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Vector indices can therefore be raised and lowered as in

What can be said ‘about the expression (u]v) Ior u # v

Various possibilities present themselves, depending on how the
'non-linearity' entailed by (1.39) is incorporated. It turns

/
out to be best to retain the concept of a dual space v\ of

lineer mappings v': Va—>R  onto the reals, but to give unp

/
linearity of the function G{\ﬂ'—>\4 which associates co- with

contra-variant components of the 'same' vector (in the Riemenn-—
ian case G 1s of course a linear mapping, with matrix gfy
with respect to appropriate bases). We therefore require: f
Vv = w V/‘ = = ‘. A
(ulv) e ‘ﬁ/uv(“)u- 78 —~ (1.40) |
% 9\— Iil . . I
where 9/4»' (“) = muv 7 (u) (1.41) l
] i
So that, in general (ulv) £ (v|u), : (1.42) |
" |

This nonsymmetry  of the scalar product reflects in the present h
formalism a remarkable theorem due to Blaschke (cf.[lO] p.103) h
that if in a Minkowskian (i.e. flat Finsler) space of dimension

greater than two perpendicularity between lines is symmetric, I

then the metric is euclidean.

By the assumed homogeneity of 1:,ngv(u) is positively *

homogeneous of deégree zero in the u*.  Make the requirement:

glu)

il

det ngfyu>Jf £ 0. (1.43) |

N 5 4 4 = 3 Y, x 5
Then there is an-inverse set of functions gl'(u) such thast \

uA = gklu(u) ulu ° ' ; i \\_c_g;k,.;,_/‘.\ i

Riemannian geometry, but it should be remarked that there is |
no clear-cut extension of the operation to higher rank tensors. w

To construct a tensor calculus, we need an 'affine connection’




That the latter will involve a certain non-linearity, as did

the scalar product, can be seen as follows. We require that
the two definitions of geodesics as (i) minimum paths and (ii)
autoparallel curves shall coincide. The first says:

S [u(s gjz( ;ds> = O, (1.45
The Euler-Lagrange equations can be recast in the Iorm:
% (%’“) + 2600%) = o, (1.46)
where G 1is the same as in (1.23), but with directional

\
e

]

argument x' = 5% : (1.46) is also equivalent to (cf.[11l]p.52):
«
S(8) + (L) il =0 (1.47)
where {i%}(%gis formed from the A}A é&) by the Riemannian ‘
rescription for,a Christoffel symbol. Now tie this in with
derinition (ii)., As inspection:or (1.47) shows, the change

in a vector v/ under parallel displacement from P (x) to 2P’

(x + dx) cannot,be linear in both v/ and dxf. We require

it to depend linearly on the components vl's it must therefore

be allowed ‘to depend non-linearly on the displacement components
(axl'): we accordingly define:

SV = - 7”*%(«) VI de” (1.48)

and thence the tensorial 'absolute differential':
b * A v S g
.DVA,; Avi— SV o dvY ¢ T ¢w(*¢ v/ el (1.49)

Y ® 3 I al 3 23
Lne'Tﬁ are assumed positively homogeneous of degree zero in dx’ .

Similar expressigns hold for other types of tensor, in the

(]

usual way. In particular: D s, 0. (1.50)

An autoparallel curve satisfies:

v

oA A * dx x
0= plE) o 4(F) £ T o b 1.51)
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L&) + TR ¥E - o (1.52)
Comparison of (1.47) with (1.52) restricts the T, but
does not completely determine them in terms of the metric
tensor. We can get a stronger restriction by requiring that
the éame geodesics also arise from parallel displacement of
the covariant tangent vector é&i; we therefore require:
Dglh) =0 , (1.53)
which, in turn, is equivalent to:

i AT T G gy TP e e g T e ] A = 000 {1254)
the directional arguments of the g 's and 7 *'s all being ksaé%,
Setting (compare (1.46) and (1.52))

YRR a5 (1.55) -

and requiring thé square bracket itself in (1.54) to vanish,
one can solve for the Trn.ﬁ) y Obtaining an expression formally
identiéal to Cartan/Berwald's eqn.(1.30), with x' replaced
i A

As 1is clear, this derivation has only provided a (quite
natural) determination of the affine connection by the metric -
other choices are possible. (There is a corresponding arbit-
rariness in Cartan's and Berwald's derivations.) It is not
easy, however, to see the sort or additional criterion to appeal
to in order to tighten up the deduction. S0 we shall work
from the above particular solution. We also remark that

although (1.49) and its counterparts define absolute different-

ials of tensors, 'covariant' derivatives are not defined. This

seems unavoidable in the context of the present treatment.
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In spite of this difficulty iﬁ connection with different-
iation, it 'is possible to construct a curvature tensor. In
Riemannian geometry there are three common ways of doing this:
(i) commutator of double covariaht derivatives; (ii) parallel
transport around infinitessimal circuit (holonomy group);

(iii) geodesic deviation. In the present case, method (i) is
ruled out; and (ii) even more so, since the result of such a
parallel transport will, by (1.49), depend in a very complicated
manner on the precise shape of the curve; (iii) is available,

as will appear. This situation was noted, from his different

- X

point of view, by Busemann ([10] P.235): "In Riemannian spaces

curvafure has many different functions. It is not plausible

that in Finsler spaces a single concept will suffice for all
these functions; it is rather to be expected that different
concepts,which happen to coincide in the Riemannian case,
correspond to different functions.

"The great majority of the investigations on intrinsic

geometry exploit, or can be modified so as to exploit, only

one of the functions, and can therefore be extended to Finsler

spaces." (his italics). His treatment is essentially in
terms of definition (iii) which, via the Gauss-Bonnet theoren,
can be formulated in terms of the angular excess of geodesic
triangles.

The analytic formulation of (iii) we shall give is a

brecise parallel to the Riemannian case (cf.[12] p.90).

Definition (1.56): A vector v 1is orthogonal to a vector u

it and only if (viu) =0 |
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(As already observed, this is not a éymmetrical relation.)
Consider a two-dimensional surface xt' = tf(u,v) (2+57)
which is such that v = constant specifies a directed géo—
desic parametrized by its arc-length u, for each value of v;
and such that there is a curve of the other system, u = u, say,
to which all these geodesics are orthogonal. (Note: the
curves u = constant are not directed curves - according

to défn.(1.56) it is unnecessary that they should be.) Write

e W- i (1.58)
By assumption, then:
s ) oy
ke ((b‘?)usu. = 9/-\'(}’)F 7//“ 1‘_,:,” = 25‘},‘;7) CI’r _ (1'59>

We first show that for any other value of u ( = u , say) a

similar equation to (1.59) holds; i.e. that the geodesics are
orthogonal to all the curves u = constant. For, define
U,
L(V) = g ((’,,?) CJM = u,—un
. Ug
This is independentuof v.  Therefore ,
. JL "2 2d ad i
O = 'd—v' = fu, .5'; [;{(”,f)’] du = fu, [31"? ’5’}:,‘ au—‘év]o(u
u,
d (27 P)
f Lo 5 %) - 24 % (1.60)
Because the @urves are geodegics, the intesgrand, and hence

=

the integral, vanishes, as does, by (1.59), the contribution
at the lower limit to the first term on the RHS. This proves
the result. Now consider two neighbouring geodesics of the
Tamily, specified respectively by the parameters v, V + dv.
Let P, P' Dbe the points (u,v), "~ (u,v+dv) ‘respectively.
Then the vector §5'(u) has components (qf'dv). By the

result just established, the two geodesics will both be orthog-

onal to this vector, for all u. The distinction between a
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flat and curved space is that in the former the vector will be
proportional to u. We therefore want to determine how ﬁ%',
or equivalently ql', varies with u. Let %% stand for the
invariant derivative operator in the direction (p!). Then

Dt o 267 o4,
Ei? = =L+ 3 9" (1.61)

and the rate of 'geodesic deviat%on' is found to be
T N
%7% - [(%%’)m B (’i—f’%)z/)] WP

= Rlvpel) pgrp” | (1.62)
where in fact a term in ;%g on the RHS has vanished, owing to
(L.55) - a possible additional motivation tor the latter.
QﬁVfr is formally idéntical to Cartan's expression (1.32),
with x' = p. (1.62) has the same form as the Riemannian
result, except for the direction-dependence of the R§VN' ;
so the difference is that a quadratic function or the direction
of the geodesics (p). has become a more general function,
homogenegus of degree two in the p“.. As in Riemannian
geometry, therefore, (1.62) is a quite concrete result: one
which could in principle be investigated by clocks and measuring
rods, and so is a suitable ingredient for a geometrical theory
of physics.. (As already indicated, this problem of 'physical
meaning' is a persistent one in PFinsler-space theories; and
published attemptsmh,al%zhlqon these lines seem to gloss over =
it - a remark (in Gonnection with e.g. derivation of 'field

equations') like "lLet a direection-field x'(x) be specified...”

giving the game away at once.)

The theory just outlined will now be applied to spaces
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>y o P 26 ) o4
I)—Z’ = =y 7 Y 5 (1.61)
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I 3
%ﬁ% } [‘(%fé)(w - (gf;)v;] U

= K voelt) porp | (1.62)
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The theory just outlined will now be applied to spaces




25.

with basic function of the particular form (1.10), viz:

Lxy) = Suby vF 4 Yl VIV (1.63)
The '+' sign has been chosen to make the metric single-valued;
the opposite sign would lead to the.geometry of a space (1.63)
with the sign of df everywhere reversed; so that (1.63), for
various vector fields _dw(x), in fact covers all cases.
(Compare this situation with that in regard to the initial
definition of sign of charge in electromagnetic theory: if
every charge in the universe were reversed in sign then this

would make no observable dirference, in classical electro-

magnetism at any rate.) {ere are formulae for some of the
geometrical objects in the space.
' - ,:f(‘v) , 1.64)
L) = 2200 _ v Ay (1.65)

Je 2v/ /Yd-p veVE

Abbreviate the first term on RHS by W,.(v). From (1.41):
‘3./”(\/) = Yoo + by + (st + Yur oy # Yoy o )V _ YouV Yo VE oty VP

, (Yup VEVE YA (Vg VEVP )3
Z (v) £ £
=[mj(va—w,wy) Fotsls (1,68)
Cov, = 99 _ Z (v) A\

where { } wrepresents sum over eyclic permutations. The

remaining purely covariant quantity is (cf. (1.23)):

. _ (V (R) o
P B JY:L(!v)‘vﬂ pap YOV L medl) B v
+ o(/,[ o(.‘,f, YEVE + T Yap,e V"V/@V“’]
b Yup VAV
+ B | e VIV - il v‘vFngolAV“)] (1.68)
(Y.«F Y*VE) -
where F}v = v =,y (1.69)

. ® G . . . -
and where the superscript signities: Riemannian Christofiel

symbol formed from the }}y.
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To proceed tfurther, it is cleai'ly necessary to evaluate
the contravariant metric tensor, gl’(v). A direct inversion
of the system (1.66) is not easy, so we do it indirectly.

Let Y/7 be the inverse matrix of Ypv (NB not its contravariant

fornm). Then (1.65) yields the identity

Y/”( Ol f“X;ZW)"’L =1, (1.70)
Solving for Z as a tunction of the covariant form of v :
L0 = —dN% + J1=2) VN + (B) )
(l _ OLAO(A) (.1.-71)
where Y = \{A/“ o( (1.72)
In calculations one needs the useful identities:
JU=s )Y+ (En) Z(v) (1.73)
Z(v) ; /YJF V*VE
and, (cf.. (1.65)): U‘(v) = _L__W<Y/‘>‘(A(v) —al). (1.74)
The equation 3/”(0 = 'av Svav. [/:i (VJ : ' (1.75)

now enables the g/*”(v) to be computed:

gl'lv) = _L_W[Y/‘“’_ (|—O<A¢‘)(f‘(;'_oz/‘1’-o<*1/'}+4Ny. (1.76)

One can verify that this is indeed the inverse of the set of
funetions (1.66). It is now possible to evaluate the delterm-

inant of g, ,(v), as follows (again, the direct approach is

/AV
not practicable). (1.67) and (1,76) give

° v = “ ” R, Z(v) _ A
Sur [l a“] = 3‘3% = 2§1/£‘CW =(+)-—___[oz,“ N, z/] (1.77)

MYJ,@V"V/'
This differential equation can be integrated:
n+i .
(9] e= (x) [iL]
9 f o 1.78)
where £ 1is independent of v , and can be found from:
5 : & Z(v)
g gb) = f 294 = |4 : [ ]
> (G5 9 ] J g;;‘ ("ﬂ],/l L L’WW (1.79)

! Nt
where Y = det {(Y/ﬂ | . Therefore q(v) = Y[_iL} | (1.80)

J YJ(;V‘VP




an unexpectedly simple result.
From (1.68) and (1.76) one finds, after a considerable

amount of cancellation:

26°0 = T Vv - B, VI N VIV
+ {X(v){ %S/w VEVY 4 dy Fe vrm ]

1.81)

\ A :
where F./. = Y F/”/‘ and S/w = i 4 oy
(semi-colon denoting Riemannian. covariant derivative w.r.t.Tﬂm)).

Different%ating (1.81) gives:
° (R)
+ —Ei—( = 2/{”&% vl - P «/YJ{[;WV 1_’\ /M

oV
'{"{A[Slunv/u‘f‘olg}:. ,\/X.t/avv + o, FE/AV/MZD}.]
+ £7(5% - *(,c)[ S VIV & e F VS g VEVE ] (1.82)

This enables one to form (cf. (1.29)):

' a{or(l() = aaf"‘ _ 2C o) 36 (
2x 2vEk
== ,{(V)
o A R

+[Yi—[vv)lv] (Vo =B & ) (3=t 54 (- T’(m'\v Vet PR Mﬁ" v )
“p (o{ ~d {4 )(T/R)KV/“+ /}Q/v vF -] f & V-l v/)
+ r—u‘x,)(@x Vs R V4 vf-, A

+ %(Yp\r - /o@’r> D (s FE V/“)
;Ydﬁv Ve

i -l
— < C/, [ S,w“v“+ A, F€ W"/X«I,ij 1.83)
One can now immediately write down the expression for xry(v)

(ef. (1.30)), and thence calculate the 74*§N(v). The result

Tor the latter is considerably more complicated even than (1.83)
(which has been simplified as far as is possible), and the

explicit evaluation of the curvature tensor from (1.32) seems
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out of the question. However, the computation becomes easy
for what one might call the 'weak field, pure electromagnetic’

case, Vviz. working to first order only in the & 's, and

setting \%v = constant. Then
9/""(“) o wfdclk + wfd/’,k (1.84)
& b “ \ A
7”*% = JeVIRD ¥ TV B ¢ SV (1.85)

* T
’Rr\ e = (F:rxjy —Fy! ,v'>Y/usV + 5 ,v YvuV'L .A/o- \{;%V"L-I—F;q—)!uvk (1.86)
s w 2 /—————-Y-t e

which, it will be observed, depends on the A 's only via the

gauge-invariant combination Fuy . By contraction

. ol .
Rp = Rl 5 (Fposy # Frap ) V2 = g WaV¥ = gy Yuu v° - (1.87)
2 /YapV*VE
where 1r'a ﬁh,d i In this approx1matlon Rfy is seen to

‘be symmetric (in a Finsler space this is not a necessary result).

A second contraction gives: R&R% = O. (1.88)
It is at this stage that the theory starts to peter out.
For, the original aim was not just to compute a few geomeitrical
quantities, but to show that the space manifests a behaviour
résembling that of real charges and electric fields; and in
this there has been conspicuously little success. There are
two main difficulties. Pirst, one wants some field equations,
in order to restrict the space-time dependence of d (x)
and Xvn,(x) in some meaningful way. In euclidean or Riemann-
ian manifolds a variational derivation of the equations has
decided advantages (compatibility, Noether's theorems, etc.).
In the present instance almost the only natural choice of

Lagrangian denéity would be: R /-9 | (1.89)

but its direction-dependence stands in the way of formulating

e
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a sensible action principle. On this score the theories of
[161,[18],[22] must be adjudged as having little physical
meaning. | |

The second, probably fatal, difficulty arises in relating

dﬂ to the physical 4-potential ¢? " The former is dimension-

less, so that if Ay = K bp (1.90)
then k must have dimensions (p;ll—::é%e) Suppose k = %o 5

where e is the electronic charge, and m, a mass of order
that ot the electron (or proton). Then the geodesics of the
space are identical with the world-lines of particles with
charge-to-mass ratio (%j moving under the combined influence
ol the gravitational field derived from X}y and a physical
electromagnetic field Bov = rp =@y = B (o - ). (1.91)
This fact is one of the motivations for choosing the form of
metric (1.10) in the first place (ef.[13], [14],[15], [197, (21]
which are the previous ooca31ons on which this metric has been
put forward, in no case with much elaboration). We shall
gloss over the question of what precise value to take for m, :
since it does not attempt to consider strong interactions the
theory is not likely to be correct in that much detail anyway.
With such a choice of %k ’ d & 1 for all macroscopic fields;

-

but at distances of order the class;cal radius of the electron

(
ol

2:818 x 10 "° em) from = charge e +the field is such that

i

~ 1 , so that deviations from linearity would be expected

/u
(cf. e.g. the form of (1.71)) and therewith the possibility

of a singular metric at finite distance from a 'point' charge.
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Now, we have just assumed that the world-lines of charged
particles should correspond to the geodesics of the space,

whereas in fact for a non-limear theory the field equations

{

ct

must move. This is important in the present context Low,

elthough field equations are precisely what is lacking, it

D

jon

seems that even if they existed they would be. unlikely to lea
to the correct physics, as the following argument, rough though
it is, intimates:

Although the curvature scalar has not been computed ex-
plicitly, it is clear frém the form of (1.9), (1.66), (1.83),
etc. that ‘@N tends to figure in conjunction with products
of two O\ 's, and similarly when differentiated, so that (1.89),
in addition to the Riemannian R® formed from the ‘6” s wWhich
nmust be an ingredient (consider the case ﬁpz'O), will contain
tern(s) something like FF Foy . Although prima racie just
what is required, in order to get the correct contribution of
the electromagnetic to the gravitational field, the Maxwell
energy-momentum tensor, and thence the Lorentz force (cf. (1.4),
(1.5)), nevertheless the Dresence of any such term is in fact

disastrous, since by (1.91) it equals

e \2 v 39 v -
(Z) 74, = 10k F7E, (1.92)
where K is Einstein's gravitational constant. This con-

]
}.,l.

bution is therefore 39 orders of magnitude too large.

[14,20,21] .
Yy

Stephenson & Kilmister's theor is in fact rendered null

by this observation which, by oversystematically calling all

constants | , they overlook.

emselves entail how the singularities of the field ('particles?




No obvious progress seems possible. Of course, k

- ) a o~ T - 20 e - N N, A
could be scaled down by a factor ~ 10 ; but, among other
disadvantages, that severs the connection with the Hamilton
formulation of particle electrodynamics which was the basis

the original intuitive appeal or the theory.

After this work was essentially completed (1963), a former

Xy

student of his drew to my attention the book by H.Rund.
this monograph he presents, inter alia, his own criticism
revision of the orthodox Finsler space theory, made in the
1950's, from a standpoint and with results parallelling ver
closely those given heré, though with much greater wealth

5

detail. In particular, he too treats the spaces as locall

Minkowskian ([11] p.16) - rather than as locally euclidean,

which, by concentrating attention on the so-called 'osculating

C

~

Riemannian space', the 'line-element’ approach manages
He also describes ([11] pp.111-9) the same construction as

was given in (1.62) for the curvature tensor. The book i

not concerned with unified field theory problems.
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$1.3 Theories related to the present work

i s . e [24] .
From the extensive llterature on the UFT problem, = and

also on (flat) spaces more general than the Minkowski and trans-
Lormatlon/aynmpcrj gToups more general than the Lorentz, we

t attention to ideas having some aspects in common with

restric

the theory of complex space-time. Actually, this stTill lezves--.-

& rather wide Tield:—~-the-theory has complex Hermitian metric
LE0T, _ 2ot b Lal

@gfl - . @g@ﬁ&%}

tensor and complex symmetric affine connection i

RS v 4 " . [se][54] [s5] [54-62] s gl i
introduces extra dimensions; and (fthe unimodulsar
restriction of) its underlying flat-space transformation group,

SU(4), is isomorphic with the real 6-dimensionsal orthogonal

group and with the transtormation group generated by (a real

restriotion O¢) the Dirac (Clirford) algebra in real Minkowski

space-— and is related o certain ! interna" Togsy mmetTry
_~ f
‘ ng:.f...q

sToups suggested in the context of elementary particle theors
(see §6.1).

Einstein's relativistic theory of gravitation is deducible

from the following three data: (1) a 4-dimensional real mani-

fold, defined w.r.t. the group of, general (non-singular) coord-

inate LLEnSLO rmations; (2) a real symmetric affine connection;

(3) a real symmetric bilinear Torm (or 'metric tensor'), with

signature (i) 2% A natural way to try and construct s nore
comprehensive field theor Y 1s therefore to modify either (1),

(2) or (3) (or any combina"cion)9 and all classical UPT's nave

in fact proceeded in this manner.

The best-known example of a theory changing (1) is the




5-dimensional or 'projective relativity' theory,
J.Kaluza 1n 1921 and subsequently developed and

. =) - ~
various forms by a number of physicists (see [25]

o

, from the extra-dimensionality, has no.very close

ct

o
o
3
H

o

[{)]

]

[

contributing to such theories, Einstein himselrf

to concentrate his attention on a theory which ke

; gave up the symmetry requirements in (2) and (3).

v 3 (277 - [24]

inated by

and [26] Pp.156-241 for surveys of this work, whi

nt theory). Although at one stage favouring and

*C)

the original version, the skew-symmetric contributions

. were taken to be pure-imaginary, and therefore the
: themselves Hermitian

given here. (Schrdodinger's 'purely affine' theo

y, & brief account of the theory wi

1943 onwards, is often lumped together with Einstein's as

]

=

i

z

Einstein-Schrodinger theory', because it also presupposes a

non-symmetric aifine connection; however, it has no relevance

to the present work.)

Introduce as 'metric tensor' the Hermitian ma

gk = & ki

Assuming it non-singular, a contravariant metric
IS . 1 Coem 5‘1
definable by: oy gdm o= i

]
O

(89

O

However, in view of their non-symmetry, one does not use t

()

tensors for pulling indices ( [32] p.109). Introduc

- e . T ,
complex affine connection | .k . The Ansatz

s N
Jik,¢ - ﬁd<7/?:l - Bi T cap =

goes into itself on complex conjugation (usvnp (1.93))

0§ TT ks & ¢
| 's are Hermitian: 'Tﬂdk = ’Tﬂfw
)




1.95) are then just the right number of equations to determine

the T/“s as functions of the g's. This is the reason for
the choice of suffix order on the LHS.

The fact that the 7/1'3 are no longer real means that

S EL .
there are really two affinities in the space-time manifold,

so that one has to distinguish two types of covariant derivative:

Afe = ALy o+ T A" (1.971)
Aiﬂ = A, + 7/';.,.\4 A"
= A, o+ T . AT (1.97ii)
and similarly for other tensor indices. (1l.95) is the same as:
ik, & — YGsk chi - 95Tk =0 (1.98)
and has the quasi-Riemannian form: Bikye = 0 (1.99
Since giE,L #‘ 0., the operations ot covariant differentiation
and of contraction no longer necessarily commute.
For any covariant (or contravariant) pair.of indices write
F (A + 8¢ ) =48 5 % (Ag - A ) =4y (1.100)
(1.95) implies: W5)e - F9T % =0 (1.L101)
so it 1s naturalﬁj] to define the IHS of (1.101) to be the
covariant derivative of the scalar density J::§ s The
formula for the covariant derivative of any tensor density is
thereby fixéd, via the product rule for differentiation.
Since there are two kinds of covariant derivative there
will be four kinds of commutator of déuble differentiation:
A_%_;%_;m .— Aﬁj':-’( = —'4,' R?ilm - ?.T’?(J. Ai_)-s )
Ai;ﬁ)m_ - A;;:;l = “Ai Ri~&lm 4-3.7”.3.& Ai)s (1.102)




Define Riiem = &5 Bliea
. R L
Then the latter satisfies:
R%i(m = i Rkimf.

B b = = Rihmt

5 . . . - A 10
and also the Bianch-type 1aent1t1es} .

=]

conjugates of both sides), where the curvature teunsor
. - . ; . .
R_)tem = l ?;{/M 'T?Lm,»{ - T?:L /r’~im *T?fm ‘/'-‘-'(

R;k{m.n + Tl s & + R;k,‘tl-m = 0
ot—+’ —+ £+’ e
Define Rk( = Rr.qktm = gm‘ le{m (:L.:_O'?)
% . . - N o 3 py [?.o
This 1s not, in general, Hermitian; one finds: :
— : s \ 55
5 (B =Ry ) =3 (Tige-Tew + To Tl ) (1.108)
1 s - - A
+ where T = T3 . (1.109)
| - i
“ Note that 7i}< is, a tensor, because of the usual transformation
} v S
; - . 54 i b ; - e oo
_ law . for affinities, so that Tl is a vector, and also the RHS
of (1.108) is, as required, a tensor. There is another con-

Riemannian case): Riakd = Trlakt =T latk

= r(,k - Tk,<

, . : : NP
the doubly-contracted Blanchi identities:

{ -
| s 0 Byen = Ry = Fgy ) o= 0

From the above, in particular (1.108), (1.110) end (1.111),

it will have been apparent that a considerable simplification

ensues 1f one postulates: .
v = 0

In conjunction with (1.95) this is equivalent to (cf. [3

traction of the curvature tensor (identically zero in the

(1.110)

| - . ng.} i o . . ki .
w by virtue of (1.101). Multiplying (1.106) by (g”‘ g ) gives

~ -

(1.111)

(23] (3]
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, i g
gv)z = O e lu.L.LZ‘/

The most significant reason for postulating (1.112), however,
comes Irom the search for field equations. Given suitable
non-degeneracy, the equations (1.95) can be solved for the

's - although the explicit formulae are excessively com-
[33] (341
d L 4

U

plicate Consider this done. Then we want 16 field

b

()

cquations for the 16 unknowns 8,k »+ and by the general theory
of such systems the equations must also satisfy 4 identities.

In the Riemannian case (veneral relativity) the equations

were appropriate. In the present case they amount to more
than 16 equations, on account of the non-Hermitici 1ty of Ry

Hy

(1.108)), and so are not vermissible. T

—
Q
H
L]

s On the other
hand, one deparss from‘(1.113), then one has to ensure znew
the existence of identities, since the Bianchi identities will
in general no longer fit the bill.. A neat resolution of this
dilémma was indicated by Einstein in [3Q], whefe he showed

y

that if one postulated Tk 0 (1.11441)

]

and R Uk = 0

-
N
[
L
.I\

then the Bianchi identities (1.111) reduced to:
gkt Rig,ay = 0 . (1.115)
(1.111) constitute the “equlrea 4 identities not only
Tor (1.113) but equally for the (less restrictive) set consist—

ng of (1.114i), (1.114ii) and

s\

Rig,mp = O (1.114441)

Diucount*l" the Bianchi 1aentltles the set (1.114) is prima




among the ILHS's - there must exist such, since 1t is

to derive the complete set (1.95) + (1.114) from a varia
(23-32]

additional identities is ( [28] p.733):

(g‘;l—‘ﬁ),; ;0

al

The other one reduces the number of independent equation

but the justification for this assertion is obscure.

The above is a representative version of the theory

: The initial expectation was that the anti-symmetric part
should somehow relate to the electromagnetic field: (1
would then be like a Maxwell equation. However it is

even clear which of the two 1t saould represent ((1.41)

¥ [34] . L
8k T gk = 5€kem 8Y - or even a combinatio
two., Still other identifications are possible: novel

was cast on the structure of the theory by Sciama's Vier

R R L . ) a
reformulation, which tended to implicate R . «ik as

electromagnetic field (and correspondingly TZ as vecto

ential). However, none of these assignments mitigates
.. (3¢-34] . & o
was discovered to be the main shortcoming oI the theo:

grinciple, - which ensures theilr compatibility. One of

‘ (1.114iii) from 4 to 3 according to Einstein & Straus ( [28]

many variant formulations exist. Subsequent work has attempted

1 to clarify the physical content, if any, of the formalism.

(1.4ii)), i.e. whether the physical 7F, is (proportional %o)

to provide something like the Lorentz force. Of course,




36
. [34] . :
extra terms added to the Lagrangian a Maxwell-type energy-

. - ag { \ ° g el -
to appear (cf. (1.5)); but the

momentum tensor can be made
theory thereby ceases to be a UFT in the 'deductive' sense
originally envisaged, and has less to recommend it than the
conventional Maxwell-Einstein theory. All this applies

-

equally to the real non-symmetric or the complex Hermitian

versions oi the theory. The former seems to stand very little
chance of being a solution of the UFRT problem for a further

> o ) ) 2 403 3 ) e
reason: 1t 1s probable, as argued by Sclama[ and others, that

non-symmetry of the 8.k 1s connected with something quite
different: the presence of spin in the matter field.
Another UPT .using complex tensors over g real manifold is
G [431044] | . , .
Moffat's. (CL. also [47] ~ & more rudimentary theory.)

Moffat assumes (using here a notation in which pure-im aginary

quantities are explicitly displayed as .such):

() . (2) 2 e
By = &uw + 1ig. (1.117)
P b e
with both tensors on the RHS real and symmetric. A symmetric
- R h A . . . , .
complex affine connection ’Tifv is 1ntroduced w.r.t. which
uv;e = 0. ' (1.118)
Therefore: o Tl = Tjufy + 0T 6
1 et g /=5 \
= 787 (gupy + Euvip = Bpv,u ) (1.119)

- ] R
Under the (real) transformation group being considered, L pav
transforms like a Riemannian connectlon,'TZ)rw like a tensor.

No explicit resolution of (1.119) into real and imaginary parts

is obtained in the general case, though in the linear approx-—
2 ‘ [vel .
imation (see below) and for particular solutions i1t is poss-

-A-ch




The curvature tensor in formed in the standard way:

Rx'/‘yd’ = Rh)A./uvu’ R l R(;_))/uvd‘

P e J
B T}/uv,r T J A.\/ur,v "Tf.\,(v f::ur ‘f")/'-)‘o(r/}/v./uy (1,120

There is the decomposition:

~

PL(-)‘/AVU' — [7,(:) ./,‘y,a- = 0 .oV }m -/uq‘ + }(u..xv Jm./_'rr:}‘ [Vé*v’_] (1.121
7
/sz >.\/“V;<f Pl ’,\,Lv T (1/>-‘°‘V T’:’T("']- [V(—’V’]

o
2) -/ur

tay]
T
-y
=
<
q
1l
e gt

The usual Bianchi identities hold:
S A -
*L-/A{vq-){,} = 0 \......L2&)
Deat4y ot n — ot (7 721
Define R R - R= REa (1.123)

3

Then there are the four complex identities
o ' ol - - 4
( R/up( = ‘%:glu R );u = 0. (L.124)
Field equations are derived from a variational principle.

Since the most natural choice, R ,/- g 5 1s not suitable, being

equations become:
] (v .o () A

where T,, 1s postulated to be the usual matter energy-momentum

L)

7
> 5 ( ; I
Tensor, and va "represents the charge-current distribution®

([44] p.478).

o

o tie these field equations %o physics,

ct

In an attempt

Moffat looks at the weak field approximation:

() eV Lo
g/uv = r)/uv + h‘/uv + 1 ﬂ/uv ( .‘_._&.d6>
where Q/y are the Galilean values, and squares and cross-
products of the h's are to be neglected. Write




for the RHS, he postulates ) ‘
) /A : . |
4-velocity -7 it shall have the form: ;

) uvy ? : /.‘
TP e §(xF) S(F) £l 4 ji (1.130)

By considering the case of small spatial velocities, i.e:

k

’ A
Motrfat identifies hj; with the electromagnetic 4-potential

!
I

() %) ; ; - - -
and - 4 Tﬁ‘ with the current vector; four of (1.129) are '
then formally the same as the equations of Maxwell's theory in W‘
the Lorentz gauge: E] 3 = = 4T3,. (1.132) ‘
- f) ) ° L /A \ == | '

(However, an anti-symmetric tensor E}y, which, aiter all, is
e ] . w'A- o - ° 1 T - Y 2 ()
the raison d'etre of (1.132) in the Maxwell theory, does not

ppear naturally in the formalism, though of course it can be

defined by ( h“)vu - th,v)')

Returning now to the full (non-linear) field equatliouns, ﬁ

[}
0
ci
o
™
<
]
O
-
|
®
' 1]
(8]
(o
~

[as](45]

varying fields, and therefore for slow motion of the singular-
ities, that a Lorentz force term does ocecur in the equations 1l

of motion. He claims ( (447 p.487) to have also shown that




the restriction to slow motion can pbe removed; if so, this
would obviously be a very important achievement of the theory:

but no published proof has appeared. It seems to the present

Y

EN Y ' 3R s =Y = § s 5 1 &
muca more provable, in view of the 'quasi-Riemannian

structure of the whole theory, that this result is

restricted to low speeds; and that for high speeds, instead

as in the geodesic equation of general relativity, for as is

well known and readily verified the latter also reduces %o an

expression of precisely the ILorentz-force type to first order

in the 3-velocity. (for weak, slowly-varying fields

e
td
s
C

P . ' £l

this is only an 'intuitive! remark; the question could presum-
ably be decided definitively by an appropriately refined EIH-
type calculation. There is, however, a further diffieulty in

[+6] .,
wilC

w2
1]

that, as pointed out by Kerr, IHS's of (1.125) and (1.133)

Satisfy the 4 complex and therefore 8 real identities (1.124),
SO that 4 more field equations are needed if the g are %o

be properly determined (i.e. up to only 4 arbitrary functions).

The two theories descri

DichtsAn +lhod 41 " e 19 ada orrvansmae e S 4= = Ay T rAaTAT A 21 +
objection that they are in dlsagreement with the principle that
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quantities used in the theory (for instance R s &k and Tl

does not occur. | This has not been done at all in the earlier
9

literature. Einstein, however, was well aware of this object-
ion, which he weighed carefully in his later work." ( [3] p.226).
This remark by Pauli expresses succintly a feeling one has
about the desirability of constructing theories out of 'homo-
geneous' or in some sense 'unified' objects; but perhaps, like
other group-theoretical arguments of an a prioristic nature,
should not be wielded too indiscriminately (after all, RLF is
a reducible object under the tull, coordinate transformation
group , - R +transforms ;s a scalar - but no-one objects to
its playing a central role in gravitation theory). However,
this is not to belittle Pauli's observation, but to emphasize
that such points must be "weighed carefu11y".

One could also make the point that the 'metric tensor' is
in all these theories singularly divorced from its origin in
the notion of a secalar product - indeed, the refusal (in the
Einstein theory) to use it for inter-converting co- and contra-
variant tensor components is rather like ending up with the
grin and no Cheshire cat.

We turn now to a second group of theories related to the
present work: those altering the datum (1) of general relativ-
ity (see p.32), by enlarging thektransfbrmation group and the
dimensionality of the manifold. : In his discussion of the UPFT
problem in [49] v (pp.88-90) Einstein remarks:. "Die gesuchte

Struktur muss eine Verallgemeinerung des symmetrischen Tensors

sein.!) Die Gruppe darf nicht enger sein als die der kontinuier

)




-lichen Koordinaten-Transformationen. Wenn man nun eine

reichere Struktur einfihrt, so wird die Gruppe die Gleichungen
nicht mehr so stark determinieren wie im Falle des symmetrischen
Tensors als Struktur. Deshalb wére es am schonsten, wenn es
gelange, die Gruppe abermals zu erweitern in Analogie zu den
Schritte, der von der speziellen Relativitat zur allgemeinen
Relativitat gefihrt hat. Im Besonderen habe ich versucht, die
Gruppe der komplexen Koordinaten-Transformationen heranzuziehen.
Alle derartigen Bemilhungen waren erfolglos." He does not
appear to have pﬁblished these investigations.

The first reference‘to complex spaces in a physical context
that I have found in the literature is by N.N.GhoshfFﬂin which
he applies his rather peculiar matrix treatment of the dynamics
of rigid bodies to the case where they are extended in and move
in a complex space, with complex velocities, ahgular momenta,
and s0O on.

The next reference is ‘'nearer home' as far as field theory
is conderned - 1is in fact closest in spirit to the present
work, It is a very short account by A.C,J:'uuney:c'czlJcozs[“J of some
aspects of his doctorate work (1961-3) on the geometry of a
kind of manifold which is precisely analogous to a complex
analytic manifold (see Chapter 2), but defined instead over
the number field generated by {I,e} ,‘where E* = +1 .

The following account of his results is based entirely on this

summary article, as I have not obtained access to his dissert-

ation. Introduce the coordinates, and their conjugates:
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' = z'v,(xf' + e xI')
o (1.134)

b = %ﬁ( xV‘ -ex!)
Then V, is the manifold parametrized by the coordinates (zt),
with transformations of the form: _
| 2t = fr(z“); - (1.135)
He defines "la sous-variété diagonale", W, , by:
2t = g | (1.136)
(cf. the 'real limit space' of Chapter 4). Let there be a

non-symmetric affine connection in V,, , with components Lnk

in the coordinate system (x*,x* ), "le repére associé". (Cct.

the Tﬂiﬁﬁ of Chapter 3.) He puts:

Ll = I (1.137)

] ]

where 'starringf a Latin index means add or subtract n , as
appropriate. For the components when restricted to Wn write:
L“ = _{" ‘ .
£ f } (1.138)
1% - A.t
d EEta Y

Then the former transforms as a connection, the latter as a

tensor. V,, has a metric tensor g, , which is symmetric but
otherwise arbvitrary. He now supposes that a (real) non-sym-
metric tensor Q#; is given on the subspace W, , and requires
that when restricted to W, gﬁ shall have the components,
still in reperes associés:

Ba = 0 | ag* = 9"
J f £ } (1.139)
g,}rf = §‘g,¢ gd.f» s 0

i

Requiring the covariant derivative of 8 weret. Lk  to

vanish "pour tout chemin de W," (p.2123), he obtains:




P o ' ”
é’;“:‘—} = @dvi-/ur = G{N oi-o—v = 0O
Qfd./1*y¢ + QVd-/lfﬂt - 0 (1.140)

Sup Aeve £ Gun Ao = D
neclest-a-dire le systéme d'Einstein-Schrodinger et des équations
nouvelles susceptibles de décrire un champ. inconnu" (p.2123).
(There is no reference, however, to the curvature-tensor equat-
ions of the Einstein-Schrddinger theory.) He concludes by
noting that in "reperes adaptés", viz. (zV,zr*), the components
of the affine connection, ijk say, are:

Wy =1+ 2% (LY + € L%, )
£Y
o df # di“ P (l.141)
Wi = 2 ( L.&f + € L.ﬂf )

(using the Einstein-Straus notation for symmetric and anti-

symmetric parts), so that the 'torsion vector' in V, , namely

va , vanishes; but that the Einstein-Schrédinger theory
assignment, which would be ;[fy = 0 , becomes in the present
context wfdv' = 0 (if 443nf= 0), a rather unnstural con-
dition. |

It remains to consider two contributions, which both
appeared in J.Math.Phys. 7 early in 1966, i.e. almost at the
time of, but slightly after, the present author's invesfigation
(which was Begun,in Dec. 1965, and completed in all essentials
by Jan. 1966). The first is a set of three papers by A.DasE“_gﬂ
In (I), he looks at 'semi'-classical (i.e. un-second-quantized)

ot

field theory in flat complex spacthime, coordinatized by z |,

L=

and z = z*, with:

2

ds® = . dz” dz? | (1.142)
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He does not consider the full groﬁp 1ea§ing Ne; invariant,
namely U(4), but only the T-parameter subgroup Lf x U, , where
LZ represents‘the proper Lbfentz group, U, the phase group: j
Zk:t___> eria skt : (1.143)‘
"We shall physically interpret ,zki| as what we usually i

Kkt

measure for positional coordinates, and arg z are the

electrical or internal coordinates." (p.46). He writes

22K = rkef*  Gonsider the linear wave equation:
(3 + & Zp ~inT) W =0 (1.144)
where @¥ e gl g et e us el 1 oo
Oilu ST ,)H T } (1.145)

Das writes down what he claims is an irreducible representation | |
of the o 's but, as will be seen in Chapter 6, it is even Rl
reducible under U(4), so that under his restricted group

Lf x U, it is certainly not irreducible. ~ (The present §6.3
may well have been suggested by Das's work, and is an (in this |
respect) improved treatment of the 'spinor' equation in complex
space-time. ) He inserts an electromagnetic interaction into
(1.144) via a prescription which resembleS'the usual one

('9/‘ —> B/, + ieAr. ), though it is not entirely free from
arbitrariness (he should, strictly, have complex quantities Aki‘i
and, by choosing a particular form of b -dependence for Y § !
arrives at equations containing "terms which reveal slight
anisotropy in the physical space spanned by the four ork'sgn,

Also given are expressions for energy-momentum tensors and

conservation laws appropriate to the wave equation  (1.144),
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and to the Klein-Gordon equation fof e complex scalar field.
His paper (II) falls outside the scope of the present work.
In (III), he restricts attention to-the subspace (with
real dimension 5) defined by the constraints:

arg z¥* = 6 (e ol na 4] , (1.146)

so that 2kt o rk et? ' (1.147)
On this subspace, the line-element (1.142) becomes:
ds? = Nic ( dr* + ir'd6 )( ari - i riae ) (1.148)
He now generalizes the transformation group, Lf x U, of (I)
to allow position-dependent phase_transformations:’
r = ta% ri } (1.149i)
&' = 6 + A(r') (1.149i1i)
The line-element (1.148) is not form-invariant under this
group, but becomes so if (d© ) is replaced by (d& + A drk):
as? = N dr‘dri + rire (do + Akdrf)i (1.150)
with the new quantities A (r*) being required to transform

as a covariant vector under (1.149i), and as

’ >\
under (1.149ii). "For the equation of motion of a particle

in complex space-time we shall postulate the geodesic principle™
(p.62). (Actually, the motion would have to be in the 5-
dimensional subspace Just detfined.) The Euler-Lagrange equat-
ion resulting from variation w.r.t., 0 hés the tirst integral:
murri (6 + Ark) = constant = q (1.152)

The other rour equations are:

f‘; =(i) Fij ri + (%)1 L » : (10153)

™
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F = aﬁé - ?fi A He interpfets g as the charge

gF-re ] art 2ri
of the particle, which according tov(1.152) "corresponds to
the sum of angular-momenta in complex planes" (p.62). (He
does not remark that the RHS of (1.153) is singular everywhere
on the.light—cone through the coordinate origin.)
He next allows the aﬁ in (1.1491i) algo to depend on the
7, By defining covariant derivatives in a certain way he
arrives at a contracted curvature tensor of the form:
PRI Bk = Rie. + d& Py (1.154)
where R;x 1is the Riemannian Ricqi tensor formed from the
8:j (rk). He says (p.63); "Phe electro-gravitational rield
equations should be derived from any one or linear combinations
of the square ILagrangians
frcent jphedn that gpegifenng igh py it

(1.155)

ekl ST i1 k4 k4
1 P”kg = RY R"k( + 4€1F Fk( =Y

19 .=
L't = P L i

He points out that either of these lead to field equations
which have as a particular case the Schwarzschild solution, but
hé shows that for F,, £ O they do not contain the Nordstrom
solution. (These lagrangians will figure in Chapter 5e)
Das remarks, in conclusion, that it would be possible to

consider the fﬁll transformation group:

¥ = 2% (2,%) ; conj. (1.156)
and that the corresponding metric tensorwwould have 36 comp-
onents "and may consist of many other fields besides electro-

gravitation" (p.63). (The theory we shall present stands in

fact half way to this most general geometry and has a metric




vensor with 16 (real) degrees of freedom.)

The remaining paper is by E.H..Brown,[mJ and begins with a

deductive 'proof' that space-time must be - complex. Ignoring
this, and putting aside the axiomatic and mathematical para-—
phernaiia (which can be employed to make complex ideas simple,
or the other way rouhd; this paper seems to be an example of
the latter), his theory runs as follows. Consider the line-
element expression (using a notation which is essentially that
explained in Chapter 2):

2 ds* = g (z*) daz'azd | | (1.157)

= (ggﬂdzxdzf’ =S :gd‘idz“dzﬁ) + (g”(ﬂdz"dzfa + g;Fdz;sz)

He points out that the two bracketed terms on the RHS are each
separately real, if 8i; is self-adjoint (see Chapter 2 for
this concept), and that "mathematical simplicity led Kahler to
choose g;; = { 8zp gdﬁ} , wWith Bup = 8z = 0, as a metric
tensor" (p.420). However, he then becomes guilty of "mathemat-
ical simplicity". Rightly saying that Kshler's assignment
implies (after a few extra assumptions) the existence of a
real scalar function ¢ such that '

, Bup =1%,u5 (1.158)
he then 'deduces' that this implies gdﬁ = 0, since he has
previously 'shown' that all real scalars must be ot the form

¢ = ¢ (2*) + @(z) . Although his proof is invalid, it

is obviously permissible to choose to start from his line-

element: Ft =2 ds? = ngdz“sz + gaFdzasz (1.159)

where the 8¢F are assumed to be analytic functions of the z°




50.

alone (i.e. independent of the 2% ); and vice versa for ggF .
There is the block decomposition for the af?ine connection
'T?{k = { 7ﬂ§rv(z*), ?p;(z:)'} , and- similarly for the
curvature tensors. In this respect, and in the (complex)
symmetry of the metric tensor, the theory has parallels with
Moffat's. Brown's Axiom 5 says: "If the unit vector

wh(zk) = %? = { wi(s™ ) oy wi(z:)} is the complex four-
velocity, the equations of a geodesic (the equations of motion

of a particle) are then

%‘ . 7”_f,.k wiwk = 0o v, : (1.160)
Write wh é ul' + i vf _
| Aois T (o AT } N
Then (1.160) splits into:
A Totey (uf ¥ VOVT) = 2T0%y ufvY - 0 } (1.1621)
?{ r {”;ﬂ,(u/ur—vﬂvf)4—2 TafﬂYquY==<7' (1.162ii)
Now, w® is a unit vector: w,w' = | = uu* - v, v=.

Neglect powers or vl. Then (1.162i) is like the Lorentz
force equation and "suggests that f%:F*ﬂ is a classical
approximation to 2 hf}YvY"and that v* (or, possibly, only
its time-like component) is related to charge" (p.421). Again
echoes of Motfat. (Of course, he has assumed in Axiom 5 that
'geodesic equation' and 'equation of motion of a particle' are
synonymous, which begs the most difficult question of all in

these UFT's.) ' I am not able to summarize with any confidence

of having understbod it the rest of his paper.




CHAPTER 2

tahler Spaces, [

This chapter is an account of those aspects of the existing
theory of what are known as 'K3hler' manifolds which are
relevant to the theory presented here. The latter was ‘
developed independently of the Kéhler space literature but,
where there is overlap, is identical with it in content -
though there are ditferences in method of derivation, notation
and motivation, -~ Parsllels and divergences will be noted in
the sequel, as occasion arises., The exposition is based
primarily on [67], [68] and [69], which for ease of refer-
ence will in this chapter be called respectively S g XB 3. L e

One first introduces the notion of an 'analytic manitold!.
Consider a set of points parametrizable, in a neighbourhood,
by continuoﬁs'values of 2n real coordinates (x%). Split

the 2n indices into two groups of n, by writing

L e {/‘ l ¢ ¢n’ (2,13

Fsi—n nel L€ 2n

Define ' zf = xF + 1ixP. (2.2)
Given a set of n independent (non-zero functional determin-
ant) analytic (therefore infinitely ditferentiable) functions £

of the (z|'), we can define an analytic coordinate transform-

ation Dby: zl' = £f (2*)

! (2-3) |
aget | Z£] # o 1

Then the original set of points together with the group of all
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such analytic transformations is called (a neighbourhood of) an

n-dimensional complex analytic manifold ( YB p.118). Call
b C:“ . (It will prove a convenient notation to denote,
throughout this work, complex spaces by curly capital letters,
real ones by ordinary capitals.)

Introduce a new set of complex coordinates by:

= =k (2.4)
where the bar on the RHS signifies complex conjugate. Then,

as (z!') ranges over the permissible coordinate systems for

C; , (2zF) will define a new complex analytic manifold, C;

say, called the conjugate manifold of C, ( Y p.50).

Tensor analysis 1s constructed in the product manifold

Cn X—E: ( Y pp.51-62). (Schouten calls this the "auxiliary
X,» of the original X, (S p.390).) Tensors are defined on
This manifold, as objects transforming appropriately under the
coordinate transformation group:

2" = fF(z%)

- = (2e5)
zl' = £ (z%)

it

where £l is the complex conjugate function of £, viz. the

£ 2 L 2 ol " 3 9 1
function of the n complex variables §° which is such that

Tr(E*) = £ (F).

A contravariant vector field on C,xC, is a quantity

(vF,vF) transforming under (2.5) like:
-1
vl e P

\

ViAo 2xfya (2.6)

o ®

Extension of the definition to covariant and higher-rank tensors




is made in the usual way.

—_—

The vector with components (vF, vF) is called the

conjugate vector of (vf, VF). A vector is self-conjugate

(or self-adjoint, or real) if it is equal to its conjugate.

&

The quantity with components (ivf, —ivf) is also =
contravariant vector. (This faect is worthy of remark: it
pin-points the distinguishing feature of complex tensor analysis
relative to tensor analysis in a real manifold of twice the
dimension, ) Going back via (2.1) to the Latin-index notation,
the above vector is derivable from (v/, vF) by multiplication

by'the matrix _(VYB pp.154—5):

(i) = [ L) (2.7)

which satisfies  hi, hi, = - &i . | (2.8)
(Eqn.(2.8) expresses the defining property of what are known
as 'almost complex spaces' ( Y passim).)
Consider the submanifold of C;><Ei defined by

gf= 2 (2.9)
When restricted to this subspace, a vecfor field (vl, vF) is
only a function of a single set of n complex coordinates,
and is said to be a vector field over C, ; 1its transformation

law (cf. (2.6)) becomes:

vt = %%e %
=t T - (2.10)
V¥ = ('é,?_":) Ve
o2

Similarly for other tensors. | | 1
Introducing 2n new complex variables by (Y p.53):
zH $F v 0 %F
zF = ¥t - F (2.111)
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with inverse: e L (Ef4_zf>
( (2.11i4)

?F:%f 2/“——2(;)
the restriction (2.9) then says: 3l and EF to be real. Yano
calls (3',3F).a 'real coordinate system'. This is rather
misleading, as (2.11) is not an allowable (1.e. type (2.5))
coordinate transformation (ef. S p.390). However, it is
often necessary to make the transition (2.11), so, %to avoid a
logical hiatus, it is perhaps best to supplement Yano's expo-
sition by explicitly defining the behaviour of (say) a contra-

veriant vector under (2.11) by = (ef. Y p.53):

v = L (v e VE)
VE = 3t (vF = vF)

where (vI, vF) are the components of the vector in the 'real'

coordinate system. '(2.12) can equally be written:
vV e Ty v ! 1% (2.131)
4 I(w) I(n)
where T") = % (2.134i
, ( ! : ~ T ¢ T ' 3-‘.‘)

( Im being the unit matrix). (CT. E4] P.464.)

Introduce a metric tensor .. satisfyi the conditions:
9 ;

930 = 34 | (2.141)
Quv = 97 =°© (2.14i1)
9/"; = 9/;\; (2,144iii)

The second says that it is a so-called 'hybrid' quantity, the

third that it is self-conjugate, the first and third together

imply 9ps = g ‘ (2.15)

i.e. that (gr;) is a Hermitian matrix. (2.14

it

what Yano calls a 'Hermite space', Schouten an X,. The




tensor is assumed non-singular, at least in some neighboux rhood,

so that 1t can be used to raise and lower indices. For example

= TR
<5
I
o
3
~
-3
—
n
°
-
(o))
‘,_!
p—

O -ig;
has matrix (cf.(2.7)): (hd) - (_ oAl (2.161ii)
‘f]l,:v o

Covariant derivatives in Z;\X Cw are constructed b3

means of Christoffel symbols formed from the g. according
7
to the Riemannian prescription. Because of the restricted

form (2.14) of the metric, one has:

A | A
T-/w = z 3 ('ﬁi/‘,v + 31\4,/»)
TAﬂV = /rki"/u = ’,L_ ‘akﬁ(?ﬂgly - ﬁ/ﬁ/’,?()
T3z =

unba

and three similar equations formed by replacing

-

rred by
barred indices and vice versa, an operation it is customary to
"~ - . > Eél'Lj m 4 N o - ‘ \ aw _e)s
abbreviate 'conj'. The T?jk transiorm under (2.5) like a

Riemannian affine connection, viz:

% 22" 22% 227 ) a2 o et
L= = IR TR 2R ,
| ke 2eb 221 33k / 2 rE I S POR-TL (2.18)

The special form of (2.5) means that
2> 2/
oz% azf’

3 o d=,

so that the second term on the RHS of (2.18) vanishes for

- , h o A A A . -
connection components oi the Iorm T v 7/7 s cong. Ine




[63]-(¢ 5] .

although earlier work by Schouten and van Dantzig ad
dealt with closely related (in certain features more general)
geometries.
: . 2 A 0y 3 ). : T .

Denote covariant derivatives w.r.t. the /.ik by e semi-
colon. Then it is a simple matter to show ( ¥ p.65) that
the condition (2.20) is equivalent to:

ar shoets Oy (2.21)

(2.17) implies that in a Xahler space:

g/u;';. = gf‘;)—)j ; conje. (2.22)
which in turn implies ( S pp.397-8) the existence of a scalar
function P (2%, 2% ) such that

8y = ¢7“; : (2.23)

Since in a }(n the only non-vanishing components of 7ﬂyk

o _ % A . ,
are those of the form |/ Y conj., the curvature tensor

C 5 § o g A8
R ke formed from the T .k by the Riemannian formula has as
its only nop—vanlsnﬁng components:

It satisfies the relations, to be expected from its genesis:

Ripv\r = /u:'/u—” (2,291)
! v conje.
R;/‘,y; = Rvu’)—\/u (292511)

I
O
o

It is noteworthy that in a X, the cyclic identities (Rif;we} =
give no more information than the already-known (2.241).
Because (2.24) are the only remaining components, the Bianchi

identities reduce to ( S 1p.399):

=0 : conj. (2.26)

RS/AV/Z s
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o o s . ’ . . - . [63]1-(65] .
although earlier work by Schouten and van Dantzig C had

dealt with closely related (in certain features more general)
geometries.
) . % g - - 3 3 » /]L. - -
Denote covariant derivatives w.r.t. the /.4k by a semi-
colon. Then it is a simple matter to show ( Y p.65) that
the condition (2.20) is equivalent to:
héy jlest= Oy (2.21)

(2.17) implies that in a Xahler space:

i
il

: conj. (2.22)

g/ua'q‘ gf(o:;—); 9

which in turn implies ( S pp.397-8) the existence of a scalar |

function P (2%, z¥ ) such that
8y = Py - (2.23)
Since in a }(n the only non-vanishing components of -}k
|

- o % A . 5 : )
are those of the form fﬂ./y , conj., the curvature tensor
3 A . A 8 A . , . .- -~
'R.{k( formed from the l.jk by the Riemannian formula has as
its only non-vanishing components:
2 ' % e .
R./uy; S R-/ucrv (2.241)
\ ; ‘
= (T—)A/UY>)U_‘

It satisfies the relations, to

(20 2“\‘3—1‘.)

be expected from its genesis: ‘

R'; v Sy Nvea (2.291) ‘
/ r : |
: conj. N
Ripve = Roelp (2.251i)
It is noteworthy that in a }{n the cyclic identities (quu};;O}

give no more information than the already-known (2.24i).

Because (2.24) are the only remaining components, the Bianchi

R— .. ! RX/YF)E =0 $ COl’lj. (2026)
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3-vector identity: curl grad = 0.
From (2.17), (2.24ii) and (2.23) one obtains ( YB p.125):
R)\/EVF = - ?AP, v,& qdf 945 3/7/81‘1__ (2.273-)
TieT ¢3%},WF 4—?”g¢;>ﬂ'¢ﬁ¢;e (2.271i1i)

=& Ossesses the symmetry property:
A/AY :
Rave = Rypaz (2.28)
=}

The Ricci tensor R;:

i = RBlimj (opposite sign to Yano) has:

R

Il
(@]

2f . conj. (2.29)

Using (2.28) etc. one obtains:

I

R/.‘; = =R = ~R"-“u7/u = R"f.t/u; f‘i‘ok/,)v
= (&3I§),/,; o (2.30)
where g = det ﬁg;”{ = [det Hg-—”]i, (2.31)
by (2.14ii) and (2.14iii).

Suppose the Kdhler space is of constant curvature, in the

SA ot e R .. - Ve » y -
sense that: Ry = K ( 80 Bik. ~ 8ik By ). (2s32)
There is only one independent non-trivial relation:

RA— — = IC O‘A o

EIY é/ﬁv = &8 g/&/\
Multiply by gmxgﬁ‘ to obtain: n’K = n K (2.33)
- ‘ p i |
so that ( Y p.69) a F.of constant curvature is flat (if W

its dimension is greater than | ).




Finally, subspaces. Let (zl!') be a coordinate system
for a complex analytic manifold Cn . Consider the equations:

where the u (« =1,2 .. m are a set of m< n complex
parameters. (2.34) derines a proper subspace oI C; s, and |
: \
ol . Lo S 2l - . o oo -— AN A S omden
(u®) 1is a particular coordinate system for i%. I one intro- |

a5 | 3= L e

from (u®) by analytic transformations (ef. (ZGS))G then, by

definition, one will have an m-dimensional analytic manifold, |
(ih , which Yano ( Y p.i04) calls an analytic subspace of

B} : LY

the CM» ” v(This assumes that the set of functions in (2.34)
i1s non-degenerate, in the sense that it specifies only (n-m)
constraints; if the contrary, then one will have an analytic .
subspace C, , with r < m.)

Now suppose the original (, is a ?(n. This means, in sum:
(1) There is a metric with 8 satisfying (2.14)
(2)

symmetric connection T - ik
(3) h; , with components as in (2.16ii), satisfies his;k= 07 |

R
Il
O
=
=
o
)

Use the first few Roman and Greek letters for components in
+ha 7 A e C - () = (5 % n e o (7 9 "
the subspace (., , e.g: () = (4,2 ) has range (1,2 .. 2nm).

Det

ine

’_
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mathematical theory ab initio in terms of the formalism in

which the 'physical' theory of complex space-time is actually
expressed. )

Consider the complex number A 'z A, + 14, . It will
be written ( A,), where, as throughout this work, small Iatin

indices always range over , 2). Introduce a matrix:

(c (o /1> | (3.1)

This will be used to raise Latin suffices, so that ( A*) has

for components the real numbers (4A,,-A,). The inverse, C, ,

has the same matrix, (3.1).

v

If two complex numbers, A and B, are multiplied together, Lt
the product is a third, C say, where: V

C, + 16 = (4B~ A,B,) + i(4,B,+ 4,B,) (3.2) |
To reproduce this fundamental property of complex arithmetic fﬁ

we introduce a quantity ‘pdé? , and write:

. 1
C. = D.*° A B (3.3) i
where summation over repeated indices at opposite levels is gf

understood. Comparing (3.2) with (3.3), p.*c must have:
p,'. = p,* = p,?t = -p2? =] ,

. ‘ i (3.4)
P, = p¥ = p,ll = p,*t = 0

Symmetry in its last two indices corresponds to the commutat- ;fﬁ;
ivity of multiplication. We shall also need the form with the

middle index in the covariant position:

pll-| = pla.? = DPa. = = Pg.;_{ = 1
(3.5)

{ 2

Pn* = D2 = DPal = P, = 0

Two special cases of the general rule (3.3) are .worth




[

separate mention.
(1) Multiplication of any number 2z by the unit compiex
number I = (], 0) can be written:
(Ixz ), = p.5° I,z, =8.5 z. (3.6)
where the quantity introduced by thé definition .
T i O - (3.7)
is, as the notation implies, the Kronecker delta symbol in
the 2-dimensional 'Latin-index' space.
(ii) Multiplication by i= /=1 = (0,]1) also sas
an alternative 2-index symbol representation: A

)

(ixz ), = p,°° ijgianr e nsig (3.8)

where the quantity introduced by e,° = paff i, has matrix:

(et ) = <;> ';) = - (e%a) (3.9)




$3.2 Complex vector spaces

This section deals with the question of equipping a
(finite-dimensional) complex vector space with a Hermitian
scalar product; 1t involves only elementary aspects of the

. [7el[71]
theory of such 'unitary spaces'.

Let IC' be an n-dimensional vector space over the
tield of complex numbers. Let {qu} be a set of n
linearly independent vectors of/w , and therefore a basis for
WC : (Greek indices always run from | +to n, except where
otherwise stated.) Consider the set of all linear mappings

% : @f-——> C from 1[ to the complex numbers, With the
usual definitions of addition and scalar multiplication, this
set of mappings is also an n-dimensional complex vector space,

. . [70] . *
the 'conjugate' or 'dual' space. Call 1t1{—. There
*
certainly exist n elements of Wf , call them {F;&, such that:
14
Fi{“) E(V} = g/, I\B'lo>

; ¥

They are linearly independent, and span 1[’. They will be
¥*
taken as the canonical basis for 1& y bthe basis 'complimentary
to! {E()} .' €k A 5
s SR
Introduce a scalar product into 14' as follows. With
*
each element v € 1{ associate an element v’ = G(v) e %f y
#*
where G : $C"?1[ 'is an anti-linear, or conjugate linear,
mapping with inverse; then the quantity
(vin) =2 v u = ¢(v)u ‘ (3.11)

is defined to be the scalar product of v with u. It will

be required to satisfy in addition the Hermiticity condition:

(viu) = (ulv) (3.12)




.
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(An equally possible presentation would have been in terms of

a lihear @iyping, 8 say, from WK to the space of anti-linear
mappings,\ﬁ* say. It is relatively immaterial at What stage:
the presence of the operation of éomplex conjugation in (3}12)

is allowed for (ef. {70] p.102).)

We now want a representation of the mapping G. Let v

be the vector: v = ;i; (vl + 1 vh) Egd ©(3.13)

0]

It will be said to have the components vk w.r.t. this basis.
Write its image under G as:

¥* ( s 2y ¥
vl = G(v) =‘%_‘ (vf‘ - 1VF) r(/‘)

Then the anti-linearity of G . is found to entail the existence

V

(3.14)

of a matrix relation of the form:

Ve = &b Vi (3.15)
with summation over repeated indices of both kinds. The
(2n)<2n)\real,mafrix (gpf ) will be called, more particularly
in the context of the next and following sectidns, the metric
tensor, Its properties follow from those of the scalar pro-

duct. By the preceding equations, we have:

(viu) = v*u = [%;(vé - i\?).F?J(jgj(uf + 1 q;) EpJ

= (vP Bl = & v; k) = i(vF uh = VF ul ) (3.16)
Using (3.5), this can be written: .
(viu)a = puet vy ouk (3.17)
(Compare the formula (viu) = vrur for the case of a real

scalar product in a real vector space.) Combining (3.15) and

(3.17), the Hermiticity (3.12) implies:

c ;o .
Db (ng vy) ul = Pig" (gﬁf uy) vk

Pa¢” (gpr vi) uk

- Pt (g;5 uy) vk
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But these must be identities in v and u, so that:

D¢t By = Dyl gﬁ;
DS g = = Dagt 8%;
Defi*ging;: g}‘”', = \(/w and g/',ﬁ = w/,, ,
the content of the 8 equations (3.19) is: s g
B Hop, B B }
gF% = Y,uv B YV/‘

In other words, (g?ﬁ ) 1s symmetric:
af Fa
g};)’ = gyfl

and can be written in the partitioned form:

ob 3 X}V wﬂ”
(g/,v ) r (-—-U/uv Y/A«V> ‘

. A" )
We shall call any (2nx2n) real matrix, Hypv  say,

- (3.19)

(3.,201)

(3.201ii)

(3.21)

(3.22)

with these

properties 'Hermitian'. Correspondingly, an ‘anti-Hermitian' :

“matrix AFf will have r

Apv = App = - AL; o |

L y i (3.23) |

AIAV = — Arv = o Av/M |

(and so will be anti-symmetric). Prom any Hermitian matrix é
we can form a new matrix by the prescription: E
. N H i

. "y B & A _ H(’U) . Ma2) ‘ '

( lVXH )rv = €.¢ Hrv s <’H(“) _H(“) (3024‘) |

which is readily verified to be anti-Hermitian, corresponding

to an analogous result in the context. of a more conventional

use of these terms.

Using (3.15), (3.17) and (3.20), the scalar product can

be expressed in the form of one complex equation:

(viu)

i

(viw), + 1 (v]ju),

(Yo + 1 u%y)(v{ - ivl )@l + 1uk) (3.25) i




=
O0.

By definition, G 1is non-singular. Therefore the inverse
- . 1 v a T a
matrix exists: g;f' gle = 5r Se (3.26)
One can solve (3.26) in terms of partitioned matrices (ecf.

(3.22)), obtaining:

y Y ,mfv> ,
( g’:&) = i Y (3.27)

where Y/7= (z")" and W= (Yot )", with T= Y+uYy'o .
Define GFV = \W& + i &?v ! (3.28)

There 1s the following simple relation between the determinant
of this (n xn) complex (Hermitian) matrix and that of the

(2n x2n) real symmetric matrix (3.22):

2
det Jepir| = [ aet | Cpv | 1. (3.29)

This result is readily established by taking determinants of
both sides of the matrix equation:

T TVo0o 46\ T T\ =[% 4 |

NE] g s 1) (3.30)

LT =T T 6/‘, O I I —-1‘)/..1 Y/uv
By Hermitiecity, det ]fGr,H is of course real. There are

the following formulae for it, in 2, 3, and 4 dimensions:

g;@: det I[Grdl = Y- W

3-D: aet Jowl = Y1 = () (PP o on] 1w (3.31)
4=D: det || G| = \/[ l = (Y“ydﬁ”ﬂ?ﬁuﬁ Qm] + W

where Y = det | Ywl and @ = det Jowll.  Tnese results

on the determinant of the metric tensor have practical utility
since, as will appear, a certain curvature tensor which plays

: . .o . ab .
a central role is completely specified if det [)gr,ﬁ is

known.
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§3.3 Transformations '

We shall first look at what happens when one chooses new
bases 1in the 'V: of §3.2. This will then be related td
coordinate transformations in a certain type of manifold.

Suppose, then, that a new set of base vectors for @: g

{ E;q}, is related linearly to the old, in the sense that there

is a non-singular complex matrix A such that:

/
L({,‘) — zy AV/A‘"E(V)

ith i . A = -l
with inverse: Eq” = % A’f By

(3.32>1.

This change of basis induces a change in the conjugate basis

-

. /
x . x T s ;
z F%)} of 14 to some new set of vectors, {FQ,} say, which i

)

must satisfy (cf. (3.10)):

/ by
Pl B 3 & Sy (3.33)

From this one can deduce that: - ﬁ

iy |
~ * 1

LR ST et -
N (3.3¢) |

! ¥ ohclia i
F(ﬂ ~ E;T Aﬁv ) ‘

These..changes of basis cause the components of a (fixed) vector |

Vv to change, in the following manner:

/ . / , . :
vh' + 1ivfl = 2; 'AFd (vd¥ + 1 Vf) L ¥ o
3 |
/ / =] (.3*35) i
I - 2 [} . 2 ¢
v - v = v - v »
s 2 g 2: Aap (Va Liowd) Hl
where dashes represent components w.r.t. the new bases. Let |
us determine the new matrix of the mapping G. We need to ;
split (3.35) into real and imaginary parts. Suppose
) . (a) /'~ N, i ;
Arv = Arv + 1 Al,()l ) \3030) ;
R i A(') (2) |
and write: (C@/;V> = /A (3.37)

() )
Afv Afv




(@)
(@¢]
°

Then equations (3.35) are:

/ « s o
/
vi'ltw 3 L snees
s s ¢
Therefore (3.15) holds also for the dashed quantities, with:

9iv ' = ZZ €&n ACH I (3.39)

s B,
It is readily verified that +this is still a Hermitian matrix,

(3.38)

N

7 8
and that its "Y: s Wy are determined by the equation:
/ ;
4 y / -1 « _T. {F = A
Y/«v + 1 &J/ﬂ = g% Aocr ( Yua/e + 1 waﬁ) A/ev ‘ (3.40)

We can now construct a theory of complex metric manirolds.
Let R,, Dbe a real 2n-dimensional manifold, parametrized by
coordinates (zh), with (at present) the group of general non-
singular coordinate transformations: ,

.zﬁ,‘ = zﬁ,(zﬁ) (3.41)

Consider a point P with coordinates zl, y and a neighbouring
point P', zﬁ,’+;‘dzﬁ , where the dzh are infTinitessimal.
As P' wvaries (always in the neighbourhood of P), the quant-
ities dzls span a én-dimensional real vector space, the
tangent vector space at P. We now require that it shall be
an n-dimensional complex vector space,- wc (P), in the.éénse

that the quantities (dzf + 1 dzf) shall be the components

0l a vector of WAT(P).

Consider the effect of the coordinate transformation (3.41).
- 0 ° ~ —‘>
For fixed P, P', the relation between the components of PP!
in the two coordinate systems is:
/
- 22k o -
dzla = >2% A2 ¢ : (J>.42)

Compare this with (3.38). It is clear that the change in




components which (3.42) signifies is more genera

¢

of (3.38), since the transformation matrix in the former does

1

not in general have the partitioned structure (

-
)
N
0,
)]
(@]

3.37)
is not equivalent to a change of basis in WC’(P) (in fact
it 'mixes up' the vectors of 14' and .those of the complex

. ; . 2 \ 1 L T = = I SN S
conjugate vector space 'vf Ja We shall accordingly restrict

the allowable transformations (3.41) so as to ensure that the

&

matrix in (3.42) does have the structure (3.37), i.e. we require:

/ /
22/ _ vzl
o 227 .
oz 2 (343)
(92/7 = _ ?72)‘2
227 > ' ’

is to be an analytic function of the (z% + izd) onmly (i.e.
’ | 2
( ). Under these conditions, (3.41)

willl be called an analytic coordinate transformation, and the

be called a complex analytic manifold, denoted C:n " If the

]

tangent /v:‘s are Iurnished, as in §3.2, with Hermitian

scalar products, the C; could be called, following Yano,

o
<
4

Hermite space, %ﬁn . We shall henceforth restrict attention

exclusively to such spaces. (It would be possible, as suggested
by A.Das (ef. $1.3), to try and construct a field theory in

terms of manifolds supporting transformation groups not rest-
ricted to analyticity (ef. also f6j] P.389, note 2); <the

reciil+sS e - A OYY T e el 4 ™o na 1+ \
resulting theory has, however, little to recommend 1it.

/

We can now say that the analytic coordinate transformatio:

]

induces the change of basis in ’)ﬁ(?)'given by:

" . . ) b T
These Cauchy-Riemann €quations, however, just say that (z]" + iz})

manifold R, with its transformation group thus restricted- wilds.. .
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§3.4 Affine connection

A tensor calculus will. now be set up, ¢ﬂ a way whic

corresponds as closely as possible with the Riemannian theory
( < S o [9’]) A oo Sy ~ at e Lo AT TSt -~ =T a i
(Cle Cafe ) . nbou_ﬂ we start Irom T1Irst principles” .
T ads [U o = 1 Leas oS 5 SN AN (&3 = o - = )
Let v[,(z2) be C functions of the 2% in some neigh-
bourhood, and transform (cf. (3.38) + (3.44)) as:
4 ozhT N . B
V/: = v Vi (3,.,;..8)
Ay
under the analytic coordinate transformation (3.41). Such a
A

N.B. it is not necessarily an analytic function of the (z7 + izl)
only.) Consider two neighbouring points P, P', of }%; , at
which the field has the values v/., vh + avh respectivel]
with: avl, = Vﬁ,i dzs (2.49)
to first order in the coordinate differentials. dvl .is not

TN

a tensor, since the transformation matrix in (3.48) in genera

differs from P to P' ; in ¢aow, differentiation of (3.48)

2247 azf P) zf' 93F o 7

So we define a vector V[, +§"vﬁ at P' which is said to

result from the parallel alcolﬁcome nt of the vector vﬁ "from

P to ‘P!, with ngﬁ bilinear in the vector and displacement:
Svl, = -74C5;v2 dz g (3+51)
(vE + avl) - (vE + §vb) is a vector (at P'), and the limit
P' —=> P yields the covariant derivative:
vhioS = vk +ThyS v) (3.52)

The LHS will be a tensor only if, from (3.50), the T 's trans-

iorm as:




——————

72.
O/”,) = ?2_/1”322‘/931{_ 7”?15; T Y, (3.53)

p) o/ ’
oz J2L 920 225 220227

The covariant derivative of a covariant vector field can
be defined by means of the following requirement: scalar'

products, in the form of £34 17), are unchanged under parallel

dlsplacement of the vectors. LE the result of parallelly

transferfing vy from P to P' is vF + §vi , this require-

- ment translates into:

i v;gu[ 4—Iut85;.) = 0 :‘(3'54)4
Taking a =] 1leads to: @
| Svi =+ Tipev) aal | . (3.55)
so that the corresponding covariant derivative is: .
viie = vie =Thfew . (3.56)
Taking a = 2 leads to a restriction on the ] 's:
ThiE - This .
S TriE o TPl (3.57)

The affine connection can be related to the metric tensor
via the following réquirement:, (vF +‘SVF) is the covariant

counterpart (in the‘sense_Of (3.15)) of (vh + 6vk) w.r.t. the

R4
P

metric tensor at P', This tranaléteé into:

(vp +8vi) = (gpv + gpv,e az0) (vi + §vp) (3.58)
which in turn entails: gyV;:: = 0. (3.59)

The metric tensor is symmetric (see (3.21)), so that (3.59)

only determines the | 's uniquely if they also are symmetric:
Tﬁf&c ; _T”fcb .

av @ = aqTy . (3.60)

The solution is then:

>*6' . - c ee & c a ‘
/I/’ev:_ = %- géf;.(g;y T + grc y = ggq-)/a)d .. (3061)




An }ﬁn satisfying (3.57), (3.59) and (3.60) is a Kihler space,

}{n s From now on we shall restrict attention to such spaces,
mainly on the grounds of simpiicity,'and because there seems

fo be no physical motivation for considering more general poss-
ibilities.  (3.21), (3.59) and (3.60) imply that the R,, is

now inter alia a (real) Riemannian space.

Because gF3 has. the particular structure (3.22), it
might be thought that (3.57) are consequences of (3.61); but
this is not so: /chey entail certain restrictions on thé

derivatives of the metric tensor, as will now appear. When

combined with (3.60), (3.57) imply that there are only two
\ :

distinct fﬂ's, (a)- Vo say, where:
A Moo N2 Aio2 A2 2
) ve = v = 2 Ve = ava = — VYT
; (3.62)
h) 7\ A A
T(—;.)-vc— ;Tzi:’ = /JA?L;—’ = ,:Oi' = - J 1;):1‘
A precisely similar set of relations -~ call them (3.62') -

exist also for the completely-covariant quantities
qérr_ k“c a (=3 ac a
/]/7 ve = é’;rA eve = % (gl‘%« + grr,é— % gﬁv“r,f) y  (3.63)
T4 7 -
with pre related to the 7:,yV' by:
)
/ ,“r = Y/u 7/;) Ve = (J/..A {(u ya o

; 3 (3.641)
‘AT(/LVU’ = Y/u) /’/(,;i-Vr /uA I(-} ya
with the inverse:
\ (z)
7/\(,J>fvr = A/HT pre r wl 7] | pre
}(z}.AVr = Y/JT’;:M‘ - Q/‘ 74/‘”’
Inserting (3.63) into (3.62') entails: |
Yr,{& - }/'yer’i A w/,ur,f/. * 3 Uv,r,z

Y/.nr,; - th,; = wf"';v = w"f;/ﬁ"
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~An %ﬁn satisfying (3.57), (3.59) and (3.60) is a Kahler space,

}(n . From now on we shall restrict attention to such spaces,
mainly on the grounds of simplicity;vand because there seems
to be no physical motivation for considering more general poss-

ibilities. (3.21), (3.59) and (3.60) imply that .the R, is _

now inter alia a (reai) Riemannian space.

Because gpﬁ. “has. the particular structure (3.22), it
might be thought that (3.57) are consequences of (3.61f: but
this is not so: /they entail certain restrictions on thé

derivatives of the metric tensor, as will now appear. When

combined with (3.60), (3.57) imply that there are only two

b
distinct f7's,‘ (a)- Ve - say, where:
A A
/)?’)-va‘ = ,)Iv;— = 2:4" 2 i\"; = "Tl;ql‘
o , : , (3.62)
’)/(;.)éyq— ETi:q{- = f}v:' = ?v;’ = "’Tﬁ?;lf‘
A precisely similar set of relatiohs - call them (3.62') -
exist also for the completely-covariant quantities
n(rc e AG‘G a (=3 ac a
/)/Zuvr = g;) eve = % (gr%c’ + gr«r,f - g;‘,‘;’r) ’ (3.63)
with T, pre related to the 7/(’,>yo— by: ‘
) A
} ve = Y 7’;) ve — & A,/(’1-""'r i
P 4 § y
7’7(1) Y ,r’ } A (3'641)
| s 1T p derve fA .y
with the inverse:
A A ) o -
TTu.vr = Y'f/r,fV¢ r wl T} | pre
- \ 2 ) \ (0] (3.6411)
e = Y/’,/’;j,, - o 7/7
Inserting (3.63) into (3.62') entails:
= — W 2o W, E |
Ior v vi‘ [uw,v va,
6 F (3.65)

Y/uv',v - YV",/“ = L)/,.u-,v - (qu‘,/il




By cyclically permuting indices and adding, one obtains:

-(‘)/‘V: ¢ + wvr,;a | + wcr/l); = O (3.66)
(cf. Maxwell's equation (1.4i)). (3.65) + (3.66) imply:
w/h\’,d" = Y/uq‘,\j; - \/vr//:. }

| (3.67
W = - vxc,r + Yvr,/: . )

In

/s
so that the derivatives of &%v are in fact completely deter-

mined by those of \}v 3 In terms of the latter, one has:

; Tﬂ:’o— = 5 ( Y/.lv,;i + Y/u_f}: = Yvr,/:) . (3.68)

One may note that in a ﬁ%k , for example, there are (2;;40)
distinct components of the connection and that the (10x 8)
different derivatives of the 'WN y alone, are syfficient to
produce just this multiplicity. vHoWever, there. is in fact a
single functioh, Q[L(zﬁ) say, which determines not only the
derivatives of both u7; and .‘Pv But also these quantities
themselves. The existence of this 'basic:-function' is not

so immediately evident in the préséntvformalism as it was in
that of Chapter‘2  (tﬁé'éuthor ohly tumbied.to it in the course
of explicit caloulatidns of the 2-dimensional case), but cah

be demonstrated as foliows. Multiﬁly’the second equatich of

(3.65) by i and subtract from the first, giving:

 Gpey = i Gped =.,Gm/', = i Gy (3.69)
Write zl' = zh + izl ; 'EF = zh - iz} (3.70)
| 2o oo i 4200 rpBani By gD
Then 2 53t = 5aF ~ L 3 2B£F'B?ﬁ'+ 1 (3.71)
so that (3.69) can be written: '
2G 26, K
,azv )Z/u (3072)

This, together with the complex conjugate equation, leads, by




5.

steps as given in [67] pp.397-8, to the existence of a real

function \fl(z, Z) such that: _
| BEQ__ (3,93
G‘rxv = 4 82/"92" (3013

Clearly, JL is :uniqueiy determined up to addition of the real

parﬁ of an arbitrary analytic function, i.e. ‘Jlf**>JQ?, where
J= JU 4+ 3 [f.(z*)w-_'i’_(?ﬁ] ; (3.74)

Using (3.71), (3.73) implies: = | '
Yo 2 e Dyp }
wluv ;"JZ,,:,S - \ﬂ—',/:»"

One can show, by comparing this equatioh with the corresponding

one in the dashed coordinate system, that under, (3.41) \fl
remains unchanged in value (at a given point ofx}én), i.e.
transforms as a scélar, within the 1afitude allowed by (3.74).
It is interesting fo note fhat a necessary and sufficient
condition for (3.57) + (3.60) to hold is: the_Td; can be
made to vanish at any one point of C;, by an analytic coord-
inate transformation. This is closely parallel to the corr-
esponding Riemannian result, and throws extra light on the
nature of the Kihlerian requirement (3.57). We shall ¢émon-
strate only the sufficiency - proof of the converse is almost
as straightforward. ° Suppose, then, that in the new (dashed)
coordinate system the OﬂA5$J/ all vanish at the point with
coordinates (zk). Thenkin the original system the T 's must

have had the values, at this point:

'3 g ' j F e smndittee Wiln wag P |
Tj/!(rc i __zﬁ.’ CEY, v o ‘ (3.76) 1

a V0
223 22} 2=27

e

(use (3.53), with dashed and undashed indices intefch@hged).

(3-75)&




76.

The RHS is obviously symmetric in (5 ,¢) (condition (3.60)),
while the C-R equations (3.43) ensure that it also satisfies
(3.57)

We note, finally, that the theory of geodesics goes
through precisely as for a Riemannian space. By.(3.12), the

scalar product of any vector with itself is real:

(viv) = (vlv) o (3.77)

Putting a =] in (3.17), this real number is just:

(viv), = vivh C(3.78)%

Take Vv to be the infinitessimal displacement vector dz ,
and.call the corresponding real number ds*. ‘Then there is

the line-element formuls:

ds® = dzpdzﬂ = gFﬁ'dzﬁdzi
= Yw(dzhdz! + dzfidz) + wfy(dzﬁd'zi - dzhdz)) (3.79)
= Gpvdzl'az. |

Either by auto-parallel displacement of the unit vector 'gg’

or from the variational principle:

) f ds = 0 , (3.80)
one arrives at the geodesic equatién:‘ i
o(lzf'«' . 2 Az} € ..
+ Thee stpdic.._ . - (3.81)
ds ds

.dsz
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_77;

§3.5 Curvature
The following few equatioﬁs are completely standard, and
will be presented without comment; they hold for }<n qua real

on-dimensional Riemannian manifold.

Vieja;6 = vﬁjﬁji = vZ-Tﬂﬁgiﬁ , o . (3.82)

where rESf = [THREE, 5 - 'ra;irr:.s*]-[:a;]. (3.83)
Rivip = gpfRBEe | | )
s - s Ty el -lEed ] Gues

Ry = -rﬁ;;ﬁ = REFFI = Riﬁfﬁ (3.85)

RpBE) = 0 | C(3.86)

Rrvidf,§} = 0 “ , (3.87)

Now utilize the special form (3.62) of the. T s, To
do this, it is‘simplest to work in a geodesic coordinate system
(cf. [67] p.156) for the point of P, under consideration (we
have already seen (p.75) that'thisbis possible). Then (3.84)
becomes: ‘ Fﬁi; TAGfi ) -77:{;,5. ’ - (3.88)
Inserting (3.62'), one finds just three distinct types of

tensor component:

) o Vgt &
Rry,{.‘g. = R};va(J

f;’w(g = Rivds (3.89)
(3) _ Rz

#*“F =. Tveg

all others being expressible in terms of one of these, e.g.

1112 (2)
/,wol‘g = s R/g /4v °
Insertlng into (3.88) the values of the 7::3r from (3.68),

and usingA(3.67), one can obtain the following formulae:
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g = g i) -
R(;A)YJ(Q (Y(uv,:l,(?
( Y/uv,u't,F' + Yf"";:(;‘) = % ( Y.,L(j,/u',)" + \(,((g,/f,;' )

(3)
These entail the following symmetry properties (valid in all

V-

(wiﬂ,/";; - UJ,B,F,{’ )

Wf

- Yeip ) =

Il
V-

Wl

R{uva(g ==

coordinate systems): v .

(1) ) (O] ()
Bpeafafomadpngs . 2 o fugup: =oHepps |
R;A:)V&F = - R;)v/ga = + Rg;w‘a ' (3.91) .

(3) (3) _ (3) _ (3)
Rf“’d(@ = + Rrv‘ad. = + Ry/y.(rg = RoL‘EluV
Also, the content of the ‘cyclic' identity (3.86) is:

\(\) = 0
,Rr{vpt(a} =

-

(2)

R(.) R(Z) R(3)
epnag OToipavg T pge
(which could also have been deduced from (3.90)).
How many linearly independent components of the tensor
a . ; . 0
Rﬂgiﬁ are there? The third of (3.92) shows that RFV*F ’
which has all the,symmetry properties of a Riemannian curvature

. \ (3)
tensor, can be eliminated from the count. R;vaf is then not

restricted by (3}92), and so has

‘| nel) ] n.n)‘ - |
N, = 3 R0 [nled ] ¢ (3.93)
different componenté£; 'The symmetry conditions (3.91) give
AP TLLD R Tl (3.94)

as the number of different componenté}of R?&;F ;  There
remains only the second of (3.92) to take into account. If
ol =g or g=Y or V=< , it gives only the (known) anti-
symmetry of R™ in its last two indices., So V, & B must

all be different, which totals %'n(n-l)(n—Q) possibilities,

and for each of these y can take.on any of its n values.

(wap,p,y + Gup,p,5) r(3.90)

‘Rr{y‘;fg} = 0 (3.92)




How many of these equations are linearly independent?
n<2 there is no problem because there'are then no equations
of this type; 'so take n2>3. il 4 p=7 the equation is:

Ribep + Rpwgp + Rpgps = O (3.95)
(no summation), and none of the three gomponents‘On the LHS
appears in any othef»of the equations, so the particular one

(3. 95) is certainly 1ndebendent of all the others. Tne same

is true if -F =d =~ or if s -ﬁ . bquatlons of this type

total 4n(n-1)(n-2). The remaining equations, of wh;ch there
are N = Zn(n-1)(n-2)(n-3), will have all four indices
different. Consider any particular one, together with the

three others formed by cyclically permuting all- four indices.
Then it is readily»verified that these tour equations contain
between them six of the components of R&) each repeated twice
(4x3 = 6x%x2), and further that none of these. components ’
figures in any of thé other (N-4) . equations. In other words,
the set of N equatibns splits up into %{ disjoint subsets.
But in each subs~t only 3 of the 4 equations are linearly
independent, since the 18t minus tﬁe 2nd plus the 3rd minus

the 4th gives identically zero. . So, Iinally, the séoond of
(3.92) amounts to . 4n(n-1)(n-2) . + %gl = 4n(n-1)(n-2)(n+l)

linearly independent relations among the components of R@{

Subtracting this number from N+ N, one obtalns
2 '
[#n(n+1)] | (3.96)

as the number of '‘independent components of the curvature tensor

a@gf ~ }7( - 1 +1
rv&ﬂ . (In a /X, , for example, there are 100.) To the

e
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aguthor's knowledge this simple result (3.96) is not in the

literature.

a

Just as for RFfi , there are only three distinct kinds
of component of Réﬁi;' , namely: } _
| ' R(.ﬁ.y%ﬂ = R%{'J,e'z o ARK R;ﬁva{j M R;)m{g
Rotp = RU4F = VP Bibue + @ Ribug (3.97)
R@ﬁyxp % R%tié = YAF R?i¢ﬂ ¥ ‘UMXRS;rV. o
The remainder of this section will be concerned with
contractions of the curvature tensor. . Use the p—symbdl to

& . <.
contract (ef. (3.17)) Rﬂiiﬁ over its first and third index-

pairs, giving the £wWo tensors: ‘

BYF = b Rlviso o (3.98)
Contraction, inétead; over the first and second indices does
not give identioallyfzero, as-in the Riemannian case, but

nevertheless yie'ds no new tensors, since

pete REpds = ot (RESE - REGLE)
= B - BYG . (3.99)
(3.98) says: | : | “v _
B(u)f-(f = Rﬁ‘g!:l[g + Rhs!}{g = Rhﬁp; I
() bt b1 E g ik (3.100)
B V(Q = R:.):,,;ﬂ - R)‘,y,‘(g

By utilizing the relations among the components of the curvature
tensor which have just been derived, one finds that the quant-
ities in (3.100) all derive from one symmetric and one anti-

symmetric matrix, in the following manner:.

Reyp = Bmfln" = Bmﬁ = —Bwff.;ﬁ = +B(1)F'v
S w22 2 s (3.101)

+ B po= - B PV J
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author's knowledge this simple result (3.96) is not in the

literature.
Just as for RP i3 , there arevonly three distinct kinds
of component of Reﬁi;' , hamely:
| . R(.)‘)-H(J = };’ /é = Yk/h _R(}:).vd{g - 'wArR;i)v’alg
R(I)A‘Volﬂ = R i (ﬁ" = Y>r‘R/(41>)'-Lﬁ + W R;i)ytiﬁ (3.97)
Rapvag = RISE = Y R+ ¥R, ) |

The remainder of this section will be concerned with
contractions of the curvature tensor. Use the p—symbdl to

t
contract (ef. (3.17)) Rﬂgig over its first and third index-

pairs, giving the two tensors:
(f)é— t

Contraction, instead, over the first and second indices does
not give identically zero, as in the Riemannian case, but

nevertheless yie’ds no new tensors, since

Piik R}’:lf;:‘; = Dy (R ai;; - R}:F;i)
= 3%, - B(”;Z . (3.99)
(3.98) says: | ‘_ |
Bmfﬁ = Rﬁgéﬁ + hvyp =" RﬂﬁF; ¢
@bt blE Lok (3.100)
y =R R},
£ Bpp T TIoipg

By.utiliz1ng the relations among the components of the curvature
tensor which have just been derived, one finds that the quant-
ities in (3.100) all derive from one symmetric and one anti-

symmetric matrix, in the followirg manner:.

Wy ()22 (2) {2 (v

R(s)};v = B py = ‘B o= - B pro= o+ B by
@ (3.101)
_ ) _ (22 ()12 _ Oy
R(A)rv = 3 proo= B =+ B p = - B

a 6’ 1
vp = DPros R&VF/Q & (3.98).
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Comparison with (3.20) to (3.24) shows that Bmpé is Hermitian,

IBh?g' is antl—Hermltlan and thau they are related by (ef.
(3.24)): o (ix Bb)fv . BQVV . (3 102)
So there is essentially only one coﬁtracted curvature tensor;
and it is completely sPécified by the complex Hermitian matrix
(R(va + 1 R(Mer' = Just as ( Yf’ + 1 wfv) specifies the

metric tensor.

The shortest route to an explicit formula for the contracted

curvature tensor is via (3.99) which, with r = 2, gives:

3”if = % (Rhpds - RERIE) (3203

S R = BVl = Retepy = Tap,y - THay, b o4

Rw = B% = Rufap =THp,y =Tl '
But (3.641ii) and (3.67) lead to:

Terse= 4 (P Yp, e + 6 and = Telhel,t = (% 108 g)(’3§:105)
Write Y = % log g8 = % log (detcHGrJ]) (3.106)
Then, combining (3.104) and (3.105):

| Boigs = Bofir ¥ o (3.107)

Rgp = W43 - \P)/u
The behaviour of g? under the ana lytlc coordinate trans ;orm-
ation (3.41) is worth noting. (3.40) and (3.47) imply that,
in terms of the complex coordinate notation introduced in (3.70),
the transformation law for GFV can be written:
‘ - 2z* [22f)
Grv = >2f‘ (a%v')e’a(g (3-108}
* 14

SoW =+ 3 [ 1oe (det ja}r,n) + Tog (det|35]) ] (3.109)

ll

If the first index-pair of B Fy is raised, the resulting

mixed tensors satisfy relations precisely similar to (3.101) -

4




call them (3.101') - with

) el
R(S)>-(\‘ = Y F‘R(s)}w + W /UR(A)FY_ »
X X i (3.110)
Bt o= - YoF Rp = w}uR(S)f”’ '
b
Defining the possible contractions of Lt by s
BY" = p.o B . (3.111)
one finds: B o B®Y. o 2 Regta -
S o | (3.112)
B. ' = B = 0

so that there is essentially ggg, real, curvature scaléf.

Various conlractions of the Bianchi identities (3.é7) can
be made. In contrast to the Riemannian case, it is possible
to get identities involving only the contracted curvature
tensor by a single contraction (namely, over the first and
second index-pairs); when written out, however, these have
precisely the structure (3.66) + (3.67), and so are equivélent
to a statement of the existence of 2 I/ such that (3.107)

hold; they therefore tell us nothing new. The doubly-

contracted identities are a fortiori already contained in (3.107);

@

they take the quasi—Riemannian form:
(BYy - 38385 BY ), = o, ¢ (3.113)
which can also ‘be written:
R(Q*v;& - R(g}gi - R(M%v); =‘.O
’ } (3.113")

R
Re¥v;a - Rela;p +  Rawd = 0




§3.6 Subspaces

This section is concerned with placing in a rather more

general context the theory of énalytic subspaces to which
: . [44] . : .

Yano's discussion (cf. Chapter 2) is contined. The
purpose is to emphasize and make explicit (with a proof which
is the author's) the fact that choosing the imbedding functions
to be analytic does not give the whole class of Kéhler mani-
folds which are contained in the original }{n . A theorem
due to Calabitﬁ] which complements and is more profoun& than
this essentially straightforward point is given at the end of
the section. (It should be added that in [68] p.176 ﬁochner
gives examples of,ménifolds.not imbeddable complex-analytically
in a flat manifold of any finite dimension; and that, from
its authors' different'standpoint,.a related remark occurs in
[71] p.534.) |

We work primarily,in termé of.complex coordinates, defined
as in (3.70). .Alsé,;bhly 1ocallimbeddihg'is considered (global
questions are of coufSe much harder). Let a j<n be given;
with coordinate systém’.(zﬁ). Introduce the constraints:

2l = £ (84, 39) | (3.114)

where the 2l are n functions of the m<n complex variables

?d and of their compiex conjugates §*. (As in Chapter 2,
let cX,ﬁ .. 7range over [ to m, while fsVY .. Tange over 1
to n.) (3.114) defines a certain subspace of the }(n, of

real dimension 2m provided that the system of constraints

has its maximum rank (ef. [67] P<E5 )y call it 8, Under




what conditions is - S.,m & j<m ? The question is not as it.

stands well posed,_sihce the method of e@uipping the S, with
a metric has not beén'spe01¢1ed. Let the }(n have Dbasic
function Jl(zr,z?), so that its metric is determined by the
complex equation (3.73). Vrite ’ .
. e S A= ) A —_— :
JLEHCE T, £1054,59) = JL(54,39), (3.115)
and consider the following possibility. '
Definition I: The metric tensor for Sam 1s
Y o Y : - ‘
( 85 = (“‘@ "‘P) (3.116)
F‘ * el
where %L + 1 Qd = G = 4 2 (3.117)
. T oy o 2ETF :

It is clear that, with this definition, §,, is'a X,. How-
ever, this is not'in fact a:'very useful way of defining %
metric, since if P, P' are two neighbouring points of ﬁ(n both

lying in S,, then the distance |PB'| is, by (3.79):

ds = [ “3 dzrgdzz] [G ydzldz’ ]/
' > L F . -
e [492/_;? 2 'j;f’;a; )(%A;F ; Bfﬁ AEF):) (3.118)

N
ds

il

qua displacement in }{ and:

[rwsng aif 1" = [GJFdE"QEF}I
[43}0(-?-?4;“4;#] " (3.119)

" - ; A 3 -
qua displacement in S,m+ and in general ds # ds. We there-

fore abandon this definition, and adopt

Definition II: The metric tensor in Buy 183

Ast . S 22l 926 ab -
Sap T F2 5T 33 Hme o = 3+320)

This ensures (cf. (3.118)) that the distance {PP'

s the same

in the two spaces: the manifold | S,, is said to be imbedded

isometrically in‘}(n " S, 1s however no longer necessarily

[
I




85-

a }(m. It the £f are-analytic functions of the Ed only,
then, using the C-R equations, (3.120) can be translated into:
: N .
‘ Vg b 4y :
(85f) = | & F (3.1211)
f ~Wap .X&F :
where  Yug + i, = el 6, = 4 S, (3.121ii)
’ £ - 2% 2% 7 T 233f
so that S,, is a'jlg. - This 1s the case of analytic subspaces,

mentioned in Chapter 2, and first treated in'[65] pp.33,5—8.

p
However, one can readily show that for S,, to be a .F<m i

1S

|...
ct

not necessary that the £l be analytic. Proof. Consider

any }(m y With coordinate system (%3 ), and metric tensor

A : - . . . .
( gjg . The latter is a Riemannian metric in'a real 2m-

dimensional space, Rj. say. This R,. can Dbe'imbedded iso-
c anlTv 4 s \ o Am(am+)
metrically in a real euclidean space, E, say, where N{—;—

(ct. [67] p.268). TLet the metric tensor of the latter have

as eigenvalues (+1) r times, (-1) (N-r) <times. This
Ey can in turn be imbedded in an E,, which is such that it

has eigenvalues (+1) 'r' +times, (-1) (N'-r') +times, where
r', (N!'-r') are the smallest even integers not less than r,

(N=r) respectively. Byt is a flat }<~f , with basie Tunction
‘ o N

2

7
N o= 23 g @t « (azd)’] (3.1221)
where g, = +1 1 € A< 3
(3.12211)
-1 Fr'< A <V%N'

We have, therefore, a }<m which is imbedded isometrically in

the sense of Definition II in o }<ﬁ' . Suppose the contrary
2

of what is to be proved. Then there exists a set of 3N!

. . L o« A . . "
analytic functiong of the §~, P (}%) say, such that }<M is




the subspace of ' determined by:

2% = FA(§) (A = 1,2 .. 3N)  (3.123)

Therefore the metric in .}Cn is derivable (ef. (3.121ii)) from

the ?ollowing basic function: S
SLGHLED = AELFD = 3 2 &R0 (3.124)

But the initial }{m waélarbitrary, so 1t can be chosen so as

to have a basic function which is not expressible as the sum

of squares of moduli of $N' (which is < m* + im + Iv)

analytic functions of the E“, theredby giving a contradiction.

Reverting toanalytic imbedding, a beautiful result of

[72] |

L.Calabi should be mentioned. Define cho v‘to be the

infinite-dimensional euclidean Kiéhler space with metric derived

from a basic function of form (3.122i) but with the summation

over (-«, +o ), and wit g, = +1] [ €A < e
-1 -0l A < -1
Points of £i¢> are those with finite norm in the sense of
oo
2 [ < e
— 02

(so the E; is a Hilbert space). He proves that an }<n
oo % I

can be imbedded isometrically and analytically in £ o

(There is also a converse result.)




$3.7 PFormulae relating formalisms I and II

Write the change

and apply it
using essentially the matrix (T4
components

formalism oz

zf

1l

zff + i zf

zf' = zb - i zf

of variables (2.11) as:

(3.125)

To the guantities of Chapter 2 to ceonvert them,

‘/

(]

the present chapter.

) of (2.13), to their

in Yano's 'real coordinate system', i.

F
S

L0}

« into

cne

In the following formulae

‘conj' means interchange barred and unbarred indices on the

LHS and and -i on the RHS.
vl = vl o+ ivh ; conj.
vy o= + VP + 27 vﬁ :  conj.
gy = 3 (va + i 9#“) ; conj.
gf; = 2(Y/" + 10/) ; conj.
7’kvv = 3 (Tﬁrvr - ijdﬁﬁr ) ; conj.
T2, = Tor ve "= "4 TH s ; conj.
Rysag i«(R(f'f“{g - R‘;Ld/ - iR(/f)wF - tﬂ{:{;rv ) 5 conj.
There are also the relations inverse to (3.132):
Roﬁvﬂg = £ R%yiﬁ + R%viﬁ ¥ R?;gf{+ RFQ&F )
R(u:.\u{g = =7 (R_Xv.c(?a - R%v;ﬁ - RS}”F - R «7

R(;)%Vo((? = '21‘( R’\.‘vdﬁ - R%V:l(i + RK.DE/Q

By combining this.last equation with (2.24ii

obtain the following expressions,

'alternative

)
g )
)

deducible from) those which result from (3.83):

(vT(_:, o ,[J" - T.(’|)AVF A 7/(’;)}\/4)/; - ﬁz)%yﬁ,i )

R(|)>-Vollﬁ -

Il

R(l)X'VJF

h)
R R 4

1
2

VS

j

X

(ﬁ;.vd,{g - (.).yp,i T
Y 1 b \

( (1) ¥k, [3 + /)70<VF’OQ +

d

A 2
(1)-Val,{9

A
ujﬂﬁﬁ +'ﬂn%w,i)
LTz J
v (1)-V'ﬂ,°()

(3.126)
(3.127)
(3.128)
(3.129)
(3.130)

(3.131)

(3.133)

+ (3.131) one can

to.(but also

(3.134)
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CHAPTER 4

The Real Limit Space M,

Let.}<n be any Kaéhler space, and (zf) a coordinate

; L

system for it. Consider the manifold, M, say, of real dim-
ension n, defined by the cbnstraints:

zl; = 0 - (4.1)
Let (zﬁ/) be a new coordinate system for }(n " derived fron
the 0ld by the analytic transformation:

2P+ j.zﬁ/ = ff(z2%+ 1z2) - (4.2)

Then the constraints: '

' = 0 ' (4.1
do not in general give the same subspace, M, . The latter

can therefore only be studied meaningfully when the coordinate
transformation group in_}<n is suitably restricted, as will
now be shown.
Theorem (4.3): A .necessary and sufficient condition for M,
to be an invariant subspace under tbe transformation (4.2) is:
£ (z%) = “EF(Z“) ) (4.4)
(For the definition of the complex conjugate of a function see
the remarks fdllowing (2.5).) Punctions satisfying (4.4) will

be called real analyticffunctions, and correspondingly (4.2) a

real analytic coordinate transformation.

H
H
]
1Y)
B
ct

-

oof: To prove necessity, suppose that M, is invari
Then ‘zﬁ_ " 0 —— -zﬁ’ = 0
S ff(z?)x”z th(zy) .= £f(z%)
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The two analytic functions £/ and ¢ | therefore coincide

when all their arguments are real. By the fundamental theorem

on uniqueness of(analytic continuation of functions of several

complex variables (et. [74] p.34), this entails that £ and

' coincide everywhefe-in their domain of analyticity.  This

argument is revel-sible, which therefore proves sufficiency also.
For the remainder of the chapter, only real analytic

coordinate transformations in ;*; will be considered, so that

M, is well defined.

Fy

If QF---f, (zf) is any (tensorial or otherwise) field

5

defined over some domain of }<n , then the value of ¥
1

rs
o

©
o

©

(o]
ct
I

ity Q- at any point of M, will be distinguished by enclosing
it in angular brackets, <<Qf-~é>>, and will be called a 'real

5

limit™" value of Q . An equation which obviously holds ident-

ically is: <2ﬁ>> s 0 ’ : (4.5)
Define: xf = <zt = <z (4.6)
The coordinate system (zf) on }<n will be said to 'induce?

the coordinate system (x/) on M,. . It (xfﬁ is the coord-

inate system induced by (zﬂ/)9 then: &
i j<éfc> = <fff(z“)>>' = £f(z%) £/ (x%) (4.7)

which 1s a real coordinate transformation in M, ‘induced’ by

the real analytic,transformation (4.2) in }(n " Man , a real
n-dimensional manifold with this transformation group, will be

called the real limit space. (A preliminary study of this

space appeared early in the literature, in |65] pp.344-6. The
v 7 o

i FA— e s Sy S 3 - 8
connection with Crumeyrolle's 'sous-variété disgonale' has




L

ed in §1 3.)

already been not
At any point P = (xl) oz

sional tangent vector space, V, (P)

5

ependent infinitessima

-
},J-
o

nearly in

P' ¢ M. . There is clea a (1-

spanned by any

w

lisplacement
1) correspondance

whose compon-

vectors € V,(P) and those vectors

@

nts vh satisfy vk = 0. Using

can define in the following way an 'induced'

roduct on M, . Let daxl, adayf

{®]
H

o

isplacements in M, , at P. Then, distinguishing

oo

product in M, by using square brackets,

(3.25) implies

layldax] = <Y/w + i /.v> axlfay” .

If the two displacements coincide, we get the

expression for M, :

(4.9) shows that lengths are determ

The anti-

Riemannian space, by a real symmetric matrix

into the geo-

symmetric <k),> , however, does not only enter

metry of M, via its influence on '‘curvature (see below)

(4.8) shows that even when undifferentiated it will affect

angular measure in the space.

The transformation properties of real limit wvalues of

a

quantities under (4.7) will now be ekﬂlOl ed.

Q, differentiation w.r.t. 2zl clearly commutes with the

bracket operation:

5% <Q?mﬂ>




A real limit value, <(QF;> say, transforming under (4.7) as:

A\
O
o

%
N
1l

VIV

¥

9
O

'3
N
e
L]
l,._l
N
N~

X
will Dbe called a real contravariant vector field in M, , with
analogous definitions for other tensors. The metric tensor

in }<ﬂ transforms under (4.2) as (ef. {3.39) + (3.44))§

b.a.é—/ _ D?j’( 92/?_— O.Sé‘ (4 '*Q)
_ —— ¢ Te A
D/AV ‘ 9?/;/ 32; D“F
Taking real limits of both sides one finds, using (4.11), that

v) and <Cﬁy:> each transform separately under (4.7)
[ I

o,
03]
ct
3
U}
i

second-rank tensors. In a'similar way one find
<Rw/w> , and <R(l.ﬁyoc(g> (1 =1,2,3), are all real tensors
of the appropriate ranks (2 and 4). Differentiation of (4.11)

and use of the C-R equations gives:

i 1 > o £.14)
- T4 - (4.4

e . . . \e
From tvhis, and the transformation law (3.53) for the obi ==

b
o . ) 7 A 4 a s . .
one ITinds that () va transiorms like a real Riemannian
s i ; X L I gt
alllne connection, and <j7;%yri> cas a real third-rank tensor;
trom (3.641) the transformation behaviour of the quantities

o
<17 Found
Faaa can also be found.

(It is perhaps wort! remarking that- there is no inconsist—

Yo d ; . A " A A ; ,
ency between the tensorial character of <<77;.y€> under (4

and the fact that all the 7ﬂay¢- can be 'transformed away' at

<

any one point of A&,

that to accomplish the latter it will in general be necessar

to make a non-real analytic coordinate transformation., )

- dlach
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$4.2 The structure of Mp

In this section the geometrical”Structure_of M, will be.
approached from a rather differént angle, thereby complementing
and extending the results just obtéined. (The method of
analysis.and the conclusions drawn'do not appear* to have ante-
cedents in the literature.)

It has been assumed throughout'the'preceding work; usually
implicitly, thétztﬁe.basic'function JCL(Z&) is 'sutficiently'
differentiable - . up‘toafifth'order, occasionally. Iﬁ some

neighbourhood ot the real limit space there therefore exists

the following Taylor-type expansion: : ;
Jb = g% g a?)zﬁ +-ﬁ'a;L zlyz +€Tz¥?,rzﬂziz: s A {2.05)

lep) . . . |
where the a'” are functions ot  the ,> = x%, given by:

) _ </ 2L <%§M

Bpv-ce o2k 92l . 228

and so are totally symmetric in their indiées. (3.75) implies:
)
<X/u,v> = a,/l,i: + a(ﬁv
1) ! . b
< (J)/"v> = a(";/“‘ - ,a”}‘))’

Now, VQL is only determinate up.to the addition of the real

part of an arbitrary analytic funoﬁion, S0 that a completely
equivglent basic function is (cf;‘(3.74)):
J?*‘E JL + % [f(zd) + Ezgzj]
= JL + £,k 25nzt)

£, (z%,2z%) +2 4 Rlmt, 21 ), (4.19)

]

if £(z%)

i

By expanding £, ;in a Taylor series at z3 = 0, and using the

C-R equations, it is readily established;that the expansion of

JU (cf. (4.15)) is such that: A
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a(a)* . a(o) % <fl>

0% _ (l) | A
af‘ - }* - <f1>)r : (‘(-.--20)
(n* = g ‘ Lo
rl.V - FV - <f|>)r))’
and so on. (It is readily verified that 'starring' the RHS

or (4.17) leads to just the same metric, as it must.)  Now,
<ff,>> and <ffz>> are two arbitrary and independent
tunctions of x[. Choosing <ff,>> = - a ensures that
<<Jlf>>== 0; such a choice of basic function will be célled
'canonical'. The possibility of this choilce immediateiy
dampens any hopes that .Mn might' contain a scalar field
suitable for 'geometrizing' a physical meson field; h;s is
rather ironic, in view of the fact that the whole geometry 1is
derivable from a §calar,\fl # The freedom implied by the

second of (4.20) is a precise counterpart of the gauge invar-

iance 0f electromagﬁetic theory.

We now examine more closely the nature of the coefficlents

()
,3

up to the fourth order 1n the power series (4.15); so, rename
these first few and (choosing a canonical ba31c function) write:
S = A zfy + 1;gryzle +1;'Srv¢zfz Zl + 4leu,,,,Kzf‘z 27254, (4.21)
The relation of the flrst two coefilclents to the metric tensor
. is (ef. (4.17)): _
<Y/“"> = gr" "tv :
’<£\)/.v> = AVJ/J e, A/J)V

It is a reasonable presupposition that the third and fourth

of M

coefficients in (4.21) will play e part in determining the

affine connection, and curvature tensors of M, ; it is the
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purpose of the remainder of the present section to elucidate

this remark.

Under the (real) analytic ooordlnate transformation (4 2),

inducing the reql transformatlon (4 7) 1n M, , one finds, from

the defining equatlon (4.16), that the coefficients in (4.21)

transform as follows:

y 2x” . .
A}" = 5:?’ Ax £ o : \
g/,'v = ;:;"' ii—é Ef " < | : ,
= gjf/‘ ?;:ﬁ, jx‘" g"FE - 33;5{7-(' 9%}'4;’/3 ’3;%’39{%;"4“ > L
/ o ; s
Hprex = %’ 2:(3' ;: 5 H"F“" - fj; a%?} Jop o
‘ ;
(5 2 v 5 2 B Vg

-

where the ourly»pracket notation, as introduced previously,
indicates summation over the terms obtained by cyclic permut-
ation of the indioes; (4.23) only hold for canonical basic
funotions. The last twb equations show the non-tensorial

nature of sﬂgw and Hrer . It is, however, possible %o

associlate with each of them a closely related totally symmetric

tensor; and these tensors Tuve ;and Kuvre saji can Gthen
D 9 /‘ ’ f« 9 o

be used in conjunction with Ap

)
w.r.t. the xr to provide-a covariant desgription of the
;

geometry of M, up to the level of the curvature tensors -

one would need in addition an infinite .number of other tensor

of tifth and higher ranks, corresponding to the infinite power

series (4.21), to characterize the complete geometry in terms

of quantities accessible on M, .alone (cf. the remarks in

§1.1).

‘and gpv and their derivatives
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In the rest of this section the < | > signs will Dbe
omitted, since all quantities will be real limit values;
correspondingly g%ﬁ..(written'”h ) and fb. (written sp -
a notation anticipated in (4.22) & (4.23)) are interchanze-
able; and 'tensor' will always mean tensor under . M,'s real
transformation grbup (4.7).

Introduce the following quantities formed from gﬂy =

<}%;> as if it was a Riemannian metric tensor. '
The inverse matrix: | g grv = Si q
T e = 36 (gpn,e + 8poy = &rop ) (4.25)

R(z;'xwﬁ _ [r(R)A.yuL)‘B _ /Jﬂm)_xw /r’(a)gy{g] _‘{‘d@/g] . (4.26)
We shall now find{ T#Yr ) in subsection (i), and KwaK in (ii),
the procedures in.the two cases being closely parallel.

(i) By (3.75) etc. it is clear that S v will only

figure in (real 1limit) expressions which involve first deriv-
(2)

atives of Yuv w,r.t. the Bz pve 1s one such:
Thve = 3 Chyfo v doil = Api s+ Spre) (4.27)

but it is not a tensor. From the transformation properties
of To've (cf.§4.1) and of the 'Riemennian' .object | e it
follows that m3yr - Tﬂh&yf) is a tensor. Therefore so
is X”fx(jjs%vr - (mif . Therefore, by (3.64i), we can
introduce the following tensor:

Jové = T(;fvf - W 7% (4.28)
J 1is symmetric in its last two indices, so we can define a

totally symmetric, tensor by:

(4.29)

/ayr ™~ J{/uvv}




Combining (4.27) - (4.29).gives£

2

2 I ; (r) )
Spre = e =T hpn e - F O T e (4.30)
)

Combining (4.27), (4.28) and (4.30) gives the (surprisingly

simple) result:

J/uVQ' = —::T T/uva— + "3’ ( w/uv.lcr + [‘)/ur]y )u . (4.31)

where a vertical stroKé signifies covariant differentiation
wW.r.t. the afifine connection 7ﬂ%@>yru

In spaces for which Af = 05 Sfyw does traﬁsfofm as a
tensor (cf. (4.23)). (4.30) shows that this tensor is:just
%'?ﬂVf , which is justification for considering T as the
tensorial counterpart of S. g ‘

A remark on the form of (4.31). Its 'gauge-invariance’
(the fact that the Aﬁ’s only appear via the combination @%v)
is noteworthy, and is connected with the existence of just The

'right' number of.derivatives of &ﬁw w.r.t. the XF? in the

2.
\

!

following sense. The tensor on the LHS of (4.31) has %1
(=40 in M, ) ,linearly independent components, because
7,”;,f has. Any totally symmetric third-rank tensor, and
therefore T,‘has;only i*l(n+1)(n¥2)‘ ( =20 in Mg) so
that some quantity other than T and with at least 4n(n*-1)
different components must also enter into the RHS. Now, the
number of deriVatives of the QFV‘ wer.t. xI' is 4n*(n-1),
but these are connected by‘fhe 'Maxwell'-type identities:

CWpv,ep = 0 - (4.3
of which there are ‘—fn(n—l)(n—2); 80 that the number of

linearly independentfderivatiGes of the &%v is -%n(nz—l)

(=20 in M,).

n+1

A
<

)

)
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(ii) It is clear that nydk will only figure in express-

ions which involve second derivatives of ‘E” w.r.t. the z%.
?(2) 2 ‘
T e & 1is one such:

T s = & (Yo, b+ Yo, e = Vemsb + Hppow ) (4233

l/uYo'/K
but it is not a tensor. Neither R?wa nor R;hox involve
this quantity (ef. (3.90)), but from (3.84) we find:
(1) . () ) b(l) ol
R(/::ZMTK = f/uvr,bzz +/]/‘/4VI‘<}°— "/rat/ax (e

so we can define a totally symmetric tensor by:

.Kluy(,c = R(;‘){vo—x} (4.35)

Combining (4.33) = (4.35) gives:
T !
-:2;: “{/“V‘K Y Y{vr,» K},/u
() o @) 7 I
+>'—1’_§ ( °‘/“£b< ﬁ)-v«r} + 7/7 v‘/“fk /(;)f‘ro’} (4.36)

Combining (4.33),W(4.34) and (4.36) (or alternatively, judic-

ious use of (3.91) and (3.92)) gives:
RiVvee = 3Kpvox + 3 (Rlume + Rjukve) (4.37)
In'spaces fof which grv = s HfYTK does transiorm as
a tensor (cf. (4.23)). (4.36) entails that this tensorysis
just % Kfy¢g , which is justification for comsidering X as
the tensorial counterpart of H.
A remark on the form of (4.37). The tensor on the LHS
nas  #n(n+#l)(n*+n+2) ( =55 4in, M) linearly independent

components (cf. (3.93)). Any totally symmetric fourth-rank

tensor, and therefore X, has only ‘fzn(n+1)(n+2)(n+3)

(=35,.4dn M) , so that some quantity other, than K and

(2) () (2) 7 & 7 i ;
- /FOLI/‘K ﬂu"-‘yr - /]/' Ap ,m,-(VK - /)/uul/ur |ty (4'34)

R(ﬂ is symmetric in its last two (and in its first two)‘indioes,i
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| 2 ] . .
with at least ~jzn"(n*-1l) different components must also

enter into the RHS,

linearly independent components of RﬂVTK

But this is precisely the number of

()

since (cf. §3.5) it

has all the symmetry properties of a Riemannian curvature

. . (25]
tensor and the latter is well known

components

L]

to have this number of

The section concludes with formulae from which all geo-

metrical quantities up to the curvature tensors can be found

in terms of the set:

Tensor
Ar
grv
Tﬂvr

Kfvwk

(4.31) gives Jpver

K/uva‘K )

In M, In 1,
n 41
%n(n+1) 10
+n(n+l)(n+2) 20
zzn(n+l)(n+2) (n+3) 35

Number of components

Y/J‘JYAV +w/uwuv = 57:’

O Yoo = Y 00 = 0

(which are a transcription of (3.26)), one finds:

7(') (R)
= /)/ﬁ/:vcr

{uvd‘
T e =
A :
ﬁ) Yo
A :
/I/(;)»VO" =

(The fourth equation

A i
()-ve .18

A

(R)
Uﬁk Tﬂp-vr 4 Jﬂv¢

P/

/

(R )\

",
Yl Tpve

a tensor.)

Contraction of th

in terms of these (it is independent o

From (4.28), and by usé of the identities:

L

Il

(4.40)

I

is ‘in agreement with a result established
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|
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|
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|
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|

equation over (\,v ) gives (cf. (3‘1055):
T?bdﬁr = % ;v ( log det [[K}v+ iw y“ ) 4¢41)

Contraction of the: iourth eouaolon gives:
g7

[arae = ETr = ,? Ja
where ' . = YT Poug 2 : o = (4.42)
and. o2 Y Geuiy

he following formulae for the first two curvature tensors
are valid throughout }(n (nnt just in the real 1limit), and

e

come from (3.83):
R(.;A-w(s = [mf\w,(& - }/;r)»k/oufv)fyﬁ 4’//'@/%/-‘ (z/f-ovﬁ} 0 }j ok o ‘B]
R(;)%votrs = ["‘T(ﬁl)%\u,‘é + /l/(l.)x./:.( ﬁ)ﬂvﬂ 1 (z)>4 ﬁ:)fy(f] - E ‘,(H/Q ]

Inserting (4.40), these two tensors are therefore obtainable

. (4.43)

. ; 4 : . o ol
in terms of Af’ grv, T}v¢ , and their derivatives w.r.T. X .

The third curvature tensor depends in addition on KﬂVfK y and
from (3.97) and (4.37) is:
. S JIRS [ 0 R M@ 4oad)
R(:)-W‘Q— BYf‘]</4vo‘lg t 7\{/" R/udy[g /,(gyd>+U/‘R_a/g/uv (4.44)
Finally, the contracted curvature tensors. From (3.104)

and (4.42):

J { . 3 v i
Repr, = '§(Tyvu - Tf,9> e 'E(Jgr - Jﬂ,v)ﬂ (4.45)
while from (3.104) and (4.44), with the help of (3.92):
R(S) v = ’%K Vv + %‘(R(,)u.l LY = °L(QRC:JV;.( )
where KFV = Y Krvaﬁ.
It will be convenient to divide all these geometrical
quantities into two classes: ‘'self-conjugate' (not the same

as Yano's use of thebterm, cf. Chapter 2) and 'anti-self-

conjugate'. The -distinction arises as follows.  Consider




the change:
X
Sl \/l(zh,zt)v-———;>\/l = JQ,(zﬁ,-zﬁ) (4.47

Under (4.47) a self-conjugate quantity goes into itselt,

whereas an anti-self-conjugate one changes sign. All the

equations in this section (with the exception of ,the series

H

expansion of JL itself) will be observed to consist of sums

of homogeneous terms (i.e. all self-conjugate or all anti-self-

conjugate). The classification is:

(R)X
R v

&) vy ' 17T 4 9 ) {R))‘
Self-conjugate: grv‘, X}v y Huver B pvrc ,7” Yy

(,)}yo— 9 det H {{uv +iﬂ~> v” 9 R())xl,;/ul(g. 9 R(B)),‘Vollé 9 R(s)/uy ®

4‘37

Anti-self—conjupaté:‘ffAV . &%w . Srvr ’ Trvr ,‘J}vr ,'ﬁ;%v« ’

. by
Jp +» Ratvep , Rappy » ‘

It is natural to look on the latter collection as the 'electro-

magnetic' quantities, the former as containing the 'gravitat-

ional' (and perhaps some other) field.
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$4.3 Analytic continuation

The preceding section has provided a description of M, .
In this section, and the following chapter, the problem of the
relation of M. to its 'parent' }<n will be investigated.
From the standpoint of physical theory, the evengual aim is %o
discover the nature of the 'ﬁberwelt"( }( ) with, as data,
only the known fields on space-time (M, ) (cf. §1 1). The
problem is not entirely d1551mllar rrom that faced by the
cosmologist who, from data on a very 'thin' null shell, must
try to reconstruct the whole universe in‘space and'time (ef.
[83] p.330). In the pfesent case there is no Preoedeﬁ%, and .
few hints as ﬁo how one should pcheed§ S0 the remainder of
this work really consists Only of suggestions and experiments
no solutions are: clalmed | ‘_

Let X, Dbe any given real n—dimen31onal Rlemannlan mani-
fold, with metric tensor 5?‘" g affine cgnnegt;@n Tﬁ”fw,
and curvature tensor 1¥pﬁ45 o,..Thén it is possible to con-
struct a M. whose real limit space ‘M, has the tollowing
properties: . - 3 o -

(1) All anti-self-conjugate quantities vanish

(11) V> = g 3. LYID = &

(111) {Tatved = TN R

(iv)  CRatvp) = RPN

This real n-dimensional manifold M, is therefore very similar
geometrically to the original X, , but it should be noted

that ,it supports also the fourth-rank tensor Raﬁvaﬁ (and

therefore R(ﬂfy ), which has no counterpart in X,. The
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?(n will bé called an analytic oontinuétidn af | T, ,‘thé name
deriving from the method of conétruction, which will now Dbe v
given. ”

| Let (x[) be a coordinate system for X, . The latter
can be imbedded in a euclidean E. (m { 4n(n+1)) (ef. [67];

p.268). Let the line-element expression for E, be:

dis* = 2. Sk(duk)z5 )

e L *{ (4.48)
and let the imbedding be:

wko= 2 | (4.49)

These two equationé give, as 1ine-elemqnt for the subspace X,:

= ik D fk v
ast = 2 e, 5§r 2L dak . (4.50)

so that the (real) functions £K . are solutions of:

- S e 24 2f* _ (R) (4.51)

"3k koaxl ax” - ‘ g[’“’ 4.
For each k, let £"(zl') be the analytic function of n
complex variables which is the analytic continuationﬁwj of the
function fk(xr) of n real variables (and restrict attention
to some domain of analyticity in the neighﬁourhood of the real
axes)., We now show that the }<m with basic funetion: +
2

JUzt) = 2 3 g ]2t (4.52)
satisfies conditions (i) - (iv), and so is an analytic contin-
uation of X, . (Being so coordinate-dependent this construct-

ion is unlikely to be unique, but the extent of its non-unique-

ness has not been established.)  Split the functions fk into

their real and imaginary parts:

£zt ,zk) + i £X(zk,zk) (4.53)

£ (2})
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From (3.75) and (4.52) the metric in }<a is (using the C-R

equations):

Yoo = HEIREEL TR N S N L
g %ol o " (4.54)
Loy = Ek: E(ES,p £Y - £RF £E )
But the £~ are_reél functions (cf. (4.4)), 803
KekS = o
and theretore ‘<f. > = <f > = £°(zh) = t°(x/f)

(As previously in the chapter, zf, and xI' are used inter-
changeably. ) Sc the real limit of (4.54) 1s, using (4.51):
<v,~> = g, )K

<A) = 0 |
The vanishing of <w :> entails that (\f‘> is Just the inverse
of the matrix <y/,v> (cf. (4.39) )); so (ii) holds. By diff-

erentiating the first of (4.54) and using the C-R equations:

(')vt‘r = Z Ek (f‘:)( f|})iail;'. o i f‘; Fl- fk ' ' )
(,:) ,u ) kK n . (4‘057)
/uvﬂ’ Z_Ek(f")f‘ fl,VO' — f|)’:t fz vV,T

Taking real limits, the second equatlon shows that <: fvr>>

]

and therefore <3&wr> , Vanishes; (i), (iii) and (iv) are
now immediately verifiable, using (4.40) and (4.43). .

No particular value (e.g. zero) is to be expected for the

third curvature tensor. One finds, from (4.34):

<R(3/)Avcri< o= S:E (<fk>)}‘; (fk>l)')'.' + <f!<>)/“;°" <fl$>,"’1'< )
(r&}f‘K r(rzu B Tv(nlrvzrv(n)_-tYK (4.58)

whence<<Krv,;> can be found. There are also the relations,

from (4.44) and (4.46) respectively:
<R(3)>5V¢‘§'>= %glt‘ <KFV¢(Q> + %_(an);wﬁ + R(R)A‘evd. ) (4.59)
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<R(;)/uv> = ':’{<Krv> + %R(':,)N | - (4.60)

The prescription'just'given enables a 'complex environment'

to be constructed fdr any of the space-times of interest in
general relativity (for example), but the resulting M,'s
suffer from the disad?antage,’50 far as electromagnetism is
concerned, that all the anti-self-conjugate quantities are
‘zero. Their vanishing is, in fact, a direct consequence of
the first of equations (4.55). In order to construct‘spaces
which, in the real limit, have non—vanishiﬁg 'electromagnetic’
fields, one could therefére give up the requirement that the
£k be real analytic functions, by (for example) allowihg some
of the constants entering into the expressions for £%(xF) to
become complex. This cbuld be called 'generalized analytic
continuation', and will be exempiified in subsections (ii) and
(iii) below. But first, in (i), we present a simple instance
of analytic continuation proper, yielding our first concrete
example of a non-trivial (non-flat) Kahler space.

(i) 2-dimensional surface of sphere. Parametrize the

surface, X, , of a sphere of radius a in three dimensions

by the polar angles (6 ,4). An imbedding of X, in E; 1is:

X = a siné coso
Yy = -a sinb sin¢ | (4.61)
z = a cosf

Therefore its analytic continuation, }( has basic function:

2 9
JU = 2 a*( |sin® cosé|* + |sin® sin¢|” + | coso|® )

= % a® ( cosh 26, cosh’®, - cos 26, sinh’¢, ) (4.62)
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Treating 0O as the firét_coordinaté,'q> the second, the metric

in }<1 is:

Yo = a*( cosh 26;vcoshﬂﬂ + cos 26, sinh'¢d, )
Yo = Ya = #a*sinh 26, sinh 24, o
2 . L2 | AR A ' (4.63)
Yo = a*( sinh' 8, + sin”6, ) cosh 2¢, ..
4 C)ll = =0y = '% a‘ sin 2'8| : sinh QCP,_ |

By inspection,kthe real limit values are verified to be those

Ot . Ll The'rﬁﬁi, and thence Ri&iﬁ , can be computed from
(4.63). The results are rather complicated; but in the

real limit Rﬁﬁy¢F reduces, as it must, to the curvature tensor

1]

of %y 4 Whiled .
<Rv(s)|\> 2 (R($)21> 2 sin’ ‘.9' (4.62)
. 4,54
« <R(s)|z> = v 0 <R(5)> = —i_;i

These may be compared with the Ricci tensor of X,

(R) (r)

R, = -1 R,, = - sin' b \
(R) ' . 2 ‘ (4-05)
Ry = O RY = - &

So. (K/w> does not vanish (ef. (4.60)).

Although X, 1is a space of constant curvature, }<; is nov
(the curvature scalar is a-function of 6,, 0, and‘¢:5;17bﬁ%:M
in fact it could ndf\ﬁé’ﬁ“épace*of-constanf,curvature'(see

Chapter 2 for a proof).

(ii) de Sitter universe. Consider the spatially flat

Robertson-Walker line-element expression ( [76] p.102):
3
as* = s*(t) {Z(dx‘)z] - at’ (4.66)

cei

These universes are imbeddable in the Ez with line-element:

3
as* = 2 (ax’t) o+ af’ - ay | (4367)




by means of the constraints:

x' = xiS(t)
§ +n = s(t) | ' (4.68)
- = R - [Z(x‘“-)’lsu)
provided that dF  _ -1/ 48 .. (4.69)

At 2€ ,

(This imbedding 1is obtainable as a simple generalization of

the work on pp.346-T7 of [75].) The Riemannian X, with

line-element (4.66) therefore has as analytic continuation the

.

K, with basic function: ]
Sl = 3 (sF + 5F) + %85 [gu; ] (4.70)
unere 8 = S(t, + i t,), end similarly F. )
We now specialize to the de Sitter metric, viz:
s() = e )[
and (cf. (4.69): | F(t) = R’le“t/R VT
where R 1is a.real constant. The corresponding }?(4 has,
as non-vanishing components of the metric: »
Yii = eﬂyR (no summation) ,
Yey = - cOS lf{ + -?,:g el% [Z (Xi){] (4.72)
G = - 9.;;. e“'/R .
The real 1limit values are as expected. The real limit of
the ‘anomaious' ob,jec’c1é R(s,/;v ig as follows:
<R(S)"i> = '2,{1 e e <R(s)w> = = %’1 (4.73)
which may be compared with the (Rierﬁannian) Riceci tensor:
R = 4 e 8 8P - - & (4.74)
Therefore (cfe. (4.60) for this case (K/n-> = .0.

If we make a ceneralized ana;ly't.ic continuation by taking




the constant R in (4.71) to be complex then, although <¢%v>
is found to no longer vanish, at the same time <Yk£> ceases
to be of the de Sitter form: a sinusoidal oscillation appears
in the t, -dependence of the real limit metric. However, the
de.Sitter metric‘can also be put, by a coordinate .transform-

ation, in the time-independent form:

. xt xd
8y F &1 t RS
gp = -1 + | (4.75)
iy = 0 )

and in this form will be amenablé to.the method given in (iii).

f (iii) Static, sﬁhéfically éymmetfic s?ace—yimes. Consider
| the Eg4 : s o _ |

J ds? = ‘;g;(dxi)l + d}l - dﬁl E as* (4.76)
1 with the constraints: " | '
}

§

E(r) coSh(at +'b)

‘ .= E(r) sinh(at + b) (4.77)
| | ! = )
where r* sl é;-(xi)i .  There results the X, with metric
& - & [EFETE )
ge = 0 - (4.78)
. _ gt |

bk - ‘
: which is equivalent to the general static spherically symmetric

space-time (cf. [25] P.200). As analytic continuation there
is the }<4 with basic function: :
] 2 2
JL= % ( Zjlx‘r + fE(r)l, cos(2at,) % }F(r)] ] (4.79)

A generalized analytic continuation can be obtained by making
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the constants a and b in (4.77) complex.  However, if

a, # 0, a t,-dependence appears in the real limit metric,

so we keep a 7rTeal; then (4.79) becomes generalized to:

JU = ‘%[jjgjlxir + [E(r)r cos(2at,+ 2b,) = ]F(r)\z:l (4.80)
(;pdependent of Db,)e. If the functions E and F are chosen
snch Tty = . <fﬁw> = g?ﬁ | (4.81)
where the RHS is any particular static spherically symmetric
metric in these coordinates, then (4.80) implies that at the
same time there appears the following spherically symmetric
'electrostatic' field: | |

Cwid> = 0 (i,3= 123)'
Wi <fan 26, )( a(r<\6"'>>
2m

In the case of the Schwarzschild metric (1 e <Cﬂ4> = -1 +F

(4.82)

the second of (4.82) becomes: | .
o ' tan 26’ b :
{Wi» = “‘(T—Trf*> is , - (4.83)

which suggests that thls displacement of the whole Schwarzschlld

space-time in the imaginary t-directlon through a distance ( 7;)

has caused the particle at the origin‘to acquire a 'charge' of

- (rnvtan.sz) S ' f ;

amount )

In the case of the de Sitter metrlc (ef. (4.75):

B(r) = (R*-1 )
CB(r) = 0 o (4.84)
. L |
Substitution in (4.80) yields the follow1nb real limit metric:
N> = as in (4. 75)
{wsd = 0 (4.85)

Wiy >
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which suggests an interpretation in terms of a uniform charge

density f = {’;T E’%A—‘ ¢ seresiling . a radial electrostatic
field proportional'to'diStance from the origin. One finds

for the real limit of fhe contracted curvature tensor the foll-

L Y

owing values:

oo = (5 i) - s g
(3(;)“,} = 0 ' ' '

CReymy = ~ 3:2;132;((4" %;)_ Y (4.86)
{Rwij> = O N « )
(R > = -E%Ifﬁ' %1 ="

where ng

1

2 C2 .
R*cos’2b, + r'sin®2b, .




CHAPTER 5

FPield Eguations for the Metric

The field équations in (say) the BEinstein UFT fall natur-
ally into two groups: the first connecting the metric with
the atffine connection, the second being a restriction of some
kind on the curvatureAtensof(s). In the present context, the
first group is straightforward; the second is very problem-—
atie and no definite conclusiohs;are feéched.

The first group of field equations is (ef. (3,57) ete.):

al
g:rv)‘g: = 0 ; ‘ i
{ o XLC A ¥
TRLE S isdl . AT ' (5.1)
e o= SThHE = ZTR |

For ¢ =1, the first of (5.1) implies, using the second and
third, two equations which can be combined into the single

complex equation:

Guv,¢ = Oy (Tope = i Tape) = Gua (ToTve + 1T = E
F | b 4 : (5.2)

At any point P , of Mo (in particular) this equation relates
the derivatives W.T.t. The xl' of the Hermitian matrix€'Grv
to the atffine connection components TZﬂVf at P. |

Compare (the_reél limit of) (5.2) with the correspondiﬁg
equation of Einstein' s UFT (cf. (1.98)). They are similar
in form excepf that Einstein's 'rﬂ 's are Hermitian, the
present ones complex symmetric. |

Compare (5;2) with the corresponding equation of Moffat's

UFT '(ef. (1.118)). They are similar in form except that
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(a) his & v are complex'symmetric; the present va Hermit-
ian, and (b) his (in’COntrast to Einstein's and the present .
theory's) covariant derivatives are formed solely with the
7/7Zm/ ot (1.119), the cbhplex conjugate quantities playing
no part. § FA ’ | u g

Compare (5.2) wifh the corresponding equation of Crumey-
rolle's theory_(the first of (1.140)). Given the difference
in the underiying number field the two equations are fdrmally
the ' same. However, his choice of metric tensor on W, is
not analogous to the present theory's, since (1.139) is stated
in 'fepéres associés', and in this coordinate system our

Q

equivalent of (1.139) is (ef. (3.20)):

galg = Xd(g' ' gd(g" “)4[3
- Bupr = Yup

Only if (1.139) was to be read as holding in 'reperes adaptés’

(5.3)

would his g on W, Dbe (the real limit of) a Kdhler-type

‘9
metric.
A result which follows from (5.1) is (cf. (3.66)):
&%fn&} = 0 s (5.4)
Like (5.2) this holds throughout }<n y, and therefore also on
My e (5.4) does not seem to have counterparts in the theories
just mentioned (see, in this connection, [28] p.737).

If the last two equations of (4.40) are inserted into

(the real 1limit of ) (5.2), then the real and imaginary parts

of the latter juSt reduce to the known results:

Y/uvlq’ = 0 } g
(5.5]
w/uv)d‘ + Jy/,(q' = J/uvr = 0
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We now derive an identity which implies the existence of
a conserved ('current') vector field in M, . The contra-

variant form of the first of (5.1) is:

gli;e = 0 . (5.6)
The équation with- a =2, b=c =1, and contracted over (v,o)
ist WM r 0T e+ Y Ta e Y Tl = 0 (5.T)
Using (3.105), this can be written: : |
7-% (For)y = -y Taley + YOTo e (5277
Take real limits of both sides, and use (4.40), (4.31) & (5.4):
<7,%-> Gord,y, = =YYV + YY) 3 )
- ,</YTdYWﬁ(Jkdv_ - Jupv )> ‘ ‘
= YV ounD> = (YLD (5.8)
Define Y = (Yl » 5

Then the anti-symmetry of /Y implies that |
S, <5._1o'>
So it would be quite natural to identify - <rvf—— Jf?>
being proportional- to the physical electric current vector
density on M4'; and correspondingly J‘jo 4/:—5 & x*
AR S | D

as the total charge contained in ‘the region D of M, .°

We turn now to the second group of field equations, those

involving the curvature tensors. Concerning the status of field

equations of this kind, the philosophy adopted here is the
following. A possible formulation of the relativistic theory
of gravitation (ef. the EIH approach) is td start from a

general Riemannian manifold, X, say, and then require that

Rﬂv = 0 (Fedd)
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almost everywhere, i.e. with the exception of isolated singul-

arities, which are to be identified with material particles.
This is a considerable specialization of the X, . Mutatis
mutandis, we adopt the same viewpoint here, which is a less
ambitious one then requirino the field equations. to hold every-
where, with globally non—Singular solutions (cfe e.ge [28]
Pe T3T7)e The remqinder of .the chapter is concerned with
investigeuing various analogues of (5.11), the goal being to
find a set of eduations for the variousvgeometrioal gquantities
on }<4 and M, _which is complete, compatible, and at the
same time has solutions which may be expected to exhibit the
correct 'physical' behaviour (general relauiv1ty, as a limiting
case, is a useful gﬁide here). (This is of éourse the goal
of all classical UFIT's.) - ,

The strongest condition anthe metric of }<4 would be:

R;ﬁi; 0 ” (5.12)

Such a,}<4 is euolidean, so there is a coordinate system in
which 1its basie function is: 4 ‘ .

JU = % 2; Ex lz"‘l2 - ¢ (5.13)
where €4 = Tk, In an arbitrary (allowable) coordinate
system its basic function is 2i the form:

JU = 32 es [2%(2f) (5.14)

With the notation of (4.53), the metric. tensor which follows

2

from (5.14) is  (ef. (4.54)):

w - ok o | A
Yo = Z:.E,(fur £+ 28002
P f

a%v

]
m
*
~L
l._
P
\:
Hy
-3
<l
|
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- Now ‘consider Mq_, Suppose the functional determinant of the

£5( xf) is non-zero, so that

’

o s xier) (5.26)
represents an allowable coordinate transformation - on M,.
Treating the ff(xﬂ) just as four scalér functigns of the xf
(or of the Xf’),‘wrife:

d%« = f}gf;_ffi"\ _ .' | o (5.17)

where Q*F = E;Lg;ﬁ» (no summation). Then in the dashed
coordinate syster:: - »
D R e i
<(:J_,Zv> = Grp = b |
<<7’T7Zn//m>> 0 du,p qf(g,v,}‘,,
mpre/ == CP/,)yfl =

-

(5.18)

g1l

(These are not tensor equations; they only give the valués of

these quantities in the particulaf,coordinate system (XW)

for M, .) As for curvature tensors, (5.12) of course implies:
{R(;)}w(e> = 0 (i= 1,2,3)

and therefore <'Kfy¢K>f = 0 :

(5.19)

On the other hand, considered as a Riemannian space with metric
tensor <Y%v> (ef. (4.9)), M, is not flat, i.e. Rmmv¢f ,
which can be computed from the first of (5.18) as a function
of the &. , is non-vanishing. <C§”T> , which can be found
from (5.18), is also non-zero.

Having characterized the (rather restricted) class of My 's

which are compatible with the field equation (5.12) for }<4 ,

we next consider a less restrictive condition than the latter,




namely, one derivable from a variational principle of the form:
& ( L Jg afzh = 0 (5.20)
X . 2
where g gz det “gﬁﬁl = [det]]%wu] = G, say (5.21)

and L is some function of the gFf and their derivatives
w.r.t. the zh . Although other possibilities shave been

considered, we discuss here only the consequences resulting
from the simplest choice for I (and the one most closely
analogous to the.general relativity Lagrangian for the'free

A

gravitational field), namely the.cufvature scalar of }44 s

L = 3" = BYLE = 2 Refp= 20V R - @ R ) (5.22)
The‘Euler-Lagrange-eqﬁations are:‘ “ba :

3 'Rayv'v= 0 :  -' o (5.231)

Ry = 810, . (5.231i1)

Although prima'facieV316 different équations these can in
fact, using (3.106) +-(3.107), immediately be integrated twice
to give the singleféquation: |

| 3 [£@zh) + £(zF)]
G = e e (5.24)
where f 1s an arbitrary'analytic function. Since, by (3.75),

G and therefore G , 1s a function of .fl and itssderiv-

IU'V ?
atives, (5.24) is a non-linear differential equation for Sl - ¢
It might be thoﬁght that the only solutions are the flat-space
ones, (5.12). That this is not so yill-be demonstrated by
explicitly constructing two non-flat spaces satisiying (5.23),

the first a }(1 , the second a }<4.

Consider the }(1 defined by the basic function:

xl
x, log [coa(c&t‘+ 2 tz)] (5.25)




metric is (with z° = %, z' = X )

Its
Yoo = ( d‘-+ﬁ1 ) x, see*(xt, + 8 t,)
Yoo = Yo = o tan (&%, + 4 ) |
s (5.26)
Yll = /xl
Wor = =i = "‘/6 tan (O('t, + ptz) W .
Therefore G = (dl-+f2) = constant ) (5.27)

so that (5.24) is clearly satisfied. By direct calculation

it is found that 211 the curvature tensor components Ruﬁyd@
o i - ~ | . - y o
are non-zero (with the exception of Rey-eu ), so it is certainly:

not a flat Kahler space. it g = 0, 211 anti-self-conjugate

This could be forseen Irom

]

quantities are found to vanish.
the form of (5.25): JQ, is then independent of the zl, , soO

that the power series (4,15) consists only of the first term.

As the second example, consider the following }<4 , Which
could be called a ‘'spatially isotropic' complex space-time:

JL =

5] - % £(v)

3,
F (5.28)
where g = §; | x|
and f is some real féﬁction. The metric is (with z° = © )
Goo = 1
Goiv = - O - ' (5.29)
Gij = - £'6; - £ % x
where £ 5_%% . This matrix haé determinant:
e = (£ + () 1t (5.30)
(5.24) will certainly be satisfied 1T we make '
(f’)g + (£°Y £ = constant = 1, say (5.31)

This equation integratés to:




L3,

)"
(0]

Using for the moment the notation of Chapter 2, one finds that

f/ = [( +(

.
f (5.32)
. o - 0_14 {

)3
.o I .= |

the curvature tensor components R%v?K.‘ vanish unless all the
indices are space-like, in which case: %

R%"-‘Eg =(%) {&k g.-lq-_ +.5¢1~ Sik - 7‘;— _}_c"‘(xkﬁi.-i-hx’. Se) + éf-; ;c—‘;-c—‘xdxk]
- (ﬂ)/ [}?(ka&i ¥ xi ) X ;fz—c—‘xdxk] (5.33)

’

Having shown that the equations (5.23) possess non-trivial
solutions in }{n , we now look at what they imply about 1M,.
#or the rest of the chapter all quantities will be real limit
values, so we henceforth omit the‘ <T > signs. * Using (4.46)
and (4.45), (5.23) imply: o

Rt pur = 0%F Ryyup = = % K (5.344)

jy,/ jf,v = TV¢7_ - Tf,v (5.3411)
Consider the latter first. Writing out its LHS, .one obtalns
the following propagation equation for Cdfv: |

Y pistp + Opp (y*F R‘“’Kﬁyd) - c'o,,{, (Y R ppe )

+ W R@}yﬁd - YdFV Wyalg +'Ydﬂy&7§|f =:'T}’V._-RV‘ (5.35)
This may bé compare. with the propagation equation P £he
physical electromagnetic field F#v in general-relativistic
Maxwell-Lorentz electrodynamics (ef. [81] p.176):

?(R)olﬁ F{‘vldiﬁ r F:/“(’ (C}(R)a[e R(R)/-’ w) - FV/’ ( q(R)d{? R(R)ﬁf/‘f">
+ B ROpa = 4T (Jeov = Tup) (5.36)
where J is the physica1 ourrent vector (cf. (1.4)).

/Ll

close similarity between the last two equations suggests that

Tm——

he

T. should be correlated with p 5 and so- should vanish in




the absence of charged matter. -

(5.34ii) are clearly equiﬁalent tos
J/,« = Tr + 5:)/4 (Bu3T)
where 5: is ‘an arbitrary scalar function. (There is a
| certain similarity.here with Schrédingqr's theory,(cf.[8é]p.2l).)
: Turn now tb (5.34i). Consider first the case of a 'selI-
ﬁ conjugate' or'fnon—electromagnetiC' gpace-time, defined as an

M4 on which all anﬁi—self—conjugate quantities vanish. Then:

Y)r _ g(R)Ar
[ﬂ(.)%vr = T-'{R)A.VO’ '
‘R(.))N{? = R(R}-)N/@ ' (5.38)
“ R(x)). w(é? = '3),‘ g(R)Ar K}uydﬁ + ’;’_(R(R).'\avlﬁ + R(R);\{gvot )
} R(s)/uy =. %K’“] + %‘ R(,;)‘y
‘ So (5.341i) reduces to:
| R”;iv- = - % Kp (5.39)

Comparison with the corresponding general relativity equation

| suggests that K should be correlated with the physical

energy-momentum tensor E[‘/,v (cf. (1.2)), and so should vanish

in the absence of matter. We shall assume this correlgtion

even when anti?self-conjugate fields are not absent.
With these identifications in mind, we look at the case

of a'source-free' space-time, defined as one satisfying:

T, = 0 (5.401)
Kuw = 0 | (5.4011)

s1lmost everywhere. Now, the 10 equations (5.341) (with

il

A/y = 0) involve not only the Y}v but also the 20 components
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Trvv y @as may be seen by writing it more explicitly as:

#ﬂ-+%wVU%ARm%¥-+qumVﬁﬂ - %WV(Q#VW+M¢“V)
+ &)d/g T/uvd{(ﬂ + (Y/’UY"‘/Q + 3 U/arwd/g)(t]}a’«v JQ'ol{ﬁ - J/a/lol Jq—y/a) =(’5041>

in which Tﬂvw enters also via the Juve  (see (4.31)). So
it is necessary to supply field equations for the Tﬂvr - also;
and the most natural choice is to replace (5.40i) by the

stronger requirement:

T

The souce-free M, would now be characterized by the following

vge = O i (5'4‘2)‘

set of equations: y | : | i -
Jf;,f = o= 0 | (5.431)
Ry + Ep = 0 £ -  (5.4311)
Tpre = 0. . s (5.431ii)

where the second equation is an abbreviation for (5.41) (with

Tuve = 0). There are the same number of equations as un-

knowns, which is -4 too many: being eovariant under the

real transformation group, the IHS's should, for the usual
reasons, satisfy four<identities;"butlno such identities

exist. (The situation is similar to that faced by Einé%ein

and Straus when,-in an early version of their theory, fhey

tried to justify = Ry = O as rield equation rather than

the weaker (1.114ii) + (1;ll4iii).) Thé natﬁre of the diffic-
ulty can be pin-pointed by noting’that the first term in (5.431ii)
satisfies the'Bianchi identities so that, for consistency, so

must Efv ‘ but ‘explicit calculation shows that it does not

in general, the condition that it should amounting to 4 equations
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in the @,y , which, when (5.431) is also taken into account,

A |

one has no reason to expect can be satisiied other than by:
C‘)/nl = 0. H

so one is left with a solution manifold which is merely that

of the empty-space field equatibns (5.11) of gengral relativity.
No satisfactory way of weakening, or of making consistent,

the set (5.43) has been found in the context of the present

approaoh{ We therefore go on to'consider field equations for

M, derived by means of a variational principle on Ms
this has the advantage of guaranteeing the existence qf the
required four‘identities among,the,équations,_bptjthe %éry
considerable (in the author's opinion) conceptual disadvantage
of leaving the 'parent'.}(4 out of the picture. |
Consider theivariatidnal principle: |
§j L./~g 4" = JA(’).”/'VY\O_V SR T ) /B d = 0, (5.44)

M, M,
L Dbeing a function of the metric on M, and of 1ts derivat-

ives w.r.t. the 'Xf, and the Euler-Lagrange equations being:
T =0 | (5.451)
S e T “(5.4511)
Using the standard technique (see e.g. [3] §23) for deriving
conservation law. by making infinitessimal transformations of
the group(s) under which the Lagfangian‘is invariant, in this
case real coordinate transformations in M, 4 one can éhowb
that the LHS's.of (5.45);are connected by the following four

identities:

o(' ) ol - /;e‘ ‘
Y}P ]Wg,d + C?F.ﬁLﬁla _éfépfl £ +a%fﬂfﬂafﬁ%,k =0(5.46)
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where (4.40) and (5.4) have been used. In subsections (i) -

(1iii) we shall investigate three poSsible Lagrangians, rest-

2

ricting attention throughout to the source-free case (seel
above), i.e: ‘
Tuve = Ku .= 0. . . (5.47)
so that both R“VN and 'RMV” are functions only of the
metric and its derivatives w.r.t. x/.
(1) At first sight the most natural choice for I is:
L = R(s)rr = %Y/‘V(R(,)o-l/uolv - wd{ﬂ R(;)vollﬁ) + —'B._w/uv(j/;,v - jv,/a.) (5-48>‘
The corresponding tensors L™ ,,JL#V, have been computed,
but are excessively complicated. In the static, spherically

symmetric case, however, the field equations become relatively

simple. We may take, as non-vanishing components. ol the metric:

Yoa = ev Y] = - eA
You i Ll p® Vs = . - r sin*® : (5.49)
P e"z(hq—v)
Cie = - 0u = T pEs
' . 2 . ;’:(An’)
whence =G B flsin§1eﬁ (5.50)
_) ' . ' . S !
Rmf-r = 3%: - _§.e [ver dvi(v-s)][142e))-F"] + 2 (yoy)
4-1—,'—1 ,2—[—%")'—"] J—ZFF”-J—(V'—)')FF[ (5.51)
_[e_4 TpF _ [ 4& _ 2 )2
J- 9 l—F‘] E T 3(|—F‘)](F)

Inserting these expressions in the variational principle, one

can obtain in a straighttorward manner the three Euler-ILagrange
equations for the three unknown functions of . A class of
solutions with- F #Z O should exist, but has not been

explicitly found (it might, of course, be empty).
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In the non—eléctroﬁégnetic case (ef. (5.38)) the field

equations derived from (5.48) are just: |
.R}f‘ﬂ = 0

i.e. Einstein's emptyfépace field equations,'while the identit-
ies (5.46) zo over into the Bianchi identities. . .

Since (5.45) are required to hold almost‘everywhere (i;e.
with the exceptiOn‘bf isolated.singularities) they should,:in
so far as they are non-linear, prédict,'for any particﬁlar

choice of Lagrangian 'L , definite equations of motion for

these singularities. With (5.48) as lagrangian, however, there

is sufficient analogy with Einstein's UFT for one %o be fairly

. : : (3¢]-[38]
sure in advance that no Lorentz force will appear. . .This is

clearly connected, with the fact that in the present Lagrangian
the curvature scalar formed Trom the }}y i Rm), is adjoined
to quantities like Xﬂvaf%éhquv , and similerly in the case
of Einstein's Lag;angian}. whereas the Lagrangian fof the
physical electromagnetic field is of the form FVVFFV {efs
(145)); and this torm does lead, by an EIH type calculation,
to the correct (Lorentz) force on electric monopole singular-

ities. In (ii) and (iii) we discuss moves which can be made

to meet this situation.

(ii) Choose L = R“VW‘ o)\ | V'“““;gﬂk3i5?7~t—

Tet T , JU represent the Hamiltonian derivatives-of

(R(nﬂr J=G) w.r.t. Yoo 9 W respectively. By the usual

formula for differentiation of determinants, one finds:

EJ-6 = 3 J2G (Y -0l iew) (5.53)




The field equations resulting from. (5.52) are therefore:

T =AY (5.541)
NV WA (5.5411)
Suppose. the. A%v are connected with the physical FFV byﬁ

Wpr = 1) Fp (5.55)

. i iy L S
since the IHS is dimensionless the constant has
) - 9 ;

where,
Vi : charge X lengt!
dimensions (c rge X lengtn) - ye want:
mass
g ] | /
ﬂ wy s KFIM Fy ‘ (5'50>
r s .
(K = BEinstein's gravitational constant), because then (5.46)
Combining

will be something like the Lorentz force equation.

the last three equations gives:

9 _
At o~ K ~ (5.57)

In this relation, both ‘A end q are unknowne. The followilng

'plausibility argument' gives an upper bound on h . The

classical radius of the electron is (taking ¢ = 1):

2 —
r = £+ 2.8x 10 eonm (5.58)
Mg

A1l .field strengths with which classical electromagnetism deals

are therefore less than
(max) \
F = = o (5.59)

= 2 i

e
and for all such fields the linear Maxwell theory is a good
description; 1f the present non-linear theory is to provide

an equally good account, these 'observable' fields must be

such that (in coordinates for which Y?v ~ 1)
Wpr < (5.60)
5

a
Therefore - n < %}- (

This implies, with (5.57), the following lower bound onvk




A

4 & i
(5.62) means that it is not possible to take, as the form
of (5.541i) might at first suggest;"k to be of cosmological

3

-55 . _ _ )
dimensions (~ 10 em™ ). The next most natural choice,

which is consistent with (5.62), is:. s ,
A= - . (5.63)

This leads to Wy ~ 107% at‘the surface ‘of an electron, so
that linearity for obsefvable fields would be well satiéfied.
Problems arise in connection with.(5.54i), however: +the
gravitatioﬂai fiéld will now propagate (in the linear spprox-
imation) according $0 an anzlogue of the Klein-Gordon equation
rather than the wavé»equation, which seems defihitely unaccept-
able (although if shoﬁld be mentioned that Lanczos' theory?m}{gd
employing a Riemannian manifold, is based on a proportionality
such =g (5.541) with essentially the value (5.63) for A ).
-(iii) Choose, I = ani‘smﬁﬁ

‘ = 2 (Rel” Reopy + QRMWV Rimpr ) (5.64)
where (ef. (3.101) & (3.110)):
B = Y Rety - 0% R

: . (5.65)
R(A)AK = B('»f}; = YKV R(A)A.v + QKY R(s)'\.v

N
Res)

i

The second term on the RHS of (5.64)'resemb1es the IMaxwell
Lagrangian Zfor the free electromagnetic field, and mainly on
this account a Lagréngian of type similar to (5,64) for the
combined gravitational and electromagnetic fields has Dbeen put

forward on a number of occasions and in a variety of ‘contexts,

e.g. [52] p.63, [77] p.532, [79], [80], [81) p.230. 1In
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contrast to case (i) above, however, there is now a departure
irom general relativity even for a non-electromagnetic M,,

for, by (5.38), the action principle then reduces to:
Y jR(R) R“" g™ d*% = o0 " (5.66)
M,

’ This. latter Lagrehéian is gauge-

where gm)z detj]gﬁk
invariant in Weyl's sense, and for that reason figured in his
theory (see also [Si]bp}141). The foliowihg field equations
result from (5.66).(the equations given in [98] are slightly
erroneous) : | _ - |
(RF. R - % gl R“f‘ Ru ) + 3 @RI+ R - REYTYL= 0
- , (5.67)
(where the supersbript KM has been dropped, for simplicity).
Contraction over ! (y y v ), and use’of:the Bianchi identities,
implies that the curvature scalar satlsfles the wave equation:

O = = g*f Riwrp, = 0 o (5.68)
All solutions of (5 11) 31mu1taneous1y satisty (5.67), but not
of course v1ce_versa; Whether (5.64) is a permlss1b1e choice

of Lagrangian depends, thererore, inter alia, on whether it

can be shown that (5.67) does not lead to physically unaccept-
able conclusions.  This seems to be an open question (cf. [77]

p.533).




. CHAPTER 6
‘Pields in 54

$6.1 Introduction =

The previous éhépfers have treated curved }(n's. We

shall now consider only ilat ones:
| ﬂ= Z Eul lz I TS

o=
E,L -

o

(6.1)

I+

1

The metric which corresponds to this basic function and coord-

inate sysfem is:
Yo
w{uv = O

At the same time, the coordinate transformationé will be rest-

Np E.ﬁpg;u' (no summation) | . (6.2)

]

ricted to the affine group: ‘
zf = :;~ Ardﬁzg s (6.3)
i.e. only positidn—independent, homogeneous tranéformations
are‘allowed, and they are further réquired to leave the metric
(6.2) invariant, so that (cf. (3.40)): |
iz Au/u "]a‘a Fv = ")/‘v _ ’ (6.4)

We shall use the rather ugly term 'quasi-unitary' for these

transfor matlons, and write the group as U(4) (it is unfort-

unate that group-theoretical nomenclature seems.to be adapted

primarily to groups. der1v1ng from p031t1ve deflnlte forms, SO
that in the contrary case there are almost as many notations

as authors). Under these conditions the }(4‘13 a (quasi-)

unitary space, and will be written 554 .

The motivation for this specialization is the following.
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As discussed in §1.1, one would not expect a 'complete'
physics to be constructible purely out of the sort of'geomet—
rical tensors considered so‘far; So one is led to examine

the behaviour of 'extraneous' (in the sense of non—geometrioal)
fields on }<4 5 This is a pdtentially-very 1aqgg area of
investigation and will Dbe no mofevfhan touched on here: it
leads almost at once outside the ‘scope df'the present.work and

into quantum theory. In this .chapter we treat only the

question of the existence of Dirac spihors in.,E% (see '§6‘3)."

$6.2 assembles oneor two results relevant to the purpose. The
present section concludes with sdmejremarks on the subject of
'internal' symmetry groups. i e
Suppose (cf. § 1.1) that, as observers bonfiﬁed to M,,
our experience is oniy é partiéi;view, é slice, of the‘freal'
physics, that.off}<4.b The lafter will (presumably) involve
interactions which are_co#ariant under U(4). The only |
coordinate transformations permigsible on M, are (ef. Chapter
4) real transfofmatibns of the xl , which in the present
context means: the'iéréntz gréup,‘ Ly The latter is a
6 real parameter proper subgroup of U(4) (we consider homo-
geneous transformations only). The covariance of an inter-
action under the wider group U(4) might therefore be iﬁter—
vreted by an observer on. M, .in terms of (covariance under
L, , # together with) some 'internal’ symmetry property.
Turning now.to elementary particle physics; we find the

following situation.  The structure of the (inhomogeneous )
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Lorentz group givesmrise:toagrqlassifigatidn of'pérticles
(strictly: of irreducible fepresekfations) according to their
mass and spin. The classificatory possibilities latent in

the group are thereby exhausted. However, the observed
particle interaction symmetries either demand on at least invite
The introduction of other quantum numbers: charge, baryonic:

charge, hypercharge, etc., which are not connected with space-

time coordinate transformations. Thus there arises the concept
of isospace. Originally, the latter was taken to be three-

dimensional, and provided a ‘'geometrical’ characterization of
charge multiplets (in terms of isdtbpic spin). Subsééuently,
a real four-dimensional space was suggestednﬂ—éigxlthe attempt
to incorporate strangeness ( [88], and [89] Chapter V, review
this work). More recently, attention has . been ﬁrimarily
Tocussed on SU(3), SU(6), and related groups. However, the
group called here U(4) ‘has also been put forward?ﬂ—Lﬂ] in
general the internal transformation group is unconnecfed with
space-time cobrdinate trahsformations,’so‘that‘the overall
symmetry of (say) the iagrangian is just the direct prodﬁct
0T the two distinct types of group;‘.attempts to modify this
state of affairs meet with great difficulties. :

Is there any connection between the situations, one
hypothetical, one aétual, portféyed in the two preceding para—
graphs? It would séem.not entirely inconceivable that a

case could be made for trying to relate the 4 'unphysical'

degrees of freedom, zh , of a complex space-time to the
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coordinates of (for example) a four-dimensional isospace; Dbut

without a much clearer picture of the supposed nature of fields

in Eﬁ, it is difficult to see how one might progress towards

o less indefinite answer to the question.




\

$6.2 U(4)

U(4)Bﬂ[qﬂ is, 1iké ~0(4) or L(4), a semi-simple group.

It contains the ‘phase' transformations:

zr"=v.e‘9’zf,v (6 real) _ (6.5)
as an inveriant subgroup, so that there is the djrect product
decomposition:_  n _ -

U(4) = SU(4) X UQ) | (6.6)
Representations of U(4) can therefore be classified abcording
to their behaviour under TU(1l) and SU(4) separately. -The
latter is a 15 real parameter simple group, and will now be

considered in more detail.
1

The complex Lie algebrés ([9i] §53) of the SU(4)'s assoc-
liated with the various pdssible signatures (choices of 5‘) in
(6.1) are identical, differences only showing up in the real
algebras. These distinguishing featﬁres will be ignored here,
since questions of compaétness, etc. are not the present
concern, and none of the results of this or the following
section aré sensitive to choice of signature. The Lie‘algebra
of SU(4) is, in Cartan's classification, A, ; it is of rank
3. and has the following Schouten (or Dynkin) diagram:

0—O0—0 (6.7)
Since this is also the diagram for D; (the 6-dimensional
orthogonal group, O0(6)), there is the isomorphisﬁ:

SU(4) = 0(6) (6.8)
The next few results are obtainable_by straightforward applic-

ation of the standard techniques, as collected in [94] in

130.




particular. CallingJ:hg:_tk}p_gaei_simple'root‘s of tﬁe Lie algebra
oy B Y , its 12 roots are:
{ot,(s',r,ou,s,ﬁw,m/sw} (6.9)

“rom this, the canonical structure constants of the algebra can

readily be computed. The dimension of the irreducible repres-

entation with diagram:

( >\d.,>\4g g X( non-negative integers) is found to be:

W= 7 By el fat e YOPa+ pr DO fat flo + Fr) (6.10)"

where f‘d & T g 1, and similarly ,Jﬂ x I"Y o The following

table gives all the irreducible re'pfesentations‘ up to power 3.

Representation Greatest weight Dimension N 'Weight diagram

gidip Ui 0 1

0—0—0 kv xf +BY 4. 0,001
0—0—0  fe+ B+ fiy 6 [61,2,451]
O—a0==0 P A A -~ 10 o (l.,\li,l',l,l,l]
ligasg e ey B80T il el
0—0—0  Ee 4 1p + 3V 20 o [z, ks
0—06——0 d o+ 28 + Y 20 [J,l,3,3,¢:3,3,i,|]
0—0—0 Ta v 1p +5Y 20 (1,1,2,3.3,3,3,2,11]
5 o0  Zes ip +3Y 36 (1,2,4,5,6,654.21)
é}____{')_____o 2d 4 28 + ¥ 45 fr,z,4,§,7,7,’4§,4,2,)]
0—0—0 A 50 [11,3,4,4,4,5, 6,643, L]
6—O—0  Zd+ Ef +FY 60 [1,2.4,6,39,9,8,6,4,2,1]
éﬁ~—45—f—6 %d~+— 26+ 2Y 64 ‘ [hg,slalmlmw,s,s,z,@

where, in the last column, (1,1,2,1,1) means ee and SO On.
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The second row cbrresponds to the vector representation of
SU(4), the spinorioné of O+(6).£q7J
The third row correspénds to skéw—symmetric tensor, and vector,
respectively,:for the two groups;

The fifth row correépénds to a zero—trace second rank Hermitian
tehéor, and a skew-symmetric second rank tensor, respectively.
Use of the above table alone enables most products of low-order
représentations to be reduced unambiguously.

Whereas O(n) is not simply connectea, so that its basic
representations are the’tWO—valued (spinor) ones, SU(4) does
not possess two-valued representations ( [99] Rp.268-76).

We conclude by establishing an isomorphism which lies at
the basis of the work in §6.3, namely:

U(4) = 0,(8) n Sp(8) (6.11)
where 4 denotes the proper (positive determinant) subgroup,
and Sp(8) is the real symplectic group in 8 dimensions.

In terms of the decompositions (3.36) and (3.37), (6.3)

and (6.4) become:

2t/ A b (é.")
_ [ * I .
[Z'E'B ) ( A% A 2 \Bxl2
and 7 0 _ Q0T AT g O A9 a® 615
o r) ’A(z)r AmT O r) A(:) A(v)
where | denotes the transposed matrix. (6.13) just says:
AWT 4 AV T n i = n
T (2) T () ' (6.14)
A 7 _ A - A f) A = 0

which are the real and imaginary parts of (6.4). Consider
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the general affine transformation of the 8-dimensional real

space coordinatized by the 1zl , i.e:

P\ T i\
{ZW) E ( e Tr;‘) ' (6.15)
zz ® 21 22 ol )

. Tlual T/Aol : 41

; The Condition that this be a real symplectic trqp%formation,
j in the sense of leaving invariant ﬁhe anti-symmetric bilinear
4 form with matrix: .(. O :L@>

; "14) @)

and that it should simultaneously be an orthogonal transform-

form with matrix the LHS of (6.13), is found to entail that

«

( TF?) must have a partitioned structure as in (6.12) and must

satisfy equation (6.13). If, in addition, it is noted that
the determinant of a transformation matrix of type (6.12) is
inherently positive,fbeing a perfect square, the proof of (6.11)
is complete. (Jf course, the result is not specially dependent

on the value n-'= 4, but holds for all positive n.)

ation, in the sense of leaving invariant the symmetric bilinear




§6.3 Linear wave equation

Spinors, in the sense of two-valued representations of the
coordinate trensformation group, do not exist in 5; » Never-
theless, it is still possible to linearize the d'Alembertian
operator, by a pfocedure precisely parallelling.ﬂirac's original
one. Throughout this section we shall suppose the metric to
be positive defimites .the transition to a space-time of
Minkowski signature is straightforward, and the presenﬁation
'is merely made ﬁore cumbersome by having-continually to differ-
entiate betweentime]énd space Qalues of the indices.

The wave o'perator in 54 is:

8 \2
O = 4292/‘95/*“ g.g(gaﬁ,) = Z(%) (6.16)

where in the last step an identification like (2.1) is involved.

Following the procedure given in Brauer & Weyl's classic papexﬂmg
(ef. also [99] PP, 270—4),‘we introduce 8 quantltles pi which
enable [] 1o be written as a perfect square:
2 (2 ‘ , ; .
. E]f (p 27 ) (6.17)
(introducing the summation conventlon) Equating the last

two equations gives: . S ' : K

p'pi + pipt = 2§ (6.18)
so that the sét of 'units' Tﬁﬁﬂ(pl)e‘ with e; = 0 or 1
spans a 256-dimensional Clif;ord algebra. (GambaD”] has also
treated spinors in 8 dimensions,jand.the work of Das[ﬁ] has

already been mentioned.) A standard matrix representation of

(6.18) is as follows (it will be distinguished by a hat):




Pl= 1'x1x1x1 PP " x1x1X1
Pr - 1x 1'x 1x1 P2 T'x1"x1x 1
81 1 x1'x 1'x 1 B e AR 1% 6.19)
Pro 1'x 1'x1x 17 PfPo Ux 1x 1Ux 1

PR 1 ___(I o)) 1 = (10 ?’), 17 = (o \)) I///":(‘OOL) (6.20)

o | ()

and X represents‘outer or Kronecker multiplication. The
first four matrices are real, the second four pure imaginary.
Any other (16 X.l6) representation of the algebra is obtain-
able from this one, by a non-singular 'spin-frame' transform-
ation S: Pt o= g1 P . (6.21)
and.S is uniqﬁely determined up to a (complex) scalar Tactor

- this follows from_Schur’s lemnma, and can be verified direct-
ly: the only matrix which commuteés with all the P's is (a
multiple of) thé unif”matrix Lae » For reasons which will
appear shortly, we usé‘this freedom of choice of basis in fhe
spin frame to convért (6.19) into a different representation,
P' say, by choosing as S in (6;21) a }quasi';permutation
matrix, namely one that pérmutesrthe rOWs and columns of ﬁL
according to the following schemés_ “ ’

\l,/123 4 5 6 7 8 91011 1213 14 15 16 (6.22)
Kl 1211° =610 7 -813 9 4 3 -14 215 -16 5 |

where the notation means that e.g. under the row interchange

operation the 6th row of P' is - (the 4th row of @9),

and so on. The matrix S is unitary. The resulting matrices

. . A - .
P‘ all have (unlike the P‘') the following partitioned form:




where

I —_—
. = —ng)

T denotes

(7°)

o | o o
2
n = -l 0o oo
C o o |
o o0 - O
DTOO
-l o ¢ 0
o o o |
o o -l O
3 ;
7 = © o o .
© o o -|
-l o oo
0.\ oo
oo | O
0 o o -| i
-l ooo
o 1 o o |-
°© 0 o
T = -
= Oot_o‘
o—loa_
-l o o o : S
9 a o |
© o0 ) o
o . -lo O
- e, 8 0

Ow) m*
et Oy

Hermitian conjucate.

T2 = -
= —t
-t
-
..L.
"-
L
¢
— b O v o
[ = t 0 0o
o 0 o (
0 o ~t 0
o -L 0 o
___iooa
O 00 -t
co. .t O
’
W7 g o L o
ooo—i‘
¢ ©0 o o0
otLo o
o o0 -t o
© 0o o ¢ h
(o 0 o
9 -t o o
] 0 0 o .
TT*—' g
— oo L o

o -t 0 o
)

Q0 © o ~¢
oo -t o
o ( 0o o

-to 0 o

(where blank spaces are occupied by zeros).

These are all unitary matrices;

squaring both sides of (6.23).

that they must be,
~Also, TT'

bxplicitly:

is Hermitian,

follows by

the

other 7 anti—Hermiﬁian.  (These-particu1ar propertiesvare

not independent of the signature of 5; By’

the "Y®" of Dirac 4-spinor theory is:

|

fet

[

I(S) O
: O - I(x)

Consider the 'Klein-Gordon' wave equation in E% :

The equivalent of

(6.25)




(- )¥ = o (6.26)
where K is some (real or pure imaginary) constant. Using

(6.17), this can”be linearized to give the 'Dirac' wave equation:

R IR B ' p
(P'_l;‘g;—" ) UZ = 0 . (.0.27)
where P is a (16'x 1) matrix. We now loak. at the way

this equation behaves urder coordinate transformations.
Let O,k  be the matrix of an orthogonal transformation

of the z' :

z* E; Ok z¥ (B 28Y)
with Sy = T 5% O S 0y (6.29)

Let JPU be the set of matrices which result f?om trea%ing the
indexsoinasasng (contravariant) véctor index:

2V e goik Bt (6.30)
The P will also satisfy the anti-commutation relations
(6.18), and because the Clifford algebra possesses only inner
automorphisms there must therefore exist a matrix, S(0) say,

such that:

L o I .
P° = [s(0)] ®* s(0) (6.31)
Combining the last two equations: T
i ' -l
2henz g [5(0)]" 0. P* s(0) (6.32)

which says that under the coordinate and spin transformations

combined the P's, and therefore the Dirac equation (627}

are invariant. O may be said to induce this spin transform-
ation S(0). The relation between O and S is, because of

the presence of an arbitrary multiptying factor-on S, a

'projective' homomorphism; by suitable normalization (cf. [99]
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0.273) the'faoto: can be reduced‘to * 1, giving a two-valued
homomorphism.. The behaviour of _q) under S(0) is:

v = [s]" @ | (6.33)
So it transforms according to an irreducible but two-valued
representation of '0(8). However,,only some oi the orthogonal
transtormations (6.28) correspond to coordinate transformations
in E@ (see §6.2>; " so ‘it is,prima‘faoie unlikely that

will transform irreducibly under ‘U(4). It is the main

purpose of the r.st Qf the section to discover how it does
ransform. - - This will be done in two stages, corresponding
to the two terms dh the RHS of (6.11): we firgt show ﬂow \P
transforms under QO*(B) 45 this is common knowledge, from
quantum theory - ahd-then find what eftect the simplectic
condition has; .

Since only the proper orthogdnal group has to be considered
we may restrict attention to the neighbourhood of the identity.
If - e O = I + €W (6.34)
theh the orthogonality condition (6.29) says:

W w o= 0 s (6.35)

There are 28 linearly independent anti-symmetric (8 X 8)
(s7)

matrices, and they are spanned by the set M= - N (r < s)
where: + 1 i=r Jo= 8
M("’A- = J =3 i'sg 'f=p (6.36)
0 otherwise

Consider the infinitessimal transformation corresponding to

one of these generators:
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z* = %j (I + € M(ﬂ)hk 7k ‘ (6.37)
In this case an explicit solution of the equation (6.32) for
S(0) 1is obtainable, in the usual way, and substitution in
(6.33) gives as the indﬁoed'transformation of ¢

P (I o+ dePPHYY L (6.38)

We now consider infinitessimal unitéfy.transformations in
54 , and for thisipurppse revert temporarily to the complex
coordinates z!. If;vin (6.3): '
A= I o+ osa (6.39)

then the unitarity:condition'(6.4),Says (since now  Nuy = S;V):

2l 4 a = 0 . (6.40)

There are. 16 linearly independent anti-Hermitian (4 X 4)

matrices, and they are spanned by the“following set:

- a
. -i
7 .
i) -’ ; L
-1

+ 1 K =p =79
R = d-1  d=v  p=p (6.41)
(f<v>' 0 " otherwise ' e
.1 C R = 5 g =V
'y = (-1 K=Y gy
[f<v) 0 otherwise

Write the corresponding real 8-dimensional matrices with

curly capital letters (cf. (3.37)); then, in terms of the = = =

% S i TR sl e
matrices Mh') introduced above: .




(T S VA ¥ SV

K= —u" 4+ u™

Wi i o W% g it

g o e Mhﬂ + M*Y <6'42)
R RPN/ el B 5

g(fv) = I{(rﬂu4)» P T

Combining (6.42) with (6.38) enables the transformation
properties of \}f under U(4) to be found. By explicitly
computing the transformation matrices, from (6.24), the follow-
ing two rather remarkable facts emerge.

(3 XL the: 16 components of ¥ are relabelled acéording
to the scheme:

's_ ;

7' .= s :.1}1 W ;-t 
(g%, ¢, 0%, ¢, ¢
(g7, @, ¢", ™)
(¢®, ", ¢",¢")

7

and 1 the 6 components on the second 1ine are duplicated by:

7. 2 ' | W,
Y2 ) = (Way W, » Wi 1 VWaz 0 Wau s 3 ) <
- (6.43)

(ulyuly"‘!’u/f)

2

(v! oy w2 v, v )

)i

Wpy = S My (p#r) (6.44)

then under the 15 generators of §U(4), i.e. the set (6:41) but

excluding  F, ¥ is found to transform in the manner implied

by the index labelling in (6.43). S0, instead of transforming

‘irreducibly under SU(4), it transforms according to a repres-

entation which is in its explicitly reduced form, with diagonal
'"block' structure signified by the decomposition:
16 = 1 + 4 + 6 + 4 + 1 (6,457

This (by hindsight) was the reason for making the change (6.22).
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(ii) Consider now the behaviour of ¥ under the phase
subgroup U(1l), with generator P, Again by inspection of
the matrices, it turns out that the components of W transform
as tensor densities. '(This fact is of course irrelevant for
the unimodular transformations SU(4) (ef. [99] p.264), which

is why it is not in evidence in (1) above. )

Definition: A quantity transforming under (6.3) as a tensor

but with inclusion of a factor

(aet | A,Wn)*w (aet NT,ZH-)—W

is called a tensor density of weight w and anti-weight w’

(ef.. [67] p.12).

Take the determinant of (6.39), with a = P :

det | Iy + e Pl = 1 - 4ie (6.46)
This means that a density with the above weights will aoqﬁire
the additional factor |
1+ 4idlw=w)eg
in its transformation law for F. The values of (w - w’)
for the components of W are found to be as follows:

S , -

V=

+ +

Wl

=]
)
I

W=

(6.47)

<
e )
+

Wj=

-
<
|
W=

1f, now, the wave equation (6.27) is written out explicitly
using the matrices P°¢ as given by (6.23) + (6.24), and in

terms of the symbols introduced in (6.43), the 16 equations are:




where (cf. (3.71)) P = 5z

and wi” = 2el7f Vap (6.49)

and where the metric tensor ( %%;) has ‘been used to raise

and lower indices (the components ul  being in fact, with

the present signature, numerically indistinguishable from Up ).

Ek”ﬁ’ ( e"”°C ) nave weights -1(+1) respectively, and
anti-weights zero, so one can readily check that the LIS's in
(6.48) do transform homogeneously under TU(4).

It is worth emphasizing that (6.48) is inter alia a perf-
ectly ordinary Dirac equation in E; , only the notation being
unusual. ‘

 In conclusion, we consider briefly what happens to (6.48)
if fhe restriction to flatness of the }<n, and/or the restrict-
ion of (2.3) to the affine group (6.3)7 both imposed at the
start of the chapter, are lifted. Since (6.48) is in the
complex-coordinate notation, we use the formalism of Chapter 2
for convenience. |

Although covariant derivatives have been defined for ten-
sors in a K&hler space, tensor densities have not figured at
all in the precéding chapters (nor in the literature, so far

as the author is aware). We therefore define the covariant
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derivative of a scalar density, > say, with weights w and
w’, to be of the form:

Zr = Z)/A + wA/,Z + W’A}Z 5 (6.50)
formulae for higher rank tensor densities following by invoking
the product rule for differentiation, in the usual way. A
relation between the 'connection' quantities Z&r . 15} s and
the metric of ;<n is obtainable by comparing the equations:

(det Jlgﬁ)l ;e = gl 8435 = 0 (6.51)

(det Ngysl );e = (det Hg,.;JI e = (A, +A,_)(det ) gull) (6.52)
the second one holding because the determinant of the metric
tensor has weight and anti-weight -1 . One deduces that

Dpa Ay = T » (6.53)

but that ( AV - A} ) is undetermined by the metric tensor.

If we call this arbitrary quantity Jlf y, (6.50) becomes:
Lp =T+ L hlw ow ) Ty w0 3 = w2 )] £ (6.54)
> / / / |
Similarly, by consideration of the complex conjugate equation,

one finds:

Z)/—‘ - ’P e [%(w.{-w’) ..7/7 - %(w-w’)_ﬁ;]z (6.55)

All that needs to be done to make (6.48) generally covariant |

is to replace commas by semi-colons. Because.of the quantit-
ies' density character (see (6.47)), the ~ﬂ%; will then enter
“the set of equations precisely as do the physical electromag-
" netic 4-potentials Af in the Dirac equation for a charged
spinor field. (There is a connection here with Sciama's

‘unitary Vierbeinf formulation of electromagnetic theory (cf

[42] p.428).) The fact that the Jlf. are unrelated to the
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metric casts doubts, in the author's view, on whether the metric
s ] —n Y

tensor is the 'seat' of the electromagnetic field after 8.1,

and therefore on presuppositions lying at the basis of the

theory of complex space-time as presented here.
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