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Abstract

We study the effect of marginal and irrelevant deformations on the renormalization

of operators near a CFT fixed point. New divergences in a given operator are deter-

mined by its OPE with the operator D that generates the deformation. This provides

a scheme to compute the couplings aDAB between the operator D and two arbitrary

operators OA and OB. We exemplify for the case of N = 4 SYM, considering the sim-

plest case of the exact Lagrangian deformation. In this case the deformed anomalous

dimension matrix is determined by the derivative of the anomalous dimension matrix

with respect to the coupling. We use integrability techniques to compute the one-loop

couplings aLAB between the Lagrangian and two distinct large operators built with

Magnons, in the SU(2) sector of the theory. Then we consider aDAA at strong cou-

pling, and show how to compute it using the gauge/gravity duality, when D is a chiral

operator dual to any supergravity field and OA is dual to a heavy string state. We

exemplify for the Lagrangian and operators OA dual to heavy string states, showing

agreement with the prediction derived from the renormalization group arguments.
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1 Introduction

To solve a Conformal Field Theory (CFT) amounts to finding its spectrum and 3-point cor-

relation functions, since higher point functions may be obtained using the operator product

expansion (OPE). In the former case this means finding the anomalous dimensions of the

operators of the theory, while in the latter case it means finding the couplings in 3-point

correlation functions, whose space-time dependence is otherwise fixed by conformal invari-

ance. In the simplest case of scalar primary operators the 3-point function has the simple

form

〈OA(0)OB(x)OC(y)〉 =
aABC

|x|∆A+∆B−∆C |y|∆A+∆C−∆B |x− y|∆B+∆C−∆A
. (1)

where ∆A is the dimension of the operator OA, and so on. The definition of the couplings

aABC requires that the operators diagonalise the anomalous dimension matrix and depends

on the choice of normalisation in the 2-point function of each operator.

Our main interest is to explore new methods to compute the couplings aABC for certain

single trace operators in N = 4 SYM. In recent years there have been great progresses in

finding the spectrum of this theory, in the planar limit and for any value of the coupling

constant, using integrability [1]-[13]. On the other hand, much remains to be done in the

computation of the couplings aABC . At weak coupling these may be evaluated, order by order

in perturbation theory, by computing Feynman diagrams [17]-[25]. Although this approach

is essential to uncover new structures and to verify new exact results, it is unpractical

to obtain exact results for general operators. A more promising approach is to explore

integrability of planar N = 4 SYM. However, how integrability will enter computations of

the couplings aABC remains unclear.

One strategy to compute the couplings in a CFT is to deform the theory from its fixed

point with a marginal or irrelevant operator D. We will show in Section 2 that this deforma-

tion introduces new divergences in the renormalised operators of the critical theory, which

are determined by the couplings aDAB. More precisely, to leading order in the deformation

parameter, the entry of the deformed anomalous dimension matrix between operators OA
and OB is determined by the coupling aDAB. Thus, in planarN = 4 SYM, finding the action

of such matrix on operators diagonalized by means of the Bethe ansatz is a new method

to compute the couplings aDAB. In practice, we will show in Section 3 how to implement

these ideas in the case of the coupling deformation, which is considerably easier since it is

an exact deformation. Another example, that is expected to work in a similar fashion is the

β deformation of N = 4 [26]. More general deformations may also be considered. Whether

this technique will be useful in unveiling new integrability structures in the perturbative

computation of the couplings aABC remains an open problem.
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At strong ’t Hooft coupling we may use the AdS/CFT duality [27] to compute the

couplings aABC . The duality relates the AdS string partition function, computed with

suitable boundary condition, to the generating functional for correlation functions of the

gauge theory [28, 29]. However, in practice this relation has been useful only to compute, at

strong coupling, correlation functions of chiral operators that are dual to the supergravity

fields [30, 31, 32, 33]. Recently, a path integral approach to compute the string theory

partition function for a heavy string state propagating between two boundary points has

been developed [34] (see also [35]). In this case the string path integral is dominated by

a classical saddle point, giving a new method to compute at strong coupling the 2-point

function of single trace operators with a large number of basic fields [36, 37, 38]. In Section

4 we shall extend this computation to the case of a 3-point function with an additional

chiral operator. The basic idea is that, taking into account the coupling between the heavy

string worldsheet and the supergravity fields, the path integral giving the aforementioned

2-point function can be extended to include the interaction with light fields1. In practice all

one needs to do is to compute a Witten diagram with a supergravity field propagating from

the AdS boundary to the heavy string worldsheet, which acts as a tadpole for this field.

We will show how this computation works for the dilaton field and several heavy string

configurations, obtaining couplings of the form aLAA, in complete agreement with the value

predicted by renormalisation group arguments.

We conclude in Section 5 with comments and open problems.

2 Three point couplings from linear deformations

The goal of this section is to show how to relate the 3-point correlation function in a CFT

to the anomalous dimension matrix obtained from deforming the CFT with a marginal or

irrelevant operator D of dimension ∆ at the CFT fixed point. We emphasise that the results

presented in this section are valid at a CFT fixed point with coupling λ. We shall explore

basic ideas given in [40] (see also appendix in [41]). The example that we have in mind,

and that we will work in detail in the following sections, is N = 4 SYM, so we shall stick

to four dimensions. In this case, the dimension ∆ of the operator D satisfies ∆ ≥ 4. In the

case of N = 4 SYM we have a line of CFT’s parameterised by the coupling constant λ, so

we may wish to take the coupling to be finite and large, or to expand to arbitrary order in

the coupling constant. We may also wish to consider an operator D of protected dimension,

but that is not necessary.

1The same idea is explored independently by Zarembo [39].
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Our starting point is a CFT with action S. We consider the deformed theory with action

Su = S + uΛ4−∆

∫
d4yD(y) , (2)

where u is the dimensionless deformation parameter at the cut-off scale Λ of dimension

inverse length, and the operators that appear in this action are the renormalized operators

of the undeformed theory. The beta function for the coupling u has the form,

βu =
du

d ln Λ
= (∆− 4)u+ · · · . (3)

where · · · represents terms quadratic, or of higher powers, in the couplings to all operators

around the fixed point. For what we are doing it will be sufficient to work to linear order in

u, so we keep only the first term in the beta function βu with ∆ computed at the fixed point.

Sending the cut-off to infinity, the coupling u(µ) at a fixed scale µ is constant for ∆ = 4

(marginal deformation) and vanishes for ∆ > 4 (irrelevant deformation). For simplicity we

shall consider the operator D to be a scalar primary. But this can be generalised to more

operators, for instance, D could be the energy-momentum tensor, in which case u would be

a tensor valued deformation parameter.

For the sake of clarity, we shall consider in what follows the case of an operator D with

dimension ∆ = 4 at the fixed point. Since we are interested in the case of N = 4 SYM at

any value of the coupling, this means the operator has protected dimension. In the appendix

we extend our results to the case of irrelevant deformations. We decided to separate the

discussion because in the following sections we shall be working with the marginal case,

therefore avoiding the duplication of formulae in the main text.

A final introductory word about notation, we shall use the label u to denote quantities

computed in the deformed CFT with action given by (2). Quantities without the label u

are computed at the undeformed theory for which u = 0.

2.1 Analysis of divergences

We now analyse the divergences that appear in the deformed theory, in terms of renor-

malized quantities of the undeformed theory. Let OA be any renormalized operator of the

undeformed theory. We shall denote its full dimension (classical + quantum), at the fixed

point, by ∆A. When computing the correlation function of this operator with any other

operators, we obtain in the deformed theory to linear order in u,

〈OA(x) · · · 〉u = 〈OA(x) · · · 〉 − u
∫
d4y 〈OA(x)D(y) · · · 〉 , (4)

where the right hand side of this equation is computed in the undeformed theory. In general

new divergences can appear in equation (4), that can be cancelled by renormalizing the
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operators OA, · · · , and that come from the behaviour of the correlation function involving

D(y), when y approaches any of the positions of the other operators. The form of this

divergences is entirely determined by the OPE in the undeformed theory of the operator D
with the operators appearing in the correlation function. For the operator OA(x) we have

D(y)OA(x) ∼
∑
B

aDAB OB(x)

|x− y|4+∆A−∆B
, (5)

where the constants aDAB are precisely the couplings appearing in the 3-point function

〈DOAOB〉. We remark that for now we assume that the complete basis of operators {OA}
is diagonal with unit norm, i.e.

〈OA(x)OB(0)〉 =
δAB
|x|2∆A

. (6)

The physically meaningful couplings aDAB are defined with respect to operators satisfying

this normalisation.

Using the OPE expansion (5), we conclude that the divergence in the y integral of (4),

arising from the region of integration y ∼ x, is given by∫
d4y

|x− y|4+∆A−∆B
≈ 2π2


ln (Λ|x|) , ∆B = ∆A ,

Λ∆A−∆B

∆A −∆B

, ∆B < ∆A .
(7)

Hence, powerlike divergences arise from operators that enter the OPE of OA and D, and

whose dimensions satisfy ∆B < ∆A. By the unitarity bounds this is a finite number of

operators, for instance, for scalar operators in four dimensions we must have ∆B ≥ 1.

Logarithmic divergences appear from operators in the OPE with ∆A = ∆B.

We are now in position to define renormalized operators OuA of the deformed theory,

expressed in terms of renormalized operators of the undeformed theory, such that the general

correlation function (4) is finite. This is quite simple, because there is a finite number of

operators OB entering the OPE (5) and contributing to the divergences in (7). We define

the renormalized operators

OuA = OA + u
∑

∆B=∆A

2π2aDAB (ln Λ)OB + u
∑

∆B<∆A

2π2aDAB
Λ∆A−∆B

∆A −∆B

OB . (8)

As usual, we see that operator mixing occurs for ∆B ≤ ∆A.2 With this renormalization

scheme, correlation functions

〈OuA(x) · · · 〉u , (9)

2If one writes the renormalized operator Ou
A in terms of bare operators of the undeformed theory, then,

in a theory without dimensional couplings, mixing will only occur between operators of the same classical

dimension, i.e. for ∆0
A = ∆0

B . Then, the last term in (8) only concerns operators with different anomalous

dimensions, since the power like divergence becomes logarithmic when expanding in the coupling λ.
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computed at the fixed value of the coupling λ, and to linear order in u for the theory with

action (2), are finite.

Of particular importance to us will be the case of 2-point functions. For operators OA
and OB with the same dimension in the undeformed theory, it is simple to see that

〈OuA(x)OuB(0)〉u =
1

|x|2∆A

(
δAB − u 2π2 (aDAB + aDBA) ln |x|

)
. (10)

For OA = OB this gives

〈OuA(x)OuA(0)〉u =
1

|x|2(∆A+u 2π2aDAA)
. (11)

If there are different operators OA and OB of equal dimension, we see that the effect of

turning on the deformation is to induce operator mixing, since the above 2-point function

is no longer diagonal. It is also simple to see that the 2-point function for operators OA and

OB of different dimension still vanishes.

2.2 Deformed anomalous dimension matrix

We now wish to better understand the basis of renormalized operators introduced in the

previous section, by defining a deformed anomalous dimension matrix. We will then verify

the Callan-Symanzik equation for correlation functions in the deformed theory.

Let us start by defining renormalized operators of the deformed theory using the usual

renormalization matrix

OuA = ZAB(Λ, u)OB , (12)

where we omitted the summation in B. From (8) we can read the entries of this matrix,

ZAA = Λu 2π2aDAA , (13)

ZAB = u 2π2aDAB


ln Λ , ∆B = ∆A ,

Λ∆A−∆B

∆A −∆B

, ∆B < ∆A .
(14)

It is now simple to compute the anomalous dimension matrix associated to the deformation,

defined by

ΓAB = Z−1
AC

d

d ln Λ
ZCB . (15)

Its non-vanishing entries are

ΓAB = u 2π2aDAB Λ∆A−∆B , (16)

for ∆B ≤ ∆A. We remark that the anomalous dimension matrix ΓAB is defined with respect

to renormalized operators of the undeformed theory with total dimension given by ∆A at
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the fixed point. If we order the operators in blocks with descending value of dimension, the

non-diagonal top-right blocks of the anomalous dimension matrix ΓAB have zero entries. It is

then clear that its eigenvalues ΓA are independent of the cut-off Λ, although the eigenvectors

do depend in general on Λ (when there is mixing between operators of different dimension).

Thus, in the diagonal basis we have, as usual, OuA = ΛΓA OA.

An alternative way of deriving the relation between the anomalous dimension ΓAB and

the couplings aDAB is to verify the Callan-Symanzik equation. This is simpler for a marginal

deformation, and to linear order in u, because the beta function βu vanishes (in the appendix

we consider the case of irrelevant deformations). For the non-renormalized two-point func-

tion of the deformed theory, computed using renormalized operators of the CFT at the fixed

point, the Callan-Symanzik equation has the form

∂

∂ ln Λ
〈OA(x)OB(0)〉u +

∑
I

ΓAI〈OI(x)OB(0)〉u +
∑
I

ΓBI〈OA(x)OI(0)〉u = 0 (17)

Using (4) and the form of the divergences given in (7) this equation is satisfied provided

(16) holds.

For practical perturbative computations it is useful to relate the couplings aDAB to the

anomalous dimension matrix computed with respect to bare operators of the CFT (not

renormalized). Let us denote a basis of such operators by {ObA}. Now assume that we

manage to diagonalize the anomalous dimension matrix of the critical theory, so that in the

basis {ObA} we haveOA = ΛγA ObA, where γA are the eigenvalues (for instance, inN = 4 SYM

we can use integrability techniques to do that quite effectively). In this basis, and denoting

by ∆0
A the classical dimension of operators, it is simple to see that the renormalization

matrix ZAB relating bare operators to the renormalized operators of the deformed theory

in the usual way, OuA = ZAB ObB, has entries

ZAA = ΛγA+u 2π2aDAA , (18)

ZAB = u 2π2aDAB


ΛγA ln Λ , ∆B = ∆A ,

Λ∆0
A−∆0

B+γA

∆A −∆B

, ∆B < ∆A .
(19)

The corresponding deformed anomalous dimension matrix has entries

Hu
AB = δABγA + u 2π2aDAB Λ∆0

A−∆0
B . (20)

Note that these are the entries of the matrix Hu in the basis {ObA} that diagonalizes the

anomalous dimension matrix of the critical theory. Again, it is important to realize that

the structure of the matrix Hu, given by (20), implies that its eigenvalues are independent

of the cut-off Λ, although the eigenvectors may depend on Λ.
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Let us show explicitly how the knowledge of the deformed anomalous dimension Hu

allows to relate the couplings aDAB to the deformed anomalous dimensions and renormalized

operators OuA expressed in terms of the bare quantities. First we write the anomalous

dimension matrix as

Hu = H + uH′ , (21)

where H is the anomalous dimension matrix of the critical theory, and uH′ is the term

arising from the deformation which we treat as a perturbation. For simplicity we assume

that the operators OA = ΛγA ObA and OB = ΛγB ObB do not have the same anomalous

dimension at the critical point (they may or may not have the same classical dimension).

Then, writing the eigenvalues and eigenvectors of Hu respectively as

γuA = γA + uγ′A , OuA = OA + uO′A , (22)

basic quantum mechanics formulae gives

γ′A = 〈OA|H′|OA〉 , O′A =
∑
A 6=B

〈OB|H′|OA〉
γA − γB

OB , (23)

where the matrix elements are computed in the basis {OA} with unit normalised operators.

From the explicit form of the deformed anomalous dimension matrix in the basis {ObA} given

in (20), we conclude that

2π2aDAA = 〈ObA|H′|ObA〉 = 〈OA|H′|OA〉 , (24)

2π2aDABΛ∆0
A−∆0

B = 〈ObB|H′|ObA〉 = ΛγB−γA〈OB|H′|OA〉 . (25)

Note that (25) has the correct dependence in the cut-off Λ to relate operators OA and OB
of different dimension, as required by (23).

It is now clear that if we have a way of determining the action of the perturbation matrix

H′ on the bare operators, we may then compute the corresponding couplings using (24) and

(25). This will be the case in the next section, where we consider coupling deformations of

N = 4 SYM and the known form of the integrable anomalous dimension matrix at a given

order in the coupling constant.

We finish this section with a word on normalization of operators. In the next section it

will actually be convenient to perform computations with operators that are not normalized

to unit, i.e. after diagonalizing the eigenvectors of the undeformed theory we will have

〈OA(x)OB(0)〉 = |CA|2
δAB
|x|2∆A

. (26)

With this normalization, to obtain the physically meaningful couplings for the unit nor-

malized operators, we need to divide the operators in equations (24) and (25) by their

norm.
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3 N = 4 SYM and integrability

In this section we consider the simplest case of N = 4 SYM deformed by the Lagrangian

operator, since this theory is actually a line of fixed points parametrised by the coupling

constant. We shall use integrability to show how to compute the couplings in the 3-point

function of the Lagrangian with any two operators of the theory. For simplicity, we restrict

our analysis to the SU(2) scalar subsector, and consider in detail operators corresponding

to two-magnon excitations in the spin chain language.

We shall use the following convention for the N = 4 SYM action

SN=4 =
1

g2
YM

∫
d4yTr

(
− 1

2
FµνF

µν −DµφID
µφI +

1

2
[φI , φJ ]2 + fermions

)
, (27)

where I = 1, · · · , 6 and the covariant derivative is defined by Dµ = ∂µ − i[Aµ, ]. All

fields are in the adjoint representation and the SU(N) generators are normalized with

TrT aT b = δab/2. We will be considering the SU(2) sector with complex scalars

Z =
1√
2

(φ1 + iφ2) , X =
1√
2

(φ3 + iφ4) .

Now consider the theory at some fixed value of the ’t Hooft coupling, defined by

g2 =
g2
YMN

16π2
=

λ

16π2
. (28)

We will consider (planar) perturbation theory to some order in the coupling g2. We are

therefore considering the CFT at the fixed point with coupling g2. Then, to deform the

theory with D(z) = L(z), it is clear from (27) that we should write

g2 → g2(1− u) . (29)

Hence, making this replacement in the anomalous dimension matrix of N = 4, to a given

order in g2, and then keeping only the linear terms in u, we obtain the form of the deformed

anomalous dimension matrix Hu. We may then use the results (24) and (25) to compute

the couplings. Alternatively, we can also compute the derivative of γuA or OuA with respect

to u or, instead, the derivative
∂

∂u
= −g2 ∂

∂g2
(30)

of γA orOA to a given order in g2. Finally, note that the two-point function of the Lagrangian

is (dropping the 1/N correction)

〈L(x)L(0)〉 =
3N2

π4

1

x8
. (31)
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We shall compute the couplings with respect to this normalization, but it is simple to re-

scale with respect to the unit normalised Lagrangean L̂. In that case we would obtain that

all the couplings aL̂AB computed in this paper are of order 1/N , for fixed ’t Hooft coupling,

as expected.

As an example consider single trace operators made by L fields of the SU(2) sector and

regard the fields X as impurities in the vacuum state O = TrZL. For operators with M

impurities, we use the integers x1, · · · , xM to indicate the position of the impurities in the

corresponding spin chain,

|x1, · · · , xM〉 ≡ |Z · · ·ZXZ · · ·ZXZ · · · 〉 . (32)

The anomalous dimension matrix is that of an integrable spin chain and may be diagonalized

by solving the Bethe equations [2]. Then the operator OA, with anomalous dimension γA,

is given by

OA =
∑
x

ψp1,··· ,pM (x1, · · · , xM) |x1, · · · , xM〉 , (33)

where the wave function ψ is parameterized by the momenta pj of the magnons, which in

general can be complex, sum to zero mod 2π, and depend on the ’t Hooft coupling. Then,

the contribution of the j-th magnon to the anomalous dimension of the operator OA is given

by [42, 43, 44, 4, 7]

γj(g
2) =

√
1 + 16g2 sin2 pj

2
− 1 . (34)

This formula is believed to be correct to all orders in the ’t Hooft coupling, provided wrap-

ping effects, that become important at order g2L, are neglected.

The interactions between magnons are responsible for the dependence of their momenta

on the ’t Hooft coupling. This effect appears in the computation of the anomalous dimension

at two-loop order, while is appears at one-loop in the computation of the coupling aLAA.

Thus, neglecting wrapping effects, (24) gives the all-loop result

2π2aLAA = −g2 ∂

∂g2

M∑
j=1

γj(g
2) = −8g2

M∑
j=1

sin2 pj
2

+ g2 p′j sin
pj
2

cos
pj
2√

1 + 16g2 sin2 pj
2

, (35)

where prime denotes derivative with respect to g2. We remark that the normalised coupling

aL̂AA scales with 1/N as expected. We shall compute in the next section this coupling up

to order g4, in the simple case of operators with two-magnons.

Next we consider the dilute limit of L�M . In this limit the magnons propagate freely

on the spin chain and their momentum is trivially quantised as

pj =
2πnj
L

. (36)
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In this case the second term in the numerator of (35) can be dropped. One may now study

both weak and strong coupling limits. The leading order term in g2, which comes from the

1-loop correction to the anomalous dimension of OA, is given by

2π2aLAA ≈ −8g2

M∑
j=1

sin2 pj
2

+O(g4) , (37)

and can be derived simply by doing Wick contractions between L, OA and ŌA. On the

other hand, at strong coupling and neglecting wrapping effects, we have

2π2aLAA ≈ −2g
M∑
j=1

∣∣∣sin pj
2

∣∣∣+O(1) . (38)

In Section 4 we shall confirm this computation of the coupling aLAA, by directly computing

this 3-point function using the AdS/CFT duality in the gravity limit.

3.1 Two-magnon operators

We shall now illustrate how one can use integrability techniques and the general results given

in (24) and (25) to compute the couplings of two operators, each with two magnons, and

the Lagrangian. We will compute 1-loop corrections to these couplings, which correspond to

diagonalizing the anomalous dimension matrix at two-loop order. The corresponding spin

chain Hamiltonian includes next to neighbour interactions [45],

H = 2g2
(
1− 4g2

) L∑
x=1

(1− Px,x+1) + 2g4

L∑
x=1

(1− Px,x+2) , (39)

where P is the permutation operator. At this order, the Bethe wave function includes a

contact term and can be written in the following form [46]

ψp1,p2(x1, x2) = φp1,p2(x1, x2) + S(p2, p1)φp2,p1(x1, x2) , (40)

with

φp1,p2(x1, x2) = eip1x1+ip2x2

(
1 + f(p1, p2)δx1+1,x2

)
. (41)

Since for two magnons the total momentum vanishes, we have p = p1 = −p2. We shall now

write the formulae for the contact function and for the S-matrix in this simpler case [46].

For the contact function f(p1, p2) = f(p), we have

f(p) = 4 sin2 p

2
, (42)
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which satisfies f(p2, p1) = f(−p) = f(p). The S-matrix S(p1, p2) = S(p), can be written as

S(p) = S(0)(p) + g2S(1)(p) , (43)

with

S(0)(p) = − 1− eip

1− e−ip
, S(1)(p) = 8i sin2 p

2
sin p S(0)(p) . (44)

It is clear that S(p2, p1) = S(−p) = 1/S(p).

The momenta that solve the Bethe equation eipL = S(p) are given by

pn =
2πn

L− 1
− 16g2

L− 1
cos

πn

L− 1
sin3 πn

L− 1
, (45)

where n is an integer. It is now a mechanical calculation to replace this expression in (35),

to obtain

2π2aLAA = −16g2

[
sin2 πn

L− 1
− 8g2 sin4 πn

L− 1

(
1− 4

L− 1
cos2 πn

L− 1

)]
+O(g6) . (46)

Next we consider the coupling aLAB, where OA is an operator with two magnons of

momenta p and −p, and OB is an operator with two magnons of momenta q and −q. This

amounts to computing the matrix element 〈ObB|H′|ObA〉. Using the two-loop anomalous

dimension matrix given in (39) we have

H′ = −H + 8g4

L∑
x=1

(1− Px,x+1)− 2g4

L∑
x=1

(1− Px,x+2) . (47)

Now we argue that the first two terms in this expression do not contribute to 〈ObB|H′|ObA〉.
First recall that |ObA〉 and |ObB〉 are eigenstates of H, with terms of order g0 and g2. Since

H is diagonalized by these eigenstates, the contribution from the first term in H′ vanishes.

Moreover, since the second term in H′ starts at order g4, for this term we may consider

the eigenstates |ObA〉 and |ObB〉 only at order g0. Thus, this term is proportional to the

Hamiltonian H at one-loop, and it will also give a vanishing contribution. We are therefore

left with the contribution from the last term in (47), which we can compute with the

eigenstates |ObA〉 and |ObB〉 of order g0. A computation shows that

〈ObB|H′|ObA〉 = 64g4Le−
i
2

(p−q) sin
p

2
sin p sin

q

2
sin q . (48)

Since we are working with states with norm |CA|2 = L(L− 1) +O(g2), after normalising to

unit we obtain

2π2aLAB = 64g4 e
i
2

(q−p)

L− 1
sin

p

2
sin p sin

q

2
sin q . (49)
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The example given in this section shows that one can use integrability of N = 4 SYM to

compute quite effectively the couplings of operators to the Lagrangian. Of course one can try

to compute these couplings to higher orders in the ’t Hooft coupling g2, to consider operators

with more magnons and also operators outside the SU(2) sector. Another generalization

would be to consider the beta deformation ofN = 4 SYM, computing the couplings involving

the operator that generates such deformation.

It would be very interesting to study the deformed anomalous dimension matrix associ-

ated to operators that are not exact, and whose deformation does not lead to an integrable

theory. In particular, having a representation of H′ acting on the spin chain associated to

operators of the CFT at the fixed point would allow for quite effective computations of the

corresponding couplings.

4 Strong Coupling

In this section we compute 3-point correlation functions of N = 4 SYM at strong cou-

pling using the AdS/CFT duality. So far, computations of correlation functions in the

gauge/gravity duality use the field theory limit of strings propagating in AdS. In this case,

the computation of Witten diagrams involves only supergravity fields, giving correlation

functions of chiral operators [30, 31, 32]. On the other hand, here we shall compute 3-point

correlation functions involving two insertions of an operator OA dual to a very massive

string [36], with a chiral operator D dual to a supergravity field. The corresponding Wit-

ten diagram is given in Figure 1, where a heavy string state propagates between boundary

points at xi and xf , and interacts with a light field sourced at the boundary point y. This

computation can be done for the supergravity fields that couple to a heavy string world-

sheet. Clearly one can also generalise this computation to higher point functions with more

supergravity fields.

To compute the string partition function we shall use different approaches to treat the

heavy and light string fields. For the heavy string state we shall consider the action for a

string (or particle) in the first quantised theory and compute its contribution to the partition

function by summing over classical trajectories, while for the light fields we shall use the

supergravity approximation3. It is therefore convenient to represent the source for the

operator OA dual to the heavy string field by J(x), and the source for the chiral operators

D dual to the supergravity fields by Φ0(y). The gauge theory generating functional for

3For a related discussion see [47].
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xi

xf

y

Figure 1: Witten diagram for a 3-point function that represents a heavy string state in-

teracting with a light supergravity field. Note that the heavy string line actually spans a

two-dimensional worldsheet, whose classical saddle point determines the behaviour of the

partition function, as explained in [34]. To leading order, the string worldsheet acts as a

tadpole for the supergravity fluctuations.

diagrams with insertions of OA at xi and at xf can then be written as

Z̃(xi, xf ,Φ0) ≡ δ2Z(J,Φ0)

δJ(xi) δJ(xf )

∣∣∣∣
J=0

=
〈
OA(xi)OA(xf ) e

∫
d4yΦ0(y)D(y)

〉
N=4

. (50)

By varying with respect to the sources Φ0(y) we may compute correlation functions with

many chiral operators. In this section we are interested in the simplest case of taking one

such derivative to compute the 3-point function 〈OAOAD〉 for some chiral operator D.

The AdS/CFT duality states that the gauge theory generating functional for correlation

functions of local operators equals the string partition function with suitable boundary

conditions [28, 29]. In particular, at strong coupling, the generating functional (50) can be

approximated by

Z̃(xi, xf ,Φ0) ≈
∫
DX DγDΦ ei(SP [X,γ,Φ]+SSUGRA[Φ]) , (51)

where we use the string Polyakov action SP to describe the propagation of the heavy string

state. The corresponding worldsheet starts and ends very close to the boundary, i.e. in

Poincaré coordinates xa = (xµ, z) it obeys the boundary conditions

Xa(τi, σ) = xai = (xµi , ε) , Xa(τf , σ) = xaf =
(
xµf , ε

)
, (52)

where ε is a regulator. The effect of these boundary conditions is to generate two functional

derivatives with respect to the source J(x) of the heavy field, justifying the identification

between (50) and (51). The supergravity fields in (51) are represented by Φ and approximate

14



the gauge theory sources Φ0(xµ) near the boundary, in the sense that Φ(xµ, ε)→ ε4−∆Φ0(xµ)

as ε→ 0.

The propagation of the light fields is determined by the supergravity action around

the AdS5 × S5 vacuum, which we denote below by Φ = 0. The vacuum value for the

ten-dimensional Einstein metric gAB is given by

ds2 = `2gAB dx
AdxB = `2 dx

µdxµ + dz2

z2
+ `2 dΩ2

5 , (53)

where the AdS radius satisfies `4 = 4πgsNα
′2. Then, it is simple to show that the five-

dimensional supergravity action in the Einstein’s frame has the form

SSUGRA =
1

2κ2

∫
d5x
√
−g
(
R + 12− 1

2
(∂φ)2 + · · ·

)
, (54)

where · · · represents terms in the action other than the metric and dilaton fields. The

gravitational coupling is given by κ = 2π/N .

The propagation of the heavy string state, and its coupling to the supergravity fields, is

determined from the Polyakov action

SP [X, γ,Φ] = −g
∫
d2σ
√
−γ γαβ ∂αXA∂βX

B gAB e
φ/2 + · · · , (55)

where gAB is the ten-dimensional metric in the Einstein frame, φ represents the fluctuations

of the dilaton field and · · · includes other terms like worldsheet fermions and other super-

gravity fields. The heavy string will have the worldsheet topology of a cylinder. Working in

the conformal gauge, the integration over worldsheet metrics becomes simply an integration

over the modular parameter s of the cylinder, i.e.∫
d2σ
√
−γ γαβ →

∫ s/2

−s/2
dτ

∫ 2π

0

dσ ηαβ . (56)

To compute the generating functional (51) it is convenient to perform first the path

integral over the supergravity fields. We write (51) as

Z̃(xi, xf ,Φ0) ≈
∫
DX ds eiSP [X,s,Φ=0]

∫
DΦ e

i
(
SSUGRA[Φ]+

∫
d2σ

δSP [X,s,Φ]

δΦ

∣∣∣
Φ=0

Φ+···
)
. (57)

For a fixed off-shell string worldsheet, the supergravity functional can be computed with

Witten diagrams, after boundary sources for the supergravity fields are specified. The

new ingredient are the extra terms localized along the string worldsheet that add to the

supergravity action. These terms determine the coupling between the light fields and the

heavy string state. In (57) we wrote just the leading term, which acts as a simple tadpole
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for the supergravity fields (it comes from a cubic interaction in string field theory). These

terms can be treated perturbatively and do not affect the free propagators of light fields.

Before computing diagrams with a supergravity field, let us recall the computation of

the 2-point function for the operator OA dual to a heavy field, as done in [34]. To obtain

the correct scaling of the 2-point function it is necessary to convolute the generating func-

tional (57) with the wave function of the classical field we are considering. In the WKB

approximation this amounts to changing the measure in the string path integral such that

the action determining the propagator of the heavy field is actually

S̃P = SP −
∫ s/2

−s/2
dτ

∫ 2π

0

dσ
[ (

Π− Π0

)a(
Ẋ − Ẋ0

)
a

+ ΠiẊi

]
, (58)

where we use letters a and i respectively for the AdS5 and S5 indices. The worldsheet

canonical momentum is Π, and Πa
0 and Ẋa

0 are the AdS5 zero modes

Πa
0 =

1

2π

∫ 2π

0

dσΠa(τ, σ) , Ẋa
0 =

1

2π

∫ 2π

0

dσ Ẋa(τ, σ) . (59)

The arbitrariness in the definition of these zero modes requires a precise prescription. In

[34] it was proposed to use the embedding coordinates of AdS5, therefore preserving the

SO(2, 4) symmetry of the conformal group. For a number of particular examples, it was

shown in [34] the following result, which is expected to be general,

Z̃(xi, xf ,Φ0 = 0) ≈
∫
DX ds eiS̃P [X,s,Φ=0] ≈ P

|xi − xf |2∆A
, (60)

where we absorbed the cut-off dependence in the measure. The path integral is dominated

by the classical saddle point, which yields the correct conformal dependence for the 2-point

function of the operator OA. The pre-factor P , which is associated to the integration of

fluctuations of the classical solution, will define the normalization of OA. Since the 3-point

function is defined with respect to unit normalized operators, we shall see below that to

leading order we actually do not need to evaluate this pre-factor.

Next let us consider the 3-pt function 〈OAOADχ〉, where Dχ is a chiral operator of

dimension ∆ dual to some particular supergravity field χ. This field may have some tensor

structure in AdS5 and also some KK structure from the S5 compactification. The functional

integral for the supergravity fields in (57) can be computed using Witten diagrams. If the

field χ has a source at the boundary, (57) leads to

δZ̃(xi, xf ,Φ0)

δχ0(y)

∣∣∣∣∣
Φ0=0

≈
∫
DX ds eiS̃P [X,s,Φ=0] Iχ[X, s; y] , (61)

16



where

Iχ[X, s; y] = i

∫ s/2

−s/2
dτ

∫ 2π

0

dσ
δSP [X, s,Φ]

δχ

∣∣∣∣
Φ=0

Kχ(X(τ, σ); y) , (62)

and Kχ(X(τ, σ); y) is the bulk-to-boundary propagator of the field χ. Equation (61) states

that the 3-point function is simply the expectation value over the heavy string trajectories

of the interaction term Iχ[X, s; y], weighted by the action S̃P . Note that the measure used

for the propagation of the heavy string is that defined by the computation of the 2-point

function as described above, i.e. after the convolution with the heavy state wave function.

On the other hand, the coupling Iχ[X, s; y] is determined by the Polyakov action SP . As

usual, to compute this path integral one expands around the classical saddle point

X(τ, σ) = X̄(τ, σ) +
δX(τ, σ)
√
g

, s = s̄+ δs , (63)

where we rescaled the quantum fluctuations for X(τ, σ) so that the ’t Hooft coupling g2

does not enter in the quadratic terms arising from the expansion of the action S̃P around

the saddle point solution X̄(τ, σ). It is then clear that, after expanding the interaction term

Iχ[X, s; y] around this saddle point, the dominant contribution in (61) for large g is given

by

δZ̃(xi, xf ,Φ0)

δχ0(y)

∣∣∣∣∣
Φ0=0

≈ P

|xi − xf |2∆A
Iχ[X̄, s̄; y] , (64)

where the pre-factor P coincides precisely with that in the computation of the 2-point

function of OA. Thus, defining OA to have a unit normalised 2-point function, we conclude

that at strong coupling

〈OA(xi)OA(xf )Dχ(y)〉 ≈ Iχ[X̄, s̄; y]

|xi − xf |2∆A
. (65)

Equation (65) is one of the main results of this paper. The approximations that led to

(65) assume that the initial and final heavy string states are the same. This means that

interactions with supergravity fields that change conserved charges of the heavy string, such

as R-charge or AdS spin, are not taken into account. It would be interesting to consider

a heavy string with different initial and final boundary conditions and include the effect of

the light supergravity field on the string saddle point.

To fix our conventions let us remark that in the simple case of a scalar field χ, normalised

such that

Sχ = −1

2

∫
d5x
√
−g
(

(∂χ)2 + ∆(∆− 4)χ2
)
, (66)

its bulk-to-boundary propagator is given by

Kχ(xµ, z; yν) =
Γ(∆)

π2Γ(∆− 2)

(
z

z2 + (x− y)2

)∆

. (67)
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In this simple case the normalisation of the 2-point function of the operator Dχ appearing

in (65) is given by

〈Dχ(x)Dχ(y)〉 =
Γ(∆ + 1)

π2 Γ(∆− 2)

1

|x− y|2∆
. (68)

In the remainder of this section we shall compute 3-point functions of the type 〈OAOAL〉.
We will consider the simplest case where the operator D is dual to the dilaton field, i.e.

we will consider the operator Dφ = L. This will allow us to check our results since, as

shown in Sections 2 and 3, this correlation function can be obtained from the derivative of

〈OAOA〉 with respect to the coupling constant. We need to be careful with normalisations,

since the dilaton field in the SUGRA action has a factor of η = 1/(2κ2) multiplying the

canonical kinetic term. Instead, we should compute the Witten diagram with the canonically

normalised field φ̃ =
√
η φ, whose propagator is given by (67) with ∆ = 4. The final result

should then be multiplied by
√
η, since Dφ =

√
ηDφ̃. In practice, when computing Iφ in

(62), this amounts to taking the derivative of the action SP with respect to φ, while using

the normalised propagator Kφ̃ as given in (67). In what follows we shall refer to Iφ in (62)

with that abuse of notation. Finally, let us remark that in our conventions the 2-point

function of L is given at large N by (31), which can also be verified at strong coupling using

the duality.

4.1 Point-like string

Let us consider first the limit where the heavy string field dual to the operator OA can be

approximated by a point-particle of mass m. In the Einstein frame, the Nambu-Goto action

for a particle coupled to the dilaton takes the form

SNG[X,Φ] = −m
∫ 1

0

dτ eφ/4
√
−ẊAẊBgAB , (69)

where dot denotes derivative with respect to the worldline parameter τ . On dimensional

grounds one concludes that massive string states will have m ∼ g1/2. We shall be working

with the usual Poincaré coordinates Xa = (xµ, z) and for simplicity assume only motion

in the AdS5 part of the space. The corresponding Polyakov action, depending on both the

particle trajectory and the einbein e, is

SP [X, e,Φ] =
1

2

∫ 1

0

dτ eφ/4
(

1

e
ẊaẊbgab − em2

)
. (70)

The functional integration over the einbein e can be substituted by a simple integration over

the modular parameter s,

SP [X, s,Φ] =
1

2

∫ s/2

−s/2
dτ eφ/4

(
ẊaẊbgab −m2

)
, (71)
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analogously to (56). We may now apply the procedure to obtain the 3-point function starting

from (57).

For spacelike separation on the boundary along a direction x, the particle action on the

AdS vacuum simplifies to

SP [X, s,Φ = 0] =
1

2

∫ s/2

−s/2
dτ

(
ẋ2 + ż2

z2
−m2

)
. (72)

The computation of the 2-point function for the point particle, using this action, was per-

formed in [34]. The procedure is as follows: (i) Determine a solution X̄ to the particle

equations of motion,

x(τ) = R tanhκτ + x0 ,

z(τ) =
R

coshκτ
; (73)

(ii) Impose that the endpoints of the motion approach the boundary, z(±s/2) = ε, which

implies

κ ≈ 2

s
log

xf
ε
, (74)

where we have set xi = x(−s/2) = 0 and xf = x(s/2) ≈ 2R ≈ 2x0 ; (iii) Compute the

action

SP [X̄, s,Φ = 0] =
1

2

(
4

s2
log2 xf

ε
−m2

)
s ; (75)

(iv) Perform the integration over the modular parameter s by taking the saddle point,

s̄ = −i 2

m
log

xf
ε
, (76)

which corresponds to the “Virasoro constraint” for the einbein. This computation leads to

the correct dependence of the 2-point function, because at the saddle point

eiSP [X̄,s̄,Φ=0] =

(
ε

xf

)2∆A

, (77)

where we considered the large ∆A limit, for which m ≈ ∆A.

To compute the 3-point function 〈OAOAL〉, we need to evaluate Iφ[X, s; y], as given by

(62). Taking care of the correct normalization, we have

Iφ[X, s; y] = i
3

4π2

∫ s/2

−s/2
dτ

(
ẋ2 + ż2

z2
−m2

)(
z

z2 + (x− y)2

)4

. (78)

For small ε, at the saddle point trajectory (73) we obtain

Iφ[X̄, s; y] =
i

32π2

(
4
s2

log2 xf
ε
−m2

)
s

log
xf
ε

x4
f

y4 (xf − y)4
. (79)
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At the modular parameter saddle point (76), this expression becomes simply

Iφ[X̄, s̄; y] = − m

8π2

x4
f

y4 (xf − y)4
. (80)

We conclude from (65) that

〈OA(0)OA(xf )L(y)〉 ≈ −∆A

8π2

1

x2∆A−4
f y4 (xf − y)4

. (81)

This expression has the spacetime dependence required by conformal invariance. The cou-

pling aLAA is determined for large ∆A, and it agrees with the expectation from the renor-

malization group result (24). To see this, notice that since ∆A ≈ m ∼ g1/2, we have

2π2aLAA = −g2∂∆A

∂g2
≈ −∆A

4
. (82)

in agreement with (81).

4.2 Circular rotating string

The simplest example after the point particle is the circular rotating string with two equal

spins [37], whose 2-point function was also computed in [34]. We start with the Polyakov

action coupled to the metric and the dilaton field (55). The solution X̄ for the circular

rotating string is given by (73) in the AdS5 part of the geometry. In the S5 part, with line

element

ds2
S5 = dγ2 + cos2 γ dφ2

3 + sin2 γ
(
dψ2 + cos2 ψ dφ2

1 + sin2 ψ dφ2
2

)
, (83)

it is given by

γ =
π

2
, φ3 = 0 , ψ = σ , φ1 = φ2 = ωτ . (84)

The conserved angular momenta of the solution are J ≡ J1 = J2 = (2πg)ω. This configu-

ration is dual to an operator of the type OA ∼ Tr
(
XJ1ZJ2

)
.

Let us apply now the procedure in [34]. We have

SP [X̄, s,Φ = 0] = g

∫ s/2

−s/2
dτ

∫ 2π

0

dσ

(
ẋ2 + ż2

z2
− ψ′2 + cos2 ψ φ̇1

2
+ sin2 ψ φ̇2

2
)

= 2πg

(
4

s2
log2 xf

ε
+ (ω2 − 1)

)
s , (85)

where prime denotes derivative with respect to σ, and we have imposed the relation (74). As

detailed in [34], there is a subtlety in obtaining the string propagator, so that the classical

solution for the cylinder coincides with the classical state. This amounts to considering (58),

S̃P [X̄, s,Φ = 0] = 2πg

(
4

s2
log2 xf

ε
− (1 + ω2)

)
s . (86)
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The saddle point in the modular parameter s is given by

s̄ = −i 2√
1 + ω2

log
xf
ε
. (87)

Looking at (74) this implies the Virasoro constraint κ = i
√

1 + ω2. We conclude that at the

saddle point, we have

eiS̃P [X̄,s̄,Φ=0] =

(
ε

xf

)8πg
√

1+ω2

. (88)

This gives the correct dimension ∆A = 4πg
√

1 + ω2 = 2
√

(2πg)2 + J2.

Now we will obtain the 3-point function. First we evaluate

Iφ[X̄, s; y] = i
3 g

π2

∫ s/2

−s/2
dτ

∫ 2π

0

dσ

(
ẋ2 + ż2

z2
− ψ′2 + cos2 ψ φ̇1

2
+ sin2 ψ φ̇2

2
)
×

×
(

z

z2 + (x− y)2

)4

= i
g

4π

(
4
s2

log2 xf
ε

+ (ω2 − 1)
)
s

log
xf
ε

x4
f

y4 (xf − y)4
, (89)

At the saddle point (87), we have

Iφ[X̄, s̄; y] = − g

π
√

1 + ω2

x4
f

y4 (xf − y)4
. (90)

Therefore, we conclude that

〈OA(0)OA(xf )L(y)〉 ≈ − g

π
√

1 + ω2

1

x 8πg
√

1+ω2−4
f y4 (xf − y)4

. (91)

As happened in the point particle case, the spacetime dependence is the one required by con-

formal invariance. The coupling aLAA determined in this way agrees with the expectation,

since

2π2aLAA = −g2∂∆A

∂g2
≈ −g2 ∂

∂g2
2
√

(2πg)2 + J2 = − 2π g√
1 + ω2

, (92)

where we kept the angular momentum J fixed when taking the derivative.

4.3 Giant Magnon

Following the same steps, we move to the more complicated case of the giant magnon where

the string rotates on a R × S2 subspace of AdS5 × S5 [48]. We remark that although

an operator with a single magnon is not gauge invariant, we are implicitly computing the

contribution of a single magnon to the 3-point coupling aLAA involving an operator OA in
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the dilute limit. Since the contribution of a magnon to the 2-point function of some operator

was not computed in [34], we will present first this calculation and then concentrate on the

3-point function.

Let us start by writing the solution in Poincaré coordinates. The AdS part is the same

as in the two previous cases given in (73). Parametrizing the S5 as

ds2
S5 = dθ2 + sin2 θ dϕ2 + cos2 θ dΩ2

3 , (93)

the giant magnon has non-trivial worldsheet fields in the S2 part, given by

cos θ = sin
p

2
sech(ωu) , tan (ϕ− ωτ) = tan

p

2
tanh(ωu) , (94)

where

u =
(
σ − τ cos

p

2

)
csc

p

2
, (95)

and p ∈ [0, 2π) is the momentum of the magnon. The Virasoro constraints, which we will

not impose at this stage, require κ = i ω, where κ given in (73) characterises the AdS

motion. Then we have

SP [X̄, s,Φ = 0] = g

∫ s/2

−s/2
dτ

∫ L

−L
dσ

(
ẋ2 + ż2

z2
+ (θ̇2 − θ′2) + sin2 ψ (ϕ̇2 − ϕ′2)

)
= g

∫ s
2

− s
2

dτ

∫ L

−L
dσ
[
κ2 + ω2 − 2ω2 cosh−2(ωu)

]
. (96)

Using (58) we convolute with respect to the wave function of the rotating string state, which

will change the S5 action into its energy. We obtain

S̃P [X̄, s,Φ = 0] = g

∫ s
2

− s
2

dτ

∫ L

−L
dσ
(
κ2 − ω2

)
= 2 g s

(
κ2 − ω2

)
L . (97)

Taking into account the condition (74) for κ, it is possible to perform the remaining inte-

gration over the modular parameter s by saddle point, with the result

s̄ = −i 2

ω
log

xf
ε
. (98)

Again, this corresponds to the Virasoro constraint, which in this case reads κ = i ω, and

leads to

S̃P [X̄, s̄,Φ = 0] = i 8 g ω L log
xf
ε
. (99)

It is convenient now to introduce the angular momentum,

J = 2 g

∫ L

−L
dσ sin2 θ ϕ̇ = 2 g

∫ L

−L
dσ ω tanh2 (ωu)

= 4g

(
ωL− sin

p

2

sinh
(
2ωL csc p

2

)
cos
(
2ω iτ cot p

2

)
+ cosh

(
2ωL csc p

2

))
≈ 4g

(
ωL− sin

p

2

)
, (100)
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where we took the large L approximation (notice that the above saddle point defines a τ

integration with iτ real). Substituting in (99) and exponentiating, we obtain the expected

behaviour for the 2-point function,

eiS̃P [X̄,s̄,Φ=0] =

(
ε

xf

)2(J+4g sin p
2)
, (101)

in particular, ∆A = J + 4g sin p
2
, which agrees with (34).

Now it is straightforward to compute the 3-point function. We evaluate

Iφ[X̄, s̄; y] = i
3 g

π2

∫ s̄/2

−s̄/2
dτ

∫ L

−L
dσ
(
κ2 + ω2 − 2ω2 cosh−2(ωu)

)( z

z2 + (x− y)2

)4

=
12 g

π2
sin

p

2

∫ s̄/2

−s̄/2
dτ

sinh
(
2ωL csc p

2

)
[cos

(
2ω iτ cot p

2

)
+ cosh

(
2ωL csc p

2

)
]
× (102)

×
x4
f[

(2y2 − 2y xf + x2
f ) cosh(ω iτ) + (x2

f − 2yxf ) sinh(ω iτ)
]4 .

Taking the large L approximation, as in (100), we obtain

Iφ[X̄, s̄; y] = − g

π2
sin

p

2

x4
f

y4 (xf − y)4
. (103)

Therefore, we conclude that the one-magnon contribution to the 3-point function is

〈OA(0)OA(xf )L(y)〉 ≈ − g

π2
sin

p

2

1

x
2(J+4g sin p

2)−4

f y4 (xf − y)4

, (104)

which agrees with the expected result

2π2aLAA = −g2∂∆A

∂g2
≈ −2g sin

p

2
. (105)

4.4 Spinning string on AdS5 × S5

The examples considered in the previous three sections only dealt with relatively simple

string configurations with particle-like motion in the AdS5 part. We are interested in test-

ing our approach in a more general setup, where the bulk-to-boundary propagator for the

supergravity field varies along the string worldsheet for fixed worlsheet time τ . We shall

study the spinning string solution with angular momenta both in the S5 and the AdS5

factors [49], whose 2-point function was also computed in [34]. The study of this solution

is necessarily more intricate, because the way in which the string approaches the boundary

depends non-trivially on the AdS5 rotation. In this case it is convenient to use embedding
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coordinates. Again, the starting point of this calculation is the Polyakov action in the

conformal gauge, coupled to the metric and dilaton,

SP [X, s,Φ] = −g
∫ s/2

−s/2
dτ

∫ 2π

0

dσ eφ/2
[
ηαβ∂αY

a∂βY
bGab + ηαβ∂αX

i∂βX
j Gij+

Λ̃ (Y 2 + 1) + Λ (X2 − 1)
]
, (106)

where, as before, we have set the AdS5 length and the radius of the S5 to unity and G is

the embedding metric. The classical solution representing a spinning string is given by

Y 0 =
1

2

[
cosh ρ0

(
R2 + 1

R
eκτ +

e−κτ

R

)
+

2 sinh ρ0 cos(ω̃ τ + σ)

R

]
,

Y 2 + Y 0 = cosh ρ0

(
R

2
+
eκτ

R

)
, Y 3 − Y 4 = eκτ cosh ρ0 ,

Y 4 = sinh ρ0 cos(ω̃ τ + σ) , Y 1 = Y 5 = 0 , Λ̃ = −κ2 ,

X1 + iX2 = ei (ω τ−σ) , X i = 0, for i > 2 , Λ = ω2 − 1 , (107)

where ω̃ =
√

1− κ2. The conserved charges of this solution can be readily obtained as

functions of ρ0, ω and κ, and are given by J = 4πg ω, S = 4πg ω̃ sinh2 ρ0 and E =

4πg κ cosh2 ρ0, where J , S and E are the angular momentum on the S5, angular momentum

on the AdS5 and energy, respectively. This solution has the required boundary conditions

if we further identify R = xf and

s =
2

κ
log

xf
ε
, (108)

where, as in [34], we have conveniently absorbed a factor of cosh ρ0 in ε.

In order to calculate the 2-point function, we have to apply the procedure described in

[34], which amounts to considering (58) instead of SP [X̄, s,Φ = 0] defined in (106). Note,

however, that the AdS5 part in (107) also depends on σ, which will lead to non-zero values

of the zero-modes defined in (59). A computation shows that (58) becomes

S̃P [X̄, κ,Φ = 0] = 4πg

[
κ− S

√
1− κ2

2πgκ
− 1

κ

(
1 +

J2

16π2g2

)]
log

xf
ε
. (109)

It will be more convenient to evaluate the saddle point with respect to κ instead of the

modular parameter s. The saddle point in κ yields the following condition

1 + κ̄2 +
J2

16π2g2
+

S

2πg
√

1− κ̄2
= 0 . (110)

This condition is exactly the Virasoro constraint for the spinning string (107). At the saddle

point we recover the usual 2-point function behaviour

eS̃P [X̄,κ̄,Φ=0] =

(
ε

xf

)8πg

(
κs+

Sκs

4πg

√
κ2
s+1

)
, (111)
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which gives the correct scaling dimension ∆A = E = 4πg

(
κs + Sκs

4πg
√
κ2
s+1

)
, where we have

defined κ̄ = iκs. Note that in the S → 0 limit we recover the circular spinning string of

Section 4.2, as we should.

Now we will obtain the 3-point function. First we need to evaluate (62). In contrast to

the other cases, the integrand in this case strongly depends on σ, and the integrals might

appear to be very complicated. However, because we are integrating σ from 0 to 2π we

can rewrite our integral as an integral in the complex plane by considering the complex

variable w = eiσ. The integral can then be computed using the residues theorem. For fixed

wordsheet time τ , the integrand has two poles, one of which has zero residue and the other

gives the relevant contribution. The intermediate steps are too cumbersome to be presented

here, so we just state the final result

Iφ[X̄, κ̄; y] = − ∆A

4π2κ2
s

(
1 +

S

2πgω̃

)
x4
f

y4(xf − y)4
. (112)

Therefore, we conclude that, to leading order in g,

〈OA(0)OA(xf )L(y)〉 ≈ − g
π

1

x2∆A−4
f y4 (xf − y)4

. (113)

As happened in the previous cases, the spacetime dependence is the one required by confor-

mal invariance. Moreover, to leading order in g, the coupling aLAA determined in this way

agrees with the RG expectation, since

2π2aLAA = −g2∂∆A

∂g2
≈ − g

π
, (114)

where we kept the angular momenta S and J fixed when taking the derivative. We used

(110) to determine ∂gκs, which leads to κs ≈ 1 +O(1/g).

5 Conclusion

One of the present challenges in the gauge/gravity duality is to search for new techniques

to compute correlation functions of single trace operators in N = 4 SYM, therefore leading

to the exact solution of this theory possibly using integrability, at least in the planar limit.

This paper is focused on such new search, both at weak and strong coupling.

We started by presenting generic arguments based on the renormalization of operators

when a CFT is deformed by a marginal or irrelevant operator D. These arguments were

independent of the value of the coupling at the CFT fixed point (a fixed line in the case of
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N = 4 SYM). To linear order in the deformation parameter u, we can write the anomalous

dimension matrix as

Hu = H + uH′ . (115)

We showed that the matrix element H′AB for two operators OA and OB is determined by the

coupling aDAB. ForN = 4 SYM and at weak ’t Hooft coupling, we can start by diagonalizing

H using integrability to some order in the coupling. Then the problem of computing aDAB

amounts to determining the matrix elements H′AB. We saw how to implement these ideas

for the simplest case of the exact Lagrangian deformation, where the action of the matrix

H′(L) on the basis of operators represented as a spin chain is known (it is just the derivative

with respect to the coupling of the anomalous dimension matrix at the critical point). In

this case one needs to compute the matrix elements of H′(L) between Bethe roots. A

very interesting open problem is to extend this procedure to other deformations, therefore

allowing for a systematic computation of the couplings aDAB in perturbation theory using

integrability. When D is a chiral operator in the same multiplet of the Lagrangian, for

example the energy-momentum tensor, we expect that the action of H′(D) on the basis

represented as a spin chain can be obtain acting with the supersymmetry algebra on H′(L).

It would be very interesting to see how far one can go with this type of approach.

The gauge/gravity duality can be used to compute N = 4 SYM correlation functions

at strong coupling, but in practice one is limited to the supergravity approximation which

only includes chiral operators. We have improved on this limitation, by including two

insertions of an operator dual to a heavy string state, and then studied the case of 3-point

correlation functions with one extra chiral operator. We considered specific examples with

the Lagrangian operator, checking agreement with the expected result from renormalization

group arguments, since in this case the coupling aLAA is simply related to the derivative with

respect to the ’t Hooft coupling of ∆A. This is an important check, since it gives confidence

that the method can be applied to other chiral operators. Our computation of the string

theory partition function is based on a saddle point approximation to the string path integral

that describes the propagation of the heavy state, generalising the analysis of the 2-point

function introduced in [34]. Other chiral operators can be included because the heavy string

acts as a tadpole for the supergravity fields, which may then propagate to the boundary

of AdS if sources are present therein. An alternative way to think of this computation

is to realise that the supergravity fields act as sources in the equations of motion for the

worldsheet fields of the heavy string worldsheet, therefore deforming it. In fact, the same

occurs in the case of three large operators, whose 3-point function at strong coupling ought

to be determined by a string worldsheet with fixed boundary condition on three points in

the boundary of AdS. In [34] this was shown to yield the correct conformal dependence
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of the 3-point function on the boundary points, but the evaluation of the coupling aABC ,

related to the area of the string worlsheet minimal surface, is still an open problem. It

is expected that such computation will show a direct relation with integrability, but that

remains to be seen.
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Appendix A: Irrelevant deformations

In this appendix we re-write the formulae of Section 2 for the case of irrelevant deformations.

The main results for the renormalization of operators are essentially the same, so we shall

be brief. The first modification is that we must be careful with the running of the coupling

u, so that correlation functions involving a renormalized operator of the undeformed theory

OA become

〈OA(x) · · · 〉u = 〈OA(x) · · · 〉 − uΛ4−∆

∫
d4y 〈OA(x)D(y) · · · 〉 , (116)

where we work to linear order in the deformation parameter u, as defined at the cut-off scale

Λ. Using the OPE expansion between D and OA given in (5), we conclude that the region

of integration y ∼ x contributes with

Λ4−∆

∫
d4y

|x− y|∆+∆A−∆B
≈ 2π2Λ∆A−∆B

∆ + ∆A −∆B − 4
, (117)

for ∆B ≤ ∆A. We renormalize the operators of the deformed theory according to

OuA = OA + u
∑

∆B≤∆A

2π2aDAB
Λ∆A−∆B

∆ + ∆A −∆B − 4
OB , (118)

so that the correlation functions 〈OuA(x) · · · 〉u are finite. With this prescription the two-point

function between operators 〈OuA(x)OuB(0)〉u remains the same. This is expected because the

deformation is irrelevant and therefore, to leading order in u, it is not expected to change

the anomalous dimension of operators. We remark that the constant renormalization in

(118) for ∆A = ∆B guarantees that this two-point function remains diagonal and with the

same normalization.

The above renormalization scheme corresponds to a renormalization matrix (12) with

entries

ZAB = δAB + u 2π2aDAB
Λ∆A−∆B

∆ + ∆A −∆B − 4
. (119)
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The corresponding anomalous dimension matrix ΓAB defined in (15) is the same as for the

marginal case given in (16). The Callan-Symanzik equation will now include the running of

the coupling u. For example, for 2-point functions we have(
∂

∂ ln Λ
+ βu

∂

∂u

)
〈OA(x)OB(0)〉u +

∑
I

ΓAI〈OI(x)OB(0)〉u +
∑
I

ΓBI〈OA(x)OI(0)〉u = 0 ,

(120)

with βu = (∆− 4)u. This equation is verified provided (16) holds.

Finally, it is useful to define the renormalized operators starting from the undeformed

bare theory. In this case the renormalization matrix ZAB has entries

ZAB = δAB γA + u 2π2aDAB
Λ∆0

A−∆0
B+γA

∆ + ∆A −∆B − 4
. (121)

The anomalous dimension matrix again has entries given by (20). The relation between the

entries of the deformed anomalous dimension matrix H′, computed in a diagonal basis of

the anomalous dimension matrix of the critical theory, and the couplings aDAB is as for the

marginal case presented at the end of Section 2.
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