N→ Σ∗ where enc(n) := ?−− . . .−︸ ︷︷ ︸
n times

‖.

sinp = enc(l), sout = ?‖, and Πinp = Πout = |1〉〈1|. We have a single rule (?− ↔ −?,R) where R is
a rotation by π/2, i.e. R := − |1〉〈0|+ |0〉〈1|• . Then this QTS decides Even Natural Number.

Proof. The proof is straightforward. Starting on the encoded input enc(n), the TS generates a sequence

?−− . . .− ‖ 7−→ − ?− . . .− ‖ 7−→ · · · 7−→ −− . . .− ?‖,

so there always exists a chain of rules that connects enc(n) with a string containing sout. The decision

is thus made by the content of the quantum part: for n applications of the rule, starting from a vector

|v〉 ∈ C2, we apply R n times. Now take any state |ψ〉 ∈ C2 and write |ψ〉 = a |0〉+ b |1〉. Then

〈0|
(

Πinp + (R†)nΠoutR
n
)
|0〉

= | 〈0|Rn |1〉 |2 = | 〈0|Rn mod 2 |1〉 |2 =

0 if n is odd,

1 otherwise,

and

〈1|
(

Πinp + (R†)nΠoutR
n
)
|1〉

= 1 + | 〈1|Rn |1〉 |2 ≥ 1.

Therefore, if n is even,

〈ψ|
(

Πinp + (R†)nΠoutR
n
)
|ψ〉 ≥ |a|2 + |b|2 = 1
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and |0〉 is an accepting state for odd n. The claim follows.

2.2.5 Hardness Result
2.2.5.1 A Special Kind of Quantum Thue System
We have seen that QTS can be used to answer simple problems. On the other hand, a more interesting

question is whether there exists a universal QTS which can run any computation of a certain class of promise

problems C, i.e. is complete for C. Of particular interest in this setting is the question about scaling of the

defining parameters for such a QTS: how big is the alphabet, what is the locality and how does the string

length of the vertices in the history state scale, i.e. for a promise problem Π ∈ C, does there exist a function

f such that for l ∈ Π, | enc(l)| = O(f(|l|))? And what about the size of the history state?

For the complexity class BQEXP, we have the following lemma.

Lemma 2.59. For any BQEXP promise problem Π, there exists a 2-local QTS (Σ, R, {Ur},C2) which
decides Π, and has the following uniform properties:

W1 The alphabet has special charactersH ⊂ Σ—heads—andB ⊂ Σ—boundaries, and a set of allowed

pairs A ⊂ Σ × Σ. All transition rules preserve any symbols from B and the number of symbols in
H (denoted |s|h for a string s).

W2 Let j : Π −→ N be a map with j(l) = O(exp poly |l|), where |l| denotes the size of instance
l ∈ Π. The QTS decides instance l on strings of this length, i.e. | enc(l)| = j(l). Both input and
output penalty are 2-local markers containing precisely one head symbol, and sinp, sout ∈ A.

W3 For any l ∈ Π, the history stateMl is simple. All strings s ∈ Ml are of the form s ∈ B × (Σ \
B)∗ × B (bracketed), and have one head |s|h = 1. Furthermore, all length-2 substrings of s are in
A, and the size |Ml| = poly(j(l)).

W4 For all other irreducible evolutionsM 6=Ml, at least one of the following is true:

• |s|h = 0 ∀s ∈M,

• M is not bracketed (i.e. with a boundary symbol on the le� and right ends),

• M can be broken up into O(g(l))-sized connected parts—where g(l) = poly(j(l))—each of
which containing at least one string containing an invalid character tuple not in A.

2.2.5.2 QMAEXP-Hardness Proof
Theorem 2.60. (2, 42)-Hamiltonian is QMAEXP-hard.
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Proof. Following definitions 2.13 and 2.16, we need to show that there exists a 1D translationally-invariant

2-local Hamiltonian H onH = (C42)⊗n withO(1) local terms, such that either (a) λmin(H) ≤ α or (b)

λmin(H) ≥ β with a polynomial promise gap β − α = Ω(1/poly n), and deciding between (a) and (b)

is at least as hard as someQMAEXP-hard promise problem. The proof will be a simple combination of our

previously-collected results.

1. Let Π be a promise problem inQMAEXP. By definition 2.13, the verification of Π is a BQEXP prob-

lem. By fact 2.12, we can assume without loss of generality that the accept and reject probabilities in

definition 2.55 are 1 − ε and ε, respectively, where ε = 1/3poly |l| to be specified below, where |l|
denotes the length of the problem input.

2. By corollary 2.72, we can thus create a QTS with properties as in lemma 2.59 that verifies Π: more

specifically, for an instance l ∈ Π and by item W2, we know that this QTS verifies l on strings of

length j(l).

3. By lemma 2.52, the QTS restricted to strings of length j(l) is also a ULG. Denote the Hamiltonian

associated to this ULG by Hl, block-diagonal in the irreducible evolutions.

With Γ denoting the alphabet from definition 2.62 and j(l) denoting the number of systems, we define

a Hamiltonian on the Hilbert space (CΓ)⊗j(l) as follows:

H := Hl + Bheads + p(l)(Pboundaries + P) + Pin/out, (2.12)

where

• Pboundaries penalises any non-bracketed string (i.e. strings without a boundary symbol on at least one

end)—cf. item W3,

• Bheads acting on a string |s〉 ∈ (CΓ)⊗j(l) gives a bonus of |s|h, according to how many head symbols

there are in s,

• P penalises any character tuple not in A,

• p(l) is a function used to scale the penalties, which will be specified later, but—keeping remark 2.18

in mind—must not exceed p(l) = poly j(l).

Penalising non-bracketed strings follows an idea by [GI13]. With Pboundaries, we give a 1-local bonus of size

1 to brackets appearing anywhere, but a penalty of 1/2 to them appearing next to any other symbol; since

no transition rule ever moves the boundaries, this gives a uniform energy shift to all strings with brackets.

The unique highest-bonus string will have a bracket appearing at the start and end with a bonus of size 1.
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The encoding and output penalties Πinp = Πout = |1〉〈1| are translationally-invariantly extended to

the entire chain, i.e. on Hilbert space (Hcl ⊕Hq)⊗j(l), we act with the 2-local projector

Pin :=

j(l)−1∑
i=1

(|sinp〉〈sinp| ⊕Πinp)i,i+1,

and analogously for Pout.

Completeness. Assume l is a YES-instance, and denote the history state as an eigenvector of Hl with

|Ψl〉, which by item W3 is also an eigenstate of Bheads, Pboundaries and P. A direct calculation yields

〈Ψl|H |Ψl〉 =

=0︷ ︸︸ ︷
〈Ψl|Hl |Ψl〉+

=−1︷ ︸︸ ︷
〈Ψl|Bheads |Ψl〉+p(l)(

=−1︷ ︸︸ ︷
〈Ψl|Pboundaries |Ψl〉+

=0︷ ︸︸ ︷
〈Ψl|P |Ψl〉)

+ 〈Ψl|Pin/out |Ψl〉

= −2 + 〈Ψl|Pin/out |Ψl〉 .

By item W2, we further know that at least one vertex in |Ψl〉 has the in- and output substrings sinp, sout,

and because |sinp|h = |sout|h = 1, there is at most one such substring match for every vertex. As an upper

bound, we can thus assume that the penalty applies exactly once in every vertex—i.e. 〈Ψl|Pin/out |Ψl〉 ≤ ε,
and conclude 〈Ψl|H |Ψl〉 ≤ −2 + ε.

Soundness. Assume l is a NO-instance. We need to lower-bound the lowest energy eigenvalue of

H, and since we know that H is block-diagonal in the irreducible evolutions, we can bound each block

separately—the history state block given in item W3 and any other irreducible evolution block characterised

by item W4. Without loss of generality we can therefore assume that |ψ〉 is completely supported on a single

block of H (but not necessarily an eigenvector).

Take any |ψ〉 with support constrained to the history state block. As in the completeness part, a direct

calculation allows the estimate

〈ψ|H |ψ〉 = 〈ψ|Hl |ψ〉+

=−1︷ ︸︸ ︷
〈ψ|Bheads |ψ〉+p(l)(

≥−1︷ ︸︸ ︷
〈ψ|Pboundaries |ψ〉+

≥0︷ ︸︸ ︷
〈ψ|P |ψ〉)

+ 〈ψ|Pin/out |ψ〉

≥ −2 + 〈ψ|Hl + Pin/out |ψ〉 .

We can now apply lemma 2.44 to the last expression. By item W2 and definition 2.55, we obtain a bound

〈ψ|Hl+Pin/out |ψ〉 ≥ (1−ε)/|Ml|3. Observe how this lower bound scales∝ 1/|Ml|3, whereas forYES-

instances the upper bound scales constant ∝ ε. Since we want the lower bound for NO-instances—β—
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and the upper bound for YES-instances—α—to be separated by at least some β − α = Ω(1/ poly j(l)),

cf. definition 2.16, we need to amplify the accepting probability to ε = O(1/|Ml|4) = O(1/ poly j(l)4).

Observe that this does not exceed the allowed amplification, which is only limited toO(1/3poly |l|).

We proceed to show lower bounds for all other minimum valid evolutions, following item W4. Assume

we are in a block with 0 heads, which is well-defined by item W1. The bonus term Bheads vanishes on this

subspace while all other operators in eq. (2.12) are positive semi-definite, so we obtain a lower bound of

〈ψ|H |ψ〉 ≥ 0 for any state solely supported there.

Analogously, non-bracketed blocks can be bounded by a direct calculation, as Pboundaries penalises all

vertices equally: any non-bracketed state |ψ〉 for a block with h heads satisfies 〈ψ|H |ψ〉 ≥ −h + p(l).

It thus suffices to set p(l) ≥ j(l), as the number of possible heads on a string is limited by its length,

i.e. h ≤ j(l).

The last blocks remaining are the ones with g(j(l))-sized connected parts with invalid tuples, where

g(n) = poly n as defined in item W4. First observe that this part of the ULG is not necessarily simple, so

we remove the transitions which allow non-trivial loops without breaking the graph up into multiple parts.

We then split this graph into g(j(l))-sized connected components by temporarily removing further edges

from it, which yields a Hamiltonian for a sparser graph H′. Since adding any edges back in corresponds to

adding a positive semi-definite matrix to H′, it suffices to lower-bound the spectrum of H′ on this subspace.

Note that we do not remove vertices or change any penalties, so in particular all the diagonal operators in

eq. (2.12) remain untouched.

Hence assume |ψ〉 has support in one of the slices of size upper-bounded by g(j(l)) with h heads,

such that at least one vertex picks up a penalty from P. Again applying lemma 2.44, we obtain a bound

〈ψ|H |ψ〉 ≥ 〈ψ|H′ |ψ〉 ≥ −h− 1 + p(l)×Ω(1/g(j(l))3). We therefore have to scale p to e.g. p(l) ≥
g(j(l))5, which is still allowed by remark 2.18 (namely, p is polynomial in l). This concludes the proof.

What remains to be shown is the existence of a QTS as in lemma 2.59. The next section will provide

an explicit construction, finalising the proof of our main result. This construction is meant as a proof-

of-concept—the model we present can be modified in numerous ways and is likely not optimal. It does,

however, make heavy use of our newly-developed methods such as branching, thus reducing the local

dimension of the underlying Hamiltonian to 42, as compared to the hitherto best result by [GI13] which is

larger by at least several orders of magnitude.

2.2.6 Turing’s Wheelbarrow
2.2.6.1 Introduction
Turing’s Wheelbarrow is our constructive proof of a QTS with properties as mentioned in lemma 2.59. The

QTS will be optimised for local dimension and locality—every transition rule will be 2-local and act on
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strings from an alphabet Γ with 48 characters. We describe the QTS by explicitly writing out all transition

rules of the QTS and then prove the properties from lemma 2.59. Finally, in section 2.2.7 we reduce its local

dimension down to 42.

The conceptual idea of the Wheelbarrow QTS is the following. To build a QTS which can decide a

promise problem Π ∈ BQEXP, we first prefix the original circuitCl deciding an instance l ∈ Π by another

circuit which verifies that a number of ancillas necessary forCl are correctly initialised to |0〉. On some extra

ancillas, we write out the problem instance l, and also leave an unconstrained section of qubits available for

Cl. This witness section, problem instance and the leftover ancillas are then fed intoCl, and the output

wire contains |out〉 = cos((pa + pout)/3) |0〉+ sin((pa + pout)/3) |1〉 for the amplitudes pa—all ancillas

being 0—and pout—the circuit output of Cl on the ancillas and problem instance. This overall circuit,

denotedC ′l , is shown in fig. 2.12.

It is clear that this augmented circuit family (C ′l)l∈Π is in the same uniformity class as the original circuit

family (Cl)l∈Π, and we can thus define these circuits with output |out〉 to be a separate BQEXP problem

Π′. By lemma 2.33 and its proof, this new promise problem can be decided by a family of BQEXPQRMs

with the special property that the head motion and all internal QRM states are classical—cf. fig. 2.7.

Using the Solovay-Kitaev theorem [NC10, appdx. 3], the head unitary of such a QRM can in turn be

efficiently rewritten as a circuitR using the following small set of gates.

Remark 2.61. Toffoli, Swap and a classically-controlled quantum-universal unitary together with at least
one classical and quantum ancilla is universal for quantum computation and exactly universal for classical
computation.

In particular, S-K tells us that since the head circuitR = R(l) depends on the problem instance l—as

it needs to write the instance out—and the size of this circuit is |R(l)| = poly |l|. The Wheelbarrow

QTS which we construct will then be able to execute this head cyclically on a ring of qubits, where the

execution is halted once the QRM terminates: as the QRM motion is deterministic, the runtime will be

exp poly |l|-bounded, as required for a BQEXP computation.

The first step is to bootstrap the QRM head U. Starting from an initially empty string, we use a number

of rules to translate the string lengthN into a circuit description of U on the left side of the string. This

section will have size ≈ log6N , as we need 6 instruction symbols—a classically-controlled unitary U ,

Toffoli T , ancilla-checking symbol A , swap S , left-shift symbol and halt H . The remaining right side

of the string will act as classical and quantum tape that the computation runs on. Fig. 2.13 outlines how a

circuit can be translated into such a 6-ary circuit description.

The QRM is then executed: for every round, a program bit is taken from the left side of the string, moved

towards the tape and then applied to the leftmost two data qubits. The leftmost data qubit is then picked

up and carried to the right, where it is deposited. The revert action is similar, only that the rightmost data
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Figure 2.12: An augmented quantum verifier circuit. The circuit uses one ancilla |0〉 to verify that as many
ancillas as necessary for the computation are set to 0, rotating the single guaranteed |0〉 ancilla
by π/3 if this is not the case. On some ancillas, the problem instance l is written out. Another
rotation by π/3 is applied depending on the output of the verifier circuit. The overall output
state then takes the form |out〉 = cos((pa + pout)/3) |0〉+ sin((pa + pout)/3) |1〉.

U

U0

U0
U1

U0

U0

U1 U?

Figure 2.13: Example on how to translate a sample circuit section into a program description, where U0,
U1 and U? can stand for any unitary gate. Starting from the top left, the description here is
1 0 0 1 0 0 0 0 1 ? . The dashed line stands for a normal identity 0 0 , as
Cnot2 = 1. The rhombus is a special symbol that shifts the current gate position up by
one; as in each successive step the position moves down by one by default, it suffices to only have
this one special shift symbol. The last gate is a special identity to be used to initialise ancillas and
penalise a section of the output.
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Figure 2.14: The two actions that can be performed by the wheelbarrow construction. On the left, we apply
a gate U0 corresponding to the rightmost program bit 0 . The ring of qubits is then rotated
by one, which is the default downwards shift as mentioned in fig. 2.13. On the right, the special
action of the symbol is depicted: it signalises the rightmost qubit to move back to the left
side. After either action, the program string is rotated by one.

qubit is picked up and moved to the left of the tape. Fig. 2.14 illustrates both operations. The execution

runs until the underlying ring machine terminates, which can be determined using a special halt operation

H which only proceeds if the tape data is not in a halting configuration.

This also explains the choice of Turing’s Wheelbarrow as name for this QTS: qubits and program sym-

bols are moving across the tape in two cyclic motions, mimicking a busy worker carrying and depositing

information in a wheelbarrow.

2.2.6.2 Notation
For convenience, we define a special notation to describe the construction of Turing’s Wheelbarrow. We

begin by introducing the alphabet and tape.

Definition 2.62. Let Γ := Γcl t Γq denote the alphabet consisting of 48 symbols where

Γcl :=
{

, , , , , , , , , , , , , ,

U , T , A , S , H , , U , T , A , S , H , , , U , T , A , S , H , , ,

! , ~0, ~1, 1̇, 1̈, 0 , 1 , 0 , 1
}
,

Γq :=
{
a, a , ȧ, ä, ~a

}
.

These two sets correspond to the classical and quantum symbols, respectively, and are of size |Γcl| = 43 and
|Γq| = 5. The set of head characters is

H := Γ \ { , , 0 , 1 , U , T , A , S , H , , , , , a},

and the boundary characters are B := { , , }.

The number of alphabet characters can be further reduced to 39, 3 of which are quantum, see corollary 2.72.
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For reasons of clarity, we use a slightly larger alphabet in this construction.

We will generally use the lettersx, y, z as placeholders for program symbols—denoting any of the symbols

U , T , A , S , H , as x , or alternatively U , T , A , S , H , as x , which is always clear from the context.

The symbol U encodes a classically-controlled unitary, T a Toffoli, A an ancilla, S a Swap, H a halt and

a special tape revert symbol.

We now introduce the notation for transition rules.

Definition 2.63. We write a transition rule xy ↔ zw of a quantum Thue system as

x y

zw

.

The blue shading is used to indicate the location on the tape where the transition rule is applied. Note that,
by construction, transition rules are symmetric, i.e.

x y

zw

is equivalent to zw

x y

.

If the first rule is associated with a non-trivial unitary U, the inverse rule is associated with the adjoint U†.

As in definition 2.45, we never need to write out the values of the qubits anywhere. In fact, the only place

where the associated Hilbert space comes in is when we want to apply a quantum gate to the qubits (see

section 2.2.6.8). As an example, consider the action of swapping two neighbouring qubits. The Thue system

itself does not notice this, e.g. we would have a transition with an explicit comment on the Hilbert space

unitary, i.e.

a a

a a

where the associated Hilbert spaces are swapped with U = Swap.

To emphasise that the subspaces are in fact swapped, we generally use the letters a, b, c, d to label different

quantum subsystems. This is only to facilitate notation! In principle, we could stick to the letter a and write

out the swap action for every transition rule where this is relevant. But because we believe it is easier to read

and most of the non-trivial unitaries that we use are swaps, we simply write

a b

b a

which is self-explanatory.
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2.2.6.3 Transition Rules and History State
The following table contains a list of all transition rules, visualised from a starting string of the form

a c a c c . The horizontal direction corresponds to space while the time flows from top to

bottom. By default, the unitary associated to any rule—if not mentioned otherwise—is the identity. Apart

from Swap operations, the only non-trivial unitary appears in the computation step in section 2.2.6.8.

Observe that there are many possible local ambiguities within the history state, which we analyse in detail

in section 2.2.6.9.

2.2.6.4 Initialisation
The initialisation is done by moving a special symbol, a “sweeper” , from one end of the tape to the other

side. This ensures that the tape is actually correctly initialised, since any symbol apart from a , c or the

ghost would result in a penalised configuration, see table 2.2.

Left hand side has a sweeper , right hand side an inactive ghost , and all
middle symbols are qubits a or data bits c ∈ { 0 , 1}, which are opaque
for the ghosts. We let the sweeper move through all middle symbols. This
allows a dynamic “initialisation” of the tape: if the sweeper bumps into
any symbol that is not a qubit, data bit or inactive ghost, we can penalise
the configuration, singling out the proper history state.
Once the sweeper reaches the ghost at the right boundary, it activates
the ghost to and transitions to the box .

a c a c c
a c
c

...
c c
c

a c a c c

2.2.6.5 Ghost
The ghost symbols act as general “carriage return” symbols: this saves having different return variants for

each head symbol used, and is solely a way of saving local dimension. The ghost can thus be seen as a particle

to the right side of any other head symbol, and which diffuses freely on the tape (i.e. randomly moves left

or right). Only if the ghost is “activated”—i.e. carries a “head flag”—can it interact non-trivially with the

symbols around it.

Generally, if there is an extra head symbol on the tape, the ghost is inactive ( and ). The ghost can

itself carry the head flag, in which case we call it active and denote by or . The white active ghost can

either turn itself into a head symbol on the left hand side, or activate the boundary. On the right boundary,

it oscillates between white and black. This construction saves us a lot of symbols, since we only ever need to

specify special right-moving heads, whereas the left movement of the head state is done generically by the

ghost. We will often gloss over inactive ghost transitions and assume the ghost just “moves out of the way”

as necessary.
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counting phase computation phase

0 a a c a c a c a
0 a a c a c a c a

...
0 a a c a c a c a
0 a a c a c a c a
0 a a c a c a c a
0 a a c a c a c a
0 a a c a c a c a

...
0 a a c a c a c a

0 a a c a c a c a
0 a a c a c a c a

U a a c a c a c a
U a a c a c a c a

U a a c a c a c a
U a a c a c a c a

U a a c a c a c a
U a a c a c a c a
U a a c a c a c a

...
U a a c a c a c a
U a a c a c a c a
U a a c a c a c a
U a a c a c a c a

...
U a c a c a c a a
U a c a c a c a a
U a c a c a c a a
U a c a c a c a a

...

H U S S T 0 1 a a c a c
H U S S T 0 1 a a c a c

...
H U S S T 0 1 a a c a c

H U S S T 0 1 a a c a c
H U S S T 0 1 a a c a c

H U S S T 0 1 a a c a c
H U S S T 0 1 a a c a c
H U S S T 0 1 a a c a c
U H S S T 0 1 a a c a c

...
U S S T H 0 1 a a c a c
U S S T H H 0 1 a a c a c
U S S T H 0 1 a a c a c
U S S T H 1 0 a a c a c

...
U S S T H 1 a a c a c 0
U S S T H 1 a a c a c 0
U S S T H 1 a a c a c 0
U S S T H 1 a a c a c 0

...
U S S T H 1 a a c a c 0
U S S T H 1 a a c a c 0

U S S T H 1 a a c a c 0
U S S T H 1 a a c a c 0
U S S T H 1 a a c a c 0

...
S S T H U 1 a a c a c 0
S S T H U U 1 a a c a c 0
S S T H U ! a a c a c 0
S S T H U 1 ȧ a c a c 0
S S T H U 1 ä a c a c 0
S S T H U 1 a a c a c 0
S S T H U a 1 a c a c 0

...

H U S S U c a a c a c 1
H U S S U c a a c a c 1
H U S S U c a a c a c 1
H U S S U c a a c a c 1

H U S S U c a a c a c 1
H U S S U c a a c a c 1

H U S S U c a a c a c 1
...

H U S S U c a a c a c 1
H U S S U c a a c a c 1
H U S S U c a a c a c 1
H U S S U c a a c a c 1
H U S S U c a a c a c 1

...
H U S S U c a a c a c 1
H U S S U c a a c a c 1
H U S S U c a a c a c 1
H U S S U c a a c a 1 c

...
H U S S U c 1 a a c a c
H U S S U 1 c a a c a c
H U S S U 1 c a a c a c
H U S S U 1 c a a c a c

...
H U S S U 1 c a a c a c
H U S S U 1 c a a c a c
H U S S U 1 c a a c a c
H U S S U 1 c a a c a c

...
H U S S U 1 c a a c a c

H U S S U 1 c a a c a c
H U S S U 1 c a a c a c

H U S S U 1 c a a c a c
H U S S U 1 c a a c a c
H U S S U 1 c a a c a c
U H S S U 1 c a a c a c

...
U S S U H 1 c a a c a c
U S S U H H 1 c a a c a c

Figure 2.15: Evolution of the history state without branching.
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Ghosts can change color on the right boundary. Since the black ghosts
and are static, any incoming head from the left can detect when it has
reached the boundary as it will encounter a black ghost.
White ghosts can move through all static symbols, but not through heads. ∗

∗
∗
∗

2.2.6.6 Base-6 Counter
From a high-level perspective, the base-6 counter and unary counter (next section) work together to translate

the tape length into a base-6 big endian number on the left side of the tape. This base-6 number then

encodes the program which we execute afterwards: we count in base 6 through the sequence T , U , A ,

S , H , —encoding a Toffoli, classically controlled unitary, ancilla, swap, halt or tape revert operation,

respectively.

Active ghost hits the left boundary and turns into the incrementer . T U A A H

If the incrementer encounters —the highest-valued digit—it flips it to
T —the lowest-valued digit. This results in an overflow that is carried over
to the next digit to the right. If the next digit is again , the same proce-
dure repeats until a different symbol or a qubit is encountered.

x
T

...
x

T x

If the incrementer encounters T or classical zero 0 —both of which are
treated as lowest-value symbol—it increments it to the next higher-valued
symbol U . To uniquely distinguish to which symbol to decrement when
run in reverse, the incrementer has to transition to the checking symbol

or , verifying that the symbol to its right is another counter or tape
symbol, respectively. We never encounter the configuration 1 or a ,
as this is penalised.
The incrementation ends with the reverter symbol .

T x
U x
U x

U

0 a
U a
U a

U

0 c
U c
U c

U

If the incrementer encounters U , A , S or H , it increments the symbol
to the next higher one— A , S , H or , respectively—turning into the
reverter symbol .

U
A

A
S

S
H

H

The reverter moves through the lowest-valued digits T all the way to
the left boundary where it turns into the right mover . Note that no dig-
its other than T are possible to the left of since incrementation proceeds
to the next digit only in case of an overflow.

T
T

The right mover proceeds to the right through all digits of the base-6
counter.

T
T

U
U

A
A

S
S

H
H

Eventually encounters a qubit a or classical bit c . It turns into an
inactive ghost and picks up the qubit a or classical bit c . Afterwards
the ghost moves out of the way and we proceed to the unary counter.

a
a

c
c

For the configuration there is no forward transition, which means that once we entered the compu-

tation phase, this counting does not continue.
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2.2.6.7 Unary Counter

The unary counter is necessary so that the base-6 counter knows when to stop. We use a block symbol to

denote the position of the unary counter on the tape, starting from the right and moving to the left at each

increment. Whenever this block is moved left once, the base-6 counter has been incremented by one as well.

In this way, once the unary counter has run out of space, we have translated the tape length into a base-6

number on the left side of the tape.

A qubit a or classical bit c is carried to the right past all other qubits or
classical bits.

a c
c a

a b
b a

c d
d c

c a
a c

The position of indicates the value of the unary counter. As the qubit
a moves through it, the block is pushed one position to the left—this
increments the unary counter by one.

a
a
c
c

Once the moving qubit a reaches the black ghost at the right boundary,
the qubit a is dropped and the ghost is activated to .

c
c

a
a

2.2.6.8 Computation

The tape now has the form H x x c a a c a , i.e. the counting is complete and by our choice

of the chain length, the program description starts with a halt symbol H . The rest of the program string

does not contain any H ’s.

The idea behind the computation is depicted in fig. 2.4. We first take the base 6 symbol from the left end

of the program description and move it to the right end (e.g. x2345 would become 2345x ). This symbol

x can then be picked up by the box , which becomes activated to x . The active box is now followed by

a set of rules which applies this program action to the (qu)bits right next to it. Afterwards, the leftmost

(qu)bit is carried to the right end and the procedure repeats.

The content of the tape symbols is checked on the fly using the ancilla program bit symbol A . If it appears

next to a qubit, a penalty is given for the qubit marginal being |1〉〈1|; for a classical bit, we penalise 0 (this is

because we do not have a Not gate, but Not can be implemented with Toffoli, which maps 111 7→ 110).

The implementation details of all the different program bits are explained in the following table.

The computation halts once a halting program bit H is next to a classical 1 .
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The boundary is flipped to and can only revert to next to a halt
symbol H —this ensures that we can only transition back and forth be-
tween counting and computation if the program bits are in their original
order. An active ghost can hit this left boundary and activate it to .

H
H

A program bit x ∈ { T , U , A , S , H , } is picked up as x and carried
to the right of the program string.

x
x

x y
y x

These transition rules apply theToffoli gate to three classical bits c c c .
If either 0 c c or 1 0 c , the last bit remains unchanged. Only for the
configuration 1 1 c we perform a bit flip on the last bit, i.e. d = ¬c. The
first bit is then picked up with a carrier 0 or 1 .

T c c c a
T T c c c

T 0
0

T 1 c
1̇ c

1̇ 0
1 0

1̇ 1 c
1 1̈ c
1 1 d

These transition rules apply the classically-controlled unitary operation to
a pair of qubits a a , but only for the configuration 1 a a . The control
bit is then picked up with a carrier 0 or 1 . Observe that this is the only
position where we apply a unitary operation to the quantum symbols.

U c a a c
U U c a a

U 0
0

U 1 a a
! a a
1 ȧ a
1 ä a
1 a

A a acts as identity on the qubit, but is used later on to penalise when the
attached Hilbert space is |1〉, giving us the possibility for ancillas.
A 1 acts as identity, and we will penalise A 0 , giving us a classical ancilla
bit. Observe that we choose 1 here, as we can create 0s out of nothing but
1s with the Toffoli gate, but not vice versa.

A a
A A a

a

A 1
A A 1

1

S implements the Swap gate. S c d
S S c d

~c d
d c

S c a
S S c a

~c a
a c

S a c
S S a c

~a c
c a

S a b
S S a b

~a b
b a

H acts as identity on 0 , but has no forward transition for H 1 , i.e. the
operation explicitly halts the computation.

H 0
H H 0

0

implements a tape revert, i.e. moving the current tape position up by
one. acts like an activated boundary on the left hand side, i.e. it blocks
ghosts or . An incoming ghost from the right can activate from to

, after which it proceeds back to the right end.
Outlined in section 2.2.6.7 but run backwards, the activated ghost will
move through to the right hand side and deactivate at the boundary, while
picking up a qubit a . This qubit will move to the left until it encounters

. It drops the qubit and deactivates to . As soon as the inactive
ghost encounters this symbol, the ghost is reactivated and the box is
restored.

a
a

c
c

a
a

c
c

Definition 2.64 (Turing’s Wheelbarrow). Turing’s Wheelbarrow is the QTS (Γ, R, {Ur}r∈R,C2), where
Γ is given in definition 2.62 and the relation R is defined by the transition rules in section 2.2.6.3 (with the
conventions on notation from definition 2.63).

One can verify that Turing’s Wheelbarrow, when applied to an initial string of the form a c c a c a ,

where the sequence of c s and a is such that they match the counting and computation phase, first translates
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the string length into a program description on the left string side, which is then executed cyclically on the

tape. We call an initial configuration of this type valid initial configuration.

There are, however, ambiguous transitions, which lead to branching in the graph—we discuss all possible

branching points for the irreducible evolution containing this initial configuration.

2.2.6.9 Branching in the History State
We make extensive use of branching and ambiguous transitions to compress the number of symbols necessary

to implement the Wheelbarrow. Therefore we need to show two things.

1. The size of the history state is poly-bounded.

2. There are no ambiguous transitions which lead to a penalised configuration.

We take fig. 2.15 as a point of reference.

Ghosts. Whenever there is a ghost on the tape, it can either be active— or , or inactive— or .

Fact 2.65. Inactive ghosts never change non-head symbols or pass through heads.

Therefore we will disregard any branching due to inactive ghosts, which happens because we can always

move either the head or ghost at each step. This increases the history state size by an at most quadratic factor.

Counting Phase.
Fact 2.66. Initialisation and 6-ary counter are not ambiguous in either direction.

We have two ambiguities to analyse. Starting from an intermediary counting stage where the program

string starts with H , we can prematurely transition to the computation phase:

H x x a c c a a

H x x a c c a a

H x x a c c a a

H x x a c c a a

H x x a c c a a

H x x a c c a a
...

x xH a c c a a

As there is no forward transition for H a , this branch is just a leg, increasing the history state by a small
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constant factor≤ 2. The same argument holds for transitioning to during incrementation, i.e.

H x x x a c a a

H x x x a c a a

Run forward, there is no transition for , and run backwards there is none for .

Running the carrier a or c backwards for the unary counter at any point before counting is completed

leads to another ambiguity, e.g.

a c c a a 1 c c

a c c a a c 1 c

a c c a a 1 c c

a c c a 1 a c c

a c c 1 a a c c

a c c 1 ä a c c
...

a c c ! a a c c

a c c U 1 a a c c

There is no backwards transition for c x or a x though. If there is no box , the branch dies off even

before that. This ambiguity hence increases the history state size by another small constant factor.

Computation Phase. A similar argument as in the last section shows that a late transition into the

counting phase once we are in the middle of the computation does not proceed, as there is no forward

transition for a configuration . Furthermore, the same ambiguity running a carrier c or a backwards

holds, which we have already discussed.

Fact 2.67. The application of gates H , U , T , A and S does not introduce any branching.

It remains to analyse the revert command, where we have a branching point for a configuration

c a c a a c c

c a c a a c c

c a c a a c c

c a c a a c c

c a c a a c c

c a c a a c c
...

Observe, however, that all that could happen is that the tape symbol is carried to the right, where it is

dropped next to the boundary ghost . The ghost is activated and moves back to , where it deactivates.
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The branch does not continue further, as there is no transition out of a or c . This increases the history

state size by some small constant≤ 2.

We define the set of tuples A as all the possible character pairs that appear in this history state—including

all branches—in table 2.2.

This exhaustive analysis of all possible branching points in the history state allows us to conclude the

following corollary.

Corollary 2.68. For strings of length n, the size of the irreducible evolution containing a valid initial config-
uration of the form a c c a c a —the history state—is of sizeO(n3), and contains no forbidden
character pairs.

2.2.6.10 Simplicity of Turing’s Wheelbarrow
Let us briefly recall the idea behind simplicity in the context of QTSs. A QTS is called simple, if, for any

two strings connected by more than one chain of transitions, the product of unitaries along this chain is

identical. Equivalently, we can show that there are no loops in the graph connecting any strings. Regarding

the QTS transition rules for Turing’s Wheelbarrow, as constructed in the last section, it is easy to see that it

will not be simple. However, for our purposes, it suffices to proof the following lemma.

Lemma 2.69. Each bracketed string in Turing’s Wheelbarrow with at least one head either belongs to the
history state, which is simple, or—by removing edges—can be broken up into poly n-sized valid evolutions
with illegal pairs.

Proof. As no transition rule ever changes the number of heads or position of brackets, the distinction is

well-defined. We can analyse each separately.

One head. We can exclude strings with illegal pairs right away. Furthermore, we can disregard config-

urations of non-head characters which are just allowed because there is a head symbol or ghost between

them, such as a c , as moving the head either way (which is possible, since there is only one of them)

transitions to an illegal pair.

So, disregarding any head and ghost state on the string for now, the most general non-head-non-boundary

string compatible with table 2.2 is

x
∗︸︷︷︸
A

?
( c | a | c | a )+︸ ︷︷ ︸

B

.

It is straightforward to see that evolving this configuration backwards will transition to an illegal pair, if

either
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non-heads heads

x c a x x ! ~c 1̇ 1̈ c ȧ ä ~a a

3 3 3 3 3 3 3 3
3 3 3 3 3

x 3 3 3 3 3 3 3 3 3† 3† 3† 3† 3† 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3

c 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

a 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3
3
3 3 3 3 3
3

3 3
3 3 3 3

3 3
3

3
3 3 3
3
3 3 3 3

x 3 3 3 3 3
x 3∗ 3 3

! 3 3

~c 3 3 3

1̇ 3 3

1̈ 3 3

c 3 3 3 3 3

ȧ 3 3

ä 3 3 3

~a 3 3 3

a 3 3 3 3 3

Table 2.2: All possible character tuples occurring in the history state of Turing’s Wheelbarrow. The row is
the first character, the column the second—e.g. is allowed, whereas x is not. c can be
0 , 1 , and x stands for any program bit U , T , A , S , H , or . 3†only allows the combination
T , U , U , U and U . 3∗only allows the combination allowed by the gates, i.e. T c ,
U c , A a , A 1 , S c , S a and H 0 . Observe how the lower right block is completely empty, as
there can only ever be one head on the tape.
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• B has multiple s, or and at least one , or neither or .

• A does not match the string length log6 n. Decrementation can only start if the substring A starts

with the halt symbol H , so it cannot happen that we start decrementing a rotated number, e.g. U H A A S T

instead of H A A S T U , which would translate into different lengths.

Evolving this string forward then reaches the computation part, and in case the pattern of classical and

qubit states inB does not match the one required for the encoded gates inAwe again have an illegal pair.

We are left with the history state, and it suffices to check any transition rule containing a non-trivial

unitary attached, which by construction is the computational step only, i.e.

ȧ a

ä a

.

Following the transitions forward to the next such transition, by construction, the encoded Turing machine

evolution is reversible, hence there is no loop as the Turing machine changes the classical content of the tape

in sectionB.

Multiple heads. None of the heads can pass through each other. As further boundary markers such as

, and are immobile and opaque and there exists no transition out of or if not left of a boundary,

we can without loss of generality assume that the tape is bracketed by either of , , , , or possibly no

opaque symbol if our subsection lies at the tape ends.

If there are h ≥ 2 head symbols on the tape, a simple argument allows us to slice the graph up into

poly(j(l))-sized parts: first observe that following any of the heads—with potential intermediate transitions—

sweeps the entire width of the string. For any configuration of the first h− 1 heads, the last head will thus

necessarily bump into the h − 1st within O(j(l)) steps. The same argument shows that there can be at

most one ghost on the tape.

2.2.6.11 Special Properties
Proof of lemma 2.59. We will check the properties of lemma 2.59 one-by-one.

The deciding property follows by construction. The projectors Πinp = Πout = |1〉〈1| are supposed to

act on checking the first ancilla and output as seen in fig. 2.12, i.e. they apply to the qubit after the special

identity symbol ? .

Item W1 is readily verified.

Item W2. The encoding is given by the valid initial configuration

enc(l) := a c a c c a︸ ︷︷ ︸
N times

,
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where N is a unary encoding of the QRM head circuit executing fig. 2.12 rewritten as depicted in fig. 2.13,

and the sequence of a s and c s is such that they match the counting and computation phase. By con-

struction, we therefore obtain,N + 4 = poly(|l|) =: j(l).

Also by construction and as outlined in section 2.2.6.1, the program string on the left side of enc describes

the head of a QRM writing out the circuit fig. 2.12. This QRM is in the same uniformity class as the original

verifier’s, and a constant in the size of l ∈ Π. We can hence pad it—using identity gates—to get the space

and runtime for the QRM right, which can be as large as poly j(l), as required for aBQEXP computation.

Both input and output markers sinp = sout = A a are 2-local, contain one head A , and Πinp =

Πout = |1〉〈1|.
Item W3 We have shown the first claim in lemma 2.69 and corollary 2.68. The rest follows by direct

verification.

Item W4 We can immediately sort out the no-head and not-bracketed cases. The rest follows from

lemma 2.69.

This concludes the proof.

2.2.7 Final Dimension Reduction
We want to make a few final remarks, and suggest an immediate optimisation of the Wheelbarrow construc-

tion.

The distinction between the quantum and classical tape symbols c and a is unnecessary, if we can ensure

that there is never a quantum operation on classical symbols and vice versa. This is already proven.

The reason why we can merge these symbols is that while the QTS requires the ULG vertices to comprise

only the classical alphabet symbols, we do not need to make this distinction for a ULG—as long as we can

ensure that the Hilbert space dimension on each vertex in a connected component is the same. It is also clear

that this does not break simplicity in lemma 2.69, as we always know which tape symbols are classical (the

ones appearing next to classical operations, e.g. T ) and which ones are quantum (e.g. the one next to ! ).

This observation allows the following optimisation.

Remark 2.70. The Wheelbarrow construction works exactly the same when merging a with c , a with c ,
and ~a with ~c .

Once we have merged the symbols, there is another merge possible. We know that Toffoli and some

basis-changing unitary U are quantum-universal, see e.g. [NC10, ch. 4.5]. This means that we can replace the

classically-controlled unitary with such a one-qubit unitary, and apply Toffoli gates to quantum symbols

as well. A similar argument as before shows that this does not break lemma 2.69, and we phrase the following

remark.
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Remark 2.71. The Wheelbarrow construction works when replacing the controlled unitary with a single-qubit
basis-changing unitary, and extending Toffoli to work on classical and quantum tape content. This makes
the symbols ! , ȧ and ä obsolete.

Including the saved symbols from the last two remarks— c , c , ~c , ! , ȧ and ä—we conclude with the

existence proof of lemma 2.59.

Corollary 2.72. There exists a family of simple QTSs with 2-local rules on an alphabet of size 39—3 of which
are quantum with a Hilbert space C2—and all properties given in lemma 2.59.

Remark 2.73. It is straightforward to get O(1)-interactions, i.e. removing the scaling polynomial p(l) in
theorem 2.60 if we can locally distinguish the history state at all times. This is possible e.g. by using distinct
non-head symbols on the le� and right hand side of the head and penalising invalid configuration using
regular expressions as in [GI13]. This would increase our dimension by roughly 15.

2.3 Chapter Summary
This work was motivated by the idea of finding a simple, translationally-invariant and physically interesting

system, for which the ground state energy problem is QMAEXP-hard. In [GI13], Gottesman and Irani

concluded that their construction is not “particularly natural”, due to the large local dimension necessary,

but that the existence of some very simpleQMAEXP-hard localHamiltonian problem variants seems

quite possible.

Our results bring us another step closer to this goal: we reprove the hardness result in [GI13] but with a

local dimension of 42, whereas in [GI13]—though not explicitly specified—it was several orders of magnitude

larger. To prove this result, we develop new tools and computational models which we believe are applicable

to a wider range of problems.

At this point it would be interesting to see where the threshold for the translationally-invariant local

Hamiltonian problem lies: does there exist a local dimension dmin, for which the problem is in BQP,

or BQEXP? We have shown that dmin < 42, but do not believe this to be a strict bound. We therefore

encourage the interested reader to construct their own version of the Wheelbarrow, which might yield an

even lower local dimension, and thus tighten our bound.

Furthermore, a lot of work recently has been done to analyse non-translationally-invariant systems, and

to classify interactions with locally-varying interaction strengths, e.g. [CM14]; [PM15]. In contrast to our

construction, the hardness results in [PM15] resemble more a tiling construction, a subject also addressed

in [GI13]. It would be an interesting approach to see if these two—fundamentally quite different—results

can be combined, or if there exists yet another, completely different, method of encoding computation into

the ground state of a local Hamiltonian.
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Finally, we want to mention that while the research focus—as outlined in table 2.1—quickly shifted

towards the 1D variant of the problem, from a physical perspective both 2D and 3D versions of this result

are still of great interest. In the next chapter, we will have a look at the 3D case, and try to embed a different

QMA-hard quantum Thue system into a crystal lattice; we want to emphasise that we are going beyond

a simple embedding of the 1D result in this chapter. As we discuss in chapter 3, we reduce •the interaction

complexity significantly even beyond Turing’s Wheelbarrow by making use of the three-dimensional lattice

geometry, and by “outsourcing” part of the computational overhead away from the history state, and to a

static tiling problem.
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3 Hamiltonian Complexity:
Lattice Crystals

Gerade in diesem Punkt irrt die ganze Welt.

Wir entfernen uns ständig

von dem gegenwärtigen Augenblick.

—H.G. Wells, Die Zeitmaschine/fr-036

As we have seen in chapter 2, one major issue of QMA-hard instances of the localHamiltonian problem

is that, from the perspective of experimental physics and material sciences, the resulting many-body quantum

systems are too contrived to be of relevance; either the local spin dimension is large, the coupling strengths

vary from site to site, or the interaction graphs are not geometrically local.

While 1D results are interesting and in a sense the most fundamental models to study (as any 1D hardness

result directly implies hardness of the corresponding higher-dimensional constructions by a straightforward

embedding argument), most condensed matter systems are in fact two- or three-dimensional, and the

comparison of local dimension between the best non-translationally invariant results in 1D and 2D —8

[HNN13], and 2 [OT05], respectively—indicates that moving beyond 1D allows a significant reduction

of the lattice spins’ dimension. It is thus a natural question to ask whether one can go beyond a simple

reduction from previously-known 1D results, by exploiting these extra dimensions in a non-trivial way (i.e.

beyond a simple embedding), but at the same time retaining nice physical properties such as a regular lattice

structure and translational symmetries. We can even go further: is there a family of Hamiltonians on a

physically realistic 3D crystal lattice with a QMA-hard ground state? This question is highly relevant, since

such crystal structures are found ubiquitously in nature (e.g. face-centred cubic lattices for sodium chloride,

or body-centred cubic cesium chloride crystals).

In this chapter, we prove that the local Hamiltonian problem remains computationally hard, even

for a face-centred cubic lattice of spin-3/2 particles with geometrically 4-local translationally-invariant

interactions, and open boundary conditions.

It is clear that there is always a trade-off between local dimension and interaction range: a Hermitian

operator coupling k spins of dimension d each has d2k real degrees of freedom. In 1D and for 2-local
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interactions, the best-known construction to date is [HNN13] with 8-dimensional qudits and nearest-

neighbour interactions; for each coupled pair of qudits, one Hermitian operator thus has 82× 82 = 16384

free real parameters. Enforcing translational invariance, we can take Turing’s Wheelbarrow which we

introduced in the last chapter—nearest-neighbour interactions between spins of dimension≈ 50—which

would give roughly (502)2 ≈ 6× 106 parameters to choose from.

The construction in this chapter with at most 4-local interactions between spins of dimension 4 yields 48

degrees of freedom, a roughly two orders-of-magnitude improvement over a straightforward embedding of

the best one-dimensional construction, and en par with the best non-translationally-invariant result. It also

shows that there is only about three orders of magnitude left between this construction and spin systems

that we encounter every day (e.g. nearest-neighbour, spin 1).

As in chapter 2, we work with Hermitian operators acting on a multipartite Hilbert spaceH = (Cd)⊗n,

i.e. on n qudits, each of local dimension d. We label subsystems ofH• by an ordered tupleA ⊆ {1, . . . , n}.

For a k-qudit Hamiltonian h for some k ≤ n and some subsetA, we denote with hA the operator that acts

as h on all qudits labelled byA, and as identity—1—everywhere else.

If the Hilbert spaceH• is translationally-invariant—e.g. a latticeH⊗Λ—then we say that a Hamiltonian

on this space exhibits translational invariance if it follows the same symmetry, i.e. that the interactions

between equivalent lattice sides are identical. This allows us to define the following variant of the local

Hamiltonian problem, where we follow the same naming convention as in definition 2.16.

Definition 3.1 ((k, d)-TILH-3D). Let Λ(L,M,N) be a 3D lattice of side lengths L,M and N , all ≤ n,
with not necessarily trivial unit cell (e.g. cF, cI). Let H =

∑
i,j,k hi,j,k be a 3D translationally-invariant

and geometrically k-local Hamiltonian on the lattice qudits (Cd)Λ.

Input. Specification of the lattice size L,M,N , and the matrix entries of h, up to O(poly n) bits of
precision.

Promise. The operator norm of each local term is bounded, ‖h‖ ≤ poly n and either λmin(H) ≤ α

or λmin(H) ≥ β, where λmin(H) denotes the smallest eigenvalue of H and β − α ≤ 1/p(n) for
some polynomial p(n).

Output. YES if λmin(H) ≤ α, otherwise NO.

3.1 Overview of Results
The family of spin systems we study are described by a Hamiltonian on a face-centred cubic (cF) lattice as

shown in fig. 3.1. More precisely, we start with a finite cubic lattice Λ, where each vertex and each face carries

a 4-dimensional spinHloc = C4; the overall Hilbert spaceH is then the tensor product of all spins. For a
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geometrically local Hamiltonian h acting on k neighbouring spins (on vertices, faces, or both), we denote

with h~x the k-local operator h when offset by a lattice vector ~x ∈ Λ, and acting trivially everywhere else; in

case that h~x protrudes out of Λ, we set h~x ≡ 0. For a finite index set I , we consider Hamiltonians of the

form

H =
∑
i∈I

(
ci
∑
~x∈Λ

h~xi

)
, (3.1)

where each h~xi couples at most 4 spins, either within a single unit cell, or between neighbouring unit cells.

By construction, this Hamiltonian is translationally-invariant, and features open boundary conditions since

we do not place special interactions at faces, edges or corners of the lattice cuboid.

The index set I does not depend on the size of the lattice, and neither do any of the hi; we allow the ci =

ci(|Λ|) to depend on the system size |Λ| = W×H×D, but require any ci/cj ∈ [Ω(1/poly |Λ|),O(poly |Λ|)].
This allows us to define a variant of the local Hamiltonian problem where the input is given by a

description of the local terms of a Hamiltonian as in eq. (3.1) (i.e. the matrix entries of the local terms ci×hi,

up to polynomial precision), as well as the three side-lengthsW,H andD of the lattice. Moreover, we are

given two parameters α < β satisfying β − α = Ω(1/ poly |Λ|), and a promise that the ground state

energy of H is either smaller than α, or larger than β. The local Hamiltonian problem is then precisely

the question of distinguishing between these two cases, and we prove the following main theorem.

Theorem 3.2. The local Hamiltonian problem is QMAEXP-complete, even for translationally-invariant
4-local interactions on a 3D face-centred cubic spin lattice (fig. 3.1) with local dimension 4, and open boundary
conditions.

We give a rigorous proof of theorem 3.2 in section 3.3; in the following, we want to give a high-level

exposition of the ideas and proof techniques which we employ. As in past hardness results, we present an

explicit construction of a family of QMAEXP-hard instances of this variant of the localHamiltonian

problem. We will make use of two types of local terms, tiling and history state Hamiltonians, both of

which have been studied extensively, but mostly independently of each other. In our work, we will utilise

each method to its strength: the classical tiling terms will be used to encode the bootstrapping mechanism

responsible for the large local dimension in prior work, while the history state terms will be used as a means

of embedding the quantum computation part. First we will briefly recap these methods.

3.1.1 History State Construction
We want to give a brief summary of the more rigorous construction techniques in chapter 2 that we build on,

and refer the reader to the relevant sections 2.2.1.2, 2.2.2 and 2.2.4 for more details. By definition, a promise

problem Π is inQMAEXP if there exists a BQEXP quantum circuit—called “verifier”—such that for any

YES-instance l ∈ Π, there exists a poly-sized quantum state—called “witness”—which the verifier accepts
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(a) face-centred cubic (cF) unit cell

(b) cF lattice

layer A

layer B

layer A

layer B
...

D

H

W

(c) layer A

(d) layer B

Figure 3.1: Face-centred cubic crystal lattice. All vertices and faces carry spin-3/2 particles; the red and green
sublattice spins sit on the faces defined by the black lattice.
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with probability≥ 2/3; or if l is aNO-instance, all poly-sized witnesses are rejected with high probability.

The exact constant used here is not important, as for any polynomial p, one can always amplify aQMAEXP
promise problem such that the distinction works with probability≥ 1− 1/3p(|l|) for an instance l ∈ Π

with size |l| (see fact 2.12).

We further know that for anyQMAEXP promise problem, we can alternatively obtain a so-called quantum
ring machine (QRM) as verifier (corollary 2.34). In brief, a QRM is a fixed unitary R on (Cd)⊗2, which acts

cyclicly on a ring of n dimension d qudits. Borrowing terminology from Turing machines (TM)—which

are used to prove universality of the QRM model—we call the unitary R the head of the QRM, and the

qudit ring is essentially a TM tape with cyclic boundary conditions. Fig. 2.6 depicts such a QRM and its

action in circuit notation.

We take a specific 2-qubit quantum gate G and prove it to be universal, even when only applied to adjacent

qubits (lemma 3.3). Together with its inverse G†, we can thus use Solovay-Kitaev to approximate the QRM

head unitary R to within precision ε. Since we require that the QRM first writes out an instance l ∈ Π

on the ring, the resulting circuitCR has size |CR| = O(poly |l| log4(1/ε)), see lemma 3.5. To match the

QRM evolution, we repeatedly applyCR in a cyclic fashion, as described in fig. 2.6.

Keeping with tradition, we encode the circuitCR as history state Hamiltonian. In its simplest form, such

a Hamiltonian encodes transitions for each gate Ui present inCR = UT · · ·U1; as in the last chapter, we

will define a QTS which can execute said circuit, and the resulting ULG Laplacian will be the History state

Hamiltonian, see definition 2.38.

In the next section, we explain how we use diagonal Hamiltonian terms to constrain the ground space

of our Hamiltonian such that the circuit description forCR is exposed at the front edge of the cuboid, in

a periodically repeating fashion (see fig. 3.2). More precisely, we define a diagonal Hamiltonian Hcl with

spectral gap 1, and a degenerate ground space for which any ground state of Hcl + Hprop will then be in a

product configuration |Φcl〉 ⊗ |Ψ〉. Here |Φcl〉 is a classical product state that takes a configuration as in

fig. 3.2: in particular a string describingCR is expressed, periodically, on the front edge.

This allows us to write local QTS rewriting rules, that can then be used to access this circuit description

without any explicit knowledge of the current position within the circuit, which is implicitly given by the

location on the cube where the transition rule is applied.

3.1.2 Tiling Construction
A tiling Hamiltonian is a local Hamiltonian on a lattice, where each term is a projector onto the complement

of the allowed tiles at a specific lattice location; we will re-visit tiling Hamiltonians more rigorously in

chapter 4, but want to give a quick overview here. As a simple example, consider just the 2D layer B-type

sublattice from fig. 3.1, and assume that every spin is a qubit. We denote with white the state |0〉, and with
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red shading the state |1〉. Assume the only tiles we want to allow are the four shown in fig. 3.2 (without

rotated variants).

By writing a local term for each tile (where we order the corresponding Hilbert space (C2)⊗4 as a tensor

product of the spin on the back, right, front, and left, respectively), we can write a diagonal projector

h = 1−∑4
i=1 hi on (C2)⊗4 such that the ground space is spanned by quantum states corresponding to

the valid tiles; as an example, for the fourth tile, we write

h4 := |1〉〈1| ⊗ |1〉〈1| ⊗ |0〉〈0| ⊗ |1〉〈1| .

We can thus easily define a local Hamiltonian on the layer B-type sublattice which in its zero energy ground

state encodes valid tiling patterns, where adjacent edges match, if possible; if not, the ground state energy of

the Hamiltonian will be at least 1. More specifically, if P indexes all squares with four adjacent spins, then

we can write the Hamiltonian as

Htiling :=
∑
~p∈P

(
1~p −

4∑
i=1

h~pi

)
⊗ 1 (3.2)

where h~pi ⊗ 1 acts non-trivially only on the spins sitting on the edges of square ~p. For the aforementioned

tiles, the resulting pattern is a binary counter, which can be used to translate the depth of a lattice,D, into a

binary string representation ofD at the front edge (see top face in fig. 3.2).

The same method can equivalently be used to enforce a more complicated tiling pattern in three di-

mensions, especially when mixing penalty terms with different weights; for an extensive proof that the

corresponding Hamiltonian ground space is indeed spanned by the best possible tiling we refer the reader

to lemma 4.1.

3.1.3 Hard Instances for the LOCAL HAMILTONIAN Problem
We will now explain how these two techniques—tiling and history state Hamiltonians—can be combined

in order to prove theorem 3.2. As a first step, we define a tiling pattern to constrain all red layer B spins of

the cube—apart from the top and side layers, but including the bottom layer—to a specific symbol which is

used nowhere else, and which we denote with . All the following terms can then be conditioned on these

red spins being either in state , or not; this allows us to distinguish between the different faces of the cuboid

in a translationally-invariant way and with open boundary conditions. This technique is commonly used in

1D (e.g. [GI13]), and we extend it to three dimensions.

As explained in the last section, we then define four tiles which self-assemble to a binary counter; this

allows us to translate• the depth of the cubeD to a string representation ofD on the top front edge. Using
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binary programbinary programbinary programbinary programbinary programbinary programbinary programbinary program
descriptiondescriptiondescriptiondescriptiondescriptiondescriptiondescriptiondescription

Valid tiling of planeValid tiling of planeValid tiling of planeValid tiling of planeValid tiling of planeValid tiling of planeValid tiling of planeValid tiling of plane
is a binary counteris a binary counteris a binary counteris a binary counteris a binary counteris a binary counteris a binary counteris a binary counter
from 0 toD.from 0 toD.from 0 toD.from 0 toD.from 0 toD.from 0 toD.from 0 toD.from 0 toD.

W

HHHHHHHH

D

Figure 3.2: Structure of the ground state imposed by classical bonus and penalty terms. Shown here is the
lattice as in fig. 3.1; a cut through the top layer of the cuboid shows the layer B red sublattice
depicted in fig. 1 (d). Coloured triangles on the top layer denote a spin on the tile edge in config-
uration |1〉, a white tile edge stands for configuration |0〉; the tiles used on the top layer are the
following four:

00000000
0000000000000000

00000000 00000000
1111111111111111

00000000 11111111
0000000011111111

00000000 11111111
1111111100000000

11111111

The same colour coding is used for the squares around the sides, which label the red cF spins
on the sides of the unit cells. The dashed green front edge denotes the computation edge, where
gates will be applied in the history state construction. Observe how the same binary pattern is
repeated periodically along the computation edge.
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similar tiles on the sides of the lattice, we wind this binary string down and around the cube in an anti-

clockwise direction; like that, the string—which is the binary program description of the QRM circuit

CR—is expressed periodically on the front edge of the lattice, which we label the computation edge, see

fig. 3.2.

We further restrict the spins in the green layer A sublattice adjacent to this computation edge to be in

a state corresponding to successive pairs of program bits. For example, if the binary program description

is p1, p2, p3, p4, the green spins depend on (0, p1), (p1, p2), (p2, p3), (p3, p4) and (p4, 0) respectively. A

special encoding (see table 3.2) allows us to translate any such binary pair into an operation to perform on

the computation edge. All constraints up to this point are diagonal in the computational basis and at most

4-local; we collect all these static terms on the cF lattice in the Hamiltonian Hstat.

In order to execute the circuit encoded by the binary string, we will assume that we are working in the

ground space of Hstat; any other states necessarily have energy≥ 1. On the black layer A spins, we partition

the Hilbert spaceHloc intoC2 ⊕ C2; each spin either stores a qubit |q〉, or it indicates one of two “mover”

symbolsJ andI.

We write transition rules for the two arrows, which move them around the cube according to their

direction, while staying on the same layer (see section 3.2.4.1). Any qubit in their path is pushed down to

the next layer and cycled one to the right if passed byI, or one to the left if passed byJ. Once an arrow

arrives at the computation edge, a transition rule conditioned on the program bit pairs (pi, pi+1) (accessible

through the green spins) performs the corresponding computational step on the two adjacent qubits. The

arrow is then re-set to the next lower level, and the whole procedure repeats. Once the arrow returns to the

computational edge and is at the bottom-most layer, there is no further forward transition; the program

terminates.

Symbolically, the operations we can perform with this basic set of instructions are the following ones. We

have a quantum state ofN qubits |q1〉 |q2〉 · · · |qN 〉. In one step, we can either. . .

1. cycle the qubits clockwise, to |qN 〉 |q1〉 · · · |qN−1〉,

2. cycle them anti-clockwise, to |q2〉 · · · |qN 〉 |q1〉,

3. perform a universal two-qubit quantum gate G on the first two qubits,

4. or perform the inverse of this gate, i.e. G†.

We prove in lemma 3.3 that there exists such a gate G which is universal for quantum computation, even if

only applied to adjacent qubits. Analogously to before, we collect all history state terms in the Hamiltonian

Hhist.

For us, the lattice instances of interest are the ones where the binary string corresponds to a circuit

approximating the head of aQMAEXP verifier QRM, i.e.CR (the fact that most program strings do not
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represent such a QRM is not important). In lemma 3.5 we perform a careful analysis of the approximation

errors, and show that one can indeed choose height, width and depth of the lattice (depth corresponding to

the encoded program, width to the ring size, and height to the run time of the verifier) such that the history

state corresponds to a witness verification for any instance l ∈ Π, where Π can be any promise problem in

QMAEXP.

What remains to be done is to penalise invalid history state configurations, such as multiple active symbols,

or no active symbol; collect those terms in an operator P. Finally, an input penalty Πin for the computation

ensures that some ancillas are correctly initialised for the computation, and the output penalty Πout raises

the lowest energy forNO-instances.

Since our history state has branches (since not all transition rules we write down are completely unam-

biguous), we have to show that Hprop defines a so-called unitary labeled graph Laplacian and invoke a

recently-proven variant of Kitaev’s geometrical lemma for this case, lemma 2.44. With a rigorous proof in

section 3.3, we can thus show that the overall 4-local translationally-invariant Hamiltonian

H := Hstat + Hprop + P + Πin + Πout

defined on the spin-3/2 cF lattice satisfies the promise gap λmin(H) ≤ −Ω(1/poly |Λ|) if l is a YES-

instance, and λmin(H) ≥ 0 otherwise. This finishes the construction, and the claim of theorem 3.2 follows.

3.2 Turing’s Cube
3.2.1 Single Gate Universality
In order to execute the QRM, we have to be able to cyclicly apply the QRM head unitary on a pair of qudits.

Since we will be working with qubits in our construction, we embed each such qudit into a list of qubits,

and approximate the 2-local qudit unitary using a special 2-local unitary gate G, which can act on any two

neighbouring qubits. In order to apply Solovay-Kitaev to the QRM head unitary and approximate it with a

O(log(1/ε)) gate count (as opposed to∼ 1/ε), we have to be able to apply both G and its inverse, G†;

however, in Solovay-Kitaev, the requirement is that those two gates can be applied to any pair of qubits,

whereas in our construction—as will become clear later—we can only ever apply either gate to neighbouring

qubits.

While a random choice of G will work, we pick G explicitly (see e.g. [Chi+10]). •It then suffices to prove

that G is universal when applied to adjacent qubits, which is what the following lemma shows.
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1 2 3 4 5 6 7 8 9 10 11

2 3
3 4 5
4 6 7 8
5 9 10 11
6 12 13 14 15 16
7 17 18 19 20 21
8 22 23 24 25 26
9 27 28 29 30 31 32 33

10 34 35 36 37 38 39 40
11 41 42 43 44 45 46 47
12 48 49 50 51 52 53 54 55
13 56 57 58 59 60 61 62 63

Table 3.1: A linearly independent set of generators for su(8) in terms of nested commutators of H1 and
H2. For example, H42 := i[H11,H5].

Lemma 3.3 (Ozols [Ozo16]). Define the 2-qubit unitary G := exp(iH) with

H := σx ⊗ 1+ 1⊗ σz + σx ⊗ σx + σz ⊗ σz =


2 0 1 1

0 −1 1 1

1 1 0 0

1 1 0 0

 .

Then the unitaries {Gk,k+1 mod l : k = 0, . . . , l − 1} generate a dense subset of SU(2l) for all l ≥ 3,
where the subscript denotes where the unitaries act.

Proof. Since 3-qubit unitaries generate a dense subset ofU(2l) when applied to adjacent qubits, it suffices

to prove the claim for l = 3. The proof follows techniques in Lie algebra [Chi+10]. Define H1 :=

H ⊗ 12 and H2 := 12 ⊗ H• , and let L(H1,H2) be the Lie algebra generated by these two elements.

For j = 3, . . . , 63, we set Hj := i[Hrj ,Hcj ], where rj and cj are the row and column numbers of entry

j in Table 3.1. One can verify—using a computer algebra system—that the matrices {H1, . . . ,H63} are

linearly independent, and traceless by construction. Since dim su(8) = 63, they furthermore span the

entire algebra, and the claim follows.

3.2.2 Circuit Encoding
We work with a face-centred cubic lattice of side lengthsD×H ×W , as shown in fig. 3.2. At each vertex we

place a 4-dimensional spin with local Hilbert spaceHloc = C4, and we want to define a 4-local Hamiltonian

on the lattice which embeds the evolution of aQMAEXP verifier. Our construction comprises the following

three main steps.
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1. Binary counter. We construct a 2D tileset which lives on the top face of the cuboid, and translates the

cuboid depthD into a binary description ofD on the top front edge, which is of size log2D. This

binary string encodes a circuitC according to table 3.2 and fig. 3.3.

2. Shuffling the program. Using another 2D tileset, we cyclicly shuffle this circuit program around the

sides of the cuboid and wind it down diagonally as shown in fig. 3.2. The front edge—marked in

red—is the computation edge and will periodically see the entire binary description of the program.

3. Performing gates. On the sides of the cuboid, we superpose a layer of qubits. Labelling the qubits

around the top edge of the cube with |q1〉 |q2〉 · · · |qN 〉, we define transition rules which allow us to

perform one of the following four operations:

a) cycle the qubits clockwise, to |qN 〉 |q1〉 · · · |qN−1〉,

b) cycle them anti-clockwise, to |q2〉 · · · |qN 〉 |q1〉,

c) perform a universal two-qubit quantum gate G on the first two qubits,

d) or perform the inverse of this gate, i.e. G†, on the first two qubits.

Once any gate operation is performed, all qubits are swapped with the ones on the next-lower level

while cycling them in the direction specified. On the next layer, the same procedure repeats until the

execution terminates afterH steps (H being the height of the cube). The history state construction

for one operation above thus requires 2× (D +W ) steps.

The necessary transition rules are described in detail in section 3.2.4.2, and table 3.2 describes how the

binary program description on the computation edge is interpreted as one of the four actions above at each

level. Fig. 3.3 shows how any circuit can be encoded in this way. Observe that due to the winding program

description—which is exposed periodically at the front edge—we necessarily apply the same circuit over and

over again. In between each appearance of the description ofCR on the computation edge, the string of

zeroes does not implement any gates or move the tape in either direction. Naturally, this is precisely the

evolution of a Quantum Ring Machine.

For suitable circuitsCR, this construction is thus a history state Hamiltonian which encodes an arbitrary

QRM.

Remark 3.4. If we want to encode a QRM which runs for t applications of the QRM head, we necessarily
need H ≥ 2t(D + W ) for our cube. Furthermore, if the QRM head acts on two qudits of dimension d,
the circuit CR acts on m = dlog2 de qubits; we thus require D +W ≡ 0 (mod m).

For a fixed cube depthD encoding someBQEXPQRM, we need to ensure that we can tune the remaining

two free parametersW andH—width and height of the cuboid—to provide enough space and time for the
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|qi−1〉

|qi〉

|qi+1〉

|qi+2〉

G

G† G†
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G

G†

G†

G

G†

G

stay (S)
0 0 0
I

J

I

down (D)
0 1 0 0
I

I

J

I

up (U)
0 0 1 0

I

J

J

I

gate (G)
0 0 1 1 0

I

J

J

J G

I

inv (I)
0 1 1 0 0
I

I

I

J

G†

I

Figure 3.3: Execution order of an arbitrary circuit approximated using the universal gate G and its inverse
G†. Each elementary operation start and end in a configurationI, where the last program bit
is a 0—like this, each circuit can be constructed by a simple combination of these elementary
operations, with a constant overhead. Observe that both gate application and inverse gate ap-
plication do not end on the same line, which means that if we want to apply G at the current
position, we have to execute DGD, and similarly UIU for G†. The specific quantum gate G that
we use is proven to be universal in lemma 3.3.
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computation to run and terminate, while at the same time keeping the error introduced by approximating

the QRM head unitary within bounds. This is captured in the following technical lemma.

Lemma 3.5. Take a BQEXP promise problem Π. For any precision δ > 0 and instance l ∈ Π, there exist
cube parameters W,H,D = O(exp poly(|l|, log 1/δ)) which allow a verifier ring machine to be executed
on the cube for instance l to within precision δ.

Proof. Let l ∈ Π. A BQEXP witness computation for this instance l of size |l| can be performed with a

QRM with head unitary R ∈ SU((Cd)⊗2) for some d. We require that the QRM head R contains a

description of instance l; this means that d—the size of each of the two qudits that R acts on—depends on

the size of the instance, i.e. d = O(poly |l|). Denote with t the number of steps the ring machine needs to

perform to run the entire verifier computation.

1. In lemma 3.3 we show that there exists a specific 2-qubit gate G which is universal for quantum

computation, even when only applied to adjacent qubits.

2. Using S-K and a circuit encoding as described in fig. 3.3 using gates G and its inverse G†, approximate

the QRM head R with circuit CR to some error ε ≤ δ/t, where δ is the overall precision which

we require for the verifier. Each quditCd of the QRM verifier is encoded inm = dlog2 de qubits.

The circuitCR thus acts on (C2)⊗2m, i.e.m qubits. By [NC10], approximating ann-qubit unitary

to within precision ε requires O(n24nlogc(n24n/ε)) gates (for some c ≤ 4), if using their gateset;

for our purposes it suffices to know that the number of gates required to approximate R to within

precision ε scales as O(poly(d)× logc(1/ε)).

3. The circuit description is thus of length |CR| = O(poly |l| × logc(1/ε)) and therefore we have to

require that the depth of the cubeD = O(exp(|CR|)) = O(exp(poly |l| × logc(1/ε))).

4. The front sidelengthW is increased...

• to make the ring r = W +D large enough for the computation, if it is not already, and

• to make the ring size an integer multiple ofm = dlog2 de.

5. SetH = 2t(W +D).

With ε ≤ δ/t and t = O(exp poly |l|), we further have logc 1/ε ≤ logc(t/δ) = O(poly(|l|, log 1/δ)),

and the claim of the lemma follows.

Remark 3.6. If we require cube parameters of O(exp poly |l|), we can demand a computation accuracy of
at most δ = Ω(1/ exp poly |l|).
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Proof. If we demand the two scaling parameters in lemma 3.5 to be equal, we have

exp log4 (1/δ) = O(exp poly |l|)

⇔ log4 (1/δ) = O(poly |l|)

⇔ log (1/δ) = O(poly |l|)

⇔ δ = Ω(1/ exp poly |l|).

3.2.3 Static Lattice Constraints
3.2.3.1 Lattice Structure
We will work with a face-centred cubic lattice of 4-dimensional qudits. All interactions will be at most 4-local

and translationally-invariant. The system will have open boundary conditions; in particular, we do not cut

off interactions at the boundary or introduce boundary constraints of any kind. For the sake of clarity, when

writing out constraints in the following, we will usually ignore parts of the sublattice, implicitly assuming

that any interaction term is extended trivially everywhere else. When referring to layer A and if not explicitly

mentioned, we mean the black sublattice, and layer B will be the red sublattice with side-centred vertices.

Any “static” constraint—i.e. the terms in the following four subsections—will be translated into local

Hamiltonian terms diagonal in the computational basis; see section 3.2.3.6 for details.

3.2.3.2 Constraining the Lattice Bulk
Denoting with a special symbol in the red sublattice, we want to constrain the lattice to be in this state in

the bulk, and in its complement on the topmost red face, as well as the outermost side faces. We first give a

bonus of 1 to spins in the B sublattice in configuration

All red layers but the top one will then be in state . We then give a bonus of 1 to all of the following

configurations:
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This leaves the top layer unchanged. Summarising the bonus terms so far, all other B layers, as seen from the

top, are then in the configuration
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5

5

5

5

5

5

5

5
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5

5

2

5

5

5

2

5

5

5

2

5

5

5

We then give a global 1-local penalty to with strength -3. The top B layer will thus be in the complement of

(which we denote with ), while all the other B layers look like
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3.2.3.3 Binary Counter

The top layer of type B will carry a binary counter tiling, which translates the side lengthD into a binary

representation on the top front edge. In order to achieve this, we need to initialise the top back edge of

the cube to all 0, and the top right edge to all 1. Since we do not want to use distinct interactions on the

outside layers, but have open boundary conditions, we have to find a configuration in the pre-constrained

cube which only occurs on the top right and back edge, respectively. The following configuration is such an

example:

top B layer
(3.3)

Since only the top and outer layers have red spins in configuration , this four-local interaction allows us

to pick out the top right boundary of the top layer, and to constrain it to state 1. A similar interaction allows
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constraining the top back layer to 0. The top B layer then looks like

11111111
11111111

11111111
00000000000000000000000000000000

Since this is the only B layer with spins in state , we can use the following tiles from [Pat14] to get the

desired binary counting layer.

00000000
0000000000000000

00000000 11111111
1111111100000000

11111111

11111111
0000000011111111

00000000 00000000
1111111111111111

00000000

It is straightforward to verify that the general tile

aaaaaaaa
bbbbbbbbssssssss

cccccccc

obeys the rules c = carry of a+ b and sum s = a⊕2 b.

3.2.3.4 Winding Program Diagonally
We use an interaction similar to eq. (3.3) to shuffle the program around the cube in a cyclic fashion, as

depicted in fig. 3.2:

00000000

00000000

and 11111111

11111111

Observe that, by including the red qudit one layer in, this interaction does indeed only apply to the front

right face; similar interactions on the other three faces achieve the desired program copying around the cube

sides. Additionally, by conditioning on if this inner qudit is either or , we can apply a different rule at the

top layer. In particular at the top layer of the front right face we want to flip the bit when copying down so

that there are 1’s on the top layer but 0’s on the layer below - see fig. 3.2.
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On the corners, we use a similar shape of interaction, i.e.

pi+1pi+1pi+1pi+1pi+1pi+1pi+1pi+1 pipipipipipipipi
pi−1pi−1pi−1pi−1pi−1pi−1pi−1pi−1

pi+1pi+1pi+1pi+1pi+1pi+1pi+1pi+1

pi+2pi+2pi+2pi+2pi+2pi+2pi+2pi+2 pi+1pi+1pi+1pi+1pi+1pi+1pi+1pi+1
pipipipipipipipi

pi−1pi−1pi−1pi−1pi−1pi−1pi−1pi−1

and similarly for all other corners.

Note that in section 3.2.4.2, we will need to temporarily replace red program bits with a special symbol

! indicating that the application of a gate is happening in the next step, so we exclude this case from the

constraints in this section (i.e. we allow either pi and pi, or pi and ! to appear around the computational

corner, and similarly for the diagonal face constraints bordering the computation edge).

As none of the dynamic transition rules below ever changes the number of head symbols (of which !

is one), we can rule out the cases where there is more than one ! or other head symbol present at any one

time—we analyse these branching cases in detail in section 3.2.5.

3.2.3.5 Constraining layer A qudits
We label the states of the green face-centred qubits of the layer A type with the alphabet {A,B,C, 0}.
For all such green lattice qubits we apply a bonus of strength 1/2 to configuration 0, so that this state is

preferred.

In order to access two sequential program bits pi and pi+1 with a single three-local interaction on the

computation edge, we add a strength 1 interaction which constrains the front column of the layer A green

sublattice to a state Pi ∈ {A,B,C} depending on the two neighbouring computation bits, i.e.

PiPiPiPiPiPiPiPi

pi+2pi+2pi+2pi+2pi+2pi+2pi+2pi+2 pi+1pi+1pi+1pi+1pi+1pi+1pi+1pi+1
pipipipipipipipi

pi−1pi−1pi−1pi−1pi−1pi−1pi−1pi−1

Note that this interaction will have no effect anywhere else in the lattice, as at least one of the two red

program bits will be .

The rule which governs what state Pi is constrained to will depend on the tuple pi and pi+1, and is

derived from table 3.2. The idea is that Pi = f(pi, pi+1) will signify what is to happen at the computation
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edge. Looking at table 3.2, we see that at each stage we either:

A. Apply a gate (either G or its inverse G†, depending on where the arrow is coming from),

B. go Backwards (i.e. change the direction of the arrow),

C. or Continue in the same direction.

Given the encoding of table 3.2, we therefore take Pi = f(pi, pi+1) for a function f given by

f(pi, pi+1) =


B if pi+1 = 0,

C if pi = 0 and pi+1 = 1, and

A if pi = pi+1 = 1.

Due to the aforementioned 1/2 bonus which applies at all green spins, the remainder of layer A is in

configuration 0.

3.2.3.6 Summary of static constraints
As explained in the main text under “Tiling Construction”, we take all static constraints listed so far and

translate them to diagonal and local projectors hi. This allows us to write a 4-local, translationally-invariant

classical Hamiltonian Hstat =
∑
~x

∑
hi

h~xi (i.e. product and diagonal in the computational basis of each

spin) with a ground space spanned by states with the following properties.

1. Any black vertex spin in layer A is unconstrained.

2. The red layer B spins will be in a state as depicted in fig. 3.2, i.e. on the top cuboid face, they represent

a binary counter translating the depth D of the cuboid into a binary description of D on the top

front edge. This binary string s = p1 . . . pT is wound down diagonally around the cube, which

expresses s periodically on the front computation edge. Only the spins adjacent to this edge are also

allowed in a configuration !. In the bulk of the cube all the way to the bottom-most layer, the red

spins are in state .

3. The green layer A is in configuration 0 everywhere but on the front edge; there, the spins there are in

a configuration depending on the two adjacent program bits pi and pi+1, as outlined above.

This Hamiltonian Hstat is gapped with a size-independent constant gap, and we can rescale the interactions

so far and shift the overall energy to assume that this ground space as detailed above has energy zero, and any

other configuration has energy lower-bounded by 1.

In the next sections, we will explain the history state construction, which—within this ground space of

Hstat—will represent a valid QRM evolution for the circuit represented by the binary string s.
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3.2.4 Dynamic Lattice Constraints
We always depict a transition rule as connected by a squiggly arrow ; the notation is self-explanatory:

the brighter blue shading indicates the original state, whereas the dull blue shading indicates the target

configuration. To give an example, a transition

aaaaaaaa

bbbbbbbb

cccccccc

dddddddd

 

aaaaaaaa

b′b′b′b′b′b′b′b′
c′c′c′c′c′c′c′c′

dddddddd

would be translated into a two-local term h = |bc〉〈bc|+ |b′c′〉〈b′c′| − |b′c′〉〈bc| − |bc〉〈b′c′|, and corre-

spondingly with an extra quantum register if b or cwere labelling vertices that carry a qubit (i.e. the black

layer A sublattice vertices).

3.2.4.1 Moving Qubits

The black sublattice (A layers) comprises the alphabet {0, 1,I,J}, where we treat the 0, 1-subspace as a

qubit, i.e. C2. The right and left arrows are markers to indicate where to move qubits to. As an example on

the front face, we have a left moving sequence

aaaaaaaa
bbbbbbbb cccccccc

JJJJJJJJ

xxxxxxxx yyyyyyyy
zzzzzzzz

aaaaaaaa
bbbbbbbb JJJJJJJJ yyyyyyyy

xxxxxxxx cccccccc zzzzzzzz

aaaaaaaa
JJJJJJJJ xxxxxxxx yyyyyyyy

bbbbbbbb cccccccc zzzzzzzz
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and analogously the right moving sequence

IIIIIIII aaaaaaaa
bbbbbbbb cccccccc

xxxxxxxx yyyyyyyy
zzzzzzzz

yyyyyyyy
IIIIIIII bbbbbbbb cccccccc

xxxxxxxx aaaaaaaa zzzzzzzz
yyyyyyyy

zzzzzzzz
IIIIIIII cccccccc

xxxxxxxx aaaaaaaa
bbbbbbbb

To move qubits around a corner, we use an interaction of the form

IIIIIIII aaaaaaaa
bbbbbbbb

cccccccc

xxxxxxxx

yyyyyyyy
zzzzzzzz

yyyyyyyy
I∗I∗I∗I∗I∗I∗I∗I∗

bbbbbbbb

cccccccc

xxxxxxxx
aaaaaaaa

zzzzzzzz

at the back, left and right corners (different rules as described in section 3.2.4.2 are used for the front edge)

and similarly for going around the corner in the opposite direction.

A few remarks: first note that all the transitions defined so far are unique, i.e. given the cube bulk

constrained to as done in section 3.2.3.2, and for every configuration with only one arrow symbol (the

other cases we will penalise as a last step), there exists precisely one forward and one backwards transition.

Another important point is how to modify the arrows when going around the circumference of the cube

once (marked with aI∗ in the last transition rule); at the moment, if we left the arrow type unchanged for

every corner, we would not be able to shuffle around the qubits in a circle; on the back face, we would be

doing the opposite shuffling operation. Therefore, we change the arrow type according to the following
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incoming
tape head

program
xn−1xn

operation on
qubits

outgoing
tape head

I 00 1 J
I 01 1 I
I 10 1 J
I 11 G† I
J 00 1 I
J 01 1 J
J 10 1 I
J 11 G J

Table 3.2: Program encoding. The arrow symbolsI andJ—i.e. the heads moving on the tape—indicate
in which direction the ring is moving. Relative to the tape, the current head is thus moving in the
opposite direction. With this encoding, any circuit can be executed with the available operations,
see fig. 3.3.

scheme:

JJJJJJJJJJJJJJJJ
JJJJJJJJJJJJJJJJ
JJJJJJJJJJJJJJJJ
JJJJJJJJJJJJJJJJ
JJJJJJJJJJJJJJJJ JJJJJJJJ JJJJJJJJ JJJJJJJJ JJJJJJJJ JJJJJJJJ JJJJJJJJ JJJJJJJJ JJJJJJJJ JJJJJJJJ

IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIIIIIIIIIII
IIIIIIIIIIIIIIII
IIIIIIIIIIIIIIII
IIIIIIIIIIIIIIII
IIIIIIIIIIIIIIII

start

and

IIIIIIIIIIIIIIII
IIIIIIIIIIIIIIII
IIIIIIIIIIIIIIII
IIIIIIIIIIIIIIII
IIIIIIIIIIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIII

JJJJJJJJ JJJJJJJJ JJJJJJJJ JJJJJJJJ JJJJJJJJ JJJJJJJJ JJJJJJJJ JJJJJJJJ JJJJJJJJ JJJJJJJJJJJJJJJJ
JJJJJJJJJJJJJJJJ
JJJJJJJJJJJJJJJJ
JJJJJJJJJJJJJJJJ
JJJJJJJJJJJJJJJJ

start

3.2.4.2 Computation
In order to execute any circuit as in fig. 3.3, we have eight elementary operations available, all of which are

listed in table 3.2. It is easy to see that there exists a symmetry between the right- and left-moving arrow;

we will thus explain the right-moving arrows (including the application of gate G) in detail and leave the

reverse direction as an exercise to the reader.
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Case 1. Consider p1p2 = 00 or 10, so that f(p1, p2) = B. The transition is conditioned to only

happen if the green qubit in the layer A sublattice is in theB state. Move ?’ up, b to the right and flip the

arrow. This corresponds to simply reverting the direction as in table 3.2.

BBBBBBBB
p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 00000000 00000000

pnpnpnpnpnpnpnpn

pn−1pn−1pn−1pn−1pn−1pn−1pn−1pn−1

p5p5p5p5p5p5p5p5 p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 00000000
00000000

pnpnpnpnpnpnpnpn

???????? ???????? IIIIIIII ????????
????????

????????
????????

yyyyyyyy zzzzzzzz aaaaaaaa bbbbbbbb
?’?’?’?’?’?’?’?’

cccccccc
????????

???????? ???????? ???????? ????????
????????

????????
????????

BBBBBBBB
p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 00000000 00000000

pnpnpnpnpnpnpnpn

pn−1pn−1pn−1pn−1pn−1pn−1pn−1pn−1

p5p5p5p5p5p5p5p5 p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 00000000
00000000

pnpnpnpnpnpnpnpn

???????? ???????? ?’?’?’?’?’?’?’?’ ????????
????????

????????
????????

yyyyyyyy zzzzzzzz aaaaaaaa JJJJJJJJ
bbbbbbbb

cccccccc
????????

???????? ???????? ???????? ????????
????????

????????
????????

Case 2. Consider p1p2 = 01 so that f(p1, p2) = C . We perform the same action as above, but keep

the arrow direction.

CCCCCCCC
p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 11111111 00000000

pnpnpnpnpnpnpnpn

pn−1pn−1pn−1pn−1pn−1pn−1pn−1pn−1

p5p5p5p5p5p5p5p5 p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 11111111
00000000

pnpnpnpnpnpnpnpn

???????? ???????? IIIIIIII ????????
????????

????????
????????

yyyyyyyy zzzzzzzz aaaaaaaa bbbbbbbb
?’?’?’?’?’?’?’?’

cccccccc
????????

???????? ???????? ???????? ????????
????????

????????
????????

CCCCCCCC
p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 11111111 00000000

pnpnpnpnpnpnpnpn

pn−1pn−1pn−1pn−1pn−1pn−1pn−1pn−1

p5p5p5p5p5p5p5p5 p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 11111111
00000000

pnpnpnpnpnpnpnpn

???????? ???????? ?’?’?’?’?’?’?’?’ ????????
????????

????????
????????

yyyyyyyy zzzzzzzz aaaaaaaa IIIIIIII
bbbbbbbb

cccccccc
????????

???????? ???????? ???????? ????????
????????

????????
????????

Case 3. Consider p1p2 = 11 so that f(p1, p2) = A. We want to execute a gate, which requires one

intermediate step. We place the computation marker on the right hand side of the computation edge. This

signals that the next step is to perform a gate G on a and b. Here |a′〉 |b′〉 := G |a〉 |b〉. The program is

132



restored and the arrow left in the right moving configuration, as required by table 3.2.

AAAAAAAA
p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 11111111 11111111

pnpnpnpnpnpnpnpn

pn−1pn−1pn−1pn−1pn−1pn−1pn−1pn−1

p5p5p5p5p5p5p5p5 p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 11111111
11111111

pnpnpnpnpnpnpnpn

???????? ???????? IIIIIIII ????????
????????

????????
????????

yyyyyyyy zzzzzzzz aaaaaaaa bbbbbbbb
?’?’?’?’?’?’?’?’

cccccccc
????????

???????? ???????? ???????? ????????
????????

????????
????????

AAAAAAAA
pn−1pn−1pn−1pn−1pn−1pn−1pn−1pn−1 pnpnpnpnpnpnpnpn 11111111 !!!!!!!!

p3p3p3p3p3p3p3p3

p4p4p4p4p4p4p4p4

pn−2pn−2pn−2pn−2pn−2pn−2pn−2pn−2 pn−1pn−1pn−1pn−1pn−1pn−1pn−1pn−1 pnpnpnpnpnpnpnpn 11111111
11111111

p3p3p3p3p3p3p3p3

???????? ???????? ?’?’?’?’?’?’?’?’ ????????
????????

????????
????????

yyyyyyyy zzzzzzzz aaaaaaaa bbbbbbbb
11111111

cccccccc
????????

???????? ???????? ???????? ????????
????????

????????
????????

AAAAAAAA
p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 11111111 11111111

pnpnpnpnpnpnpnpn

pn−1pn−1pn−1pn−1pn−1pn−1pn−1pn−1

p5p5p5p5p5p5p5p5 p4p4p4p4p4p4p4p4 p3p3p3p3p3p3p3p3 11111111
11111111

pnpnpnpnpnpnpnpn

???????? ???????? ?’?’?’?’?’?’?’?’ ????????
????????

????????
????????

yyyyyyyy zzzzzzzz a’a’a’a’a’a’a’a’ IIIIIIII
b’b’b’b’b’b’b’b’

cccccccc
????????

???????? ???????? ???????? ????????
????????

????????
????????

We now move the arrow once around the tape and then arrive at the computational corner from the other

side. Observe—as mentioned—that the encoding in table 3.2 is mirror-symmetric, so by reversing all the

rules above one can implement the same rules—while applying G−1 instead of G when Pi = A for an

arrow incoming from the right.

3.2.4.3 Computational Input and Output Constraints
Since the instance is specified within the QRM head, it suffices to provide the computation with a single

ancilla |0〉 as input; in case we need more ancillas than available on the front edge, we can augment our

verifier as in fig. 2.12. Due to the configuration of the red layer B sublattice, it is straightforward to find a

local configuration which only ever appears on a top right corner; more specifically, we utilise the constraint

interaction
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to enforce that the black symbol is either in an arrow configuration, or 0, respectively. The rest of the tape is

left unconstrained.

Since there is nothing special about the bottom-most layers A and B, we need to use a pair of interactions

to enforce the last black qubit to an accepting state. This can be readily achieved using

constraining the black qubit to state |0〉, and

giving a bonus to the complement configuration. Everywhere but on the bottom-most layer, the two

penalties precisely cancel; however, on the last layer, only the projection onto |0〉 survives, which thus acts as

output penalty once the computation is terminated.

3.2.4.4 Multiple Heads Penalty
Since we only want to allow precisely one head on the computational layer, we will penalise any configuration

where two heads are next to each other. This finishes our construction.

3.2.5 Analysis of History State Branching
In this section, we want to analyse all transition rules and show that the parts where they are ambiguous do

not break the evolution of the computation. First note that all constraints in section 3.2.3 are static, i.e. there

are no possibilities for any ambiguities in the configuration. We will call configurations that obey all those

static constraints and have precisely one head symbol on the computational layer—i.e. exactly one ofI,J

or !—valid configurations.

We will go through each dynamic penalty in section 3.2.4 separately.
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1. In section 3.2.4.1, the transition rules for the faces are unambiguous, since they depend on the red

symbol to be in a configuration .

2. The rules for moving around a corner, however, can happen on a face: in this case, the arrow symbol

is moved one layer into the bulk. Observe though that none of the movement transitions can apply

to the arrow when it is inside of the bulk (apart from moving it back out with a reverse transition), so

the computation branches, but the leg does not proceed: we obtain an evolution of the form

|ψ1〉

|ψ′1〉

|ψ2〉

|ψ′2〉

|ψ3〉

|ψ′3〉

|ψ4〉

|ψ′4〉

where all the primed states are redundant, but at most enlarge the overall evolution by a factor of 2.

3. In section 3.2.4.2, the computation transitions are unambiguous; observe in particular that there is

no transition rule that simply copies the arrow around the computation edge (by construction, see

section 3.2.4.1 ).

4. Finally, the input and output constraints are static again.

This allows us to formulate the following two branching lemmas.

Lemma 3.7. Any valid history state for the given transition rules is of size O(poly(W,D,H)), where W ,
D and H are the cuboid’s width, height and depth.

Proof. Follows by construction; the head can perform at most O(H× (W +D)) unique transitions.

Lemma 3.8. In case there is more than one head symbol (i.e. !,I orJ) present, the minimal valid evolution
splits up into poly-sized slices, each of which carries at least one penalty from two directly adjacent heads.

Proof. The argument is the same as in theorem 2.60. One can keep all but one of the head symbols fixed;

the one left free to move is necessarily meeting another head symbol within poly many steps.

3.3 QMAEXP-Hardness Proof
In this section, we provide a rigorous proof of theorem 3.2. We want to point out that the Hilbert space

structure of this lattice Hamiltonian Hprop is not a product space between clock and computation space

Hclock ⊗Hcomp, which would result in a ground state of the standard history state form
∑
t |t〉 |ψt〉. The

reason for this is that depending on which sub-lattice a spin sits on, its local Hilbert space Hloc = C4

decomposes differently. The red and green spins can be regarded as being completely in the clock space,
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as all transition rules which act on them are completely classical, i.e. they never move any of the red and

green spins out of a computational basis state. The black spins, however, decompose• into a direct sum

Hclock ⊕ C2, the latter space carrying a qubit, and the clock part being reserved for the two arrow symbols

J andI, which are part of the clock.

In order to analyse the spectrum, we note that there exists an isometric transformation between our

Hamiltonian and Hilbert space, and one which respects the product space structure, which in particular will

allow us to view the Hamiltonian as a ULG Laplacian and apply lemma 2.44. In the language of Quantum

Thue Systems (cf. definition 2.51) we can state the following lemma.

Lemma 3.9. The transition rules in section 3.2.2 define a Quantum Thue System, and the induced ULG is
simple.

Proof. Verifying that the rules define a Quantum Thue System is straightforward by a simple re-ordering

of the spins. Simplicity of the corresponding unitary labelled graph follows from lemma 3.7, and we refer

the reader to definition 2.37.

Without further ado, we now proceed to the proof of theorem 3.2, which we re-state here in a rigorous, but

concise fashion.

Theorem 3.10. (4, 4)-TILH-3D is QMAEXP-complete.

Proof. Containment inQMAEXP is clear (see theorem 2.17). To show that the Hamiltonian instances of the

cube construction define a QMAEXP-hard family, we will employ techniques proven there which should

simplify the analysis.

Let Π = (ΠYES,ΠNO) be a QMAEXP promise problem, as in definition 2.13. By lemma 3.5, we know

that we can pick a constant error threshold δ > 0 such that for any instance l ∈ Π there exists a cube

which allows a verifier circuit for this instance to be executed on the sides. Since we will require probability

amplification later on in the proof (fact 2.12), we set δ = f(|l|) for some function f to be specified later,

and also assume that the original verifier’s acceptance probability is εl ≤ f(|l|).

We translate all static and dynamic penalties into a Hamiltonian as explained in chapter 2 and eq. (2.7),

and denote the corresponding Hamiltonian operator with

H = P + Hprop = Pin + Pout + Pstatic + Pheads + Hprop,

where Pstatic comprises all static constraints for the cube (cube structure, binary counter and winding of

program), Pheads penalises any two head symbols next to each other, and such that Pin/out represent the

input and output penalties, respectively.
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Soundness. We first address the case when l ∈ ΠYES. Denote with |Ψl〉 the valid history state, i.e.

the unique uniform superposition ground state of Hprop started out in a valid initial configuration with a

single left-moving head in the top left row, and such that no initial or static penalty is violated. Then

〈Ψl|H |Ψl〉 = 〈Ψl|Pin |Ψl〉 = 0 (i)

+ 〈Ψl|Pout |Ψl〉

+ 〈Ψl|Pstatic |Ψl〉 = 0 (ii)

+ 〈Ψl|Pheads |Ψl〉 = 0 (iii)

+ 〈Ψl|Hprop |Ψt〉 = 0 (iv).

Term (i) is zero because |Ψl〉 satisfies all input constraints, (ii) because |Ψl〉 is a valid history state, (iii)

because |Ψl〉 has precisely one active head symbol, and (iv) since |Ψl〉 is a ground state of Hprop.

What remains to be analysed is the output penalty 〈Ψl|Pout |Ψl〉. If we write |Ψl〉 = 1√
T

∑
t∈T |t〉 |ψt〉

where T is the normalisation constant for the history state (i.e. the number of unique vertices in the ULG

evolution represented by |Ψl〉), which we know by lemma 3.7 to be T = O(poly(W,D,H))—i.e. the

number of computational steps taken, including branching, cannot be larger than a polynomial in the cube

width, depth and height. Then

〈Ψl|Pout |Ψl〉 =
1

T

 ∑
t,t′∈T

〈t| 〈ψt| |T 〉〈T | ⊗Πout |t′〉 |ψt′〉


=

1

T
〈ψT |Πout |ψT 〉

=
1

T
P(circuit rejects)

≤ 1

T
(εl + δ)

=
2f(|l|)
T

.

Completeness. If l 6∈ ΠYES, we have to show that for any |ψ〉, 〈ψ|H |ψ〉 is bounded away from the

YES-case by a 1/poly gap. If any static constraint is violated, we can immediately bound H ≥ 1. So we

can assume that the state |ψ〉 is in a valid configuration.

Note that the number of head symbolsI,J or ! is always preserved for any transition rule. This means

that Hprop—and therefore also H—is block-diagonal in the static cube configuration and the number of

head symbols on the computational layer, we can address each case separately.

1. In case of multiple head symbols we observe that each head necessarily sweeps the entire surface

of the cube. Mark an arbitrary head symbol, and define H′prop to be Hprop with any transitions
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for the other heads removed. Any such transition rule as in eq. (2.9) is positive semi-definite, which

necessarily means Hprop ≥ H′prop (spectrum wise, by which we mean Hprop−H′prop is psd itself).

This new operator H′prop might be non-local, but we only need it to lower-bound the spectrum of

Hprop.

The marked head symbol will then encounter another head in at most poly(W,H,D) many steps

(it cannot take longer than visiting the entire surface of the cuboid, see lemma 3.8). At that point, it

will pick up a penalty. Utilising our variant of Kitaev’s lemma (lemma 2.44), we conclude

H = Pin/out + Pstatic + Pheads + Hprop

≥ Pheads + H′prop

≥ Ω(1/ poly(W,H,D)).

We thus need to setf to a function which allows a polynomial separation (in the system size) between

YES andNO instance; by remark 3.6, this is always possible.

2. The same argument lets us bound

H ≥ Pin/out + Hprop = Ω(1/ poly(W,H,D))

in case of a single head valid history state since l is aNO-instance.

3. What remains to be analysed is the zero head case. There are two standard approaches: we can either

increase the number of symbols on the computational layer, such that on one side of a head—i.e.

behind it in direction of the computation—we take one kind of symbols, and on the other side

we take the other set; constructions like this can be constrained by a regular expression (without

repetition of symbols, cf. [GI13, lem. 5.2]) and thus penalised with local terms.

Since our benchmark tries to reduce the local dimension of the system, we instead add a bonus term

B to the Hamiltonian H, and such that B |ψ〉 = −g(|l|) × h |ψ〉 where h is the number of head

symbols for any basis state |ψ〉 of H, and g is a function chosen such that there is again a 1/ poly

separation between the zero head state and the ground state forYES-instances, but such that multiple

head configurations stay bounded away from 0. It is clear that B can be implemented by a 1-local

term of the form−g(|l|) |head〉〈head|.

To be more precise and to determine how quickly g has to grow, assume that the construction up to

now satisfiesλmin ≤ 1/A for the YES case, andλmin ≥ 1/B in theNO case (excluding zero heads),

whereB = O(poly(W,H,D)), andA ≥ 4B ×W ×H ×D. Choose g = 2/A; since there can
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be at mostW ×H ×D heads on the cuboid’s faces, we obtain the bounds

λmin ≤ 1/A− 2/A = −1/A

if l ∈ ΠYES. •Otherwise, for at least one head,

λmin ≥ 1/B − 4(W ×H ×D)/A ≥ 1/B − 1/B ≥ 0.

Finally, the zero head case can be trivially lower-bounded by H ≥ 0.

We have thus shown a promise gap of 1/ poly in the system size: for l ∈ ΠYES, H ≤ −Ω(1/poly(W,H,D)),

and H ≥ 0 otherwise. The claim of theorem 3.2 follows.

3.4 Chapter Summary
The quest for ever-more physically realistic families of QMA hard local Hamiltonians has arguably led

us to increasingly contrived constructions. The increase in complexity necessary when going from non-

translationally-invariant constructions to translational invariance is striking [GI13], and the same holds true

for the effort to bring the local dimension back within reasonable range (chapter 2). On the other hand,

almost always some fundamental new piece of machinery had to be developed, advancing our knowledge

about circuit Hamiltonians: such as allowing branching to happen in the computational path, or using

easier-to-implement computational models (Quantum Ring Machines), of independent interest e.g. in the

context of adiabatic quantum computation ([WL15]).

In our case, we combine our construction with Wang tiles, which to our knowledge have not ever been

used for this purpose. This “outsourcing” of part of the computation to a classical constraint satisfaction

problem saves a significant amount of overhead for the control machinery surrounding the actual quantum

verification procedure. Furthermore, the single universal quantum gate could be of independent interest in

other applications, as it is reasonable to imagine a physical set-up where gates can only be applied to adjacent

qubits in a circuit.

In fact, our 3D construction showcases that the embedded computation need not be highly obscure, and

can, in contrast, even be quite elegant, as is evident by the much lower required local dimension and the

therefore much smaller number of possible interactions necessary. By moving beyond simple spatial lattices,

we can show that such structures support the emergence of more complex behaviour, despite the intrinsic

symmetry of the crystal lattices we employ. By making use of these novel features, we are able to reduce the

local dimension by two orders of magnitude as compared to the best result known to date.

We suggest three concrete open problems.
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1. While our cube crystal structure is three-dimensional, we do not exploit its bulk structure beyond

making use of its different sides. But there are small universal machines in higher dimensions (e.g. 2D

or 3D Turing machines, Turmites, or cellular automata) which might be of use for improving this

result further. This also leaves open the question of the required local dimension necessary for any

2D construction.

2. Including classical computation parts with Wang tiles is one step, but are there other, fundamentally

different sets of local interactions even suitable to encode parts of a quantum computation?

3. A bottom-up approach proving a lower bound on the local dimension (or locality) of the interactions

would be an alternative route to new insights into the local Hamiltonian problem. We want to

emphasise that there is not much space left for any optimisation: as mentioned in the introduction,

our construction allows each coupling to have ≈ 104 free parameters; by the same benchmark,

physically realistic spin lattices found in nature allow somewhere around (3× 3)2 ≈ 80 different

couplings.

Recent results show that e.g. 1D gapped Hamiltonian ground states can be approximated efficiently

(i.e. in randomised poly-time, cf. [LVV15]), but since history state constructions have a spectral gap

that closes inverse-polynomially with the runtime of the encoded computation, a lower bound on

the required local dimension remains open.

140



4 Size-Driven Quantum Phase
Transitions

His conclusion was that things were not always what they

appeared to be. The cub’s fear of the unknown was an

inherited distrust, and it had now been strengthened by

experience. Thenceforth, in the nature of things, he would

possess an abiding distrust of appearances.

—Jack London, White Fang

As we have seen in chapters 1 to 3, quantum systems can have complex dynamical and static properties. In

this chapter, we want to study if we can exploit the idea of embedding computation into the ground state of

a local many-body system even further, to describe materials with novel physical behaviour, and move even

further towards a theory that has potentially directly-observable consequences for our real world.

The thermodynamic limit of many-body quantum Hamiltonians is the predominant mathematical tool

used to study macroscopic properties of physical systems. A common approach is to analyse a growing

sequence of finite system sizes—numerically or experimentally—and then extrapolate the characteristics

of interest to the macroscopic limit [ŠB13]. This approach has been proven highly successful in numer-

ous cases [LL80]; [Mar92]; [Bar83]; [Pir+12]; [Tag+08]. On the other hand, it has been shown that e.g.

determining whether a system is gapped or gapless in the thermodynamic limit is an undecidable prob-

lem [CPW15b]. In order to correctly extrapolate the thermodynamic properties of a physical model, it is

important to distinguish and recognise features that are a consequence of finite-size e�ects, i.e. properties

of the model which are not present in the thermodynamic limit but appear as a by-product of conditions

which only hold for systems sizes smaller than some threshold. While some finite-size effects only produce

small perturbations of the real model, this is not always the case. For example, relevant finite size effects for

the distinct behaviour of antiferromagnets on even or odd system sizes have been proposed in [Lou+08]

and recently observed experimentally in [Gui+15].

In this work we show that finite-size effects can in fact be dominant at arbitrary length scales, to the point

of completely obscuring the physics of the thermodynamic limit. This phenomenon occurs not just in

pathological examples, but even e.g. for translationally invariant Hamiltonians on low-dimensional spins
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arranged on a square lattice.

Main result 1: We explicitly construct models exhibiting the following exotic finite-size effects: below

a threshold lattice size with sides of length N , the ground state of the Hamiltonian is a non-degenerate

product state in the canonical basis, i.e. entirely classical, with a constant spectral gap above it. For system

sizes greater thanN , however, the low energy space is that of the Toric Code, which is in a sense as quantum

as possible: the ground state exhibits topological degeneracy, and the system has anyonic excitations.

Moreover, we provide lower bounds on the threshold lattice sizeN for spin dimensions≤ 10 (cf. table 4.1).

Already for dimension 10 the threshold size can be as large as 5.2 · 1036534.

Since in practice in a real-world experiment the ground state cannot be accessed, and only the Gibbs state

at some small but non-zero temperature can be prepared, we also prove for one of our models that:

Main result 2: There exists a finite temperature below which measurement in system sizes smaller than

the threshold still yields classical results up to small errors, while the thermodynamic limit converges for low

temperatures to the ground state of the Toric Code [CNN16]. Even under a strong fidelity requirement of

10−6, the necessary temperatures are rather mild (cf. table 4.1).

This sudden and dramatic change in the nature of the ground state may be viewed as a type of quantum
phase transition, driven by the system size rather than a varying external field or coupling strength.

It has been known for some time that the critical values of external parameters (e.g. temperature, pressure)

can depend on the size of the studied samples. Well-studied effects include rising melting points for small

particles [BB76]; [GEA92], structural temperature- or pressure-dependent phase transitions between

different crystal lattices in thin-film samples and in nano-crystals [TA94]; [McH97]; [Riv+11]; [Li+16],

where the energetically favourable structure differs from that in the thermodynamic limit. And charge

density wave order transitions or superconductivity [Xi+15]; [Yu+15], for which the critical temperature

changes when approaching mono-layer sample sizes.

Crucially, these works all describe phase transitions driven by an external parameter, whose critical value

varies depending on the size of the system. Here, we exhibit a transition which is driven by the system size

itself; the transition occurs at some critical system size, without any external parameters varying at all. The

effects which are most reminiscent of what we prove rigorously here are certain peculiar phenomena for

mono-layer samples, or samples with 3 or 13 atom layers, for which the described phase transition cannot be

observed anymore [Xi+15]; [Yu+15]; one suggested explanation is a lack of space for nucleation sites [TA94];

[Li+16].

Table 4.1 shows an overview of the explicit examples we construct. The threshold system sizesNd from

these examples show that large thresholds are achievable with d-dimensional spins. These are of course lower

bounds on the maximum possible threshold size for given local spin dimension; even larger size thresholds

may be achievable by other constructions. We chose for concreteness to construct a size-driven transition
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d 4 6 7 8 9 10

Nd 2 15 84 420 3.3 · 107 5.2 · 1036534

Td[
∆
kB

] 0.058 0.050 0.043 0.038 0.020 5.9µ

Table 4.1: Lower bounds on the maximum threshold lattice size Nd × Nd for different spin dimensions
d, after which finite-size effect suddenly disappear and the physics of the thermodynamic limit
becomes accessible. Up to dimension 8, a prime periodic Wang tiling gives the lower bound;
for larger dimensions, an embedding of Busy Beaver Turing machines. The critical temperature
Td gives an estimate for the temperature at which the transition can still be discriminated with
a fidelity of 1 − 10−6, as a function of the system’s spectral gap ∆, which here is equal to the
interaction strength since the Hamiltonians are commuting.

from classical to Toric Code; our constructions can readily be generalised to instead produce a size-driven

transition to other quantum phases.

In order to prove these effects mathematically rigorously, we deliberately construct examples for which

there exists an analytic solution. However, this is not true for the general case: as the structure of the

Hamiltonian becomes more complex, one expects the behaviour to become more erratic. Indeed, we know

that for extremely complex Hamiltonians with very large local spin dimension the behaviour can even

become uncomputable [CPW15b].

It is important to emphasise that the dramatic finite-size effects exhibited here do not depend on any

careful tuning of coupling strengths, and even occur for Hamiltonians without obvious separation of energy

scales in their coupling constants or the matrix entries of the local interactions. Without this restriction,

i.e. allowing interactions of magnitude O(1) and O(1/N2), •it is in fact trivial to construct a model whose

ground state changes character at system size O(N), with the spectral gap closing as O(1/N). Our result

is much stronger, in the sense that it does not allow such a prediction based solely on an analysis of the

coupling strengths, nor from extrapolation of spectral data; in particular, the spectral gap of our model

remains constant all the way up to the transition.

4.1 Preliminaries
4.1.1 Embedding a Generalised Tiling into a Hamiltonian Spectrum
We have briefly introduced tiling problems in section 3.1.2. In this section, we rigorously formulate the

embedding of the tiling problems we consider in this work into the spectrum of a local Hamiltonian. Instead

of focusing only on star and plaquette interactions, we take an abstract point of view and define the notion

of a generalised tiling. Assume G = (V,E) is a finite undirected graph with coloured vertices, where we

allow coloursC := {1, . . . , c}, c ∈ N. LetL := {l : l ⊂ G} be a finite set of (local) interactions, e.g. all

the 3- or 4-local star and plaquette interactions on a lattice as in fig. 4.1. For all interactions l ∈ L, we allow
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a finite set of pieces Tl := {(cv)v∈l}—where the family (cv)v∈l assigns a colour to every vertex in l—and a

weight functionwl : Tl → R. Now assign a colour to each vertex in G, e.g. by defining a family (cv)v∈V ,

cv ∈ C . The score of this assignment is then given by

score :=
∑
l∈L

1− wl(tl) if (cv)v∈l is a valid piece in Tl
1 otherwise.

For wl(tl) < 1, we can thus give a score penalty, and wl(tl) > 1 gives a bonus to piece tl at site l. An

assignmentwl(tl) = 1 is neutral and gives neither bonus nor penalty. Observe that not including a piece

in the piece set Tl is equivalent to giving it a weight of 0. It is easy to see how this specialises to our tiling

examples: in case of the periodic tiling and for l a plaquette interaction in the bulk, the sets Tl would

all be identical and correspond to the allowed 4-local tiles. The wl then assign the bonuses or penalties,

accordingly.

We formulate the following lemma.

Lemma 4.1. Define a Hilbert spaceH :=
⊗

v∈V C
c over the interaction graph G, assigning c-dimensional

qudits to each vertex v ∈ V . Then there exists a classical Hamiltonian H on H, diagonal in the computa-
tional basis, with L-local interactions such that the eigenvalue λ for a basis state |ψ〉 =

⊗
v∈V |cv〉 is given

by the score of the associated generalised tiling, i.e.

λ =
∑
l∈L

1− wl(tl) if |ψ〉 |l ∈ Tl
1 otherwise.

We denote with |ψ〉 |l the restriction of |ψ〉 to the subspace⊗v∈l C
c ≤ H.

Proof. Define

H :=
∑
l∈L

(
1−

∑
t∈Tl

wl(t)Πt

)
,

where Πt :=
⊗

v∈l |tv〉〈tv| denotes the projector onto the valid piece t ∈ Tl for interaction l ∈ L, and tv
denotes the colour of vertex v for piece t. Take a computational basis state |ψ〉 =

⊗
v∈V |cv〉. Then

H |ψ〉 =
∑
l∈L

|ψ〉 −∑
t∈Tl

|ψ〉

wl(tl) if |ψ〉 |l ∈ Tl
0 otherwise


= λ |ψ〉 ,

and the claim follows.
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This allows us to conclude the following corollary.

Corollary 4.2. The ground state ener� of H is determined by the lowest score assignment of the associated
generalised tiling problem.

Equipped with this machinery, it suffices to formulate generalised tiling problems on the square lattices

as in fig. 4.1 with 3- and 4-local interactions, such that for lattice sizes below some threshold, the lowest

score assignment has a score≤ −1/2, and above the threshold the lowest score assignment has a score≥ 1.

This way, combining the Toric Code Hamiltonian Htc via lemma 4.3 creates a model with a size-induced

transition from classical to topological ground state. Observe that we require our model to be translationally

invariant.

4.1.2 The Toric Code
The Toric Code Hamiltonian Htc is a sum of 3- and 4-local interactions

Htc := −J
∑
s

A(s) − J
∑
p

B(p),

with A(s) :=
∏
i∈s σ

x
i a product of Pauli σx acting on 4 spins i adjacent to vertex s as seen in fig. 4.1.

The B(p) :=
∏
i∈p σ

z
i are defined analogously. We call the A(s) star and the B(p) plaquette-interactions,

respectively. The free parameter J > 0 is a coupling strength and can be used to rescale the spectrum.

4.1.3 Combining Hamiltonian Spectra
Lemma 4.3. Let H1 and H2 two local Hamiltonian defined on ⊗u∈ΛC

d1 and ⊗u∈Λ C
d2 for some

interaction graph Λ. Let further µ ∈ R. Then there exists a Hamiltonian H on H =
⊗

u∈Λ C
d1 ⊕ Cd2

with the following properties:

1. Any eigenvector v of H with eigenvalue λ ≤ µ is given by an eigenvector of either H1 or H2, extended
canonically to the larger Hilbert spaceH, with the same eigenvalue λ.

2. H is translationally invariant if H1 and H2 are.

3. H contains nearest neighbour interactions and otherwise leaves the interaction range of H1 and H2

intact.

Proof. Let 11 and 12 be the identity operators on Cd1 and Cd2 , respectively. Let δ := 1 + µ. Define

further

H0 := δ
∑
i∼j
1i1 ⊗ 1j2 + 1i2 ⊗ 1j1,
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where i ∼ j denotes any neighbouring spin pairs. Set H := H0 + H′1 + H′2, where H′1 := H1⊕ 0 and

analogously for H′2.

The last two claims are satisfied by construction. To prove the first point, note that H0, H′1 and H′2

commute and thus share a common eigenbasis with spectrum σ(H) = σ(H0) +σ(H1) +σ(H2). Since

δ > µ, any eigenstate of H with eigenvalue λ ≤ µ thus has to be in the kernel ker H0 ≡ supp(H′1 +

H′2) = supp H′1 t supp H′2, and the claim follows.

4.2 Size-Driven Quantum Phase Transitions
4.2.1 Hamiltonian Construction
For local spin dimension d > 3, we construct a local, translationally invariant spin Hamiltonian H(d) on a

2D square lattice with open boundary conditions, such that there exists a threshold system sizeNd ×Nd,

up to which the ground state of H(d) is entirely classical (i.e. product in the canonical basis), whereas for

larger lattice sizes the ground state is that of the Toric Code. Lower bounds on the maximum possible such

transition threshold Nd for a given local dimension d are shown in table 4.1. For d > 6, we give a general

procedure for constructing models for whichNd grows faster than any computable function.

The Toric Code—introduced by Kitaev [Kit03]—is defined by a Hamiltonian on a two-dimensional

spin-1/2 lattice. It is one of the simplest models exhibiting topological order [Wen13]; [Pac12].

We start out with a finite lattice as shown in fig. 4.1. To every edge marked with a dot, we assign a d-

dimensional spin Cd = Htc ⊕ Hcl whereHtc = C2 andHcl = Cd−2, such that the overall Hilbert

space on the lattice is a tensor product over all separate spins, i.e.

H(d) =
⊗

(Htc ⊕Hcl) ∼= (
⊗
Htc)⊕ (

⊗
Hcl)⊕H′,

whereH′ contains all mixedHtc andHcl terms.

p
s

Figure 4.1: Plaquette and star interactions of the two-dimensional Toric Code Hamiltonian Htc. We assign
a spin-1/2 particle to every lattice edge marked with a dot. Htc is a sum of 4-local interactions,
plaquettes and stars, which are products of σz and σx operators, respectively.
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We define a purely classical Hamiltonian Hcl with support only on the subspace
⊗Hcl, such that the

ground state energy of Hcl is−1 for lattice sizes N ≤ Nd, and otherwise λmin(Hcl) ≥ 1/2. We then

combine Hcl with Htc in such a way that the spectrum below some energy λ′ > 0 is uniquely determined

by one or other of these Hamiltonians, by giving an energy penalty for any state with support onH′. We

define the overall Hamiltonian by H(d) := Htc + Hcl + H′, where

H′ := C
∑
i∼j
1itc ⊗ 1jcl + 1icl ⊗ 1jtc,

where i ∼ j stands for a sum over any adjacent spins. 1tc denotes the projector on theHtc subspace, and

analogously 1cl. Note that H′ only contains 2-local interactions.

In this way, any state |ψ〉 ∈ H(d) supported onH′ will necessarily pick up an energy penalty of at least

C . ChoosingC = 1 + λmin(Hcl) shifts this part of the spectrum to energies≥ 1. We can rescale Htc to

have its low-energy spectrum within [0, 1/2]. The ground state of H(d) will thus be given by either Htc

or Hcl, whichever has the smaller energy. In particular, the system will change abruptly from classical to

topologically ordered with anyonic excitations when the lattice sizeN surpasses the thresholdNd, while

keeping a constant spectral gap.

In order to construct a suitable classical Hamiltonian Hcl, we will exploit the same locality structure as

in the Toric Code–4-local star and plaquette interactions—since this does not increase the interaction range

of the overall Hamiltonian H(d). We will only consider the case of open boundary conditions, which is the

most natural one in this context.

It is convenient to express the interactions as a so-called tiling problem with extra constraints, similar

to the well-known Wang tiles. A Wang tile is simply a square tile with coloured edges, and the condition

for placing two tiles next to each other is that their edge colours match. Despite this simple setup, it has

been shown that the question of whether one can tile the entire plane with a finite set of Wang tiles is in fact

undecidable [Ber66], which shows that tiling can encode extremely complex behaviour.

It is easy to represent the tiling problem as a ground state energy problem of a classical, translationally

invariant Hamiltonian HW on the lattice in fig. 4.1, and straightforward to verify that this representation

only defines a single energy scale. As shown in fig. 4.3, each tile can be regarded as a plaquette on the lattice.

The condition that neighbouring tiles share the same edge colour is thus automatically met. It is clear that

for c colours, we need a c-dimensional classical subspaceHcl for each spin, i.e. d = c+ 2. Working on this

classical subspace, we want to find local Hamiltonian plaquette interactions between the spins surrounding

a plaquette p, which we denote withEp, that penalise any tile not in our set of allowed tilesW . Specifically,
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Figure 4.2: Section of the prime periodic pattern for four plus one colours, which is 84-periodic. The left
edge and lower corner is enforced by giving the solid black square in the corner a bonus of 1,
but penalising black to appear to the right of black on a horizontal edge: this way, the global
pattern can be started uniquely with open boundary conditions. The horizontal edge colours
form disjoint sets: starting from the bottom row, the colours are red {4}, blue {3}, white and
yellow {1, 2}, after which the cycle continues with red. This can be achieved using the 4-local
star interactions, e.g. by allowing blue to only appear next to blue and white next to white. For
the top row allowing two colours white and yellow, we alternate between them whenever the
colour on the vertical edge above it is white. Within each row, these colours on the vertical edge
count cyclically through subsequences of length 4, 3 and 4 + 3 = 7, respectively, which yields
the overall horizontal period lcm{4, 3, 7} = 84. Every 84 tiles, the pattern necessarily exposes
a unique local colour configuration, highlighted in the lower right corner. It can be penalised
by a single star interaction and forces the spectrum of the associated Hamiltonian to≥ 1 when
the system size surpasses the thresholdN5 = 84.
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we define a local classical tile interaction via

h(p) :=
∑
w∈W

aw
⊗
e∈Ep

|we,p〉〈we,p| , (4.1)

wherewe,p labels the colour on edge e of tilew placed at plaquette site p. The parameters (aw)W do not

depend on the plaquette position, and the overall translationally-invariant tiling Hamiltonian is given by

the sum over all plaquette sites in the lattice HW :=
∑
p(1− h(p)). If aw = 1 for allw, one can show

that HW has zero energy ground state if and only if the setW tiles the lattice. If we want to give an energy

“bonus” to (i.e. decrease the energy of) a specific tilew, we can set aw > 1. An energy penalty can be given

by setting aw < 1. Each tiling thus has a net score—bonuses minus penalties minus mismatching tile pairs.

The net score of a specific tiling gives the energy of the corresponding state of HW . In general, then, the

ground state of HW will maximise the number of tiles with a bonus while avoiding as many penalties as

possible.

A similar construction allows us to add extra star-shaped interactions, constraining tile edges adjacent to a

corner. The overall Hamiltonian HW + HS will then have an optimal ground state in the sense that the

sum of penalties minus the sum of bonuses—for both tiles and stars—is minimised. The rigorous argument

is presented in lemma 4.1.

Let us now discuss the two families of classical Hamiltonians we construct.

4.2.2 Prime Period Tiling
The key idea is to create a tiling pattern that can tile the entire plane with a very large period p. We require

that a certain locally detectable sub-pattern—i.e. using a star interaction—occurs exactly once per period. By

disallowing this sub-pattern, the tiling will be possible up to a square of size p×p, but once the grid surpasses

this size, there will be at least one pattern violation, which can be penalised locally with a Hamiltonian term.

4.2.2.1 General Construction
For the general construction, we first consider the following discrete optimisation problem. Assume we

have q colours available. We want to construct a family of tuples (ri)1≤i≤f , each of which stands for a row

of colours ri = (ri1, ri2, . . . , rimi). These rows have to satisfy three constraints.

1. There are fewer than q rows overall, i.e. f ≤ q.

2. Each row has fewer than q colours, i.e.mi ≤ q ∀i.

3. For the first and last row, each colour rij is picked from the q colours available, i.e. r1j , rfj ∈
{1, . . . , q}—for all other rows, we leave out the last, i.e. rij ∈ {1, . . . , q − 1}.
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We can associate a period pi :=
∑mi

j rij to each row i. The rows ri are now chosen such that the objective

function p(q) := lcm{pi : i ≤ I}—i.e. the overall period—is maximised.

We now give a description on how to translate such an optimal row family (ri)i into a set of tiles and

stars that enforces a unique horizontal tile sequence with periodicity p(q). More specifically, for each row,

we define tiles that allow a colour pattern

1, . . . , ri1, 1, . . . , ri2, . . . , 1, . . . , ri(mi−1), 1, . . . , rimi (4.2)

on their vertical edge—i.e. the tiles form sub-periods, starting at 1 and counting to rij , then starting at 1

again, counting to ri(j+1) etc.. Cleverly choosing colours on the horizontal edges then a) make this pattern

unique for each row, and b) enforce a unique stacking order of the rows overall—which in turn yields a

p(q)-periodic global tile pattern.

To facilitate the tile notation, we use a few shorthands.

• The last sub-period for each row has highest colour rimi
=: r̄i.

• We sequentially enumerate the sub-periods with colours for use on the horizontal edges, i.e. r11 ↔
1, r12 ↔ 2, . . . , r̄1 ↔ m1, r21 ↔ m1 + 1 etc.. The highest such label for every row is denoted

with hi, and the lowest li, e.g. for the first row l1 = 1 and h1 = m1. More rigorously, we have the

sequences h0 = 0, hi = hi−1 +mi and li = hi−1 + 1.

• The set of colours on the horizontal edges needed for the ith row is denoted with Vi := {li, . . . , hi},

respectively.

For every row ri, we then define the tiles

t
c’

b
c

∀t ∈ V(i−1 mod f), b ∈ V(i mod f)

∀c = 1, . . . , rij ,

where c′ = c+ 1 mod rij . As an example, consider the first row with V1 = {1, . . . ,m1}. We obtain a

set of tiles
∗f

2
1

1
∗f

3
1

2 · · ·
∗f

1
1

r11

∗f
2

2
1 · · ·

∗f
1

2
r12 · · ·

∗f
1

n1

r̄1 ,

where ∗f stands for any colour allowed on the bottom of the last row, i.e. ∗f ∈ Vf . All other rows are

defined analogously, where the top and bottom colours are chosen successively, i.e. for the ith row, we use

colours Vi for the bottom and any Vi−1 for the top.

On their own, the tiles from different sets can be mixed at will. To enforce that each row can only be
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assembled from its own tile set, for each row i, we restrict to the following star configurations:

c

jj

∗

2 ≤ c ≤ rij , j ∈ Vi,

1

j′j

∗

and
1

jj′

∗

∀ j ∈ Vi

where j′ := li+(j+1 mod mi). It is easy to verify that each row defines a unique pi-periodic horizontal

tile pattern as in eq. (4.2). As the top colours of the ith row are restricted to the bottom colours of the i− 1th

row—modulo the numbers of rows f—the rows can be stacked above each other uniquely. Every block of

rows r1, . . . , rf , stacked vertically, thus defines a valid horizontally p-periodic tiling pattern for the plane.

In order to be able to detect this periodicity locally, we make use of the extra colour available in all but the

first and last row due to constraint (3). For all i = 2, . . . , f − 1, we add two tiles

hi−1

d
hi

r̄i and
li−1

2
li

d

Alternative to the row sequence . . . , r̄i − 1, r̄i,1, 2, . . ., this allows counting . . . , r̄i − 1, r̄i,q, 2, . . .. By

adding the star penalties

1

1

1h1 and
q

1

lihi ∀ 2 < i < f − 1,

we ensure that whenever two consecutive rows complete a cycle in the same column, we mark the occurrence

with a q instead of a 1. This way, if in the first row we finish a cycle with a 1 and observe a q right below,

we know that the entire horizontal pattern has completed one period. To be more specific, every p(q) =

lcm{p1, . . . , pK , pL, pf} tiles, whereL = f − 1 andK = f − 2, we have the pattern

hK

q

hL

c̄L

lK
2

lL

q

hL

1
hf

c̄f

lL
2

lf

1

, locally detectable via
q

1

hL lL .

We call this sub-pattern a period marker and penalise it with a weight of 2.

So far we have constructed a tile set which can periodically tile the entire plane. By disallowing said period

marker, we restrict the tileable square size to at most p × p. Observe however that due to the freedom
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colours q + 1 line periods overall period p

2† 2, 2 4
4 3, 5 15
5 4, 3, 7 84
6 5, 4, 3, 7 420
7 6, 5, 7, 11 2310
8 7, 6, 5, 11, 13 30030
9 8, 7, 11, 13, 15 120120

Table 4.2: Maximum tiling periods for a given number of colours (plus one special black colour needed
for q > 2). The second column shows how to distribute the periods between the lines. †For 2
colours, it is easy to see that the extra black tile is redundant.

to shift sets of rows horizontally and the entire pattern vertically, there are a potentially huge number of

possibilities to tile any square smaller than p × p. We will thus add a special colour to fix this freedom,

borrowing an idea from [GI09]. We will enforce a specific pattern in the lower left corner, which uniquely

fixes the starting configuration for the bulk, without imposing any boundary condition, but instead by

adding bulk interactions which will have the effect of favouring the desired configuration in the boundary.

We add the following tiles:

0
0

0
0 , 1 and

3
2 .

We further disallow black appearing to the right of black using a star constraint, and give a bonus of 1/2 to

the all-black tile. It is then easy to verify that the best score tiling starts with the following configuration in

the lower left corner:

, 1

, 1

0
0

0
0 ,

3
2

It is straightforward to verify that starting from this corner configuration, the plane can be tiled uniquely

up to a grid size of p× pwith a net score of−1/2, after which the net penalty jumps to a value≥ 1.

In table 4.2, we list the cases q = 2, . . . , 8 with a solution to the associated constraint problem and the

resulting overall period p. It is easy to see that in the case of 2 colours only, the extra black tile to remove

degeneracies is redundant.
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Figure 4.3: Four+1 colour tile set that defines a tiling of the plane with period 84. The striped top in the
second row denotes either of the colours 1 or 2.

4.2.2.2 Five Colour Tiling Example

We give the q = 4 colour case as an explicit example. The tile set in fig. 4.3 defines three disjoint sets of

tiles, each of which can be assembled into horizontal lines, which in turn can be stacked above each other in

a unique order. To avoid mixing the tiles from different sets on one same line, we add the following star

operators with parameter bs = 1

2

1

∗

1 ,

3

1

∗

1 ,

4

1

∗

1 ,

2

2

∗

2 ,

3

2

∗

2 and
1

1

∗

2 ,

1

2

∗

1 ,

∗

3

∗

3 ,

∗

4

∗

4 .

The third row then unambiguously assembles to a line with a horizontal period of 4, while the vertical edges

appearing on the first line periodically cycle through 1, 2, 3, 4, 1, 2, 3 with a period of 7. The horizontal

edges of the second line are fixed by the line above and below, but there exists some freedom to choose the

colours on the vertical edge. More specifically, we use the freedom of either counting . . . , 2, 3,1, 2, . . . or

. . . , 2, 3,4, 2, . . . to detect when all three lines complete a period in the same column. We add a penalty for

the configuration
1

1

1

2

153



by adding the corresponding operator multiplied by bs = −1, which enforces colour 4 to appear instead of

colour 1 whenever the first row finishes one cycle at the same time as the second one below. The combined

period p of the three lines is thus given by lcm(7, 4, 3) = 84, and it can be detected by penalising the

configuration
4

3

1

3 (4.3)

with a penalty of 2 (i.e., with bs = −2.)

The freedom to horizontally shift the lines relative to each other or the entire pattern vertically is fixed

without adding boundary conditions with the special tiles

0
0

0
0 ,

0
1

0
0 and

3
2

0
0 .

We choose aw = 2 for the first. Starting from there, the entire plane can be tiled uniquely up to a grid size

of 84× 84, after which the penalised star—eq. (4.3)—naturally occurs and the net penalty is≥ 1. A section

of the complete 5-colour tiling can be seen in fig. 4.2.

Generalising the prime tiling to higher dimensions, we obtain the periods as given in table 4.2.

4.2.3 Turing Machine Tiling
Starting from a number of colours c ≥ 6, it becomes possible to embed a Turing machine into a set of tile

and star interactions. We improve on an idea introduced by Robinson [Rob71a]—which has been exploited

in [CPW15b] to show undecidability of the spectral gap—by making use of the extra star constraints to

significantly reduce the necessary local dimension. In this new construction, the transition thresholdNd
grows faster than any computable function and surpasses the periodic tiling bound for c ≥ 7.

We have introduced Turing machines in section 2.2.1, but we want to repeat the most important points

here. A Turing machine is given by finite sets of states Q and symbols A with a transition function δ :

Q×A→ Q×A× {left, right}, representing the set of instructions of the Turing machine. The machine

is equipped with a tape, which is sequence of symbols arranged in a 1-dimensional line extending indefinitely

in both directions, and initialised with a special “blank” symbol (which we will denote 0 for simplicity of

notation). The machine has an internal state q ∈ Q and a head which sits over one of the symbols of the

tape: at each step, the head reads the symbols s underneath, and it will write the symbol s̄, change its internal

state to q̄ and then move in direction d ∈ {left, right}, where (q̄, s̄, d) = δ(q, s).

The machine starts in an initial state q0 ∈ Q and halts if there is no forward transition for a given tuple
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states |Q| colours c S(|Q|) thresholdNd
3 6 21 [LR65] 14
4 6 107 [Bra83] 75
5 7 ≥ 4.7 · 107 [Mar+90] 3.3 · 107

6 8 ≥ 7.4 · 1036534 [Kro] 5.2 · 1036534

Table 4.3: Number of 2 symbol Turing machine statesQ and tile colours c = max{|A|2+2, |A|+|Q|} re-
quired for the embedding. S(|Q|) is the Busy Beaver number, andNd denotes the lower bound
on the maximum lattice threshold size, where d = c+ 2.

(q, s) 1. We say a given machine is halting if it eventually reaches a halting state. If we restrict to machines

with a fixed number of states q for its internal memory, and which read and write only two symbols, i.e. 0

and 1, then the set of possible halting machine programs is finite: there has to exist one that runs for longer,

or at least as long as, any other. These machines are called Busy Beavers, and their running time is called the

Busy Beaver number S(q). It is known that S(q) grows faster than any computable function [Rad62] 2.

As in the case of the periodic tiling, we find a way of embedding a Busy Beaver Turing machine into the

ground state of a classical Hamiltonian: as soon as the Busy Beaver halts, there will be a penalty, since at

that point there is no valid way to continue updating the tape. The tiling is thus possible up to a square

size of at least S(q)/
√

2 3. As we need c = q + 2 colours for a q state Busy Beaver, we immediately find

a transition threshold of Nq+4 ≥ S(q)/
√

2. We will show know how to construct a set of plaquette

and star interactions in such a way that the ground state encodes the history of a run of a given Turing

machine. The construction will involve the use of Wang tilings and of star interactions: the latter will allow

us to greatly reduce the spin dimension needed by previous works which where based only on the tiling

problem [Rob71a]; [Ber66].

We assume the lattice is oriented as in fig. 4.4, where the Turing machine starts in the lower left corner. We

chose to encode the tape of the Turing machine at a given time step in diagonal direction across the square

lattice (denoted by the thick grey lines in fig. 4.4), and movement in the orthogonal direction represents the

time evolution. Moreover, we store the head position and internal state of the Turing machine by including

the state q in the tape, on the right of the symbol which will be read by the machine. Using this convention,

we have that—even if the tape space is finite—it is extended by one symbol in both directions at each time

step, and therefore the tape available will always be sufficient for the machine to run.

We will interpret colours on horizontal and vertical edges differently—horizontal either as pair of symbols

1Such definition is equivalent to defining a special halting state h for which no further transition is defined
2A related quantity, which is also called the Busy Beaver number but is usually denoted Σ(q), is defined as the largest number of

non-blank symbols written out by the machine before terminating, and is a lower bound on S(q). Σ(q) also grows faster than
any computable function.

3The constant factor of
√

2 is due to the fact that in out construction the tape of the Turing machine is encoded diagonally with
respect to the square lattice, and the head of the machine follows a zig-zag pattern, which in the worst case scenario can only reach
a distance of S(q)/

√
2 from the origin.
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s1s2 ∈ A×A or special boundary colour 00 or 00 , and vertical either as symbol s ∈ A or state q ∈ Q,

the latter of which we highlight in red.

As we did in the periodic tiling construction, we use special bulk interaction (which will be present

everywhere in the lattice) to constrain the left and bottom boundaries. In order to do so, we use the

following interactions
00

00

0 ∗ , 00 00 and
00
q0

00
0 .

Note that the 2-local blue term is indeed a bulk interaction, and not a “cut-off” boundary term. By giving

the last of these tiles a single bonus of 2—similar to the all black tile for the periodic tiling—we obtain

precisely one choice for the left and lower grid edges, namely all 0s as in fig. 4.4; in particular, the last shown

tile with initial state q0 correctly initialises the Turing machine in the lower left corner. This valid initial

configuration defines the unique highest-net-bonus tiling possible.

To avoid cases where we validly tile the plane without a TM head—i.e. with net bonus zero—we use a

star interaction to give a bonus of 1/2 for any white symbol on a vertical edge appearing to the left or right

of another arbitrary symbol, i.e.

1× ∗∗ ∗∗ ,
1

2
× ∗∗ 00 and

1

2
× 00 ∗∗ .

We further give a penalty of 1 for the white symbol appearing anywhere. This way, in the bulk, the net

contribution of 2× 1/2− 1 = 0 for each of the white edges, whereas if they appeared on the left end of

the plane a net penalty≥ 1/2 would be inflicted. A similar combination of bonus and penalty terms allows

us to ensure that the lower edge is blue, and all other configurations obtain a net penalty of≥ 1/2 as well.

Like that, there exists no configuration with net penalty< 1/2 without the initial q0 tile in the lower left

corner. From now on, we treat the boundary symbols 00 and 00 as equivalent to 00 .

To implement the transitions rules we effectively need 6 different spins to interact (three for each time step):

in fact, if the tape around the head reads s, q, t for some q ∈ Q and some s, t ∈ A, then it has to be updated

to q̄, s̄, t if δ(q, s) = (q̄, s̄, left), while it has to be updated to s̄, t, q if instead δ(q, s) = (q̄, s̄, right).

Since we only have at our disposition 4-body interactions, in order to implement an effective 6 body

interaction we will make use of the extra register we have allowed for in the horizontal edges, which will

allow to “synchronise” a plaquette and a star interaction, as shown in fig. 4.4. This is done by defining, for

every transition, a pair of tiles and stars, i.e. if δ(q, s) = (q̄, s̄, left)

q̄

q

s∗ s̄s and
s̄s

w∗
q w , (4.4)
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where ∗ represents any symbol, and for an analogous right transition

s̄

q

s∗ ws and
ws

w∗
q q̄ . (4.5)

Observe how the symbol pairs are necessary to uniquely couple the pair of interactions to obtain the left and

right transition depicted in fig. 4.4, but are disregarded for any successive transition. The rest of the tape

which is not affected by the transition rules has to be copied verbatim to the next time step. Implementing

such bookkeeping tiles is straightforward, as we only need to take care of the extra—and in this situation

unused—register in the horizontal edges, which is discarded when copying to vertical edges, and set to the

“blank” symbol when copying from vertical to horizontal edges. More precisely, for every a, b ∈ A, we

define
a

b

a∗ b0 and
a0

b∗
a b . (4.6)

Overall, this construction thus requires c = max{|A|2 + 2, |A|+ |Q|} colours. It is easy to verify that

starting from the initial tile, a square can be uniquely tiled with net bonuses 1 if and only if the Turing

machine does not halt within its boundaries. All other tilings necessarily violate at least one constraint and

thus have a net penalty≥ 1/2. A sample evolution can be seen in fig. 4.4.

The maximum number of steps any halting Turing machine with |Q| states and 2 symbols can take

before halting is called the Busy Beaver number and is denoted by S(|Q|). Defined in [Rad62], it is known

to grow faster than any computable function. The staggering threshold sizesNd in table 4.1 show that there

is no hope to address the question of extrapolating physical properties of a general system solely with an

increase in computational power.

4.2.4 Thermal Stability
There exists a finite temperature Td below which the thermal state of the Hamiltonian will still be very close

to the ground state for any system size up to the threshold Nd, meaning that any measurement will still

reveal a classical state up to very small errors. The temperature Td depends only inverse-logarithmically

on the threshold size, and therefore its scaling with dwill be mild in the case of the prime periodic tiling.

Table 4.1 lists the temperatures corresponding to the various local dimensions d, which is a linear function of

∆/kB , where ∆ is the spectral gap of the Hamiltonian and kB the Boltzmann constant. Since our models

are commuting Hamiltonians, the spectral gap ∆ is simply equal to the strength of the interactions between

the spins.

For the prime periodic tiling, we also show that if we go to the thermodynamic limit at finite temperature,
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Figure 4.4: Embedding of a Turing machine into a tiling problem with extra star constraints. We chose a
representation in which the Turing machine head sits in between the tape symbols, reading and
writing the symbol on its left. Every grey horizontal slice shows the tape at one evolution step: it
is initialised to . . . , 0, q0, 0, . . ., where q0 is the initial machine state, and every successive step
is uniquely defined by the transition rules. Shown here is the 2 state Busy Beaver which halts
after 6 steps. Since there is no valid tile with a halting state, the system necessarily frustrates for
lattices larger 6/

√
2 ≈ 4 tiles on each edge. Each right transition (qi, a) 7→ (qf , a

′, right) or
left transition (qi, a) 7→ (qf , a

′, left) is translated into a pair of 4-local plaquette and star in-
teractions, as depicted to the right. Observe how in both cases the tile part of the interaction has
to know the initial symbol a, which is why the star operator creates a temporary copy of it. This
copy is shown as small symbols and numbers to the right of the actual tape content and ignored
in any following transition. As the available space grows by one symbol in both directions at
each step, there is always enough tape available for the Turing machine. The coloured terms
are used to initialise this spare tape to 0. Away from the head, additional interactions are used
to copy currently unused tape segments forward. The exact construction with all interaction
terms is explained in detail in the appendix.
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and then send the temperature to zero (a procedure which is a more mathematically correct description

of real implementations [AL81]), we will recover only ground states of the Toric Code. This shows that

there is a complete disagreement between the mathematical predictions from the thermodynamic limit, and

any measurement performed on systems below the threshold size. The Busy Beaver construction can be

modified in order to show the same property, using the original construction of Robinson [Rob71b], at the

cost of greatly increasing the local dimension.

Let us be more precise, and recall that a state in the thermodynamic limit is given by a linear, positive

and normalised functional ω on the algebra of quasi-local observablesA, which is the (norm closure of the)

inductive limit of the finite matrix algebras BΛ = B(⊗i∈ΛH(d)
i ), where Λ is an ascending sequences of

finite lattices converging toZ2 [BR97]; [AL81].

Given a local Hamiltonian H and a finite region Λ, we define its (exterior) boundary ∂Λ as the set of sites

in the complementary of Λ for which there is an interaction term in H acting nontrivially on sites of Λ and

∂Λ simultaneously, as shown in section 4.2.4. Λ̄ is defined as Λ ∪ ∂Λ and, for a regionR, HR will denote

the restriction of H to all interactions which are totally contained inR. A ground state is then defined as a

state functional ω, such that for any finite Λ, and any local observableA ∈ BΛ,

ω(A†[HΛ̄, A]) ≥ 0. (4.7)

This definition can be obtained by taking the zero temperature limit in the definition of finite temperature

equilibrium states as defined by the KMS condition (i.e. the limit of increasing-volume Gibbs ensembles satis-

fying the KMS condition, cf. [HHW67, eq. 4.2]). Loosely speaking, it expresses the intuitive understanding

that any local perturbation should not decrease the energy of a ground state (cf. [CNN16]).

Note that since both A and HΛ̄ have finite support, it is possible to rewrite eq. (4.7) in terms of the

reduced density matrix of ω over Λ̄, which we denote by ρΛ̄:

0 ≤ ω(A†[HΛ̄, A]) = tr(ρΛ̄A
†[HΛ̄, A]),
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or equivalently

tr(ρΛ̄A
†HΛ̄A) ≥ tr(ρΛ̄A

†AHΛ̄) (4.8)

for all Λ and allA ∈ BΛ. In turn, this implies that

tr(Φ(ρΛ̄)HΛ̄) ≥ tr(ρΛ̄HΛ̄), (4.9)

for any completely positive, trace preserving linear map Φ, as can be seen by applying eq. (4.8) to the Kraus

operators of Φ(·) =
∑
iAi ·A

†
i .

We will argue that the only ground states of the periodic tiling Hamiltonian H(d) are the ground states

of the Toric Code. This in turns implies, that if we take first the limit ofN going to infinity, and then we

send the temperature to zero, we recover only ground states of the Toric Code.

Key to our argument is that part of our Hamiltonian—i.e. H0—is a ferromagnetic Ising-type interaction,

where spin up and down are now the tiling and Toric code subspaces, respectively. We will follow the same

proof technique used to show that the 2D Ising model with an external magnetic field has a unique ground

state [AL81, ex. 5] to show that any ground state in the thermodynamic limit of our model is completely in

the Toric code subspace, by which we mean that for all Λ, ω(Π⊥tc,Λ) = 0 for the projector onto the Toric

code subspace Πtc,Λ supported on Λ.

Let us start with some preliminary observations, which will allow us to assume some extra properties of

the ground state without loss of generality. Fix Λ and let {Mi}i a decomposition of the identity on Λ̄ into

orthogonal projectors, such that [Mi,HΛ̄] = [Mi,Π
⊥
tc,Λ] = 0 for all i. We want to show that is sufficient

to study ω restricted to the subspace corresponding to eachMi. This is the content of the following lemma.

Lemma 4.4. Let ω be a ground state. Fix Λ and let {Mi}i as above. Whenever ω(Mi) 6= 0, denote by

ωi(A) =
ω(MiAMi)

ω(Mi)
.

Thenωi is also a ground state. Moreover, if for every i it holds thatωi(Π⊥tc,Λ) = 0, then alsoω(Π⊥tc,Λ) = 0.

Proof. ωi is clearly a positive linear functional on local observables so that ωi(1) = 1. It can then be ex-

tended to a state onA. The fact thatMi commutes with the Hamiltonian makesωi fulfil trivially eq. (4.7),

so it is a ground state. Finally, we observe that

ω(Π⊥tc,Λ) = tr(ρΛ̄Π⊥tc,Λ) =
∑

ı

tr(MiρΛ̄Π⊥tc,ΛMi) =

∑
i

tr(MiρΛ̄MiΠ
⊥
tc,Λ) =

∑
i

ω(Mi)ωi(Π
⊥
tc,Λ),
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so that the last claim of the lemma follows.

We will use such lemma to make two extra assumptions. The first one allows to assume that the ground

state is supported, in each site, only in one of the two subspaces (TC or tiling). For that, given a finite region

R ⊂ Z2 we consider signaturesσ = (σi)i∈R where eachσi ∈ {TC, tiling}. We denote byPσ the projector

onto the set of states of signature σ. It is easy to see that they satisfy the condition of lemma 4.4. The

second assumption is that ρΛ̄ commutes with the Toric Code stabilisers. Again, it is sufficient to consider

the projectors onto the eigenspaces of such stabilisers, and the result follows from lemma 4.4.

As a second step, we will show that for any ground state for which a square boundary is completely

supported in the TC subspace, the interior will be as well; for this we will assume that all square regions

have smooth edges as in section 4.2.4.

Lemma 4.5. Take two concentric square regions Λ′ ( Λ, and a ground state ω of H(d) with a signature σ
on Λ̄. Assume that σs = TC on all sites s of ∂Λ′ ⊂ Λ \Λ′. Moreover, assume that ρΛ̄ commutes with the
Toric Code stabilisers that couple Λ′ with ∂Λ′. Then σs = TC all sites s ∈ Λ′.

Proof. Denote with T ⊆ Λ′ the set of all sites σ ∈ Λ′ that satisfy σ = tiling.

Consider the cptp map Φ1 acting on T that on all those sites, traces out the tiling sector and replaces it

with the maximally mixed state on the TC subspace, i.e.

Φ1(ρ) = trT (ρ)⊗
(
1

(TC)
T

tr1
(TC)
T

⊕ 0
(tiling)
T

)
.

Let us now consider a map Φ2, acting on Λ̄′, which implements the following operations: first measures

the Toric Code projectors which overlap with Λ′, and then, conditioned on the syndrome of the measure-

ment, applies a unitary operator which corrects as many •code errors as possible 4. This can be constructed

by choosing as Kraus operators of Φ2 the product of the projector onto the different syndrome subspaces

multiplied on the left with the corresponding unitary operator. We extend this map on the tiling subspace

with the identity map, in order to make it a cptp map. Then eq. (4.9) implies that

tr(ρΛ̄HΛ̄) ≤ tr(Φ2 ◦ Φ1(ρΛ̄)HΛ̄). (4.10)

We now consider ρ̃Λ̄ = Φ2 ◦ Φ1(ρΛ̄). For any h whose support is disjoint from Λ′, since ρ̃Λ̄′ has

the same reduced density matrix as ρΛ̄′ outside of Λ′, we have that tr(ρΛ̄h) = tr(ρ̃Λ̄h). Thus eq. (4.10)

reduces to tr(ρΛ̄HΛ̄′) ≤ tr(ρ̃Λ̄HΛ̄′), where in HΛ̄′ only •those Hamiltonian terms appear whose support

intersects Λ′. To finish the proof, we need to find a contradiction assuming that T is not empty. First of
4One possible way to implement this procedure is to follow a sequence of local steps along an oriented tree structure, as described

in [DKP14]
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all, notice that ρ̃Λ̄ is completely supported on the TC subspace in Λ̄′, and that can violate at most 2 of the

Toric Code Stabilisers (at most one plaquette and one star operator, since any pair of violations• would have

been destroyed by the action of Φ2). So tr(ρ̃Λ̄HΛ̄′) can at most be equal to 2. On the other hand, even

with the bonus gained in bottom-left corners of regions supported on the tiling subspace (i.e. the bonus

of 1/2 for the all-black tile used to resolve the ground state degeneracy for the periodic tiling pattern), the

penalties coming from mixed signatures in tr(ρΛ̄HΛ̄′) are higher (an overall penalty of at least 7/2 for each

mismatch).

In the next lemma, we generalise the previous one for the case in which some sites on ∂Λ′ are in the tiling

sector.

Lemma 4.6. Take two concentric square regions Λ′ ( Λ, and a ground state ω of H(d) with a signature σ
on Λ̄. Moreover, assume that ρΛ̄ commutes with the Toric Code stabilisers that couple Λ′ with ∂Λ′. Let α be
the number of sites s ∈ ∂Λ′ for which σs = tiling, and β the sum of signature mismatches within Λ′—i.e.
the number of neighbouring s, s′ ∈ Λ for which σs 6= σs′—plus the number of period markers within Λ′.
Then β ≤ 4

7 (1 + 4α).

Proof. We follow the same procedure as in the proof for lemma 4.5, obtaining a new state ρ̃Λ̄ on Λ̄, such

that

tr(ρΛ̄HΛ̄) ≤ tr(ρ̃Λ̄HΛ̄). (4.11)

Again, let T ⊂ Λ′ the set of sites with tiling signature. Let us consider now the interactions h in HΛ̄ and

compare the values tr(ρ̃Λ̄h) and tr(ρΛ̄h). As in the• previous lemma, if h do not overlap with Λ′, then

tr(ρ̃Λ̄h) = tr(ρΛ̄h). Since ρ̃Λ′ is in the TC subspace, and can violate at most 2 stabilisers, its energy can

be at most 2 + 8α (the signature in ∂Λ′ has not changed, and each spin in the tiling subspace can violate

up to 4 Ising-type interactions). On the other hand, since there are at least β signature mismatches for ρΛ′ ,

and each of them has an energy of at least 7/2 (again, this is lower than 4 because of the 1/2 bonus given

to the all-black tile), we have that tr(ρΛ̄HΛ̄′) ≥ 7
2β. Inserting these two bounds into eq. (4.11), we obtain

the desired bound.

In the following, we will show that if we pick the outer square in lemma 4.5 large enough, we are bound

to find an inner concentric square—of at least a third of the outer square’s size—for which we can then

apply lemma 4.5 or lemma 4.6. In the pictures of the following lemma, we have coloured with black the

spins which are in the TC subspace, and in yellow the ones which are not.

Lemma 4.7. Take some square Λ of side length 3k, where k = 106N2
d and consider a ground state ω of
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H(d) with a signature σ on Λ̄. Subdivide Λ into k × k squares:

k

centreC

Then σi = TC for all i in the centre C .

Proof. We start with a few preliminary observations, and we refer the reader to section 4.2.4 for verification.

The boundary ∂Λ contains precisely 3 × 3k spins on each side, and thus 12 × 3k = 36k spins overall.

We denote this spin count with |∂Λ| in the context of this proof. By lemma 4.6 (assuming that for all

s ∈ ∂Λ : σs = tiling), we thus know that we can have at most 4
7 (1 + 4 × |∂Λ|) < 83k penalties from

signature mismatches or period markers within Λ.

The overall area of Λ encompasses 9k2 tiles, and we count |Λ| = 2 × 9k2 + 2 × 3k spins. Every sub-

square of size Nd ×Nd which is not fully in the TC subspace carries a penalty≥ 1—note that this holds

true regardless of the bonus terms present in the tiling, as the period penalty and TC-tiling mismatch are

both larger. This means that at most a fraction of

83k

|Λ|/N2
d

=
83N2

d

18k + 6
=

83

18× 106 + 6/N2
d

<
1

10 000

of spins s ∈ Λ can have signature σs = tiling. For a subsetA ⊂ Λ, we denote this fraction with f(A).

So let us assume that f(Λ) < 1/10 000. Take Λ and shrink it uniformly by at most k/10, by which

we mean we shrink the square on each side by one tile at a time, i.e. while keeping smooth boundaries as

in fig. 4.1. This sweeps a region A which covers at least 1/10 of the area of Λ, and thus in particular the

number of spins |A| ≥ |Λ|/10. Since f(Λ) < 1/10 000, it follows that f(A) < 1000. This immediately

implies that there exists a square Λ′ ⊂ A—concentric with Λ—which satisfies f(∂Λ′) < 1/1000.

C

Λ

7→
C

Λ′
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Two things may happen. If in between the centre square C and Λ′ there exists another square Λ′′ (i.e.

with ∂Λ′′ ⊂ Λ′ \ C) such that for any s ∈ ∂Λ′′, we have σs = TC, then lemma 4.5 immediately implies

that σi = TC for all i in the centreC , and the claim follows.

It remains to analyse the case where no such square Λ′′ exists. We first apply lemma 4.6 again, this time

to Λ′: as f(∂Λ′) < 1/1000, and |∂Λ′| ≤ |∂Λ| ≤ 36k, we know that there exist at most 36k/1000×8 ≤
k/3 spins s ∈ Λ′ with σs = tiling. But since no Λ′′ exists with a boundary ∂Λ′′ completely with tiling

signature, there have to be at least k − k/10 = 9k/10 spins within Λ′ with a tiling signature (one within

the boundary for each concentric square between Λ′ andC). Contradiction, and the claim follows.

All the above results lead trivially to

Corollary 4.8. All ground states of H(d) are fully supported in the TC subspace.

4.3 Chapter Summary
By constructing two concrete classes of examples, we have shown that there exist translationally invariant,

local Hamiltonians on a 2D square lattice with constant spectral gap and open boundary conditions, which

belong to a topologically ordered phase in the thermodynamic limit, but appear to be classical for finite

system sizes smaller than a certain threshold. This threshold grows extremely fast as a function of the

local spin dimension—for one class it grows faster than any computable function—showing that even for

physically realistic systems with low local dimension, erratic behaviour may occur at system sizes that are

inaccessible numerically or experimentally. For such systems, physical properties in the thermodynamic

limit cannot be extrapolated from sequences of finite-size instances.

The implications of these findings may be profound. Numerical simulations of lattice models play a key

role in understanding the dynamics of a system, e.g. in lattice gauge theories [Kog83], fluid dynamics [Yep01]

and condensed matter physics [LLS01]. All these simulations are extremely computationally intensive,

so accessible lattice sizes are severely limited—e.g. for heavy quark simulations, current lattices have sizes

reaching 963 × 192, the long direction being time [Oli+14, Ch. 18]. Our results show that there exist classes

of simple, local, physical systems on a lattice of spins with moderate dimension, for which it is impossible to

tell with certainty whether the system behaves the same on macroscopic scales as it does on any accessible

finite size. In fact, the physical properties of this class of systems will change dramatically above some

threshold size, which can even be uncomputable.

Many variations of this problem are possible. It is easy to e.g. reverse our construction and transition from

topologically ordered at low system sizes to classical for large lattices, and it is clear that similar constructions

using a different Hamiltonian than the Toric Code are possible. As usual when exotic models are found, we
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expect that the ability to switch properties of a Hamiltonian on and off depending on the system size could

also lead to interesting applications in future.
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5 Beyond History States
Wir müssen wissen – wir werden wissen.

—David Hilbert

We’d better dream sky high,

Before we lose all hope.

A little here, a little there,

And it’s gone before you know.

Because the world is made of inches,

So if you want to fly,

We’ve got to dream a little bigger,

If we’re ever going to build those castles in the sky.

—Geraint Lu�, Sky High

The initial demonstration of QMA-completeness of the local Hamiltonian problem [KSV02] was

followed by a period of development during which the main goal was to broaden the class of interaction terms

which suffice to make thelocalHamiltonianproblem QMA-complete [KKR06]; [OT05]. These results

were motivated in part by a desire to understand the hardness of approximating physical systems that resemble

those found in nature, and also by the goal of making the closely related universal adiabatic computation

construction [Aha+08] more suitable for eventual physical implementation [BL08]. The success of these

efforts have resulted in QMA-complete local Hamiltonian problems with restricted properties such as

2-local interactions [KKR06], low dimensional geometric lattices [OT05]; [Aha+09b], and translational

invariance, as well as a complete classification of the complexity of the 2-local Hamiltonian problem

for any set of interaction couplings [CM16].

This great success in classifying the hardness of physically realistic interactions stands in contrast with

the relative lack of progress in resolving questions related to the robustness of quantum ground state

computation, such as whether fault-tolerant universal adiabatic computing is possible, or to prove or disprove

the quantum PCP conjecture [AAV13]. Such questions motivate us to seek (or to limit the possibility of)

improvements to the circuit-to-Hamiltonian construction itself, which serves a foundational role in all of the

results listed above. Based on ideas by Feynman [Fey86] and cast into its current form by Kitaev [KSV02],
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the construction remains relatively little changed but has undergone some gradual evolution throughout

its long history [Aha+09b]; [GI13]; [BT14b]; [HNN13]; [Nag14]; [BCO17], which we have extensively

discussed in chapters 2 and 3.

To be robust a circuit-to-Hamiltonian construction should not only have a ground space representing

valid computations, but intuitively it should penalise invalid computations with as high of an energy as

possible. One way of formalising this condition is to add constraints on the input and the output of the

circuit that cannot be simultaneously satisfied under the valid operation of the circuit. If the Hamiltonian

enforces the correct operation of the circuit gates, then the input and output constraints that contradict each

other should not be satisfiable by any state, and so the ground state energy should increase. This explains

why the higher ground state energy associated with non-accepting circuits can be regarded as an energy

penalty against invalid computations, which we call the “quantum UNSAT penalty”, and which is the

maximal-possible promise gap achievable with a certain Hamiltonian construction.

The specific role of the Ω(T−3) scaling of the quantum UNSAT penalty in Kitaev’s proof is to show

that the local Hamiltonian problem is QMA-hard with a promise gap that scales inverse polynomially

in the system size. While there exists a well-defined relation between runtime T and the corresponding

Hamiltonian’s system size n for any specific set of constructions—e.g. Kitaev’s 5-local one—the explicit

scaling of this gap with T is not meaningful to the local Hamiltonian problem beyond the fact that it

is polynomial, since the local Hamiltonian problem promise gap is parametrised by the number of

qubits n, i.e. 1/ poly n. Nevertheless, the scaling of the quantum UNSAT penalty with T is a well defined

feature of any particular circuit-to-Hamiltonian construction, and therefore we take the view that it is a

reasonable metric for exploring the space of possible improvements to this construction.

5.1 Results and Overview
We analyse circuit Hamiltonians with history state ground states consisting of an arbitrary complex super-

position of the time steps of the computation,

|ψ〉 =

T∑
t=0

ψt|t〉 ⊗ (Ut · · ·U1) |ξ〉, (5.1)

where as usual UT , . . . ,U1 are quantum gates, |ξ〉 is an arbitrary input to the computation, and |ψ〉 is a

normalised state, so that in particularπt := ψ∗tψt is a probability distribution on{0, . . . , T}. Ground states

of the form as in eq. (5.1) arise from modifications to the usual terms of the Feynman circuit Hamiltonian,

Hprop• :=

T∑
t=0

at|t〉〈t| ⊗ 1+

T−1∑
t=0

(
bt|t+ 1〉〈t| ⊗Ut + b∗t |t〉〈t+ 1| ⊗ U†t

)
, (5.2)
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where |at|, |bt| ≤ 1 for t = 0, . . . , T . Note that most if not all of the constructions that implement the

O(log n)-local interactions with the time register using a k-localHamiltonian with constant k, such as

the domain wall clock which leads to a 5-local circuit Hamiltonian, can be directly applied to the modified

form (5.2).

In addition to the part of the Hamiltonian which checks the propagation of the circuit, projectors

Hin := |0〉〈0| ⊗ Πin and Hout := |T 〉〈T | ⊗ Πout can be added to Hprop to validate specific inputs

and the outputs of the computation. We define the sum of all these terms to be the “Feynman-Kitaev”

Hamiltonian

HFK := Hprop + Hin + Hout.

More specifically, the ground space of Hprop + Hin will be spanned by computations starting from a

valid input computation (i.e. those for which |ξ〉 ∈ ker Πin in eq. (5.1)), and Hout will raise the energy

of the state |ψ〉 in (5.1) when UT · · ·U1 |ξ〉 6∈ ker Πout. The magnitude of this frustration between the

incompatible ground spaces of Hin + Hprop and Hout will depend on the circuit encoded by HFK and the

specific in- and output energy penalties, i.e. the maximum acceptance probability of the circuit

ε := max
|ξ〉∈ker Πin

|η〉∈ker Πout

= 〈η|UT · · ·U1 |ξ〉 .

In the following definition we take the Πin and Πout that are used in the standard construction: Πout :=

|0〉〈0|measures a single qubit and penalises it in state |0〉 •(i.e. “not accepted”), and Πin constrains a fraction

of the input qubits to the |0〉 state as ancillas, some to an encoded string describing the problem instance,

and leaves the rest of the input qubits unconstrained.

For a specific set of in- and output constraints and runtime length T , we want to identify the circuit

Hamiltonian best suitable to discriminate accepting and rejecting circuit paths, independent of the particular

circuits used. Therefore, we letC(ε, T ) be the set of circuits of size T for which the maximum acceptance

probability is ε for any state obeying the in- and output constraints Πin and Πout, i.e.

C(ε, T ) := {U1, . . . ,UT : max
|ξ〉∈ker Πin

|η〉∈ker Πout

|〈ξ|U1 · · ·UT |η〉|2 = ε}.

This leads to our definition of the quantum UNSAT penalty of a circuit-to-Hamiltonian construction,

which captures how well a Hamiltonian as in eq. (5.2) can enforce the input and output penalties described

above for an arbitrary circuit.

Definition 5.1. Let theE(HFK) andE(Hprop) be the ground state energies of HFK and Hprop respectively
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and define the quantum UNSAT penalty Ep(ε, T )

Ep(ε, T ) := min
U1,...,UT∈C(ε,T )

E(HFK)− E(Hprop). (5.3)

The reason for explicitly subtractingE(Hprop) is that while the standard circuit Hamiltonian construc-

tions e.g. from Kitaev has a zero energy ground state, we do not want to restrict ourselves to this setting; the

UNSAT penalty thus captures the penalisability on top of whatever energy the circuit Hamiltonian has as a

ground state.

Note that the quantum UNSAT penalty has a closely-related quantity, the average energy of any lo-

cal Hamiltonian constraints QUNSATψ =
∑
e∈E 〈ψ|he |ψ〉 /|E| for some set of interactions E =

{h0, . . . ,h|E|} and a specific state ψ, as defined in the context of the detectability lemma [Aha+09a].

We use the term UNSAT penalty to emphasise that it is the energy difference between accepting and non-

accepting computations.

Our first step in analysing the UNSAT penalty of modified Feynman Hamiltonians is to apply the same

argument used in the standard construction (cf. [KSV02, sec. 14.4]) to “undo” the computation and show

that Hprop is unitarily equivalent to a Hamiltonian which acts trivially on the computational register.

Lemma 5.2. If W :=
∑T
t=0 |t〉〈t| ⊗ (Ut · · ·U1), then W is unitary and W†HpropW = Hclock ⊗ 1• ,

where the clock Hamiltonian Hclock is given by

Hclock :=

T∑
t=0

at |t〉〈t|+
T−1∑
t=0

(bt |t+ 1〉〈t|+ b∗t |t〉〈t+ 1|) . (5.4)

Next we apply the same geometrical lemma used in Kitaev’s proof to lower bound the UNSAT penalty

of modified Feynman Hamiltonians.

Lemma 5.3. If the spectral gap of the corresponding clock Hamiltonian Hclock(T )—denoted ∆H(T )—is
less than the (constant) spectral gap of Hin + Hout, then

∆H(T )

4
(1−√ε)×min{π0, πT } ≤ Ep(ε, T ) ≤ E (Hclock(T ) + |0〉〈0|+ |T 〉〈T |) . (5.5)

The upper bound follows immediately by an operator inequality, and says that the increase in the ground

state energy due to the penalty terms is at most bounded by the case when all of the frustration is in

the system’s time register. The lower bound states that the UNSAT penalty can be increased either by

boosting the spectral gap of the clock Hamiltonian, or by amplifying the overlap of the ground state with

the beginning and ending time steps of the computation (i.e. modifying the ground state |ψ0〉 ofH such

that 〈ψ0|Πin |ψ0〉 is maximised, and analogously for Πout). To see that the overlap with the endpoints of
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the computation can be made arbitrarily close to one, we prove that it is in fact possible to construct a clock

Hamiltonian with an arbitrary distribution as its ground state.

Lemma 5.4. For any probability distribution µ with support everywhere on its domain {0, . . . , T} there is
a choice of coefficients {at, bt}Tt=0 in eq. (5.4) such that Hclock is frustration-free and has a ground space
spanned by states of the form eq. (5.1) with weights ψt =

√
µt.

Using lemma 5.4 we exhibit a modified Hamiltonian for a target ground state distribution with π0, πT ≥
1/4, and show that it has a spectral gap that is Ω(T−2) to establish our first main result; in order to prove it,

we use the geometrical lemma for modified Feynman Hamiltonians, a by now standard but central proof

technique that is used ubiquitously in hardness constructions of the local Hamiltonian problem.

Theorem 5.5. There is a frustration-free modified circuit Hamiltonian as in eq. (5.2) with a quantum UN-
SAT penalty Ep(ε, T ) that is Ω((1−√ε)T−2).

A natural question is whether the lower bound given by the geometrical lemma is asymptotically tight

for Feynman Hamiltonians. We show that this is not the case. As a first step we apply an improved analysis

to Kitaev’s original construction with uniform weights,

Hprop =

T∑
t=0

at|t〉〈t| ⊗ 1+

T−1∑
t=0

(
bt|t+ 1〉〈t| ⊗Ut + b∗t |t〉〈t+ 1| ⊗ U†t

)
, (5.6)

|ψ〉 =
1√
T + 1

T∑
t=0

|t〉 ⊗ (Ut...U1) |ξ〉 (5.7)

and we find thatE(HFK) = Ω(T−2) for Hprop as in (5.6).

Theorem 5.6. The UNSAT penalty in Kitaev’s local Hamiltonian construction is Ω(T−2).

The proof of theorem 5.6 is based on a matrix decomposition lemma due to Jordan, which reduces the

problem to lower bounding the ground energy of a discrete Schrodinger operator in each of the resulting

blocks, with the lower bound following by a variational method and a suitable trial wave function.

Finally, we show that the scaling of the UNSAT penalty achieved in theorem 5.5 is the optimal scaling

that can be achieved by applying the lower bound in lemma 5.3 to modified Feynman Hamiltonians of the

form in eq. (5.2).

Theorem 5.7. Let |ψ〉 be the ground state of a Hamiltonian H with eigenvalues E := E0 ≤ E1 ≤ . . . ≤
ET . If H is tridiagonal in the basis {|0〉, . . . , |T 〉},

H :=

T∑
t=0

at|t〉〈t|+
T−1∑
t=0

(bt|t+ 1〉〈t|+ b∗t |t〉〈t+ 1|) ,
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with |at|, |bt| ≤ 1 for t = 0, . . . , T then the product ∆H ·min{|ψ|20, |ψT |2} of the spectral gap ∆H =

E1 − E and the minimum endpoint overlap is O(T−2).

The rest of the chapter is organised as follows. The proofs of lemma 5.2 and lemma 5.4 can be found

in section 5.2. The construction used for lemma 5.4 is given in section 5.2.3 along with some necessary

background on Markov chains that will be used in the proof of theorem 5.5 in section 5.2.4. In section 5.4 we

develop the quantum-to-classical mapping for arbitrary tridiagonal matrices and use it to prove theorem 5.7.

In section 5.5 we describe the implications of our work for universal adiabatic computation. Finally, in

section 5.6 we discuss the open problem of further increasing the quantum UNSAT penalty and relate it to

some of the longstanding goals in the subject of quantum ground state computation.

5.2 Improving Circuit Hamiltonians
5.2.1 Partial Diagonalisation of Weighted History States
We prove lemma 5.2. Since W• is a linear operator the calculations we need to check for lemma 5.2 are the

same as in the standard unweighted case [KSV02, ch. 14.4]. As a reminder,

W†W =

T∑
t,t′=0

(
|t〉〈t| ⊗ (U†1 · · ·U†t)

)(
|t′〉〈t′| ⊗ (U1 · · ·Ut′)

)
=

T∑
t=0

|t〉〈t| ⊗ 1 = 1, (5.8)

W †(|t+ 1〉〈t| ⊗Ut+1)W = |t+ 1〉〈t| ⊗ (U†1 · · ·U†t+1)Ut+1(Ut · · ·U1) = |t+ 1〉〈t| ⊗ 1, (5.9)

and so the claim of lemma 5.2 follows by linearity.

5.2.2 Kitaev’s Geometrical Lemma for Weighted History States
Kitaev’s geometrical lemma (see lemma 2.29) provides the starting point for the lower bound (5.5); in this

section, we explicitly prove a variant (lemma 5.3) for the weighted case

We use notation from lemma 2.29. For us, A = Hin + Hout, and B = Hprop, and in this section we

use the freedom to shift the energy in eq. (3.1) to set E(Hprop) = 0 (since the system can be frustrated

this means the local terms may no longer be positive semi-definite, but this will not present a problem in

applying the geometrical lemma above because Hprop itself is positive semi-definite). Denote the projector

onto the kernel of the penalty terms A with Πpen := |0〉〈0| ⊗Π⊥in + |T 〉〈T | ⊗Π⊥out +
∑T−1
t=2 |t〉〈t| ⊗ 1.

Denote with U = UT · · ·U1 the entire encoded quantum circuit. We first want to bound the angle θ

between the kernels of the propagation and penalty Hamiltonians[KSV02]; [Cub15].
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cos2 θ = max
|ξ〉∈kerA
|η〉∈kerB

| 〈ξ|η〉 |2

= max
|ξ〉

|η〉∈kerB

| 〈η|Πpen |ξ〉 |2

∗
= max
|η〉∈kerB

〈η|Πpen |η〉

= max
|η〉∈kerB

〈η|W †(WΠpenU
†)W |η〉

= max
|η′〉∈kerWBW †

〈η′| |0〉〈0| ⊗Π⊥in + |T 〉〈T | ⊗ UΠ⊥outU
† +

T−1∑
t=2

|t〉〈t| ⊗ 1 |η′〉

= max
|φ〉

T∑
s=1

ψ∗sψs 〈s| 〈φ|
(
|0〉〈0| ⊗Π⊥in + |T 〉〈T | ⊗ UΠ⊥outU

† +

T−1∑
t=2

|t〉〈t| ⊗ 1
)
|t〉 |φ〉

= max
|φ〉
〈φ| (|ψ2

0 |Π⊥in + |ψ2
T |UΠ⊥outU

†) |φ〉+ 1− |ψ2
0 | − |ψ2

T |,

where we have saturated Cauchy-Schwartz in the third line (∗). To bound the first inner product, we observe

that if ψ2
0 ≥ ψ2

T , picking |φ〉 ∈ ker Πin gives the bound

max
|φ〉
〈φ| (π0Π⊥in + πTUΠ⊥outU

†) |φ〉 ≤ π0 + πT cosϑ,

where ϑ is the angle between supp Πin and suppUΠoutU
†. This angle can be lower-bounded by the

acceptance probability of the circuit:

cos2 ϑ = max
|η〉∈supp Πin

|ξ〉∈suppUΠoutU
†

| 〈η|ξ〉 |2 ≤ max
|η〉∈supp Πin

|ξ〉∈supp Πout

| 〈η|U |ξ〉 |2 ≤ ε.

Similarly, if ψ2
0 < ψ2

T , one can show an upper bound of π0 cosϑ+ πT . We thus obtain an overall upper

bound

cos2 θ ≤ max{π0, πT }+ min{π0, πT }
√
ε+ 1− π0 − πT

≤ 1−min{π0, πT }(1−
√
ε).

In Kitaev’s lemma, we thus obtain a lower bound

2 sin2 θ

2
≥ 2× 1− cos2 θ

8 cos2 θ
≥ 1

4
min{π0, πT }(1−

√
ε),
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and the claim follows.

5.2.3 Symmetrised Metropolis Hamiltonians with target ground
state distributions

In this section we describe our construction which fulfils lemma 5.4. We review most concepts as needed

but assume the reader has some familiarity with Markov chain transition matrices as can be found in any

textbook on the subject, such as [LPW09].

Given a probability distribution π with support everywhere on its domain S = {0, . . . , T}, let P be

the Markov chain with Metropolis transition probabilities defined on S ,

Pt,t+1 =
1

4
min

{
1,
πt+1

πt

}
, Pt,t−1 =

1

4
min

{
1,
πt−1

πt

}
Pt,t = 1−Pt,t+1 −Pt,t−1

(5.10)

for all i ∈ S (setting the expressions P0,−1 and PT,T+1 to zero) and Pt,t′ = 0 for all t, t′ ∈ S with

|t−t′| > 1. The choice of coefficient 1/4 implies Pt,t ≥ 1/2 for all t and so P is positive semi-definite. The

principal left eigenvector of this transition matrix P :=
∑
t,t′∈S Pt,t′ |t〉〈t′| is 〈π| =

∑
t πt〈t|, and while

P is not a symmetric matrix there is a well known similarity transformation that relates P to a symmetric

matrix,

A :=
∑
t,t′∈S

π
1/2
t π

−1/2
t′ Pt,t′ |t〉〈t′|. (5.11)

The two matrices are related by the fact that if 〈v0|, · · · , 〈vT | are the left eigenvectors of P with eigenvalues

λ0 = 1 ≥ λ1 ≥, . . . ,≥ λT ≥ 0 then |wi〉 :=
∑
t∈S〈vi|t〉〈t|v0〉−1/2 |t〉 satisfies A|wi〉 = λi|wi〉.

ThereforeA has the same eigenvalues as P, and in particular it has largest eigenvalue 1 corresponding to

the eigenvector |w0〉with components satisfying 〈t|w0〉 = 〈t|v0〉1/2 =
√
πt. Therefore H = 1−A is a

nonnegative Hermitian matrix with ground state that has energy zero and components√πt in the time

register basis, as claimed.

Substantial efforts been devoted to characterising spectral gaps of Markov chains. A particularly fruitful

characterisation proceeds by defining a quantity called the conductance,

Φ := min
S⊆Ω

Q(S, Sc)

min{π(S), π(Sc)} , Q(S, Sc) :=
∑

x∈S,y∈Sc

π(x)P (x, y) (5.12)

which determines the spectral gap within a quadratic factor,

Φ2

2
≤ ∆P ≤ 2Φ. (5.13)

The lower bound in eq. (5.13) is known as Cheeger’s inequality, and it was initially discovered in the analysis
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of manifolds [Che70] before being adapted to the setting of Markov chains [SJ89]. In the next section

we will use this method to lower bound the spectral gap of the Symmetrised Metropolis Hamiltonian

corresponding to a particular non-uniform stationary distribution.

5.2.4 Explicit Construction of an Ω(T−2) UNSAT Penalty Circuit
Hamiltonian

In this section let Hprop be the Metropolis Hamiltonian corresponding to the probability distribution

π0 = πT =
1

4
and πt =

1

2(T − 1)
for t = 1, ..., T − 1. (5.14)

Keeping with tradition [AN02]; [Aha+08]; [Aha+09b], we exhibit H as a T + 1 by T + 1 matrix in the

time register basis,

H =
1

2



1
T−1 − 1√

2T−2
0 · · · 0

− 1√
2T−2

1 − 1
2 0

. . .
...

0 − 1
2 1 − 1

2 0
. . .

...
. . . . . . . . . . . . . . .

... 0 − 1
2 1 − 1

2 0

0 − 1
2 1 − 1√

2T−2

0 · · · 0 − 1√
2T−2

1
T−1


(5.15)

A few low energy eigenstates of this Hamiltonian are illustrated in figure 5.1. Since π0 and πT are Ω(1)

it only remains to check that the spectral gap ∆H of the clock Hamiltonian is Ω(T−2), which since this

spectral gap is equal to the spectral gap of the Metropolis transition matrix P that is reversible with respect

to π we can apply Cheeger’s inequality (5.13).

The goal is to show that every subset S of S has large conductance, so we divide the proof into cases

corresponding to the different possibilities for the subsetS. First ifS = {0} then since P0,1 = (8T −8)−1

so Φ(S) is Ω(T−1), with similar statements holding for S = {T} and S = {0, T}. Now if S ⊆
{1, . . . , T −1} is non-empty there must be at least one t ∈ {1, . . . , T −1} such that there is a t ∈ Sc with

Pt,t′ ≥ 1/4, and since πt = (2T − 2)−1 this shows that Φ(S) is Ω(T−1) in this case as well. Therefore

∆P is Ω(T−2) by (5.13) and since ∆H = ∆P this concludes the proof of theorem 5.5.
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Figure 5.1: Low energy eigenstates of (a) the path graph Laplacian used in the standard circuit-to-
Hamiltonian construction and (b) the symmetrised Metropolis Hamiltonian corresponding to
the distribution with π0, πT = 1/4 that is used in this section.

5.3 Tightness of the Geometrical Lemma for the UNSAT
Penalty

5.3.1 A Tight Bound for the Clock Hamiltonian
An interesting question is whether the scaling of Ω(T−3) in Kitaev’s original construction is tight or not.

The Hamiltonian in his original proof is given by

HKitaev := Hprop + |0〉〈0| ⊗Πin + |T 〉〈T | ⊗Πout,

where Hprop is given by eq. (5.18) with a0 = aT = 1 and at = 2 else, and bt = −1 for all t. We denote the

encoded circuit with U = UT · · ·U1. The corresponding clock- and computation registers then live on

the Hilbert spaceH := (CT+1)⊗ (C2)⊗d for some local dimension d.

It seems to have been known for a while that the precise UNSAT penalty for Kitaev’s construction is in

fact Ω(T−2) (see Nagaj [Nag14]), and not Ω(T−3) which stems from an application of the geometrical

lemma alone; yet an explicit proof has never been published to the best of the authors’ knowledge. We

present one in the following. We furthermore want to point out that for a modified version of Kitaev’s

circuit-to-Hamiltonian construction—padding of the input and output clock states with an Ω(T )-sized

identity circuit and spreading out the input and output penalty—yields a similar Ω(T−2) UNSAT penalty,

but at the cost of increasing the clock register by at least a constant factor.

As a first step, and to establish some background machinery, we focus on only the clock part of the

Hamiltonian, i.e. we disregard the encoded computation completely; the Hamiltonian we analyse has the
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form H = |0〉〈0|+ Hclock + |T 〉〈T |. Since H is stoquastic, we can lower bound the ground state energy of

H by combining a suitable ansatz for the ground state with the following lemma[Far+11].

Lemma 5.8 (Farhi et al., 2011). Let H be a Hermitian operator which is stoquastic in the |t〉 basis (meaning
〈t|H̄|t′〉 ≤ 0 for all t 6= t′). Let E be its lowest eigenvalue. Then

E ≥ min
t

〈t|H|φ〉
〈t|φ〉 (5.16)

for any state |φ〉 such that 〈t|φ〉 > 0 for all t.

Noting that the state |φ〉 in Lemma 5.8 does not need to be normalised, define

|φ〉 :=

T∑
t=0

sin

(
π(t+ 1)

T + 2

)
|t〉. (5.17)

The bound (5.16) can be evaluated using three cases. The first case is t = 0, which yields

〈0|H|φ〉
〈0|φ〉 =

[
sin

(
π

T + 2

)]−1 [
2 sin

(
π

T + 2

)
− sin

(
2π

T + 2

)]
= 2

(
1− cos

(
π

T + 2

))
=
π2

T 2
−O(T−3).

The next case is 1 ≤ t ≤ T − 1,

〈t|H|φ〉
〈t|φ〉 =

[
sin

(
π(t+ 1)

T + 2

)]−1 [
2 sin

(
π(t+ 1)

T + 2

)
− sin

(
πt

T + 2

)
− sin

(
π(t+ 2)

T + 2

)]
= 2

(
1− cos

(
π

T + 2

))
=
π2

T 2
−O(T−3).

The final case is t = T ,

〈T |H|φ〉
〈T |φ〉 =

[
sin

(
π(T + 1)

T + 2

)]−1 [
2 sin

(
π(T + 1)

T + 2

)
− sin

(
πT

T + 2

)]
= 2− sin

(
πT

T + 2

)
csc

(
π(T + 1)

T + 2

)
=
π2

T 2
−O(T−3)

Therefore we have shown that 〈t|H|φ〉/〈t|φ〉 is Ω(T−2) for all t, and so applying Lemma 5.8 we can
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conclude thatE(H) is Ω(T−2).

5.3.2 A Tight Bound for the Full Circuit Hamiltonian
For the purpose of this discussion, we will assume that rank Πin, rank Πout ≥ d/2; this is a natural

assumption e.g. if Πin = |1〉〈1|(1) ⊗ 1(2) ⊗ · · · ⊗ 1(d) just penalises the first qubit in a state |1〉. Note that

more penalised qubits generally increase the rank of Πin if we demand the penalties to be local operators (i.e.

not something like |1〉〈1| ⊗ |0〉〈0| ⊗ · · · , but |1〉〈1| ⊗ 1+ 1⊗ |0〉〈0| ⊗ 1+ . . .).

We know that there exists a global unitary W onH such that spec(Hprop) = spec(W†HpropW) =

spec(∆) up to multiplicities, where ∆ is the Laplacian of a path graph of T + 1 vertices:

∆ =



1 −1 0 · · · 0

−1 2 −1

0 −1
. . . . . .

...
...

. . . . . . −1 0

−1 2 −1

0 · · · 0 −1 1


Then

W†HKitaevW = ∆⊗ 1+ |0〉〈0| ⊗Πin︸ ︷︷ ︸
:=A

+ |T 〉〈T | ⊗U†ΠoutU︸ ︷︷ ︸
:=B

. (5.18)

We choose to work in a basis where A takes the form

A = diag(∆′, . . . ,∆′︸ ︷︷ ︸
rank Πin times

,∆, . . . ,∆), (5.19)

where ∆′ = ∆ + |0〉〈0|. Note that this is always possible: we simply re-order the computational register

such that Πin penalises the first rank Πin states. Note that B = |T 〉〈T | ⊗U†ΠoutU does not have a simple

form in this basis (apart from having only a single entry within each block in the time register basis, i.e. at

the diagonal entry |T 〉〈T |).

If we naı̈vely try to diagonalise B, we will again mix up the nice block-diagonal form in eq. (5.19); our

goal is thus to find a unitary V = 1d ⊗ (V′ ⊕V′′) which respects the block-diagonal structure of A, i.e.

in particular leaves the upper left block invariant (which is automatically the case if dim V′ ≤ rank Πin).

For this we need a variant of Jordan’s Lemma. While Jordan’s original paper addresses the case of orthogo-

nal transformations between subspaces, we can state it more suitable to our needs:

Lemma 5.9 (Jordan [Jor75], Th. 1). Let Π0 and Π1 be two Hermitian projectors in some Hilbert space H.
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Then there exists a decomposition ofH into one- and two-dimensional subspacesH =
⊕

iHi, such thatHi
is invariant under both Π0 and Π1, and such that rank Πj |Hi ≤ 1 for all j and i.

The proof is standard. Lemma 5.9 allows us to state the following corollary.

Corollary 5.10. Let Π0 and Π1 be projectors with rank Π0 = rank Π1 = d/2, and rank(Π0 + Π1) = d

is full rank. Then there exists a unitary V such that V†Π0V = 1d/2 ⊕ 0. •Furthermore,

V†Π1V =

Maa Mab

Mba Mbb

 ,

where each d/2× d/2 block Mij is diagonal, •and Mab = Mba < 0.

Proof. Applying lemma 5.9 to Π0 and Π1, we know that there exists a basis in which Π0 is diagonal, and

Π1 =
⊕

i Mi, where the Mi are 2 × 2 or 1 × 1 Hermitian matrices. Re-order the basis again such

that Π0 = 1r ⊕ 0 with r = d/2; we denote the unitary transformation from Jordan’s lemma with this

following reordering as V.

Under the same re-ordering, the matrix V†Π1V then necessarily has the form

V†Π1V =

Maa Mab

Mba Mbb

 =



λ1 0 · · · 0 ξ1 0 · · · 0

0 λ2
. . .

... 0 ξ2
. . .

...
...

. . . . . . 0
...

. . . . . . 0

0 · · · 0 λr 0 · · · 0 ξr

ξ∗1 0 · · · 0 µ1 0 · · · 0

0 ξ∗2
. . .

... 0 µ2
. . .

...
...

. . . . . . 0
...

. . . . . . 0

0 · · · 0 ξ∗r 0 · · · 0 µr



(5.20)

A further global phase transformation (adjoining with a diagonal unitary, which leaves Π0 invariant) allows

us to assume that the ξi = −|ξi|, and the claim follows.

We still need to show that the resulting Hamiltonian is in particular a graph Laplacian connecting the

T th entry in every block of ∆ in eq. (5.19) with the T th entry in at least one block of ∆′, which is where the

input penalty terms are located. Naturally, this will depend on the encoded circuit, and—using notation

from the last proof—on the respective ranks of Maa and Mbb. For this, we state the following lemma.
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∆

∆

∆

∆

∆

∆

∆

∆





1

λ1

µ1−|ξ1|

−|ξ1|
1

λ2

µ2−|ξ2|

−|ξ2|
1

λ3

µ3−|ξ3|

−|ξ3|
1

λ4

µ4−|ξ4|

−|ξ4|

T

d blocks

rank Πin
blocks

Figure 5.2: Sketch of matrix (1⊗V)†(∆⊗ 1+ |1〉〈1| ⊗Πin + |T 〉〈T | ⊗M)(1⊗V).

Lemma 5.11. Let U encode a NO instance. Then Πin + U†ΠoutU has full rank.

Proof. It is easy to see that if ker(Πin + U†ΠoutU) 6= 0, there would be a state that can be accepted with

perfect probability—contradicting the assumption that U encodes aNO instance.

This technical machinery allows us to prove theorem 5.6. Remember that we have to show that whenever

U encodes aNO instance, then λmin(HKitaev) = Ω(T−2).

Proof. Since the circuit is aNO-instance, there exists a minimal acceptance probability for any (valid) input

|x〉 ∈ ker Πin, which we denote with ε. By lemma 5.11, we know that we can apply corollary 5.10 to Πin and

U†ΠoutU; the unitary transformation bringing the latter into a form eq. (5.20) while leaving Πin = 1⊕ 0

we denote with V.

Now perform the similarity transform on eq. (5.18), i.e.

(1⊗V†)W†HKitaevW(1⊗V) = ∆⊗ 1 + |0〉〈0| ⊗ (1⊕ 0) + |T 〉〈T | ⊗ (V†U†ΠoutUV).

This matrix is depicted in fig. 5.2. Since U encodes a quantum circuit, we can immediately calculate the

magnitudes of the λi, µi and ξi’s (see eq. (5.20) and fig. 5.2 as a reference).
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1. If |x〉 ∈ Cd, then 〈x|U†ΠoutU |x〉 = ‖ΠoutU |x〉 ‖2 is the probability that the circuit U rejects

input |x〉.

2. If |x〉 ∈ ker Πin—i.e. for the Mbb block—〈x|U†ΠoutU |x〉 ≥ 1 − ε. Otherwise we have no

non-trivial lower bound.

3. Assuming dim supp Πout = d/2 (discard the rest), we can thus immediately conclude that each

matrix block

Pi =

 λi −|ξi|
−|ξi| µi


is of rank Pi = 1 with 1 ≥ µi ≥ 1− ε.

4. Since the eigenvalues of a matrix are unique, we could proceed diagonalising V†ΠoutV by further

diagonalising each block Pi separately, and we would obtain the same overall matrix as if we had

diagonalised Πout in one step. Since Πout is a psd projector, we thus know that each of the Pi has to

be a psd projector, and we can conclude

Pi =

 η2
i µi −ηiµi
−ηiµi µi


for some ηi := λi/µi ≥ 0. Then 1 = tr Pi = µi(1 + η2

i ) ≥ (1− ε)(1 + η2
i ), and thus

ηi ≤
√

1

1− ε − 1 =

√
ε

1− ε ≤
√
ε

2
,

and thus λi = η2
i µi ≤ εµi/2 ≤ ε/2, and |ξi| = ηiµi ≤

√
ε/2.

5. From µi ≤ 1, one can obtain a trivial bound 1 ≤ 1 + η2
i , and thus obviously λi ≥ 0.

What thus remains to be analysed is the spectrum of each pairs of blocks in fig. 5.2, i.e. blocks of the form

∆ + ∆′+ matrix Pi spread to the submatrix indexed by T, 2T ; more precisely, each block will have twice

the size of ∆, and we can write it as a stoquastic matrix onC2 ⊗ CT+1:

S = (|0〉〈0|+|1〉〈1|)⊗∆+|0〉〈0|⊗|0〉〈0|+µ
[
|1〉〈1|+ η2 |0〉〈0| − η(|0〉〈1|+ |1〉〈0|)

]︸ ︷︷ ︸
=:L

⊗ |T 〉〈T | , (5.21)

where µ ≥ 1 − ε and η ≤
√
ε/2. For e.g. dimS = 8 and reversing the second half of the time register
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(i.e. reversing the basis from T to 2T ), this matrix looks like

S8 =



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 µη2 + 1 −µη 0 0 0

0 0 0 −µη 1 + µ −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 1



.

Using a variational argument with the state

|φ〉 :=

T∑
i=1

sin

(
πi

2T

)
(|i〉+ |i+ T 〉)

and lemma 5.8, we can then explicitly show that S = Ω(T−2), independent of µ and η. The bound can

be evaluated using five cases, which we summarise as follows.

t = 1:

(
2 sin

( π

2T

)
− sin

( π
T

))
csc
( π

2T

)
=

π2

4T 2
+O(T−3)

1 < t ≤ T − 1 and T + 1 < t < T :

4 sin2
( π

4T

)
=

π2

4T 2
+O(T−3)

t = T :

η2µ− ηµ sin
( π

2T

)
− cos

( π

2T

)
+ 1 = η2µ− πηµ

2T
+

π2

8T 2
+O(T−3)

t = T + 1:

µ− ηµ csc
( π

2T

)
− 2 cos

( π

2T

)
+ 1 = −2T (ηµ)

π
+ (µ− 1)− πηµ

12T
+

π2

4T 2
+O(T−3)
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t = 2T :

1− sin

(
π(T − 1)

2T

)
=

π2

8T 2
+O(T−3)

For convenience, we further summarise the findings regarding the block matrix decomposition of the full

circuit Hamiltonian given in the proof of theorem 5.6 in the following lemma.

Lemma 5.12. Kitaev’s construction can be block decomposed as HKitaev =
⊕

Si, where each block Si has the
form eq. (5.21). The ground state ener� of each of these blocks is Ω(T−2), and thusE(HKitaev) = Ω(T−2).

5.4 Limitations on further improvement
The proof of Theorem 5.7 is based on applying a sharp spectral gap bound for birth-and-death Markov

chains to a quantum-to-classical mapping that has been studied previously in the closely related context

of universal adiabatic computation [Aha+08] and the complexity of stoquastic Hamiltonians [BBT06];

[BT09]. A new feature of our application is the realisation that this quantum-to-classical mapping defines a

Markov chain even for tridiagonal Hamiltonian matrices with arbitrary complex entries, while previous

applications have been restricted to cases for which H has all non-positive off-diagonal matrix entries in the

time register basis.

In this section we continue with the notation of (3.1), but now we use the freedom to shift the energy

to set at ≥ 0 for all t, and so the ground state energy E will in general satisfy 0 ≤ E < 1. Define

G := (1−H)/(1−E) to be a shifted and rescaled version of H which is designed to satisfy G|ψ〉 = |ψ〉,
where |ψ〉 labels the ground state of H. For all t, t′ ∈ {0, . . . , T}, define

Pt,t′ :=

ψt
′Gt,t′ψ

−1
t if ψt 6= 0 and ψt′ 6= 0,

0 otherwise.
(5.22)

In the following lemma we will show that the Pt,t′ are transition probabilities for an irreducible Markov

chain on {0, . . . , T}, i.e. in particular that they are all nonnegative. First, observe that if H is stoquastic

as in previous applications, then G is a nonnegative matrix in the time register basis, ψ has nonnegative

amplitudes in this basis by the Perron-Frobenius theorem and so Pt,t′ is explicitly nonnegative. Here we

show that even when G contains arbitrary complex matrix entries (while being tridiagonal) we still have

Pt,t′ ≥ 0, because of cancellations that occur between the matrix elements of G and the amplitudes of the

ground state wave function in the time register basis. Continuing with the same notation used in (5.4),

Lemma 5.13. If ψ0 6= 0, ψT 6= 0, and bt 6= 0 for t = 0, . . . , T , then ψt 6= 0 for t = 1, . . . , T − 1 and
Pt,t+1 = ψt+1Gt,t+1ψ

−1
t ≥ 0 for all t ∈ {0, . . . , T − 1}.
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Before proving the lemma, note that the conditions may be taken to hold without loss of generality,

since ψ0 = 0 or ψT = 0 immediately implies Theorem 5.7, or similarly if bt′ = 0 for some t′ then

|ψ⊥〉 :=
∑T
t=0 ψ

⊥
t |t〉 defined by

ψ⊥t :=


ψt

ψ2([0,t′]) 0 ≤ t ≤ t′

− ψt

ψ2([t′+1,T ]) t′ < t ≤ T − 1
(5.23)

satisfies 〈ψ⊥|ψ〉 = 0 and H|ψ⊥〉 = E|ψ⊥〉, which implies ∆H = 0 and so again Theorem 5.7 holds in

this case1.

Now turning to the proof of Lemma 5.13. From H|ψ〉 = E|ψ〉we have that

a0ψ0 + b0ψ1 = Eψ0 (5.24)

b∗i−1ψi−1 + aiψi + biψi+1 = Eψi , for i = 1, . . . , T − 1 (5.25)

aTψT + b∗T−1ψT−1 = EψT (5.26)

Since Pt,t′ = 0 when |t−t′| > 1, our goal is to show Pt,t+1 > 0 for t ∈ {0, . . . , T−1}, and Pt,t−1 > 0

for t ∈ {1, . . . , T}. The first claim Pt,t+1 > 0 will follow by showing thatE is minimised when ψt 6= 0

and ψt+1btψ
−1
t < 0 for all t = 0, . . . , T − 1. The second claim Pt−1,t > 0 is then implied immediately

since

ψtb
∗
tψ
−1
t+1 =

( |ψt|
|ψt+1|

)2 ψ∗t+1

ψ∗t
b∗t =

( |ψt|
|ψt+1|

)2 (
ψt+1btψ

−1
t

)∗
. (5.27)

Rearranging eq. (5.24) yields ψ1b0ψ
−1
0 = E − a0, and sinceE − a0 is real the value ofE implied by

this equation alone is minimised when the LHS is negative. This observation will be taken as the base case

for an argument by mathematical induction on the finite set {1, . . . , T − 1}. The inductive hypothesis

is that the value ofE implied by considering only equations 0 through i in the list eq. (5.25) is minimised

when ψtbt−1ψ
−1
t−1 is negative for 1, . . . , t, and this will be used to show that the minimum value ofE that

satisfies equations 0 through t+ 1 in eq. (5.25) will be achieved when ψt+1btψ
−1
t is negative as well. Using

the fact that ψt 6= 0 from the inductive hypothesis we may express eq. (5.25) as

b∗t−1

ψt−1

ψt
+ bt

ψt+1

ψi
= E − at , for t = 1, . . . , T − 1. (5.28)

Since E − at is real and ψt−1b
∗
t−1ψ

−1
t = (|ψt−1|/|ψt|)2(ψtbt−1ψ

−1
t−1)∗ is negative by the inductive

hypothesis, the value ofE implied by equations 0 through t+1 in the list eq. (5.25) will indeed be minimised

by takingψt+1btψ
−1
t to be negative. This establishes the inductive claim and completes the proof of Lemma

1Note that the same idea behind eq. 5.23 can be used to upper bound the spectral gap by the minimum of πtπt+1 over all t ∈
{0, ..., T − 1} such thatψ2([0, t′]) andψ2([t′ + 1, T ]) are both Ω(1).
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5.13.

Having established that Pt,t′ ≥ 0 we now list several standard facts which have been previously applied

to P when G is nonnegative, which can also be seen in the present case by direct computation:

1. P is a stochastic matrix, i.e.
∑T
t′=0 Pt,t′ = 1 for all t ∈ {0, . . . , T}, and therefore it can be regarded

as the transition matrix of a discrete time Markov chain.

2. The largest eigenvalue of P is equal to 1 and it corresponds to the unique principal eigenvector

|π〉 =
∑T
t=0 |ψt|2|t〉. The probability distribution πt := 〈t|π〉 is the stationary distribution of the

corresponding Markov chain.

3. The Markov chain defined by P is reversible with respect to its stationary distribution,

πtPt,t′ = 〈t′|ψ〉〈ψ|t〉Gt,t′ =
(
〈t|ψ〉〈ψ|t′〉G∗t,t′

)∗
= π′tPt′,t.

4. If |ψ0〉, |ψ1〉, . . . , |ψT 〉 are the eigenvectors of H with corresponding eigenvaluesE0 < E1 ≤ . . . ≤
ET , then |φk〉 =

∑
x∈Ω〈ψ0|x〉〈x|ψk〉|x〉 is an eigenvector of P with eigenvalue (1−Ek)/(1−E0).

Since this is the complete list of eigenvectors of P we have shown that the spectral gaps of H and P

satisfy

∆P = (1− E)∆H. (5.29)

The relation eq. (5.29) means that we can apply techniques developed for upper bounding the spectral

gap of Markov chains to the problem of upper bounding the spectral gap of H. A non-trivial example

of such an upper bound is eq. (5.13): if the overlap of the stationary distribution with the end points |0〉
and |T 〉 is constant then we can immediately see that the conductance Φ is O(T−1) by the fact that the

stationary distribution is normalised, and this implies that ∆H is O(T−1). It turns out we can obtain an

even tighter bound by using a characterisation of spectral gaps that applies specifically to birth-and-death

chains [CS13], which we state here as a lemma.

Lemma 5.14. If P is a birth and death chain with stationary distribution π, then the spectral gap ∆P

satisfies
1

2`
≤ ∆P ≤

4

`
(5.30)

where

` := max

max
j:j≤i′

i′−1∑
k=j

π([0, j]

π(k)Pk,k+1
, max
j:j>i′

j∑
k=i′+1

π([j, T ])

π(k)Pk,k−1

 (5.31)

where i′ satisfies π([0, i′]) ≥ 1/2 and π([i′, n]) ≥ 1/2.
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In the present case we are seeking a lower bound on ` in order to have an upper bound on the gap. To

simplify the formulas we assume that the stationary distribution of the weighted history state is symmetric

around t = T/2 (otherwise the problem divides into two similar cases). Since we are seeking a lower

bound on `we can ignore the factor of Pk,k+1 ≤ 1 in the denominator, and we are also free to replace the

maximisation over j with any fixed choice of j.

With these simplifications and the choice of j = 1 eq. (5.31) becomes

` ≥ ψ2
0

T/2−1∑
t=1

1

ψ2
t

.

Applying the inequality of the arithmetic and geometric means yields,

T
2 −1∑
t=1

1

ψ2
t

≥
(
T

2
− 1

)(
ψ2

1 · · ·ψ2
T
2 −1

)−1/k

(5.32)

≥
(
T

2
− 1

)2
T/2−1∑

t=1

ψt

−1

(5.33)

and so ` is Ω(ψ2
0T

2), and from eq. (5.30) we have that the spectral gap ∆P is O(`−1) and so ∆H · ψ2
0 is

O(T−2) as claimed.

5.5 Universal adiabatic computation
The circuit-to-Hamiltonian construction used in the proof of QMA-completeness also plays a crucial role

in the proof that adiabatic quantum computation (AQC) can simulate the quantum circuit model with

polynomial overhead. In this section we will review the relevant aspects of the standard universal AQC

construction in order to explain how our results on modified Feynman Hamiltonians allow for a useful

practical improvement in universal AQC, and also how theorem 5.7 yields a lower bound on the time needed

for universal AQC using modified Feynman Hamiltonians to simulate the circuit model.

The standard version of universal AQC is based on Hprop as given in (5.6), together with

Hinit := |0〉〈0| ⊗ 1 =



0 0 0 · · · 0

0 1 0

0 0
. . . . . .

...
...

. . . . . . 0 0

0 · · · 0 1


⊗ 1 (5.34)
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The goal in universal AQC is to prepare the ground state of Hprop by continuously varying a Hamiltonian

H(s) as that depends on an adiabatic parameter 0 ≤ s ≤ 1. First when s = 0 the system is initialised

in the ground state of H(0) := Hinit, which is a fiducial state that can easily be prepared, then the

parameter s is slowly increased until s = 1 when the system Hamiltonian is H(1) := Hprop. Defining

‖Ḣ‖ = maxs ‖dH/ds‖ and ∆ = mins ∆H(s), a sufficient condition for preparing the ground state of

Hprop is for the total evolution time satisfies tadiabatic = Θ(‖Ḣ‖∆−2). This time scale can be shown to be

bounded by poly(n) for the linear interpolation schedule,

H(s) = (1− s)Hinit + sHprop (5.35)

where specifically ∆ = Ω(T−2) and ‖Ḣ‖ = O(1) so that tadiabatic = Θ(T 4). The lower bound on the

spectral gap was proven using a quantum-to-classical mapping, a monotonicity property of the ground state

wave function as a function of s, and Cheeger’s inequality.

One may notice that measuring the time register of the uniform history state (5.7) results in collapsing

the computational register to its final time step t = T with probabilityO(T−1). To avoid repeating the

adiabatic evolution many times, it is desirable to boost this probability to Ω(1). The standard trick for

doing this is to pad the end of the computation with identity gates, meaning after performing the desired

computational gates U1, ...,UT one adds r additional identity gates Ur = Ur+1 = ... = Ur+T = I ,

so that measuring t ∈ [T, r + T ] suffices to project the computational register to be in the end of the

computation.

First we point out that modified Feynman Hamiltonians, together with the symmetrised Metropolis

Hamiltonian construction of section 5.2.3, open up a new set of trade-offs in universal adiabatic computation

that may be relevant for practical implementations. Specifically, the Hamiltonian H∗prop used in section 5.2.4

with Ω(1) probability on the endpoints can be used to increase the probability that measuring the time

register will collapse the computational register of the system into the final time step of the computation.

This provides an alternative to “padding the end of the computation with identity gates” that is normally

used to raise the probability of sampling from the final time step of the computation. Padding the length

of the computation with identity gates is relatively expensive in practical terms when the time register is

encoded using local interactions (such as the domain wall clock) because the clock must be represented in

unary, meaning the number of clock qubits scales linearly with the total length of the (padded) computation.

Achieving an overlap of δ ≈ 1 with the final step of the computation by padding the system with identity

gates requires a total of O(T/(1− δ)) clock qubits, however one can instead prepare the weighted history

state with πT = δ using only T clock qubits. The price that one has to pay for this improvement is in an
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Figure 5.3: Comparison of the spectral gap as a function of the adiabatic parameters for the standard version
of universal AQC with a 1/T probability of measuring the history state to be in the final time
step of the computation and for the modified construction corresponding to a history state with
probability 1/4 of measuring the final time step of the computation. Here T = 100 for both
constructions, and they both follow the same adiabatic schedule with local terms of the same
norm.

188



increase in the precision of the couplings needed to implement eq. (3.1) now must scale like O(T−1), as seen

in (5.15). This is a reasonable trade off, however, since the total number of qubits is generally the limiting

factor in most experiments.

Having seen that it can be advantageous to prepare the non-uniform history state ground state of H∗prop,

it remains to be shown that this can be done efficiently. A numerical comparison of the spectral gaps of

H(s) in (5.35) and of H∗(s) = (1− s)Hinit + sH∗prop(s) can be found in figure 5.3, and it reveals that both

of these linear interpolations encounter their asymptotic minimum gap at s = 1. We have already analysed

this spectral gap in section section 5.3, and shown that ∆H∗prop
= Θ(T−2), such as the minimum gap for the

standard construction is ∆H(s=1) = Θ(T−2). However, it is of course desirable to bound the adiabatic

run time for H∗(s) without any recourse to numerics. In this case the monotonicity of the ground state

wave function used in the proof for the standard construction does not hold, and so we offer a different

proof based on modified linear interpolation schedule,

H∗(s) = H0 + sAH∗prop, (5.36)

withA = T 4 and an Ω(1) spectral gap for 0 ≤ s ≤ 1, so that the standard estimate of the adiabatic run

time Ω(‖Ḣ‖∆−2
H ) is Ω(T 4) just as it will be for the usual version of universal AQC. At s = 1 the system

will be in the ground state of the Hamiltonian H̃final = H∗prop +A−1H0, and if {|ψ∗k〉}Tk=0, {E∗k}Tk=0 are

the eigenstates and corresponding eigenvalues of H∗prop then to first order inA−1 the perturbed ground

state |ψ̃〉 satisfies

‖|ψ̃〉 − |ψ∗0〉‖1 = A−1
T∑
k=1

|〈ψ0|Hinit|ψk〉|
E∗k − E∗0

, (5.37)

and using the fact thatE∗k − E∗0 ≥ ∆H∗prop
and ‖Hinit‖ = 1 this implies

A−1
T∑
k=1

|〈ψ0|Hinit|ψk〉|
E∗k − E∗0

≤ A−1∆−1
H∗prop

T∑
k=1

|〈ψ∗0 |Hinit|ψ∗k〉| = O(A−1∆−1
H∗prop

T ), (5.38)

and sinceA = T 4 we have ‖|ψ̃〉 − |ψ∗0〉‖1 = 1−O(T−1) as claimed.

To see that H∗(s) in (5.36) has ∆H∗(s) = Ω(1) for all s, first note that ∆H(0) = 1. We want to show

that the first excited energy is non-decreasing as a function of s, so to do this we letL be a large integer and

discretise the adiabatic path into steps s0 = 0, s1, ..., sL = 1, with a uniform step size si+1 = si + L−1.

Since H∗(si+1) = H∗(si) + (H∗(si+1)−H∗(si)) and the fact that H∗(si+1) − H∗(si) = Hprop

is positive semi-definite we can apply Weyl’s inequality to see that the first excited state energy is indeed

non-decreasing with s (and since this holds for any L it is independent of the discretisation of the path),
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and so soE∗1 (s) ≥ 1. Next we apply the variational method, with a trial state equal to the ground state of

Hprop, to see that 〈ψfinal|H(s)|ψ〉 = 〈ψ|H0|ψ〉 = 3/4, and so ∆H(s) ≥ 1/4 for all s.

Finally, we note that theorem 5.7 can be interpreted as proving that the standard universal adiabatic

construction plus the weighted endpoint modification made above is in a sense optimal for Hamiltonians

of the form (3.1). First, the problem of upper bounding the spectral gap of universal adiabatic constructions

was addressed before [GS13] by combining the quantum lower bound for unstructured search with the

technique of spectral gap amplification. This previous work found a general Õ(T−1) bound on the spectral

gap of any adiabatic Hamiltonian, a Õ(T−2) gap for any frustration-free adiabatic Hamiltonian, and finally

an Õ(T−2) bound on the spectral gap of modified Feynman Hamiltonians of the form (3.1) when the

weights near the endpoints satisfy a reasonable assumption for any adiabatic computation. Our theorem 5.7

corroborates this last result by showing a tight O(T−2) upper bound on the spectral gap and the minimum

overlap of the weighted history state with either endpoint of the computation.

5.6 Chapter Summary
One of the main aims of the present work is to motivate new ideas in quantum ground state computation

by focusing on the quantum UNSAT penalty as a metric for the improvement of circuit Hamiltonians. In

this section we discuss a range of open problems related to the UNSAT penalty, in case that they are more

tractable or lead to a different perspective on some of the open challenges facing this field. One difficulty

is that there is at present no general abstract formulation of what it means for a Hamiltonian to have a

ground space of circuit histories, as further improvement could involve alterations to the tridiagonal form

of the clock Hamiltonian (one such construction allowing for computational paths that include branching,

concurrency, and loops is given in [BCO17]). Therefore we describe these open problems without specifying

a precise form for future circuit-to-Hamiltonian constructions e.g. how the number of local terms might

scale, and so we are implicitly discussing relative energy penalties that are not simply made larger by e.g.

increasing the overall norm of the Hamiltonian.

The classical baseline. The classical Cook-Levin theorem encodes the history of a classical circuit

into the satisfying assignment of a 3-SAT formula. If the computation has T time steps, then the associated

constraint satisfaction problem has O(T ) local terms and if each has a constant norm than the classical

UNSAT penalty is immediately Ω(1). Therefore we ask: is it possible for a circuit Hamiltonian containing

O(T ) local terms of bounded norm, which may be of a form more general than (3.1), to achieve an UNSAT

penalty that is independent of the length of the computation?
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Macroscopic UNSAT penalty. Building on the previous question which asks whether the UNSAT

penalty can be made independent of the length of the computation, we further ask whether the UNSAT

penalty can be made to scale macroscopically with the number of qubits n in the computation. Specifically,

is there a circuit Hamiltonian with O(poly(n)T ) local terms that achieves a poly(n) UNSAT penalty that is

independent of T ? Such a construction could be a useful step towards fault-tolerant adiabatic computation.

An intuition for this connection can be gained by considering a construction for energetically encoded

fault-tolerant classical computation, whereby each logical bit could be encoded as an arrangement of spins

in a self-correcting model (e.g. the 2D Ising model), so that the UNSAT penalty could have a macroscopic

scaling (i.e. with the number of physical spins representing each logical bit) that is independent of T .

Constant relative UNSAT penalty. A circuit Hamiltonian with O(m) local terms of bounded

norm, where m = poly(T ), with constant relative UNSAT penalty Ep/m would yield a proof of the

quantum PCP conjecture by spectral gap amplification. The reduction consists of applying the circuit

Hamiltonian with constant relative UNSAT penalty to the circuit verifier that decides the ground state

energy of the arbitrary input local Hamiltonian.

It is a testament to Feynman’s great legacy that an idea first introduced in 1987 has had such a profound

impact for wide scope of research, from condensed matter physics to quantum computation, and that despite

the growth of the field of Hamiltonian complexity his original construction continues to remain essentially

unchanged to date. We do not know whether or where limitations of improving the circuit-to-Hamiltonian

construction will be reached, but hope that our contribution will help to push this boundary a little further.
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6 Conclusion
Hamiltonian complexity theory has been a relatively active field of research over the last few years, and the

interplay between complexity theory and many-body quantum physics has not come to a standstill.

In [LVV15], the authors prove that for a gapped, local and one-dimensional Hamiltonian H on n

dimension d qudits, approximating the ground state to within precision η can be achieved with a BPP
algorithm with runtimenc(d,ε) poly(n/η). Here, ε is the spectral gap of the Hamiltonian, and the function

c(d, ε) = exp(log3 d/ε); the success probability is 1− 1/ poly n.

This result does not depend on the local dimension, and in fact accomplishes something arguably harder

than what the local Hamiltonian problem demands: whereas the latter only asks for an approximation

of the ground state energy, [LVV15] give a matrix product state representation which is η-close to the true

ground state (with regards to state fidelity, i.e. | 〈ψ|φ〉 | ≥ 1− η, where |ψ〉 approximates the true ground

state |φ〉). The construction crucially depends on the existence of a finite spectral gap of H; but could this

result extend to the case where we allow this gap to shrink, e.g. as∝ 1/ log n? What if we are only interested

in the energy, not in the state?

This suggests a bottom-up approach: for example, we proved (see theorem 2.2) that even for translationally-

invariant, nearest-neighbour 1D spin chains with open boundary conditions, approximating the ground

state energy isQMAEXP hard. But the local dimension d is greater or equal to 42. What about qubits? It

seems unfeasible to create a history state embedding with that little freedom to encode information into

local interactions, but there might well be another path of reduction to embed computation, which does not

depend on an extra clock register; remember that the no-go theorem in section 2 only claimed to disallow

quantum computation when we expect the ground state to be a tensor product over the history; we never

claim Feynman’s highly-entangled history state constructions are the only possible alternative. But how do

we find another feasible embedding?

In a similar context, there exists a complexity classification of interactions of local Hamiltonians, see

[CM14]; [PM15]. In brief, the authors prove that S is a fixed set of of k-qubit interactions, then the

local Hamiltonian problem with terms from S is either in P,NP-complete, StoqMA-complete, or

QMA-complete. This includes important results such as the quantum Ising model [BH14] being StoqMA-

complete. Central to these classifications are perturbation gadgets, i.e. high-weight terms in the Hamiltonian

that creates an effective ground state interaction which can have higher degree than its constituents. This
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idea is discussed and used ubiquitously in Hamiltonian complexity theory, see [JF08]; [OT05]; [AB09];

[Bra11]; [BDL11], yet one major problem is that it either requires coupling strengths that grow with the

system size, or growing number of the interactions [CN15].

Both ideas are, in a sense, unphysical, as they describe systems which would not appear in nature; so one

open question is: can we build perturbation gadgets with O(1) interaction strengths, and without growing

the number of terms in the Hamiltonian? My hope is that novel insights into these topics will lead to a better

understanding of how well we can simulate, approximate, or interpolate the behaviour and properties of

many-body quantum systems, and that this dissertation has made a small contribution to this undertaking.
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