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Abstract

The left-right operator splitting method is studied for the efficient calculation of
acoustic fields scattered by arbitrary rough surfaces. Here the governing bound-
ary integral is written as a sum of left- and right-going components, and the
solution expressed as an iterative series, expanding about the predominant di-
rection of propagation. Calculation of each term is computationally inexpensive
both in time and memory, and the field is often accurately captured using one
or two terms. The convergence and accuracy are examined by comparison with
exact solution for smaller problems, and a series of much larger problems are
tackled. The method is also immediately applicable to other scatterers such as
waveguides, of which examples are given.

Keywords: Rough surface; acoustic wave scattering; Helmholtz integral
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1. Introduction

The calculation of acoustic scattering by extended rough surfaces remains
a challenging problem both theoretically and computationally (e.g. [1, 2, 3, 4,
5, 6]) especially in the presence of strong multiple scattering. This becomes
acute at low grazing angles, where multiple scattering occurs for very slight
roughness. Boundary integral methods [7, 8] are flexible and often used for such
problems but can be computationally intensive and scale badly with increasing
wavenumber. Much effort has therefore been devoted to this aspect, where
possible exploiting properties of the scattering regime. For forward scattering
in 2-dimensions, for example, provided roughness length-scales are large, the
‘parabolic integral equation method’ can be applied [9, 10]. For electromagnetic
problems, also formulated using boundary integrals, the methods of ordered
multiple interactions and left-right splitting in both 2-d and 3-d ([11, 12]) have
been developed: here the scattered field is expressed as an iterative series of
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terms of increasing orders of multiple scattering, as described below. Approaches
using conjugate gradient solutions combined with fast multilevel multipole are
also receiving much attention. An important exception which overcomes the
dependence of computational expense on wavenumber is [13], which has been
applied to surfaces with piecewise constant impedance data or scattering in 2-d
by convex polygons.

A versatile recursive technique known as Multiple Sweep Method of Moments
was developed and analysed in [14, 15] where it was compared with Method of
Ordered Multiple Interactions. This technique was shown to tackle ‘composite’
problems for which the above method diverges such as for a ship on a rough
sea surface. Other iterative solutions have been studied in [16]. In addition
theoretical results are available in various limiting regimes (e.g. perturbation
theory for small surface heights, kσ � 1 including periodic surfaces [17, 18, 19],
Kirchhoff approximation [20, 21], or the small slope approximation [22] which
is accurate over a wider range of scattering angles than both of these). For
arbitrary finite rough surfaces, however, validation is more difficult, and such
results are therefore scarce.

In this paper the Left-Right Splitting method is developed and applied to the
problem of acoustic scattering in three dimensions by randomly rough surfaces.
For relatively small surfaces the results are validated by comparison with nu-
merical solution of the full boundary integral equation. The principal aims are
to validate the approach; to examine its robustness and convergence as the angle
of incidence changes; and to consider further approximations which may reduce
the computation time. The approach is applicable to a wide range of interior
and exterior scattering problems, and we give examples for acoustic propagation
in a varying duct, in addition to scattering from large rough surfaces.

The mathematical principles of the method are the same as for the two-
dimensional problem [23] although implementation is considerably more com-
plicated: The unknown field ψ on the surface is expressed as the solution to the
Helmholtz integral equation, with the integration taken over the rough surface.
This may be written formally as Aψ = ψinc, where ψinc is the incident field
impinging (say) from the left, so that we require ψ = A−1ψinc. The region
of integration is split into two, to the left and right of the point of observa-
tion, allowing A to be written as the sum of ‘left’ and ‘right’ components, say
(L + R)ψ = ψinc. Roughly speaking L represents surface interactions due to
scattering from the left, and R the residual scattering from the right. The
inverse of A can formally be expressed as a series

A−1 = L−1 − L−1RL−1 + ... (1)

Discretization of the integral equation yields a block matrix equation, in which
L is the lower triangular part of the block matrix A (including the diagonal) and
R is the upper triangular part. Under the assumption that most energy is right-
going, L is the dominant part of A, and the series can be truncated to provide
an approximation for ψ. This approach has several advantages. In terms of
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Figure 1: Example rough surface

wavelength λ, evaluation of each term scales with the fourth rather than the
sixth power of λ required for A−1; subsequent terms (of which typically only the
first one or two are needed) have the same computational cost. With further
approximations this can be reduced to λ3. However, this operation count is only
part of the story, because the low complexity and memory requirement allow
very large problems to be tackled without such additional approximation. In
addition the algorithm lends itself well to parallelisation, and the speed scales
approximately linearly with the number of processors.

In §2 the governing equations and left-right splitting approximation are for-
mulated. The numerical details and main results are shown in §3.

2. Formulation of equations

Consider a 3-dimensional medium with horizontal axes x, y and vertical axis
z directed upwards, and let k be the wavenumber. Let S = s(x, y) be a 2-
dimensional rough surface, varying about the plane z = 0, which is continuous
and differentiable as a function of x, y (see Figure 1). (Arbitrary scatterers
can also be treated by the methods shown here; examples will be given later.)
Consider a time-harmonic acoustic wave ψ, obeying the wave equation (∇2 +
k2)ψ = 0 in the region z > s(x, y), resulting from an incident wave ψinc at a
small grazing angle θ to the horizontal plane. This may for example be a plane
wave or a finite beam. The axes can be chosen so that the principal direction
of propagation is at a small angle to the (x, z) plane.

We will treat the Neumann boundary condition, i.e. an acoustically hard
surface. The derivation for the Dirichlet condition is similar. The starting point
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for this treatment is the boundary integral formulation [7, 8, 4]. Thus

∂ψ

∂n
= 0 (2)

where n is the outward normal (i.e. directed out of the region z > s(x, y)). The
free space Green’s function is given by

G(r, r′) =
eik|r−r

′|

4π|r− r′|
. (3)

The field at a point r in the medium is related to the surface field by the
boundary integral

ψinc(r) = ψ(r)−
∫
S

∂G(r, r′)

∂n
ψ(r′)dr′ (4)

where r = (x, y, z) and r′ = (x′, y′, s(x′, y′)), say, and taking the limit as r→ rs
gives

ψinc(rs) = ψ(rs)−
∫
S

∂G(rs, r
′)

∂n
ψ(r′)dr′ (5)

where now rs = (x, y, s(x, y)). The integrand is singular at the point r′ = rs,
and we must take care to interpret this integral as the limit of the integral in
eq. (4) as r→ rs.

In order to treat the equation numerically it is convenient to write the inte-
gration with respect to x,y, so that eq. (5) becomes

ψinc(rs) = ψ(rs)−
∫ ∞
−∞

∫ ∞
−∞

∂G(rs, r
′)

∂n
ψ(r′) γ(r′)dx′dy′ (6)

where (with very slight abuse of notation)

γ(r′) =

√
1 +

(
∂s

∂x′

)2

+

(
∂s

∂y′

)2

. (7)

and the expression under the square root is evaluated at r′.

2.1. Formal solution and splitting series

The method of solution is analogous to that applied to the electromagnetic
problem in 2-d or 3-d [23, 24]. The governing integral equation (6) is expressed in
terms of right- and left-going operators L and R with respect to the x-direction:

ψinc(rs) = Aψ ≡ (L+R)ψ (8)
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where L and R are defined (for an L2 function f) by

Lf(r) = f −
∫ ∞
−∞

∫ x

−∞

∂G(r, r′)

∂n
f(r′) γ(r′) dx′ dy′, (9)

Rf(r) = −
∫ ∞
−∞

∫ ∞
x

∂G(r, r′)

∂n
f(r′) γ(r′) dx′ dy′ (10)

and r = (x, y, z), r′ = (x′, y′, s(x′, y′)). [For notational conveneince L is in-
terpreted to include the contribution from the singularity arising in (5) when
r→ r′.]

The region of integration is thus split into two with respect to x, and the
solution of equation (8) can be expanded as a series, given by

ψ = (L+R)−1ψinc =
[
L−1 − L−1RL−1 + ...

]
ψinc. (11)

The key observation is that at fairly low grazing angles the effect of R is in some
sense small, so that the series converges quickly and can be truncated. Define
the n-th order approximation as

ψn =

n∑
1

L−1
(
RL−1

)n−1
ψinc. (12)

[Note that L and R depend on surface geometry and wavenumber only, not on
incident field; and that one might expect convergence of the series (11) for given
ψinc but not uniform (norm) convergence of the series (1).] This corresponds
physically to an assumption that surface-surface interactions are dominated by
those ‘from the left’, as expected in this scattering regime. L is large compared
with R first, because L includes the dominant ‘diagonal’ value; second because
a predominantly right-going wave gives rise to more rapid phase-variation in
the integrand in R than in L. (Although this depends on surface geometry and
cannot in general be quantified precisely, it occurs because in (5) the phase in the
Green’s function kernel decreases as the observation point is approached from
the left and then increases to the right; whereas the phase of ψ tends to increase
throughout, like that of the incident field.) This is borne out numerically, with
many cases of interest well-described using only one or two terms of the series.

The scattered field due to a given approximation ψn is obtained by substitu-
tion back into the boundary integral (4). It is helpful to consider the significance
of successive approximations to this field in the ray-theoretic limit: The first
iteration contains ray paths which, before leaving the surface, may have inter-
acted with the surface arbitrarily many times but only in a forward direction.
The second includes most paths which have changed direction twice: once via
the operator R and again via L−1; and so on (see Figure 2). Thus the first
iteration accounts for multiple scattering but not reversible paths which can
occur when incident and backscatter direction are opposite; these paths occur
in pairs of equal length and therefore add coherently, giving rise to a peak in
the backscattered direction (enhanced backscatter eg [25, 26]) in strongly scat-
tering regimes. We would therefore expect this to show initially at the second
approximation.
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Figure 2: Possible paths (a) at 1st iteration, and (b) at 2nd iteration when reversible paths
can occur and add coherently.

Having obtained this series, numerical treatment by surface discretization
is straightforward. (Discretization can equivalently be carried out before the
series expansion, but it is more convenient, and analytically more transparent,
to expand the integral operator first.)

3. Numerical solution and results

Although use of the series (11) is motivated by physical considerations and its
terms provide a convenient theoretical interpretation, the immediate advantage
is computational: if the surface is discretized using a rectangular grid of M
by N points, with M transverse steps (y direction) and N in range (x), then
(L + R) becomes an (MN × MN) matrix, and exact inversion would take
O((MN)3) operations. On the other hand evaluation of each term of eq. (11)
involves inversion of an M × M matrix at each of N range steps, requiring
just O(NM3) operations and far less memory. Assuming a resolution of say 10
points per wavelength, this scales with λ4. There is an additional ‘matrix filling’
component; this also increases with λ4, and in practice this is the dominant
computational cost in the left-right splitting algorithm (typically more than
90% when M ∼= N).

3.1. Numerical solution

The numerical treatment will now be outlined. The notation L, R will be
used to refer to the discretized forms of the integral operators where no confusion
arises, and we will focus on solution of the first term of (11), i.e. inversion of
L. Although not evaluated explicitly as such, the matrix L is conveniently
viewed as an N × N lower-triangular block matrix whose entries are M ×M
matrices. The system can therefore be inverted by Gaussian elimination and
back-substitution. This is an N -step ‘marching’ process, in which each diagonal
M ×M block is inverted in turn, corresponding to marching the solution for
the unknown surface field in the positive x direction. Choosing step-sizes ∆x,
∆y we define

x = x1, ..., xN , xn = n∆x (13)

y = y1, ..., yM , ym = m∆y. (14)
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Denote the discretized surface values by

ψinc(xn, ym) = anm (15)

ψ(xn, ym) = bnm, (16)

denote the area of each subintegration region by δ = ∆x∆y, and write σij = γ(rij)
where γ (equation (7)) is evaluated at the point rij = (xi, yj , s(xi, yj)). This
induces a discretization of (8) and at each point surface point s(xn, ym) we get

anm =

N∑
i=1

M∑
j=1

Anmij bij (17)

where

Anmij = ∆x∆y σij∂G(rnm, rij)/∂n (n 6= i, or m 6= i) (18)

Anmnm = −

[
1

2
− δ

σ2
ij

(sxx + syy)

]
(19)

and again rij = (xi, yj , s(xi, yj)). For each value of n this gives a set of M
equations. Retaining just the first term in the iterative series (11),

ψ ∼= L−1ψinc, (20)

yields a set of equations identical to (17) except that the sum over i has upper
limit n:

anm =

n∑
i=1

M∑
j=1

Anmij bij . (21)

This is equivalent to integration over the half plane to the left of the line of
observation (x′ ≤ xn). Now at each range step xn, assuming that we have
obtained the values bim for i < n, equation (21) can be rearranged to give

anm −
n−1∑
i=1

M∑
j=1

Anmij bij =

M∑
j=1

Anmnj bnj (22)

for m = 1, ...,M . Everything on the left-hand-side is known or has been found
at previous steps. For each n this gives a matrix equation, which we rewrite for
convenience as

cn = Bnbn (23)

where the subscript n indicates dependence on xn and we have written the
vectors in bold. Therefore, bn denotes solution values ψ(xn, y) at the range
step xn, and Bn is the M ×M matrix (the n-th term on the diagonal of L) with
elements

(Bn)mj = Anmnj . (24)
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We thus require
bn = B−1n cn (25)

for each n. We solve (25) in turn for n = 1, ..., N , using each result to redefine
the left-hand-side of eq. (23) and thus find the surface field as defined by (20).
Subsequent terms in the series (11) are evaluated in exactly the same way, with
the ‘driving’ term ψinc replaced by R times the result of the previous evaluation.

3.2. Computational results

One of the main applications is to irregular or randomly rough surfaces (for
example sea surfaces or terrain). Statistically stationary surfaces with Gaussian
statistics (normally distributed heights) are easily generated computationally
with any prescribed spatial autocorrelation function (a.c.f.) ρ(ξ, η), where

ρ(ξ, η) =< s(x, y) s(x+ ξ, y + η) > . (26)

Here the angled brackets denote ensemble averages. For simplicity we have used
an isotropic two-dimensional Gaussian a.c.f., ρ(ξ, η) = exp(−[ξ2 + η2]/l2) where
l defines a correlation length. In order to minimise and distinguish edge effects
we used surfaces which become flat at the outer edge; this is not necessary for
the method to be applicable. Studies included the strongly scattering regime
of surfaces with both correlation length and r.m.s. height of the order of a
wavelength. With the exception of parallel code mentioned later, all tests shown
here were run on a simple desktop Pentium 4 3.2GHz machine with 1GB memory
running Linux. For speed comparison the scalar code was also run on a Quad-
Core Intel i5-6500 3.2GHz with 16GB memory, as mentioned below.

Comparison was made first against the full or ‘exact’ inversion of the bound-
ary integral. The quantity used for the comparison was the surface field. Be-
cause of the high computational cost of full inversion this comparison was carried
out for a relatively small surface of 12×12 wavelengths, using a grid of 120×120
points. Here the r.m.s. height and correlation length are approximately equal
to λ. Contour plots of the amplitude of ψ calculated by the two methods is
shown in Figure 3. One iteration of the left-right series took around 7 seconds,
whereas “exact” full inversion took around 23 minutes. (The full inversion code
at double precision ran out of memory at this stage so, in this case only, the ma-
trix was evaluated in single precision. Iterative code remains in double precision
throughout.)

In order to illustrate the convergence, comparison of field values along the
mid-line in the x-direction is shown in Figure 4 for the first 4 iterations. In
this case the incident field was a plane wave impinging at an angle of 10o from
grazing. Extremely good agreement is found. Notice that the oscillatory be-
haviour at the left is captured at the 2nd but not the 1st iteration. (It should
be emphasized that although we found no divergent cases, convergence is not
necessarily guaranteed. For electromagnetic waves the method [27] exhibited
divergences apparently due to resonant surface features.) The solution for an
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Figure 3: Shaded contour plot of the amplitude of the surface fields by (a) exact and (b)
iterative solution (2 terms), for surface with r.m.s. height and correlation length approximately
equal to λ.

Figure 4: Comparison between exact and successive terms of the left-right solution corre-
sponding to Fig. 3, along a line in x-direction, for grazing angle 10o.
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Figure 5: Comparison for surface as in Figure 4, for grazing angle of 45o.

field incident at 45o impinging on the same surface is shown in Figure 5, and
again converges rapidly. A further comparison (Figure 6) using a ‘smoother’
surface, with the same correlation lengths but r.m.s. height reduced to λ/20, at
10o from grazing, gives similarly close agreement.

We now consider the application of the code to larger surfaces, in order
further to examine timings and rates of convergence as functions of incident
angle. Evaluations of the first iterates were carried out for several cases. As
mentioned above, the two main components of the calculation are a N matrix
inversion and a set of Green’s functions evaluation, at each of N range steps.
The matrix inversion remained a small percentage of the cost in all cases, and
computation time should increase with the square of the number of unknowns,
M2N2. The actual computation times were found to conform closely to this,
as shown in Table 1. Times in the second column, corresponding to the simple
optimised integration as described below, should be regarded as applicable for
most surface geometries, and can easily be reduced further with higher order
schemes. These times are all for the Pentium 4 described above. For a quad-core
Intel i5 3.2GHz with 16GB memory corresponding times are typically faster by a
factor of about 8 to 10, and the increased speed and memory allows significantly
larger problems to be tackled.

Note that the algorithm is easily parallelised: the integration, to which the
bulk of computation time is devoted, can be shared among any number of pro-
cessors. This has been carried out using MPI on a Sunfire machine, and as
expected the computation speed increases linearly with the number of proces-
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Figure 6: Comparison between exact and successive terms of the left-right solution, for
grazing angle 10o due to a smoother surface with r.m.s. height λ/20.

No. of unknowns Solution time Optimised integration

120x120 6.9 2.6
240x160 48 17
240x320 198 70
480x320 774 265
480x480 1752=29.2min 605=10.1min
1000x1000 31870=8.5hrs 10992 = 3hrs

Table 1: Computation time on desktop computer

11



Figure 7: Real part of surface field on waveguide at two frequencies.

sors. Solution for around 5× 106 unknowns, on a waveguide of 550 λ in length
and 80 λ circumference, was obtained in 5.3 hours with standard integration
and under 2 hours using the optimised integration below, on 96 processors.

Strategies are available for reduction of the Green’s function evaluation cost.
One of these is fast multilevel multipole, which can reduce the time-dependence
to O(NM logNM), but we found this to have certain disadvantages including
relatively high complexity and memory cost, and accuracy which is not easily
regulated. A much simpler expedient which retains the order of dependence on
the number of unknowns, but reduces the multiplier, is the following: A simple
quadrature using all available points was initially used to carry out the inte-
gration for the left-hand-side of eq. (25). The integrand, however, is relatively
smooth as a function of transverse coordinate, and this increases with spatial
separation in x. Thus as the marching solution proceeds, we can use higher-
order integration schemes utilising far fewer points with little loss of accuracy.
Even a simple trapezium rule, for example, operating on half the number of
points reduced the computation time by a factor of 3 and resulted in errors of
well under 1%. We calculated surface fields on a desktop computer for a surface
of 48λ× 48λ (230,000 unknowns) in around 10 minutes, and 100λ× 100λ (106

unknowns) in 180 minutes.
The same method is applicable to exterior and interior scattering problems

due to various large scatterers and geometries. Most such geometries involve
even better-behaved integrals, and are therefore amenable to the above integra-
tion strategy. Solution for the much larger problem of a waveguide of around 150
wavelengths in length and diameter 20 wavelengths (not shown) was calculated
on the desktop computer in around 140 minutes.

4. Conclusions

The paper describes the development and application of the left-right split-
ting algorithm for acoustic scattering by rough perfectly reflecting surfaces and

12



other complex scatterers. Results have been validated by comparison with “ex-
act” numerical solutions, and by examining the convergence of the series. The
formulation is physically-motivated to apply to incident fields at low grazing
angles, although good convergence has been obtained at angles close to normal
incidence. Problems involving up to 106 unknowns or more can be solved rela-
tively simply on a standard desktop computer, and much larger problems still
in a few hours on a parallel machine.

The cost of the method scales with the square of the number of unknowns;
this can be improved by application of, say, fast multipole methods, but this
has not been necessary as in this approach the multiplier is relatively small and
can be further reduced by optimising the integrations.

The terms in the series represent increasing orders of surface interaction,
and this is likely to provide further insight into multiple scattering mechanisms.
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Figure Captions

Figure 1: Example rough surface.

Figure 2: Possible paths (a) at 1st iteration, and (b) at 2nd iteration when
reversible paths can occur and add coherently.

Figure 3: Shaded contour plot of the amplitude of the surface fields by (a)
exact and (b) iterative solution (2 terms), for surface with r.m.s. height and
correlation length approximately equal to λ.

Figure 4: Comparison between exact and successive terms of the left-right so-
lution corresponding to Fig. 3, along a line in x-direction, for grazing angle
10o.

Figure 5: Comparison for surface as in Figure 4, for grazing angle of 45o.

Figure 6: Comparison between exact and successive terms of the left-right so-
lution, for grazing angle 10o due to a smoother surface with r.m.s. height λ/20.

Figure 7: Real part of surface field on waveguide at two frequencies.
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