
RADIAL BASIS FUNCTION METHODS FOR 

MULTIVARIABLE APPROXIMATION 

by 

IAN ROBERT HART JACKSON M.A . 

of TRINITY HALL 

A dissertation presented in fulfillment of the requirements for 

the degree of Doctor of Philosophy, Cambridge University 

July 1988 

UNIVERSITY 
LIBRARY 

CAM6RIOOE 

Pu D I Sso7 



Summary 

RADIAL BASIS FUNCTION METHODS FOR 

MULTIVARIABLE APPROXIMATION 

I. R. H. JAOKSON 

The problem of approximating functions of d variables ( d > l) has many diverse and useful ap

plications. The idea of using radial basis function methods for such problems is motivated by 

the excellent results that they give in some practical problems, particularly that of multivariate 

interpolation to data given at a small number of irregularly positioned points. 

In this dissertation it is first shown that, in some cases, radial basis functions do provide good 

spaces in which to look for approximations. Specifically, it is found that the best approximating 

functions from the linear space spanned by radial basis functions centred at arbitrary points in a 

bounded domain converge uniformly, on any slightly smaller domain, to any continuous function 

as the points become dense in the domain. 

The main conclusion is a result about the rate of convergence of these approximations to 

suitably smooth functions when the points lie on a regular grid. Initially it is shown, both by 

elementary means and by using Fourier transforms of generalised functions, that, for some useful 

radial basis functions, the closure of the linear approximation space includes some low degree 

polynorn..ials. Thus, it is shown how to deduce rates of convergence for best approximations in the 

case when the grid spacing decreases. Results are obtained for functions defined either on the whole 

space or on only a bounded domain. In particular, when the radial basis function is the identity 

and when dis odd, the rate of convergence is found to be d + l. This generalises the well-known 

rate of convergence for linear interpolation to suitably smooth functions in one dimension. 
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CHAPTER 1 INTRODUCTION 

Section 1.1 : Multivariable Approximation 

There has been much interest in recent years in approximating functions f by more simple functions 

s which are suitable to use for computational purposes. Much of the earlier work concerns one 

dimensional problems, that is approximating a function, usually over a finite region [a, b] by some 

simpler function. This problem has been carefully analysed and answers are known to many of 

the important practical questions in that case (see e.g. Powell 1981). We restrict ourselves to the 

problem in more than one dimension where the current state of analysis is much less advanced. 

First we state the general problem which we wish to consider. We suppose that distinct data 

points {zk E Rd : k = 1, 2, ... , n} (with d > 1) are given, along with associated function values 

{fk E R : k = 1, 2, ... , n}. We assume that each function value comes from some underlying 

function f so that 

f ( Zk) = fk + fk, k = 1, 2, ... , n, (1.1.1) 

where { Ek E R : k = 1, 2, ... , n} are small errors which may result from an inaccurate evaluation of 

the function . We wish to find a functions so that s(zk) is close to fk. In the case of multivariate 

interpolation we satisfy the interpolation conditions 

s(zk) = fk, k = 1,2, ... ,n. (1.1.2) 

For approximation rather than interpolation we may require that one of the following inequalities 

hold: 
n 

L ls(zk) - !k l < E, (1.1.3) 
k= l 

n 

L(s(zk) - fk) 2 < f (1.1.4) 
k=l 

or 

max{ ls(zk) - fk l : k = l ,2, ... ,n}<E, (1.1.5) 

for some tolerance f. More general formualtions than this may also be used, possibly including 

weights at the points zk as well. 

We begin by mentioning some types of applications that yield these problems. 

Predictions. 

It may be the case that the function f one wishes to analyse is very expensive to evaluate, either 

in real terms or in terms of the amount of computing time needed. This may cause a problem if, in 
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Introduction 

the course of the analysis , we are going to require a knowledge of the function f at a large number 

of different data points. This can be alleviated if one can find a good approximation s to f over 

the whole region of interest , using only a relatively small number of function values of J. Then, 

instead of repeatedly evaluating f one can repeatedly evaluate the much more simple function s . 

Usually it will be the case that the function s will only be a good approximation to the function 

J inside the convex hull of the points at which f has been evaluated, although sometimes limited 

extrapolation may be possible. It may also be suitable to use the function s to estimate partial 

derivatives of f if these are required. 

Optimization. 

Another application, connected quite closely with predictions, is finding a local ( or global) maximum 

(or minimum) of a function. In this case the location of the maximum is unknown. We may need 

to know the function f to very high precision near the maximum, but will not be greatly concerned 

about its behaviour away from this maximum, so long as it does not introduce a fictitious maximum. 

Statistical Analysis. 

It may be that, instead of requiring local information about the function f as in the previous two 

cases, we require some global information such as a mean, with respect to some weight function , 

or some correlation information. Here, in contrast to the previous case, an approximation which is 

uniformly good over the whole region of interest is required. 

Storage. 

Alternatively we may have a large number of evaluations of a function f from some experiment. 

We may need to store this data for some period before further analysis can be performed if, for 

instance, correlation is sought between this and similar data obtained at some later time. If the 

data has been oversample~ in the experiment then it is advantageous to reduce the amount of data 

held in storage. If the data can be approximated by a function s which can recover the original 

data sufficiently accurately and takes much less storage, it is advantageous to use the function s 

instead. 

However, when looking for suitable methods to solve a particular problem there may also be 

other constraints, apart from the application , which we need to take into consideration. 

There is naturally a trade off between the accuracy of an approximation s and the time it takes 

to calculate that approximation. This may impose restrictions on either the time of solution or on 
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Introduction 

the accuracy that can be obtained and usually some balance between the two must be achieved. It 

is also important to check that a method is well conditioned for the type of problem one wishes to 

solve and that there is sufficient storage to hold all the data for the problem at one time although, 

in the latter case, it may be possible to use a method that processes only a part of the data at any 

one time. If the function s is likely to be revised after the calculation, perhaps to achieve greater 

accuracy, then a method which allows for this will be preferred. It is also necessary to check on 

any para.meters required by the method, as on occasions the function s can be affected critically 

by these. 

Section 1.2 : Methods for Multivariable Approximation 

In this section we shall just sketch a cross-section of the techniques most widely used for multivari

able approximation problems. There are many such techniques and there have been several good 

review articles written recently including Schumaker (1976), Barnhill (1977), Franke (1982), Hayes 

(1987) and de Boor (1987). Mostly they are written from a practical viewpoint although that by 

de Boor (1987) contains several theoretical ideas. In many cases too the authors just consider the 

problem in two dimensions. We do not mention radial (or nodal) basis function methods in this 

section because they are considered in some detail in Section 1.3. 

Tensor Product Met hods. 

These methods are especially good when the data are given on a rectangular grid. For example, in 

two dimensions suppose that we have data points 

{(x;,yk): i = 1,2, ... ,p, k = 1,2, .. . ,q}, (1.2.1) 

and associated function values 

{J(x;,Yk): i = 1,2, ... ,p, k = 1,2, ... ,q}, (1.2.2) 

We look for a solution which is a linear sum of products of univariate functions 

p q 

s(x, y) = L L a;,kB;(x )fh (y), , (1.2.3) 
i=l k=l 

where each B; and fh is a univariate function. We can find the values of { a;,k} by first solving 

q univariate problems on grid lines parallel to the first coordinate direction and then p univariate 

problems on grid lines parallel to the second coordinate direction. A good survey of approaches is 

given in (Light and Cheney 1986). 
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Introduction 

There have been attempts to try and extend this method, because of its obvious success, to 

the case when the data are irregularly distributed. This may involve setting up a regular grid and 

estimating function values at grid points from given function values nearby. Then the problem 

is solved in the usual way on the regular grid. A possible drawback of this approach is that the 

approximating function calculated on the regular grid will not in general interpolate the original 

function values, even if an interpolating method is used on the generated values on the regular grid. 

However, this difficulty can be overcome ( e.g. Foley and Nielson 1980). 

Blending Methods. 

For ease we consider this method in two dimensions although the technique may be extended to 

higher dimensions. One forms a triangulation of the data points. In this and other methods where 

triangulations are needed it is often found that the Delanay triangulation is highly suitable (Lawson 

1977). Then on a triangle with vertices (xi, y;), (xj, Yi), (xk, Yk) we use the function 

s(x,y) = wi(x,y)Q;(x,y) + wj(x,y)Qj(x,y) + wk(x,y)Qk(x,y), (1.2.4) 

where Q1(x,y) are nodal functions satisfying 

Q,(x1,Y1) = f1, l = 1,2, ... ,n, (l.2.5) 

and w1 ( x, y) is a weight function, which in the case of interpolation would satisfy 

{ 
1 if l = m· 

W1 Xm,Ym = . ' ( ) 0 otherwise. (l.2.6) 

Examples of such methods are found in Franke (1982) who also considers the possibility of per

forming blending over rec~angles . 

Finite Element Methods. 

This method a.gain works, in two dimensions , on a triangulation of'the data points. A finite element 

is chosen on each triangle and these are fitted together over the collection of triangles to give a 

good approximation and the required continuity. This method requires estimation of some partial 

derivatives at all the data poii1ts, and possibly at other places too, to enable the elements to be 

properly joined. The performance can depend greatly on the accuracy with which partial derivatives 

are calculated (Franke 1982). Also in this paper various good choices of finite elements may be 

found for the interpolation problem. 
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Multivariate B -splines. 

Much work has been done recently on the question of finding multivariable functions which are 

analagous to the univariate B-splines in the case of frregularly spaced data. These functions have 

compact support, which should be as small as possible, and are region-wise polynomials with 

suitable continuity across the boundary of regions. Theoretically such techniques have proved very 

interesting but the computational effort to apply them in practice can cause difficulties (Grandine, 

1986). A good introduction may be found in Hollig (1986a) and comprehensive reviews in Dahmen 

and Micchelli (1983), Hollig (1986b) and Chui (1987). 

Repeated Surface Smoothing. 

This method is a generalisation of the technique of repeated curve smoothing which is used in one 

dimension in many computer aided geometric design packages (Doo and Sabin 1978). Preliminary 

work has been done by Hollig (1986a) but the subject is still in very early stages although de Boor 

(1987) has high hopes of the utility of this approach for arbitrary distributions of data points. 

Quasi-Interpolation. 

Some of the previous schemes may be viewed together in the more general context of quasi

interpolation. In this case with each data point zk we associate a function 'lj;k which decays rapidly 

for large argument. We then form the approximation to f, 
n 

s(x) = L fk'lj;k(x) . (1.2.7) 
k=l 

The naming arises because in the case of the multivariable interpolation if we find functions Xk 

satisfying 

then the function 

{ 
1 if k = j; 

Xk ( lj ) = 0 otherwise, 

n 

s(x) = L !kn(x), 
k =l 

(l.2.8) 

(1.2.9) 

interpolates the data. In many cases 'lj;k has compact support ( e.'g. multivariable B-splines ), but 

this condition is not necessary. We give much attention to this formulation later in the dissertation. 

The problem of multivariabie approximation is a large and difficult problem so all methods are 

bound to have shortcomings. In particular the methods just described become far more complicated 

as the clitl'lens 
0

lCI\ increase1 which is perhaps why many papers only consider calculations 
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in two dimensions (e.g. Franke (1982) and Hayes (1987)). We now describe a method which prac

tically overcomes this problem and also has the desirable properties of rotational and translational 

invariance. 

Section 1.3 : Radial Basis Functions 

This dissertation is concerned mainly with "radial basis function" type approximations, which were 

first suggested for the multivariable interpolation problem (1.1.2). The method of solution in this 

case is to look for an approximation from the linear space spanned by the n functions 

x 1--. </>( JJ x - z1: II ), k = 1, 2, ... , n, (1.3.1) 

where the norm is Euclidean and where </> : n -+ n is a continuous function known as a radial 

basis function, or sometimes as a nodal basis function. In this case the approximation is 

n 

s(x) = L >..1:</>( ll x - zk II ), X E 'R\ (1.3.2) 
k = l 

the { >..k : k = 1, 2, ... , n} being chosen to satisfy the interpolation conditions. Originally, Hardy 

( 1971) suggested using either of the two radial basis functions </>( r) = ( r 2 + c2
) t or ( r 2 + c2 

)- t, for 

some positive constant c. 

Polynomials of low degree are not reproduced by a function (1.3.2), so it is sometimes useful 

to add to s a polynomial of total degree m which gives the form 

n 

s(x) = L >..k</>( Jl x - zkll ) + Pm(x), (1.3.3) 
k = l 

It is now suitable to augment the interpolation conditions by the extra constraints that 

n 

L >..k P(z1:) = 0, (1.3.4) 
k=l 

for all polynomials P of total degree at most m , which regains a square system of linear equations 

in the parameters of s. This technique was first proposed in two dimensions for the basis function 

</>(r) = r 2 log r and m = 1 by Duchon (1977). He actually arrived at this formulation by finding 

the solution of the interpolation problem which provides the minimum value of 

(1.3.5) 

when the only restrictions on s are differentiability conditions. 
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We note that approximations of the form (1.3.2) and (1.3.3) may be used in cases where 

interpolation is not required. However, when performing interpolation the question naturally arises 

whether solutions to these two problems are well-defined. That is, for any distribution of the distinct 

points { zk : k = 1, 2, ... , n }, do there exist functions s of the form (1.3.2) and (1.3.3) satisfying all 

the required constraints. In the first case the question is whether there exists { Ak : k = 1, 2, ... , n} 

such that 
n 

L Ak<P( /1 1:1- zk ll ) = h, j = 1,2, ... ,n. (1.3.6) 
k = l 

There is a unique solution for all choices of {h : j = 1, 2, ... , n} if and only if then by n symmetric 

matrix 

(1.3.7) 

is non-singular. In the second case we let Dm be the dimension of the space of polynomials of total 

degree at most m, and let 

{qk: k = n + l,n + 2, ... ,n + Dm} (1.3 .8) 

be a basis for that space. Now the question is whether there exists { Ak k = 1, 2, ... , n + Dm} 

such that 
n n + Dm 

LAk</>( ll li - z!: 11 ) + L Akqk('l5 ) = fj, j = l,2, ... ,n, (1.3.9) 
k = l 

and 
n 

L Akqj(zi,) = O, j = n + 1,n + 2, ... ,n + Dm. (1.3.10) 
k = l 

We see that there is a unique solution for all choices · of {h : j = 1, 2, ... , n} if and only if the 

n + Dm by n + Dm symmetric matrix 

is non-singular . 

if 1 ~ k,j ~ n; 
if 1 ~ j ~ n , n + 1 ~ k ~ n + Dm ; 
if 1 ~ k ~ n, n + 1 ~ j ~ n + Dm; 
if n + 1 ~ k,j ~ n + Dm 

(1.3.11) 

It is a measure of the lack of theoretical work done in the subject that a solution to the non

singularity problem for the multiquadric functi011. was not found until 15 years after the publication 

of Hardy's (1971) paper. In a classic paper Micchelli (1986) proved among many other similar 

results that interpolation with the multiquadric basis function (1.3.2) is always possible and that it 

is also always possible for the method (1.3 .3) for every value of m , so long as the only polynomial 

of degree at most m t aking the value zero at all the data points is the zero polynomial. Such a set 
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of data points we refer to as an m-basic set . Them-basic sets are linked to polynomial interpolation 

and hence to the Kirgin-Hakopyan conditions. This analysis is made more accessible in a subsequent 

paper by Powell (1987), although the results given there are less general than those of Micchelli. 

Next we consider some of the functions <p that have been suggested , indicating in each case 

what is known about the non-singularity of the matrices (1.3.7) and (1.3.11) which arise in the 

interpolation problem, and what is known about their properties for interpolation and approxima

tion, both theoretically and experimentally. Most of the interpolation results come from a very 

thorough survey paper by Franke (1982) in which he considers many methods in R 2
• They indicate 

that, for fairly small sets of data which are not too irregularly distributed, radial basis function 

methods provide the most accurate solutions to the interpolation problem. 

(a) </;(r) = r, Linear Radial Function. 

The matrix (1.3.7) is non-singular for all choices of distinct data points and the matrix (1.3.11) is 

non-singular for all m, so long as the data points are an m-basic set. The latter case is included in 

the analysis of Duchon ( 1977) and Meinguet ( 1979) as with m = ( d - 1) / 2 and d odd the solution 

to the </;( r) = r interpolation problem minimises an integral that is similar to ( 1.3.5) except that all 

partial derivatives of order ( d + 1)/ 2 (instead of 2) are used. In one dimension the method reduces 

to linear interpolation, but, perhaps surprisingly, in more than one dimension little appears to 

have been discovered experimentally about the performance of this function for approximation or 

interpolation. 

(b) </;( r) = r 3 , Duchon Radial Cubics. 

The matrix (1.3.11) is non-singular for all m ~ 1, so long as the data points are an m-basic set. 

This case is also considered in Duchon (1977) and Meinguet (1979) where it is shown that, with 

m = (d + 1)/2 and d odd, the solution to the interpolation problem minimises an integral similar 

to (1.3.5) except that all 1>artial derivatives of order (d + 3) / 2 are used. Franke (1982) found good 

results for interpolation in R 2
• Powell (1987) suggests the use of these functions for optimization 

calculations as partial derivatives are easy to calculate, but preliminary results were discouraging 

(Powell, private communication). 

Similar remarks about non-singularity and variational problems apply when </;(r) = 
r1 for some odd integer l ~ 5, but little experimental work has been done. We also note that 

general approximation is inappropriate when </;(r) = r1 for some even integer l, because in this case 

ef>( llx - vii) is a polynomial for all y E Rd . Hence the functions (1.3.2) and (1.3 .3) are polynomials , 

so one cannot control well the flexibility of s by the value of n and the positions of the centres 

{zk : k = 1,2, ... ,n}. 
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(c) 4>(r) = r 2 logr, Duchon Thin Plate Splines. 
been 

Thes~ have alreadyLmentioned in (1.3.5). The matrix (1.3.11) is non-singular for all m 2: 1, so long 

as the data points form an m-basic set. As in cases (a) and (b) a more general variational problem 

exists. If m = (d + 2) / 2 and dis even then the solution to the interpolation problem minimises an 

integral similar to (1.3.5) except that all partial derivatives of order (d + 2) / 2 are used. Very good 

results in two dimensions are reported by Franke (1982) and also by Dyn and Levin (1981 & 1983) 

and Dyn, Levin and Rippa (1986). Some interesting and promising work is presented by Rippa 

(1984) on smoothing the solution obtained from the interpolation problem. 

Similar remarks about non-singularity and variational problems apply when 1>( r) = r1 log r for 

some positive even integer l 2'. 4, but little experimental work has been done. 

(d) </>(r) = (r2 + c2 )1, c > O, Hardy Multiquadrics. 

We have already remarked that these were first suggested by Hardy (1971) and that the matrix 

(1.3 .7) is always non-singular, as is the matrix (1.3.11) for all m 2: O, so long as the data points 

form an m-basic set. Also the question of expressing the solution to the multiquadric interpolation 

problem as a minimum norm calculation in some reproducing kernel Hilbert space has been studied 

by, among others, Micchelli (1986) and Dyn (1987). Further, Franke (1982) foµnd this to be the 

most accurate of all the methods he tried in practice for performing interpolation in two dimensions. 

His data were irregular but not too irregular so that an average "distance between neighbouring 

data points" could be defined. The method worked best when c had a value near to this distance, 

although the method was quite stable for a range of values of c. Similar results were also found 

experimentally by Carlson (1985) and Kansa (1986) and some theoretical justification for the case 

of data positioned on a regular grid is given by Buhmann (1988a). 

(e) </>(r) = (r2 + c2 )-t, c > O, Inverse Multiquadrics. 

These were also first suggested by Hardy (1971) and again the mati:ix (l.3.7) is always non-singular, 

as is the matrix (l.3.11) for all m 2: 0, so long as the data points form an m-basic set. Again some 

work has been done on expressing the solution of the inverse multiquadric interpolation problem as 

a minimum norm calculation in some reproducing kernel Hilbert space by, arriong others, Micchelli 

(1986) and Dyn (1987). Franke (1982) found these to be very good in practice, but not as good as 

the multiquadrics, for performing interpolation in two dimensions. He also found this method to 

be less stable with respect to variations in the parameter c. Inverse multiquadrics have also been 

analysed theoretically for data on a regular grid by Buhmann (1988a). 
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(f) <jJ(r) = log(r2 + c2
), c > O, Shifted Logarithms. 

These were introduced by Rippa (1984) and Dyn, Levin and Rippa (1986). The matrix (1.3.7) is 

always non-singular and so is the matrix (l.3.11) for all m ~ O, so long as the data points form an 

m-basic set. This method was not examined by Franke (1982), so it hard to compare the results 

obtained by Rippa (1984) with other examples examined by Franke (1982). It is fair to say though 

that they produced good results especially under the conditions described in the multiquadric case 

( d). 

Dyn, Levin and Rippa (1986) also consider </J(r) = (r2 + c2
)

1 log(r2 + c2
) for integers l ~ l, 

although little experimental work has been done with these functions. 

(g) <jJ(r) = e-cr
2

, c > O, Rotated Gaussians. 

Franke (1982) remarks that these would have been his natural first choice of the function <P, but 

his results in this case were far worse than those obtained with, for instance, the multiquadric 

basis function. He also found the method to be very unstable with respect to the parameter c, 

and there seemed to be no readily accessible good choice for this parameter. Some work on a 

global optimization problem with this basis function is presented by Schagen (1984) , and it may 

be possible to apply some of his techniques to other basis functions. Schagen points out that the 

matrix (l.3.7) is always non-singular for this method, and Micchelli (1986) has also shown that 

(1.3 .11) is non-singular, for all m ~ O, so long as the data points f orn\ an m-basic set. 

One of the difficulties with applying interpolation with the basis functions (a)-( e) is that the 

matrices (1.3.7) and (1.3 .11) tend to become very rapidly ill-conditioned for large n. They are 

in general full matrices and, if the function </J becomes large for large argument, the elements of 

the matrix tend to grow away from the diagonal. Some work on preconditioning the systems of 

equations (1.3.6) and (1.3.9) has been performed by Rippa (1984), Dyn, Levin and Rippa (1986) 

and Dyn (1987). Their techniques were developed initially for data distributed over a regular square 

grid but were later extended to the case of irregularly positioned points. 

Cheney and Light (private communication) have begun to study basis functions of the type 

(1.3.1) for norms other than the Euclidean norm, but so far the results on theoretical orders of 

accuracy have not been encouraging. 
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Section 1.4 : Contents of Chapters 2- 6 

Chapters 2-5 contain some new results and some discussion on them is given in Chapter 6. 

In Chapter 2 we consider the suitability of functions of the form (1.3 .2) for performing approx

imation. Particularly we ask whether this space is dense in the space of all continuous functions 

over some bounded domain. We suppose we are given a set of points {zk : k = 1, 2, . . . } which 

a.re dense in the bounded domain and a function f continuous on the closure of that domain. 

We ask if for any f > 0 there exists a function of the form 

n 

s(x) = L ,\k<f>( ll x - zk II ) (1.4 .1) 
k =l 

which approximates f to accuracy f. We find that this is possible in the case when we only require 

the approximation to f to be accurate at all points in the domain at least some fixed distance away 

from the boundary, provided that the radial basis function </> is homogeneous and there exists a 

function 
I 

1(x) = L µi</>( ll x - Xj II ), (1.4.2) 
j =l 

with {µi E n : j = 1, 2, ... , l} and { xi E nd : j = 1, 2, ... , l}, which is absolutely integrable and 

has a non-zero integral. 

We then consider the case of the identity basis function </>(r) = r, which is homogeneous and 

consider trying to find a function "P which is absolutely integrable and has non-iero integral. This 

is shown to be possible when dis odd but impossible when dis even. 

Chapter 3 continues the analysis of the case </>( r) = r. It considers quasi-interpolation on an 

infinite regular grid with integer spacing. In particular we address the case when f is a polynomial 

of low degree, and we find the unexpected result that functions 

I 

1(x) = L µi ll x - xi ii , (1.4.3) 
j = l 

with {xi E zd : j = 1,2, ... ,l}, exist when the dimension dis odd, which can reproduce all 

polynomials of degree d. Further, we show that it is not possible to reproduce all polynomials 

of degree d + 1. The techniques involve no sophisticated analysis. We show first that the quasi

interpolant to f is a polynomial by proving that all sufficiently high order partial derivatives are 

zero and then we deduce that it is actually the correct polynomial. 

Fourier transforms and generalised functions are used in Chapter 4, where we present some 

analysis that is more general than Chapter 3 for finding conditions on</> which allow certain polyno

mials to be reproduced by quasi-interpolation. These conditions allow us to deduce positive results 

11 
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for polynomial reproduction for cases ( a)-(f) of Section 1.3. For instance it is found that when the 

dimension dis odd then functions 'I/; formed from the multiquadric basis function ( example ( d) in 

Section 1.3) can reproduce all polynomials of degree d. In case (g) of Section 1.3 it is found that 

no polynomial reproduction is possible. 

In Chapter 5 we deduce results on the rate of convergence for quasi-interpolation schemes to 

suitably smooth functions as the mesh size of the infinite regular grid tends to zero, when the quasi

interpolation method reproduces low order polynomials. The error between the quasi-interpolant 

and the function fat x is the same as the error between the quasi-interpolant and P, the truncated 

Taylor series expansion off, at x. If P is of sufficiently low degree so that it is reproduced by the 

quasi-interpolation method then the error is the value of the quasi-interpolant to f - P at x. This 

is found to be small as near to x the function f - P is small and away from x the function 'I/; decays 

quickly. Thus, it is not necessary that 'I/; has compact support only that it decays quickly. Results 

are obtained for rates of convergence both over the whole of nd and over bounded domains, which 

are relevant to the radial basis functions considered in Chapter 4. Among other things we find that 

when <f>(r) = r and dis odd we obtain an order of convergence d + l for some functions 7/J (l.4.3). 

Thus, we find a rate of approximation which increases with increasing odd d, a remarkable and 

possibly very useful result. 

Chapter 6 reviews the main results of the previous four chapters and comments on their 

practical implications. We also consider the work of Buhmann (1988b ), which . extends the ideas 

developed here for quasi-interpolation over an infinite regular grid to the case of interpolation over 

an infinite regular grid. Finally we comment on the main outstanding question in the subject ; 

whether these results may extend to the case when we have scattered data rather than data on a 

regular grid. 

12 
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Section 1.5 : Notation 

We work in d dimensional real space Rd. We denote our radial basis function by 1> : R --+ R so 

that in d dimensions we shall use the function </>( ll xll ), x E Rd, where the norm is the Euclidean 

( or 2-) norm. Wherever the norm symbol (II · II ) occurs without subscript it will imply this norm. 

In some places we employ the Chebyshev ( or infinity) norm II · 11 00 • The function 'lj; is usually a 

finite linear combination of translates of basis functions 

I 

'1/J(x) = L µj</>(ll x - xi ii ), (1.5.1) 
j =l 

where {µi E R : j = 1, 2, ... , l} and { Xj E Rd j = 1, 2, . . . , l}. Further, we shall often impose 

the restriction that each Xj E zd, where 

zd = {y E Rd : each component of y is an integer}. (1.5.2) 

We employ the standard ( de Boor 1987) multi-index notation for multivariable functions which 

we now describe. We do not use any special notation to denote a vector, it should always be 

obvious from the context which quantities are scalars and which are vectors. We shall very rarely 

use components of vectors in this dissertation, but when they are needed the notation x; denotes 

the i-th component of a vector x for i = 1, 2, . .. , d. In the multi-index notation we are concerned 

with the space 

(z+ t = {a E zd : et; ~ 0, i = 1,2, ... ,d}, (1.5.3) 

and we shall often use a for a member of this space. Throughout the rest of the definitions we let 

x,y E Rd and a,a' E (z+t. vVe say 

and 

We define 

and 

a ::; a ' {:} a; ::; a;, i = 1, 2, ... , d, 

a < a' {:} et; < a;, i = 1, 2, ... , d, 

a is even {:} a; is even, i = 1, 2, . .. , d. 

i = l 

d 

x.y = L x ;y;, 
i =l 

13 
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the usual inner product between x and y. We also define 
d 

x<> = II xf·, 
i = l 

d 

a! = II (a;)! 

and, if ( c )n ( the Pochammer symbol or factorial function) is defined for c E 'R by 

(c)0 = 1 and (c)n = (c + n - l)(c)n - 1, n = l, 2, .. . , 

we use 
d 

(c)a = II (c)a., C En. 
i = l 

(1.5.9) 

(1.5.10) 

(1.5.11) 

(1.5.12) 

Finally we introduce a notation for partial derivatives: The partial derivative of suitably smooth 

/: 'Rd -+ 'R of order a at the point x is the expression 

a lal f(x) 
(1.5.13) 

We shall abbreviate this to either 
8° f(x) 

8x 0 
(1.5.14) 

or 

D 0 f(x), (1.5.15) 

where D is the vector of partial derivative operators 

D = (a:i' a!/ .. ·' a:d) T (1.5.16) 

We say that f has all partial derivatives of order at most m at the point y if 

8°/(x) I 
8x 0 

(1.5.17) 
x = y 

exists for all a E ( z+ )d : !al :::; m. 

We also need, at vari?us points in the dissertation, multivariable infinite sums of the form 

I: 7/JCz). (1.5.18) 

Unless specifically stated to the contrary we shall always check that the sum converges absolutely 

so that it has a well-defined value . The same remarks hold for multivariable infinite integrals of 

the form 

j J(y) dy. 
nd 

(1.5.19) 

Unless specifically stated to the contrary we shall always check that the function f is absolutely 

integrable and so the integral converges absolutely to a well-defined value. 
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CHAPTER 2 UNIFORM CONVERGENCE RESULTS 

Section 2.1 : Local Uniform Convergence 

In this section we shall establish a result showing local uniform convergence of sums of linear 

translates of radial basis functions to continuous functions over bounded open domains. Initially 

we explain the concept of local uniform convergence. We suppose that we are given a bounded 

open domain D c Rd and a function J defined on the closure of D, which we denote by cl(D) , and 

a sequence of functions {Jn : n = O, 1, ... } which are approximations to J. 

We say that {Jn} converges or converges pointwise to Jover D if, given€> 0 and x ED, 

there exists n 0 such that, for all n ~ n0 , 

IJ(x)- Jn(x)I < €. (2.1.1) 

A stronger form of convergence is uniform convergence. In this case the same n 0 must be valid 

for all x E D. Specifically, we say that {Jn} converges uniformly to Jover D if, given € > O, 

there exists n 0 such that, for all n ~ n0 , 

sup{IJ(x) - Jn(x )I x ED} < €. (2.1.2) 

In some cases this condition is too restrictive as we may have good convergence away from the 

boundary of D, but convergence near the boundary may not l,qof..st. To allow for this case we say 

that {Jn} converges locally uniformly to Jover D if, given any bounded open domain D with 

cl(D) CD and€> O, there exists n0 such that, for all n ~ n0 , 

sup{IJ(x)-Jn(x)I: x ED}< £. (2.1.3) 

It is local uniform convergence that is the appropriate notion for the result that we wish to prove. 

We shall also be using a sequence of points within our domain D and we shall require that the 

sequence of points leaves no holes in the domain. Making this notion precise, we suppose that for 

a given bounded open domain D* and sequence of points {zk E D* : k = 1, 2, ... } we define TM, 

for M = 1, 2, ... , by 

T"' = sup{inf{ ll z - zk ll : k = 1,2, ... ,M} : z ED*}. (2.1.4) 

The sequence {zk E D* : k = 1, 2, ... } becomes dense in D* if TM ---* 0 as M ---* oo. We shall 

require our sequence of points to become dense in 15. 
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Throughout this section it is assumed that there exist l, {µi E R 

{xi E Rd : j = 1, 2, ... , l} such that the function 

I 

7/J(x) = L µi<P( ll x - xi ii) , 
j=l 

satisfies 

j 17/J( x) I dx < oo 
nd 

and 

j 7/J( X) dx :j; 0. 
'R, d 

J 1,2, ... ,l} and 

(2.1.5) 

(2.1.6) 

(2.1.7) 

The existence of such functions in special cases will be considered in Sections 2.2 and 2.3, and in 

Chapter 4. 

Let 15 be a bounded open domain in Rd and let f be a continuous function 

J: cl(l5) _,, R. (2.1.8) 

We suppose that we are given any open bounded domain D with cl(D) C 15 and any sequence of 

points {zk E 15 k = 1,2, ... } which becomes dense in 15 (2.1.4). We seek an approximation to f 

of the form 
N 

g(x) = L Ak<P( ll x - zk II) (2.1.9) 
k=l 

which approximates f uniformly over D to prescribed accuracy. 

We find such a function g in three stages; first from the function 7j; defined in (2.1.5), given certain 

assumptions about </>, a function I is constructed which is an approximation to a delta-function, 

in the sense that f convolved with I is close to f. Next a set of points is found such that a linear 

sum of the values of the integrand at these points is close to the convolution integral. Finally, it 

is shown from these results that, for any sequence of points which becomes dense in 15, there is a 

function of the form (2.1.9) which approximates f uniformly over D to any prescribed accuracy. 

For the purpose of the proof it will be necessary to consider a third bounded open domain D', 

between D and 15, so that 

cl(D) C D' and cl(D') C 15. (2.1.10) 

It may be noted that if f were only defined on cl( D) then, by the Tietze extension theorem, 

J may be extended to a continuous function on cl(l5) without increasing its maximum absolute 

value. So there is no loss of generality in assuming that f is defined on cl( 15 ). 
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Lemma 2-1. Suppose there exist 1, {µj En : j = l, 2, ... , l} and { Xj E 'Rd : j = l, 2, ... , l} such 

tbat 'ljJ(x) as defined in (2.1.5) satisfies (2.1.6) and (2.1.7), bounded open domains D, D', D with 

cl(D) C D', cl(D') CD, a continuous function f: cl(D)-+ n and E > 0. Further, suppose tliat 

<P is bomogeneous, so that there exist constants t, A sucl1 tliat </>( r) = Art, for all 

Tl1en tbere exists a function 

l 

,(x) = L Vj </>( ll x - x; II ), 
j=l 

such that, for all x E D, 

lf(x) - l , 1 (x - y)J(y)dy l < L 

Furtlier, we may choose ll x1 II so small tliat y E D'=> y + x1 E D, 

Proof. We assume that {µi : j = l, 2, ... , l} are scaled such that 

j 'ljJ(x)dx = l 
nd 

and let 

j = 1,2, ... ,l. 

The function f is continuous on cl(D), so it is bounded there, and we let 

M2 = sup{ IJ(z) I : z E cl(D)}. 

r E n +. ., 

(2.1.11) 

(2.1.12) 

(2.1.13) 

(2 .1.14) 

(2.1.15) 

Further, f is uniformly continuous on cl(D) so, given E > O, there exists 81 > 0 such that, for all 

x, y E D with !I x - YII < 81, 
€ 

IJ(x)- J(y) I < 2M1' (2.1.16) 

where M 1 is defined in (2.1.14). Let 

· _ 82 = inf {llx - YII : x E cl(D), y E nd\D'} (2.1.17) 

and 

03 = inf{ II Y - zll : y E cl(D'), z E nd\D}. (2.1.18) 

We note that 82 is strictly positive because cl(D) is compact, nn \D' is closed and the two sets 

are disjoint. Similarly 83 is strictly positive. The absolute integrability of 'ljJ(x) implies that given 

E > 0 there exists R En+ such that 

(2.1.19) 

17 



Uniform Convergence Results 

where 

S(y, R) = {x End : llx - vii ::; R}, (2.1.20) 

and M2 is defined in (2.1.15). We pick 8 > 0 such that 

(2.1.21) 

where R satisfies (2.1.19), and 

j = 1, 2, ... , l. (2.1.22) 

Now we define 

1 I 

,(x) = fJd L µi</>( ll 8- 1x - xi ii ) 
j=l 

1 I 

= fJd+t L µi</>(l lx - 8xi II ), (2.1.23) 
j = l 

the second line using the condition on </> in the statement of the lemma. This will be the function 1 
described in (2.1.11) and hence the values of its parameters are vi = EJ-d - t µi, j = 1, 2, ... , l and 

x; = 8xi, j = 1, 2, ... , l. Defining also 

S'(y) = S(y,min(81, 82 )), (2.1.24) 

yields that 

j l,(x) ldx = }d j l'l/J(8- 1x)ldx < _f_' 
1<,d \ S'(O) u 'R,d \ S' (D) 6M2 

(2.1.25) 

by (2.1.19) and (2.1.21). Further, (2.1.13) and (2.1.14) show that 

j ,(x)dx = 1 
'R, d 

(2.1.26) 

and 

(2.1.27) 

So, for x ED, 

E = lf(x) - l, f(y),(x - y) dy ' 

= IJ'Rd f(x ),(x - y) dy - l, f(y),(x - y) dyl 

::; If (f(x) - f(y)),(x - y) dyl + j f(x ),(x - y) dy . 
D' R,d\D' 

(2.1.28) 

Since lf(x)I::; M 2 by (2.1.15) and S'(x) CD' by (2.1.17) and (2 .1.24), it follows that 
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E 'S: If (f(x) - J(y)),(x - y) dy l + M2 j l,(x - y) I dy 
D ' 'R,d\S'(x) 

< j (J(x) - J(y)),(x - y)dy + j (J(x) - J(y)),(x - y)dy 
S'(x) . D'\S'(x) 

+ M2 j l,(Y)I dy 
'R,d \ S ' (O) 

< 
2

Mf j l,(x - y) I dy + j (J(x) - J(y)),(x - y) dy + -
6
€, 

i S'(x) D'\S'( x) 
(2.1.29) 

where the last line depends on (2.1.16), (2.1.24) and (2.1.25). Further, using (2.1.15), (2.1.25) and 

(2.1.27) we find 

E < _E_ j 1,(x - y) I dy + 2M2 j l,(x - Y) I dy + .:. 
2M1 'R,d D' \ S'(x) 6 
f 2f f 

< 2 + 6 + 6 = f. (2.1.30) 

The proof is completed by noting that, from (2.1.18) and (2.1.22), y E D' =} y + 8xi E 15, j = 
1,2, ... , l. • 

Before proceeding we define a concept which will be needed in the remainder of the proof. 

The family of functions {Gx : D' - 'R, x ED} is uniformly equicontinuous on D' if, given 

rJ > O, there exists 8 > 0 such that, for all Yi , Y2 E D', x E D with II Yi - Y2 II < 8, 

(2.1.31) 

We consider </>( llx - y - zll) as a function of y from jy to 'R where x E D and z E na are such that 

y E D' =} y + z E 15, and will demonstrate that it is uniformly equicontinuous. 

We let R be a positive constant such that 15 C S(O, R). Hence O 'S, llx - y - zl l 'S, 2R and </> is 

uniformly continuous on (0, 2R). Therefore, given 'T/ > O, there exists 8 > 0 such that, a, b E [O, 2R) 

and la - bi< 8 imply l</>(a)- </>(b) I < TJ. Therefore if Yi, y2 ED' with IIYi - Y2II < 8 we have 

I llx - Yi - zll - llx - Y2 - zll I < 8 (2.1.32) 

which implies 

l<t>(llx - Yi - zll) - </>( ll x - Y2 - zli)I < TJ. (2.1.33) 

Hence, both </>(!Ix - vii) and ,(x - y), as defined in (2.1.23), are uniformly equicontinuous on D' 

and so is the product y 1--+ ,(x - y)J(y) . Indeed, the above analysis shows that all three are also 

uniformly equicontinuous on 15. 
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Lemma 2-2. Given open bounded regions D', J5 witl1 cl(D') C 15, a continuous 

function f : cJ(i5)-+ n, a function 

I 

,(x) = L Vj <l>( ll x - x; II ), (2.1.34) 
j =l 

where y E D' =} y + x1 E J5, j = l, 2, ... , l, and f. > O, then tliere exist M, {p, : i = 1, 2, ... , M} 

and {y; E D' : i = 1, 2, ... , M} such that 

M I 

j, ,(x - y)f(y) dy - L Pi L Vj</>( ll x - Yi - x; II) < f. 

D i=l j=l 

(2.1.35) 

Proof The function y 1-+ ,(x - y)f(y) is uniformly equicontinuous on D' so, for any rJ > 0, we can 

choose 8 > 0 such that Y1, Y2 E D', II Y1 - Y2 II < 8 imply 

(2.1.36) 

Then pick any sequence of points {y; : i = 1, 2, ... , .i\1} C D' for which TM < 8, where TM is 

defined as in (2.1.4), and let 

A(yi) = {y ED' : IIY - Yi ll::; II Y-Yk ll , k = 1,2, ... ,M}. (2.1.37) 

Therefore (by (2.1.36)) y E A(y;) implies 

l,( x - y)f(y) - ,(x - y;)f(y;) I < rJ. (2.1.38) 

Hence 

M 

j ,(x - y)f(y)dy - L IA(y;)/,(x - y;)f(y;) 
D' i =l 

M 

::; L J ,(x - y)f(y)dy - IA(y;)l,(x - Y;)f(y;) 
i=l A(y,) 

M 

::;rJ L IA(y;)I = rJ ID'I , (2.1.39) 
i =l 

where !A(y;)! and ID'! are the Euclidean volumes of A(y;) and D' respectively. The proof is 

completed by letting p; = IA(y;)lf(y;), rJ = E/ID' I, and noting the form of ,(x). • 

The coefficients {p;vj} and the points {y; + x1} of expression (2.1.35) become{!;} and {y;} 

respectively in the following lemma and M = ZM. 
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Lemma 2-3. Given bounded open regions D,D, {(i: i = 1,2, ... ,M}, {Yi E jj i 

1,2, .. . ,.lYI}, a sequence of points {zk E jj : k = 1,2, ... } becoming dense in D, and E > 0 

then there exist N and { >.k : k = 1, 2, ... , N} sucl1 tliat, for all x E D, 

M N 

L (;</>( llx - vdl) - L >.k<f>( ll x - Zk II ) < E. (2.1.40) 

i = l k = l 

Proof Recalling that <f>( ll x - vii ) is uniformly equicontinuous on D, we choose o > 0 such that 

x1 , X2 E jj and ll x1 - x2 II < o imply 

X E D. (2.1.41) 

Now choose N such that for the sequence {zk : k = 1,2, ... } we have TN < o, where TN is defined 

as in (2.1.4). Also for i = 1, 2, . .. , M let zI E { zk : k = 1, 2, ... , N} satisfy 

ll zI - Yi ll :S ll zk - Yi ll , k = 1,2, ... ,N. (2.1.42) 

Then ll z; - Yi II < 8, i = 1, 2, ... , M, and thus, 

M M 

L (;</>( ll x - Yi ll ) - L (i</>( ll x - z:11 ) 
i = l i =l 

M 

:SL l(;J l<t>( llx - Yi II ) - </>( llx - z; ll)i < E, (2.1.43) 

i = 1 

the inequality in the last line being a consequence of (2.1.41). • 

In view of the three lemmas, the following key theorem has been proved: 

Theorem 2-4. Suppose that </> is lwmogeneous and we are given a function 'ljJ( x) as defined in 

(2.1.5) and satisfying (2.1.6) and (2.1.7), bounded open regions D, D with cl(D) C D, a continuous 

function f: cl(D)--+ 'R, a sequence of points {zk : k = 1,2, ... } wliich becomes dense in D, and 

E > 0 then tl1ere exist N and{>.!: : k = 1, 2, ... , N} such tliat, for a.11 x ED, 

N 

f(x) - L >.k</>( ll x - zk ll ) < E. • (2.1.44) 

k = l 

Before considering the construction of functions 'ljJ(x) defined by (2.1.5) and satisfying (2 .1.6) 

and (2.1.7), it is worth looking more closely at an implication of the existence of 'ljJ(x). From such 

a function we form a radially symmetric function 'ef;( r) by 

- 1 j 
'ljJ(r) = J&S( ·)I 'ljJ(x)dx, 

0, 1 8S(O,r) 

(2.1.45) 
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where, corresponding to (2.1.20), 

8S(O,r) = {xERd: ll xl l= r}, r En+ , (2.1.46) 

and l8S(O, r) I is the Euclidean volume of 8S(O, r). Hence with r = IIYII 

j l~(r) I dy ~ j l1P(Y)I dy < oo 
R,d R,d 

(2.1.47) 

and 

j ~(r)dy = J 1P(y)dy=j,O. 
R,d R,d 

(2.1.48) 

From (2.1.5), 

- I 1 J 
1P(r) = E µj l8S(O,r)I 8S(D,r) <P( llx - xi ll) dx 

I 

= L µia(r,ri), r En+, (2.1.49) 
j=l 

where ri = ll xi II and where 

a(r,s) = loS(~ ·) I j 4>(11x - Yll)dx, 
, 7 8S(O,r) 

r,s E n + , (2.1.50) 

y being any vector with IIYII = s. Further, since it can be deduced by symmetry from (2.1.50) that 

a(r,s) = a(s,r), we have 
I 

~(r) = L µia(ri, r), r En+. (2.1.51) 
j=l 

We now show that the existence of a function (2.1.51) satisfying conditions (2.1.4 7) and (2.1.48) 

implies a uniform convergence result that is equivalent to Theorem 2-4. The homogeneity assump

tion in Lemma 2-1, that .there exists some constant t such that </>(er)= ctef>(r) for all c,r En+ 

becomes a(cr,cs) = cta(r;.s) for all c,r,s En+, and, guided by equation (2.1.23), we let 'Y(·) be 

the function 

I 

= L Vja(r1,llxll), (2 .1.52) 
j =l 

where the value of b comes from the method of proof of Lemma 2-1. Indeed, these changes imply 

that the analogues of Lemma 2-1 and its proof are true, the last line of the statement of the lemma 
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being that y E D' =} y + x1 E J5 for all x1 such that ll x1 II = r1 and any j E {1,2, ... , l}. T hen 

Lemma 2-2 and its proof are also valid for the new function,(·), after replacing ef>( llx - y; - x1 II ) 
by a(r1, llx - Yi ll ). 

In view of equations (2 .1.45) and (2.1.47) , the existence of a suitable function if; is a weaker 

assumption than that of '1j; satisfying the conditions of Theorem 2-4. However, Theorem 2-4 can 

be deduced from the existence of;/;, by applying the new form of Lemmas 2-1 and 2-2, and the old 

Lemma 2-3, after proving the following lemma. 

Lemma 2-5. Given a bounded open region D , any y E na, r1 E n+, and € > O, tliere exist 

{(; : i = 1,2, ... ,M} and {w; : llwdl = r1, i = 1,2, ... , M} sucli tl1at, for all x E D, 

M 

a(r; , llx - YII) - L (;ef>( llx - Y - w; II ) < E. (2.1.53) 
i = l 

Proof. From (2.1.50), 

a(r; , llx - yll ) = 185/ ·' )I f 4>( 11 x - y - wll )dw. 
0, 1 j &S(0,1·'.) 

) 

(2.1.54) 

It is easy to see that ef>( llx - y - wll), now viewed as a function of w , is uniformly equicontinuous on 

8S(O, r1 ). Now the argument proceeds exactly as in Lemma 2-2 to approximate the integral (here 

over 8S(O, r; )) by a finite sum of the required form. • 

The proof of the theorem corresponding to Theorem 2-4 can now be completed by using Lemma 

2-3 exactly as it stands, so we have: 

Theorem 2-6 . Suppose tliat 4> is homogeneous and we are given ;/;(r) as defined in (2.1.51) and 

satisfying (2 .1.47) and (2.1.48) , bounded open regions D , i5 witl1 cl(D) C 15, a continuous function 

f: d(.D) --t R , a sequence of points {zk : k = 1, 2, ... } wliicli becomes dense in D, and€> O, tl1en 

tliere exist N and {Ak : k = 1, 2, . .. , N } sucl1 that, for all x E D , 

N 

f(x) - L Ak<P( llx - zk II) < E. • · (2.1.55) 
k = l 
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Section 2.2 : Construction in Even Dimensions 

In this and the subsequent section the following notation is used: 

The factorial function is defined, for a E 'R, n E z+, by 

(a)o = 1, (a)n = (a + n - l)(a)n-1 for n 2: 1. (2.2.1) 

Thus we have (a)1 = a, (l)n = n! and (2)n = (n + 1)!. 

The hypergeometric function F( a, b; c; z) is defined for I zl < 1 and c f= 0, - 1, - 2, ... by 

~ (a)k(b)k k 
F(a, b; c; z) = ~ (c)kk! z . 

k = O 

This definition is also valid when lzl = 1 if c - a - b > 0 and c f= O, -1, -2, .... 

Two theorems that will be needed on hypergeometric functions are: 

f(c)f(c - a - b) 
F( a, b; c; l) = r( c - a )r( c - b) 

for c - a - b > 0 and c f= O, -1, - 2, ... (Abramowitz and Stegun 1970, 15.1.20), and 

(1 + z)-a F ( !a, !a+!; a - b + 1; (1 !zz)Z) = F(a, b; a - b + 1; z) 

for a - b + 1 f= 0, - 1, - 2, ... and lzl < 1 (Abramowitz and Stegun 1970, 15.3.26). 

and 

Here the special case </>( r) = r is considered, so that in this and the subsequent section 

I 

'lj;(x) = L µi ll x - xi ii , x E 'Rd, 
j=l 

I 

1,&( ll xll ) = 1,&(s) = L µia(rj,s), 
j=l 

where, for x any vector with llx ll = s, 

a(rj,s) =1as/ ·) I f llx - yl ldy, 
0, TJ 8S(0,,·1 ) 

s E n +. 

(2.2.2) 

(2.2.3) 

(2.2.4) 

(2.2.5) 

(2.2.6) 

(2.2.7) 

The problem of finding a fonction 'lj;(x) as defined in (2.2.5) and satisfying (2.1.6) and (2.1.7) is 

tackled. First the question of absolute integrability (2.1.6) is discussed. The function llx - Xj II is 
infinitely differentiable except at x = Xj, where it is only continuous. A series expansion for 'lj;( x) 

may be found for large llxll by considering the identity 

(2.2 .8) 
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the last line using 
oo ( 1) k 

( - )! = ~ - 2 kO'. 
1 a ~ k! , iai < 1. (2.2.9) 

k =O 

We see from (2.2.5) and (2.2.8) that the condition for the O(llx ll ) term to be zero in this expansion 

of 1( x) is 

(2.2.10) 

Further, the condition for the 0(1) term to be zero is 

I 

- ll x ll- 1 E µi(x.xi) = O, (2.2.11) 
j = l 

which must hold for all sufficiently large ll xll and hence for all x. Further, it can be deduced from 

the form of (2.2.8) that the O( llxll-r) term has the form 

(2.2.12) 

where 

Qr+ l (x, y) = E Aa,f3Xayf3, (2.2.13) 

{a,f3 E(Z + )d: la i=l f3 1= r +l} 

Here each Aa ,f3 E 'Rand we are using the multi-index notation defined at the end of the introduction. 

Therefore we view (2.2.12) as a polynomial in the components of x. From (2.2.13) each coefficient 

of this polynomial is of the form 
I 

E µjFr +1(xj), (2.2.14) 
j = l 

where Fr+l is a homogeneous polynomial of degree r+ 1. Thus, the O( ll xll- r) term in the expansion 

of 'ljJ(x) for large argument vanishes if (2.2.14) is zero for every homogeneous polynomial Pr +l of 

degree r + 1. 

Now conditions for absolute integrability can be given. The function 'Ip has a series expansion 

for large argument and hence it is necessary and sufficient that 

'ljJ(x) = O( llxll- d- l) as ll x ll -+ oo. (2.2.15) 

By the remark after (2.2.14) it is sufficient that 

I 

E µjPd+1(Xj) = 0 (2.2.16) 
j = l 
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for every polynomial Pd+ 1 of degree at most d + 1. We also make the observation, which will prove 

useful in later analysis , that if '1/J(x) = O( llxJJ- r) as JJ xJJ --+ oo then, because '1/J(x) has a series 

expansion for large Jl xll , for any a E (Z+)d : Jal = t, 
aa'lj;(x) -- = O( JJxll-r- t) as JJ xJJ --+ oo. 

f)xcr 
(2.2.17) 

(The multi-index notation for partial derivatives is explained at the end of the introduction.) 

Equation (2 .2.16) imposes only a finite number of conditions on the form of 'lj; and so there are 

certainly many such functions which are absolutely integrable; yet the following remarkable result 

will be proved. 

Theorem 2-7. Suppose that dis even and;/; as defined in (2.2.6) is absolutely integrable, then 

j ;/;( Jlxll ) dx = 0. 
R, d 

Thus, remembering the construction used in (2.1.45), we deduce: 

Corollary 2-8. Suppose that dis even and 'lj; as defined in (2.2.5) is absolutely integrable, then 

j 'l/J(x)dx = 0. 
R,d 

Proof To prove Theorem 2-7 we first discover the form of a(r , s) . Converting (2.2.7) to spherical 

polar coordinates we find 

where 

Now, for r f; s, 

where 

l j,r j,r f 2,r 2 2 l. d - 1 • d - 2 
a(r,s) = JoS'(O,r) I 

O 
... 

0 0 
(s + r - 2rscosB)2r sm B 

sind- 3 4>d _3 ... sinq>1 d4>o d4>1 ... d4>d-3 dB 

= J(d j,,. (s 2 + r 2 - 2rscosB)t sind- 2 BdB, 
0 

r,s E n +, 

l. 

, , ( 2rscosB) 2 

(s2 + r 2 - 21·scosB)2 = (r2 + s2)2 1 - ---
r2 + s2 

2rs 
a-----

- (r2 + s2)' 
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Using 
" ( r(';)r( d; i) r cosm - 1() sind- 2() d() = ~ r( ~) if m is odd; 

la l O 2 if m is even, 

( e.g. Whittaker and Watson 1927, 12.42), we see that 

( ) = T.( ( 2 + 2)t ~ (- thka2k r(k + !)r(¥) 
ar,s 1!dr s LJ (k)' d) · 2 ~ . r(k + -

2 k = O 

Since (2.2.19) and (2.2.22) imply 

we have 

a(r,s) = (r2 + 8 2)t f (- t hk~t )k 0 2k. 
k = o ( 2k) ! ( 2 )k 

Noting that (- !)2k = (- t)1:(th22
k and (2k)! = (i)kk!22k it follows that 

( ) ( 
2 + 2)1. ~ (- t)k(th 2k a r, s = r s 2 LJ d a . 

k = O (2)kk! 

Now when r > s we may use (2.2.2) and (2.2.21) to obtain 

a(r,s) = r ( l + s:)t F(- t,t;f; 4~ 2 ). 

. r (l + ;~) 
This is in a suitable form to apply (2.2.4) which yields 

Similarly, for r < s, the result is 

( 
r2) a(r,s)=sF -t , 1;d;f;s2 . 

(2.2.22) 

(2.2.23) 

(2.2.24) 

(2.2.25) 

(2.2.26) 

(2.2.27) 

(2.2.28a) 

(2.2.28b) 

Further, by the continuity_of a(r ,s) , both these results may be extended to include the case r = s. 

Having established the form of a( r, s ), and hence (by (2.2.6)) of ;j;( s ) , it is necessary to calculate 

the integral of ;j;( s ). We consider 

I = j a(r, llx ll )dx 
S(O,M) 

(2.2.29) 

where M ~ r. Denoting ll x ll by s and using the radial symmetry of a(r, llx ll ) and (2.2.28), it 

follows that 

(2.2.30) 
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where 

Ld = l8S(O, 1)1 . 

Denoting the first integral by I 0 and the second by I1 we deduce from (2.2.2) t hat 

L = L r sd-1 ~ - 2 ,., -2- k ::_ ds j
,. 00 c 1) cl-d) 2k 

0 d ~ (d) k' 2k 
0 k = O 2 k • r 

and, as this series converges uniformly over the range of integration, 

Now expressions (2.2.2) and (2 .2.3) may be used to yield 

l _ Ldrd+l f(f + l)f(d+l) 
a - -d- r(d!3)r(d + t) 

1 d+1 r(f)r(d+1) . 
- -L r 
- 2 d re d!3 )f( d + t). 

Similarly, the integrand of the term 

(2.2.31) 

(2.2.32) 

(2 .2.33) 

(2.2.34) 

(2.2.35) 

has an expansion that converges uniformly over the range of integration, so, remembering that d 

1s even, 

. oo ( 1) cl -d ) M 

I _ L · ~ -2 1.: ~ 1.: 21.: j - 2k + d d 
1- d~ d r s s 

k=O (2),.,k! r 

00 (-i ),., (1~ d),., ~. ( M - 21.:+d+1 _ r -2 k+d+1) 
- L ~ - - r-"' 
- d ~ c1.).k' - 2c -l-d +·k) 

k=O 2 k • 2 

(2.2.36) 

L oo ( 1) c- 1- d) = _ d_ L -2 k -2- k r2k(M-21.:+d+1 _ r-2k+d+1 ). 

1 + d (1-),.,k! 
k=O 2 

(2.2.37) 

The value of this expression if M- 21.:+d+l is replaced by zero is 

(2.2.38) 
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Now, it follows from (2.2.2) and (2.2.3), that 

j __ _ Ld_r _d+_1 f( 1 )f( d + 1) 
1 

- 1 + d r( dt
1 )r( d + t) 

1 d+l f(1)f(d + l) 
= - 2Ldr f(d!3)f(d + !). (2.2.39) 

Equations (2.2.34), (2.2.37) and (2.2.39) imply that 

L oo ( 1) (-1 - d) 
I = L + I = _d_ '°' - 2 k - 2- k r2k M- 2k+d+1 . 

0 1 1 + d ~ (1 )kk! 
(2.2.40) 

Now, for the function ,;J;( il xll ) of (2.2 .6) to be absolutely integrable , it is required, by comparison 

with (2.2.15), that 

,;J;( il xll ) = O( llxll-d- l) as ll xll -+ oo. (2 .2.41) 

Hence, from (2.2.28b ), this implies that 

k = 0, 1, ... , f (2.2.42) 
j = l 

Thus, there is no contribution from the first (f + 1) terms of the sum (2.2.40) to the integral 

I 

j ,;J;( il xll ) dx = 1: µi j a(ri, llxll ) dx. 
S(O,M) j = l S(O ,M) 

(2.2.43) 

It follows that 

j ,;J;(llxll ) dx = O(M-1 ), 
S(O,M) 

(2.2.44) 

and hence 

j ,;J;( il xll ) dx = 0, 
R_d 

(2 .2.45) 

which completes the proof of Theorem 2-7. • 
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Section 2.3 : Construction in Odd Dimensions 

In this section the case </>( r) = r is again considered though now the dimension d is odd, and the 

problem of finding a function 7/J( x) : 'Rd -+ 'R as defined in (2.2.5) and satisfying (2.1.6) and (2.1. 7) 

is addressed. First, because of the similarity with Section 2.2 and because it will lead to the solution 

of the above problem, we prove: 

Theorem 2-9. Suppose tliat d is odd, d 2:: 3, tlien tliere exist functions ,;i;( ll xll ) as defined in 

(2.2.6) wliicl1 are absolutely integrable and satisfy 

J ,;i;(ll x ll )dx-:/= 0. 
'R. d 

Proof. As in Section 2.2 the first step is to evaluate c,(r,s) of (2.2.7). The analysis of Section 2.2 

is still applicable because it is not dependent on d being even. Hence we obtain (2.2.28) that, for 

r > s, 

(2.3.la) 

and, for r < s, 

(2.3.lb) 

Again, by the continuity of c,( r, s ), both these results may be extended to include the case r = s. 

In this case we find that (12dh = 0 fork > d2
1

, because d2
1 is an integer. Hence, expressions 

(2.3.la) and (2.3.lb) each only contain d!l terms. In particular (2.3.la) is a polynomial of degree 

d - l in s. We recall that the corresponding equations (2.2.28) in Section 2.2 contain an infinite 

number of terms. 

We continue to proceed as in Section 2.2 and calculate the integral of ,;i;( s ). We consider 

l = j c,(r, ll xll ) dx, 
S(O,M) 

(2.3.2) 

where M ~ r. Denoting ll xll bys, using the radial symmetry of c,(r, ll xll ) and (2.3.1), it follows 

that (2.2 .30) still holds , which gives the value 

l - L r r sd-lp(_l. l - d.4_S2) ds+L JM sdF( 1 1-d.d r2) d 
- d Jo 2' 2 '2'r2 d r - 2,-2-,2;32 s, (2.3 .3) 

where 

Ld = l8S(O, 1)1. (2.3.4) 

We again denote the first integral by 10 and the second by 11 • The calculation of 10 is exactly the 

same as in Section 2.2 and we obtain (2.2.34), which is the expression 

l d+l f(%)f(d+l) I, - -L r --=~----
a - 2 d I'( di3 )I'( d + t) . (2.3.5) 
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To evaluate J1 in a manner similar to Section 2.2 care must be taken to avoid dividing by zero in 

the equation corresponding to (2.2.36). However, this is no problem, if, recalling that we only have 

a finite sum, we change the top limit on the sum from oo to d;1. The argument then proceeds as 

in Section 2.2 to yield the equation corresponding to (2.2.37): 

(2.3.6) 

Thus the value of this expression when M - 2k+d+l is replaced by zero is 

d - 1 

L d+l -2 ( 1) ( - d- 1) - dr I: -- k -- k I _ _ 2 2 
l - d + l (E.)kk! . 

k = O 2 

(2.3.7) 

Noting that ( - d2-
1 )k = O for k > dt1, we find 

L d+1 00 (- l) ( - d- 1) L d+1 - dr ~ 2 k 2 k dr 11 = - 1 + d L..t (1:.) .k! + 1 + d 
k = O 2 k 

( 1) ( - d-1 ) - - !!.±.!. -- !!.±.!. 
2 2 2 2 

c 1 )!!.±.!. ( d! l )! 
2 

Ldrd+ l f(1)f(d + 1) * d+ l 
- + Lr 
- - 1 + d r( d! 1 )r( d + t) d ' 

(2.3.8) 

where the last line depends on (2 .2.3), and where, after some simplification, 

(2.3.9) 

The presence of the L~rd+l term in (2.3.8) is the main departure from the analysis of Section 2.2. 

Recalling (2.3.4), we find 
d -1 - rr-,-

Ld = J8S(O, l) J = (- l )!!.±.!., 
2 2 

(2.3.10) 

where the final equality may_ be deduced by converting the integral to spherical polar coordinates 

and repeatedly using (2.2.22). Hence, 

( )
!!..=-!. 

- 7r 2 

L~ = , 
(1 + d)(f )!!.±..!. 

2 

(2.3.11) 

a non-zero constant only depending on d. It follows from (2 .3.5) , (2.3.6) and (2.3.8) that 

d- 1 

L -, ( 1) c-d-1) I= I, + I = L*rd+1 + __ d_ ~ - 2 k -2- k r2k M-2k+d+1 
o 1 d l+ dL..t (1:.) .k ' ' 

k=O 2 k • 

(2.3.12) 
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the other two terms, as in Section 2.2, exactly cancelling because r ( a1 3
) = ( at 1 ) r ( at 1 ). We 

recall that for absolute integrability we need (2.2.41). From (2.2.6) and (2.3.lb), this is the condition 

I 

I:µjrr =o, k = o,·1, ... ,a; 1
• 

j=l 

(2.3.13) 

It then follows from the finiteness of the sum (2.3.lb) that :;J';(s) is identically zero for s ~ max{ Tj 

j = 1,2, ... ,l}. So, when :;J';( Jl xll ) is absolutely integrable, (2.3.12) implies 

(2.3.14) 

Now the Vandermonde matrix 

( 1 1 
r~~a \ r2 r2 l r: 2 

r~ J 
r4 

ri' 
2 

ra+1 ra+1 
2 d+ a 

-2-

(2.3.15) 

is always non-singular for distinct { ri : j = 1, 2, ... , d!3 }. Hence, if l = d!3 and if the coefficients 

{µi : j = 1, 2, ... , a1 3
} satisfy (2.3.13) and are not all zero, then expression (2.3.14) is non-zero, 

as required. This completes the proof of Theorem 2-9. • 

It is interesting to ask whether, in this minimal case (in t he sense of having the fewest possible 

number of rings) the function ;J'; 

following (2.3.13) that 

is always of one sign. To answer we recall from the remark 

:;J';(s) = 0 for s ~ max{ri : j = 1,2, ... ,.d!3}. (2.3.16) 
' 

Further, it can be deduced from (2.2.6) and (2.2.18) that, :;J';( Jlx ll ) is d - 1 times continuously 

differentiable on na. Consider :;J';( Jl xJJ ) on a bi-infinite line through the origin and denote this 

function by P : n --+ n. So P is ad - 1 times continuously differentiable even function with d-th 

derivative discontinuities only at the d + 3 points {±ri : j = 1, 2, ... , di3 }. In the R 3 case (when 

d = 3) (2.3.1) implies that the function sP(s) is a piecewise cubic polynomial and hence a cubic 

spline, zero outside the range [- max{rj},max{ri}]. Now the number of zeros may be estimated 

by the formula (Powell 1981, Theorem 19.1) , 

no. of zeros '.S no. of intervals - degree of spline - 1, 

which shows that sP( s) has at most one zero in the range. Since there is a zero of the odd function 

sP( s) at the origin, P( s) takes values of only one sign and hence so does ;J';( s ). 
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On extending the method to 'R.5 , P(s) may be defined as before , except that this time sP(s) 

is a piecewise rational function and s3 P( s) has degree 7, so it is not a quintic spline. However, 

using (2.3.1) for the form of P(s) = sP(s), it is seen that , if O < r 1 < r 2 < r 3 < r4 , we have fourth 

derivatives of the form 

if lsl ::; r1 ; 
if r1 ::; lsl ::; r2; 
if r2 ::; lsl ::; ra; 
if ra ::; Is I ::; r 4 , 

(2.3.17) 

where {Aj : j = 1,2,3, 4} and {Bj : j = 2,3 , 4} are constants and the positive signs are taken for 

s positive and negative signs for s negative. Now, as P(s) = 0 for lsl 2:: r4 , it follows that j>(4)(s) 

has no zeros in the two intervals r3 ::; lsl < r4 , and, by the expression above , at most one in each 

of the other five intervals. From this estimate and the finite support of P it can be deduced (by 

repeatedly using the mean value theorem) that P( s) has at most one zero in the range ( - r4 , r4 ). 

However, there is a zero at the origin, and hence ;/;( s) takes values of only one sign. 

Unfortunately this argument does not generalise to higher dimensional spaces, but the result 

may still hold. 

We now return to the question of finding a function '1/J ( x) as defined in (2.2.5) , and satisfying 

(2.1.6) and (2.1.7) . So far we have only considered the radially symmetric case and, although we 

have shown that the conditions of Theorem 2-6 can hold and so we do obtain a local uniform 

convergence result, the question of the existence of a suitable '1/J( x) is still open. First we consider 

the conditions on '1/J( x) which will ensure absolute integrability. Recalling the discussion in Section 

2.2 , in particular (2.2.16), it was found to be sufficient that 

I 

L µjPd+1(xj) = 0 (2.3.18) 
j = l 

where Pd+i is any polynomial of degree at most d + l. However, this implies 

I 

L µj 11 xj 112k = o, k -01 H.l - ' , • •• , 2 ' (2.3.19) 
j=l 

and t hen equations (2.2.5), (2.2.7) , (2.3.2) and (2.3.12) yield t hat , for M sufficiently large, 

I I 

j '1/J (x ) dx = L µj j . llx - Xj II dx = L µj j a( llxj II, lixll) dx = 0. 
S (O ,M) j=l S (O, M) j=l S(O ,M ) 

(2.3.20) 

T his observation gives t he following theorem: 
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Theorem 2-10. Suppose {µi : j = 1, 2, ... , l} and { xi E 'Rd j 1,2, ... ,l} are chosen to 

satisfy condition (2.3.19). Tlien, for 'lj;(x) defined in (2.2.5), we have 

jnd 'lj;(x)dx = 0. • 

Although Theorem 2-9 assumes spherical symmetry, Theorems 2-9 and 2-10 suggest that the 

conditions (2.2.16) are not necessary for the absolute integrability of the function (2.2.5). Indeed 

in the spherically symmetric case, the only conditions for absolute integrability are (2.3.13), many 

of the conditions analogous to (2.2.16) being redundant because of the symmetry. We consider the 

derivation of these conditions from a series expansion for -0( 11 xll ) derived from (2.2.6), (2.2.7) and 

(2.2 .8) which gives 

- µj 2X.Xj Xj I ( II 11 2 )-t 
'lj;( ll x ll ) = E l8S(O, ri )1 ls(o,r;) ll xll 1 - ~ + W2 dxi. (2.3.21) 

For large ll xll this may be expanded into an asymptotic series i" 

by term. From (2.2.12), the term in O( llxll- d) is 

ll xll and integrated term 

(2.3.22) 

and P;+ 1 must be identically zero due to condition (2.2.15). However, substituting the definition 

(2.2.13) into (2.3.22), noting that I.B I = d + 1 in this case, and defining 

1 j /3 K 13 = y dy, 
l8S(O, 1)1 &S(O,l) 

(2.3.23) 

we find 

P * (x) { ~ µ -r1+1 ) . ~ A T.( xa d+ 1 = \ ~ J J ) ~ a ,/3 .II f3 , 

\j = l {a,/3E(Z+)d: la l=J /3 J= d+ l} 

(2.3.24) 

and the term in brackets is non-zero in Theorem 2-9 and (2.3.14). Therefore, because P;+ 1 is 

identically zero, we must have 

(2.3.25) 
{/3E(Z+)d: J/3 l=d+l} 

for all a E (z+ )d : lal = d + 1. Viewing Aa,/3 as a square matrix, and noting that K 13 is positive for 

some values of ,8 (l.81 = d + 1 allows every non-zero component of ,8 to be even), equation (2.3.25) 

states that Aa,/3 is a singular matrix a.nd K 13 is an element of the null space. 
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This information will be used to find parameters that annihilate the O( ll x ll- d) term in the 

expansion of 'lj;( x ). Indeed, (2.2.12) and (2.2.13) show that the condition for this term to be zero is 

that, for all a E (Z+)d : lal = d + l, 

L Aa,,8 = 0. (2.3.26) 
{,BE(Z+)d: I.Bl=d+l} 

Therefore it is sufficient to satisfy 
I 

L µjXj = CJ(,8, (2 .3.27) 
j=l 

for some constant C and all /3 E (z+)d : 1/3 1 = d + l, which is possible for large l because different 

multiples of powers of components of x are linearly independent functions from 'Rd to 'R. Further, 

if we also satisfy the condition 
I 

L µjPd(xj) = 0 (2.3.28) 
j=l 

for every polynomial Pd of degree at most d, then 'ljJ(x) = O( ll xll-d-l) for large ll x ll , which gives 

the required absolute integrability. In this case (2.1.48) and (2.3.14) imply 

(2.3.29) 

We regard ll xi lld+ 1 as a polynomial in the components of Xj, in order to apply equation (2.3.27), 

where 1(,8 has the value (2.3.23). Thus we obtain 

(2.3.30) 

which is non-zero for C # 0. In particula,r we have JRd 'l/J(x) dx = l if, from (2.3.11), 

1 (1 + d) ( 1 ) .<!il c - - - 2 

- L* - ( )!!.=..!. . 
d - 11" 2 

(2.3.31) 

In this case, from (2.3.10), (2.3.23) and (2.3.27), our other conditions are that for /3 E (Z+)d : 

1/31 = d + l , 

L
I " (l + d)(f)!!.±1.( - !)!!.±1. j . 

µ . x'-: = 2 , y.B dy 
J J d-1 ( d-1) j=l (- 1r),- - (1r)_2_ &S(0,1) 

(-1)211(1 + d)(-1 )d+i j = d-1 2 y.Bdy. 
7r &S(0,1) 

(2.3.32) 

This analysis proves the following result: 
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Theorem 2-11. WJien dis odd, there exist functions 7/J(x) of the form (2.2.5) wl1ich satisfy (2.1.6) 

and (2.1.7). • 

The question arises whether these functions can ever be of compact support. The answer is 

negative, for, consider 7/J( x) on any line not passing through any point x i. We denote this function 

from n to n by g and note that it has the form 

I 

g(x) = L µi(c] + (x - ri)2)!, x En, (2.3.33) 
j = l 

where ci > O, J = 1, 2, ... , l. g can be extended to a complex analytic function g on {z E C 

1Im(z) I < min{ci : j = 1,2, ... ,l}} with 

I 

g(z) = L µi(c] + (z - ri )2)!. (2.3.34) 
j = l 

Indeed in this range Re(cJ + (z - ri) 2
) > O, so we can define (re; 8 )! = rffeie / 2 for - 1r / 2 < 0 < 1r/ 2. 

If 7/; had compact support, then certainly g(z) = 0 for Im(z) = 0 and Re(z) sufficiently 

large and hence, by the principle of isolated zeros for analytic functions, g(z) = 0 for all z with 

Im(z) = 0. Hence 7/J(x) = 0 for all x (/: {xi : j = 1,2, ... ,l}. So, by continuity, JRd 7/J(x)dx = O, a 

contradiction . 

The final problem we address in this section is that of constructing an absolutely integrable 

function 7/J( x) in three dimensions satisfying Ins 7/J( x) dx = 1. We let Xj = ( ai; bi, Cj f, J = 
1, 2, ... , l, and then it is sufficient, from (2.3.28), that 

I 

L µi Pa ( ai , bi , Cj ) = 0 (2.3.35) 
j = l 

for any polynomial Pa of degree at most 3, and, from (2.3.23) and (2.3.27), we may take all the 

fourth order moments to be zero except for 

I I I 

L µjaJ = L µjbJ = L µjcJ = -3/ 1r, 
j = l j=l j = l 

I I I 

L µia]b] = L µia]c] = L µib]c] = -l/1r. (2.3.36) 
j=l j = l j=l 

These conditions are derived from (2.3.32) and the fact that y = (y1 , y2 , Ya f satisfies 

J Yi dy = 41r / 5, 
8S(0,1) 

J yf y~ dy = 47r /15, 
8S(0 ,1) 

(2.3.37) 

36 

'I 



Uniform Convergence Results 

and, by symmetry, all other fourth degree moments, not calculable by permuting suffices, are zero. 

Thus there is a function 'l/J( x) with l = 15: 

- 8/ 1i (0, O, O); 

- 1/ Ti (0, O, ± 1), (0, ± 1, 0), (± 1, 0, O); 

4/ Ti (!,!, - !), (- !, - !, - !), (- !,!,!), (!, - !,!); 

-1/ 21i 

Also a function with l = 21: 

- 17 / 41i 

1/ Ti 

- 1/ 81i 

-1/ 81i 

Also a function with l = 35: 

- 49/ 81i 

71 / 487'i 

-25/ 967i 

1/ 487'i 

- 1/ 61i 

1/3847'i 

(1,1, - 1), (- 1,-1, - 1), (- 1,1,1), (1, - 1,1). 

(0, 0, O); 

(0,0, ± 1), (0, ± 1,0), (± 1,0,0); 

(0, 0, ± 2), (0, ± 2, 0), (± 2, O, O); 

(± 1, ± 1, ± 1). 

(0,0,0); 

(0, 0, ± 1), (0, ± 1, 0), (± 1, O, O); 

(0,0,±2), (0, ± 2,0), (± 2,0,0); 

. (0, 0, ± 3), (0, ± 3, 0), (± 3, O, O); 

(± 1, ± 1, ± 1); 

(±2, ± 2, ±2). 

(2.3.38) 

(2.3.39) 

(2.3.40) 

It may easily be checked that these functions satisfy all the required conditions. We also note 

that (2.3.39) satisfies 
I 

I: µjA(xj) = o, (2.3.41) 

j=l 

for any homogeneous polynomial A of degree t, for t = 5. The coefficients · (2.3.40) satisfy the 

equations for t = 5, 6, 7, properties which will prove useful in subsequent chapters. 
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CHAPTER 3: POLYNOMIAL REPRODUCTION PART I 

Section 3.1 : Polynomial Preservation 

One of the main conclusions of this dissertation is the accuracy of radial basis function approxi

mations to suitably smooth functions. Anticipating, for now, the results of Chapter 5 where we 

show that the rate of convergence depends on the maximum degree of polynomial that can be 

reproduced, we set out to find this maximum possible degree. We must first define what we mean 

by polynomial preservation and reproduction. 

We shall be working on the infinite regular grid formed by all the points in d-dimensional space 

all of whose components are integers, which we shall denote by zd. 
We let IIm be the space of polynomials from Rd to 'R of total degree at most m: 

( 

IIm = ~ L A13x13 , (3.1.1) 
l {/3 E(Z +)d: l/3 1~m} 

where each A 13 E 'Rand we are using the multi-index notation defined at the end of the introduction. 

We define the degree of such a polynomial to be the maximum value of l,61 that satisfies A13 =f 0. 

In the case where P E IIm and the function 'i/J is chosen so that the sum is absolutely convergent, 

we define 

s(x) = L P(z)'i/J(x - z), (3.1.2) 
zezd 

In this case we say that 'i/J preserves polynomials of degree m if P E IIm * s E IIm, the degree 

of s being at most the degree of P, and we say that 'i/J reproduces polynomials of degree m if 

P E IIm * s = P. 

We shall concentrate, as in most of Chapter 2, on the case if>( r) = r and so we shall take 

I 

'i/J(x) = L J.ti ll x - xi ii , (3.1.3) 
j = l 

We impose the condition 

xj E zd, J = 1, 2, ... , z, (3.1.4) 

which is fundamental to our analysis of polynomial preservation and reproduction. This is not a 

great restriction for we see that examples (2.3.39) and (2.3.40) both satisfy this condition and we 

can easily arrange that (2.3.38) does so t.oo by multiplying each point Xj by 2 and dividing each 

value µi by 16. We shall prove some polynomial reproduction properties in this chapter by direct 

methods (i.e. they do not employ Fourier transforms or generalised functions). It will be seen 
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that some of the techniques can easily be extended to radial basis functions other than </>( r) = r. 
We shall not concentrate on attempting to give the most general formulation of these results as 

Chapter 4 presents a more general and powerful technique that does depend on Fourier transforms 

and generalised functions. 

First we return to the question of finding a function 'I/; (3.1.3) which decays sufficiently fast so 

that the sum (3.1.2) is absolutely convergent. A sufficient condition is that 

1/;(x) = O( llxlJ- d- l-m) as ll xll _, oo. (3.1.5) 

We shall also add the condition 

j 1/;(x) dx = 1, 
'R. d 

(3.1.6) 

which will prove essential in order to reproduce a constant. Our analysis of Sections 2.2 and 2.3 

shows that we must take d odd. We recall from (2.2.14), (2.3.28) and (2.3.32) that conditions 

(3.1.5) and (3.1.6) are satisfied if 

I 

I: µjPtCxj) = o, t = O, 1, ... , d, d + 2, d + 3, ... , d + 1 + m, (3.1.7) 
j = l 

A being any homogeneous polynomial of degree t, and if, for all f3 E ( z+ )d 1/31 = d + 1, we have 

~ ,f3 _ (- 1).!!.¥(1 + d)(-tt., j (3d 
L....J tt; xi - 7rd -1 y y. 
j = l 8S(0, 1) 

(3.1.8) 

In this section it is proved that any 'I/; of the form (3.1.3), which satisfies conditions (3.1.4), (3.1.7) 

and (3.1.8), preserves polynorn..ials of degree m, so long as m :S d. In Section 3.2 we go further and 

prove that such a 'I/; reproduces polynomials of degree m, so long as m :S d. Polynomial preservation 

is a consequence of the following two lemmas: 

Lemma 3-1. Let d be odd, PE IIm and 'I/; (3.1.3) satisfy conditions (3.1.4), (3.1.7) and (3.1.8). In 

this case the sum (3.1.2) for s is absolutely convergent and further tl1ere is a polynomial of degree 

at most the degree of P whicl1 interpolates {s(z) : z E za}. 

Proof. We have already remarked that a function 'I/; satisfying (3.1.7) and (3.1.8) also satisfies 

(3.1.5). Therefore the right hand side of (3.1.2) is absolutely convergent as also are all sums 

I: ya'l/;(y) , (3.1.9) 
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For x E zd, we make the change of variables y = x - z in (3.1.2). Thus we obtain 

s(x) = L P(x - y)'lj;(y) 
y E Zd 

=" L ~ o°'P(x)( - y)"'lj;(y) 
w a! 8x 0 

yEZd {aE(Z+)d: Ja J~m } 

L .!:, 8~P~x) L (- y)°''lj;(y), 
a. X 

(3.1.10) 

{aE(Z + )d: Ja J~m} y E Zd 

the middle line expanding P E IIm about x and the change of order of summation in the last line 

being justified because all sums are absolutely convergent. This final expression is just a polynomial 

in x of degree at most that of P, which completes the proof. • 

Lemma 3-2. Let d be odd, P E IIm with m ~ d, a.nd 'lj; (3. 1.3) satisfy conditions (3.1.4), (3.1.7) 

and (3.1.8). In this case the function de fi ned by (3.1.2), namely { s(x) : x E Rd }, is a polynomial 1 

of degree at most tliat of P. 

Proof. Suppose we are given f > 0. Take any x E J?_d and a E (z+ )d iai = d + m + 1. Recalling 

the definition of 'lj; (3.1.3), we let 

q = max{ ll xi 11 00 : j = 1, 2, ... , l}. 

Now,for 

R 2: max(l / f, 2( ll x ll + q)), 

we define 

t).R = {y E nd : II Yll oo ~ R}, 

sR(Y) = I: P(z)'lj;(y - z), 
z E Zd n t,.R 

and 

s1J(Y) = I: P(z)'lj;(y - z) , 
z EZd \ t,.R 

(3.1.11) 

(3.1.12) 

(3 .1.13) 

(3.1.14) 

(3.1.15) 

We shall show that both a"';:"'(x) and a"';:ix) can be made arbitrarily small, for suitable choice of 

R. It will follow that a;;~x) is zero, for all such a, and hence sis a polynomial. The bound on the 

degree of sis obtained from Lemma 3-1. 

Because /ly- z/1 is infinitely differentiable as a function of y away from y = z, sR(Y) is infinitely 

differentiable for II Yll 00 ~ R-q and in particular at y = x by (3.1.12). Moreover, because 'lj; satisfies 

(3.1.5) (see the proof of Lemma 3-1), it follows from (2.2.17) and our choice of a that 

IIYll oo > q. (3.1.16) 

40 

11 

Iii 



Polynomial Reproduction Part I 

Combining these two observations we find 

1
8°'sR(x) I :S L IP(z) l 18°'1/;(x - z) I 

8x°' 8x°' 
zEnd \ AR . 

< L A'll zllm Ali x - z ll- 2d- 2m - 2 

z E nd \ AR 

'.SA' A 22d+2m+2 L ll z ll- 2d- m- 2, 

z End \ AR 

(3.1.17) 

where the last line uses ll x - z ll 2:: ll z ll - ll x ll 2:: l ll z ll which follows from (3.1.12). Hence we can 

find .R such that, for all R 2:: R, 
(3.1.18) 

We add this condition as a further requirement on R and so we choose 

R = max(l / €,2( ll x ll + q),R). (3.1.19) 

Using (3.1.3) and (3.1.4) we may rearrange the finite sum (3.1.14) for sR(Y) to the form 

sR(Y) = L µ(z') II Y - z' II , (3.1.20) 

where 

µ(z' ) = (3.1.21) 

{x;: ll z'-x; ll =:5R, jE [l, I)} 

Remembering (3.1.11), this expression yields that 

µ(z') = 0 for llz' lloo > R + q, (3.1.22) 

for the sum is empty, and 

l 

µ(z') = L µiP(z' - Xj) for llz'Jloo :SR - q, (3.1.23) 

i = l 

because all possible terms are included. Hence, from (3.1.7) and P E IIm with m :S d, we find that 

µ(z') = 0 for llz'lloo :SR - q. (3.1.24) 

This is the point where we have used both the restrictions (3.1.4) and m :S d. Equations (3.1.19) 

and (3.1.21) also show that there exists a constant A1 independent of z' and R such that 

R - q < 11 z' 11 oo :S R + q · 
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Hence, because equations (3.1.19) and (3.1.24) imply that SR is infinitely differentiable at x, we 

have 

< 

· C ') 0° ll x - z' II 
µ z !'.) 

ux 0 

{z'EZd: R - q< ll z' ll oo SR+q} 

{z 'E Zd : R - q< ll z 'll oo SR+ q} 

(3.1.26) 

for some constant A2 independent of z' and R, because lal = d + m + 1. So, noting that (3.1.19) 

implies ll x - z' II ~ ll z' II - llxll ~ R- q - llxll ~ !R, it follows that 

'

8°sR(x) ' < A A 2d+m """' R- d 
a 0: - i 2 6 

X {z' EZd : R - q< ll z 'll 00 SR + q} 

< A R- 1 
- 3 ' 

(3.1.27) 

(3.1.28) 

for some constant A3 independent of R, because the number of points in the sum in (3.1.27) is 

bounded by a constant multiple of Rd- l. 

Recalling that both sR and SR are infinitely differentiable at x we find that so is s. Hence 

we may combine (3.1.18), R ~ 1/ E which follows from (3.1.19), and (3.1.28) to yield 

'

8° s( x) I 
EJxo: < (1 + A3)E. (3.1.29) 

However, because £ is arbitrary, the above expression is exactly zero. This is true for all x E nd and 

all a E ( z+ )d : Jai = d + m + 1, and hence s E IId+m. Combining this observation with Lemma 

3-1 shows that in fact sis a polynomial of degree at most that of P and in particulars E IIm which 

completes the proof of the lemma. • 

Lemma 3-2 shows that such a function 'I/; preserves polynomials of degree m , so long as m ~ d. 

We apply the result to the functions 'I/; for d = 3 given at the end of Chapter 2. If we rescale 

the function (2.3.38) as suggested in the remark after (3.1.4) then it satisfies (3.1.4), (3.l.7) (with 

m = 0) and (3.1.8) and hence it preserves constant functions. Similarly the function (2 .3.39), 

satisfying (3 .1.4) , (3.1.7) (with m = 1) and (3.1.8) preserves all linear functions, while (2.3.40) 

preserves all cubics, the maximum degree allowed by Lemma 3-2. 
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Section 3.2 : Polynomial Reproduction 

In this section we shall progress from the polynomial preservation result of Section 3.1 to deduce a 

polynomial reproduction result. We work under the same conditions as in Section 3.1, so we have 

a function 'I/; (3.1.3) satisfying (3.1.4), (3.1.7) and (3 .1.8) and we define s(x) as in (3 .1.2). We wish 

to prove that P E IIm ::::} s = P. We deduce from Lemma 3-2 that the expression (3.1.10) for s(x) 

is valid for all x E Rd. Hence if, for a E (z+ l : lal :S m, we define 

(3.2 .1) 

it is sufficient for s = P that Co = 1 and Ca = 0 for a E (Z+)d : 0 < lal :Sm. This condition is 

also necessary if the result is to be true for all P E IIm. We estimate the values Ca for a E (z+)d 

lal :S m by a sequence of results: 

Lemma 3-3. Let 'I/; (3.1.3) satisfy (3.1.4), (3.1.7) and (3.1.8). Then Ca, as defined in (3.2.1), has 

the value 

Ca = j (- w)"'l/;(w) dw. 
'R,d 

(3.2.2) 

Proof. Let w E Rd and x E zd. From (3.1.2), we find 

s(x + w) = L P(z)'l/;(x + w - z) 

= L P(x - y)'l/;(y + w) 

_.!._ aa P( X + w) L (-( ))a"''( ) 
I a y + w 'f'y + w, 

a. xa 
(3.2.3) 

{a E(Z+)d: la l~m} y E Zd 

the middle line using the change of variables y = x - z, and the final one the expansion of PE IIm 

about x + w. Comparing this equation with (3.1.10) and recalling from Lemma 3-2 that s is a 

polynomial throughout Rd, we see that 

Ca = L (- (y+w))" 'l/;(y+ w), (3.2 .4) 

y E Zd 

for any w E Rd. Hence, we find that 

Ca = j Ca dw 
{wERd : llw ll =~t} 

= j d . 
1 

L (- (y+w))"'l/;(y + w)dw 
{wE'R - llwl l°" ~ 2 } yEZd 

= L j (-(y + w))"'l/;(y+ w)dw, 
y E Z d {w E'Rd: ll w ll = ~ t} 

(3.2.5) 
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the change in order of summation and integration being permitted because of the fast decay of 'Ip 
(3.1.5) which has been deduced already from (3.1.7) and (3.1.8). Now performing the change of 

variables w' = y + w, we obtain 

Ca = L j (- w't1P(w' ) dw' 
yEZd {w' E'R.d: ll w'- Yll oo:'.S k} 

= j (- w't 1P( w') dw', 
nd 

(3.2.6) 

as required. • 

To evaluate Ca it is sufficient to work with the integral expression given by Lemma 3-3. To 

do this we establish some further lemmas: 

Lemrna 3-4. Let d be odd, let P be any lwmogeneous poly110mial of degree t from 'Rd to 'R and 

let w be any 9ive11 point of 'Rd. In tliis case tl1e expression 

I = I(M) = j llw - wll P(w) dw, 
{w end: ll wll SM} 

(3.2.7) 

for M > ll wll , is a polynomial in M of degree at most d + t + 1. 

Proof. By rotating axes, which only transforms P into another homogeneous polynomial of the 

same degree, we can assume, without loss of generality, that w is on the first coordinate axis, i.e. 
- - . 

w = ('IJ, 0, ... , of, where 17 = ll 1v ll - We also assume, by the linearity of the integral, that P has the form 

(3.2.8) 

By symmetry we have I = 0 if any of the integers {t; : i = 2, 3, ... , d} are odd. Therefore we may 

restrict ourselves to the case when these integers are all even, and then t - t1 = t 2 + ··· + ta is even 

too. 

We can change from Cartesian to spherical polar coordinates through the usual transformation 

wa_ 1 = r sin B1 ···sin Ba_ 2 cos Ba _1 

(3 .2.9) 

In this frame 

(3.2.10) 
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where r = llwll , We also note that on substituting (3.2.8) into (3 .2.7) the integrations over 

()d _1 ,Bd_2 , ... ,B2 can be evaluated and only multiply the value of J by some constant, A say. 

Hence 

(3 .2.11) 

This yields the required result in the case TJ = 0. Otherwise we make use of the elementary identity 

remembering that (t + d - t1 - 3) is even. Here we make the substitution 

r cos B1 = [( r2 + TJ2
) - ( r2 + TJ 2 

- 2r17 cos B1 )]/217, 

for T/ # 0, which gives a relation of the form 

t + d - 3 

r t+ d- 3 (cosB1l 1 (sinBd+d- ti- 3 = L qk(r)(r2 + TJ2 - 2r17cosB1 / , 

k = O 

where each qk ( r) is a polynomial in r . It follows that 

(3.2.12) 

(3.2.13) 

(3.2.14) 

(3 .2.15) 

T hus I is a polynomial ii{ ·M, for M > llwll , We also note from (3.2.7), that for some constants A 

and A 1 , 

II I ~ j llw - wll A ll wW dw 
{wER.d: ll wllSM} 

~ A j (2M)Mt dw 
{wER.d: ll w ll S M } 

~ A 1M d+t+ 1. (3.2.16) 

Hence I is a polynomial in M of degree at most d + t + 1, for M > ll wll, as required. • 
l . • 

We remark that (1 - 2xz + z2
) - 2 is the generating function for the Legendre polynomials and that 

it is also possible to prove the result using this fact. 
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Lemma 3-5. Let d be odd, let P be any lwmogeneous polynomial of degree t from Rd to R and 

Jet w bea•y 3i11e." point of Rd. In tl1is case expression (3.2.7), for M > llwll, has the form 

d+t+l 
I = I(M,w) = j ll w - wll P(w)dw = L A(w)Md+t+1- k, 

{w E"Rd: ll w /l ~M} k = O 

(3.2.17) 

where each A is a lwmogeneous polynomial of degree k. 

Proof. Making the change of variables y = cw, for some positive constant c, we find 

j llw - wll P(w) dw = j llc- 1 y - wll P(c- 1 y)c- d dy 
{w E"Rd: /l w /l ~M} { y E "Rd: II Y/l ~cM} 

= c- d- t- 1 j IIY - cwll P(y) dy. (3.2.18) 
{y E Rd : /I Y/l ~cM} 

This shows that I( M, w) = C d- t- 1 I( cM, cw), for all c > O, and hence, in view of Lemma 3-4, 

d+t+l 
I(M,w) = I: fk(w)Md+t+l - k, (3.2.19) 

k = O 

where each fk, k = 0, l, ... , d + t + l is a homogeneous function of degree k. To show that fk 

is in fact a homogeneous polynomial of degree k we shall need two observations: Firstly we may 

rewrite I(M, w) as 

I(M, w) = j II YII P(y + w) dy. 
{yERd: II Y+ ti:i /l ~M} 

(3.2.20) 

This shows that, for llwll < M, I is the integral of a smooth function of w over a region which 

is smoothly varying with respect to w. Hence, for II wll < M, I as a function of w has all partial 

derivatives of all orders . Secondly we see that any first order partial derivative of a suitably smooth 

homogeneous function of positive integer degree k is a homogeneous function of degree k - l for, 

differentiating fk (cw) = ck fk ( w ), we obtain 

l = l, 2, ... , d. (3.2.21) 

Hence a partial derivative of order at least k + l applied to a suitably smooth homogeneous function 

of degree k gives either a function with a singularity at the origin or the zero function. 

Hence applying any partial derivative of order d + t + 2 to (3.2.19) we foid that the left hand 

side has no singularity at the origin in view of the first observation and so the right hand side must 

be identically zero in view of the second observation. Because this is true for all partial derivatives 

of this order then each fk must be a homogeneous polynomial of degree k , as required. • 
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Theorem 3-6. Let Ca be defined as in (3.2.1). In this case 

{ 
1 if a = O; 

Ca= 0 if a E (z+)d : 0 <!al::; m . (3.2.22) 

Proof Let a E (Z+)d : !al ::; m. We note that (- wt is a homogeneous polynomial of degree !al 
and so Lemma 3-3, (3 .1.3) and Lemma 3-5 yield that 

Ca = j (- wf 'lj;(w) dw 
R,d 

= lim (J (- wf'lj;(w)dw) 
M -+oo {w E'Rd: ll w l/ :SM} 

(3.2.23) = lim 
M-+oo 

where each A is a homogeneous polynomial of degree k, depending on a. The limit must exist 

because Ca (3.2.1), for a E (Z+)d : !al ::; m, has a convergent sum, by virtue of the fast decay of 

'lj; (3.1.5). Hence only the M 0 term of expression (3.2.23) can be non-zero, so we have 

I 

Ca = I:: µjPd+ la l+1(xj), 
j=l 

(3.2.24) 

for some homogeneous polynomial Pd+l a l+l of degree d + lcx l + 1, depending on a. Now (3.1.7), 

along with !al ::; m, yield that Ca = 0 for a -:/= 0. When a = O, Lemma 3-3 shows that 

Co = j 'lj;(w) dw, 
'Rd 

(3.2.25) 

which we have already chosen to be 1 (3.1.6). Therefore the theorem is true. • 

We recall from our remarks at the beginning of the section that Theorem 3-6 is sufficient to 

enable us to deduce polynomial reproduction from the polynomial preservation results of Section 

3.1. Therefore, combining the results of the two sections we have proved: 

Theorem 3-7. Let 'lj; (3.1.3) satisfy (3.1.4) , (3 .1.7) and (3.1.8). In tllis case 'lj; reproduces all 

polynomials of degree m, so Jong as m ::; d. • 

It follows that the conclusions we drew about polynomial preservation for the functions defined 

at the end of Chapter 2 also hold for polynomial reproduction. In particular we deduce that the 

function (2.3.40) reproduces all cubic polynomials, the maximum degree allowed by Theorem 3-7. 
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The question arises whether it may ever be possible to reproduce all polynomials of degree 
d + l for 'IP of the form (3.1.3). We now relax the condition that the points { Xj : j = 1, 2, . .. , l} 
are to be lattice points , which strengthens our conclusion because the answer to the question is 
negative. We can find functions 'lp of the form (3 .1.3) which give a convergent sum in the right 
hand side of expression (3 .1.2) for all polynomials P E Ild+i ; a sufficient condition is (3 .l i>) with 
m = d + l which will hold for any such 'lp satisfying (3.1.7) with m = d + l and (3.1.8). 

We let 7/J be any function of the form (3 .1.3) which reproduces all polynomials of degree d. We 
shall find a polynomial of degree d + l which is not reproduced by this function. 

Equation (2.2.12) shows that 'IP(x) has a series expansion for large llxll - Hence, as polynomials 
of degree d are reproduced, 7/J must certainly decay to zero at least as fast as ll xll-d- 1

• Hence , 
because 'IP reproduces constants, we have 

1 = j d . 
1 

1 dy = j a . 
1 

L 'IP(Y - z) dy 
{y E R - II Yll oo'S2} {yER - II Yll oo'S2} z E Zd 

= L j d . 1 'IP(Y - z) dy 
z EZd {yER -11 Yll oo'S 2} 

= L j d . I 1 'IP(Y') dy' 
z EZd {yER -II Y + zll oo<:, 2} 

= j 7/J(y') dy'' 
R,d 

(3.2.26) 

the change in order of summation and integration being justified by the speed of decay of 7/J. Thus, 
as the speed of decay also yields that 7/J is absolutely integrable, equation (2.3.29) shows that there 
exists (3 E (z+ )d : lf31 = d + l for which 

I 

L µjX j -f: 0. (3.2.27) 
j=l 

The answer to our question is negative because we shall find that the function 

T (x) = L zf37/J(x - z), (3.2.28) 

is not differentiable at some p oint in 

C = { y E 'Rd : 0 :S y; < l , i = 1, 2, . . . , d} . (3.2.29) 

Therefore 7/J fails to reproduce the polynomial xf3 E Ild+l · 

Our argument depends on the conditions that arise b ecause 'IP reproduces all polynomials of 
degree at most d. We let P E Ild, we define s and q as in (3.1.2) and (3.1.11 ) and we choose 
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R = q + 1. We also define b.R, SR and SR as in (3.1.13)-(3.1.15) respectively. By assumption, 

s = P and so is differentiable throughout C (3.2.29). Further, by our choice of R, sR is also 

differentiable throughout C and so SR must also be differentiable there. 

For each Xj, j = 1, 2, ... , l we let Zj be the point on the integer lattice so that Xj - Zj E C. 

We define 

I 
Zj = Xj - Zj, j = l,2, ... ,l. (3.2.30) 

In the case where { Xj : j = 1, 2, ... , l} lie on the integer lattice we would have each z1 = O, but 

this is no longer necessarily the case. Using (3.1.3) we may rearrange the finite sum (3.1.14) for 

sR(x) to the form 

µ(y) ll x - YII , (3.2.31) 

where, in particular, 

µ(z~) = (3.2.32) 

However, sR is differentiable throughout C and so each µ(zD must be zero, which, on multiplying 

(3.3.32) by (z~)'' for any a E (Z+)d and summing over all such distinct points, gives 

I 

L µiP(z1 - Xj)(z1)" = 0, 
j = l 

for all P E Ild and a E ( z+ t. This is equivalent to the condition that 

I 

L µjP(-xj)(z1)" = O, 
j = l 

for all PE Ild and a E (Z+)d. 

(3.2.33) 

(3.2.34) 

Now we return to the polynomial x/3. From the function T (3.2.28) we define (similar to 

(3.1.14) and (3.1.15)) 

TR(x) = E z!31f;(x - z), X E Rd, (3.2.35) 
z EZd n AR 

and 

TR(x) = E z!31f;(x - z), X E Rd. (3.2.36) 
z EZd\AR 

We may rearrange TR in the same way as (3.2.31) and obtain 

A(Y)llx - YII , (3.2 .37) 
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where, similar to (3.2.32), 

(3.2.38) 

Adding together the equations for all distinct points z~ gives 

I I 

L µi ( z; - x i )f3 = L µi 
j=l j=l 

I: i aa xf3 ' ( z'. t. 
a! Bx 0 3 

{aE(Z+)d: a~(3} x= - x; 

(3.2.39) 

Now, recalling that 8
8
"/: E lid for all a > O, we may use (3.2.34) to deduce that the sum of 

coefficients has the value 
I 

I: µj(-xj t. (3.2.40) 
j=l 

This is non-zero, by (3.2.27), and hence there must be at least one non-zero ,\(z~) (3.2.38). We 

recall that z~ E C (3.2.30) and so the function TR is not differentiable throughout C. 

However, by the choice of R, the function T R is differentiable there and so we have the desired 

conclusion that T is not differentiable throughout C, which we have already remarked is suffficient 

to give a negative answer to our question. 
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Section 4 .1 : Introduction to Generalised Functions 

In a few places in this chapter we shall be using the techniques of generalised functions, as they 

provide very easy solutions to some questions which we shall encounter. To make the dissertation 

as self contained as possible we provide a brief introduction to generalised functions and a summary 

of the main results that we shall be using later in the chapter. 

We shall be following the approach of Jones (1982) who provides a very readable account of 

the subject , yet is not afraid to go into details when the results require it. This book contains all 

but one of the results we shall be using, the remaining one coming from Gel'fand and Shilov (1964), 

and is a useful source of information on generalised functions. 

Generalised functions enable a rigorous meaning to be given to a class of functions containing 

members which cannot be treated by the standard analytical techniques. Perhaps the most well 

known of these is the Dirac delta function. They also enable the conventional Fourier transform to 

be extended to this wider class of functions. It is the extension of the Fourier transform which we 

will find particularly useful. 

We begin by a series of definitions which will lead to one for generalised functions: 

A function 1 : Rd ---+ R is said to be good if it possesses all partial derivatives of all orders 

everywhere in Rd and 
8"1 (x) 

ll xllk a ---+ 0 as ll xll---+ oo, 
x" 

(4.1.1) 

for all k E z+ and all a E (z+)d. For example the function e-ll xll
2 

is a good function, but e-ll xll 

is not because it does not possess all partial derivatives at the origin. 

A sequence bm : m = 1, 2, ... } of good functions is said to be regular if, for every good 1 , 

lim j Im (x ),(x) dx 
m -+ oo R, d 

( 4.1.2) 

exists and is finite . 

Two regular sequences which give rise to the same limit for every good I are said to be 

equivalent . An equivalence class of regular sequences is said to be a generalised function. 

If { 'Ym} is one regular sequence in the equivalence class then we say that the generalised 

function is defined by bm }. Further, if 

lim j 'Ym(x),(x)dx = j g(x )1(x)dx, 
111-+00 R,d 'R,d 

( 4.1.3) 
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for every good 1 , we say that 9 is a generalised function defined by {"Im}. 

We say that two generalised functions 91 and 92 are equal if 

(4.1.4) 

for every good 1 . 

First we note that many well known functions are also generalised functions. We let K 1 be 

the function space 

( 4.1.5) 

Jones (1982) deduces 

Theorem 4-1. If f E K1 tlien f is a generalised function. In particular all continuous functions 

of at most polynomial growth are generalised functions. 

We now present some simple results of these definitions, without proof, and introduce some 

further preliminary definitions which will enable us to state some further important theorems. 

Suppose that g1 and 92 are generalised functions and that him} and {,2m} are any members 

of the equivalence classes of regular sequences for 91 and 92 respectively. In this case the sequence 

{ "/im + "(2m} is regular and all such sequences form an equivalence class for the generalised function 

denoted by 91 + 92. 

Similarly suppose that 9 is a generalised function and that { ,m} is any member of the equiv

alence class of regular sequences for 9. In this case the sequence { "Im ( ax - y)} is regular for any 

y E Rd and a E R and all such sequences form an equivalence class for the generalised function 

denoted by 9(ax - y). We say that 9 is homogeneous of degree t if 9(ax) = at9(x) for all x E Rd 

and a ER. 

With the same hypotheses as in the preceding paragraph we find that, for every good "/, 

applying integration by parts yields 

m E z+, t E [1, d]. ( 4 .1.6) 

The function 8;£7) is still good and so the sequence { a"Ya':t)} is regular, for any integer t E [1 ,d], 

and all such sequences form an equivalence class for the generalised function 8
8
9 (x) defined by x, 

j 89(x) j 81(x) --1(x) = - 9(x)--dx, 
na 8xt na 8xt 

(4.1.7) 
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for any good 'Y· We call "!~:) a generalised partial derivative of 9. The definition can be 

justified, as it can be proved that if both f and its conventional partial derivative "i;~) are in 

1(1 then its generalised partial derivative is equal to the conventional partial derivative. As a 

consequence, it can be deduced that all partial derivatives exist for each generalised function. For 

instance in n the function x - 3 / 2 is a generalised function as, although not absolutely integrable in 

a neighbourhood of O, it is the generalised partial derivative of the function -2x- 1
/ 2 which is in 

We say that a function o- : nd --+ n is fairly good if o- possesses all partial derivatives of all 

orders everywhere in J?,d and there exists some N E z+ such that, for all a E (z+ t, 

Oa o-( X) 
11 x11-N oxa --+ 0 as llxll--+ 00. ( 4.1.8) 

In particular any good function, any polynomial and the function o-( x) = ei>..x, for any >. E n d, are 

all fairly good. It is clear too that if o- is fairly good and 'Y is good then the product O-"f is good. 

Suppose now that o- is fairly good, 9 is a generalised function and that { 'Ym} is any member 

of the equivalence class of regular sequences for 9. In this case the sequence { O-"fm} is regular and 

all such sequences form an equivalence class for the generalised function denoted by o-g. 

The Fourier transform J for an absolutely integrable function f is defined by 

](>.) = f J(x )e-i>..x dx, 
IR.d (4.1.9) 

Jones (1982) proves the following 4 major theorems which are useful for our applications. 

Theorem 4-2. J[1(x) is a good function then sois its Fourier transform t(>.), defined as in (4.1.9). 

Theorem 4-3. Suppose that g is a generalised function defined by {"Im} and that for each m E z+ 

i'm is the Fourier transform of "Im. Then, from Tl1eorem 4-2, each i'm is good and indeed { i'm} is 

a regular sequence. Furtl1er all such regular sequences give rise to tl1e same generalised function 

wi1icl1 is denoted by g. 

We call 9 the generalised Fourier transform of 9. 

Theorem 4-4. Let the generalised Fourier transforms of 9, 91 and. 92 be 9, 91 and 92 respectively. 

Tl1e11 we have the following table of generalised Fourier transforms: 

(a) 91(x)+92(x) 

(b) 9(x - y) 

( c) 9( ex) 

91(>.) + 92(>.); 

e- i>.y9(>.); 

c- df;(c-1 >.), 0 < c E 1?,; 
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(d) Xtg(x) 
. & g(>.) 
i~, t E Z, 1 ::; t ::; d; 

(e) fl().) (21r )d g( - x ); 

(f) e-i>. .y g(>.) (21r)dg(-x + y); 

(g) g(c>.) (21r )dcdg(-c ix), 0 < c ER; 

(h) 
& g(>.) -(21r )dixtg(-x ), t E Z, 1 ::; t ::; d. ~' 

We remark that these properties are all well known for the conventional Fourier transform 

applied to suitably smooth and quickly decaying functions. In that case all ( except ( e)) are simple 

consequences of ( 4.1.9) and previous parts of the theorem. In the case off absolutely integrable, 

( e) gives us the usual inversion formula for conventional Fourier transforms: 

f(x) = _1_ j J(>.)eix.>. d>., 
(21r )d R.d · 

( 4.1.10) 

Theorem 4-5. Let f be an absolutely integrable function witlI conventional Fourier transform J. 
We notice tlrnt f E K 1 (4.1.5) and so is a generalised function (Theorem 4-1). Let its generalised 

Fourier transform be F (Tl1eorem 4-3). In this case J = F, in tl1e sense of generalised functions. 

This theorem justifies the definition of the generalised Fourier transform given after Theorem 

4-3, and from now on we shall often drop the describing words "conventional" and "generalised" 

from Fourier transforms and just refer to them all as Fourier transforms. 

We deduce from these theorems two simple corollaries which we will apply later: 

Corollary 4-6 . Suppose that cp* : Rd -+ R is continuous and of at most polynomial growtlI, and 

let {µi : j = 1, 2, ... , l} and {xi E Rd : j = 1, 2, ... , l} be chosen so that 

I 

7/J(x) = I: µicp*(x - Xj), 
j=l 

is absolutely integrable. In this case 7/J lrns a continuous, conventional Fourier transform 

I 

,J;(>.) = I: µje- i>..x;J*(>.), 
j=l 

where J* is tile generalised Fourier transform of cp*. 

(4.1.11) 

( 4.1.12) 

Corollary 4-7. Suppose tlrnt ,J; as defined in (4.1.12) is absolutely integrable and that J* is the 

generalised Fourier transform of some generalised function cp*. Tlien 7/J( x) as defined in ( 4.1.11) is 

the conventional inverse transform of tlie function ,J; and so is continuous. 

We note that when we are working with a function </> which is a radial basis function we may 

replace </>* in Corollaries 4-6 and 4- 7 by the function c/;( IJ · JI) . 
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Section 4.2 : A Form of <p to Reproduce Polynomials 

In this section we study an alternative method for reproducing polynomials. We suppose that we 

are given a continuous function <p : R + --+ R and also a function 'I/; of the standard form 

l 

1/;(x) = L µi</J( ll x - xi ii ), (4.2.1) 
j =l 

First, for the sake of clarity, we review the definition of polynomial reproduction given in Chapter 

3. As usual IIm is the space of polynomials from Rd to R of total degree at most m: 

( 

IIm = ~ L At, x 13, ( 4.2.2) 
l {f E(Z + )d: lf l :<;:m} 

where At, E R and where we are using the multi-index notation defined at the end of the intro

duction. We define the degree of such a polynomial to be the maximum value of l,BI that satisfies 

If P E IIm and the function 'I/; is chosen so that the following sum is absolutely convergent, we 

define 

s(x) = L P(z)'l/;(x - z), (4.2.3) 

In this case we say that 'I/; preserves polynomials of degree m if P E IIm :::} s E IIm, the degree 

of s being at most the degree of P, and we say that 'I/; reproduces polynomials of degree m if 

P E IIm :::} s = P. 

We shall find conditions on <p which ensure that there exist l, {µj : j = 1, 2, ... , l} and 

{ x j : j = 1, 2, ... , l} so that the function 'I/; ( 4.2.1) reproduces polynomials of degree m. First we 

find conditions on the function 'I/; (4.2.1) which allow reproduction of polynomials of degree m, and 

then we translate them into conditions on <p. 

The approach that wa initially follow dates back to a classic paper by Schoenberg (1946) in 

which the author considers the quasi-interpolation formula 

s(x) = L J(z)'l/;(x - z), X ER; ( 4.2.4) 
z EZ 

where f, 1/; : R --+ R and 'I/; is continuous. He provides sufficient conditions on 'I/; for such formulae 

to preserve and reproduce polynomials of degree m . His definition of polynomial preservation is 

slightly different to that used here and the following theorem is in a form that allows for this . 

Schoen berg proves ( originally Theorem 2 on page 64): 
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Theorem 4-8. If there exist positive constants A and B such that 

17/J(x) I :s; Ae- Bx, X ER, ( 4.2.5) 

and if,(/;(>..) is tlie Fourier transform of1/J (4.1.9), then · 

(a) 7jJ in (4.2.4) preserves polynomials of degree m if,(/;(>..) has zeros of order m + 1 for all non-zero 

integral multiples of 21r, 

(b) 7jJ in ( 4.2.4) reproduces polynomials of degree m if, in addition to the conditions ( a) being 

satisfied,,(/;(>..) - 1 has a zero of order m + 1 at 0. 

A generalization of this theorem to higher dimensions is given in several papers, including Fix 

and Strang (1969), Dahmen and Micchelli (1984) and de Boor and Jia (1985). It is not sufficient 

for our purposes, however, because it depends on exponential decay in 7/J, whereas the functions we 

consider only have algebraic decay. Therefore we shall prove the theorem in multiple dimensions 

under weaker assumptions that are suitable for our work. The crucial point in the proof is the 

conditions under which the Poisson summation formula holds so we consider them first. 

Theorem 4-9 : Poisson Summation Formula. Let h : Rd -. R be an absolutely integrable 

function and let 

C = {y E Rd O :s; y; < 1, i = 1, 2, ... , d}. ( 4.2.6) 

Tl1en the sum 

I: h(y + n), y EC, (4.2.7) 

(which may not converge absolutely) converges in norm to a function gin L 1 ( C), which is the space 

of absolutely integrable functions on C. Further, the function g lias the Fourier series expansion 

g(y) = I: ii(21rz)e2"il.y, y EC. ( 4.2.8) 
IEZd 

Proof. See Stein and Weiss (1971, Chapter 7, Theorem 2.4). • 

This theorem has a highly useful corollary which may also be called the Poisson summation 

formula. 

Corollary 4-10 : Poisson Summation Formula. Leth: Rd -. R be continuous and absolutely 

integrable, let 

I: h(y+ n) , (4.2.9) 
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converge absolutely to a continuous function and let 

L lh(21rl)I < 00. ( 4.2.10) 

These conditions imply the equation 

L h(y + n) = L h(21rl)e2
"ily, (4.2.11) 

and tliat both these sums are absolutely convergent. 

Proof. By Theorem 4-9, equation ( 4.2.8) gives the Fourier series of the continuous function ( 4.2.9). 

By condition (4.2.10) the sum on the right hand side of (4.2.11) is absolutely convergent. Therefore 

the function on the left hand side is equal to its Fourier series (Stein and Weiss 1971, Chapter 

7, Corollary 1.8), which is equation ( 4.2.11 ), and the left hand side is absolutely convergent by 

assumption. • 

We can now embark on proving sufficient conditions on 'I/; to ensure polynomial preservation 

and reproduction: 

Theorem 4-11. Let 'I/;: na - n be a continuous function such that, for all a E (Z+)a ial ~ m , 

j jya'l/;(y)jdy<oo , (4.2.12) 
Rd 

and 

( 4.2.13) 

is continuous. Suppose further that 

= o, (4.2.14) 

for all /3 E (Z+)a\{O} and all a E (z+)a : ial ~ m (where the multi-index notation for partial 

derivatives is defined in tlie introduction). Then 'I/; in formula ( 4.2.3) preserves polynomials of 

degree m. If, in addition, 

0 < ia l ~ m, 
( 4.2.15) 

then formula ( 4.2.3) reproduces polynomials of degree m . 

We remark that if '1/;(x) = O(llxll-d-m-,) as llxll - oo for any E > 0 then condition ( 4.2.12) is 

satisfied and also the sum in ( 4.2.13) converges uniformly and hence is continuous. 

57 



r 

Polynomial Reproduction Part II 

Proof. We deduce from ( 4.2.12) that 

,(/;(A) = 1 '1/J(y)e - i>-..y dy, 
'R. d 

( 4.2.16) 

ism times continuously differentiable, as we may differentiate under the integral sign when both the 

integrand and its derivative are absolutely integrable. Therefore conditions ( 4.2.14) and ( 4.2.15) 

do indeed make sense. 

We take P E Ilm, x any fixed point in na and define the continuous function Px by 

Px(Y) = P(y)'l/J(x - y), ( 4.2.17) 

We shall prove the theorem by applying the Poisson summation formula (Corollary 4-10) to the 

function Px. Condition ( 4.2.13) implies that 

L Px(y + n), (4 .2.18) 

is continuous, which is condition ( 4.2.9), and condition ( 4.2.12) implies that Px is absolutely inte

grable. Next we evaluate, for any /3 E za, 

Px(21r/3) = 1 P(z)'l/J(x - z)e- 2"i/3.z dz 
7<.d 

= e-21rif3 .x j P( x - y )'1/J(y )e21ri/3 .y dy 
7<.d 

= e-21ri/3 x 1 P(x - y)'l/J(y)e - i>-. Y dy ' . 
7<.d >- =- 2,r/3 

(4.2.19) 

Writing 

- ( a a a )T 
D = 8A1' 0A2 ' .. . ' oAa ( 4.2 .20) 

and recalling that P(x - y) is a polynomial of degree at most m in y, we may use Theorem 4-4 (d) 

to express (4.2.19) as 

Therefore, using (4.2 .14), we find 

if /3 E za\ {O}; 

if /3 = 0. 

(4.2 .21) 

( 4.2 .22) 

We note that, because ,(/; is m times differentiable, this expression when /J = 0 is well defined. 

1-\~l\te ( 4.2.10) holds if we replace h by Px, and we have already found that the other conditions 
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of Corollary 4-10 are satisfied. "Thus we may apply the Poisson summation formula with y = 0 

to the function Px yielding, for all x E Rd, that expression ( 4.2.3) has the value 

s(x) = L P(n)'l/J(x - n) 

= L Px(n) 

(4.2.23) 

the last line using (4.2.22). The final line is a polynomial of degree at most the degree of P, 

completing the proof of the first part of the theorem. 

We notice too that ( 4.2.23) and ( 4.2 .15) give, for all x E Rd, 

s(x) = [ P(x - iD)~] l>. =o 

[ P(x )~] l>. =D 

= P(x), 

which yields the second part of the theorem. • 

( 4.2.24) 

Theorem 4-11 gives sufficient conditions for an interpolation formula of the type ( 4.2.3) to 

preserve and reproduce polynomials of degree m. In order to discover if these conditions are also 

necessary, we prove the following theorem: 

Theorem 4-12. Suppose tliat 'ljJ : R,d ---t n satisfies both 

j ly°''l/J(y) I dy < oo, 
nd 

( 4.2.25) 

and 

GA°' 
< oo, ( 4.2.26) 

for all a E (z+ )d : lal ~ m. Furtlier, suppose that tl1e formula ( 4.2.3) preserves polynomials of 

degree m. In this case condition ( 4.2.14) of Theorem 4-11 holds: 

= o, ( 4.2 .27) 

for all /3 E Zd\ {O} and a E (z+ )d : lal ~ m. Further, if the formula ( 4.2.3) reproduces polynomials 

of degree m tlien condition ( 4.2.15) of Theorem 4-11 also holds: 

{ 
1 if a= O; 

- 0 if a E (Z+)d\{O} , 
>.=O 

( 4.2.28) 
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for all a E (z+t : Ja J :Sm. 

Proof. As at the beginning of the proof of Theorem 4-11 we note that ( 4.2.25) implies that ,(/; has 

all partial derivatives of order at most m existing and so condition ( 4.2.26) makes sense. We let 

p E IIm, x E 'Rd and define, as in the proof of Theorem 4-11 ( 4.2.17), 

Px(Y) = P(y)'lj;(x - y), ( 4.2.29) 

We wish to prove the result by applying Corollary 4-10 to the function Px, so we must check that 

it satisfies all the conditions. 

Condition ( 4.2.25) shows that Px is absolutely integrable. The fact that 'lj; preserves polynomials 

of degree m implies that the function of y, 

L Px(Y + n), ( 4.2.30) 

is a polynomial of degree at most that of P and hence is continuous, as required. We also recall 

from ( 4.2.21) that 

f>x(2rr{3) = e- 21rif3 x [P(x - iD),J;] l>-=-
2

rrf3 

and so, by assumption ( 4.2.26), 

L Jf>x( 2rr{3) J < oo, 
(3EZd 

(4.2.31) 

( 4.2 .32) 

which is condition ( 4.2.10). Hence we may apply the Poisson summation formula (Corollary 4-10) 

to the function Px. 

We continue the proof by induction on the degree of the polynomial. We consider first the case 

of polynomial preservation and start with m = 0. In this case we take P of degree 0, say P = 1, and 

expression ( 4.2 .3) is some constant K 0 by hypothesis. Hence, using ( 4.2 .29) with P = 1, applying 

the Poisson summation formula (Corollary 4-10) to Px and using (4.2.31) with P = 1, we obtain 

Ko = L 'lj;(x - n) 

= L Px(n) 

= L Px(2rrl) 

= L e- 21ril.x,J;(-21rl) . ( 4.2 .33) 
IEZd 

60 



r 

Polynomial Reproduction Part II 

Now, if we multiply (4.2.33) by e2rrif3 .x for /3 E za and integrate over 

which is the unit cube centred at O, we find 

7];(-21r/3) = { ~(o 
if f3 = O; 
if (3 E za \{0}, 

the required result for the case m = 0. 

Suppose now that the result ( 4.2.27) is true for all a E ( z+ )d 

integer in [1,m - l ]. We let 

c))..a: 

(4.2.34) 

(4.2 .35) 

lal ::; r - 1 where r is any 

( 4.2.36) 

for all a E (z+t : lal ::; m, and we note that Ko ties in with our previous definition . Without 

loss of generality we may consider P(x) = xa:' for any a' E (Z+)d : la'I = r. Therefore, in view of 

(4.2.3), Corollary 4-10 and (4.2.31), we find that, for all x E Ra, 

s(x) = L P(n)'ljJ(x - n) 

= L Px(n) 

= L Px(21r/3) 
/3 EZd 

= L e - Zrri/3 x [P(x - iD)1];] '>.=- 2rr/3 
/3 EZd 

( 4.2.37) 

= L e - 21ri/3.x L aa P(x) · lo: I aa:7];(>..) 
---i axa: c))..a: 

/3EZd {o: E (Z + )d: o::'.So:'} >- =- 21r/3 

+ L aa P(x) I( 

axa: a:' ( 4.2.38) 
>- =- 2rr/3 

the last line depending on ( 4.2.27) ( which by hypothesis is true for all a E ( z+ l : lal ::; r - 1) and 

( 4.2 .36). Recalling that s E IIr, as ( 4.2.3) is polynomial preserving, and noting that the final sum 

is a polynomial of degree at most r , it follows that the first sum is a polynomial of degree at most 

r. However, the first sum is periodic in x with period 1 and so must be equal to some constant A, 

which is the identity 

( 4.2.39) 
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Multiplying by e 2"if3' .x and integrating with respect to x over C0 ( see ( 4.2.34) ), we obtain 

, , ·r aa ' ,(/;(>.) 0 (.I I E zd \ {O}, 
a . i {)).a ' = ' /J 

( 4.2.40) 
>.=- 2rrf3 ' 

which gives condition (4.2.27) for any ci E (Z+)d : la'I = r, as required. 

In the case where the formula ( 4.2.3) reproduces polynomials the argument is somewhat sim

pler. The case r = 0 is as above, taking K 0 = l. Now assume that the result (4.2.28) is true for 

all a E (Z+)d : lal :Sr - land then consider P(x) = xa', for any a' E (Z+)d : la' I = r. From 

( 4.2.3) and ( 4.2 .38), we obtain that, for any x E Rd, 

P(x) = I: P(n)'lj;(x - n) 

'°' aa P(x) K + ~ oxa a, 
>. =- 2rrf3 a<a' 

aa ' ~(>.) = I: e - 2rrif3.x a ' ! { [)).a' + P(x ), ( 4.2.41) 
{3 EZd >. = -2rr{3 

the last line depending on the fact that ( 4.2.28) and ( 4.2.36) give Ka = 0 for all a E ( z + t : 0 < 

lad :S r - l. Integrating this sum with respect to x over C0 we obtain the second line of ( 4.2 .28) 

for any a' E (Z+)d : la' I = r 2: 1, which completes the proof. • 

We are moving towards the main theorem of the section, that is conditions on </> which will 

ensure that certain polynomials can be reproduced. However there are still a few more preliminaries 
J 

to set up: 

Lemma 4-13. If~ : Rd - R is the Fourier transform of a function 'lj; wl1icl1 satisfies 

j aa~(>.) d>. 
7<.d {)>,a < 00, 

( 4.2.42) 

for all a E (z+)d : lal = q then 'lj;(x) = o( IJ xJl- q) as Jl xJI - oo . 

Proof. Stein and Weiss (1971) include the Riemann-Lebesgue Lemma (Theorem 1.2) which states 

that, if f: Rd - R is absolut ely integrable, then}(>.) - 0 as IJ>- 11 - oo. A comparison with 

j'R.d {)~~~>.) e - i>..x d>. = (21rf (- i) laixa'lj;(-x ), 

which is obtained from Theorem 4-4 (h) , yields the result. • 

( 4.2.43) 

We shall also need a technical definition in the main theorem: we say that his a b-regularly 

differentiable funct ion, for b E 'R , if h has all partial derivatives existing away from O and 

( 4.2.44) 

for all a E (Z+ )d . We draw together some simple consequences of this definition into a lemma: 
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Lemma 4-14. Suppose that {F., q_8 : s = O, 1, ... } are homogeneous polynomials of degree s . 

Then Ft( • )(qr( ,))- 1 is a (t - r)-regularly differentiable function. Further, assuming both sums 

converge in a neighbourhood of o, (:z:=:t P.( •)) (I:~=r qs( >r 1 
is also (t - r)-regularly differ

entiable. Further, if g is t -regularly differentiable and h is r-regularly differentiable, then gh is 

(t + r)-regularly differentiable and g + his min(t,r)-regularly differentiable. Finally the function 

log( ll •11) is ( - 8) -regularly differentiable for any 8 > 0. 

In each case the statement may be verified without difficulty and we omit the proof in order 

to concentrate on more important results. 

Now we may state the main theorem in which we look for conditions on cp* : Rd --* R so that 

a finite linear combination of integer translates 

I 

'lj;(x) = L µjcp*(x - Xj), ( 4.2.45) 
j = l 

{ Xj E zd : j = 1, 2, ... , l}, when used in formula ( 4.2.3), reproduces polynomials of some degree. 

Theorem 4-15. Let cp* : Rd --* R be a function with generalised Fourier transform J• having all 

partial derivatives on Rd \ {O} and satisfying 

( 4.2.46) 

for all a E (z+t . Suppose that near A = 0 we have an expansion for J*(.X) in functions of .X of 

increasing degree: 
" 1 
ef;*(.X) = - - _ + h(.X), (4.2.47) 

Pr(A) + Pr+1(.X) + • • • + Pt(A) 

where r 2: 1, where eaclI P, is a homogeneous polynomial of degree s and we assume Pr ::f= 0, 

and where the remainder term h is a (t - 2r +€') -regularly differentiable function for some 

0 < E
1 < 1. Suppose too tl1at cp* is such that any function 'ljJ of the form ( 4.2.45) satisfying , 

'lj;(x) = a( ll xll -d-k) as ll xll - oo, ( 4.2.48) 

for any k = O, 1, ... also satisfies both 

( 4.2.49) 

and the condition that the function 

L (y + n)"''lj;(y + n), ( 4.2.50) 
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is continuous, for all a E (z+)d : ial ~ k. In this case there exist'!, {µi : j = 1,2, ... ,l} 

and {xj E zd : j = 1,2, ... ,l} such tliat 'I/; of the form (4.2.45), when used in formula (4.2.3), 

reproduces all polynomials of degree at most m = min( r -- 1, t - r ). 

Conversely, suppose tliat among all possible expansions of tlie form (4.2.47) for cp* near>. = 0 

we Jet t take on the maximum possible value, if that is finite, or 2r - 1 if that is infinite, recalling 

that we are allowed to take F. = 0 in (4.2.47) so long ass> r . Suppose also that 

< oo, ( 4.2.51) 

J*(21r/3) -f 0 ( 4.2.52) 

for some f3 E zd \ {O}. Furtlier, let 'I/; be any function of tlie form (4.2.45) (where we still require 

{ Xj E zd : j = 1, 2, ... , l} ) tliat reproduces polynomials of degree k and tliat satisfies 

( 4.2 .53) 

for all a E (z+ l : lal ~ k. Tl1en m = min(r - 1, t - r) is the maximum possible value of k. 

Before proving Theorem 4-15, a few remarks are in order to explain some of the technical 

conditions in the statement of the theorem. In some cases our conditions are not the weakest 

possible and in some may not be minimal. We have aimed to provide a set of conditions that can 

be applied to practical calculations, which are unlikely to include functions with abstruse properties. 

We first remark that Theorem 4- 15 can be used when <p is a radial basis function, in which case we 

replace cp* in the above statement by the function cp( /J · 1/ ). 
Conditions ( 4.2.47), ( 4.2.48)-( 4.2.50) and ( 4.2.53) can sometimes be combined into one condi

tion, for the smoothness of the function cp* near oo is related to the smoothness of the function J* 

near 0, although a useful formulation is not easily accessible. However the present conditions are 

easy to apply and a combfned one may be less amenable. 

We remark that conditions ( 4.2.48)-( 4.2.50) and ( 4.2.53) all restrict 'I/; rather than cp*. In many 

cases they can be verified easily and to try to translate them into constraints on cp* tends to be less 

convenient. On a similar note we see that , although neither condition (4 .2.46) nor (4.2.51) implies 

the other, the possibility that one holds and not the other is unlikely to occur in practice. 

The crucial condition for the validity of the theorem is ( 4.2.47), because in several useful cases 

when it holds it can be shown that the other conditions hold too. For example see Corollaries 4-18 

and 4-19. 
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is continuous, for all a E (Z+)a : Jo: / :S k. In this case there exist'!, {µj : j = 1,2, ... ,l} 

and { Xj E za : j = 1, 2, ... , l} such tliat 'I/; of tlie form ( 4.2.45), when used in formula ( 4.2.3) , 

reproduces all polynomials of degree at most rn = min( r - 1, t - r ). 

Conversely, suppose tliat among all possible expansions of tl1e form (4.2.47) for</>* near .X = 0 

we let t take on the maximum possible value, if that is -finite, or 2r - 1 if that is in-finite, recalling 

that we are allowed to take A = 0 in ( 4.2.4 7) so long as s > r. Suppose also that 

< oo, ( 4.2.51) 

for all a E ( z+ )d, and that 

(4.2.52) 

for some /3 E za\{O}. Furtlier, let 'I/; be any function of the form (4.2.45) (where we still require 

{ Xj E za : j = 1, 2, ... , l}) that reproduces polynomials of degree k and that satisfies 

j /y"' 'l/;(y) / dy < oo, 
n_d 

( 4.2.53) 

for all a E (z+ )d : Jo:/ :S k. Then rn = min(r - 1, t - r) is tl1e maximum possible value of k. 

Before proving Theorem 4-15, a few remarks are in order to explain some of the technical 

conditions in the statement of the theorem. In some cases our conditions are not the weakest 

possible and in some may not be minimal. We have aimed to provide a set of conditions that can 

be applied to practical calculations, which are unlikely to include functions with abstruse properties. 

We first remark that Theorem 4-15 can be used when</> is a radial basis function, in which case we 

replace </>* in the above statement by the function </>(// · I/) . 
Conditions ( 4.2.47), ( 4.2.48)-( 4.2.50) and ( 4.2.53) can sometimes be combined into one condi

tion, for the smoothness of the function </>* near oo is related to the smoothness of the function J• 
near 0, although a useful formulation is not easily accessible. However the present conditions are 

easy to apply and a combined one may be less amenable. 

We remark that conditions ( 4.2.48)-( 4.2.50) and ( 4.2.53) all restrict 'I/; rather than</>*. In many 

cases they can be verified easily and to try to translate them into constraints on </>* tends to be less 

convenient. On a similar note we see that , although neither condition ( 4.2.46) nor ( 4.2.51) implies 

the other, the possibility that one holds and not the other is unlikely to occur in practice. 

The crucial condition for the validity of the theorem is ( 4.2.47), because in several useful cases 

when it holds it can be shown that the other conditions hold too. For example see Corollaries 4-18 

and 4-19. 
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Proof. First we deduce from the statement of the theorem that conditions ( 4.2.12)-( 4.2.15) can be 

satisfied for a function 'I/; (4.2.45), with m = min(r - 1,t - r). Then we deduce from Theorem 4-11 

that such a function reproduces all polynomials of degree m. Guided by Corollary 4-6, which shows 

us the form of ,(/;, we expand e- i>..y near >. = 0 and find 

e - i>, .y = f ( - i>..y )• 
s! 

s = O 

Hence, denoting the term in Corollary 4-6 by g(>.), we expand it as 

I 

g(>.) = L µie - i>. Xj 

j = l 

_ ~ . ~ (-i>..xjY 
- 6µJ6 s! 

j =l s = O 

00 

s = O 

where each q, ( >.) is a homogeneous polynomial of degree s in >.. For example we see that 

1 

'la(>.) = I: µj, 
j = l 

I 

iii (>.) = (- i)L µjA.Xj 
j =l 

(4.2.54) 

( 4.2.55) 

( 4.2.56) 

(4.2.57) 

and further polynomials can be calculated similarly. In particular, if a E (z+ )d lal = s, the 

coefficient of A'' in q,(>.) is 

I . Xc, (I I)' ( ') lal I 
(- ')' " ~ _!!___:_ - - i " . C, i 6 I I - I 6 µJ X j • s. a. a. 

( 4.2.58) 
j = l j = l 

We recall that products of powers of components from Rd to 'Rare linearly independent functions. 

Therefore we can choose l, {µi : j = 1, 2, ... , l} and { xi E zd : j = 1, 2, ... , l} such that 

'ls ( >.) = 0 for s < r ( 4.2.59) 

and 

'ls ( >.) = P. ( >.) for r :S s :S t', ( 4.2.60) 

where 

t' = min(2r - 1, t) (4.2 .61) 
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and .P, is defined as in ( 4.2.4 7). In this case, taking 

I 

,,/;(>.) = L µje-i>..xief>*(>.), ( 4.2.62) 

j=l 

in Corollary 4-6 and using ( 4.2.45) and ( 4.2.55), we find that, near >. = O, 

00 

,,/;(>.) =I: iJ.,(>.)J*(>.) 
s =O 

( 4.2.63) 

where the leftmost summation in the formula is interpreted as zero if t' = t. Hence, because h is 

(t - 2r + E')-regularly differentiable, it follows from Lemma 4-13 that 

,,/;(>.) = 1 + h(>.), ( 4.2.64) 

where h is a min( t' + 1 - r, t - r + €1 )-regularly differentiable function. Therefore, remembering 

t' ::; t ( 4.2.61 ), ( 4.2.15) is satisfied for m = t' - r = min( r - 1, t - r ). 

We also note that the function g(>.) defined in (4.2.55) satisfies g(>. + 211'n) = g(>.) for all 

n E zd because we have chosen xi E Z\ j = 1,2, . .. ,l. Hence, near 271'(} for(} E zd\{O}, say at 

>. = 211'(} + 8, we find , from (4.2.59) and (4.2.62), 

00 

,,/;(211'(} + 8) = I: q.(8)4>*(211'(} + 8). ( 4.2 .65) 

s=r 

Because we have assumed that all partial derivatives of ef>* exist at 271'(}, it follows that ,,/; satisfies 

(4.2.14) form::; r - 1, and for all(} E zd\{O}. 

It remains to show that 'I/; is continuous and satisfies (4.2.12) and (4.2 .13) form = min(r -

1, t - r ) . We are going to apply Lemma 4-13 with q = m + d = min( r - 1, t - r) + d. Therefore, for 

a E (z+ )d, >, f:- 0, we see that ( 4.2.62) gives 

( 4.2.66) 
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where g is defined in ( 4.2.55). Noting that all terms involving g are just trigonometric polynomials 

and hence bounded over Rd, we deduce from (4.2.46) and (4.2.66) that, for all a E (Z+ )d, 

( 4.2.67) 

Hence, to satisfy the conditions of Lemma 4-13 with q = min( r - l, t - r) + d, we only need to check 

that they are satisfied on p E Rd : II .\ II ~ l}. On this bounded region the only singularity of any 

partial derivative of,(/;(.\) occurs at.\ = O, so we only need absolute integrability in a neighbourhood 

of 0. 

Using (4.2.64) and the regular differentiability of h, we find that, for all a E (Z+ )d !a l 2 1, 

a:~~.\) = O( ll .\l(-r+e'- lal) as ll .\ 11 -+ o, (4.2.68) 

recalling we have chosen E' < 1. Hence the conditions of Lemma 4-13 are satisfied for all a E 

(z+t : !a l= t' - r + d, so we have the relation 

'lj;(x) = o( ll x ll- d- (t'-r)) as ll x ll -+ oo. ( 4.2.69) 

Equation ( 4.2.69) gives us ( 4.2.48) with k = t' - r = m and hence our assumptions imply ( 4.2.49) and 

( 4.2.50) which are just conditions ( 4.2.12) and ( 4.2.13), as required. We also note, from Corollary 

4-7, that 'ljJ is continuous. Therefore the first part of the theorem is a consequence of Theorem 4-11. 

It remains only to show the converse, namely, given the conditions (4.2.51), (4.2.52) and 

(4.2.53) and that t takes its maximum value, m = min(r - l,t - r) is the maximum integer such 

that all polynomials of order m are reproduced. 

We shall obtain a contradiction by supposing that there exists a function 'ljJ of the form ( 4.2.45) 

which reproduces all polynomials of degree min( r - l, t - r) + 1. We employ two stages; first we 

shall show that conditions ( 4.2.25) and ( 4.2.26) are satisfied for m = min(r - 1, t - r) + 1. Hence, 

by Theorem 4-12, conditions ( 4.2.27) and ( 4.2.28) must also hold with this value of m. Secondly 

we shall show that this function 'ljJ is unable to satisfy both ( 4.2.27) and ( 4.2.28) for this value of 

m which is the required contradiction. 

Let '1jJ be a function of the form ( 4.2.45) which reproduces all polynomials of degree at most 

m = min(r - 1, t - r) + 1. We see that (4.2.53) is identical to condition (4.2.25) . Further (4.2 .51) 

and ( 4.2.66) imply that 

< 00. (4 .2.70) 

67 



Polynomial Reproduction Part II 

Because the f3 = 0 term is missing from this expression, we deduce from the remark just after 

( 4.2.16) that all partial derivatives of ,(/; of order at most m exist and are continuous. Hence 

( 4.2.70) implies ( 4.2.26). It follows from Theorem 4-12 that ( 4.2 .27) and ( 4.2.28) hold with m = 
min(r - 1, t - r) + l. 

To obtain the contradiction we now demonstrate that 7/; cannot satisfy both ( 4.2.27) and 

(4.2 .28) with this value of m. We take f3 E zd\{O} for which J*(21r/3) =fi O (4.2.52), and we recall 

{ xi E zd : j = 1, 2, . . . , l}. Because we already have found ,(/;(O) = 1 ( 4.2.28) we require that, in 

(4.2.62), fJ.r =Pr'!- 0, where fJ.r and Pr are defined in (4.2 .55) and (4.2.47) respectively. Therefore 

( 4.2.65) shows that some partial derivative of ,(/; of order r is non-zero at 21r/3. Hence equation 

( 4.2.27) fails for m > r - l. So, to satisfy both ( 4.2.27) and ( 4.2.28) for m = min( r - 1, t - r) + 1, 

the maximal value oft in ( 4.2.47) must be less than 2r - 1, and so in ( 4.2.61) t' = t. 
Next we try to satisfy ( 4.2.28) for m = min(r - 1, t - r) + 1 = t - r + l. In this case the 

homogeneous function of degree t - r + 1 in ( 4.2.63) would be identically zero, which gives the 

equation 

(4.2.71) 

Hence, remembering Pr = fJ.r, we would have 

( 4.2 .72) 

Thus ( 4.2.47) would imply that , near .X = O, 

~*(.X) = 1 _ fJ.t+1P) (//.Xllt-2r+1) 
Fr(.X) + Pr+1(.X) + · · · + Pt(A) (Pr(.X))2 + O 

- - 1 - - - <it+1(.X) - + 0(11.xw-2r+l) 
Pr(.X) + Pr+1(.X) + · · · + Pt(A) (Pr(.X) + Pr+1(.X) + · · · + Pt(.X)) 2 

= ( - - 1 - ) (1 + - - <it+1(.X) - )-1 + 0(11.xw-2r+1) 
Pr(.X) + Pr+1(.X) + · · · + Pt(A) P,.(.X) + Pr+1(.X) + · · · + Pt(.X) 

- - 1 - - + 0(11 .x w-2r+1), (4.2.73) 
Pr(A) + Pr+1(A) + · · · + Pt(A) + <Zt+1(.X) 

which contradicts the maximality of t . 

This analysis shows that Theorem 4-12 fails if m = min( r - 1, t - r) + l. Hence our assumption 

of the existence of a function 7/; reproducing polynomials of degree m = min( r - 1, t - r) + 1 was 

wrong, complet ing the proof. • 

We now consider what happens if J* does not have t he form ( 4.2.47) near .X = 0. In many 

cases it is found that no polynomial reproduction is possible. 
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Theorem 4-16. Let </>* : 'Rd ---+ 'R have Fourier transform J* which is not of the form ( 4.2.47) 

near .X = 0 and let J* satisfy ( 4.2.51 ). If there is an absolutely integrable function 'I/; of the form 

(4.2.45) (witl1 {xi E zd : j = 1,2, .. . ,l}) whicl1 can reproduce a constant, then, near .X = 0, 

J*(.X) =A+ o(l), ( 4.2.74) 

for some A E 'R, and J* (2rr/3) = 0 for a.Ji f3 E Zd\ {O}. 

Proof. The method of proof is similar to the second half of the proof of Theorem 4-15 where we 

obtain a contradiction by using Theorem 4-12. We suppose that 'I/; is an absolutely integrable 

function ( 4.2.45) which reproduces constants. The absolute integrability implies ( 4.2 .25) with 

m = 0. Further, ( 4.2.51) shows that 

I: 1-iJ,(21rf3)1 < oo. (4.2 .75) 
,6EZd\{O} 

Combining this with the fact that 1,L,(O) is finite, because 'I/; is absolutely integrable, yields ( 4.2.26) 

with m = 0. Hence, in this case (4.2.27) and (4.2.28) hold with m = 0, namely 

"'·(2 /3) { 1 if /3 = O; 
'f' rr = 0 for all /3 E Zd\ {O}. (4.2.76) 

We recall that, near .X = 0, '!,b is of the form ( 4.2.62) and we also have the expansion ( 4.2.55) 

I oo 

L µi e-i>-..xj = L q. (.X). (4.2.77) 
j=l s=O 

Hence, it is impossible to satisfy 1,L,(O) = 1 if, near .X = O, J* is neither of the form (4.2.47) nor 

(4.2.74). It remains to consider the case when, near .X = 0, J* is of the form (4.2.74). Equation 

( 4.2.62) shows that 
l 

1,L,(O) = L µjJ*(O) (4.2.78) 
j=l 

and so we must have 

( 4.2. 79) 

Recalling that (4.2.52) is satisfied in this case, we take f3 E zd\{O} with J*(2rr/3) f; 0. In this case 

we find (from (4.2.62)) that 

I 

1,L,(2rr/3) = L µie-i 2
1r,6 Xj J*(2rr/3) 

j=l 

I 

= I: µjJ*(21rf3) to, 
j=l 
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the last line using { Xj E zd : j = 1, 2, ... , l} and ( 4.2.79). This provides the required contradiction 

to ( 4.2.76), which completes the proof. • 

We now indicate some cases in which the conditions of Theorem 4-15 to ensure polynomial 

reproduction can be simplified. These will be useful when we come to analyse some examples in 

Section 4.3 . 

Lemma 4-17. Let 'ljJ: R,d - n be continuous and let 

'ljJ(x) = r(x) + o(llxl l- 1
) as llxll - oo, ( 4.2.81) 

where Tisa homogeneous function of degree -l wl1ich is not identically zero on 'Rd \ {O}. In this 

case, if for some positive integer k, 'ljJ satisfies (4.2.48) it also satisfies both (4.2.49) and (4.2.50) . 

Further, if, for some positive integer k, the function 'ljJ reproduces polynomials of degree k then 

k < l - d and 'ljJ satisfies ( 4.2.53). 

Proof. Suppose that 'ljJ satisfies ( 4.2.48). In this case k < l - d and we suppose k = l - d - 8 with 

8 > 0. It follows that ( 4.2.49) holds and also that the series ( 4.2.50) converges uniformly and so 

the resulting function is continuous, as required. 

The proof of the last statement of the theorem is not quite so simple. Let 'ljJ reproduce 

polynomials of degree k. Because T is not identically zero and homogeneous we may pick z with 

llzl l = 1 for which r(z) = a f:. 0. Without loss of generality we assume that a > 0. Because 'ljJ is 

continuous it can be deduced that r , being homogeneous, is continuous on 'Rd \{O}. Hence, we can 

pick TJ > 0 so that 

IIY - zll ~ TJ :::;,- r(y) > a/2. (4.2.82) 

We let 

S = {y : ll vll = 1, IIY - zll < TJ} ( 4.2.83) 

and we pick M so that 

17P(Y) I 2: i lr(y)I, ll vl l 2: M, v/l lvll Es. ( 4.2 .84) 

As 'ljJ reproduces polynomials of degree k, all sums of the form 

L z°''ljJ(z), (4.2.85) 

for a E (z+ )d lal ~ k, must be absolutely convergent. Therefore, noting that 

d 

L Jz; lk 2: bllzllk, ( 4.2.86) 

i = 1 
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and some b > O, it follows that 

( 4.2.87) 

is also absolutely convergent. However, using (4.2.84) and the degree - 1 homogeneity of r , 

I: 
{zEZd: ll z ll :2'.:M, z /ll z llE S} 

ll zW l"P(z) I 

ll zllk lr(z) I >l 
- 2 

-1 
2 

> !:. 
- 4 

I: 
{zEZd :ilzll:2'.:M, z/ll z llE S} 

I: ll zllk llzll- 1 lr(z/llzll)I 
{zEZd : ll z ll :2'.:M, z/ll z llE S} 

I: 
{zEZd: ll z ll:2'.: M, z /ll z llE S} 

(4.2.88) 

the last line using ( 4.2.82) and ( 4.2.83). Further, using ( 4.2.83) again, we find that this sum is at 

least some constant multiple of 

llzllk- r. ( 4.2.89) 
{zEZd: ll z ll:2'.: M} 

This sum converges only if k < l - d. However, in this case all integrals of the form 

1 y°' "P(Y) dy, 
'R, d 

( 4.2.90) 

for a E (z+ t : ial ::; k, are absolutely convergent. Therefore condition ( 4.2.53) is satisfied, which 

completes the proof. • 

In some cases Lemma 4-17 enables us to give a simpler statement of Theorem 4-15 and also to 

deduce more about functions 'Ip of the form ( 4.2.45). One such formulation is 

Corollary 4-18. Suppose tliat <p* : Rd --+ R is a function with a generalised Fourier transform 

J*. Suppose also tbat J* has all partial derivatives of all orders on Rd \ {O}, satisfies (4.2.46) and 

that there exist lwmogeneous polynomials of degrees {F. : s = r,r + 1, ... } (witl1 Pr =:j 0) so tliat, 

near .X = O, 

(4.2.91) 

In tl1is case any 'Ip of the form (4.2.45) wbicl1 tends to zero for large argument satisfies either 

for all k E z+, or 

"P(x) = o(llx ll-k) as ll xll--+ oo, 

"P(x) = r(x) + o( llxll- 1
) as ll xll--+ oo, 
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where r is a homogeneous function of degree - l which is not identically zero on Rd \ {O}, l being a 

positive integer. 

Further, there exist functions 'I/; of the form ( 4.2.45) which reproduce all polynomials of degree 

r - 1. All such functions satisfy 

{i;( >.) = 1 + li( >.), (4.2.94) 

near>. = O, for some r -regularly differentiable function h, and 

(4.2.95) 

Moreover, there exist sucl1 functions 'I/; satisfying ( 4.2.93) for ead1 integer l 2: d + r. Further, 

if</>* also satisfies conditions (4.2.51)-(4.2.52), then r - l is the maximum degree for which all 

polynomials can be reproduced by a function of the form ( 4.2.45). 

Proof. Any 7/; of the form ( 4.2.45) which tends to zero for large argument has Fourier transform ,(j; 

of the form ( 4.2.62). Near >. = 0, we may form the expansion ( 4.2.55): 

I oo 

g(>.) = L µie - i>. x; = L q, (>.). ( 4.2.96) 
j =l s=O 

Thus , near >. = O, 

{i;(>.) = I:;o ~.(>.). 
Ls=r P,(>.) 

(4.2.97) 

We may expand the right hand side a.s a. power series in >., near ). = 0: 

00 

-0( A) = L J. (A)' ( 4.2.98) 
s=- r 

where ea.eh J. is a. homogeneous rational function of degrees. There a.re two possibilities: firstly the 

expression ( 4.2.98) may be a power series in >.. In this case ,(j; has all partial derivatives of all orders 

at 0. Therefore, because J* also satisfies ( 4.2.46), we find, using ( 4.2.66) and the boundedness of g, 

( 4 .2.99) 

for a.11 a E (Z+)d, and hence Lemma. 4-13 gives us (4.2.92). Otherwise we denote the leading order 

term in the expansion ( 4.2.98), which is not a polynomial, by a and suppose that a is homogeneous 

of degree l. We note that {i; must be absolutely integrable in a neighbourhood of the origin to 

ensure that 7/; tends to zero for large argument and hence we must have l 2: - d. In this case, near 

>. = o, 
{i;(>.) = P(>.) +a(>.)+ h(>.), 
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where P is a polynomial and his an ([ + !)-regularly differentiable function. We want to deduce 

( 4.2.93) when ( 4.2.100) holds. Intuitively we argue that the highest order singularity of,(/; at the 

origin comes from the term a and hence the leading order term in an expansion of 'I/; for large llxll 
will come from the Fourier transform of a, but it is neccesary to proceed more carefully to make 

this deduction watertight . 

Suppose that equation (4.2.100) is valid in ll >- 11 ~ 8 and let p be a smooth function satisfying 

0 ~ p(>.) ~ 1 and 

(>.) = { 1 if ll >- 11 ~ to; 
p O if 11 >. 11 2: 8. 

(4.2.101) 

Because J* has all partial derivatives of all orders on Rd \ {O} and satisfies ( 4.2.46) we may use 

( 4.2.66) to deduce that all partial derivatives of order d + [ of the function 

,(/;(>.) - p(>.)a(>.), (4.2.102) 

are absolutely integrable over{>. E Rd : ll >- 11 2: 8/ 2}. Further, (4.2.100) shows that they are all 

absolutely integrable over {>. E Rd : ll >- 11 ~ 8/ 2} and so they are absolutely integrable over the 

whole of Rd. Now, Lemma 4-13 yields that the inverse Fourier transform of ( 4.2.102) decays as 

o( llxl1 -d- f) as llxll ---+ oo. Hence, to show that the inverse Fourier transform of,(/; satisfies ( 4.2.93) 

for some some function r, homogeneous of degree -l = - d - [, it is sufficient to show that these 

conditions are obtained by the inverse Fourier transform of 

(4.2.103) 

The two functions on the right hand side of ( 4.2.103) both have generalised inverse Fourier 

transforms. We note that all partial derivatives of p(>.) - 1 of order at least 1 are smooth functions 

supported on {>. E Rd : 8/ 2 ~ ll >-11 ~ 8}. Hence all partial derivatives of order d + [ + 1 of 

(p(>.)-l)a(>.) are absolutely integrable over Rd and so Lemma 4-13 yields that the inverse transform 

of this function decays as o( llxll -d-f-i) as ll xll ---+ oo. Further, the function a is homogeneous 

of integer degree f > - d and hence its inverse Fourier transform r is homogeneous of degree 

-d- [ ~ -1, which can be deduced from Theorem 4-4 (g) . We note further that its inverse Fourier 

transform is not identically zero on Rd \ {O} as we have chosen a ~wt to be a polynomial. This 

completes the verification of ( 4.2.93). 

The proof of polynomial reproduction is now quite straightforward. Near >. 

rearrange expression ( 4.2.91) for J* to the form 
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where 

(4.2 .105) 

From Lemma 4-14 we find that his a 0-regularly differentiable function. Equation (4.2.104) cor

responds to (4.2.47) in Theorem 4-15 with t = 2r - 1 and E' = 1. Therefore, as we have already 

assumed ( 4.2.46) and Lemma 4-17 gives us ( 4.2.48)-( 4.2.50), we may use Theorem 4-15 to deduce 

that there exists a function 'ljJ of the form ( 4.2.45) which reproduces all polynomials of degree r - 1. 

Further, as (4.2.51) and (4.2.52) are assumed in the last part of the theorem and as Lemma 4-17 

gives us ( 4.2.53), r - 1 is the maximum degree for which all polynomials can be reproduced by a 

function 'I/; of the form ( 4.2.45). 

To complete the proof it only remains to show that any 'ljJ of the form ( 4.2.45) reproducing 

polynomials of degree r - 1 satisfies ( 4.2.94) and ( 4.2.95) and that every l 2: d + r is attainable 

in ( 4.2.93). Corollary 4-7 shows that any such 'ljJ is continuous and, because it must tend to zero 

for large argument, it either satisfies ( 4.2.92) or ( 4.2.93). In the latter case Lemma 4-17 shows 

l 2: d +rand so either case yields (4.2.95). This also implies that 'I/; satisfies (4.2.25) and (4.2.26) 

with m = r - 1 and so by Theorem 4-12 it satisfies ( 4.2.28) with m = r - 1. Combining this 

observation with the form of ,J; near A = 0 ( 4.2.97) yields ( 4.2.94). It remains to show that any 

l 2: d + r is attainable in ( 4.2.93). 

We let k be any non-negative integer and in ( 4.2.97) we choose 

and ii.2r+k so that 

q, = 0, s = O, 1, ... , r - 1, 

q, =.P. , s=r,r+l, ... ,2r +k-1 

ii.2,·+k - P2r+k 

Pr 

(4.2.106) 

(4.2.107) 

( 4.2.108) 

is not a polynomial. Because this choice includes the conditions ( 4.2.59) and ( 4.2.60), such a 

function reproduces all polynomials of degree r - 1 by Theorem 4-15. Further, near ,\ = O, we have 

the expansion 
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( 4.2.109) 

where h1 , h2 and h3 are (r + k )-regularly differentiable functions. We see that the leading term 

which is not a polynomial is homogeneous of degree r + k. Hence, recalling that, when a in ( 4.2.100) 

was homogeneous of degree l, 'I/; satisfied ( 4.2.93) with l = - d - l (the paragraph after 4.2.103)), 

we find that 'I/; satisfies (4.2.93) with l = - d - r - k, as required.• 

Further, the following easy corollary shows that, if J• retains its behaviour near O over all of 

nd, then the conditions for polynomial reproduction are even simpler. 

Corollary 4-19. Let cp* : Rd ----+ n be a functio_n witb generalised Fourier transform J•. Suppose 

tbat tl1ere exist integers { d + l ~ r; ~ t; : i = 1, 2, ... , n} and bomogeneous polynomials 1 

' A,s : i = 1, 2, ... , n, s = r;, 7\ + 1, ... , t; of degree s (witb eacb Pi,r, '¥:- 0) sucb tbat 

" n l 
</>*(>.) = " t - ' ~ '"" • P.: (>.) i = l D s = ri i,s 

(4.2.110) 

Suppose also tbat J• has no singularities on nd \ {O}. In tl1is case any function 'I/; of tbe form 

( 4.2.45) wl1icl1 tends to zero for large argument either satisfies ( 4.2.92) or ( 4.2.93) . There exist 

sucl1 functions 'I/; whicl1 reproduce all polynomials of degree min{ r; : i = 1, 2, ... , n} - 1 and 

this is the maximum degree for which all polynomials can be reproduced by such a function 'lj;. 

Furtl1er, all such functions satisfy ( 4.2.94) and ( 4.2.95) and there exist sucl1 functions wl1icl1 satisfy 

( 4.2.93) for any integer l 2: d + min{ r; : i = 1, 2, ... , n }. 

Proof. The function J• is of the form (4.2.91) for small ll >- 11 - It has no singularities on Rd \ {O} and 

hence has all partial derivatives there. It satisfies ( 4.2.46) and ( 4.2.51) because we have chosen 

each r; 2: d + l. The fact that we only have a finite sum implies that ( 4.2.52) is satisfied and so 

the result follows from Corollary 4-18. • 
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Section 4.3 : Examples of Suitable ef> 

In this section we apply the analysis that was developed in Section 4.2 to show that four of the 

following families of functions </>, examples of which occur frequently in the existing literature ( see 

Section 1.3), do reproduce polynomials. 

(a) rb 
' 

b > O; 

(b) (r 2 + c2 )t, b E 'R, c > 0; 

(c) rb log r, b > O; 

(d) (r2 + c2 )t log(r2 + c2 )1, b E 'R, c > 0; 

(e) - crb 
e ' b > 1, C > 0. 

Although (a) and (c) are special cases of (b) and (d) respectively, we consider them separately 

because the analysis is quite different. Here we summarise the main results that will be obtained 

before we embark on the details. When we work in na we find: 

Theorem 4-20. Let m be the maximum integer so that all polynomials of degree m are reproduced 

by a function of the form ( 4.2.45) 

I 

1/J( x) = L µi ef>( ll x - Xj II ), (4.3.1) 
j =l 

witl1 l finite and { Xj E za : j = 1, 2, ... , l} . For different functions ef> the values of mare as follows: 

ef>(r) m 

{
b + d - 1 
None 

{

b + d - 1 

None 

{
b + d - 1 
None 

{

b + d - 1 

None 

if b and d are both positive odd integers; 
otherwise; 

if b + d is a positive even integer 
and b is not a non-negative even integer; 
otl1erwise; 

if b and dare both positive even integers; 
otherwise; 

if b + dis a positive even integer 
and b is a non-negative even integer; 
otherwise; 

None, for any b > 1. 

Here None indicates that even m = 0 is not admissible for any absolutely integrable 1/J. In each 

case we shall establish the result by evaluating the Fourier transform J of </> and then checking to 

see whether the conditions of Theorems 4-15 or 4-16 or Corollary 4-19 are satisfied. The details in 

the individual cases are as follows : 
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Analysis for the case </>(r) = rb, b > 0. 

The restriction on b ensures the continuity of </> at the origin. If b is a positive even integer then 

any function 'If; of the form ( 4.3.1) is a polynomial of degree b. Hence there can be no absolutely 

integrable 'If; which is not identically zero. Hence, there is no non-trivial polynomial reproduction 

by quasi-interpolation. Therefore we now restrict b so that it is not a positive even integer. In this 

case the required Fourier transform (Jones 1982, Theorem 7.31) is the function 

A r ( ~) 2b+d1rf 

</>(>.) = r (- %) 11 >-W+d' 
(4.3.2) 

When b and d are not both positive odd integers then J( >.) is not of the form ( 4.2.4 7) near >. = 0. 

We see that ( 4.2.51) is satisfied, because b > 0, and hence Theorem 4-16 shows that it is not possible 

to reproduce constant functions with an absolutely integrable function 'If;. 

It remains to consider the case when band dare both positive odd integers and we use Corollary 

4-19. We taken = l , r 1 = t 1 = b + d and 

p >. _ r (-%) 11>-W+d 
l ,b+d( ) - r ( btd) 2b+d1rf' 

( 4.3.3) 

Hence Corollary 4-19 shows that there is a function 'If; of the form ( 4.3.1) which reproduces all 

polynomials of degree b + d - l, and that it is not possible to find one which reproduces all 

polynomials of degree b + d. 

For future reference we also note that Corollary 4-19 yields that ( 4.2.95) holds for any function 

'If; of the form (4.3.1) which reproduces polynomials of degree b + d - land hence it satisfies 

l'!f;(x )I ::; A/(1 + ll xl lb+2d), (4.3.4) 

for some constant A. Further, it also yields that there exist such functions satisfying ( 4.2.93) for 

any integer l 2:: 2d + b, and the expansion for large ll xll consists of homogeneous terms of integer 

degree. Finally, we note that. ( 4.2.94) is also satisfied, near >. = O, and so we have 

( 4.3.5) 

where his a (b + d)-regularly differentiable function. 

Now we present sufficient conditions for reproducing all polynomials of degree at most m ::; 

b + d - l. Near >. = 0, we have an expression of the form ( 4.2.4 7) for J, in which 
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We also see that in this case the remainder term h( >.) is identically zero. Hence equations ( 4.2.59) 

and ( 4.2.60) give sufficient conditions to reproduce all polynomials of degree m :S b + d - 1, namely 

if O :S s '.S b + d - 1; 

ifs = b + d; 

if b + d + 1 :S s :S b + d + m. 

( 4.3 .7) 

Equation (4.2.58) shows that q.(>.) = All>.118 for seven if and only if {µi : J = 1,2, ... , l} and 

{ Xj E zd : j = 1, 2, . .. , l} satisfy 

I (( )iA(·)' a! "f . L µix'f = ~ - 1 - 2 . (f)! 1 a 1s even; 

i =l l O for all other a E (Z+)d : lad= s, 
( 4.3.8) 

where we recall that a is even if each component of a is even. Hence ( 4.3. 7) yields 

I ( b+d f (-%) e1d)! a! 
Lµix'f = ~ (-1) 

2 (~-l)! 2b+d1rf (f)! iflal=b+dandaiseven; 

i=l l O for all other a E (Z+)d la l :Sb+ d + m , 

( (-1)¥(b + d) a! 

= ~ 2b+d+l7r d;l ( t h.±.!. ( % )! 

l O 
2 

if !a l = b + d and a is even; 

for all other a E (Z+)d : la l :Sb+ d + m, 

( 4.3.9) 

where we have used the relation 

r(-! ) = r(}) = (- 1)-42-1rt 
2 (-!)(- !)···(- %) (!)tll 

2 

(4.3.10) 

and where ( ! )tll is·defined in (2.2.1). Putting b = 1 in the formula ( 4.3.9), we obtain from (2.3.32) 
2 

( (- 1(!
1

1rd-l ( - 1/;
1 

(1 + d) a! 

j J if Ja l = 1 + d and a is even; 
yady = ) (l + d)( - })1+d 21+d7rd;l (f)! 

as(o,i) l O for all other a E (Z+)d la l = 1 + d, 

( 1rd;1 _ a! 
= ~ (!)d 2d (})! if !a l= 1 + d and a is even; (4.3_11) 

l O for all other a E (z+/ : la l = 1 + d, 

an interesting result in its own right, which corroborates (2.3.37) when d = 3. 

Finally, applying ( 4.3.9) to the examples at the end of Chapter 2, we note that (2.3.38), when 

scaled as after (3.1.4), can reproduce all constants, (2.3.39) can reproduce all linear polynomials 

and (2.3.40) can reproduce all cubic polynomials, as we would expect from the analysis in Chapter 

3. 
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Analysis for the case </>(r) = (r 2 + c2)!, b E 'R, c > 0. 

We remark initially that Buhmann (1988b) has presented the analysis when b takes on the values 

1 and -1. As in the previous case we note that, if b is a non-negative even integer, then any 

function 1/; of the form (4.3.1) is a polynomial of degree b. Hence there can be no absolutely 

integrable 1/; which is not identically zero, and so there is no non-trivial polynomial reproduction 

by quasi-interpolation. Therefore we now restrict b so that it is not a non-negative even integer. 

The required Fourier transform (Gel'fand and Shilov 1964 Chapter 3; 2.8, (5)) is the function 

, 2~+ 11rf/4~ K2.±!. (c ll -X II ) 
</>(-X) = r( - !) 11

2

-X II ~ ' 
( 4.3.12) 

where J( is a modified Bessel (or Macdonald's) function (Abramowitz and Stegun 1970, 9.6). We 

first aim to satisfy (4.2.47) near A = 0. Thus, we examine the asymptotic behaviour of 1(2.±!.(z) for 
2 

small positive z. We find (Abramowitz and Stegun 1970, 9.6.6, 9.6.7 and 9.6.9) that 

{ 
lr(J!H. J)(lz)-l b~d l 

1(2-H(z),...,., 2 2 2 
2 -logz 

if !H. ---1- O· 2 r , 
if b+ d = 0. 

2 

( 4.3.13) 

Comparing ( 4.3.12) and ( 4.3.13), we find that </>(.X) cannot be of the form ( 4.2.47) near .X = 0 when 

b+ d is not an even integer. Therefore, by Theorem 4-16, it is not possible to reproduce constants in 

this case with an absolutely integrable 1/; if condition ( 4.2.51) is satisfied. This condition is obtained 

because, for large, positive x and any v, we have the relation (Abramowitz and Stegun 1970, 9.7.2) 

(4.3.14) 

which is sufficient. 

It remains to consider the case when b +dis a positive even integer and bis not a non-negative 

even integer. We find (Abramowitz and Stegun 1970, 9.6.11) that 

(4.3.15) 

where the leading term of li(.X) is a non-zero multiple oflog II -X II and the remainder is a 0-regularly 

differentiable function: From Lemma 4-14 we find that h(.X) is a (-b)-regularly differentiable 

function for any 8 > O, but we have to express ( 4.3 .15) in the form ( 4.2.4 7). 

Denoting "ic2 II-X ll 2
" and "1+4" by "x" and "n" respectively, it is sufficient to rearrange the 

finite sum 
n-1 ( k )' L n- k!-1 ·(-x)k ( 4.3 .16) 
k=O 
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to the form 
1 -

---+ h(x) 
"'n-1 A I ' 
L.~1 = 0 /X 

( 4.3.17) 

where each A1 E 'R and h(x) is a (univariate) n-regularly differentiable function. Indeed, in this 

case we would have 

( 4.3.18) 

where 

( 4.3.19) 

is a (-8)-regularly differentiable function for any 8 > 0. Expression ( 4.3.18) is of the form ( 4.2.47) 

with r = b + d and t = 2b + 2d - 1 (taking A = 0), h being a (t - 2r + E')-regularly differentiable 

function for any O < f
1 < 1. 

In order to express the series ( 4.3.16) in the form ( 4.3.17), we recall the definition of the 

factorial function (2.2.1) , which gives 

n- l(n - k - 1)! k n- 1 1 k 

L k' (- x) = (n - l)!Lk'( _ ) x . . 1 n k 
k = O k = O 

1 
= (n - 1)! _1 

( 1 + "'n- 1 1 k) 
L..,k = l k!(l - n)k X 

- ( )' 1 - n - 1 . ( )m · 
I::=o(- l)m I:~: ; k! (l~n)k xk 

( 4.3.20) 

From this expression we can pick out the coefficients of the terms x 1, l = O, 1, . .. , n - 1 and find 

that A 0 = 1/(n - 1)! = 1/(b1d ·--:- 1)! and for 1 :S l :S n - 1, 

1 I 1 
A, - '°' (-lt '°' - (n - 1)1 L..., L..., o: 1 (1 - n) 

. tu = l {aE(Z+\{O} )w: i ai = I} . °' 

1 I 1 

ctt.4._ 1),I:(- 1)'" I: '(l lli!.) , 
2 . tu=l {aE(Z+\{O})w :iai = I} Cl! . - 2 °' 

( 4.3.21) 

where we are using the multi-index notation defined at the end of the int roduction. For example, 

the suitable values of a when l = 4 and w = 2 are (1, 3), (2, 2) and (3, 1). 
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We now check that all remaining conditions of Theorem 4-15 are satisfied to deduce that it is 

possible to reproduce all polynomials of degree b + d - 1 with a function 'I/; of the form ( 4.3.1) and 

that no higher degree is possible. 

We have already deduced ( 4.2.51) from ( 4.3 .14) and ( 4.3.12) and we note that ( 4.2.46) holds 

for the same reason. Also (4.2.52) holds for all (3 E zd \ {O}, because K ~ (x) is positive for all 
2 

positive x (Abramowitz and Stegun 1970, remark after 9.6.1). 

We also note that, for fixed y E Rd, 

b 

(llx - Yll2 + c2) t = ll xW (1 + - 2x.y + IIYll2 + c2 ) 1i 

ll xll2 ( 4.3.22) 

This may be expanded as a power series for sufficiently large ll xll and hence we have an expansion 

b 00 

(llx - Yll2 + c2) 2 = I: fb - k(x), ( 4.3.23) 
k= O 

for all sufficiently large ll xll , where each fb - k is homogeneous of degree b - k. For example 

( 4.3 .24) 

Thus, for large II x II, the leading term in the expansion of any function 'I/; of the form ( 4.2.45) is 

a homogeneous term of some integer degree. By Lemma 4-17 this is sufficient to satisfy ( 4.2.48)

( 4.2.50) and ( 4.2.53). 

Hence we have deduced (4.2.46), (4.2.47) with r = b+ d, t = 2b + 2d - 1 and €
1 = 1 (in (4.3.18) 

and (4.3.19)) and (4.2.48)-(4.2.53) and so Theorem 4-15 implies that it is possible to reproduce all 

polynomials of degree b + d - 1 with a function 'I/; of the form ( 4.3.1) and that no higher degree is 

possible. 

For future reference we note that any such 'I/; reproducing polynomials of degree b + d -

1 is continuous and, by the remark after ( 4.3.24 ), its expansion for large argument consists of 

homogeneous terms of integer degree. Now Lemma 4-17 yields that 

l f(x )I ~ A/ (1 + ll xllb+2d) , ( 4.3.25) 

for some constant A. We also consider the behaviour of its Fourier transform ,,j; near>. == 0. Because 

such a function 'I/; satisfies ( 4.2.25) and ( 4.2.26) for m = b + d - 1 it also satisfies ( 4.2.28) for this 

value of m. We also note, from the remark after ( 4.3.12), that the leading order term in ( 4.3.19) is 

a non-zero multiple of log II .X II and the remainder a 0-regularly differentiable function. From these 

two observations and ( 4.3.18) it can be deduced that , near >. = 0, 

,(/;(>.) = 1 + Bll>-W+ d log II.XII+ h1 (>.), 
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for some non-zero constant B, where h1 is a (b+ d)-regularly differentiable function. This expansion 

can be used to yield, by similar analysis to that used in the proof of Corollary 4-18, that the leading 

order term in the expansion for any such 'I/; cannot decay faster than O( ll x W+ 2d) as ll x ll --+ oo . 

However, we shall deduce this as an easy corollary of the convergence order deduced for this basis 

function in Section 5.3. 

vVe go further and present sufficient conditions for the reproduction of all polynomials of degree 

m :S b + d - 1. Recalling that ( 4.3.18) is of the form ( 4.2.4 7), we find that sufficient conditions, 

given by equations ( 4.2.59) and ( 4.2.60) in the proof of Theorem 4-15, are 

( A~f(-% )cs-b-dllAlls 

lls(A) = ~ 
2 

7rf2s 
if s is even and b + d :S s :S b + d + m; 

l 0 if O < s < b + d - 1 or if s is odd and s < b + d + m. 
- - - ( 4.3 .27) 

It is more useful to have conditions on {µi : j = 1, 2, ... , l} and { Xj E zd : j = 1, 2, ... , l} and 

we use (4.3 .8) to deduce these from (4.3.27), as each non-zero iis is a multiple of IIAll s. This gives 

the equivalent conditions 

( (-1) 1~ 1 A f( - !!..)clal-b- d(l.!:1) 1 ,.,,! 
J ~ 2 2 ·-~~ 

= ~ 7rf 21<> 1 ( f )! 
l 0 

if b + d :S lad :S b + d + m and a is even; 

for all other a E (Z+ )d : la l :S b + d + m. 

( 4.3.28) 

Recalling that A 0 = 1/ etd - 1)!, we note that the condition when la l = b +dis exactly the same 

as the condition in the case when </>(r) = rb ( 4.3.9), which is what is expected as c--+ 0. 

For example we specialise to the case b = 1 and d = 3. In this case to reproduce constants 

expression ( 4.3.28) gives t he equations 

I ( - a! 

Lµixf = ~ 47r(f)! 
j=l - l O 

if Ja / = 4 and a is even; 

for all other a E ( z+ )d : la l :S 4, 
( 4.3.29) 

where we recall that f( - !) = - 27rt . To reproduce all linear polynomials we require in addition 

I 

L /.ljXj = 0 for all a: E (z+t : /a/= 5, ( 4.3.30) 
j=l 

to reproduce all quadratic polynomials we also require 

1 ( 3c2 a:! 

L µjxf = ~ 1611"( t )! 
j=l l 0 

if Ja/ = 6 and a is even; 
( 4.3.31) 

for all other a E (z+ )d /a l = 6, 
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and to reproduce all cubic polynomials we require in addition 

I 

L µixJ = 0 for all a E (Z+)d : /al = 7. 
j=l 

( 4.3.32) 

We notice that when <f>(r) = (r 2 + c2 )!, the weights (2.3.38) are suitable for reproducing constant 

functions in 3 dimensions for all c. Also (2.3.39) reproduces all linear polynomials, as does (2.3.40). 

The choice (2.3.40), however, does not reproduce quadratic polynomials when c > 0, because 

condition ( 4.3.31) fails. Any function that is to reproduce cubic polynomials for c > 0 must have 

weights which depend on c. 

It can be verified that the following function with l = 59 is sufficient: 

µj Xj 

(-49 - 81c2 )/ 8rr (0, O, O); 

(142 + 369c2 )/ 96rr (± 1, o, 0), (0, ± 1, 0), (0, 0, ± 1); 

( - 25 - 54c2 )/ 96rr (± 2, o, o), (o, ± 2, o), (o, o, ± 2); 

(2 + 3c2 )/ 96rr (± 3, o, 0), (0, ± 3, 0), (0, 0, ± 3); 

( - 4 - 27c2 )/ 24rr (± 1, ± 1, ± 1); 

(1 + 72c2 )/ 384rr (± 2, ± 2, ± 2); 

3c2 / 32rr (± 2, ± 1, 0), (± 2, o, ± 1) , (± 1, ± 2, 0), 

(0, ± 2, ± 1), (± 1, 0, ±2), (0, ± 1, ± 2). ( 4.3.33) 

We also consider the case b = - l and d = 3. In this case the maximum degree of polynomials 

that can be reproduced is 1. To reproduce all constants expression ( 4.3.28) implies 

I ( - a! 

LµixJ = ~ 4rr(f)! 
j=l l 0 

if /a/ = 2 and a is even; 

for all other a E (Z+ )d /a/ ~ 2, 

and to reproduce all linear polynomials we require in addition 

r 

L µjxj = 0 for all a E (z+l : Ja / = 3. 
j = l 

( 4.3.34) 

( 4.3.35) 

In this case it is easy to find basis functions which reproduce all linear polynomials (the maximum 

degree possible), for example: 

3/2rr (0, 0, O); 

-1/4rr (±1, 0,0), (0, ± 1, 0), (0, o, ± 1). 
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Finally we consider the case when b = - 2 and d = 4. Again the maximum degree of polyno

mials that can be reproduced is 1. In this case to reproduce all constants we require 

I ( - a! 

'L µjx'f = ~ 47r2(f )! 
j = l l O 

if ja j = 2 and a is even; 

for all other a E ( z + )d /al :::; 2, 
( 4.3 .37) 

and to reproduce all linear polynomials we require in addition 

I 

L µjx'f = 0 for all a E (z+)d : /a l= 3. ( 4.3.38) 
j = l 

Thus, for example, the following basis function reproduces all linear polynomials (the maximum 

degree possible): 

2/ 11' 2 (0,0,0,0); 

(± 1, o, o, 0), (0, ± 1, o, 0), (0, o, ± 1, 0), (0, o, o, ± 1). ( 4.3.39) 

Analysis for the case </>( r) = rb log r, b > 0. 

In this case the restriction b > 0 is necessary for the continuity of </> at 0. The required Fourier 

transform (Jones 1982, Theorem 7.34) is the function 

if b is a positive even integer; 

otherwise, 

(4.3.40) 

where 

l<(;) = 1 dr(z + 1) 
r(z + 1) dz 

z f:. -1, -2, .... (4.3.41) 

When band dare not both positive even integers then:/> cannot be of the form ( 4.2.47) near>. = 0. 

Because b > O, (4.2.51) holds and so Theorem 4-16 shows that it is not possible to reproduce all 

constants with an absolutely integrable function '1/J. 

Therefore we restrict b and d to be positive even integers. As in the case </>( r) = rb, Corollary 

4-19 shows that all polynomials of degree b + d - l can be reproduced by a function of the form 

( 4.3.1) and that this is the maximum degree possible. 

84 



Polynomial Reproduction Part II 

For future reference we note that all the remarks we made about the function </>( r) = rb in the 

paragraph including ( 4.3.4) and ( 4.3.5) also hold in this case. 

Now, after allowing for the difference in the constants of expressions (4.3 .2) and (4.3.40), the 

technique used to deduce conditions on {µi : j = 1, 2, ... ,.l} and { x; : j = 1, 2, ... , l} to enable 

polynomials of degree m to be reproduced, so long as m ~ b + d - l, is exactly as in the case 

</)( r) = rb and yields: 

r ( (- 1)f- 1 (b + d) a! 
L µix'f = ~ (%)! 2b+dnf (f )! if ia l = b + d and a is even; ( 4.3.42) 

i = 1 lo forallothera E (Z+)d: lal~b +d+m. 

We consider the case when b = d = 2. The maximum degree of polynomials that can be 

reproduced is 3. In this case to reproduce all polynomials of degree m, 0 ~ m ~ 3, conditions 

( 4.3.42) require 

~ ( a! if ia l = 4 and a is even; 
L,; µ; x'f = ~ 4n( % )! 
i =l l O for all other a E (z+ )d : ia i ~ 4 + m. 

( 4.3.43) 

Therefore the following basis function, with l = 21, reproduces all cubic polynomials: 

µj Xj 

175/ 487!' (0,0); 

- 71 / 487!' (± 1, 0), (0, ± 1); 

25/ 967!' (± 2, 0), (0, ± 2); 

- 1/487!' (± 3, 0) , (0 , ± 3); 

1/ 37!' (± 1, ± 1); 

- 1/ 1927!' (± 2, ± 2). ( 4.3.44) 

To show the increase in complexity for reproduction of higher order polynomials we consider 

the case b = 4 and d = 2. Now the maximum degree of polynomials that can be reproduced is 5, 

and to reproduce all polynomials of degree m , 0 ~ m ~ 5, the conditions ( 4.3.42) are the equations 

r ( 3a! 

L µi x'f = ~ 32n(f )! 
j=l l O 

if !a l = 6 and a is even; 

for all other a E (z+ )d : iai ~ 6 + m. 
( 4.3.45) 

With some endeavour it may be checked that the following basis function , with l = 37, reproduces 
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all quintic polynomials: 

µj Xj 

- 737132/ 24576011" (0, O); 

342432/ 24576011" (± 1, O}, (0, ± 1); 

- 91104/ 24576011" (± 2,0) , (0, ± 2); 

21904/ 24576011" (± 3, 0), (0, ± 3); 

- 3082/ 245 76011" (± 4, 0), (0, ± 4); 

208/ 24576011" (± 5, 0), (0, ± 5); 

- 93696/ 24576011" (± 1, ± 1); 

8112/ 24576011" (± 2, ± 2); 

- 512/ 24576011" (± 3, ± 3); 

21/24576011" (± 4, ± 4). ( 4.3.46) 

Analysis for the case cp(r) = (r 2 + c2 )f log(r2 + c2 )i , b E 'R. 

Neither Jones (1982) nor Gel'fand and Shilov (1964) give a form for the generalised Fourier trans

form of th function 1>, but it is not difficult to calculate it using, for instance, the technique of 

proof found in Jones (1982 , Theorem 7-34). We find 

J(>.) 

r b 2..±..!!. . d 2..±..!!. !(2..±.!!.(cll >- 11 ) j ( -l) ,+' 2 ' ( ! )! K 'c ' IIA II '¥ if b is a non-negative even integer; 

[ ) 
d ( )] 2~+11r!c~ l (! K(- %- 1) - pog(¥jl) K~(cli >-11) + db K~(cll >- 11 ) f( - %) ll >- II ~ otherwise, 

(4.3.47) 

where K(z) is defined in (4 .3.41). There is no simple expression for fJ(2..±.!!.(cll>- II ), but it may be 
' 2 

deduced from Abramowitz and Stegun (1970, 9.6.42-46) that it is not possible for the second line 

of (4.3.47) ever to be of the form (4.2.47) near>. = 0. The analysis which was used in case (b) 

( 4.3.13) shows that the first line cannot be of that form if b +dis not an even integer. In both these 

cases (4.2.51) holds by (4.3.14) and so Theorem 4-16 shows that in these cases it is not possible to 

reproduce constants with an absolutely integrable function 7/J. 
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Therefore we restrict b+ d to be a positive even integer and b to be a non-negative even integer. 

To deduce polynomial reproduction in this case we use Theorem 4-15 as for case (b ) . The analysis 

given there implies that ( 4.2.4 7) holds with r = b + d, t = 2b + 2d - 1 and O < E' < 1 as do ( 4.2.46), 

( 4.2.51) and ( 4.2.52). To check the other conditions we proceed as in case (b) and look for a series 

expansion for </>( x - y ). For fixed y E Rd, we find 

(1/x - Yll 2 + c2)! log(( ll x - Yl l2 + c2)i) 

= ( ll x ll 2 - 2x.y + II Yll 2 + c2)t ! ( 10g ll x 112 + log ( 1 + -2x.y I xl/1~11 2 + c2) ) . ( 4.3.48) 

The first term on the right hand side is just a polynomial in x , as bis a non-negative even integer. 

The final term may be expanded as a power series for sufficiently large llx ll · Hence, we have an 

expansion, valid for sufficiently large ll x ll , 

00 

( ll x - Yll 2 + c2)t log(( ll x - Yll 2 + c2)t) = ( ll x ll 2 - 2x.y + II Yll 2 + c2)! log ll x ll + L fb - k (x ), ( 4.3.49) 
k = O 

where each fb - k is homogeneous of degree b - k. Thus, any 'ljJ of the form (4.3.1) which decays 

as ll x ll -. oo has an expansion whose leading order term is homogeneous of some negative integer 

degree. In this case Lemma 4-17 yields that conditions ( 4.2.48)-( 4.2.50) and ( 4.2 .53) all hold. 

Hence, all conditions of Theorem 4-15 are satisfied and so functions of the form ( 4.3.1) can reproduce 

all polynomials of degree b + d - 1 and this is the maximum possible degree. 

Also, for future reference we note that the remarks made in case (b) (the paragraph containing 

(4.3.25) and (4.3.26)) also hold in this case. 

Conditions on {µj : j = 1, 2, ... , l} and { Xj E zd : j = 1, 2, .. . , l} similar to ( 4.3.28) can be 

evaluated by the same analysis used in case (b) and they yield that to reproduce polynomials of 

degree m ~ b + d - 1 we require 

if b + d ~ la l ~ b + d + m and a is even; 

for all ot her a E (Z+)d: la l ~ b+d+m, 

( 4.3.50) 

where A1 has the value ( 4.3.21 ). We notice that the conditions when lal = b + d are exactly the 

same as those when </>( r ) = rb log r ( 4.3.42), which is expected as c -. 0. 
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We consider the case b = d = 2. In this case the maximum degree of polynomials that can be 

reproduced is 3. The conditions to reproduce constants are: 

I ( a! 

L µjx'f = ~ 41r(f )! 
j=l l 0 

if ial = 4 and a is even; 

for all other a E (z+ )d ial ::; 4. 
(4.3.51) 

To reproduce all linear polynomials we require in addition 

I 

L µix'f = 0 for all a E (z+)d ial = 5, ( 4.3.52) 
j = l 

to reproduce all quadratic polynomials we also require 

1 ( - 3c2 a! 

L µjx'f = ~ 161r( t )! if lal = 6 and a is even; 
( 4.3.53) 

j=l l 0 for all other a E ( z+ )d ial = 6, 

and to reproduce all cubic polynomials we require in addition 

I 

L /LjXj = 0 for all a E (z+t : ial = 7. (4.3.54) 
j =l 

Therefore, when c > O, the weights ( 4.3.44) reproduce only linear polynomials. Any function 'I/; 

that is to reproduce cubic polynomials must have weights which depend on c. 

For example it can be verified that the following function with l = 21 is sufficient: 

µj Xj 

175 + 85c2 
/ 481r (0, O); 

- 71 - 117c2 / 481r (± 1,0), (0, ± 1); 

25 + 45c2 / 961r (± 2,0), (0 , ±2); 

-1 - 3c2 / 481r (± 3, 0), (0, ±3); 

4 + 9c2 / 121r (± 1, ± 1); 

- 1 - 9c2 / 1921r (± 2, ± 2). ( 4.3.55) 

Our final example is the case b = 0 and d = 2. Now the maximum degree of polynomial that 

can be reproduced is 1. In this case to reproduce constants we require 

I ( a! 

L µjx'f = ~ 21rct )! 
j=l l 0 

if lal = 2 and a is even; 

for all other a E (z+ t ial ::; 2, 
( 4.3.56) 
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and to reproduce all linear polynomials we require in addition 

I 

Lµix'f = Oforalla E (z+t: la l= 3. ( 4.3 .57) 
j = l 

Therefore the following function, with l = 5, reproduces all linear polynomials: 

- 2/ 1r (0, O); 

1/ 21r (± 1,0), (0, ± 1). ( 4.3.58) 

Analysis for the case </>(r) = e- c,·b, b > 1, c > 0. 

In this case we use Theorem 4-16 to deduce that it is not possible to reproduce constants and so we 

check conditions ( 4.2.51) and ( 4.2.52). The function </> is not smooth only near x = 0 and there the 

leading order singularity is homogeneous of degree b (if bis not an even integer). Because we have 

b > 1 all partial derivatives of </> of order at most d + 1 are absolutely integrable over Rd. Hence 

Lemma 4-13 shows that 

J(>,) = o( II >. 11- d -
1 

) as 11 >. II --+ 00' ( 4.3 .59) 

and so condition ( 4.2.51) is satisfied. Further 

( 4.3.60) 

It can now be deduced, although we omit t he details , that, because the funct ion e-c ll xllb is st rictly 

monotically decreasing away from O, ( 4.2.52) is satisfied for all /3 E zd \ {O}. These two conditions 

are sufficient for us to apply Theorem 4-16 and find that it is not possible to reproduce constants 

wit h an absolutely integrable 'I/; of the form ( 4.3.1). 
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CHAPTER 5 : RATE OF CONVERGENCE 

Section 5.1 : Convergence over Rd. 

In this section we shall be deducing results about global rates of convergence from polynomial 

reproduction properties worked out in Chapter 4. Suppose that 'ljJ : Rd -+ R is a function that 

reproduces polynomials of degree m and f: Rd -+ R is a suitably smooth function which does not 

grow too fast. We may form the quasi-interpolant to f: 

ah(x) = L f(z)'ljJ(h- 1 (x - z)), (5.1.1) 
zE(hZ)d 

where 

(5.1.2) 

We study the rate of decay of the error llah - f 11 00 as h -+ 0. 

In this section and Section 5.2 we work with a general continuous function 'ljJ which reproduces 

polynomials and then apply these results in Section 5.3 to some of the cases considered in Section 

4.3 where 'ljJ is a linear sum of translates of radial basis functions 

I 

'ljJ(x) = L µi</>(llx - Xj II), (5.1.3) 
j=l 

and where { Xj E zd : j = 1, 2, .. . , l} . In many practical cases to reproduce polynomials of degree 

m with absolutely convergent sums we require 

'ljJ(x) = o(llxll-d-m) as llxll-+ oo, (5.1.4) 

and we shall restrict our attention to the case when 

(5.1.5) 

for some constants A and k > 0. We call such a function which reproduces polynomials of degree 

man m,k-basis function, fork> 0. As we consider many examples of m,1-basis functions (e.g. 

Examples (a)-(d) in Section 4.3) we abbreviate "m,1-basis function" to "m-basis function". We 

see that an m, k- basis function satisfies 

and 

17/J(x )I s; A, 

17/J(x)j s; All x ll-d- m-k ' 
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Rate of Convergence 

The results obtained, although of a theoretical rather than a practical nature, will allow us to 

deduce corresponding results for rates of convergence over a finite domain. This will be demon

strated in Section 5.2. Initially we prove a straightforward theorem showing the general technique 

of analysis. A sharpened version of Theorem 5-1 is given later (Theorem 5-6). 

Theorem 5-1. Suppose tliat 'I/; is am, k-basis function and tliat f E cm+1(1?d) witlI all partial 

derivatives of orders m and m + 1 being bounded over Rd. Tlien the error of the quasi-interpolant 

( 5.1.1) satisfies tlie bound 

( Aohm+k 

ll ah - f ll oo ~ ~ A~hm+1 I log hi 
l At hm+1 

ifO<k<l; 
if k = 1; 
if k > 1, 

for sufficiently small h, where A 0 , A~ and At are independent of h. 

(5.1.8) 

Proof. Fix a point x E R,d and let p E IIm be the Taylor series approximation for f about x taking 

all terms up to and including degree m. We note that 

p(x) = f(x). (5.1.9) 

Also, because all partial derivatives off of order m + 1 are bounded over Rd, by a standard Taylor 

series argument, 

lp(z) - f(z) I ~ Am +1 llz - xllm+l , (5.1.10) 

for some constant Am+i independent of x. Similarly, because all partial derivatives off of order 

mare bounded over Rd then, 

lp(z) - f(z) I ~ Am ll z - xllm, zER\ (5.1.11) 

where again Am is independent of x. 

Now 

lf(x) - a1i(x)I = f(x) - L f(z)'l/;(h- 1 (x - z)) 
zE(hZ)d 

p(x)- L f(z)'l/;(h- 1 (x - z)) ·, (5.1.12) 
zE(hZ)d 

using (5.1.9). We may now use the fact that polynomials of degree m are reproduced to give 

lf(x)- ah(x)I = L (p(z) - f(z))'l/;(h- 1 (x - z)) (5 .1.13) 
z E(hZ) d 
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This sum is now in a suitable form for estimation as jp(z) - f(z) I is small for z near x and 

'lj;(h- 1(x - z)) decays rapidly away from x. In fact we split up the sum into three parts: 

S1 = {z E (hZl : ll z - x ii ~ eh} 

S2 = {z E (hZl : eh< ll z - ~ II ~ 8} 

S3 = {z E (hZ)d : 8 < ll z - x ii } 

where e is any constant satisfying 

(5.1.14) 

(5.1.15) 

(5.1.16) 

(5.1.17) 

where 8 is any fixed positive real and where h is assumed sufficiently small so that S2 =fi 0. We see 

that 

(5.1.18) 

where 

T; = L (p(z) - f(z))'lj;(h- 1(x - z)), i = l,2,3. (5.1.19) 

To bound T1 we use (5.1.6), (5.1.10) and (5.1.14) to yield 

< A A(ch)m+l '"' l _ m+l ~ 

(5.1.20) 

where A1 is a constant independent of x and h. 

To bound T2 we deduce from (5 .1.7) and (5.1.10) that 

IT2I ~ Am+1 Ahd+m+k L ll z - xll-d+l-k. (5.1.21) 
z ES2 

To estimate this final sum we aim, in the manner of the one dimensional integral test, to bound it 

by an integral which is easy to evaluate. We take, for each point z E S2, a cube 

Gz = {y : IIY - z ll oo ~ h/2}. (5.1.22) 

We have the inequality 

II 11
- d+l-k < II ll-d+1-k fa IIY - x 11- d+i - k dy 

z - x - z - x vol(Gz)inf{ ll v - x ll -d+i-k: yEGz} 

= sup{ II Y- x ll d-l+k : y E Gz} J IIY - x ll- d+l - k dy 
vol(Gz) ll z - x lld-l+ k G, 

< (c + -/d/2)d- l+k j II - 11-d+1- k d 
- hded-l+k Y x Y, 

G, 
(5.1.23) 
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the last line following from (5.1.15) . Now summing (5.1.23) over all points z E S2 , using the bound 

(5.1.17) on c and the fact that the integrand is positive, we obtain for sufficiently small h 

( A 2 hm+k if O < k < 1; 
:S ~ A;hm+ 1 I log hi if k = 1; 

l At hm+i if k > 1, 

for constants A.2 , A.2 , A 2 , A; and At all independent of x and h. 

Finally to bound Ta we can use (5.1.7) and (5 .1.11) to yield 

ITa l :S AAmhd+m+k L ll z - x11-d- k. 
zES3 

if O < k < 1; 

if k = 1; 

if k > 1 

This sum may be analysed by similar methods to those used for T2 and it follows that 

where A.a and Aa are constants independent of x and h . 

(5.1.24) 

(5 .1.25) 

(5.1.26) 

(5.1.27) 

(5.1.28) 

This estimate combined with (5.1.18), (5.1.20) and (5.1.25) yields (5.1.8) which completes the 

proof of the theorem. • 

We note the following elementary converse to this theorem, which is well known ( e.g. Fix and 

Strang (1969, Theorem 2)). 

Lemma 5-2. Suppose that 

(5 .1.29) 

as h --t 0, for all f E cm (Rd) witlI all partial derivatives of orders m and rn + 1 bounded over R,d. 

In this case 7/J reproduces all polynomials of degree m. 

Proof. Let P be a homogeneous polynomial of degree m' :S m. By assumption 

L P(z)'l/;(h- 1 (x - z))- P(x) = o(hm), (5.1.30) 
zE(hZ)d 
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as h -+ 0. We pick y E nd and take x = hy: then 

L P(z)'1/J(h- 1 (x - z)) - P(x) = o(hm) 
z E (hZ)d 

=> L P(z')'ljJ(y - z') - P(y) = o(hm-m'). (5.1.31) 

The left hand side of (5.1.31) is now independent of hand so must be zero which means that P is 

reproduced by '1/J. Hence all polynomials of degree at most m are reproduced by '1/J. • 

However Theorem 5-1, especially (5.1.25), leaves open the question whether it may be possible 

to remove the I log hi term in the case k = 1. This is especially important to us as we have already 

remarked that the examples we considered in Section 4.3 can be m, 1-basis functions. Initially we 

note the following simple corollary from the proof of Theorem 5-1. 

Corollary 5-3. If 'ljJ is an m-basis function, J satisfies the conditions of Theorem 5-1 and T2 is 

defined as in (5.1.19) tlien, for all x End , 

(5 .1.32) 

for some constant A4 independent of x and h. 

Proof. From (5.1.13) and (5.1.19) we see that 

(5.1.33') 

Now (5.1.20) and (5.1.28) yield the corollary. • 

This makes it clear that to answer the question we must investigate the estimation of T2 more 

carefully; to this end we prove a lemma. 

Lemma 5-4. Suppose tliat 'ljJ is am-basis function and that there is a constant A such that 

1°:~~) ,::; Allvll-d- 2
-m , i = 1,2, ... , d, (5 .1.34) 

for all sufficiently large llvll- Suppose also that f E cm+2(nd) with all partial derivatives of order 

m , m + 1 and m + 2 bounded over nd. Then, with T2 defined as in (5.1.19), we have 

(5.1.35) 
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where 
1 Oo: j ( X) ex 

a! axo: y ' 
(5.1.36) 

{o:E(Z+)d: io:l=m+l} 

is a homogeneous polynomial of degree m + 1, where 8 is any positive constant and where Ao is 

independent of x and h. 

Proof. Before embarking we note that (5.1.34) is satisfied for m-basis functions 't/J of the form 

(5.1.3) if the expansion of </> for large argument consists of homogeneous terms and if ef>( ll x ll ) is 

continuously differentiable for sufficiently large ll x II - These conditions are satisfied by examples 

(a)-(d) considered in Section 4.3. We also note that if (5.1.34) is satisfied for all IIYII 2: c we can 

replace the condition on c in (5.1.17) by 

c = max(2d!, c). (5.1.37) 

In this case the proof of Theorem 5-1 and Corollary 5-3 are still valid. From now on we assume 

that this choice of c has been made. 

From (5.1.19) 

L (p(z) + Pm+1(z - x) - J(z))'t/J(h- 1(x - z) ) 

z ES2 
(5.1.38) 

and, because all partial derivatives off of order m + 2 are bounded over 'Rd, 

lp(z) + Pm+l (z - X) - f(z)I ~ Am +2 ll z - x llm+2, (5.1.39) 

where Am +2 is a constant independent of x. Hence, using (5.1.7) with k = 1, the expression (5.1.38) 

is at most 

Am+2 Ahd+m+1 L ll z - xJl- d+l . (5.1.40) 

z ES2 

The method of analysis that is used to obtain (5.1.25) from (5.1.21) shows that (5.1.40) is at most 

Ahm+l for some constant A independent of x and h. Therefore, to prove the lemma, it is sufficient 

to show that 

L Pm+1(z - x)'t/J(h- 1(x - z)) - hm+l J Pm+1( - y)'t/J(y)dy ~ A1hm+l, (5.1.41) 

zES2 {y : II Yl l::::oh - 1} , 

for some constant A.1 independent of x and h. Recalling that Pm+l is homogeneous of degree m + 1, 

this is equivalent to showing that 

(5.1.42) 
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where 

(5.1.43) 

For each z E S2 we let 

(5.1.44) 

and because Gz has unit volume we find 

I.Pm+1(z - h- 1x)'lj;(h- 1x - z) - l. Pm+1(Y- h- 1x)'lj;(h- 1x -y)dyl 

:S!max[sup{la~;[z3m+1(y-h- 1 x)'lj;(h- 1x-y)]I: yEGz}: i =l ,2, ... ,d] , 

(5.1.45) 

by the mean value theorem. To estimate the term on the right we recall from (5.1.36) and our 

assumptions on f that 

(5.1.46) 

and also that 

i=l,2, ... ,d, (5.1.47) 

where Am and Am+i are constants independent of x. It follows from (5.1.7), (5.1.34) and the 

remark in the second paragraph of the proof that, for z E S2 , the right hand side of (5.1.45) is at 

most 

(5.1.48) 

the last inequality being a consequence of the definitions (5.1.43) and (5.1.44). Replacing the right 

hand side of (5.1.45) with this expression and summing over all z E S2 we obtain 

L (.Pm+1(z - h- 1x}'l/J(h- 1x - z) - j_ Pm+1(Y- h- 1x)'l/J(h- 1x - y)dy) 
zES2 G, 

(5.1.49) 

where A.2 is independent of x and h. The sum on the right is bounded independently of x and h 

and so it follows from (5.1.42) that it remains only to show that 

(5.1.50) 
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is also bounded independently of x and h. From the definitions of Gz (5.1.44) and S2 (5.1.43) we 

see that this difference is at most 

However it follows from (5 .1.5) and (5 .1.46) that both these integrals are bounded independently 

of x and h for sufficiently small h, thus completing the proof of the lemma. • 

Corollary 5-3 and Lemma 5-4 show that, because the coefficients 0 ;;~x) in (5.1.36) are bounded 

independently of x by assumption, the question as to the possible redundancy of the I log hi term 

of Theorem 5-1 can be reduced to the study of the integral 

lo = j yo:'1/;(y) dy 
{y : IIYll~ oh - 1 } 

(5.1.52) 

with a E (Z+)d : lal = m + 1. In particular, if 10 is uniformly bounded, we can dispense with the 

I log hi term. In the following lemma we give an expression for this integral in an important case 

which will be shown to hold when 7/; comes from the examples considered in Section 4.3. 

Lemma 5-5. Let 7/; be am-basis function, let 10 be tile integral (5.1.52) for any a E (Z+)d : 

lal = m + 1, and let,(/; denote tile Fourier transform of 'I/;. If, for some complex number I( and real 

constants Ao, A1 and E > 0, we have 

0 < II-XII~ E, 

and 

then 

is bounded independently of h, wi1ere i = yCI. (Note tlrnt we allow I( = 0.) 

Proof The function v* : n --t n defined by 

{ 
0 ifs ~ 0 

v*(s) = exp( - 1/ s2 ) ifs> 0 

is smooth. Hence v: n --t n defined by 

_ v* (6 - s) 
v( 8 ) = -v*-( 6---s )_.;.+_v_*-'-( s---6-/-2) 
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is smooth, positive and satisfies 

-( ) = { 1 if s ~ 8 / 2 
V S O if S 2'. 8, (5.1.58) 

where 8 occurs in the definition (5.1.52). We define v : 'Rd ---t n by 

v(y) = v( IIYI/ ) (5.1.59) 

and finally uh : nd - n by 

uh(Y) = v(hy). (5.1.60) 

Thus uh is smooth, positive and satisfies 

(5.1.61) 

It follows that 

j y()t 'l/J(y) dy - j uh (y )y()t 'l/J(y) dy 
{y: II Yll ~6h -l } R,d 

~ j IY()t 1/ 'l/J(y )I dy 
{y: 6h - 1 / 2~ II Yll ~6h - 1 } 

~ Aj IJ ylJm+lllYll -d-l-m dy, 
{y: 6h - 1 / 2~!1Y i1 ~6h - 1 } 

(5.1.62) 

the last line depending on (5.1.7). This integral is a multiple of J/::1

1

12 s - 1 ds which is independent 

of h. Hence it is sufficient to prove the lemma when we replace I 0 by 

(5.1.63) 

Both uh(Y) and y()t'lj;(y) are in L 2('Rd) and hence we may use the Parseval-P lancheral Theorem 

(Friedlander 1982, Corollary 9.2.1) to deduce that , because the Fourier transform uh is real , 

(5.1.64) 

this expression for the Fourier tr_ansform of y()t'lj;(y) coming from Theorem 4-4 (d). Now the as

sumptions (5.1.53) and (5.1.54) give 

ld uh(A) a~~~A) dA - JR,d uh(A)Klog I/ Al/ dA 

~ j Aa luh(A) I dA + j (A1 + IKI I log II AI/ I) luh(A) I dA 
P : 11->-!l~f} P: 11->- ll ~ f} 

~ Ao j lv(w) I dw + j (A1 + IKII log hi+ IKII log llwlll ) lv(w) I dw, R,d {w: llw!l~fh-1} 

(5.1.65) 
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the final line following from the substitution w = h- 1 A and the observation that 

(5.1.66) 

Both integrals are bounded independently of h, for h sufficiently small, because we note that v is 

good (4.1.1) and hence so is v (Theorem 4-2): in particular vis continuous and decays faster than 

any polynomial. Hence it is sufficient to prove the lemma when we replace I 0 by 

Performing the change of variables w = h- 1 .X, we have 

im+l I( j 
I2 = ( )d v(w)(logh + log/ /w// )dw 

27r R,d 

im+l I( d -

= (
2

1r)d logh(21r) v(O)+A, 

(5.1.67) 

(5.1.68) 

for some constant A independent of h, the final line following from the formula for inverse Fourier 

transforms and v being good. Noting finally that v(O) = 1, the proof of the lemma is complete. • 

We can now provide a slightly sharper result than Theorem 5-1, in the case when 7/; is a suitable 

m-basis function . 

Theorem 5-6. Let 1/; be a11 m-basis fu11ctio11 for which 

I at;~) I ~ Al/ yl/-d-m- 2' i = 1, 2,". 'l (5.1.69) 

a11d all sufncientlylarge // y l/ and 

(5.1.70) 

and a E (z+t : /a/ = m + 1. In tl1is case for any f E cm+ 2('R.d) with all partial derivatives of 

order m, m + 1 and m + 2 bounded over na there exists a consta11t A* (independent of h) such 

tl1at, for all sufncien tly small h, 

(5.1.71) 

However, if 1/; is a11 m-basis fu11ction satisfying (5.1.69) and, for some a E (Z+)a : /a/ = m + 1, 

there are a no11-zero complex constant I( and E > 0 such tl1at 

0 < 1/.XI/ ~ E, (5 .1.72) 
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and 

11 >. 11 2: €, (5.1.73) 

then there exist functions f of the above form such that 

(5.1.74) 

for sufficiently small h and some constant a*. 

Proof. The first part follows directly from Corollary 5-3, Lemma 5-4 and Lemma 5-5 with l( = 0. 

For the second part we take some particular a' E (Z+)d : la'I = m + 1 satisfying (5.1.72) and 

(5.1.73), and we choose any f E cm+ 2 (Rd) with all partial derivatives of order m, m + 1 and m + 2 

bounded over Rd such that there exists some x E Rd for which 

8°f(x) _ {(-1r+1 a! ifa = a'; 
8x 0 - 0 for all other a E (z+t : lad = m + 1. 

(5.1.75) 

In this case equation (5.1.35) in the statement of Lemma 5-4 becomes 

T2 + hm+I j y°'
1 

'ljJ(y) dy ~ Aohm+l. 
{Y = IIY ll ~oh- 1

} 

(5.1.76) 

Now the result follows from Corollary 5-3 and Lemmas 5-4 and 5-5. • 
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Section 5.2 : Convergence over a Bounded Domain. 

We now come to the more practical question of determining the rate of convergence for quasi

interpolation over a bounded region, again on a regular grid. We take n to be an open, bounded 

region of Rd and suppose that we have a function f, suitably smooth, on cl(n) , the closure of n. 

We now define the quasi-interpolant to J on n by 

J(z)'lj;(h- 1 (x - z) ). (5.2.1) 

We cannot expect convergence on the whole of n but we look for convergence on a domain smaller 

by size 8: 

no = {y E n : II Y - zll ~ 8:::} z E n}. (5.2.2) 

In some cases we may be able to take 8 ---+ 0 as h ---+ 0 but the mesh size of the discretization 

excludes 8 = o(h). We assume 

eh~ 8 < M, (5.2.3) 

where c occurs in (5.1.17) and 

M = sup{inf{IIY - zll : z ~ n} : y En}, (5.2.4) 

the second inequality implying that n 0 is not empty. As in Section 5.1 we restrict our attention to 

the case where 'lj; is an m, k-basis function for some k > 0. 

In some cases it is possible to establish a rate of convergence by first extending the function 

f to a function JE over the whole of Rd. If JE satisfies the conditions of Theorem 5-1 or 5-6 then 

a rate of convergence can be deduced from an estimate of the error between ah and the quasi

interpolant (5.1.1) to fE. Suitable J E can be provided in many cases by the Whitney Extension 

Theorem (Hormander 1983, 2.3.6), although it cannot be applied for all domains n. We instead 

give a slightly longer but more general proof which involves an extra estimation of the error when 

performing quasi-interpolation to a polynomial. 

Lemma 5- 7. Let n, n 0 be defined as above, 'IP a m, k -basis function, q E IIm and x E n 0 • Then, 

for suflicien tly small h, 

q(x) - (5.2.5) 

where Aq is a constant independent of x, 8 and h, depending on 

sup {J0;:~y) J: y En, a E (z+t: lal ~ m}. (5 .2.6) 
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Proof. We see that, because q is reproduced over Rd and because x E !15 , 

q(x) - L "L q(z)'lj;(h- 1(x - z)) 
zE(hZ)d \ n 

< lq(z)l 11(h- 1 (x - z)) I- (5 .2.7) 
{ z E(hZ)d: 5< ll z-x ll } 

Now the identity 

q(z) = L 1 [Y'q(y) I (z - x )" 
+ d a! [)ya y = x 

{aE(Z ) : la l~ m} 

(5.2.8) 

implies 

llz - xii 2 o, (5.2.9) 

where Aq depends on (5.2.6). Using inequalities (5.1.7) and (5.2.9) we see that the right hand side 

of ( 5 .2. 7) is at most 

L }r! Ahd+m+k ll z - x 11-d- k ~ A.qhm+ko- m Joo s-1-k ds, 
{zE(hZ)d: 5< ll z - x ll} 0

/
2 

(5.2.10) 

the inequality following from the method of analysis used to obtain (5.1.25) from (5.1.21) in the 

proof of Theorem 5-1 and (5.2.3). Evaluation of this integral completes the proof of the lemma. • 

The other preliminary is to define the space of suitable functions: 

Ck(cl(D)) = { f E Ck(n) : 
8

~~~y) extends continuously to cl(D) for all a E (z+t : lal ~ k}. 
(5.2.11) 

Now we can prove two theorems, analogous to Theorems 5-1 and 5-6, establishing the rates of 

convergence over n. 

Theorem 5-8. Let n, n0 be defined as at tlie beginning of tlie section, let 'lj; be a m, k-basis 

function and let£ be any positive constant. Tlien , for any f E cm + 1(cJ(D)), x E n0 , sufficiently 

small h, and o satisfying (5.2.3) and 

{ 

f if O < k < l; 
0 2 f lloghl - l/(l+m) if k = l; 

fh(k-1)/(m+k) if k > 1, 
(5.2.12) 

tlie inequality 

· ( Ahm+k if o < k < 1; 
lf( x) - a,.(x) I ~ ~ A.*h111 +1 11oghJ if k = O; 

l Jl+hm+l ifk > 0 

(5.2 .13) 
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holds, where A and A* are constants independent of x and h. 

Proof. As in the proof of Theorem 5-1 we let p E IIm be the truncated Taylor series for J about 

the point x containing all terms up to and including degree m. Then we have the bound 

IJ(x) - i'i1i(x) I = p(x) - L J(z)'lj;(h- 1 (x - z)) 

< L (p(z) - f(z))'I/J(h- 1 (x - z)) + A1hm+ko- m- k, (5.2.14) 
z E (hZ) 4 n fl 

the final line depending on Lemma 5-7. Here we use A 1 instead of Av because p is the Taylor series 

for J and hence the constant depends only on sup { I a:~~y) I : y E n, a E (z+ )d : la l S: m} which , 

because f E cm +1 (c1(!1)), is bounded and independent of x, 8 and h. The sum in the final line is a 

subset of that analysed in Theorem 5-1 and we may estimate it by similar techniques. We define, 

using (5.1.14)- ( 5.1.16), 

S; = S; n n, i = 1,2,3, (5.2.15) 

and 

'L = L (p(z) - J(z))'I/J(h- 1 (x - z)), i = l,2,3. (5.2.16) 

Because x E !16 , (5.2.3) implies T'1 = T1 and T'2 = T2 , and we see that 

L (p(z) - f(z))'I/J(h- 1 (x - z)) S: ITi l + IT2 I + IT3 1· (5.2.17) 
z E (hZ)d n fl 

The estimates of Ti and T2 are exactly as in the proof of Theorem 5-1, because, when ll z - x JJ S: 8, 

the line joining x to z is completely within n. Hence (5.1.20) and (5.1.25) yield, for some constants 

A1 , A2 , A; and At independent of x, 8 and h, and all sufficiently small h, 

IT I < A hm +l 1 _ 1 (5.2.18) 

and 
( A 2 hm+k if O < k < 1; 

JT2 J S: ~ A;hm +l llogh J if k = 1; 
l At hm+i if k > 1. 

(5.2.19) 

The estimation of T3 , however , is not the same as previously because, when z E 53 , the line joining 

x to z may not lie completely within n and hence (5.1.H) may not hold . Therefore we use (5.2.9) 

to give the bound 

Ar Jp(z) - f(z )I s; om ll z - x JJm + sup{ lf(y)J : y E n }, (5.2.20) 
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where, by the remark after (5.2.14), A1 depends on sup {I a;;Sy) I : y E n, a E (Z+)d la l :Sm}. 
Hence, we have the bound, similar to (5.1.11), 

(5.2.21) 

where Am = A.1 + sup{ lf(y)I : y E Q} is independent of x, 8 and h. This estimate, combined with 
the analysis that obtains (5 .1.27) from (5.1.19) yields 

If: I< A hm+ko- m- k 3 _ 3 , (5 .2.22) 

for all sufficiently small h, where A3 is independent of x, 8 and h. Now (5.2.14), (5.2.17), (5.2.18), 
(5.2.19) and (5.2.22), combined with the bound (5.2.12) on 8, imply (5 .2.13) which completes the 
proof of the theorem. • 

Theorem 5-9. Let n, Q 0 be defined as at tlie beginning of the section, where we now take 8 to 
be any fixed number. Let 'lj; be an m -basis function such that 

J

0t;~)I :'.S A II Y11- d- m- 2, i = 1,2, . . . ,d (5.2.23) 

for all sufficiently large II YII and 

(5.2.24) 

for all a E (Z+)d : la l = m + 1. In tliis case for any f E cm+ 2 (cl(Q)) there exists a constant A+, 
independent of h, such that, for all sufficiently small h and x E Q0 , 

J(x) - I: (5.2.25) 

However, if 'lj; is an m-basis function satisfying (5.2.23) and if for some a E (z+ )d la l = m + 1 
there are a complex non-zero constant 1( and E > 0 sucl1 that 

0 < II-All :'.SE, (5.2.26) 

and 

II -A ll ~ E, (5.2.27) 
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then there exist functions f of the above form such that, for some x E no, 

f(x) - (5.2.28) 

for sufflciently small h and some constant a+. 

Proof Defining pas in the proof of Theorem 5-1, we see that, as in (5.2.14), 

(f(x) - ah(x)) - I: (p(z) - f(z))'lj;(h- 1(x - z)) ~ A1 h1+mb- 1- m. (5.2.29) 
zE(hZ)d n O 

Hence, because bis fixed and the whole of the region S2 (5.1.14) is within our quasi-interpolating 

sum, we find that, as in Corollary 5-3, 

(5.2.30) 

for sufficiently small h, where T2 is defined in (5.1.19) and A4 is independent of x and h. The result 

now follows from the method of proof of Theorem 5-6. • 

Section 5.3 : Examples of Suitable q> 

In this section we consider examples (a)- (d) of Section 4.3, to find out the rates of convergence 

that are achieved. 

We begin by defining the actual rate of convergence for a function 'lj; and a suitable space of 

functions C. We say that a function 'lj; has actual rate of convergence T over C ( where r is a function 

defined for all sufficiently small positive h) if, for any f E C, there is a constant A such that the 

quasi-interpolant ah (5.1.1) satisfies 

Il a,. - f lloo ~ AT( h ), (5.3.1) 

for all sufficiently small h, but there exists f E C for which 

a-r(h) ~ ll ah - Jll oo ~ AT(h), (5.3.2) 

for all sufficiently small h, where a is another positive constant. The function space 

Cm,r = {J E cm+r(na) : all partial derivatives off of orders m, m + 1, ... , m + r 

are bounded over Ra}, (5.3.3) 

is suitable for our analysis. 
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Theorem 5-10. Any function 'l/; of tlie form (5.1.3) which reproduces all polynomials of degree 
b + d - 1 gives actual rates of convergence that are stated in the following table. Furtlier, it is 
impossible to obtain a better rate witl1 any function 'l/; of tl1e form (5.1.3). 

</>(r) Actual Rate Conditions 

hb+d f E Cb+d-1 ,2 and 

b and d both positive odd integers; 

f E Cb+d - 1,1 , 

b + d a positive even integer and 

b not a non-negative even integer; 

f E Cb+d-1 ,2 and 

b and d both positive even integers; 

f E Cb+ d- 1,1 , 

b + d a positive even integer and 

b a non-negative even integer. 

Proof. In each of the cases ( a)-( d) Theorem 4-20 shows that there exist functions 'l/; of the form 
(5.1.3) which can reproduce all polynomials of degree b+ d- l. We have already remarked in Section 
4.3 that such functions satisfy (4.3.4) and (4.3.25) , which is condition (5.1.5) for a (b + d - 1)-basis 
function. Hence, for all cases, Theorem 5-1 yields that, for any f E Cb+ d- i, 1 , we have the bound 

(5.3.4) 

for some constant A fodependent of h and all sufficiently small h. Further, Lemma 5-2 states that 
we can obtain this rate of convergence only when 'l/; of the form (5.1.3) reproduces all polynomials 
of degree b + d - l. This proves the last assertion of the theorem, so henceforth we shall restrict 
attention to functions 'l/; which are (b + d - 1 )-basis functions. 

To proceed further we wish to ·apply Theorem 5-6, so we must check whether its conditions 
are satisfied. We have remarked in Section 4.3 (just after (4 .3.4) for case (a) and at corresponding 
points for the the other examples) that, in each case, the expansion of any .'l/; for large argument 
consists of homogeneous terms of integer degrees at most -2d-b. It follows from the first paragraph 
of the proof of Lemma 5-4 that in each case (5.1.69) is satisfied. Further, ( 4.3.5), which holds for 
cases (a) and (c), shows that condition (5.1.70) is satisfied in these cases form= b + d - 1 and 
sufficiently small II -All- This condition also holds for large IIAII which may be deduced from the form 
of the Fourier transform J> ((4.3.2) and (4.3.40)) and (4.2.62). Hence, in cases (a) and (c), Theorem 

106 



Rate of Convergence 

5-6 yields that, for any f E Cb+d-i ,2 , we have the bound 

(5.3.5) 

for some constant A and all sufficiently small h. 

Equations (5.3.4) and (5.3.5) show that the rates of convergence described in the theorem are 

attained for any 'I/; of the form (5.1.3) reproducing all polynomials of degree b+ d - 1, and it remains 

to show that they are "actual" . We first consider the cases (b) and ( d) and, in order to use the 

other half of Theorem 5-6, we check its conditions . We have already remarked that (5.1.69) is 

satisfied for these examples. Equation ( 4.3.26) also holds in these cases, which shows that every 

a E (Z+)d : lnl = b + d with a even satisfies (5.1.72) for some non-zero K. Further, equation 

(5.1.73) may be deduced in these cases from ( 4.3.14), the form of the Fourier transforms (( 4.3.12) 

and (4.3.47)) and (4 .2.62). Hence Theorem 5-6 yields the existence of functions f E Cb + d-i ,2 

satisfying 

(5.3.6) 

for some constant a and all sufficiently small h. The fact that Cb+d-i ,2 C Cb+d-i ,1 completes the 

proof of the actual rate of convergence for cases (b) and ( d). 

To show that the rate hb+d is actual for cases (a) and (c) we aim to get a contradiction. 

Therefore we suppose that a function 'I/; of the form (5.1.3) exists which reproduces all polynomials 

of degree b + d - 1 and which gives a rate of convergence 

(5.3.7) 

for any function f E Cb+d - 1,2· 

First we suppose that 'I/; is a b+d-1, k-basis function for some k > 1 (we have already remarked 

in Section 4.3 (after (4.3.4)) that k must be an integer). We aim to proceed in a similar manner 

to Lemma 5-2 and show that all polynomials of degree b + d are reproduced by 'I/; which would 

contradict Theorem 4-20. However, we must argue carefully because a homogeneous polynomial of 

degree b+d is not in the space Cb+a- 1,2 . (This method of analysis has also been used recently and 

independently by Buhmann and Chui (private communication).) 

We pick some x E na, we let f be any homogeneous polynomial of degree b + d and we let p 

be any smooth function which satisfies O :S p(y) :S 1 and 

( )-{1 iflly-xll:S8/2; 
p y - 0 if II Y - xii ~ 8, 

(5.3.8) 
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for some 8 > 0. We have pf E Cb+ d- i ,2 and hence, by assumption (5.3.7) , 

L p(z)f(z)'lf;(h- 1 (x - z)) - p(x)f(x) = o(hb+d). (5.3.9) 
z E(hZ)d 

It follows from p( x) = 1 that 

L J(z)'lf;(h- 1 (x - z)) - f(x) 
z E(hZ)d 

< L f(z)'lj;(h - 1 (x - z)) - L p(z)f(z) 'lj;(h- 1(x - z)) + o(hb+d) . (5 .3.10) 
zE(hZ)d zE (hZ)d 

Further, by (5.3.8), the term inside the modulus signs on the right hand side of (5.3 .10) can be 

bounded from above by 

lf(z)l l'l/J(h- 1 (x - z)) I. (5.3 .n) 
{ z E(hZ)d : ll z - x ll ?6 / 2} 

Recalling that 'lj; is a b + d - 1, k-basis function for some k > 1, this sum may be estimated by 

the techniques already described in this chapter and is found to be bounded above by a constant 

multiple of hb+d+l for sufficiently small h, and uniformly bounded for x within a compact set. 

Hence (5.3.10) yields 

L f(z)'lf;(h - 1 (x - z))- f(x) = o(hb+d), (5.3.12) 
z E(hZ)d 

which is true for all x E Jld and uniformly for all x in some compact set. 

Now take some fixed y E 'Rd and x = hy. We note that, as we are only interested in sufficiently 

small h, all the choices x are within a compact set. Hence, recalling that f is homogeneous of degree 

b + d, we find that , as h --+ 0, 

L f(z)'lf;(h- 1 (x - z)) - f(x) = o(hb+d) 
z E (hZ)d 

=;- L f(z')'lf;(y - z') - f (y) = o(l). (5.3.13) 

However, the left hand side is independent of h and hence the polynomial f is reproduced. Thus 

all homogeneous polynomials of degree b + d are reproduced by 'lj;. Hence, in view of the fact that 
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'Ip reproduces all polynomials of degree b + d - 1, we deduce that all polynomials of degree b + d 

are reproduced, which contradicts Theorem 4-20. 

When 'Ip decays no faster than II Y/J- 2
d - b we must argue slightly differently because, for instance, 

a sum of the form (5.3.11) would not be convergent. Our method of analysis is similar to that in 

the second half of the proof of Lemma 4-17. The leading order term in the expansion of 'Ip for large 

argument is continuous and homogeneous of degree - 2d - b. We denote this term by g. Let z be a 

point with ll zll = 1 for which g(z) = a -=fa O, and without loss of generality we suppose that a > 0. 

Now, because g is continuous, there exists some E > 0 such that IIY - zll < E:::} g(y) 2 a/ 2. We let 

S1 = {y E nd : IIYII = 1, IIY - zll < E} (5.3.14) 

and 

S2 = {y End IIYII = 1, II Y - zll < E/ 2}. (5.3.15) 

Hence, because g is homogeneous, we find 

Y/II YII E S1 * g(y) 2 (a/ 2) II Yll- 2
d-b. (5.3.16) 

We choose M so that, for y/lJ yJJ E S1 and JJ yJJ 2 M, we have 

(5.3 .17) 

We pick x E R,d, we let S1 be part of a sphere centred at x: 

S1 = {y E nd : - (y- x) /II Y- xii E S1, 8/ 4 ~ IIY - xii ~ 8}, (5.3.18) 

for some 8 > 0, and we let S2 be the strictly interior subset of S1 : 

S2 = {y End :_ -(y- x)/IIY - xii E S2, 8/2 ~ IIY - xii~ 38/4}. (5.3.19) 

We note that y E S1 and h ~ 8/ (4M) imply h- 1 (x -y)/ llh- 1(x - y) II E S1 and ll h- 1(x - y) II 2 M: 

hence, by (5.3.17), 

(5.3.20) 

We let p be a smooth function satisfying O ~ p(y) ~ 1 and 

(5.3.21) 
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Now p E Cb+d-i, 2 and we consider performing quasi-interpolation to this function at the point x. 

In this case, for h :S 8 / ( 4M), 

lah(x)- p(x) I = Jah(x)I = L p(z)'!/J(h- 1 (x· - z)) 
z E(h Z)d 

> 
{z E(hZ)d: p(z )= l} 

because p is non-negative and (5.3.20) shows that '!/J(h- 1 (x - z)) is non-negative at all points where 

p is non-zero. Hence, using the first inequality in (5.3.17) and then (5.3.16), we deduce 

{zE(hZ)d: p(z ) = l} 

2: (a / 4)hb+2d I: 
{z E(hZ)d: p(z )=l } 

Hence, for sufficiently small h, 

j
3o / 4 

lah(x) - p(x) I 2: ahb+d s- d- b-l ds 
0/ 2 

ll z - x JJ- 2d- b. 

(5.3.22) 

(5.3.23) 

(5.3.24) 

where a and a* are positive constants. This completes the proof that hb+d is the actual rate of 

convergence in cases (a) and ( c) and hence also completes the proof of the theorem. • 

We remark that in cases (b) and ( d) any basis function reproducing polynomials of degree 

b+d-1 can decay no faster than IIYll- 2 d- b, for otherwise we could obtain a better rate of convergence 

from Theorem 5-1 by choosing k > 1. 

We also remark that, if in cases (a) and ( c) the function '!/J is a b + d - 1, k-basis function for 

some k > 1, then Theorem 5-1 implies that it is unneccesary to impose the restriction f E Cb+d- i, 2 

in order to remove the I log hi term. It would be sufficient that f E Cb+d-l,l · However, as we shall 

now demonstrate, if 'ljJ is just a (b + d - 1 )-basis function, then there exist functions in Cb+d- l ,l for 

which we do not obtain the rate of ·convergence hb+d . 

The proof is similar to the final part of Theorem 5-10 but we have to argue slightly more 

carefully. We take 'ljJ to be an (b + d - 1)-basis function which decays no faster than IIYll- 2d-b for 

large argument . We define g , z, a, E, S1 , S2 and Mas in the proof of Theorem 5-10 (the paragraph 

containing (5.3.14)) and we note that equations (5 .3.16) and (5 .3.17) hold . Let p be a smooth 

function which satisfies O :S p(y) :S 1 and . 

p(y) = { 01 if IIYII :S 8 / 2; 
if 11 Y 11 2: o, 
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Rate of Convergence 

for some O < 8 < 1. We let a: {y E Rd : ll v ll = 1}-+ n be smooth and satisfy O::; a(y)::; 1 and 

We let T be the function 

a(y) = { 
0
1 if - y E S2; 

if - y ~ S1. 

r(y) = { a
0

(y/[I YII) if y -=p O; 
if y = 0. 

Finally we let f: Rd -+ n be the function 

( 0 if y = 0 or 11 y 11 = 1; 

f(y) = ~ ll vW +d p(y)r(y) otherwise. 
l I log( II Yll ) I 

(5.3 .26) 

(5.3.27) 

(5.3.28) 

We must check that f E Cb+d- l,l · The only problem is checking whether all partial derivatives of 

f of order at most b + d are continuous at 0. This condition is a consequence of the exponent of 

II YII , the smoothness of p, the homogeneity of T and the unboundedness of / log( I/ Y/1 )1. We consider 

the error between f and its quasi-interpolant at the origin. For sufficiently small h we have 

/ah(O) - f(O) I = /ah(O) / = L f(z)1J;(-h - 1 z) 
zE (hz)d 

> L ll z ll b+d p(z)r(z)1J;( - h- 1 z) 
{ zE(hZ)d : ll z ll~ M h} / log( fl z l/ ) / 

L ll z W+ d l1J;( - h - 1 z) /, 
{zE(hZ)d: ll z ll <Mh} / log( fl z /1 ) 1 

(5.3.29) 

where in the second sum we have used O ::; p( z) ::; 1 and O ::; r( z) ::; 1. The second sum is 

bounded above by a constant multiple of hb+d so long as h < l / (2M) , say. We also note that, 

when /lz ll 2: Mh and p(z)r(z ) > 0, then as in (5.3.20) we have 7j;(-h- 1 z ) 2: 0. Hence, we find 

/a1i (O) - f(O) / 2: L 1/ zW+ d , - 1 - Ahb+d 
f log( fl z ll ) / 1P( - h z ) 

{ z E(hZ)d :p(z)r(z) = l , ll z ll ~Mh} 

> L /l zW+d 1 -1 - Ahb+ d (5.3.30) 
/ log( llz /l) l 2g(- h z ) ' 

{zE(hZ)d: p(z)r(z)= l , ll z ll ~Mh} 

the final line using (5.3.17), (5.3.25) and (5.3.27). Therefore (5.3.16) yields 

/a1i(O) - f(O)I 2: (a/4)h 2d+b L ll z W+d l/ z ll -2d-b - Ahb+d 
/ log( fl z ll ) / · 

{zE(hZ)d :p(z)r(z)= l , ll z ll~ M h} 

(5.3.31) 
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To complete the estimation we may deduce from (5.3.25) and (5.3.31) that, for some constants 

a,a• > 0 and all sufficiently small h, 

/

6 / 2 1 . 
Jah(O) - f(O) I 2:: ahb+d ds - Ahb+ d 

. Mh s l log s l 

2:: a• fib +dl log(J log h l) J. (5.3.32) 

Hence, when f is the function (5.3.28), we do not obtain the rate of convergence hb+d. 

Theorem 5-10 has a simple corollary that is a consequence of Theorems 5-8 and 5-9: 

Corollary 5-11. Let n be an open bounded region and !16 a region smaller by size 8, for some 

fixed 8. If we cl1ange the definition (5.3.3) to 

(5.3.33) 

where cm+r(cl(f!)) is defined in (5.2.11), tl1en, for any function 7/J of tlie form (5.1.3) which repro

duces all polynomials of degree b + d - 1, the table in the statement of Tl1eorem 5-10 gives the 

actual rates of convergence over n6. 

Proof. The only part that does not follow immediately from the proofs of Theorems 5-8, 5-9 and 

5-10 is the fact that the rate given is actual in cases (a) and (c). However, our definitions of p 

((5.3.8) and (5.3.21)) both have p(y) = 0 for IIY - xii 2:: 8. Hence, when x E !16 , performing 

quasi-interpolation to the two functions (in (5.3.9) and (5.3.22)) over the whole of Rd i_s the same 

as quasi-interpolation over n. Therefore, the arguments we have used in the proof of Theorem 5-10 

remain valid. • 

Our final remark is for the benefit of those readers who are more at home with the techniques 

of Chapter 3 than with the Fourier transforms of Chapters 4 and 5. Fourier transforms do not 

occur in Chapter 5 until the estimation of the integral (5.1.52). In the case of <f>(r) = r , analysed 

in Chapter 3, the parameter a in (5.1.52) satisfies la l = d + 1 (and dis odd) and 

. h = J ya7/J(y)dy 
{y: II Yll ~6h-' } 
I 

= L µj J YallY - Xj ll dy. 
j = l {y: JI Yl l~6h-'} 

(5 .3.34) 

Noting that ya is a homogeneous polynomial of degree d + 1, we may apply Lemma 3-4 and find 

that 

J Ya IIY - Xj II dy 
{y: IIYll~ 6h - 1 } 

(5.3.35) 
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is a polynomial in h- 1 for h- 1 8 ~ ll xi 11 · Hence 10 (5.3.34) is a polynomial in h- 1 for h- 1 8 > 
max{ ll xi II : j = l, 2, . . . , l} . However, recalling that any 'lj;(x) which reproduces polynomials of 
degreed decays at least as fast as ll x 11- 2d- 1, for large ll x ll, and also using la J = d + l, the integral 
10 cannot grow faster than J log h i ash ---+ 0. It follows from these two observations that the integral 
remains finite as h ---+ 0, as required in the remark after (5.1.52) . Thus , using the work in Chapter 
3, we can complete a proof of the rate of convergence hd+l when </>(r) = r, without invoking Fourier 
transforms or generalised functions. 
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CHAPTER 6 : DISCUSSION 

Section 6.1 : Discussion of Results 

For practical purposes the most important result that we have derived in this dissertation is Corol

lary 5-11 in which we have proved rates of coiwergence for performing quasi-interpolation to suffi

ciently smooth functions over a bounded domain on a regular grid. Although results about rates 

of convergence over Rd as given in Theorem 5-10 are interesting theoretically, they are not them

selves of practical use. Results on polynomial reproduction, Theorem 4-20, are also very interesting 

theoretically but for practical purposes they are only a means to an end. In this section will shall 

mainly be discussing the results in Corollary 5-11. 

The first point that we note is that although, for example, the function </>( r) = r gives a better 

actual rate of convergence than </>(r) = (r 2 + c2 )! in Corollary 5-11 the difference is not very large. 

For practical problems where one is just interested in ensuring that the error is less than some fixed 

tolerance it is possible that the difference in the constants in front of the rates of convergence may 

have a larger effect than the logarithm term. 

For a fixed basis function the rate of convergence increases with the dimension. This is in 

marked contrast to many methods where one needs to work harder and harder to obtain just the 

same rates of convergence in higher dimensions. We consider the implications of this by considering 

performing quasi-interpolation with the basis function </>(r) = r in the two cases when d = 3 and 

d = 5. Suppose that in each case we have functions 

Id 

'lJ;a(x) = L µi,allx - Xj,d ll, (6.1.1) 
j=l 

which reproduce polynomials of degreed, d = 3, 5. We perform quasi-interpolation over the cubes 

Ba= {y E Rd : IIYll oo < 1}, d = 3,5, (6.1.2) 

to two functions fd with 

(6.1.3) 

In each case we require the error between fd and its quasi-interpolant to be less than some tolerance 

Eon 

(Bd)o.1 = {y E Rd : ll vll oo < 0.9}, d = 3,5. (6.1.4) 

Corollary 5-11 implies that if ahd,d is the quasi-interpolant to fd on a regular grid of spacing hd 

then 

(6.1.5) 
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and all x E (Bd)o.1- Thus, to satisfy the tolerance it would be sufficient to take 

(6.1.6) 

Hence the number of data points we would need to take is 

(6.1.7) 

The ratio of the numbers is 

(6.1.8) 

which grows very slowly as f decreases. Indeed, the ratio does not even double when f decreases 

by a factor of 4000. 

However, this does not quite tell the whole story. It is probable that the constant A5 in (6.1.8) 

is much larger than A 3 , the estimates in Chapter 5 indicate as much. The function 'lj;5 will also 

be much more complicated than 'lj;3 • Similar examples of this kind of increase in complexity have 

already been noted in Section 4.3. There is the further problem that the function 'lj;5 (x) which 

is a linear corn bination of increasing functions must decay at least as fast as 11 x 11- 11 • This can 

lead to large rounding errors in calculating the function 'lj;5 for large argument. However, Powell 

(private communication) has found that for some choices of 'lj; it is possible to perform some of the 

cancellation analytically and so help to alleviate this difficulty. 

For a further example we suppose that we are performing quasi-interpolation in d dimensions 

and wish to use a function 'lj; coming from one of the basis functions </>(r) = (r2 + c2 )!. We suppose 

that d is odd and b + d is a positive even integer in order that a suitable 'lj; exists. Increasing the 

value of b results in increasing rates of convergence so one may favour a large value of b. However, 

a large value of b implies a much more complicated function 'lj; and it is also probable, as in the 

case of splines in one dimension ,- that a larger value of b will give far worse localization properties. 

It is an interesting question as to which are good values of b for different values of d for practical 

problems. The best value may depend on the accuracy with which one wishes to solve the problem. 

No experiments have been done on this , although we mention the related results of Franke (1982); 

when performing interpolation in two dimensions, he found that multiquadrics (with b = l) give 

better results than inverse multiquadrics (with b = -1). 

Suppose that we perform interpolation over some bounded region non a regular grid of spacing 

h. We let h be the interpolation operator. The interpolation operators {Ih} are uniformly bounded 
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over no if llh II ::; M for all h and some constant M, where the norm is taken over no. In this case, 

as we shall demonstrate by a standard argument, we can deduce that convergence of interpolants 

to a suitably smooth function f is of at least the same rate as that given in Corollary 5-11. For, 

with x E n0 , 

l(h(f))(x) - f(x)I::; l(h(f))(x) - ah(x) I + lah(x)- f(x) I 

::; lh(x) - (h(ah))(x) I + lah(x) - f(x) I 

::; ( llh II+ l) lah (x) - f(x )I. (6.1.9) 

However, deducing that the interpolation operators are uniformly bounded over n0 is not an easy 

question. It may also be the case that interpolants converge over the whole of n and not just over 

n0 , although the convergence near the boundary may be of a slower rate. Results of this nature 

have been obtained in some cases by Duchon (1977) and Arcangeli and Rabut (1986) by analysis 

which depends heavily on the variational principle (1.3.5) and its generalisations. However, we 

now consider what has turned out to be a more tractable extension of the work presented in this 

dissertation. 

Section 6.2 : Extension to Interpolation over 'Rd 

We have worked through this dissertation with the function 'ljJ (5.3.1) being a finite linear combina

tion of basis functions. It is a reasonable question to ask whether the same analysis can ever hold 

if we took instead a function 'ljJ of the form 

'ljJ(x) = L µ1ef>( ll x - Ill ), (6.2.1) 
IEZd 

where {µ 1 : l E zd} must be chosen so that the sum converges absolutely for all x E 7<,d. Buhmann 

(1988b) has considered this approach although he arrived at it by starting with the function x with 

Fourier transform 

(6.2.2) 

for some radial basis function ef>. In the paper he considers the cases ef>( r) ( r 2 + c2 ) t and 

ef>(r) = (r2 + c2)-t in odd dimensions although he remarks that the technique is more general and 

he is working on a more comprehensive paper. He is able to show that 

x(x) = L c1ef>( llx - Ill), (6 .2.3) 
lEZd 
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for some constants { c1 : l E Zd}, that the sum is absolutely convergent, that the function x decays 
for large argument, and that 

x(n) = { ~ if n = O; 
if n E Zd\{O}. (6.2.4) 

This is a highly important result for it shows that x is a cardinal function for performing interpo
lation on an infinite regular grid. Further, using the techniques of Chapter 4 he is able to show 
that his functions x reproduce polynomials of the same degree as that found in Theorem 4-20. 
Using the techniques of Chapter 5 he is able to obtain slightly better convergence results in that 
he is able to get rid of the logarithm terms in Theorem 5-10 with this function x. Thus he has 
proved convergence orders for interpolation over an infinite regular grid. He also remarks, without 
proof, that these functions X are not restricted to either odd or even dimensions as in the case of 
functions 7/J of the form (5.3.1). We remark that the formulation of the Fourier transform (6.2.2) 
of the cardinal function was :first derived in one dimension by Schoenberg (1946) and has also been 
considered for a more restrictive class of basis functions by Maydych and Nelson (1988). These 
results are of significant theoretical interest but unfortunately, because there is no obvious analogue 
of (6.2.2), they do not provide an obvious method for deducing the convergence order in the case 
of interpolation over a bounded region on a regular grid. 

Section 6.3 : Scattered Data 

The practical value of approximating functions by performing quasi-interpolation over a_ regular 
grid is unclear as good techniques, such as tensor products of B-splines already exist. However, 
preliminary experiments (Powell, private communication) in evaluating some of the cardinal func
tions ( 6.2.3) in 2 and 3 dimensions have proved very encouraging. These functions were originally 
suggested for the problem of scattered data and it is expected that this will become their main 
application. In this case we must define what we mean by a rate of convergence. We suppose that 
we have a bounded domain n and an infinite sequence of points {zk En: k = 1,2, ... } which 
become dense in n. 

We define hN ( c.f Section 2.1 , especially (2.1.4)) by 

hN = sup{inf {IIY - Zk II : k = l, 2, ... , N} : y E n}. (6 .3.1) 

The methods would be particularly useful for scattered data if their rates of convergence with 
respect to h are the same as the ones we have deduced for a regular grid . We must recall that 
this time when performing quasi-interpolation it is not sufficient just to find one function 7/J, it is 
necessary to find one function corresponding to each data point (1.2.7). The only result known in 

117 



.. 

Discussion 

this direction is the case c/>(r) = r in one dimension, which is the same as linear interpolation. Here 

the rate of convergence h2 is still attained for scattered data. 

It is clear that the technique of proof used in Chapter 4 to prove polynomial reproduction 

which is heavily dependent on Fourier transforms and hence on a regular grid will not be able to 

work in this case. It is possible that an order of convergence result for scattered data will depend 

for its proof on some result like Lemma 5-7 which shows that polynomials are "almost reproduced" 

over 0 6 • There is more of a chance that techniques similar to those in Chapter 3 could be developed 

to obtain a proof of such a result. Some of the ideas developed by Dyn, Levin and Rippa (1986) in 

the context of preconditioning the interpolation matrices for scattered data could also be useful in 

attacking such a problem. The author would like to offer a conjecture. We say that scattered data 

{ zk E n : k = l, 2, . .. } are quasi-regular if there exist A, M > 0 such that for all values of h defined 

by (6 .3.1) the number of points in any sphere of diameter Mh contained within n is bounded above 

by A . If the scattered data { zk} are quasi-regular then rates of convergence hh+d- 1 I log hi will be 

obtained for quasi-interpolation schemes over this data in the four cases (a)-(d) of Corollary 5-11. 

However, be this true or not, the theoretical results that have been derived in this dissertation 

far exceed all expectations from when this research began. They have given a stimulus to the 

method of radial basis function approximation and I look forward to the future developments 

which I hope will continue to astound. 
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