PC. D. Dissertation 6664

> Complex Space-time

Michael St.Clair Oakes

THE DOARD OF GRADUATE STUDIES
दPPROVED THIS DISSERTATION
FOR THE Ph. Q. DEGREE OHI-6 MAY 1969

Dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Cambridge

The dissertation is an account or work done in the Department of Applied Mathematios and Theoretical Physios, Cambriege, from October 1961 to October 1964, and then concurcently with employment at EngIish Rlectrio's Nelson Research Iaboratories, Stailord (2 years); "and au T.ivker Siddeley Aviation, Kingston-on-Thames (I year). IZ am gratetul to the English Electric Company Ior sponsoring my research at Cambridge.

This dissertation has not been, and is not being. submitted for a degree or other qualification at any other university; and, except. where otherwise stated, ciesoaibes my own work.

In preparing a revised draft of the thesis I have c. -ved much benefit from comments by Prof. CoW.Misner, and by $=$ D.W.Sciama. I shouId also Iike to thank Dr. R.J.Eden =being my supervisor.
Clare college
M.St.C.Ocmes
Oembridge
September 2968

Page

CHAPMER I §工.I
$\$ 1.2$ §工. 3

CHAPTER 2
OFAPMER 3
§3.1
$\$ 3.2$
$\$ 3.3$
$\$ 3.4$
$\$ 3.5$
$\$ 3.6$
$\$ 3.7$
CHAPMER 4
$\$ 4.1$
\$ 4.2
§ 4.3
GHAPTER 5
CHAPPER 6
$\oint 6.1$
$\$ 6.2$
56.3

Reterences

Unizied Rield Theories
Preamble
Finsler space theory
Theories related to the present work
Kahler Spaces. I
Kähler Soaces. II
Complex numbers
Complex vector spaces
Transformations
-Arfine connection
Curvature
Subspaces
Formulae relating formalisms I and II
The Real Inmit Space Mn
Definition
The structure of M_{n}
Analytic continuation
Field Equations trow the Metrio
Pielas in E
Introduction
$U(4)$
Iinear wave equation

CHAPPER I

Unified Field Mneories

§工。1

Preamble

special relativity unitied time with space in 2905. Subsequently, space-time was allowed to be curved, to represent gravitational foroes. When arter 1920 relativity ideas became widespread, the unlearned took up with an enthusiasm and awe matched only by their misconception this strenge new doctrine of "the fourth dimension". The concept "the world. had become at once more puzzing and yet richer, its stmucture more complex and therefore holding more boundless possibilities. To the professional, the mathematician, such 'mysticism' is in general distasteful, and tends to evaporate anyway on proper acquaintance with the theory. Nowadays it is "obvious" that the events constituting the universe have as thein setting a Iour-dimensional manilold.

Yet for all that, the one dimension of time is obstinately disparate from the three of space. The latter are accessible to an observer in a much "freer" way than the former: we are presented with a succession of 'slices' of the four-aimensional world and cannot directly observe anything outside our present slice. Memory is no more than inference (in this respect on a par with prediction) from this-slice-now to the contents of other slices. Of course, we 'move' through a quast-continuous sequence of such 'presents', but this is irrelevant to the

UNIVERSITY
LIBRARY
CAMERIDGE

(philosophically naive, admittedIy) idea this discussion is intended to convey: the picture of an observer's experience-at-one-moment involving a three-dimensional continuum, and yet this experience being such that he can infer, but not directiy test, the existence of another dimension. So, one dimension is in some sense harder' to 'navigate" than the other three. What if there were still others for Which it was impossible: would theire existence necessarily be without influence on the content of that part of the world Which is directly accessible? Would the question or their reality be a question for metaphysics only, or even be periaps 'unanswerable'? Only, surely, if one were prepared to ureat the reality of future and past as a question equally outsice the empirical realm. However, relativity theory makes this very reality its ontological cornerstone, assigning concepts like 'now' to logically secondary status. With such a precedent, it would appear that hypothetical "extensions" of the phenomenal world are indeed a legitimate study for physics. Of course, one could still ask, of the supposed extre dimension(s) (i) why are they apparently unnavigable? and (ii) why does this particular 4-dimensional segment of the Iull (4+m)dimensional manifold constitute "our" world? Direct translation into the corresponding queries about 3-dimensional slices shows, however, that (i) and (ii) are striotly metaphysical, and their apparent unanswerability cannot therefore be cited (as antagonists of e.g. 5-dimensional theories may tend
to) as constituting empirical evidence against the theory: any dismissal on these grounds would be purely a priore, and so can safely be ignored. Equally misplaced, however, would be attempts by the protagonists to answer such questions by assumptions about the geometry ("Toute théorie à plus de quatre dimensions fait toujours intervenir une "condition oylinarique" ou une 'condition projective'. Celle-oi traduit le Iait que les événements de I'univers quadridimensionnel ne peuvent dépenare de $\left.x^{5} . "([26] p .160)\right)$ 。

The present work stems from the Iollowing hypothestis: The space-time world of our experience is only the neal peret' of a compler world, so that, associated with each of the four directions in space-time, there is another, "inaginary" direction, and there are events in the "Überwelt' which are "ols the real axes", although as such not directly accessible to observation。

The motivation for making this hypothesis comes from what one could call the "classical" unified field theory (UFP) problem. The latter came into being as an inmediate consequence (both conceptual and temporal) of the theory of general relativity which, "having brought together the metric and gravitation, would have been completely satislactory if the world had only gravitational fields and no electromagnetic fielas. Now it is true that the latter can be included within the general theory of relativity by taking over and appropriately modifying Maxwell's equations of the electromagnetic field, but they do not then appear like the gravitational
fields as structural properties of the space-time continuum. but as Iogically independent constructions. The two types of field are causally linked in this theory, but still not Iused to an identity. It can, however, scarcely be imagined that empty space has conditions or states of two essentially different kinds, and it is natural to suspect that this only appears to be so becuse the struoture of the physion continum is not completely described by the Riemannian metrio." [23] The author's idea, then, was that the presumably zicher geometrical structure of a complex space-time might have $=00 \mathrm{~m}$ for electromagnetic (perhaps even scalar) Iields. As intuial grounds for thinking this to be a move in the right dincouton might be adduced the well-established method of generatiag appropriate electromagnetic interaotions in quantum-mechanical field theory from phase ('gauge') transfomations"] symbolically:

$$
\begin{equation*}
\psi \rightarrow e^{i \theta(z)} \psi \tag{1.1}
\end{equation*}
$$

Which amount to position-dependent rotations in complez planes (the number of planes depending on the nature of ψ, as scalar, spinor, vector, etc.).

There have, of course, been many attempts at solving the classical UFT problem, and some are retered to in §工.3. To a good approximation (ignoring quantum-mechanical eftects) the physical tucts which all these theories are trying to reexpress or re-derive are adequately characterized by the lollowing set of equations, so that the production of some comparable set is a necessamy, though not suritioient, criterion of
success or a theory.
Binstein's field equations for grevitation are:

$$
\begin{equation*}
\mathbb{R}_{\mu \nu}-\frac{1}{z} \mathbb{R}_{\mu \nu \nu}=-K \mathbb{T}_{\mu \nu} \tag{1.2}
\end{equation*}
$$

the RHS representing 'matter' in some manner which must be specified in detail. Since they are covariant under the group of non-singular real coordinate transformations equations (1,2), regarded as partial differential equations for the g g_{y}, must be such as to involve four undetermined functions in any solution. This is ensured by the fact that only 6 of the 10 equations are independent, on account of the Bianohi identities:

$$
\begin{equation*}
\mathbb{R}_{\mu}{ }^{\alpha} ; \alpha-\frac{1}{2} \delta_{\mu}^{\alpha} \mathbb{R} ; \alpha \equiv 0 \tag{1.3i}
\end{equation*}
$$

(1.2) and (1.3i) are only mutually consistent if Tuv setisiies conservation or energy-momentum: $\quad T_{\mu}{ }^{\alpha} ; \alpha=0 \quad$ (I.3ii) The MaxweII-Iorentz fiela equations, in the absence of a material medium, are ${ }^{[24]}$

$$
\begin{gather*}
\mathbb{P}_{\mu \nu, \sigma}+\mathbb{P}_{\nu \sigma, \mu}+\mathbb{P}_{\sigma \mu, \nu}=0 \tag{1.4i}\\
\mathbb{E}_{\mu}{ }^{\alpha} ; \alpha=4 \pi J_{\mu} \tag{I.4ii}\\
J^{\mu} ; \mu=0 \tag{1.4iii}\\
\mathbb{T}^{(e, \mu) \nu}=\frac{1}{\mu \pi}\left(\mathbb{F}_{\mu \alpha} \mathbb{F}^{\gamma \alpha}-\frac{1}{4} \delta_{\mu}^{\nu} \mathbb{F}_{\alpha \beta} \mathbb{F}^{\alpha \beta}\right) \tag{1.4iv}\\
T_{\mu}^{\left(e_{0}\right), \alpha}=-\mathbb{F}_{\mu}^{\alpha} J_{\alpha} \tag{I.4~V}
\end{gather*}
$$

Of these, (i) \& (ii) are Maxwell's equations for the propagation of the field (the RHS of (ii) must be a specified function of the non-electromagnetic fields present); (iii) (charge conservation) Iollows identically Irom (ii); while (v) is a consequence of (iv) (ir (i) \& (ii) are used) and, since it entails the well-substantiated Iorentr Iorce on discrete
charges，is the reason why the energy－momenturn tensor has the particular form（iv）（c土。［25］p．131）。（iv）also specilies， via（1．2），the gravitational effects produced by eiectromagnetio fields．

There is a neat derivation of all these equations leom a single action principle of the form：
$\delta \int\left[-\frac{1}{2 K} R-\frac{1}{16 \pi} \mathbb{F}_{\mu \nu} \mathbb{E} H^{\mu \nu}+A_{\mu} J^{\mu}+I^{(m)}\right] \sqrt{-8} d^{4} X=0 \quad(I .5)$ where $I^{(m)}$ is the Lagrangian for any matter（non－gravitational and non－electromagnetio）fields，and where the F F ane not to be varied independently of the A_{μ} ，but subject to the constraint $\mathbb{F}_{\mu \nu} \equiv A_{\nu, \mu}-A_{\mu, \nu}$ ．（Strictiy，the 3 rod and th terms in the integrand are not always of precisely this form．）

As is the case for other UFT＇s，the present work can be viewed from two complimentary aspectis：（i）as a purely math－ ematical study of a certain type of（in this case，compleu） space，or（ii）as an investigation into how taro the geometrical properties of the space mirror the behaviour of real physical fields．The mathematics of such a theory is either correct or incomect；a decision on the second scone，however，is a more delicate matter，and often amounts to no more（and no less：）than people getting bored with the theory，in the long run a sure indicator of its incomectness．（Of．W．Blake （＂Proverbs of Hell＂）：＂Iruth can never be told so as to be understood，and not be believ＇d．＂）The best estitrate the author is able to make of the theory of complex space－tine on physical grounds is，Iirst，that（I．4i）finds a very natural
place in it; second, that (I.4ii) and (surprisingly) (I.2) are more problematical; third, that there is not much sign of (I.4iv) or, therefore, of the Iorentr force (but see Chapter 5); overall, that the theory is probably talse, considered as a. classical field theory, and therefore also as a Cosmolosy (in the philosophical sense). It is timmly contended, though, that this could not have been forseen a priori, and that one or the prerogatives of theoretical physics is precisely to say "the world may be constructed like this" and then to speli out the consequences. Of course, not all worlas are worth constructing; and the current soientific consensus relegaves classical UPT's to this class. Some possible grounds low this will now be considered. The early years of the classical UPT problem coincided with a relatively primitive (by present standards)/knowledge in fundamental physios, and it was then hoped that a complete solution of the problem of natter would result from a suocessful URT, the latter being envisaged as a seometrical theory of a sort not too dissimilar from general relativity. For the OId. Beilevers such a faith died hard, and, notwithstanding the advances in physios over the decades, the 1950 's were in fact the heyday of UFS speculation. The history of the problem over this hali-century is, however, a story of unremitting failure: Nature just does not seem interested any more in the game she played so willingly with Einstein in 1916. To explain this apparent change of heart, which is reflected,
very properly, in physicists' own attitude, one misht assert that what is wrong is that the classical UPT problem "ignowes quantum theory". As is usually the case, however, such a generalized criticism would be at once both pertinent and wide of the mark. We shall distinguish three rather more precise cemarics.
(i) Although the conceptual revolution entailed by quantum theory is profound and irreversible, quantun rield theones arise directly out of their classical counterparts. Hess is true most obviously of quantum electrodynamios, but also applies to the (second-quantized) Klein-Gordon equation, it being relatively accidental that no-one had bothered to study the olassical scalar wave equation with "mass" temn betove quantum mechanios made it important. Although no lonser in a position to clain final truth, any improved classical field theory would nevertheless react immediately, and presumaily beneticialiy, on its quantized version (assuming that the latter could be construeted satisfactorily: with present techniques there would be bis problens, as a UPR is necesserily more complex than seneral relativity).
(ii) The classical UET problem is posed in the context of geometrizing electromagnetism. Subsequently, (et least) two more (weak and strong) interactions have become known Which are quite as fundamental constituents of the universe as are the two known classically, and therefore potential candidates for 'geometrization' with equal a priori rights.
very properly, in physicists" own attitude, one misht assert that what is wrong is that the classical UPT problem "ignores quantum theoryin. As is usually the case, however, such a generalized criticism would be at once both pertinent and wide of the mark. We shall distinguish three rather more precise remarcs.
(i) Although the conceptual revolution entailed by quantum theory is profound and irreversible, quantum rield theories arise directly out of their olassical counterparts. Mhis is true most obviously of quantum electrodynamios, but also applies to the (second-quantized) Mein-Gordon equation, it being relatively accidental that no-one had bothered to study the classical scalar wave equation with "mass" term betore quantum mechanics made it important. Although no longer in a position to clain final truth, any improved classical field theory would nevertheless react immediately, and presumaily beneticialiy, on its quantized version (assuming that the latter could be constructed satisfactorily: with present techniques there would be big problems, as a UFP is necessarily more complex than seneral relativity).
(ii) The classical UFT problem is posed in the context
of geometrizing electromagnetism. Subsequently, (at least) two more (weak and strong) interactions have become known which are quite as fundamental constituents of the universe as are the two known classically, and therefore potential candidates for "geometrization" with equal a priori rights.

Although underplayed compared with electromagnetism, certain types of scalar and vector 'meson' fields have in fact figured in the UPr Iiterature, primarily in conneotion with multiS. 56$]-[62]$ Whether or not these partioular dimensional theories. attempts are deemed successlul (and it seems clear that they are at best rudimentary), the recognition of the non-uniqueness of electromagnetic anongst non-gravitational fields has obviously made the UFT problem more complex than was orisinally anticipated. Hopes for a satistactory solution are thereby correspondingly diminished.
(iii) Classical physics operates exclusively with tensor fields. Since these are also the quantities which characterize the structure of the spaces studied by differential eeometry, the formulation of the classical UPT problem in temms of some sort of 'geonetrization' seemed eminently natural. Then quantum mechanics uncovered a new kind of field quantity: spinors; and, while tensors can be constructed from spinors, the converse is not true, so that a geometrical theory which was fully adequate to the facts would have to be framed ab initio in spinor form (cf. [77] p.521). AIthough, in the hands of their discoverer (Cartan) and of those who delighted In the older-fashioned kind of mathematics, spinors were sometimes presented in tems of conjugate points on ruled quadric surfaces and so on, they do not in fact appear to be very natural thinss in terms of which to define a Iine-element expression, and as this is what all UPR's to date have consid-

Although underplayed compared with electromagnetism, certain types of scalar and vector "meson' fielas have in fact figured. in the URT Iiterature, primarily in conneotion with multi[56] - [62] dimensional theories。 Whether or not these perticular attempts are decmed successful (and it seems cleare that they are at best rudimentary), the recognition of the non-uniqueness of eleotromagnetic amongst non-gravitational fields has obviously made the UFT problem more complex than was originally anticipated. Hopes for a satistactory solution are thereby correspondingly diminished.
(iii) Classical physics operates exclusively with tensor fields. Since these are also the quantities which characterize the structure of the spaces studied by differential geometry, the fomulation of the classical UPT problem in tems of some sort of 'geonetrization' seemed eminently natural. Then quantum mechanics uncovered a new kind of field quantity: spinors; and. While tensors can be constructed from spinors, the converse is not true, so that a geometrical theory which was fully adequate to the Iacts would have to be framed ab initio in spinor form (cf. [77] p.521). Although, in the hands of their discoverer (Cartan) and of those who delighted In the older-fashioned kind of mathenatics, spinors were sonetimes presented in temns of conjugate points on ruled quadric surfaces and so on, they do not in fact appear to be very natural things in terms of whioh to define a line-element expression, and as this is what all UMR's to date have consid-
ered "geometrization" to mean, the classical UEI endeavour would seem to be balked (see [2], however, İor one such attempt). If so, this is clearly a very serious shortcoming, as the two most obvious and abundant things in the universe, protons and electrons, are both (quantized versions of) spinor fields. In view of the fact that quantum field theory has, in addition, introduced rields of Hilbert-space operators as a furchor departure from the relatively cloistered confines of classical field theory, the restrictions implicit in the original formulation of the classical URT problem are seen to be very great indeed. Perhaps the only valid use of the phrase untilied field' is now in some such context as that in which Heisenberg (for example) uses it: a unified relativistic quantum lield theory. Beside the profound mathematical and conceptual diftioulties attendant upon such an undertaking, the problems ot a classical URT pale into insignificance. In thus yielding pride of place, the classical UFP problem comes to be seen in its proper light: as an internal' problem (in the domestic sense) of classical tield theory - and as such one that is perhaps not entirely ireelevant or exhausted.

\$1.2 Finsler space theory

This section is disjoint Irom the rest of the dissertation. It describes an attempt (I962) at a "geometrization" of the electromagnetic (and possibly scalar) fields in terms of a. metric manifold which is not "Iocally euclidean', In the sense that, with respect to an allowed coordinate system, the indicatrix of Carathéodory (Iocus of end-points of unit vectors) is not, as it is in Riemannian geometry, a quadric hypersurface centred on the orisin. I argued that if an electromagnotio field, and cormespondingly a non-vanishing vector potential ϕ_{μ}. is present, then this latter determines a preterred direction at any point of space-time; Riemannian geometry, on the other hand, is locally isotropic, which ties in with the difficulty of finding in its structure anything resembing eloctromagnetism. The moral seemed clear: generalize the Riemanian metrice so as to destroy its local isotropy. Bearing in mind that one Wishes to recover the Pythagorean Ine-element expression for vanishing electromagnetic field, the simplest choice seemed to be to keep the indicatrix a quadric surface but no Ionser centred on the origin i.e. to take as its equation:

$$
\begin{equation*}
g_{\mu \nu}\left(\xi H^{\mu}+A H^{\mu}\right)\left(\xi^{\nu}+A^{\nu}\right)=1 \tag{1.6}
\end{equation*}
$$

The vector Ar specilying the new position of the centre should be correlated with the physical electromagnetic potential op o While the symmetric tensor spu might be expected to relate to the physical gravitational potentials (il $A^{\mu}=0$ then it coifcides with them). It is clear that, besides the anisotropy.

12.

"distance" is no longer even a symmetric Iunction, i.e. $d\left(P_{0}, P^{\prime}\right)$, the distance from a point P to a neighbouring point $P^{\text {P }}$ of the manifold, is not in general equal to $d\left(P^{\prime}, P\right)$; so that one is led to consider the notion of a directed path: a curve with an 'arrow' on it. There is a relevant parallel here with the Feyman graph formalism in particle physics, wheceby particle-antipartiolo conjugation (which, inter alia, changes the sign of charge) is represented by reversing the direction of the arrow on a (non-self-conjugate) particie Iine. Dut this is in a quantum-theoretical context. Classically, thet the worla-line of a charged, as opposed to uncharged, particle can be considered as being a directed line in the above sense is suggested by the form of the Jorentr force equation:

$$
\begin{equation*}
\frac{d^{2} x^{\sigma}}{d s^{2}}+\Gamma_{\mu \nu}^{\sigma} \frac{d x \mu^{\mu}}{d s} \frac{d x^{\nu}}{d s}=\frac{e}{m} F_{\mu}^{\sigma} \frac{d x \mu}{d s} \tag{1.7}
\end{equation*}
$$

Where the operation $d s \rightarrow-d s$, which could be interpreted as reversing the "direction" of the world-Iine, is equivalent to changing the sign of the charge $\frac{e}{m} \rightarrow-\frac{e}{m}$. Introducing in the usual way the concept of a "Iine-elements via the requirenent that, for an infinitessimal displacement $d x \mu^{\mu},\left(\frac{d x^{\mu}}{d s}\right)$ be a unit vector, (1.6) implies

$$
\begin{equation*}
d s=\frac{A_{\mu} d x^{\mu} \pm \sqrt{\left[\left(1-A_{\alpha} A^{\alpha}\right) g_{\mu \nu}+A_{\mu} A_{\nu}\right] d x^{\mu} d z^{\nu}}}{1-A_{\alpha} A^{\alpha}} \tag{1.8}
\end{equation*}
$$

where $A_{\mu} \equiv g_{\mu \nu} A^{\nu}$ 。 The two-valueaness of the RHS of (1.8) is present also in the Riemannian case, but there it has no particular importance (one can always work with |as|); here, however, changing branches of $\sqrt{ }$ has the same eriect on $|d s|$ as changing the sign of A_{μ} - the double-valuedness relating
to the existence of two signs or charge. To make more explicit the structure of (I.8), it is convenient to derine

$$
\begin{equation*}
\alpha_{\mu} \equiv \frac{A_{\mu}}{1-A_{\alpha} A^{\alpha}} \quad ; \quad \gamma_{\mu \nu} \equiv \frac{g_{\mu \nu}}{1-A_{\alpha} A^{\alpha}}+\alpha_{\mu} \alpha_{\nu} \tag{1.9}
\end{equation*}
$$

so that it becomes:

$$
d s=\left.\alpha_{\mu} d x\right|^{\mu} \pm \sqrt{Y_{\mu \nu} d x \mu^{\mu} d x^{v}}
$$

Equation (1.10) is of the form

$$
\begin{equation*}
d s=\mathcal{L}\left(x^{\alpha}, d x^{\alpha}\right) \tag{1.11}
\end{equation*}
$$

where \mathcal{L} is positively homogeneous of the rimst degree in its second set of arguments, viz. $\mathcal{L}(x, \lambda y)=\lambda \mathcal{L}(x, y)$, tor $\lambda>0$ 。 A metric space of this type is called a Finsler space, after the man who originated such geometries in his study of two-dimensional suriaces [P.Finsler, Dissertation, Göttingen, IyI8]. It is interesting, though, as Weyl remerks ([4], p.I38), that Riemann himself "many years ago pointed out that the metrioal groundiorm might, with essentially equal right, be a homoseneous function of the fourth order in the differentials, or even a function built up in some other way, and that it need not even depend rationally on the differentials". Subsequently, contributions were made in 1925/6 by J.J.Synge ${ }^{[5]}$ J.H. Taylors ${ }^{[6]}$ and particularly I. Berwald, but the first complete axiomatization of Hinsler spaces was given by E.Cartan ${ }^{[8]}$ in 1934。 At least until the $1950^{\prime} \mathrm{s}$, Cartan's treatment became accepted as the standard one, and many papers appeared on the subject. Amons these were several attempts $[16,17,18,20,21,22]$ to base "unified" Iield theories on this geometry. Because of this, and because the work described in this section was in large measure an attempt to remedy What I came to regard as most unfortunate elements in this
orthodox approach，the latter will now be briezily sumnarized （cf．［8］，［9］，［16］）。

Cartan＇s starting－point is to introduce the idea of a space of＂Iine－elements＂（éléments Iinéaires）。 A Iine－elenent $\left(x, x^{*}\right)$ consists of its＇centre＇，the point $\left(x^{\mu}\right) \quad(\mu=1,2 \ldots n)$ ， together with a direction at that point，specified by the n homogeneous coordinates（ x＊ ）．FormaIIy，the space is thus a（2n－I）－dimensional manifold．The coordinate trensfomation group considered is，however，of the（restricted）trpe：

$$
\left.\begin{array}{l}
x_{\mu^{*}}=x^{\mu^{*}}\left(x^{\alpha}\right) \tag{1.12}\\
x^{\mu^{*}}=\frac{\partial x \mu^{*}}{\partial x^{\alpha}} x^{\alpha}
\end{array}\right\}
$$

A＇contravariant vector field＇defined on this manifold is then a set of functions of $\left(x, x^{p}\right)$ transtoming under（I．I2）as：

$$
\begin{equation*}
A \mu^{*}\left(x^{*}, x^{\prime \prime}\right)=\frac{\partial x^{\mu}}{\partial x^{\alpha}} A^{\alpha}\left(x, x^{\prime}\right) \tag{1.13}
\end{equation*}
$$

and analogous fommlae define other ranks of tensor．The
＂basic function＂（Grundfunction）from which aill other quantities characterizing the geonetrical structure of the manifold are to be derived is the scalar introduced in（1．21），namely \mathcal{L} ． The argument of all tensor functions is henceforth understood to be $\left(x, x^{r}\right)$ 。 Denote partial derivatives by a comma．

A＂mebric tensor＂is introduced by

$$
\begin{equation*}
g_{\mu \nu} \equiv\left(\frac{1}{2} \mathcal{L}^{2}\right)_{\nu \mu^{\prime}, \nu^{\prime}} \tag{1,14}
\end{equation*}
$$

By homogeneity（Euler）this implies $\mathcal{L}=\sqrt{g_{\mu \nu} x^{\prime \mu} x^{\prime \nu}}$
It is assumed that（at Ieast IocaIIy）$g \equiv \operatorname{det}\left\|g_{\mu \nu}\right\| \neq 0$
Therefore the contravariant inverse exists：$g^{\lambda \mu} g_{\mu \nu}=\delta_{\nu}^{\lambda}$
Write
$\ell^{\mu} \equiv \frac{x^{\prime} H}{L}$

Then

$$
\begin{equation*}
l_{\mu} \equiv g_{\mu \nu} l^{\nu}=\mathcal{L}, \mu^{\prime} \tag{1.19}
\end{equation*}
$$

Under 'parallel displacement' Irom $\left(x_{2} x^{\prime}\right)$ to $\left(x+d x, x^{7}+d x^{\prime}\right)$ a. vector A^{\mid}is assumed to change by

$$
\begin{equation*}
\delta A^{\lambda}=-\left(T_{\cdot \mu \nu}^{\lambda} A^{\mu} d x^{\nu}+C_{\cdot \mu \nu}^{\lambda} A^{\mu} d x^{\prime \nu}\right) \tag{1.20}
\end{equation*}
$$

The requirement that lengths shall not change under paralleI
transport enables a corresponding formula for covariant vectors to be dexived; and there is the usual extension to higher rank tensors. Certain other postulates, which will not be ennumerated here, are now made in order to determine the
'atitne connection' components. One obtains (using the metric tensor to pull indices):

$$
\begin{align*}
& C_{\lambda \mu \nu}=\frac{1}{2} g_{\mu \nu, \lambda^{\prime}}=\left(\frac{1}{4} \mathcal{L}^{2}\right), \lambda_{j}^{\prime} \mu^{\prime}, \nu^{\prime} \tag{I.2I}\\
& T_{\lambda \mu \nu}=\frac{1}{2}\left(g_{\lambda \mu, \nu}+g_{\lambda \nu, \mu}-g_{\mu \nu, \lambda}\right)+C_{\mu \nu \alpha} G_{\nu, \lambda^{\prime}}-C_{\lambda \nu \alpha} G_{, \mu^{\prime}} \tag{1.22}
\end{align*}
$$

Where $\quad 2 G_{\mu} \equiv\left(\frac{1}{2} \mathcal{L}^{2}\right), \mu^{\prime}, \alpha x^{\prime \alpha}-\left(\frac{1}{2} \mathcal{L}^{2}\right), \mu$
By homogeneity, there is the identity $\quad C_{i \mu \nu} l^{\nu} \equiv 0$.
Observe that Γ is not symmetric in its last two indices.
This is related to the fact that the RHS of (1.20) is not really in the most appropriate form. Consider the particular case in which the direction $\left(x^{1}+d x^{2}\right)$ is such that the result of parallel transport according to (1.20) of the vector $l^{\mu}\left(x_{,} x^{*}\right)$ is just the vector $\frac{x^{\prime} \mu+d x^{\prime} \mu}{\mathcal{L}\left(x+d x, z^{\prime}+d x^{\prime}\right)}$. One Iinds, noting (I.24), that this is characterized by

$$
\begin{align*}
& D l^{\lambda} \equiv d l^{\lambda}+T T^{\lambda} \mu l l^{\mu} d x^{\nu}=d l^{\lambda}+\mathcal{L}^{\prime} G^{\lambda}, y^{\prime} d x^{\nu}=0 \quad(I .25) \tag{1.25}\\
& \text { (1.20) can now be re-witten in terms of this new quantity } D l^{\lambda} \\
& \text { called by Cartan the 'absolute differential' of }
\end{align*}
$$ thereby obtains the following expression for the absolute

differential of the vector A^{H} :

$$
\begin{equation*}
D A^{\lambda} \equiv \alpha A^{\lambda}-\delta A^{\lambda}=A^{\lambda}\left|\mu d x^{\mu}+\mathcal{L} A^{\lambda}\right| \mu^{\prime} D \ell^{\mu} \tag{1.26}
\end{equation*}
$$

where $A^{\lambda} \mu_{\mu} \equiv A^{\lambda}, \mu-A^{\lambda}, \alpha^{\prime} G_{\mu \mu^{\prime}}^{\alpha}+T^{* \lambda} \cdot \beta \mu A^{\beta}$
and $\quad A^{\lambda} 1 \mu^{\prime} \equiv A^{\lambda}, \mu^{\prime}+C_{\beta \mu}^{\lambda} A^{\beta}$
In Semwald's notation, write $\quad g_{\mu \nu}(\sigma) \equiv g_{\mu \nu, \sigma}-g_{\mu \nu, \alpha^{\prime}} G^{\alpha}, \sigma$ Then the T^{*} is are symmetric, and are given by

$$
\begin{equation*}
T_{i \mu \nu}^{*}=\frac{1}{2}\left(g_{\lambda \mu}(\psi)+g_{\lambda \nu}(\mu)-g_{\mu \nu}(\lambda)\right) \tag{1.30}
\end{equation*}
$$

$\left.\begin{array}{ll}\text { There are the identities } & l_{\mu} \mid \nu \equiv 0 \\ & g_{\mu \nu} / \sigma \equiv 0\end{array}\right\}$
the second being an analogue of the comesponding Riemanian result

Curvature tensors are definable by parallel transfer of (egg.) a vector round a closed circuit. Owing to the form of the RHS of (1.26) there will in fact be three distinct tensors:

$$
\begin{align*}
& R_{\mu \nu \sigma}^{\lambda}=\left(T^{* \lambda}(\mu \nu)(\sigma)-\left(T^{* \lambda} \lambda_{\mu \sigma}\right)(\nu)+T^{*} \lambda_{\sigma \alpha} T^{* \alpha} j_{\mu \nu}-T_{\cdot \nu \alpha}^{* \lambda} T^{*}{ }_{\mu \sigma}^{*}\right. \\
& +C^{\mu \alpha}\left[\left(G_{\nu \nu^{\prime}}^{\alpha}\right)(\sigma)-\left(C^{\alpha}, \sigma^{\prime}\right)_{(\nu)}^{\mu \nu}\right] \\
& \text { (2.32) } \\
& P_{\lambda \mu \nu \sigma}=C_{\lambda \nu \sigma / \mu}-C_{\mu \nu \sigma 1 \lambda}+\left[C_{\mu \nu \alpha} C_{\cdot \lambda \sigma / \beta}^{\alpha}-C_{\lambda \nu \alpha} C_{\mu \sigma / \beta}^{\alpha}\right] x^{\prime \beta} \quad \text { (1.33) } \\
& S^{\lambda}{ }_{\mu \nu \sigma}=C^{\lambda} \cdot{ }_{\cdot \alpha} C_{\cdot \mu \nu}^{\alpha}-C^{\lambda} \cdot \nu_{\alpha} C^{\alpha} \cdot \mu \sigma \tag{1.34}
\end{align*}
$$

The first is the analogue of the Riemann tensor, and satisfies, in addition to anti-symmetry in its last two indices, the identities: $R_{\lambda \mu \nu \sigma}=-R_{\mu \lambda \nu \sigma} \quad(c 1 .[11]$, D.107)

$$
\begin{equation*}
R_{\lambda\{\mu \nu \sigma\}}=C_{\lambda \alpha\{\mu} R_{\cdot|\beta| \nu \sigma\}}^{\alpha} x^{\prime} \beta \tag{1.35}
\end{equation*}
$$ where $\{\lambda \mu \nu\}$ signifies a sum over the three cyclic permutations. Now, all this formalism bears a quite nice resemblance to that of a Riemannian space, but it is very difficult to give it

any concrete, 'intuitive' meanins at all. This is particularly apparent if one atternpts to "do physios" in such a space. Physical theories represent measured quantities by scalars, vectors, etc. defined at each point of space-tine. Sut in the line-element formalism just described a direction (x^{\prime}) has also to be specified before the comesponding quantity is delined. This is true even ror the special case of what one might call a "point"-vector field $v^{\mu}\left(x, x^{P}\right)=v^{\mu}(x)$ i.e. one independent of the directional arguments; for (i) its length is given by $g_{\mu \nu}\left(x, x^{\prime}\right) \nu^{\mu} \nu^{\nu}$
which is not independent of (x^{\prime}), and (ii) its 'covariant derivatives" would also reintroduce $x^{.}$-dependence, depending on the value assigned to the argument of the functions T^{*}, C in (1.27), (1.28). In this connection it is perhaps worth emphasising that the directional argument $\left(x^{8}\right)$ of $T^{\lambda} \mu^{\mu \nu}$ in (1.20) is quite uncorrelated with the spatial direction $d x$ in which the parallel displacement is made。
The author was confirmed in his belief that an alternative
approach was both necessary and possible by H. Buseman's book The geometry of geodesics' (I955). In the preface Buscmann explains that the term "Finsler space" does not appear in the titie because it means to many not only a type of space but also a definite approach: the space is considered as a set of Iine-elements to which euclidean metrics are attached. The main problems are connected with parallelism. In spite of the great sucoess of Pinslec's thesis, the later developement
of this aspect lacks simple geometrical facts to the extent that their existence in non-Riemannian geometry has been doubted" ${ }^{[10]}$ Using only topological methods (no ailferentiability assumptions or analybical tools) he succedes in showing that very many of the classic results of (global) Riemannian geometry carry over to Finsler spaces, and that therefore "there emerges the highly important problem of gainins a clear understanding of the true realm of Riemanian geometry, i.e. of recognizing the character of the theorems for which it is essential that the local unit spheres be ellipsoids rather than arobitrary convex surfaces with centre". The book is, however, "a geometric approach to qualitative problems in intrinsic ditferential geometry" (my italics), and to get a quantitative theory suitable for use in physios - in partioular, a sharper characterization of local (rather than slobal) properties it would seem that some sort of analytical approach is essential. Such a treatment will now be outlined. We start from (I.II), which is considered as giving the length of the (infinitessimal) vector dxl qua element of a tangent vector space, $V_{n}(x)$ say, at the point $x{ }^{\mu}$. We now extend this statement to apply to all other vectors $v \in V_{n}$. This is just what is done in the case or a Riemannian manifold. Suppress the x-dependence, for the present.- 'i.e. consider only one such V_{n}. We introduce, therefore, a scalar product which is to be such that $\quad(v / v)=[\mathcal{L}(v)]^{2}$.
(Comparison with (I.38) illustrates the difference in approach.)

What can be said about the expression $(u \mid v)$ for $u \neq v$? Various possibilities present themselves, depending on how the 'non-linearity' entailed by (1.39) is incorporated. It turns out to be best to retain the concept of a dual space V_{n}^{\prime} of linear mappings $V^{\prime}: V_{n} \rightarrow \mathbb{R}$ onto the reals, but to give up Iinearity of the function $G: V_{n} \rightarrow V_{n}^{\prime}$ which associates co- with contra-variant components of the 'same' vector (in the Riemannian case G is of course a linear mapping, with matrix $S_{\mu \nu}$ with respect to appropriate bases). We therefore require:

$$
\begin{equation*}
(u \mid v)=u_{\mu} v^{\mu}=g_{\mu \nu}(u) u^{\nu} v^{\mu} \tag{1.40}
\end{equation*}
$$

where $\quad g_{\mu \nu}(u)=\frac{\partial^{2}}{\partial u \mu^{\mu} \partial u^{\nu}}\left[\frac{1}{2} \mathcal{L}^{2}(u)\right]$

$$
\begin{equation*}
(u \mid v) \neq(v \mid u) \tag{I.4I}
\end{equation*}
$$

So that, in general
This nonsymmetry of the scalar product reflects in the present formalism a remarkable theorem due to Blaschke (cf. [10] p.103) that if in a Minkowskian (i.e. flat Finsler) space of dimension greater than two perpendicularity between lines is symmetric, then the metric is euclidean.

By the assumed homogeneity of $\mathcal{L}, g_{\mu \nu}(u)$ is positively homogeneous of decree zero in the u^{α} : Make the requirement:

$$
\begin{equation*}
g(u) \equiv \operatorname{det}\left\|g_{\mu v}(u)\right\| \neq 0 \tag{1.43}
\end{equation*}
$$

Then there is an inverse set of functions $g^{\mu \nu}(u)$ such that

$$
\begin{equation*}
u^{\lambda}=g^{\lambda} \mu(u) u_{\mu} \tag{1.44}
\end{equation*}
$$

Vector indices can therefore be raised and lowered as in Riemannian geometry, but it shoułd be remarked that there is no clear-cut extension of the operation to higher rank tensors.零 construct a tensor calculus, we need an 'affine connection'

That the latter will involve a certain non-linearity, as did the scalar product, can be seen as follows. We require that the two definitions of geodesics as (i) minimum paths and (ii) autoparallel curves shall coincide. The first says:

$$
\begin{equation*}
\delta \int d s=\delta \int \mathcal{L}\left(x, \frac{d x}{d s}\right) d s=0 \tag{1.45}
\end{equation*}
$$

The Euler-Lagrange equations can be recast in the form:

$$
\begin{equation*}
\frac{d}{d s}\left(\frac{\left.d x\right|^{\mu}}{d s}\right)+2 G^{\mu}\left(x, \frac{d z}{d s}\right)=0, \tag{1.46}
\end{equation*}
$$

where G is the same as in (1.23), but with directional argument $\mathrm{X}^{\prime}=\frac{d x}{d s} .(1.46)$ is also equivalent to (of. [11]p.52): $\frac{d}{d s}\left(\frac{d x \mu^{\mu}}{d s}\right)+\left\{\begin{array}{l}\mu \\ \alpha \beta \beta\end{array}\right\}\left(\frac{d x}{d s}\right) \frac{d x^{\alpha}}{d s} \frac{d x \beta}{d s}=0$
where $\left\{\begin{array}{l}\mu \\ \alpha \beta\end{array}\right\}\left(\frac{d x}{d s}\right)$ is formed from the $g_{\mu \nu}\left(\frac{d x}{d s}\right)$ by the Riemannian prescription for, a Christoffel symbol. Now tie this in with detinition (ii). As inspection of (1.47) shows, the change in a vector v^{μ} under parallel displacement from $P(x)$ to P^{\prime} $(x+d x)$ cannot be linear in both v^{μ} and $d x{ }^{\mu}$. We require it to depend linearly on the components v^{μ}; it must therefore be allowed to depend non-linearly on the displacement components (dx ${ }^{\mu}$); we accordingly define:

$$
\begin{equation*}
\delta v^{\lambda}=-T_{\mu \nu}^{* \lambda}(\alpha x) v v^{\prime} d x^{\nu} \tag{1.48}
\end{equation*}
$$

and thence the tensorial 'absolute differential':

$$
\begin{equation*}
D v^{\lambda} \equiv d v^{\lambda}-\delta v^{\lambda}=d v^{\lambda}+F^{* \lambda} \cdot \mu v(\alpha x) v v^{\mu} d x^{\nu} \tag{1.49}
\end{equation*}
$$

The T^{*} are assumed positively homogeneous of degree zero in $d x^{\alpha}$. Similar expressions hold for other types of tensor, in the usual way. In particular: $\quad D \delta_{y}^{\mu} \equiv 0$. An autoparallel curve satisfies:

$$
\begin{equation*}
O=D\left(\frac{d x^{\lambda}}{d s}\right)=d\left(\frac{d x^{\lambda}}{d s}\right)+T^{* \lambda} \mu_{\mu \nu}(d s) \frac{d x}{d s} \frac{d x^{\nu}}{d s} \tag{I.5I}
\end{equation*}
$$

i.e. $\quad \frac{d}{d s}\left(\frac{d x^{\lambda}}{d s}\right)+T_{\mu \nu}^{* \lambda}\left(\frac{d x}{d s}\right) \frac{d x}{d s} \frac{d x^{\nu}}{d s}=0$.

Comparison of (1.47) with (1.52) restricts the T^{*}, but
does not completely determine them in terms of the metric tensor. We can get a stronger restriction by requiring that the same geodesics also arise from parallel displacement of the covariant tangent vector $\frac{d x_{\mu}}{d s}$; we therefore require:

$$
\begin{equation*}
\text { D } g_{\mu \nu}\left(\frac{d x}{d s}\right)=0 \tag{1.53}
\end{equation*}
$$

which, in turn, is equivalent to:

$$
\left[\frac{\partial g_{\mu \nu}}{d x^{\sigma}}-\frac{\partial g_{\mu \nu}}{\partial \dot{x}^{\alpha}} T_{\cdot \beta \sigma}^{* \alpha} \dot{x} \beta-g_{\alpha \nu} T_{\cdot \mu \sigma}^{* \alpha}-g_{\mu \alpha} T_{\cdot \nu \sigma}^{* \alpha}\right] d x^{\sigma}=0
$$ the directional arguments of the g 's and $T^{* \prime}$ s all being $\dot{x} \equiv \frac{d x}{d s}$. Setting (compare (1.46) and (1.52))

$$
\begin{equation*}
\Gamma_{\beta \sigma}^{* \lambda} \dot{x} \beta=\frac{\partial G^{\lambda}}{\partial \dot{x}^{\sigma}} \tag{1.55}
\end{equation*}
$$

and requiring the square bracket itself in (1.54) to vanish, one can solve for the $T_{\mu \nu \sigma}^{*}(\dot{x})$, obtaining an expression formally identical to Cartan/Berwald's eqn.(1.30), with x^{\prime} replaced by \dot{x}.

As is clear, this derivation has only provided a (quite natural) determination of the affine connection by the metric other choices are possible. (There is a corresponding arbit= rariness in Cartan's and Berwald's derivations.) It is not easy, however, to see the sort of additional criterion to appeal to in order to tighten up the deduction. So we shall work from the above particular solution. We also remark that althourh (1.49) and its counterparts define absolute differentials of tensors, 'covariant' derivatives are not defined. This seems unavoidable in the context of the present treatment.

In spite of this difficulty in connection with differentiation, it is possible to construct a curvature tensor. In Riemannian geometry there are three common ways of doing this: (i) commutator of double covariant derivatives; (ii) parallel transport around infinitessimal circuit (holonomy group); (iii) geodesic deviation. In the present case, method (i) is ruled out; and (ii) even more so, since the result of such a parallel transport will, by (1.49), depend in a very complicated manner on the precise shape of the curve; (iii) is available, as will appear. This situation was noted, from his ditferent point of view, by Busemann ([10] p.235): "In Riemannian spaces curvature has many different functions. It is not plausible thát in Finsler spaces a single concept will suffice for all these functions; it is rather to be expected that different concepts, which happen to coincide in the Riemannian case, correspond to different functions.
"The great majority of the investigations on intrinsic feometry exploit, or can be modified so as to exploit, only one of the functions, and can therefore be extended to Finsler spaces." (his italics). His treatment is essentially in terms of definition (iii) which, via the Gauss-Bonnet theorem, can be formulated in terms of the angular excess of geodesic triangles.

The analytic formulation of (iii) we shall give is a precise parallel to the Riemannian case (cf.[12] p.90). Definition (1.56): A vector v is orthogonal to a vector u it and only if $(v \mid u)=0$.
(As already observed, this is not a symmetrical relation.) Consider a two-dimensional surface $\quad x^{\mu}=I^{\mu}(u, v)$ which is such that $v=$ constant specifies a directed geodesic parametrized by its arc-length u, for each value of v; and such that there is a curve of the other system, $u=u_{0}$ say, to which all these geodesics are orthogonal. (Note: the curves $u=$ constant are not directed curves - according to defn. (1.56) it is unnecessary that they should be.) Write

$$
\begin{equation*}
\frac{\partial f^{\mu}}{\partial u} \equiv p^{\mu} \quad ; \quad \frac{\partial f^{\mu}}{\partial v} \equiv q^{\mu} \tag{1.58}
\end{equation*}
$$

By assumption, then:

$$
\begin{equation*}
0=(p \mid q)_{\mu=u_{0}}=\left.g_{\mu \nu}(p) p^{\nu} q^{\mu}\right|_{u=u_{0}}=\left.\frac{\partial \mathcal{L}(p)}{\partial p^{\mu}} q^{\mu}\right|_{u=u_{0}} \tag{1.59}
\end{equation*}
$$

We first show that for any other value of $u \quad\left(=u_{1}\right.$, say) a similar equation to (1.59) holds; i.e. that the geodesics are orthogonal to all the curves $u=$ constant. For, define

$$
L(v) \equiv \int_{u_{0}}^{u_{1}} \mathcal{L}(x, p) d u=u_{1}-u_{0} .
$$

This is independent of v. Therefore

$$
\begin{align*}
O & =\frac{d L}{d v}=\int_{u_{0}}^{u_{1}} \frac{\partial}{\partial v}[\mathcal{L}(x, p)] d u=\int_{u_{0}}^{u_{i}}\left[\frac{\partial \mathcal{L}}{\partial x^{\alpha}} q^{\alpha}+\frac{\partial \mathcal{L}}{\partial p^{\alpha}} \frac{\partial^{2} f^{\alpha}}{\partial u \partial v}\right] d u \\
& =\left.\frac{\partial \mathcal{L}}{\partial p^{\alpha}} q^{\alpha}\right|_{u_{0}} ^{u_{1}}-\int_{u_{0}}^{u_{1}}\left[\frac{d}{d u}\left(\frac{\partial \mathcal{L}}{\partial p^{\alpha}}\right)-\frac{\partial \mathcal{L}}{\partial x^{\alpha}}\right] q^{\alpha} d u \tag{1.60}
\end{align*}
$$

Because the curves are geodesics, the integrand, and hence the integral, vanishes, as does, by (1.59), the contribution at the lower limit to the first term on the RHS. This proves the result. Now consider two neighbouring geodesics of the family, specified respectively by the parameters $v, v+d v$. Let P, P^{\prime} be the points $(u, v),(u, v+d v)$ respectively. Then the vector $\overrightarrow{P P}^{\prime}(u)$ has components ($q{ }^{\mu} d v$). By the result just established, the two geodesics will both be orthogonal to this vector, for all u. The distinction between a
flat and curved space is that in the former the vector will be proportional to u. We therefore want to determine how $\overrightarrow{P P}:$, or equivalently q^{μ}, varies with u. Let $\frac{D}{D u}$ stand for the invariant derivative operator in the direction (p^{μ}). Then

$$
\begin{equation*}
\frac{D q^{\lambda}}{D u}=\frac{\partial^{2} f^{\lambda}}{\partial u \partial v}+\frac{\partial G^{\lambda}}{\partial p^{\alpha}}(p) q^{\alpha} ; \tag{1.61}
\end{equation*}
$$

and the rate of 'geodesic deviation' is found to be

$$
\begin{align*}
\frac{D^{2} q^{\lambda}}{D u^{2}} & =\left[\left(\frac{\partial G^{\lambda}}{\partial p \rho}\right)_{(\sigma)}-\left(\frac{\partial G^{\lambda}}{\partial p^{\sigma}}\right)_{(\rho)}\right] q \rho p^{\sigma} \\
& =R^{\lambda} \cdot \nu \rho \sigma(p) p^{\nu} q^{\rho} p^{\sigma} \tag{1.62}
\end{align*}
$$

where in fact a term in $\frac{D q u}{D u}$ on the RHS has vanished, owing to (1.55) - a possible additional motivation for the latter. $R^{\lambda} \cdot v \rho \sigma$ is formally identical to Cartan's expression (1.32), with $X^{\prime}=p$ (I.62) has the same form as the Riemannian result, except for the direction-dependence of the $R^{\lambda}{ }^{2} \rho \sigma$; so the difference is that a quadratic function of the direction of the geodesics (p) has become a more general function, homogeneous of degree two in the p^{α}. As in Riemannian geometry, therefore, (1.62) is a quite concrete result: one which could in principle be investigated by clocks and measuring rods, and so is a suitable ingredient for a geometrical theory of physics. (As already indicated, this problem of 'physical meaning' is a persistent one in Finsler-space theories, and published attempts ${ }^{[16,18,20,21,22]}$ on these Iines seem to gloss over it - a remark (in connection with e.g. derivation of ifield equations") like "Let a direction-field $x^{\prime}(x)$ be specified..." giving the game away at once.)

The theory just outlined will now be applied to spaces
flat and curved space is that in the former the vector will be proportional to u. We therefore want to determine how $\overrightarrow{P P}:$, or equivalently q^{μ}, varies with u. Let $\frac{D}{D u}$ stand for the invariant derivative operator in the direction (p^{μ}). Then

$$
\begin{equation*}
\frac{D q^{\lambda}}{D u}=\frac{\partial^{2} f^{\lambda}}{\partial u \partial v}+\frac{\partial \varsigma^{\lambda}(p)}{\partial p^{\alpha}} q^{\alpha} ; \tag{1.61}
\end{equation*}
$$

and the rate of 'geodesic deviation' is found to be

$$
\begin{align*}
\frac{D^{2} q^{\lambda}}{D u^{2}} & =\left[\left(\frac{\partial G^{\lambda}}{\partial p \rho}\right)_{(\sigma)}-\left(\frac{\partial G^{\lambda}}{\partial p^{\sigma}}\right)_{(\rho)}\right] q \rho p^{\sigma} \\
& =R^{\lambda} \cdot v \rho \sigma(p) p^{\nu} q^{\rho} p^{\sigma} \tag{1.62}
\end{align*}
$$

where in fact a term in $\frac{D q}{D u}$ on the RHS has vanished, owing to (1.55) - a possible additional motivation for the latter. $R^{\lambda} \cdot \nu \rho \sigma$ is formally identical to Cartan's expression (1.32), with $x^{\prime}=p$. (1.62) has the same form as the Riemannian result, except for the direction-dependence of the $R^{\lambda}{ }_{r \rho \sigma}$; so the difference is that a quadratic function of the direction of the geodesics (p) has become a more general function, homogeneous of degree two in the p^{α}. As in Riemannian geometry, therefore, (1.62) is a quite concrete result: one which could in principle be investigated by clocks and measuring rods, and so is a suitable ingredient for a geometrical theory of physics. (As already indicated, this problem of 'physical meaning' is a persistent one in Finsler-space theories, and published attempts ${ }^{[16,18,20,21,22]}$ on these lines seem to gloss over it - a remark (in connection with e.g. derivation of ifield equations') like "Let a direction-field $x^{\prime}(x)$ be specified..." giving the game away at once.)

The theory just outlined will now be applied to spaces
with basic function of the particular form (1.10), viz:

$$
\begin{equation*}
\mathcal{L}(x, v)=\alpha_{\mu}(x) v^{\mu}+\sqrt{Y_{\mu \nu}(x) v V^{\mu} v^{\nu}} \tag{1.63}
\end{equation*}
$$

The ' + ' sign has been chosen to make the metric single-valued; the opposite sigh would lead to the geometry of a space (1.63) with the sign of α_{μ} everywhere reversed; so that (1.63), for various vector fields $\alpha_{\mu}(x)$, in fact covers all cases. (Compare this situation with that in regard to the initial definition of sign of charge in electromagnetic theory: if every charge in the universe were reversed in sign then this would make no observable difference, in classical electromagnetism at any rate.) Here are formulae for some of the geometrical objects in the space.

$$
\begin{align*}
& l^{\mu}(v)=\frac{V \mu^{\mu}}{L(v)} \tag{1.64}\\
& l_{\mu}(v)=\frac{\partial \mathscr{L}(v)}{\partial V^{\mu}}=\frac{\gamma_{\mu \lambda} V^{\lambda}}{\sqrt{\gamma_{\alpha \beta} V^{\alpha} v^{\beta}}}+\alpha_{\mu} \tag{1.65}
\end{align*}
$$

Abbreviate the first term on RHS by $\tilde{\omega}_{\mu}(v)$. From (I.4I):

$$
\begin{align*}
g_{\mu \nu}(v) & =\gamma_{\mu \nu}+\alpha_{\mu} \alpha_{\nu}+\frac{\left(\gamma_{\mu \nu} \alpha_{\lambda}+\gamma_{\mu \lambda} \alpha_{\nu}+\gamma_{\nu \lambda} \alpha_{\mu}\right) v^{\lambda}}{\left(\gamma_{\alpha \beta} v^{\alpha} v^{\beta}\right)^{1 / 2}}-\frac{\gamma_{\mu \alpha} v^{\alpha} \gamma_{\nu \beta} v^{\beta} \alpha_{\lambda} v^{\lambda}}{\left(\gamma_{\alpha \beta} v^{\alpha} v \beta\right)^{3 / 2}} \\
& =\left[\frac{f(v)}{\sqrt{\gamma_{\alpha \beta} v^{2} v^{\beta}}}\right]\left(\gamma_{\mu \nu}-\varpi_{\mu} \varpi_{\nu}\right)+l_{\mu} l_{\nu} \tag{1.66}
\end{align*}
$$

$\therefore 2 C_{\mu \nu \rho} \equiv \frac{\partial g_{\mu v}}{\partial v \rho}=\left[\frac{\mathcal{L}(v)}{\gamma_{\alpha \beta} \nu^{\alpha} v \beta}\right]\left[\left(\gamma_{\mu \nu}-\omega_{\mu} \sigma_{\nu}\right)\left(\alpha_{\rho}-\alpha_{\lambda} l^{\lambda} l_{\rho}\right)\right]_{\{\mu \nu \rho\}}$
Where $\}$ represents sum over cyclic permutations. The
remaining purely covariant quantity is (cf. (1.23)):

$$
\begin{align*}
2 G_{\mu}= & \frac{\mathcal{L}(v)}{\sqrt{\gamma_{\alpha \beta} V^{\alpha} V \beta}} \Gamma_{\mu \alpha \beta}^{(R)} V^{\alpha} v^{\beta}-\mathcal{L}(v) F_{\mu \alpha} V^{\alpha} \\
& +\alpha_{\mu}\left[\alpha_{\alpha, \beta} V^{\alpha} v^{\beta}+\frac{\frac{1}{2} \gamma_{\alpha \beta, \varepsilon} V^{\alpha} v^{\beta} V^{\varepsilon}}{\sqrt{\gamma_{\alpha \beta} V^{\alpha} V^{\beta}}}\right] \\
& +\varpi_{\mu}\left[\alpha_{\alpha, \beta} V^{\alpha} v^{\beta}-\frac{\frac{1}{2}\left(Y_{\alpha \beta, \varepsilon} V^{\alpha} V^{\beta} V^{\varepsilon}\right)\left(\alpha_{\lambda} V^{\lambda}\right)}{\left(V_{\alpha \beta} V^{\alpha} V^{\beta}\right)}\right] \tag{1.68}
\end{align*}
$$

where

$$
F_{\mu \nu} \equiv \alpha_{\nu, \mu}-\alpha_{\mu, \nu}
$$

(R)
signifies: Riemannian Christofiel
symbol formed from the $\gamma_{\mu \nu}$.

To proceed further, it is clearly necessary to evaluate the contravariant metric tensor, $g^{\mu \nu}(v)$. A direct inversion of the system (1.66) is not easy, so we do it indirectly. Let $\gamma^{\mu \nu}$ be the inverse matrix of $\gamma_{\mu \nu}$ (NB not its contravariant form). Then (1.65) yields the identity

$$
\begin{equation*}
\gamma^{\mu \nu}\left(\frac{v_{\mu}}{z(v)}-\alpha_{\mu}\right)\left(\frac{v_{\nu}}{z(v)}-\alpha_{\nu}\right) \equiv 1 \tag{1.70}
\end{equation*}
$$

Solving for \mathcal{L} as a function of the covariant form of v :

$$
\begin{equation*}
\mathcal{L}(v)=\frac{-\alpha^{\mu} v_{\mu}+\sqrt{\left(1-\alpha_{\lambda} \alpha^{\lambda}\right) \gamma^{\mu \nu} v_{\nu} v_{\nu}+\left(\alpha^{\lambda} v_{\lambda}\right)^{2}}}{\left(1-\alpha_{\lambda} \alpha^{\lambda}\right)} \tag{1.71}
\end{equation*}
$$

where $\quad \alpha^{\lambda} \equiv \gamma^{\lambda} \mu \alpha_{\mu}$.
In calculations one needs the useful identities:

$$
\begin{equation*}
\frac{\sqrt{\left(1-\alpha_{\lambda} \alpha^{\lambda}\right) \gamma^{\mu \nu} V_{\mu} V_{\nu}+\left(\alpha^{\lambda} V_{\lambda}\right)^{2}}}{\mathcal{L}(v)}=\frac{\mathcal{L}(v)}{\sqrt{\gamma_{\alpha \beta} V^{\alpha} V^{\beta}}} \tag{1.72}
\end{equation*}
$$

and, (of., (1.65)):

$$
\begin{equation*}
l^{\mu}(v)=\frac{\sqrt{\gamma_{\alpha \beta} \nu^{2} v^{\beta}}}{\alpha(v!}\left(\gamma^{\mu \lambda} l_{\lambda}(v)-\alpha^{\mu}\right) . \tag{1.73}
\end{equation*}
$$

The equation $\quad g^{\mu \nu}(v)=\frac{\partial^{2}}{\partial v_{\mu} \partial v_{\nu}}\left[\frac{1}{2} \mathcal{L}^{2}(v)\right]$
now enables the $g^{\mu \nu}(v)$ to be computed:

$$
\begin{equation*}
g^{\mu \nu}(v)=\frac{\sqrt{Y_{\alpha \beta} v^{\alpha} v^{\beta}}}{L(v)}\left[\gamma^{\mu \nu}-\left(1-\alpha_{\lambda} \alpha^{\lambda}\right) l^{\mu} \cdot l^{\nu}-\alpha^{\mu} l^{\nu}-\alpha^{\nu} l^{\mu}\right]+l l^{\nu} l^{\nu} . \tag{1.76}
\end{equation*}
$$

One can verify that this is indeed the inverse of the set of functions (1.66). It is now possible to evaluate the detersinant of $g_{\mu \nu}(v)$, as follows (again, the direct approach is not practicable). (1.67) and (1,76) give

$$
\begin{equation*}
\frac{\partial}{\partial v^{\mu}}[\log g(v)]=\frac{g^{\alpha \beta} g_{\alpha \beta}}{\partial V^{\mu}}=2 g^{\alpha \beta} C_{\alpha \beta \mu}=(n+1) \frac{\alpha(v)}{\sqrt{\gamma_{\alpha \beta} V^{2} V^{\beta}}}\left[\alpha_{\mu}-\alpha_{\lambda} l^{\lambda} l_{\mu}\right] \tag{1.77}
\end{equation*}
$$

This differential equation can be integrated:

$$
\begin{equation*}
g(v)=f(x)\left[\frac{\mathcal{L}(v)}{\sqrt{\gamma_{\alpha \beta} v^{\alpha} v v^{\prime}}}\right]^{n+1} \tag{1.78}
\end{equation*}
$$

where f is independent of v, and can be found from:

$$
\begin{equation*}
\frac{\partial}{\partial x^{\mu}}[\log g(v)]=g^{\alpha \beta} \frac{\partial g_{\alpha \beta}}{\partial x \beta^{\mu}}=[\log \gamma]_{, \mu}+(n+1)\left[\log \frac{1(v)}{\sqrt{\gamma_{\alpha \beta} V^{*} V^{\beta}}}\right]_{, \mu} \tag{1.79}
\end{equation*}
$$

where $\gamma \equiv \operatorname{det}\left\|\gamma_{\mu \nu}\right\|$. Therefore $\quad g(v)=\gamma\left[\frac{\mathcal{L}(v)}{\sqrt{\gamma_{\alpha \beta} v^{\alpha v}}}\right]^{n+1}$.
an unexpectedly simple result.
from (7.68) and (1.76) one finds, after a considerable
amount of cancellation:

$$
\begin{align*}
2 G^{\lambda}(v)= & T^{(R) \lambda} \mu_{\mu \nu} V^{\mu} V^{\nu}-F^{\lambda} V_{\mu}^{\mu} \sqrt{\gamma_{\alpha \beta} V^{\mu} V^{\nu}} \\
& +l^{\lambda}(V)\left[\frac{1}{2} S_{\mu \nu} V^{\mu} V^{\nu}+\alpha_{\epsilon} F^{\varepsilon} V_{\mu} V^{\mu} \sqrt{\gamma_{\alpha \beta} V^{\alpha} V^{\beta}}\right] \tag{1.81}
\end{align*}
$$

where $\quad F^{\lambda}{ }_{\mu} \equiv \gamma^{\lambda \rho} F_{\rho \mu} \quad$ and $\quad S_{\mu \nu} \equiv \alpha_{\nu j \mu}+\alpha_{\mu} ; \nu$ (semi-colon denoting Riemannian covariant derivative w.r.t. $\Gamma^{(R)}$). Differentiating (1.81) gives:

$$
\begin{align*}
2 \frac{\partial G^{\lambda}}{\partial V^{k}}= & 2 T^{(k) \lambda} \rho_{\mu k} V^{\mu}-F_{k}^{\lambda} \sqrt{\gamma_{\alpha \beta} V^{\alpha} V^{\beta}}-F_{\cdot \mu}^{\lambda} v^{\mu} \varpi_{k} \\
& +1^{\lambda}\left[S_{\mu k} V^{\mu}+\alpha_{\varepsilon} F^{\varepsilon} \cdot k \sqrt{\gamma_{\alpha \beta} V^{\alpha} V^{\beta}}+\alpha_{\varepsilon} F^{\varepsilon} \mu_{\mu} V^{\mu} \varpi_{k}\right] \\
& +\mathcal{L}^{-1}\left(\delta_{k}^{\lambda}-l^{\dot{\lambda}} l_{k}\right)\left[\frac{1}{2} S_{\mu \nu} V^{\mu} V^{\nu}+\alpha_{\varepsilon} F_{\mu}^{\varepsilon} V^{\mu} \sqrt{\gamma_{\alpha \beta} V^{\alpha} V^{\beta}}\right] \tag{1.82}
\end{align*}
$$

This enables one to form (cf. (1.29)):

$$
\begin{align*}
& g_{\rho \sigma(k)} \equiv \frac{\partial g_{\rho \sigma}}{\partial x^{k}}-2 C_{\rho \sigma \lambda} \frac{\partial G^{\lambda}(v)}{\partial v^{k}} \\
& =\frac{\mathscr{L}(v)}{\sqrt{\gamma_{\alpha \beta} V^{\alpha} v^{\beta}}} Y_{\rho \sigma, k}+l_{\rho} \alpha_{\sigma, k}+l_{\sigma} \alpha_{\rho, k} \\
& +\left[\frac{\mathcal{L}(V)}{Y_{\alpha \beta} V^{\alpha} V^{\beta}}\right]\left[\begin{array}{l}
\left(\gamma_{\rho \sigma}-\sigma_{\rho} \sigma_{\sigma}\right)\left(\alpha_{\lambda}-\alpha_{\varepsilon} l^{\varepsilon} l_{\lambda}\right)\left(-T^{(R) \lambda} \cdot k \mu V^{\mu}+\frac{1}{2} F_{\cdot k}^{\lambda} \sqrt{\gamma_{\alpha_{\beta}} V^{\alpha} V^{\beta}}\right) \\
+\left(\alpha_{\rho}-\alpha_{\varepsilon} l^{\varepsilon} l_{\rho}\right)\left(T_{\mu \sigma K}^{(R)} V^{\mu}+\frac{1}{2} F_{\sigma k} \sqrt{Y_{\alpha \beta} V^{\alpha} V^{\beta}}-\frac{1}{2} F_{\mu k} \sigma_{\sigma} V^{\mu}-\frac{1}{2} F_{\mu \sigma} \sigma_{k} V^{\mu}\right) \\
+\left(\alpha_{\sigma}-\alpha_{\varepsilon} l^{\varepsilon} l_{\sigma}\right)\left(T_{\mu \rho K}^{(R)} V^{\mu}+\frac{1}{2} F_{\rho^{k}} \sqrt{\gamma_{\alpha \beta}^{0} V^{\alpha} V^{\beta}}-\frac{1}{2} F_{\mu k} \sigma_{\rho} V^{\mu}-\frac{1}{2} F_{\mu \rho} \sigma_{k} V^{\mu}\right)
\end{array}\right] \\
& +\frac{1}{2}\left(Y_{\rho \sigma}-\infty_{\rho} \sigma_{\sigma}\right) \sigma_{k} \frac{\left(\alpha_{\varepsilon} F_{\mu}^{\xi} V^{\mu}\right)}{\sqrt{Y_{\alpha \beta} V^{\alpha} V^{\beta}}} \\
& -\mathcal{L}^{-1} C_{\rho \sigma K}\left[\frac{1}{2} S_{\mu \nu} V^{\mu} V^{\nu}+\alpha_{\varepsilon} F^{\varepsilon}{ }_{\mu} V V^{\mu} \sqrt{\gamma_{\alpha \beta} V^{\alpha} V^{\beta}}\right] \tag{1.83}
\end{align*}
$$

One can now immediately write down the expression for $\Gamma_{\lambda \mu \nu}^{*}(v)$ (cf. (I.30)), and thence calculate the $T_{\cdot \mu \nu}^{* \lambda}(v)$. The result for the latter is considerably more complicated even than (1.83) (which has been simplified as far as is possible), and the explicit evaluation of the curvature tensor from (1.32) seems
out of the question. However, the computation becomes easy for what one might call the 'weak field, pure electromagnetic' case, viz. working to first order only in the α 's, and setting $Y_{\mu \nu}=$ constant. Then

$$
\begin{gather*}
g_{\rho \sigma(k)}^{\overline{(1)}} \omega_{\rho} \alpha_{\sigma, k}+\pi_{\sigma} \alpha_{\rho, k} \tag{1.84}\\
T^{* \lambda} \cdot \mu \nu \overline{\overline{(1)}} \frac{\gamma_{\mu \alpha} V^{\alpha} F_{\nu} \lambda+\gamma_{\nu \alpha} V^{\alpha} F_{\mu} \lambda+S_{\mu \nu} V^{\lambda}}{2 \sqrt{\gamma_{\alpha \beta} V^{\alpha} V^{\beta}}} \tag{1.85}\\
R^{\lambda}{ }_{\mu \sigma \nu}=\frac{\left(F_{\sigma, \lambda, \nu}^{\lambda}-F_{\nu, \lambda, \sigma}\right) \gamma_{\mu \alpha} V^{\alpha}+F_{\mu} \lambda, \nu \gamma_{\sigma \alpha} V^{\alpha}-F_{\mu, \sigma}^{\lambda} \gamma_{\gamma \alpha} V^{\alpha}+F_{\nu \sigma, \mu} V^{\lambda}}{2 \sqrt{\gamma_{\alpha \beta} V^{\alpha} V^{\beta}}} \tag{1.86}
\end{gather*}
$$

which, it will be observed, depends on the α 's only via the gauge-invariant combination $F_{\mu \nu}$. By contraction

$$
\begin{equation*}
R_{\mu \nu} \equiv R_{\mu \lambda \nu}^{\lambda} \overline{(1)} \frac{\left(F_{\mu \alpha, \nu}+F_{\nu \alpha, \mu}\right) V^{\alpha}-j_{\mu} \gamma_{\nu \alpha} V^{\alpha}-j_{\nu} \gamma_{\mu \alpha} V^{\alpha}}{2 \sqrt{\gamma_{\alpha \beta} V^{\alpha} V^{\beta}}} \tag{1.87}
\end{equation*}
$$

where $j_{\mu} \equiv F_{\mu}{ }^{\alpha}, \alpha$. In this approximation $R_{\mu \nu}$ is seen to be, symmetric (in a Finsler space this is not a necessary result). A second contraction gives: $\quad R \equiv R^{\nu} \cdot{ }_{\nu} \overline{\overline{(1)}} 0$.

It is at this stage that the theory starts to peter out. For, the original aim was not just to compute a few geometrical quantities, but to show that the space manifests a behaviour resembling that of real charges and electric fields; and in this there has been conspicuously little success. There are two main difficulties. First, one wants some field equations, in order to restrict the space-time dependence of $\alpha_{\mu}(x)$ and $\gamma_{\mu \nu}(x)$ in some meaningful way. In euclidean or Riemannian manifolds a variational derivation of the equations has decided advantages (compatibility, Noether's theorems, etc.). In the present instance almost the only natural choice of Lagrangian density would be:

$$
\begin{equation*}
R(v) \sqrt{-g(v)}, \tag{1.89}
\end{equation*}
$$

but its direction-dependence stands in the way of formulating
a sensible action principle. On this score the theories of [16], [18], [22] must be adjudged as having Iittie physical meaning.

The second, probably fatal, difficulty arises in relating α_{μ} to the physical 4-potential ϕ_{μ}. The former is dimensionless, so that if $\quad \alpha_{\mu}=k \phi_{\mu}$
then k must have dimensions ($\left.\frac{\text { charge }}{\text { mass }}\right)$. Suppose $k=\frac{e}{m_{0}}$, where e is the electronic charge, and m_{0} a mass of order that of the electron (or proton). Then the geodesics of the space are identical with the world-lines of particles with charge-to-mass ratio $\left(\frac{e}{m}\right)$ moving under the combined influence of the gravitational field derived from $\gamma_{\mu \nu}$ and a physical electromagnetic field $\quad f_{\mu \nu}=\phi_{\nu, \mu}-\phi_{\mu, \nu}=\frac{m_{0}}{e}\left(\alpha_{\nu, \mu}-\alpha_{\mu}, \nu\right)$.
This fact is one of the motivations for choosing the form of metric (I.10) in the first place (cf.[13], [14], [15], [19], [21] which are the previous occasions on which this metric has been put forward, in no case with much elaboration). We shaill gloss over the question of what precise value to take for m_{0} : since it does not attempt to consider strong interactions the theory is not likely to be correct in that much detail anyway. With such a choice of $k, \alpha_{\mu} \ll 1$ for all macroscopic fields; but at distances of order the classical radius of the electron ($=2.818 \times 10^{-13} \mathrm{~cm}$) from a charge e the field is such that $\alpha_{\mu} \sim 1$, so that deviations from linearity would be expected (cf. e.g. the form of (I.71)) and therewith the possibility of a singular metric at finite distance from a 'point' charge.

Now, we have just assumed that the world-lines of charged particles should correspond to the geodesics of the space, whereas in fact for a non-limear theory the field equations themselves entail how the singularities of the field ('particles') must move. This is important in the present context for, although field equations are precisely what is lacking, it seems that even if they existed they would be unlikely to lead to the correct physics, as the following argument, rough though it is, intimates:

Although the curvature scalar has not been computed explicitiy, it is clear from the form of (1.9), (1.66), (1.83), etc. that $\gamma_{\mu \nu}$ tends to figure in conjunction with products of two α 's, and similarly when differentiated, so that (I.89), in addition to the Riemannian $R^{(R)}$ formed from the $\gamma_{\mu \nu}$, which must be an ingredient (consider the case $\alpha_{\mu}=0$), will contain term(s) something like $F^{\mu \nu} F_{\mu \nu}$. Although prina tacie just what is required, in order to get the correct contribution of the electromagnetic to the gravitational fiela, the Maxwell energy-momentum tensor, and thence the Lorentz force (of. (1.4), (I.5)), nevertheless the presence of any such term is in fact disastrous, since by (1.91) it equals

$$
\begin{equation*}
\left(\frac{e}{m_{0}}\right)^{2} f \mu^{\mu \nu} f_{\mu \nu} \simeq 10^{39} \times f \mu^{\mu \nu} f_{\mu \nu} \tag{1.92}
\end{equation*}
$$

where K is Einstein's gravitational constant. This contribution is therefore 39 orders of magnitude too large. Stephenson \& Kilmister's theory ${ }^{[19,20,21]}$ is in fact rendered null by this observation which, by oversystematically calling all constants 1 , they overlook.

No obvious progress seems possible. Of course, k could be scaled down by a factor $\sim 10^{20}$; but, among other disadvantages, that severs the connection with the Hamiltonian formulation of particle electrodynamics which was the basis of the original intuitive appeal of the theory.

After this work was essentially completed (1963), a former student of his drew to my attention the book ${ }^{[11]}$ by H.Rund. In this monograph he presents, inter alia, his own criticism and revision of the orthodox Finsler space theory, made in the $1950^{\circ} \mathrm{s}$, from a standpoint and with results parallelling very closely those given here, though with much greater wealth of detail. In particular, he too treats the spaces as locally Minkowskian ([II] p.16) - rather than as locally euclidean, which, by concentrating attention on the so-called osculating Riemannian space', the 'line-element' approach manages to do. He also describes ([11] pp.111-9) the same construction as was given in (1.62) for the curvature tensor. The book is not concerned with unified field theory problems.

§1.3 Theories related to the present work

From the extensive literature on the UFT problem, ${ }^{[26]}$ and also on (flat) spaces more general than the Minkowski and transIormation/symmetry groups more general than the Lorentz, we restrict attention to ideas having some aspects in common with the theory of complex space-time. Actually, this still leaves a rather wide field: the theory has complex Hermitian metric tensor, $[27][42]$ and complex symmetric affine connection; ${ }^{[44][47][54]}$ it introduces extra dimensions $\frac{[50][54][55][56-62]}{}$ restriction of) its underlying flat-space transformation group, $\operatorname{SU}(4)$, is isomorphic with the real 6-dimensional orthogonal group and with the transtormation group generated by (a real restriction of) the Dirac (Clifford) algebra in real Minkowski space-time, ${ }^{[91][96]}$ and is related to certain 'internal' symmetry groups suggested in the context of elementary particle theury [84-92] (see §6.1).

Einstein's relativistic theory of gravitation is deducible from the following three data: (1) a 4-dimensional real manifold, defined w.r.t. the group of general (non-singular) coordinate transformations; (2) a real symmetric affine connection; (3) a real symmetric bilinear rom (or 'metric tensor'), with signature (\pm)2. A natural way to try and construct a more comprehensive field theory is therefore to modiry either (1), (2) or (3) (or any combination), and all classical UFT's have in fact proceeded in this manner.

The best-known example of a theory changing (I) is the

5-dimensional or 'projective relativity' theory, originated by J.Kaluza in 1921 and subsequently developed and recast in various forms by a number of physicists (see [25] pp.254-79 and [26] pp.156-24I for surveys of this work, which, apart from the extra-dimensionality, has no very close bearing on the present theory). Although at one stage favouring and contributing to such theories, Einstein himsely came finally to concentrate his attention on a theory which kept (I), but gave up the symmetry requirements in (2) and (3). Since, in the original version, ${ }^{[27]-[29]}$ the skew-symmetric contributions were taken to be pure-imaginary, and therefore the quantities themselves Hermitian, a brief account of the theory will be given here. (Schrödinger's 'purely affine' theory, ${ }^{[32]}$ developed. 1943 onwards, is often lumped together with Einstein's as the 'Einstein-Schrödinger theory', because it also presupposes a non-symmetric affine connection; however, it has no relevance to the present work.)

Introduce as 'metric tensor' the Hermitian matrix

$$
\begin{equation*}
g_{i k}=\overline{g_{k i}} \tag{1.93}
\end{equation*}
$$

Assuming it non-singular, a contravariant metric tensor is definable by:

$$
\begin{equation*}
g^{i m} g_{j m}=\delta_{i}^{i} \tag{1.94}
\end{equation*}
$$

However, in view of their non-symmetry, one does not use these tensors for pulling indices ([32] p.109). Introduce a complex affine connection $\Gamma_{i j}^{i}$. The Ansatz

$$
\begin{equation*}
g_{i k, l}-g_{s k} T^{s} \cdot i l-g_{i s} T^{s} \cdot l k=0 \tag{I.95}
\end{equation*}
$$

goes into itself on complex conjugation (using (1.93)) if the Γ is are Hermitian:

$$
\begin{equation*}
\Gamma_{\cdot j k}^{i}=\overline{T^{i} \cdot k_{j}} \tag{1.96}
\end{equation*}
$$

(1.95) are then just the right number of equations to determine the T 's as functions of the g's. This is the reason for the choice of suffix order on the LHS.

The fact that the Γ 's are no longer real means that there are really two affinities ${ }^{[29]}$ in the space-time manipold, so that one has to distinguish two types of covariant derivative:

$$
\begin{align*}
& A^{i} ; l \equiv A^{i}, l+\Gamma^{i} \cdot m l \tag{1.97i}\\
& A^{m} \\
& \equiv A^{i}, l+\overline{T_{l m l}^{i}} A^{m} \tag{I.97ii}\\
&=A^{i}, l+\Gamma_{l l m}^{i} A^{m}
\end{align*}
$$

and similarly for other tensor indices. (1.95) is the same as:

$$
\begin{equation*}
g_{i k, l}-g_{s k} \bar{T}^{s} \cdot i l-g_{i s} \overline{\Gamma^{s} \cdot k l}=0 \tag{I.98}
\end{equation*}
$$

and has the quasi-Riemannian form: $\quad g_{j k j l}=0$ Since $\delta_{i}{ }_{+}^{k}, l \not \equiv 0$, the operations of covariant differentiation and of contraction no longer necessarily commute.

For any covariant (or contravariant) pair of indices write

$$
\begin{equation*}
\frac{1}{2}\left(A_{i k}+A_{k i}\right) \equiv A_{\underline{i k}} ; \frac{1}{2}\left(A_{i k}-A_{k i}\right) \equiv A_{i k} \tag{1.100}
\end{equation*}
$$

(1.95) implies:

$$
\begin{equation*}
(\sqrt{-g})_{, e}-\sqrt{-g} \Gamma^{s} \cdot \underline{e s}=0 \tag{1.101}
\end{equation*}
$$

so it is natural ${ }^{[28]}$ to define the IHS of (1.101) to be the covariant derivative of the scalar density $\sqrt{-8}$. The formula for the covariant derivative of any tensor density is thereby fixed, via the product mule for differentiation.

Since there are two kinds of covariant derivative there
will be four kinds of commutator of double differentiation:

$$
\left.\begin{array}{l}
A_{i} ; \ell ; m-A_{i} ; m ; l=-A_{j} R_{i l m}^{i}-2 T^{s} \cdot l_{v} A_{i} ; s \tag{1.102}\\
A_{i} ; l ; m-A_{i} ; m ; l=-A_{j} R^{i} \cdot i l m+2 T^{s} \cdot l_{m} A_{i} ; s
\end{array}\right\}
$$

(plus two more equations which are obtainable by taking complex
conjugates of both sides), where the curvature tensor is:

$$
\begin{equation*}
R^{!_{i l e m}}=T_{i l, m}^{i_{i l}}-T_{i m, l}^{j}-T_{i s l}^{i} T_{i m}^{s}+T_{s m}^{j} T_{i, i l}^{s} \tag{1.103}
\end{equation*}
$$

Define

$$
\begin{equation*}
R_{\text {hilm }} \equiv g_{j h} R_{i l e m}^{i} \tag{1.104}
\end{equation*}
$$

Then the latter satisfies ${ }^{[\mathrm{a} 0]}$

$$
\begin{align*}
R_{h i l m} & =-R_{h i m l} \tag{1.105i}\\
R_{h i l m} & =-\bar{R}_{i h m l} \tag{1.105ii}
\end{align*}
$$

and also the Bianch-type identities: ${ }^{[30]}$

Define $\quad R_{k l} \equiv R^{m}{ }_{k l m}=g^{m i} R_{i k l m}$

$$
\begin{align*}
R_{i k \ell m ; n} & +R_{i k m m ; l}+R_{i k n \ell j}=0 \tag{1.106}\\
R_{k l} & \equiv R^{m}{ }_{k l m}=g^{m i} R_{i k l m} \tag{1.107}
\end{align*}
$$

This is not, in general, Hermitian; one finds: ${ }^{[50]}$
where

$$
\begin{equation*}
\frac{1}{2}\left(R_{k l}-\bar{R}_{l k}\right)=\frac{1}{2}\left(T_{k, l}-T_{l, k}+T_{s} T_{k k}^{s}\right) \tag{1.108}
\end{equation*}
$$

Note that $T_{i}^{i} k$ is a tensor, because of the usual transformation lawfor aftinities, so that T_{k} is a vector, and also the RHS of (I.IO8) is, as required, a tensor. There is another contraction of the curvature tensor (identically zero in the Riemannian case):

$$
\begin{align*}
R^{!} \cdot a k l & =T^{a} a_{a k, l}-T^{l} a_{l, k} \\
& =T_{l, k}-T_{k, l} \tag{I.110}
\end{align*}
$$

by virtue of (1.101). $0^{[28]}$ Multiplying (1.106) by ($\mathrm{g}^{\text {mi }} \mathrm{g}^{\mathrm{kl})}$ gives the doubly-contracted Bianchi identities: $:^{[30]}$

$$
\begin{equation*}
g^{k l}\left(R_{k l ; n}-R_{\substack{k_{n} ; l}}-\bar{R}_{\underline{\underline{l n} ; k}}\right)=0 \tag{1.212}
\end{equation*}
$$

From the above, in particular (1.108), (1.110) and (I.III), it will have been apparent that a considerable simplification ${ }^{[28][30]}$ ensues if one postulates:

$$
\begin{equation*}
\Gamma_{k}=0 \tag{‥II2}
\end{equation*}
$$

In conjunction with (1.95) this is equivalent to (of. [32] p.110):

$$
\begin{equation*}
g_{\mathrm{kl}}^{\mathrm{kl}, \ell}=0 . \tag{8}
\end{equation*}
$$

The most significant reason for postulating (I.112), however, comes from the search for field equations. Given suitable non-degeneracy, the equations (1.95) can be solved for the Γ 's - although the explicit formulae are excessively com[33] [34] plicated. Consider this done. Then we want 16 field equations for the 16 unknowns $s_{i k}$, and by the general theory of such systems the equations must also satisfy 4 identities. In the Riemannian case (general relativity) the equations

$$
\begin{equation*}
R_{i k}=0 \tag{1.113}
\end{equation*}
$$

were appropriate. In the present case they amount to more than 16 equations, on account of the non-Hermiticity of $R_{i k}$ (cf:' (1.108)), and so are not permissible. If, on the other hand, one departs from (1.113), then one has to ensure anew the existence of identities, since the Bianchi identities will in general no longer fit the bill. A neat resolution of this dilema was indicated by Einstein in [30], where he showed that if one postulated and

$$
\begin{align*}
T_{k} & =0 \tag{1.214i}\\
R_{\underline{i k}} & =0, \tag{I.114ii}
\end{align*}
$$

then the Bianchi identities (1.117) reduced to:

$$
\begin{equation*}
g^{k \ell} R_{\left\{k_{k}, n\right\}}=0 . \tag{1.115}
\end{equation*}
$$

Therefore (1.III) constitute the required 4 identities not only for (I.113) but equally for the (less restrictive) set consisting of (1.114i), (1.114ii) and

$$
\begin{equation*}
R_{\{k, n\}}=0 . \tag{I.II4iii}
\end{equation*}
$$

Discounting the Bianchi identities, the set (1.114) is prima
facie $4+10+4=18$ equations for the 16 gik . Closer analysis shows, however, that there exist 2 further identities among the IHS's - there must exist such, since it is possible to derive the complete set (1.95) + (1.114) from a variational principle ${ }^{[28-32]}$ which ensures their compatibility. One of these additional identities is ([28] p.733):

$$
\begin{equation*}
\left(g^{i k} \Gamma_{k}\right)_{, i}=0 \tag{1.116}
\end{equation*}
$$

The other one reduces the number of independent equations (1.114iii) from 4 to 3 according to Einstein \& Straus ([28] p.735) but the justification for this assertion is obscure.

The above is a representative version of the theory many variant formulations exist. Subsequent work has attempted to clarify the physical content, if any, of the formalism. The initial expectation was that the anti-symnetric part of gik should somehow relate to the electromagnetic field: (1.112') would then be like a Maxwell equation. However it is not even clear which of the two it should represent ((1.4i) or (I.4ii)), i.e. whether the physical $F_{i k}$ is (proportional to) $g_{i k}$ or $g_{i k}^{*}=\frac{1}{2} \varepsilon_{i k l m} g^{2 m}-$ or even ${ }^{[34]}$ a combination of the two. Still other identifications are possible: novel light was cast on the structure of the theory by Sciama's Vierbein reformulation, ${ }^{[4]][42]}$ which tended to implicate $R^{a} \cdot{ }^{a}$ ik as the electromagnetic field (and correspondingly T_{k} as vector potential). However, none of these assignnents mitigates what was discovered ${ }^{[36-39]}$ to be the main shortcoming of the theory: to provide something like the Lorentz force. Of course, with
extra terms added to the Lagrangian ${ }^{[39]}$ a Maxwell-type energymomentum tensor can be made to appear (cf. (1.5)); but the theory thereby ceases to be a UFT in the 'deductive' sense originally envisaged, and has less to recommend it than the conventional Maxwell-Einstein theory. All this applies equally to the real non-symmetric or the complex Hermitian versions of the theory. The former seems to stand very little chance of being a solution of the UFT problem for a further reason: it is probable, as argued by Sciama ${ }^{[40]}$ and others, that non-symmetry of the $g_{i k}$ is connected with something quite different: the presence of spin in the matter field.

Another UFP using complex tensors over a real manifold is Mofiat's. ${ }^{[43][44]}$ (Cf. also [47] -a more rudimentary theory.) Moffat assumes (using here a notation in which pure-imaginary quantities are explicitly displayed as such):

$$
\begin{equation*}
\delta_{\mu \nu}=\delta_{\mu \nu}^{(1)}+i \delta_{\mu \nu}^{(2)} \tag{I.II7}
\end{equation*}
$$

with both tensors on the RHS real and symmetric. A symmetric complex affine connection $T^{\lambda}{ }_{\mu \nu}$ is introduced w.r.t. which

$$
\begin{equation*}
g_{\mu \nu ; \sigma}=0 \tag{1.118}
\end{equation*}
$$

Therefore:

$$
\begin{align*}
\Gamma^{\lambda}{ }_{\mu \nu} & \equiv T_{(1)}^{\lambda} \cdot{ }_{\mu \nu}+i T_{(2,} \lambda_{\mu \nu} \\
& =\frac{1}{2} g^{\lambda \alpha}\left(g_{\alpha \mu, \nu}+g_{\alpha \nu, \mu}-g_{\mu \nu, \alpha}\right) \tag{I.II9}
\end{align*}
$$

Under the (real) transformation group being considered, $T_{(1)}{ }^{\lambda} \cdot \mu \nu$ transforms like a Riemannian connection, $T_{(2)} \lambda_{\mu \nu}$ like a tensor. No explicit resolution of (I.II9) into real and imaginary parts is obtained in the general case, though in the linear approximation (see below) and for particular solutions ${ }^{[46]}$ it is possible.

The curvature tensor in formed in the standard way:

$$
\begin{align*}
R^{\lambda}{ }_{\mu \nu \sigma} & \equiv R_{(1)}^{\lambda} \cdot \mu_{\nu \sigma}+i R_{(2) \cdot}^{\lambda} \cdot \mu \nu \sigma \\
& =T_{\cdot \mu \nu, \sigma}^{\lambda}-T_{\cdot \mu \sigma, \nu}^{\lambda}-T_{\cdot \alpha \nu}^{\lambda} T_{\cdot \mu \sigma}^{\alpha}+T_{\cdot \alpha \sigma}^{\lambda} T_{\cdot \mu \nu}^{\alpha} \tag{1.120}
\end{align*}
$$

There is the decomposition:

$$
\begin{align*}
& R_{(1)}{ }^{\lambda} \cdot \mu \nu \sigma=\left[T_{(1)} \lambda_{\mu \nu} \cdot \sigma-T_{(1)}^{\lambda} \cdot \alpha \nu T_{(1)}^{\alpha} \cdot \mu \sigma+T_{(2)} \lambda_{\alpha \nu} T_{(2)} \cdot \alpha \mu \sigma\right]-[\nu \leftrightarrow \sigma] \tag{1.121}\\
& R_{(2)}^{\lambda} \cdot \mu \nu \sigma=\left[T_{(2)} \cdot{ }_{\mu \nu \nu}-T_{(1)} \cdot{ }_{\mu \nu} T_{(2)}{ }_{\mu \mu \sigma}-T_{(2)} \lambda_{\cdot \alpha \nu} T_{(1)}^{\alpha} \cdot \mu \sigma\right]-[\nu \leftrightarrow \sigma]
\end{align*}
$$

The usual Bianchi identities hold:

$$
\begin{equation*}
R^{\lambda} \cdot \mu\{\nu \sigma ; \rho\}=0 \tag{1.122}
\end{equation*}
$$

Define

$$
\begin{equation*}
R_{\mu \nu} \equiv R_{\mu_{\nu \alpha}^{\alpha}} ; \quad R \equiv R_{\cdot \alpha}^{\alpha} \tag{1.123}
\end{equation*}
$$

Then there are the four complex identities

$$
\begin{equation*}
\left(R_{\mu}^{\alpha}-\frac{1}{2} \delta_{\mu}^{\alpha} R\right)_{; \alpha}=0 . \tag{1.124}
\end{equation*}
$$

Field equations are derived from a variational principle. Since the most natural choice, $R \sqrt{-g}$, is not suitable, being complex, he chooses, as Lagrangian density for the 'free' gravitational + electromagnetic fields, the real part of $R \sqrt{-8}$; if a matter term is also added to the Lagrangian, the field equations become:

$$
\begin{equation*}
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=-8 \pi\left(G T_{\mu \nu}^{(1)}+i T_{\mu \nu}^{(2)}\right) \tag{1.125}
\end{equation*}
$$

where $T_{\mu \nu}^{(1)}$ is postulated to be the usual matter energy-momentum tensor, and $T_{\mu \nu}^{(2)}$ "represents the charge-current distribution" ([44] p.478).

In an attempt to tie these field equations to physics,
Mofiat looks at the weak field approximation:

$$
\begin{equation*}
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}^{(1)}+i h_{\mu \nu}^{(2)} \tag{1.126}
\end{equation*}
$$

where $\eta_{\mu r}$ are the Galilean values, and squares and crossproducts of the h's are to be neglected. Write

$$
\begin{equation*}
h_{\mu \nu}^{(2)} \equiv h_{\mu \nu}^{(2)}-\frac{1}{3} \eta_{\mu \nu} h_{\alpha}^{(2)}{ }^{(2)} \tag{1.127}
\end{equation*}
$$

and impose the 4 ('harmonic') conditions:

$$
\begin{equation*}
h^{(2)^{\prime} \nu} \mu^{\prime}, \nu=0 \tag{1.128}
\end{equation*}
$$

The imaginary part of (1.I25) then says:

$$
\begin{equation*}
\left.\square h_{\mu \nu}^{(2)}\right)^{\prime}=16 \pi T_{\mu \nu}^{(2)} \tag{1.129}
\end{equation*}
$$

As for the RHS, he postulates that for a point-charge ε with 4-velocity $\frac{d \xi \xi^{\mu}}{d s}$ it shall have the form:

$$
\begin{equation*}
\mathbb{T}^{(2) \mu \nu}=\varepsilon \delta\left(x^{1}-\xi^{\prime}\right) \delta\left(x^{2}-\xi^{2}\right) \delta\left(x^{2}-\xi^{3}\right) \frac{d \xi^{\mu}}{d s} \frac{d \xi^{\nu}}{d s} \tag{1.130}
\end{equation*}
$$

By considering the case of small spatial velocities, i.e:

$$
\begin{equation*}
\frac{d \xi^{\circ}}{d s} \sim 1 ; \quad \frac{d \xi^{k}}{d s} \ll 1 \quad(k=1,2,3) \tag{1.131}
\end{equation*}
$$

Motfat identifies $h_{o \mu}^{(2)}{ }^{\prime}$ 'with the electromagnetic 4-potential and $-4 T_{o \mu}^{(2)}$ with the current vector; four of (I.I29) are then formally the same as the equations of Maxwell's theory in the Lorentz gauge: $\quad \square A_{\mu}=-4 \pi j \mu$.
(However, an anti-symmetric tensor $\mathbb{F}_{\mu \nu}$, which, aiter ail, is the raison d'être of (1.132) in the Maxwell theory, does not appear naturally in the formalism, though of course it can be defined by $\left.\left(h_{o \nu, \mu}^{(2)^{\prime}}-h_{o \mu, \nu}^{\left(2{ }^{\prime}\right.}\right).\right)$

Returning now to the full (non-linear) field equations, set

$$
\begin{equation*}
\dot{R}_{\mu \nu}=0 \tag{I.I33}
\end{equation*}
$$

almost everywhere - i.e. with the exception of discrete singularities. Then Mofiat has shown ${ }^{[44][45]}$ using the version of the EIH approximation method which is appropriate for slowly varying fields, and therefore for slow motion of the singularities, that a Lorentz force term does occur in the equations of motion. He claims ([44] p.487) to have also shown that
the restriction to slow motion can be removed; if so, this would obviously be a very important achievenent of the theory; but no published proof has appeared. It seems to the present author much more probable, in view of the 'quasi-Riemannian' structure of the whole theory, that this result is essentially restricted to low speeds; and that for high speeds, instead of remaining a Iinear function as in the Lorentz equation, the force would be seen to depend quadratically on the 4-velocity as in the geodesic equation of general relativity, for as is well known and readily verified the latter also reduces to an expression of precisely the Iorentz-force type to first order in the 3-velocity (for weak, slowly-varying fielas). But this" is only an 'intuitive' remark; the question could presumably be decided definitively by an appropriately refined EIHtype calculation. There is, however, a further dilficulty in that, as pointed out by Kerr, ${ }^{[46]}$ the LHS's of (I.I25) and (I.I33) satisfy the 4 complex and therefore 8 real identities (1.124), so that 4 more field equations are needed if the $g_{\mu \nu}$ are to be properly determined (i.e. up to only 4 arbitrary functions). It is not easy to see what these additional equations should be. The two theories described so far "are exposed to the objection that they are in disagreement with the princiole that only imeducible quantities should be used in field theories.. Therefore, I believe that cogent mathematical reasons, (for instance invariance postulates of a wider group of transformations) have to be given why a decomposition of the reducible
quantities used in the theory (for instance $R_{i k}$, gik and Tlik does not occur. This has not been done at all in the earlier literature. Einstein, however, was well aware of this objection, which he weighed carefully in his later work." ([3] p.226). This remark by Pauli expresses succintly a feeling one has about the desirability of constructing theories out of 'homogeneous' or in some sense 'unified' objects; but perhaps, like other group-theoretical arguments of an a prioristic nature, should not be wielded too indiscriminately (after all, $R_{i}{ }^{k}$ is a reducible object under the Iull $_{7}$ coordinate transformation group - R transforms as a scalar - but no-one objects to its playing a central role in gravitation theory). However, this is not to belittle Pauli's observation, but to emphasize that such points must be "weighed carefully".

One could also make the point that the 'metric tensor' is in all these theories singularly divorced from its origin in the notion of a scalar product - indeed, the refusal (in the Einstein theory) to use it for inter-converting co- and contravariant tensor components is rather like ending up with the grin and no Cheshire cat.

We turn now to a second group of theories related to the present work: those altering the datum (l) of general relativity (see p.32), by enlarging the transformation group and the dimensionality of the manifold. Xn his discussion of the UFT problem in [49] (pp.88-90) Einstein remarks: "Die gesuchte Struktur muss eine Verallgemeinerung des symmetrischen Tensors sein. Die Gruppe darf nicht enger sein als die der kontinuier-
-lichen Koordinaten-Transformationen. Wenn man nun eine reichere Struktur einführt, so wird die Gruppe die Gleichungen nicht mehr so stark determinieren wie im Falle des symmetrischen Tensors als Struktur. Deshalb wäre es am schönsten, wenn es gelänge, die Gruppe abermals zu erweitern in Analogie zu dem Schritte, der von der speziellen Relativität zur allgemeinen Relativität geführt hat. Im Besonderen habe ich versucht, die Gruppe der komplexen Koordinaten-Transformationen heranzuziehen. Alle derártigen Bemühungen waren erfolglos." He does not appear to have published these investigations.

The first reference to complex spaces in a physical context that I have found in the literature is by $N . N$.Ghosh, ${ }^{[48]}$ in which he applies his rather peculiar matrix treatment of the dynamics of rigid bodies to the case where they are extended in and move in a complex space, with complex velocities, angular momenta, and so on.

The next reference is 'nearer home' as far as field theory is concerned - is in fact closest in spirit to the present work. It is a very short account by A.Crumeyrolle ${ }^{[55]}$ of some aspects of his doctorate work (1961-3) on the geometry of a kind of manifold which is precisely analogous to a complex analytic manifold (see Chapter 2), but defined instead over the number field generated by $\{1, \varepsilon\}$, where $\varepsilon^{2}=+1$. The following account of his results is based entirely on this summary article, as I have not obtained access to his dissertation. Introduce the coordinates, and their conjugates:

$$
\left.\begin{array}{l}
z^{\mu}=\frac{1}{2^{1 / 2}}\left(x^{\mu}+\varepsilon x \mu^{\mu^{*}}\right) \tag{1.134}\\
z \mu^{\mu}=\frac{1}{2^{1 / 2}}\left(x x^{\mu}-\varepsilon \mu^{\mu}\right)
\end{array}\right\}
$$

Then $V_{2 n}$ is the manifold parametrized by the coordinates ($z \mu$), with transformations of the form:

$$
\begin{equation*}
z \mu^{\mu^{\prime}}=f^{\mu}\left(z^{\alpha}\right) \tag{1.135}
\end{equation*}
$$

He defines "la sous-variété diagonale", W_{n}, by:

$$
\begin{equation*}
z^{\mu}=z \gamma^{*} \tag{1.136}
\end{equation*}
$$

(cf. the 'real limit space' of Chapter 4). Let there be a non-symmetric affine connection in $V_{2 n}$, with components $L_{j k}^{i}$ in the coordinate system ($x^{\alpha}, x^{\alpha^{*}}$), "le repère associé". (CP. the $\Gamma_{a \mu \nu}^{\lambda t c}$ of Chapter 3.) He puts:

$$
\begin{equation*}
I_{\cdot}^{i} \cdot j k=I \cdot i^{i^{*}} k_{j}^{*} \tag{1.137}
\end{equation*}
$$

where 'starring' a Latin index means add or subtract n, as appropriate. For the components when restricted to W_{n} write:

$$
\left.\begin{array}{l}
I^{\alpha} \cdot \beta \gamma \equiv \mathcal{L}^{\alpha} \cdot \beta \gamma \tag{1.138}\\
I^{\alpha} \alpha^{*} \cdot \beta \gamma \equiv \Lambda^{\alpha} \cdot \beta \gamma
\end{array}\right\}
$$

Then the former transforms as a connection, the latter as a tensor. $\quad V_{2 n}$ has a metric tensor $g_{i j}$, which is symmetric but otherwise arbitrary. He now supposes that a (real) non-symmetric tensor $G_{\alpha \beta}$ is given on the subspace W_{n}, and requires that when restricted to $W_{n} g_{i j}$ shall have the components, still in repères associés:

$$
\left.\begin{array}{ll}
g_{\alpha \beta}=0 & g_{\alpha \beta^{*}}=G_{\alpha \beta} \tag{1.139}\\
g_{\alpha^{*} \beta}=G_{\beta_{\alpha}} & g_{\alpha^{*} \beta^{*}}=0
\end{array}\right\}
$$

Requiring the covariant derivative of $g_{i j}$ w.r.t. $I_{. j k}^{i}$ to vanish "pour tout chemin de $W_{n} "$ ($p .2123$), he obtains:

$$
\left.\begin{array}{rl}
\frac{\partial G_{\mu \nu}}{\partial x^{\sigma}}-G_{\alpha \nu} \mathcal{L}_{\cdot \mu \sigma}^{\alpha}-G_{\mu \alpha} \mathcal{L}^{\alpha} \cdot \sigma \nu & =0 \tag{1.140}\\
G_{\mu \alpha} \Lambda_{\cdot \nu \sigma}^{\alpha}+G_{\nu \alpha} \Lambda_{\cdot \mu \sigma}^{\alpha} & =0 \\
G_{\alpha \mu} \Lambda_{\cdot \sigma \nu}^{\alpha}+G_{\alpha \nu} \Lambda_{\cdot \sigma \mu}^{\alpha} & =0
\end{array}\right\}
$$

"c'est-à-dire le système d'Einstein-Schrödinger et des équations nouvelles susceptibles de décrire un champ.inconnu" (p.2123). (There is no reference, however, to the curvature-tensor equations of the Einstein-Schrödinger theory.) He concludes by noting that in "repères adaptés", viz. $\left(z{ }^{\mu}, z^{\mu^{*}}\right)$, the components of the affine connection, $W_{\cdot j k}^{i}$ say, are:

$$
\begin{align*}
& W^{\alpha} \cdot \beta \gamma=2^{1 / 2}\left(L_{\cdot}^{\alpha} \cdot \beta \gamma+\varepsilon L^{\alpha^{*}} \cdot \beta \gamma\right) \tag{1.141}\\
& W^{\alpha} \cdot \beta^{*} \gamma^{*}=2^{1 / 2}\left(L^{\alpha} \cdot \beta \gamma+\varepsilon L_{V}^{\alpha^{*}} \cdot \beta_{V}\right)
\end{align*}
$$

(using the Einstein-Straus notation for symmetric and antisymmetric parts), so that the 'torsion vector' in $V_{2 n}$, namely $W_{i}^{i}{ }_{i j}$, vanishes; but that the Einstein-Schrödinger theory assignment, which would be $\mathcal{L}^{\alpha} \cdot \alpha \beta=0$, becomes in the present context $W^{\alpha} \cdot \alpha^{*} \beta^{*}=0$ (if $\Lambda_{\alpha}^{\alpha} \beta_{\gamma}=0$), a rather unnatural condition.

It remains to consider two contributions, which both appeared in J.Math.Phys. 7 early in 1966 , i.e. almost at the time of, but slightly after, the present author's investigation (which was begun in Dec. 1965, and completed in all essentials by Jan. 1966). The first is a set of three papers by A.Das. ${ }^{[50-52]}$ In (I), he looks at 'semi'-classical (i.e. un-second-quantized) field theory in flat complex space-time, coordinatized by z^{i+}, and $z^{i-}=\overline{z^{i+}}$, with:

$$
\begin{equation*}
d s^{2}=\eta_{i j} d z^{i+} d z^{j-} \tag{1.142}
\end{equation*}
$$

He does not consider the full group leaving $\eta_{i j}$ invariant, namely $U(4)$, but only the 7 -parameter subgroup $I_{4}^{\ddagger} x U_{1}$, where I_{4}^{\ddagger} represents the proper Lorentz group, U_{1} the phase group:

$$
\begin{equation*}
z^{k \pm} \rightarrow e^{ \pm i \theta} z^{k \pm} \tag{1.143}
\end{equation*}
$$

"We shall physically interpret $\left|z^{k \pm}\right|$ as what we usually measure for positional coordinates, and arg $z^{k \pm}$ are the electrical or internal coordinates." (p.46). He writes $2 z^{k \pm}=r^{k} e^{ \pm i \theta_{k}} \quad$ Consider the Iinear wave equation:

$$
\begin{equation*}
\left(\alpha^{k+} \frac{\partial}{\partial z^{k+}}+\alpha^{k-} \frac{\partial}{\partial z^{k}}-i m I\right) \psi=0 \tag{1.144}
\end{equation*}
$$

where

$$
\left.\begin{array}{c}
\alpha^{k+} \alpha^{l+}+\alpha^{l+} \alpha^{k+}=\alpha^{k-} \alpha^{l-}+\alpha^{l-} \alpha^{k-}=0 \tag{1.145}\\
\alpha^{k+} \alpha^{l-}+\alpha^{l-} \alpha^{k+}=\eta^{k l} I
\end{array}\right\}
$$

Das writes down what he claims is an irreducible representation of the α 's but, as will be seen in Chapter 6, it is even reducible under $U(4)$, so that under his restricted group $L_{4}^{\neq} \times U_{1}$ it is certainly not irreducible. (The present $\$ 6.3$ may well have been suggested by Das's work, and is an (in this respect) improved treatment of the 'spinor' equation in complex space-time.) He inserts an electromagnetic interaction into (1.144) via a prescription which resembles the usual one $\left(\partial_{\mu} \rightarrow \partial_{\mu}+i \varepsilon A_{\mu}\right)$, though it is not entirely free from arbitrariness (he should, strictly, have complex quantities $A_{k \pm}$ and, by choosing a particular form of θ_{k}-dependence for ψ, arrives at equations containing "terms which reveal slight anisotropy in the physical space spanned by the four $r^{k \prime} s^{\prime \prime}$. Also given are expressions for energy-momentum tensors and conservation laws appropriate to the wave equation (1.144),
and to the Klein-Gordon equation for a complex scalar field. His paper (II) falls outside the scope of the present work. In (III), he restricts attention to the subspace (with real dimension 5) defined by the constraints:
so that

$$
\begin{align*}
\arg \quad z^{k+} & =\theta \quad(k=1, \because 4), \tag{1.146}\\
z^{k t} & =r^{k} e^{ \pm i \theta} \tag{1.147}
\end{align*}
$$

On this subspace, the line-element (1.142) becomes:

$$
\begin{equation*}
d s^{2}=\eta_{i k}\left(d r^{i}+i r^{i} d \theta\right)\left(d r^{i}-i r^{i} d \theta\right) \tag{1.148}
\end{equation*}
$$

He now generalizes the transtormation group, $I_{4}^{\ddagger} \times U_{1}$, of (I) to allow position-dependent phase transformations:

$$
\left.\begin{array}{rl}
r^{i^{\prime}} & =a^{i}{ }_{j} r^{j} \tag{I.149i}\\
\theta^{\prime} & =\theta+\lambda\left(r^{i}\right)
\end{array}\right\}
$$

The line-element (1.148) is not form-invariant under this group, but becomes so if $(d \theta)$ is replaced by $\left(\alpha \theta+A_{k} d r^{k}\right)$:

$$
\begin{equation*}
d s^{2}=\eta_{i j} d r^{i} d r^{j}+r_{\ell} r^{\ell}\left(d \theta+A_{k} d r^{k}\right)^{2}, \tag{1.150}
\end{equation*}
$$

with the new quantities $A_{k}\left(r^{i}\right)$ being required to transform as a covariant vector under (1.149i), and as

$$
\begin{equation*}
A_{k}^{\prime}=A_{k}-\frac{\partial \lambda}{\partial r^{k}} \tag{1.151}
\end{equation*}
$$

under (l.l49ii). "For the equation of motion of a particle in complex space-time we shall postulate the geodesic principle" (p.62). (Actually, the motion would have to be in the 5dimensional subspace just defined.) The Euler-Lagrange equation resulting from variation w.r.t. θ has the first integral:

$$
\begin{equation*}
m \eta_{i j} r^{i} r^{j}\left(\dot{\theta}+A_{k} \dot{r}^{k}\right)=\text { constant } \equiv q \tag{1.152}
\end{equation*}
$$

The other four equations are:

$$
\begin{equation*}
\ddot{r}_{i}=\left(\frac{q}{m}\right) F_{i j} r^{i}+\left(\frac{q}{m}\right)^{2} \frac{r_{i}}{\left(r_{k} r^{k}\right)^{2}} \tag{1.153}
\end{equation*}
$$

where $\quad F_{i j} \equiv \frac{\partial A_{j}}{\partial r^{i}}-\frac{\partial A_{i}}{\partial r^{j}}$. He interprets q as the charge of the particle, which according to (1.152) "corresponds to the sum of angular-momenta in complex planes" (p.62). (He does not remark that the RHS of (1.153) is singular everywhere on the light-cone through the coordinate origin.)

He next allows the a_{i}^{i} in (1.149i) also to depend on the r^{i}. By defining covariant derivatives in a certain way he arrives at a contracted curvature tensor of the form:

$$
\begin{equation*}
P_{i k} \equiv P^{m} \cdot i k m=R_{i k}+i \varepsilon F_{i k} \tag{1.154}
\end{equation*}
$$

Where $R_{i k}$ is the Riemannian Ricci tensor formed from the $g_{i j}\left(x^{k}\right)$. He says (p.63): "The electro-gravitational field equations should be derived from any one or linear combinations of the square Lagrangians

$$
\begin{align*}
& I^{\prime}=P^{i k} \overline{P_{i k}}=R_{i k} R^{i k}+\varepsilon^{2} F_{i k} F^{i k} \\
& I^{\prime \prime}=P^{i j k l} \overline{P_{i j k l}}=R^{i j k l} R_{i j k l}+4 \varepsilon^{2} F^{k l} F_{k l} \cdot \prime \tag{1.155}
\end{align*}
$$

He points out that either of these lead to field equations which have as a particular case the Schwarzschild solution, but he shows that for $F_{i k} \not \equiv 0$ they do not contain the Nördstrom solution. (These Lagrangians will figure in Chapter 5.)

Das remarks, in conclusion, that it would be possible to consider the full transformation group:

$$
\begin{equation*}
z^{k^{\prime}}=z^{k^{\prime}}(z, \bar{z}) \quad ; \quad \text { conj. } \tag{1.156}
\end{equation*}
$$

and that the corresponding metric tensor would have 36 components "and may consist of many other fields besides electrogravitation" (p.63). (The theory we shall present stands in fact half way to this most general geometry and has a metric

lensor with 16 (real) degrees of freedom.)

The remaining paper is by E.H.Brown, ${ }^{[54]}$ and begins with a deductive 'proof' that space-time must be complex. Ignoring this, and putting aside the axiomatic and mathematical paraphernalia (which can be employed to make complex ideas simple, or the other way round; this paper seems to be an example of the latter), his theory runs as follows. Consider the lineelement expression (using a notation which is essentially that explained in Chapter 2):

$$
\begin{align*}
2 d s^{2} & =g_{i j}\left(z^{k}\right) d z^{i} d z^{j} \tag{1.157}\\
& =\left(g_{\overline{\alpha \beta}} d z^{\alpha} d z^{\beta}+g_{\alpha \bar{\beta}} d z^{\alpha} d z^{\bar{\beta}}\right)+\left(g_{\alpha \beta} d z^{\alpha} d z^{\beta}+g_{\bar{\alpha} \bar{\beta}} d z^{\bar{\alpha}} d z^{\bar{\beta}}\right)
\end{align*}
$$

He points out that the two bracketed terms on the RHS are each separately real, if $g_{i j}$ is self-adjoint (see Chapter 2 for this concept), and that "mathematical simplicity led Kähler to choose $g_{i j}=\left\{g_{\bar{\alpha} \beta}, g_{\alpha \bar{\beta}}\right\}$, with $g_{\alpha \beta}=g_{\bar{\alpha} \bar{\beta}}=0$, as a metric tensor" (p .420). However, he then becomes guilty of "mathematical simplicity". Rightly saying that Kähler's assignment implies (after a few extra assumptions) the existence of a real scalar function Φ such that

$$
\begin{equation*}
g_{\alpha \bar{\beta}}=\Phi_{, \alpha, \bar{\beta}} \tag{1.158}
\end{equation*}
$$

he then 'deduces' that this implies $g_{\alpha \bar{\beta}} \equiv 0$, since he has previously 'shown' that all real scalars must be of the form

$$
\Phi=\phi\left(z^{\alpha}\right)+\overline{\phi\left(z^{\alpha}\right)} \cdot \text { Although his proot is invalid, it }
$$

is obviously permissible to choose to start from his lineelement: $\quad 2 d s^{2}=g_{\alpha \beta} d z^{\alpha} d z^{\beta}+g_{\alpha \bar{\beta}} d z^{\bar{\alpha}} d z \bar{\beta}$
Where the $\delta_{\alpha \beta}$ are assumed to be analytic functions of the z^{α}
alone (i.e. independent of the $z^{\bar{\alpha}}$), and vice versa for $g_{\bar{\alpha} \bar{\beta}}$. There is the block decomposition for the affine connection $\Gamma_{\cdot j k}^{i}=\left\{\Gamma_{\cdot \mu \nu}^{\lambda}\left(z^{\alpha}\right), \Gamma_{\cdot \mu_{\bar{\nu}}}^{\bar{j}}\left(z^{\bar{\alpha}}\right)\right\}$, and similarly for the curvature tensors. In this respect, and in the (complex) symmetry of the metric tensor, the theory has parallels with Moffat's. Brown's Axiom 5 says: "If the unit vector $w^{i}\left(z^{k}\right)=\frac{d z^{i}}{d s}=\left\{w^{\alpha}\left(z^{\alpha}\right), w^{\alpha}\left(z^{\alpha}\right)\right\}$ is the complex fourvelocity, the equations of a geodesic (the equations of motion of a particle) are then

$$
\begin{equation*}
\frac{d w^{i}}{d s}+T_{j j k}^{i} w^{j} w^{k}=0 \tag{1.160}
\end{equation*}
$$

Write

$$
\left.\begin{array}{l}
\mathrm{w}^{\mu} \equiv u^{\mu}+i v^{\mu} \tag{1.161}\\
\Gamma^{\lambda} \cdot \mu \nu \equiv \Gamma_{(1)}^{\lambda} \cdot \mu \nu+i \Gamma_{(2)}^{\lambda} \cdot \mu \nu
\end{array}\right\}
$$

Then (1.160) splits into:

$$
\left.\begin{array}{l}
\frac{d u^{\alpha}}{d s}+T_{(1)}^{\alpha} \cdot \beta \gamma\left(u u^{\beta} u^{\gamma}-v^{\beta} v^{\gamma}\right)-2 T_{(2)}^{\alpha} \cdot \beta \gamma u^{\beta} v^{\gamma}=0 \tag{1.162i}\\
\frac{d v^{\alpha}}{d s}+T_{(2)}{ }^{\alpha} \cdot{ }^{\alpha}\left(u u^{\beta} u^{\gamma}-v^{\beta} v^{\gamma}\right)+2 T_{(1)}^{\alpha} \cdot \beta \gamma u^{\beta} v^{\gamma}=0
\end{array}\right\}
$$

Now, w^{i} is a unit vector: $w_{i} w^{i}=1=u_{\alpha} u^{\alpha}-v_{\alpha} v^{\alpha}$. Negiect powers of v^{μ}. Then (1.162i) is like the Lorentz force equation and "suggests that $\frac{e}{m c^{3}} F^{\alpha} \cdot \beta$ is a classical approximation to $2 \Gamma_{(2) \cdot \beta \gamma \gamma^{\gamma}}$ and that v^{α} (or, possibly, only its time-like component) is related to charge" (p.421). Again echoes of Molifat. (Of course, he has assumed in Axiom 5 that 'geodesic equation' and 'equation of motion of a particle' are synonymous, which begs the most difficult question of all in these UFT's.) I am not able to summarize with any confidence of having understood it the rest of his paper.

CHAPTER 2

Kähler Spaces. I

This chapter is an account of those aspects of the existing theory of what are known as 'Kähler' manifolds which are relevant to the theory presented here. The latter was developed independently of the Kähler space literature but, where there is overlap, is identical with it in content though there are differences in method of derivation, notation and motivation. Parallels and divergences will be noted in the sequel, as occasion arises. The exposition is based primarily on [67], [68] and [69], which for ease of reference will in this chapter be called respectively S, YB, Y.

One first introduces the notion of an 'analytic manitold'. Consider a set of points parametrizable, in a neighbourhood, by continuous values of $2 n$ real coordinates (x^{i}). Split the $2 n$ indices into two groups of n, by writing

$$
i \leftrightarrow \begin{cases}\mu & 1 \leqslant i \leqslant n \tag{2.1}\\ \bar{\mu}=i-n & n+1 \leqslant i \leqslant 2 n\end{cases}
$$

Define

$$
\begin{equation*}
z^{\mu} \equiv x^{\mu}+i x \bar{Y}^{\bar{\mu}} \tag{2.2}
\end{equation*}
$$

Given a set of n independent (non-zero functional determinant) analytic (therefore infinitely differentiable) functions f^{μ} of the $\left(z{ }^{\mu}\right)$, we can define an analytic coordinate transformation by:

$$
\left.\begin{array}{l}
z \mu^{\prime}=f^{\mu}\left(z^{\alpha}\right) \tag{2.3}\\
\operatorname{det}\left\|\frac{\partial z \mu^{\prime}}{\partial z^{\nu}}\right\| \neq 0
\end{array}\right\}
$$

Then the original set of points together with the group of all
such analytic transformations is called (a neighbourhood of) an n-dimensional complex analytic manifold (YB p.Il8). Call it C_{n}. (It will prove a convenient notation to denote, throughout this work, complex spaces by curly capital letters, real ones by ordinary capitals.)

Introduce a new set of complex coordinates by:

$$
\begin{equation*}
z^{\bar{\mu}}=\overline{z^{\mu}} \tag{2.4}
\end{equation*}
$$

where the bar on the RHS signifies complex conjugate. Then, as $\left(z^{\mu}\right)$ ranges over the permissible coordinate systems for $C_{n},(z \bar{\mu})$ will define a new complex analytic manilold, \bar{C}_{n} say, called the conjugate manifold of $C_{n}(Y$ p.50).

Tensor analysis is constructed in the product manifold $\bar{C}_{n} \times \overline{C_{n}}$ (Y pp.51-62). (Schouten calls this the "auxiliary $X_{2 n}^{\prime \prime}$ of the original $X_{n}(S$ p.390).) Tensors are defined on this manifold, as objects transforming appropriately under the coordinate transformation group:

$$
\left.\begin{array}{l}
z \mu^{\mu^{\prime}}=\Psi^{\mu}\left(z^{\alpha}\right) \tag{2.5}\\
z \bar{\mu}^{\prime}=\bar{\Psi}^{\mu}\left(z^{\bar{\alpha}}\right)
\end{array}\right\}
$$

Where \bar{I}^{μ} is the complex conjugate function of f^{μ}, Viz. the function of the n complex variables ξ^{α} which is such that $\bar{\Upsilon}^{\mu}\left(\xi^{\alpha}\right) \equiv \overline{\Phi^{\mu}\left(\overline{\xi^{\alpha}}\right)}$.

A contravariant vector field on $\bar{C}_{n} \times \bar{C}_{n}$ is a quantity $\left(v \mu^{\mu}, v \bar{F}\right)$ transforming under (2.5) like:

$$
\left.\begin{array}{l}
V \mu^{\prime}=\frac{\partial z \mu^{\prime}}{\partial z^{\alpha}} V^{\alpha} \tag{2.6}\\
V \bar{\mu}^{\mu^{\prime}}=\frac{\partial z \bar{\mu}^{\prime}}{\partial z^{\alpha}} V^{\alpha}
\end{array}\right\}
$$

Extension of the definition to covariant and higher-rank tensors
is made in the usual way.
The vector with components $\left(\overline{v \bar{Y}}, \overline{V^{\mu}}\right)$ is called the conjugate vector of ($\left.\nabla^{\mu}, ~ v \bar{\mu}\right)$. A vector is sely-conjugate (or self-adjoint, or real) if it is equal to its conjugate.

The quantity with components (iv $\mu,-i v \bar{\mu})$ is also a
contravariant vector. (This fact is worthy of remark: it pin-points the distinguishing feature of complex tensor analysis relative to tensor analysis in a real manifold of twice the dimension.) Going back via (2.1) to the Latin-index notation, the above vector is derivable from ($v \mu, v^{\mu}$) by multiplication by the matrix (YB pp.154-5):

$$
\left(h_{j}^{i}\right) \equiv\left(\begin{array}{cc}
i \delta /_{\nu}^{\mu} & 0 \tag{2.7}\\
0 & -i \delta \delta_{\bar{\nu}}^{\bar{\nu}}
\end{array}\right)
$$

which satisfies

$$
\begin{equation*}
h_{i}^{i} h_{i}^{i}=-\delta_{k}^{i} \tag{2.8}
\end{equation*}
$$

(Eqn. (2.8) expresses the defining property of what are known as 'almost complex spaces' (Y passim).)

Consider the submanifold of $C_{n} \times \bar{C}_{n}$ defined by

$$
\begin{equation*}
z^{\bar{\mu}}=\overline{z^{\mu}} \tag{2.9}
\end{equation*}
$$

When restricted to this subspace, a vector field (v^{μ}, v^{μ}) is only a function of a single set of n complex coordinates, and is said to be a vector field over e_{n}; its transtormation law (ci. (2.6)) becomes:

$$
\left.\begin{array}{l}
v^{\mu^{\prime}}=\frac{\partial z \mu^{\prime}}{\partial z^{\alpha}} v^{\alpha} \tag{2.10}\\
V \bar{\mu}^{\prime}=\overline{\left(\frac{\partial z^{\prime} \mu^{\prime}}{\partial z^{\alpha}}\right)} v^{\alpha}
\end{array}\right\}
$$

Similarly for other tensors.
Introducing $2 n$ new complex variables by (Y p.53):

$$
\left.\begin{array}{l}
z^{\mu}=\xi \mu+i \xi \bar{\mu} \tag{2.21i}\\
z^{\bar{\mu}}=\xi \xi^{\mu}-i \xi \bar{\mu}
\end{array}\right\}
$$

with inverse:

$$
\begin{align*}
& \xi^{\mu}=\frac{1}{2}\left(z^{\mu}+z^{\bar{\mu}}\right) \tag{2.11ii}\\
& \xi^{\bar{\mu}}=\frac{1}{2 i}\left(z^{\mu}-z^{\bar{\mu}}\right)
\end{align*}
$$

the restriction (2.9) then says: ξ^{μ} and $\xi^{\bar{\mu}}$ to be real. Yano calls $\left(\xi^{\mu}, \xi \bar{\Gamma}\right)$ a 'real coordinate system'. This is rather misleading, as (2.11) is not an allowable (ie. type (2.5)) coordinate transformation (cr. S p.390). However, it is often necessary to make the transition (2.11), so, to avoid a logical hiatus, it is perhaps best to supplement Yano's exposition by explicitly defining the behaviour of (say) a contravariant vector under (2.11) by (cI. Y p.53):

$$
\left.\begin{array}{l}
v \mu^{\prime}=\frac{1}{2}\left(v^{\mu}+v \overline{\mu^{\prime}}\right) \tag{2.12}\\
v \bar{\mu}^{\prime}=\frac{1}{2 i}\left(v^{\mu}-v \bar{\mu}\right)
\end{array}\right\}
$$

where ($\mathrm{v}^{\mu^{\prime}}, \mathrm{VF}^{\prime \prime}$) are the components of the vector in the 'real' coordinate system. (2.12) can equally be written:
where $\quad\left(T^{i^{\prime}} i\right) \equiv \frac{1}{2}\left(\begin{array}{cc}I_{(m)} & I_{(m)} \\ -i I_{(m)} & i I_{(N)}\end{array}\right)$
($I_{(n)}$ being the unit matrix). (Cf. [64] p.464.)
Introduce a metric tensor $g_{i j}$ satisfying the conditions:

$$
\begin{align*}
& g_{i i}=g_{i j} \tag{2.14i}\\
& g_{\mu v}=g_{\overline{\mu v}}=0 \tag{2.14ii}\\
& g_{\mu \bar{\nu}}=\overline{g_{\bar{\mu} \nu}} \tag{2.14iii}
\end{align*}
$$

The second says that it is a so-called 'hybrid' quantity, the third that it is self-conjugate, the first and third together imply

$$
\begin{equation*}
g_{\mu \bar{v}}=\overline{g_{\nu \overline{\bar{x}}}} \tag{2.15}
\end{equation*}
$$

i.e. that $\left(g_{\mu \bar{\nu}}\right)$ is a Hermitian matrix. (2.14) characterize what Yano calls a 'Hermite space', Schouten an \tilde{R}_{n}. The
tensor is assumed non-singular, at least in some neighbourhood, so that it can be used to raise and lower indices. For example

$$
\begin{equation*}
h_{i j} \equiv g_{i m} h_{i}^{m} \tag{2.16i}
\end{equation*}
$$

has matrix $(c f .(2.7)): \quad\left(h_{i j}\right)=\left(\begin{array}{cc}0 & -i g_{\mu \bar{\nu}} \\ i g_{\mu \nu} & 0\end{array}\right)$.
Covariant derivatives in $\bar{C}_{n} \times \bar{\zeta}_{n}$ are constructed by means of Christofiel symbols formed from the gif according to the Riemannian prescription. Because oi the restricted form (2.14) of the metric, one has:

$$
\left.\begin{array}{l}
\Gamma_{\cdot \mu \nu}^{\lambda}=\frac{1}{2} g^{\lambda \bar{\alpha}}\left(g_{\bar{\alpha} \mu \nu}+g_{\bar{\alpha} \nu, \mu}\right) \tag{2.17}\\
\Gamma_{\cdot \mu_{\bar{\nu}}}=T^{\lambda} \cdot \bar{\nu} \mu=\frac{1}{2} g^{\lambda \bar{\alpha}}\left(g_{\mu \bar{\alpha}, \bar{\nu}}-g_{\mu \bar{\nu}, \bar{\alpha}}\right) \\
\Gamma^{\lambda} \cdot \overline{\mu \nu}=0
\end{array}\right\}
$$

and three similar equations formed by replacing unbarred by barred indices and vice versa, an operation it is customary to abbreviate conj": The T^{i}.jk transform under (2.5) Iike a Riemannian affine connection, viz:

$$
\begin{equation*}
T_{: j k}^{\prime i}=\frac{\partial z^{i^{\prime}}}{\partial z^{p}} \frac{\partial z^{q}}{\partial z^{\prime} i^{\prime}} \frac{\partial z^{r}}{\partial z^{k^{\prime}}} T^{p} q^{r}+\frac{\partial z^{\prime \prime}}{\partial z^{p}} \frac{\partial^{2} z^{p}}{\partial z^{\prime} \partial z^{k^{\prime}}} \tag{2.18}
\end{equation*}
$$

The special form of (2.5) means that

$$
\begin{equation*}
\frac{\partial^{2} z \mu}{\partial z^{\prime} \partial z \bar{\beta}^{\prime}}=0 \quad ; \quad \text { conj. } \tag{2.19}
\end{equation*}
$$

so that the second term on the RHS of (2.18) vanishes for connection components of the form $T_{\mu_{\nu}}^{\lambda}, \Gamma_{\mu_{\nu \nu}}^{\lambda}$; conj. The specification: $\quad \Gamma^{\lambda} \cdot \mu_{\bar{\nu}}=0 ;$ conj.
is therefore invariant under the group of allowed coordinate transformations. A Hermite space equipped with a connection satisfying (2.17) and (2.20) is a "Kähler space', and will be denoted by \mathcal{K}_{n}. (In Schouten's terminology it is a \widetilde{V}_{n} (S p.397).) This geometry was first explicitly isolated in [66],
although earlier work by Schouten and van Dantzif ${ }^{[63]-[65]}$ had dealt with closely related (in certain features more general) geometries.

Denote covariant derivatives w.r.t. the $\Gamma_{\cdot i k}^{i}$ by a semicolon. Then it is a simple matter to show (Y p.65) that the condition (2.20) is equivalent to:

$$
\begin{equation*}
h_{j ; k}^{i}=0 \tag{2.21}
\end{equation*}
$$

(2.17) implies that in a Kähler space:

$$
\begin{equation*}
g_{\mu \bar{\nu}, \bar{\sigma}}=\delta_{\mu \bar{\sigma}, \bar{\nu}} ; \text { conj. } \tag{2.22}
\end{equation*}
$$

which in turn implies (S pp.397-8) the existence of a scalar function $\phi\left(z^{\alpha}, z^{\bar{\alpha}}\right)$ such that

$$
\begin{equation*}
g_{\mu \bar{\nu}}=\phi_{, \mu, \bar{\nu}} \tag{2.23}
\end{equation*}
$$

Since in a \mathcal{K}_{n} the only non-vanishing components of $T_{i j}^{i j}$ are those of the form $\Gamma^{\lambda} \mu_{\nu \nu}$, conj., the curvature tensor R^{i}.ike formed from the T^{i} jj by the Riemannian formula has as its only non-vanishing components:

$$
\left.\begin{array}{rl}
R^{\lambda}{ }_{\mu \nu \bar{\sigma}} & =-R_{\mu \nu \bar{\sigma} \nu} \tag{2.24i}\\
& =\left(T^{\lambda}!_{\mu \nu}\right), \bar{\sigma}
\end{array}\right\} \quad ; \quad \text { conj }
$$

It satisfies the relations, to be expected from its genesis:

$$
\left.\begin{array}{l}
R_{\bar{\lambda} \mu \nu \bar{\sigma}}=-R_{\mu \bar{\lambda} \nu \bar{\sigma}} \tag{2.25i}\\
R_{\bar{\lambda} \mu \nu \bar{\sigma}}=R_{\nu \bar{\sigma} \bar{\lambda} \mu}
\end{array}\right\} \quad ; \quad \text { conj }
$$

It is noteworthy that in a K_{n} the cyclic identities $\left(R_{i\{j k \ell\}} \equiv 0\right)$ give no more information than the already-known (2.24i). Because (2.24) are the only remaining components, the Bianchi identities reduce to (S p.399) :

$$
\begin{equation*}
R_{\bar{\lambda} \mu \bar{\sigma} ; \bar{\rho}}-R_{\overline{\bar{\mu} \mu \nu} \bar{\rho} ; \bar{\sigma}} \equiv 0 \quad ; \quad \text { conj. } \tag{2.26}
\end{equation*}
$$

although earlier work by Schouten and van Dantzif ${ }^{[63]-[65]}$ had dealt with closely related (in certain features more general) geometries.

Denote covariant derivatives w.r.t. the $\Gamma^{i} \cdot j k$ by a semicolon. Then it is a simple matter to show (Y p.65) that the condition (2.20) is equivalent to:

$$
\begin{equation*}
h_{\cdot j ; k}^{i}=0 . \tag{2.2I}
\end{equation*}
$$

(2.17) implies that in a Kähler space:

$$
\begin{equation*}
\delta_{\mu \bar{\nu}, \bar{\sigma}}=\delta_{\mu \bar{\sigma}, \bar{\nu}} ; \quad \operatorname{conj} . \tag{2.22}
\end{equation*}
$$

which in turn implies (S pp.397-8) the existence of a scalar function $\phi\left(z^{\alpha}, z^{\bar{\alpha}}\right)$ such that

$$
\begin{equation*}
\delta_{\mu \bar{\nu}}=\phi_{, \mu, \bar{\nu}} \tag{2.23}
\end{equation*}
$$

Since in a \mathcal{K}_{n} the only non-vanishing components of $T_{j k}^{i}$ are those of the form $\Gamma^{\lambda} \mu_{\nu \nu}$, conj., the curvature tensor R^{i}.jke formed from the T^{i} ik by the Riemannian formula has as its only non-vanishing components:

$$
\left.\begin{array}{rl}
R_{\mu \nu \bar{\sigma}}^{\lambda} & =-R^{\lambda} \mu_{\bar{\sigma} \nu} \tag{2.24i}\\
& =\left(T^{\lambda} \mu_{\nu \nu}\right), \bar{\sigma}
\end{array}\right\} \quad ; \quad \text { conj. }
$$

It satisfies the relations, to be expected from its genesis:

$$
\left.\begin{array}{l}
R_{\bar{\lambda} \mu \nu \bar{\sigma}}=-R_{\mu \bar{\lambda} \nu \bar{\sigma}} \tag{2.25i}\\
R_{\overline{\bar{\gamma} \nu \bar{\sigma} \bar{\sigma}}}=R_{\nu \bar{\sigma} \bar{\lambda} \mu}
\end{array}\right\} \quad ; \quad \text { conj. }
$$

It is noteworthy that in a \mathcal{K}_{n} the cyclic identities ($R_{i\{j k \ell\}} \equiv 0$) give no more information than the already-known (2.24i). Because (2.24) are the only remaining components, the Bianchi identities reduce to (S p.399):

$$
\begin{equation*}
R_{\bar{\lambda} \nu \bar{\sigma} ; \bar{\rho}}-R_{\overline{\bar{\mu} \mu \nu \bar{\rho} ; \bar{\sigma}}} \equiv 0 ; \text { conj. } \tag{2.26}
\end{equation*}
$$

This identity can also readily be derived directly from (2.24ii)

- whence it appears as a kind of tensorial version of the 3-vector identity: curl grad $\equiv 0$.

$$
\begin{align*}
\text { From (2.17), } & (2.24 i i) \text { and }(2.23) \text { one obtains } & (\text { YB p.125): } \\
R_{\lambda \bar{\mu} \nu \bar{\sigma}} & =-g_{\lambda \bar{\mu}, \nu, \bar{\sigma}}+g^{\bar{\alpha} \beta} g_{\lambda \bar{\alpha}, \nu} g_{\bar{\mu} \beta, \bar{\sigma}} & \text { (2.27i } \tag{2.27i}\\
= & -\phi_{, \lambda, \bar{\mu}, \nu, \bar{\sigma}}+g^{\bar{\alpha} \beta} \phi_{\bar{\alpha}, \lambda, \nu} \phi_{\beta, \bar{\mu}, \bar{\sigma}} & \text { (2.27i } \tag{2.27ii}
\end{align*}
$$

The latter demonstrates that, in addition to (2.24i) and (2.25), $R_{\lambda \bar{\mu} \nu \bar{\sigma}}$ possesses the symmetry property:

$$
\begin{equation*}
R_{\lambda \bar{\mu} \nu \bar{\sigma}}=R_{\nu \bar{\mu} \lambda \bar{\sigma}} \tag{2.28}
\end{equation*}
$$

The Rico tensor $R_{i j} \equiv R_{\text {imp }}^{m}$ (opposite sign to Taino) has:

$$
\left.\begin{array}{l}
R_{\mu \nu}=0 \tag{2.29}\\
R_{\mu \bar{\nu}}=R^{*} \cdot \mu \alpha \bar{\nu}
\end{array}\right\} \quad ; \quad \text { conj }
$$

Using (2.28) etc. one obtains:

$$
\begin{align*}
R_{\mu \bar{\nu}} & =-R^{\alpha} \cdot \mu \bar{\nu} \alpha \\
& =(\log \sqrt{g}), \mu, \bar{\nu} \tag{2.30}
\end{align*}
$$

where $\quad \delta \equiv \operatorname{det}\left\|s_{i j}\right\|=\left[\operatorname{det}\left\|s_{\mu \bar{i}}\right\|\right]^{2}$,
by (2.14ii) and (2.14iii).
Suppose the Kähler space is of constant curvature, in the
sense that: $\quad R_{i j k l}=\mathbb{F}\left(g_{i l} s_{j k}-g_{i k} g_{j l}\right)$.
There is only one independent nontrivial relation:

$$
R_{\lambda \bar{\mu} \nu \bar{\sigma}}=\mathbb{F} g_{\lambda \bar{\sigma}} \delta_{\bar{\mu} \nu}
$$

The symmetry property (2.28) implies:

$$
\begin{equation*}
\mathbb{E} g_{\lambda \bar{\sigma}} g_{\bar{\mu} \nu}=\mathbb{K} g_{\nu \bar{\sigma}} \delta_{\bar{\mu} \lambda} \tag{2.33}
\end{equation*}
$$

Multiply by $g^{\bar{\sigma} \lambda} g^{\nu \bar{\mu}}$ to obtain: $\quad n^{2} \mathbb{K}=n \mathbb{E}$
 its dimension is greater than 1).

Finally, subspaces. Let $\left(z{ }^{\mu}\right)$ be a coordinate system for a complex analytic manifold C_{n}. Consider the equations:

$$
\begin{equation*}
z^{\mu}=z^{\mu}\left(u^{\alpha}\right) \quad(\mu=1,2 \ldots n) \tag{2.34}
\end{equation*}
$$

where the $u^{\alpha}(\alpha=1,2 \ldots m)$ are a set of $m<n$ complex parameters. (2.34) detines a proper subspace of C_{n}, and (u^{α}) is a particular coordinate system for it. It one introduces also the set of all other coordinate systems derivable from (u^{α}) by analytic transformations (cf. (2.3)), then, by definition, one will have an m-dimensional analytic manifold, C_{m}, which Yano (Y .104) calls an analytic subsoace of the C_{n}. (This assumes that the set of functions in (2.34) is non-degenerate, in the sense that it specifies only ($n-m$) constraints; if the contrary, then one will have an analytic subspace C_{r}, with $r<m_{0}$)

Now suppose the original C_{n} is a χ_{n}. This means, in sum:
(1) There is a metric with $g_{i j}$ satisfyins (2.14)
(2) $\delta_{i j ; k}=0$ w.r.t. a symmetric connection Tijk (3) $h_{i j}$, with components as in (2.16ii), satisfies $h_{i j k}=0$ Use the first Iew Roman and Greek letters for components in the subspace. \mathcal{C}_{m}, e.g: $(a) \equiv(\alpha, \bar{\alpha})$ has range $(I, 2 \ldots 2 \mathrm{n})$. Derine $\quad \hat{g}_{a t}=\frac{\partial z^{i}}{\partial u^{a}} \frac{\partial z^{i}}{\partial u^{6}} g_{i j}$

$$
\begin{equation*}
\hat{h}_{a t}=\frac{\partial z^{i}}{\partial u^{a}} \frac{\partial z^{j}}{\partial u^{t}} h_{i j} \tag{2.35}
\end{equation*}
$$

$$
\hat{g}^{a t} \hat{g}_{b c}=\delta_{c}^{a}
$$

$$
\hat{\Gamma}^{a} a_{b c}=\frac{1}{2} \hat{g}^{a e}\left(\hat{g}_{e f, c}+\hat{g}_{e c, b}-\hat{g}_{b c, e}\right)
$$

and denote covariant derivatives in τ_{m} w.r.t. 产ac by \hat{i}. Then, because of the form of (2.34), one can verify (Y pp.104-6)
that with these definitions C_{m} is a \mathcal{K}_{m}, in that

$$
\begin{aligned}
& \left(\hat{g}_{a \sigma}\right)=\left(\begin{array}{cc}
0 & \hat{g}_{\alpha \bar{\beta}} \\
\hat{g}_{\bar{\alpha} \beta} & 0
\end{array}\right), \quad \text { with } \hat{\tilde{\delta}}_{\bar{\alpha} \beta}=\overline{\hat{g}_{\alpha \bar{\beta}}} \\
& \left(\hat{h}_{a \sigma}\right)=\left(\begin{array}{cc}
0 & -i \hat{g}_{\alpha \bar{\beta}} \\
i \hat{g}_{\bar{\alpha} \beta} & 0
\end{array}\right)
\end{aligned}
$$

$$
\text { and } \quad \hat{h}_{a t} \hat{j} c=0
$$

CHAPTER 3

Kähler Spaces. II

§3.1 Complex numbers

The method of treating complex manifolds which is developed in this chapter and the next works entirely in terms of quantities which either are or are closely related to the real and imaginary parts of the complex numbers and tensors occuring, almost all the resulting formulae involving oniy real numbers. The motivation for this is primarily that it facilitates the study of the 'real Iimit space' (Chapter 4) which was found to be peculiarly intractable in the formalism the author employed in a first formulation of the theory (essentially the ($z^{\mu}, z^{\bar{\mu}}$) notation of Chapter 2). It also turns out that the nature of the geometry as that of a particular kind of $2 n$-dimensional real Riemannian space is particularly transparent in this formalism. There are, however, disadvantages. Some or the formulae, in particular those for the curvature tensors, are considerably neater in the complex-number formalism outlined in Chapter 2. Also, a rather odd 3-index symbol is introduced, for doing complex-number multiplication in terms of real quantities; this is the content of the present section.
(Of course, the formulae arrived at in this chapter can be deduced from the work of Chapter 2 by making the appropriate changes of variable (of. §3.7). However, it was thought desirable to give a more unified presentation by developing the

61.

mathematical theory ab initio in terms of the formalism in which the 'physical' theory of complex space-time is actually expressed.)

Consider the complex number $A \equiv A_{1}+i A_{2}$. It will be written (A_{a}), where, as throughout this work, small Latin indices always range over (1,2). Introduce a matrix:

$$
\left(c^{a b}\right)=\left(\begin{array}{cc}
1 & 0 \tag{3.1}\\
0 & -1
\end{array}\right)
$$

This will be used to raise Latin suffices, so that (A^{a}) has for components the real numbers $\left(A_{1},-A_{2}\right)$. The inverse, $C_{a t}$, has the same matrix, (3.1).

If two complex numbers, A and. B, are multiplied together, the product is a third, C say, where:

$$
\begin{equation*}
C_{1}+i C_{2}=\left(A_{1} B_{1}-A_{2} B_{2}\right)+i\left(A_{1} B_{2}+A_{2} B_{1}\right) \tag{3.2}
\end{equation*}
$$

To reproduce this fundamental property of complex arithmetic we introduce a quantity $p_{a}{ }^{6 c}$, and write:

$$
\begin{equation*}
C_{a}=p_{a}^{b c} A_{b} B_{c} \tag{3.3}
\end{equation*}
$$

where summation over repeated indices at opposite levels is understood. Comparing (3.2) with (3.3), par. must have:

$$
\begin{align*}
& p_{1}!!=p_{2}!2=p_{2}!!=-p_{1}^{2!}=1 \\
& p_{1}!2=p_{1}^{2!}=p_{2}!!=p_{2}^{2!}=0 \tag{3.4}
\end{align*}
$$

Symmetry in its last two indices corresponds to the commutativity of multiplication. We shall also need the form with the middle index in the covariant position:

$$
\left.\begin{array}{l}
p_{11}!^{\prime}=p_{12}{ }^{2}=p_{21}{ }^{2}=-p_{22}!=1 \tag{3.5}\\
p_{11}{ }^{2}=p_{12}{ }^{\prime}=p_{21}!=p_{22}{ }^{2}=0
\end{array}\right\}
$$

Two special cases of the general rule (3.3) are worth
separate mention.
(i) Multiplication of any number z by the unit complex number $I=(1,0)$ can be written:

$$
\begin{equation*}
(I \times z)_{a}=p_{a}{ }^{f c} I_{f} Z_{c}=\delta_{a}^{c} Z_{c} \tag{3.6}
\end{equation*}
$$

where the quantity introduced by the definition.

$$
\begin{equation*}
\delta_{a}^{c} \equiv p_{a}{ }^{G c} I_{b} \tag{3.7}
\end{equation*}
$$

is, as the notation implies, the Kronecker delta symbol in
the 2-dimensional 'Latin-index' space.
(ii) Multiplication by $i \equiv \sqrt{-1}=(0,1)$ also has
an alternative 2-index symbol representation:

$$
\begin{equation*}
(i \times z)_{a}=p_{a}^{G c} i_{b} z_{c}=e_{a}^{c} z_{c} \tag{3.8}
\end{equation*}
$$

where the quantity introduced by $e_{a}^{c} \equiv p_{a}{ }^{6}{ }^{c} i_{G}$ has matrix:

$$
\left(e_{a}^{b}\right)=\left(\begin{array}{cc}
0 & -1 \tag{3.9}\\
1 & 0
\end{array}\right)=-\left(e^{b} a\right)
$$

§3.2 Complex vector spaces

This section deals with the question of equipping a (finite-dimensional) complex vector space with a Hermitian scalar product; it involves only elementary aspects of the theory of such 'unitary spaces ${ }^{[70][71]}$

Let \mathcal{V}_{n} be an n-dimensional vector space over the field of complex numbers. Let $\left\{E_{(\mu)}\right\}$ be a set of n linearly independent vectors of V_{n}, and therefore a basis for \mathcal{V}_{n}. (Greek indices always run from 1 to n, except where otherwise stated.) Consider the set of all linear mappingis $f: V_{n} \longrightarrow \mathbb{C}$ from V_{n} to the complex numbers; With the usual detinitions of addition and scalar multiplication, this set of mappings is also an n-dimensional complex vector space, the 'conjugate ${ }^{[70]}$ or 'dual' space. Call it V_{n}^{*}. There certainly exist n elements of \mathcal{V}_{n}^{*}, call them $\left\{F_{(\mu)}^{*}\right\}$, such that: $F^{*}(\mu) E_{(\nu)}=\delta_{\mu}^{\nu}$
(3.10)

They are linearly independent, and span V_{n}^{*}. They will be taken as the canonical basis for \mathcal{V}_{n}^{*}, the basis 'complimentary to' $\left\{E_{(\mu)}\right\}$.

Introduce a scalar product into \mathcal{V}_{n} as follows. With each element $v \in V_{n}$ associate an element $v^{*}=G(v) \in V_{n}^{*}$, where $G: V_{n} \rightarrow V_{n}^{*}$ is an anti-linear, or conjugate inear, mapping with inverse; then the quantity

$$
\begin{equation*}
(v \mid u) \equiv v^{*} u=G(v) u \tag{3.11}
\end{equation*}
$$

is defined to be the scalar product of v with u. It will be required to satisfy in addition the Hermiticity condition:

$$
\begin{equation*}
(v \mid u)=\overline{(u \mid v)} \tag{3.12}
\end{equation*}
$$

(An equally possible presentation would have been in terms of a linear mapping, \widehat{G} say, from V_{n} to the space of anti-Iinear mappings, \hat{V}_{n}^{*} say. It is relatively immaterial at what stage the presence of the operation of complex conjugation in (3.12) is allowed for (cI. [70] p.102).)

We now want a representation of the mapping G. Let V be the vector:

$$
\begin{equation*}
v=\sum_{\mu=1}^{n}\left(v v_{1}^{\mu}+i v_{2}^{\mu}\right) E_{(\mu)} \tag{3.13}
\end{equation*}
$$

It will be said to have the components ∇_{a}^{μ} w.r.t. this basis. Write its image under G as:

$$
\begin{equation*}
v^{*}=G(v)=\sum_{\mu}\left(v_{\mu}^{1}-i v_{\mu}^{2}\right) F_{(\mu)}^{*} \tag{3.14}
\end{equation*}
$$

Then the anti-linearity of G is found to entail the existence of a matrix relation of the form:

$$
\begin{equation*}
v_{\mu}^{a}=g_{\mu \nu}^{a t} v_{t}^{\nu} \tag{3.15}
\end{equation*}
$$

with summation over repeated indices of both kinds. The $(2 \mathrm{n} \times 2 \mathrm{n})$ real, matrix $\left(g_{\mu \nu}{ }^{\dagger}{ }^{\dagger}\right)$ will be called, more particularly in the context of the next and following sections, the metric tensor. Its properties follow from those of the scalar product. By the preceding equations, we have:

$$
\begin{aligned}
(v \mid u) & =v^{*} u=\left[\sum_{\mu}\left(v_{\mu}^{1}-i v_{\mu}^{2}\right) E_{(\mu)}^{*}\right]\left[\sum_{\nu}\left(u_{1}^{\nu}+i u_{2,}^{\nu}\right) E_{(\nu)}\right] \\
& =\left(v_{\mu}^{\prime} u u_{1}^{\mu}+v_{\mu}^{2} u_{2}^{\mu}\right)+i\left(v_{\mu}^{\mu} u u_{2}^{\mu}-v_{\mu}^{2} u_{1}^{\mu}\right)
\end{aligned}
$$

Using (3.5), this can be written:

$$
\begin{equation*}
(v \mid u)_{a}=p_{a} t^{c} v_{\mu}^{t} u_{c}^{\mu} \tag{3.17}
\end{equation*}
$$

(Compare the formula $(v \mid u)=v_{\mu} u^{\mu}$ for the case of a real scalar product in a real vector space.) Combining (3.15) and (3.17), the Hermiticity (3.12) implies:

But these must be identities in v and u, so that:

Defining: $\quad g_{\mu \nu}^{\prime \prime} \equiv \gamma_{\mu \nu}$ and $\varepsilon_{\mu \nu}^{\prime 2} \equiv \omega_{\mu \nu}$,
the content of the 8 equations (3.19) is:

$$
\left.\begin{array}{l}
g_{\mu \nu}^{2 i}=\omega_{\nu \mu}=-\omega_{\mu \nu} \tag{3.20ii}\\
g_{\mu \nu}^{22}=\gamma_{\mu \nu}=\gamma_{\nu \mu}
\end{array}\right\}
$$

In other words, $\left(g_{\mu \nu}^{f}\right)$ is symmetric:

$$
\begin{equation*}
g_{\mu \nu}^{a f}=g_{\nu \mu}^{b_{\alpha}} \tag{3.21}
\end{equation*}
$$

and can be written in the partitioned form:

$$
\left(g_{\mu \nu}^{a f}\right)=\left(\begin{array}{cc}
\gamma_{\mu \nu} & \omega_{\mu \nu} \tag{3.22}\\
-\omega_{\mu \nu} & \gamma_{\mu \nu}
\end{array}\right)
$$

We shall call any $(2 n \times 2 n)$ real matrix, $H_{\mu \nu}^{a}{ }^{\dagger}$ ' say, with these properties 'Hermitian'. Correspondingly, an 'anti-Hermitian' matrix $A_{\mu \nu}^{a t}$ will have

$$
\begin{align*}
& A_{\mu \nu}^{1}=A_{\mu \nu}^{22}=-A_{\nu \mu}^{1} \tag{3.23}\\
& A_{\mu \nu}^{12}=-A_{\mu \nu}^{21}=-A_{\nu \mu}^{21}
\end{align*}
$$

(and so will be anti-symmetric). From any Hermitian matrix we can form a new matrix by the prescription:

$$
(i \times H)_{\mu \nu}^{a t} \equiv e^{a} \cdot{ }_{c} H_{\mu \nu}^{c t}=\left(\begin{array}{cc}
H_{(2)} & H_{(22)} \tag{3.24}\\
-H_{(1)} & -H_{(2)}
\end{array}\right)
$$

which is readily verified to be anti-Hermitian, corresponding to an analogous result in the context of a more conventional use of these terms.

Using (3.15), (3.17) and (3.20), the scalar product can be expressed in the form of one complex equation:

$$
\begin{align*}
(v \mid u) & \equiv(v \mid u)_{1}+i(v \mid u)_{2} \\
& =\left(\gamma_{\mu \nu}+i \omega_{\mu \nu}\right)\left(v_{1}^{\nu}-i v_{2}^{\nu}\right)\left(\left.u\right|_{1} ^{\mu}+i u_{2}^{\mu}\right) \tag{3.25}
\end{align*}
$$

By definition, G is non-singular. Therefore the inverse matrix exists:

$$
\begin{equation*}
g_{\mu \nu}^{a f} g_{f c}^{\nu \sigma}=\delta_{\mu}^{\sigma} \delta_{c}^{a} \tag{3.26}
\end{equation*}
$$

One can solve (3.26) in terms of partitioned matrices (ci. (3.22)), obtaining:

$$
\left.(g)_{a t}^{\mu \nu}\right)=\left(\begin{array}{cc}
\gamma^{\mu \nu} & -\omega /^{\mu \nu} \tag{3.27}\\
\omega / \nu & \gamma /^{\nu}
\end{array}\right)
$$

where $\left.\quad \gamma^{\mu \nu}=\left(\tau^{-1}\right)\right)^{\mu \nu}$ and $\omega^{\mu \nu}=\left(\gamma^{-1} \omega \tau^{-1}\right)^{\mu \nu}$, with $\tau \equiv \gamma+\omega \gamma^{-1} \omega$.
Define

$$
\begin{equation*}
G_{\mu \nu} \equiv \gamma_{\mu \nu}+i \omega_{\mu \nu} \tag{3.28}
\end{equation*}
$$

There is the following simple relation between the determinant of this ($n \times n$) complex (Hermitian) matrix and that of the $(2 n \times 2 n)$ real symmetric matrix (3.22):

$$
\begin{equation*}
\operatorname{det}\left\|g_{\mu \nu}^{a t}\right\|=\left[\operatorname{det}\left\|G_{\mu \nu}\right\|\right]^{2} . \tag{3.29}
\end{equation*}
$$

This result is readily established by taking determinants of both sides of the matrix equation:

$$
\left(\begin{array}{cc}
I & I \tag{3.30}\\
i I & -i I
\end{array}\right)\left(\begin{array}{cc}
0 & \frac{1}{2} G_{\mu \nu} \\
\frac{1}{2} G_{\mu \nu} & 0
\end{array}\right)\left(\begin{array}{cc}
I & i I \\
I & -i
\end{array}\right)=\left(\begin{array}{cc}
\gamma_{\mu \nu} & \omega_{\mu \nu} \\
-\omega_{\mu \nu} & \gamma_{\mu \nu}
\end{array}\right)
$$

By Hermiticity, aet $\left\|G_{\mu \nu}\right\|$ is of course real. There are the following formulae for it, in 2, 3, and 4 dimensions:

2-D:
$\operatorname{det}\left\|G_{\mu \nu}\right\|=\gamma-\omega$
3-D: $\quad \operatorname{det}\left\|G_{\mu \nu}\right\|=\gamma\left[1-\left(Y^{-1}\right)^{\mu \alpha}\left(Y^{-1}\right)^{\nu \beta} \omega_{\alpha \beta} \omega_{\mu \nu}\right] \quad \ldots$ (3.3I)
$4-D:$
$\operatorname{det}\left\|G_{\mu \nu}\right\|=\gamma\left[1-\left(\gamma^{-1}\right)^{\mu \alpha}\left(\gamma^{-1}\right)^{\nu \beta} \omega_{\alpha \beta} \omega_{\mu \nu}\right]+\omega$
where $\gamma \equiv \operatorname{det}\left\|Y_{\mu \nu}\right\|$ and $\omega \equiv \operatorname{det}\left\|\omega_{\mu \nu}\right\|$. These results on the determinant of the metric tensor have practical utility since, as will appear, a certain curvature tensor which plays a central role is completely specified if aet $\left\|g_{\mu \nu}^{a f}\right\|$ is known.

§3.3 Transformations

We shall first look at what happens when one chooses new bases in the V_{n} of $\$ 3.2$. This will then be related to coordinate transformations in a certain type of manifold.

Suppose, then, that a new set of base vectors for V_{n}, $\left\{E_{(\mu)}^{\prime}\right\}$, is related linearly to the old, in the sense that there is a non-singular complex matrix A such that:
with inverse:

$$
\begin{align*}
& E_{(\mu)}=\sum_{\nu} A_{\nu \mu} E_{(\nu)}^{\prime} \\
& E_{(\mu)}^{\prime}=\sum_{\nu} A_{\nu \mu}^{-1} E_{(\nu)} \tag{3.32}
\end{align*}
$$

This change of basis induces a change in the conjugate basis $\left\{F_{(\mu)}^{*}\right\}$ of V_{n}^{*} to some new set of vectors, $\left\{F_{(\mu)}^{*}\right\}$ say, which must satisfy (cf. (3.10)):

$$
\begin{equation*}
F_{(\mu)}^{*^{\prime}} E_{(\nu)}^{\prime}=\delta_{\mu}^{\nu} \tag{3.33}
\end{equation*}
$$

From this one can deduce that:

$$
\left.\begin{array}{l}
\mathbb{F}_{(\mu)}^{*}=\sum_{\nu} A_{\mu \nu}^{-1} F_{(\nu)}^{*} \tag{3.34}\\
F_{(\mu)}^{*^{\prime}}=\sum_{\nu} A_{\mu \nu} F_{(\nu)}^{*}
\end{array}\right\}
$$

These changes of basis cause the components of a (fixed) vector v to change, in the following manner:

$$
\left.\begin{array}{l}
v_{1}^{\prime}+i v_{2}^{\prime}=\sum_{\alpha} A_{\mu \alpha}\left(v_{1}^{\alpha}+i v_{2}^{\alpha}\right) \tag{3.35}\\
v_{\mu}^{\prime}-i v_{\mu}^{2}=\sum_{\alpha} A_{\alpha \mu}^{-1}\left(v_{\alpha}^{\prime}-i v_{\alpha}^{2}\right)
\end{array}\right\}
$$

where dashes represent components w.r.t. the new bases. Let us determine the new matrix of the mapping G. We need to split (3.35) into real and imaginary parts. Suppose

$$
\begin{equation*}
A_{\mu \nu} \equiv A_{\mu \nu}^{(1)}+i A_{\mu \nu}^{(2)} \tag{3.36}
\end{equation*}
$$

and write:

$$
\left(Q_{\mu \nu}^{a b}\right) \equiv\left(\begin{array}{cc}
A_{\mu \nu}^{(1)} & -A_{\mu \nu}^{(2)} \tag{3.37}\\
A_{\mu \nu}^{(2)} & A_{\mu \nu}^{(1)}
\end{array}\right)
$$

Then equations (3.35) are:

$$
\left.\begin{array}{rl}
v_{\alpha}^{\mu} & =\sum_{\alpha, s} Q_{\mu \alpha}^{a s} v_{s}^{\alpha} \tag{3.38}\\
v_{\mu}^{a \prime} & =\sum_{\alpha, s} Q^{-1} s_{\mu}^{a} \cdot v_{\alpha}^{s}
\end{array}\right\}
$$

Therefore (3.15) holds also for the dashed quantities, with:

$$
\begin{equation*}
g_{\mu \nu}^{a t \prime}=\sum_{\alpha, s} \sum_{\beta, t} Q_{\alpha \mu}^{-1} \sum_{\alpha \beta} Q_{\beta \nu}^{-1} \in t g_{\alpha \beta}^{s t} \tag{3.39}
\end{equation*}
$$

It is readily verified that this is still a Hemmitian matrix, and that its $\gamma_{\mu \nu}^{\prime}, \omega_{\mu \nu}^{\prime}$ are determined by the equation:

$$
\begin{equation*}
Y_{\mu \nu}^{\prime}+i \omega_{\mu \nu}^{\prime}=\sum_{\alpha} \sum_{\beta} A_{\alpha \mu}^{-1}\left(\gamma_{\alpha \beta}+i \omega_{\alpha \beta}\right) \overline{A_{\beta \nu}^{-1}} . \tag{3.40}
\end{equation*}
$$

We can now construct a theory of complex metric menifolds. Let $R_{2 n}$ be a real 2n-dimensional manifold, parametrized by coordinates (z_{a}^{μ}), with (at present) the group of general nonsingular coordinate transformations:

$$
\begin{equation*}
z_{a}^{\mu}{ }_{a}^{\prime}=z_{a}^{\mu}\left(z_{s}^{\alpha}\right) \tag{3.41}
\end{equation*}
$$

Consider a point P with coordinates z_{a}^{μ}, and a neighbouring point $P^{\prime}, z_{a}^{\mu}+d z_{a}^{\mu}$, where the $d z_{a}^{\mu}$ are infinitessimal. As P^{\prime} varies (always in the neighbourhood of P), the quantities dzla span a 2n-dimensional real vector space, the tangent vector space at P. We now require that it shall be an n-dimensional complex vector space, " $V_{n}(P)$, in the sénse that the quantities $\left(d z \mu_{1}+i d z \mu_{2}^{\mu}\right)$ shall be the components of a vector of $V_{n}(P)$.

Consider the effect of the coordinate transformation (3.41). For fixed $\mathrm{P}, \mathrm{P}^{\prime}$, the relation between the components of $\overrightarrow{\mathrm{PP}}$, in the two coordinate systems is:

$$
\begin{equation*}
d z_{a}^{\mu_{a}^{\prime}}=\frac{\partial z_{a}^{\mu_{a}^{\prime}}}{\partial z_{s}^{\alpha}} d z_{s}^{\alpha} \tag{3.42}
\end{equation*}
$$

Compare this with (3.38). It is clear that the change in
components which (3.42) signifies is more general than that of (3.38), since the transformation matrix in the former does not in general have the partitioned structure (3.37), and so is not equivalent to a change of basis in $V_{n}(P)$ (in fact, it 'mixes up' the vectors of V_{n} and those of the complex conjugate vector space $\overline{V_{n}}$). We shall accordingly restrict the allowable transformations (3.4I) so as to ensure that the matrix in (3.42) does have the structure (3.37), i.e. we require:

$$
\left.\begin{array}{l}
\frac{\partial z H_{1}^{\prime}}{\partial z_{1}^{\prime}}=\frac{\partial z_{2}^{\mu_{2}^{\prime}}}{\partial z_{2}^{\prime}} \tag{3.43}\\
\frac{\partial z_{1}^{\prime}}{\partial z_{2}^{\prime \prime}}=-\frac{\partial z_{2}^{\prime}}{\partial z_{1}^{\prime}}
\end{array}\right\}
$$

These Cauchy-Riemann equations, however, just say that ($\left.z \|_{1}^{{ }^{\prime}}+\left.i z\right|_{2} ^{\mu^{\prime}}\right)$ is to be an analytic function of the $\left(z_{1}^{\alpha}+i z_{2}^{\alpha}\right)$ only (i.e. independent of $\left(z_{1}^{\alpha}-i z_{2}^{\alpha}\right)$). Under these conditions, (3.4I) will be called an analytic coordinate transformation, and the manifold $R_{2_{n}}$ with its transformation group thus restrieted will be called a complex analytic manifold, denoted C_{n}. If the tangent V_{n} is are furnished, as in $\$ 3.2$, with Hemmitian scalar products, the C_{n} could be called, following Yano, a Hermite space," H_{n}. We shall hencesorth restrict attention exclusively to such spaces. (It would be possible, as suggested by A.Das (cf. §I.3), to try and construct a field theory in terms of manifolds supporting transformation groups not restricted to analyticity (cf. also [67] p.389, note 2); the resulting theory has, however, little to recommend it.)

We can now say that the analytic coordinate transformation induces the change of basis in $V_{n}(P)$ given by:

$$
\begin{align*}
& Q_{\mu \nu}^{a t}=\frac{\partial z_{a}^{\prime \prime}}{\partial z_{b}^{\prime}} . \\
& A_{\mu \nu}=\frac{\partial z_{1}^{\prime}}{\partial z_{1}^{\gamma}}+i \frac{\partial z_{2}^{\prime \prime}}{\partial z_{1}^{\prime \prime}} \\
& \text { (3.44) } \\
& \text { or: } \\
& \frac{\partial z z_{a}^{\mu}}{\partial z_{f}^{y}} \frac{\partial z_{f}^{y}}{\partial z_{c}^{\sigma}}=\delta \delta_{\sigma}^{\mu} \delta_{a}^{c} \tag{3.46}\\
& \text { (3.45) } \\
& \text { Using the relations: } \quad \frac{\partial z_{a}^{\mu}{ }^{\prime}}{\partial z_{b}^{y}} \frac{\partial z_{V}^{v}}{\partial z_{a}^{{ }_{c}^{\prime}}}=\delta_{\sigma}^{\mu} \delta_{a}^{c} \\
& \text { together with the Cauchy-Riemann (C-R) equations, one finds: } \\
& A^{-1} \mu \nu=\frac{\partial z_{1}^{\mu}}{\partial z_{1}^{\nu_{1}^{\prime}}}+i \frac{\partial z_{2}^{\mu}}{\partial z_{1}^{\nu^{\prime}}} \tag{3.47}\\
& \text { These equations together with (3.39) or (3.40) determine the } \\
& \text { metric tensor field in the new coordinate system. }
\end{align*}
$$

§3.4 Asfine connection

A tensor calculus will now be set up, in a way which
corresponds as closely as possible with the Riemannian theory (cf. e.g. [25]). Again we start from 'first principles'.

Let $v_{a}^{\mu}\left(z_{s}^{\alpha}\right)$ be C^{1} functions of the z_{s}^{α} in some neighbourhood, and transform (cf. $(3.38)+(3.44)$) as:

$$
\begin{equation*}
v_{a}^{\mu_{a}^{\prime}}=\frac{\partial z_{a}^{\mu}}{\partial z_{b}^{\prime \prime}} v_{b}^{\nu} . \tag{3.48}
\end{equation*}
$$

under the analytic coordinate transformation (3.4I). Such a quantity will be called a contravariant vector field on Ifn. (N.B. it is not necessarily an analytic function of the ($z_{1}^{\alpha}+i z_{2}^{\alpha}$) only.) Consider two neighbouring points P, P, of for , at which the field has the values $v_{a}^{\mu}, v_{a}^{\mu}+d v_{a}^{\mu}$ respectively, with:

$$
\begin{equation*}
d v \mu_{a}^{\mu}=v \mu_{a, \alpha}^{S} d z_{s}^{\alpha} \tag{3.49}
\end{equation*}
$$

to first order in the coordinate differentials. dvera is not a tensor, since the transformation matrix in (3.48) in general differs from P to $P^{\prime \prime} ;$ in fact, differentiation of (3.48) gives: $\quad\left(V \mu_{a, \sigma}^{\alpha}\right)^{\prime}=\frac{\partial z_{a}^{\mu}}{\partial z_{s}^{\alpha}} \frac{\partial z_{t}^{\beta}}{\partial z_{c}^{\sigma}}\left(V_{s, \beta}^{\alpha} t\right)+\frac{\partial^{2} z_{a}^{\mu \prime}}{\partial z_{s}^{\alpha} \partial z_{t}^{\beta}} \frac{\partial z_{t}^{\beta}}{\partial z_{c}^{\sigma}}, V_{s}^{\alpha}$
So we define a vector $v_{a}^{\mu}+\delta v \mu_{a}^{\mu}$ at P^{\prime} which is said to result from the parallel displacement of the vector via from P to P^{\prime}, with δv_{a}^{μ} bilinear in the vector and displacement:

$$
\begin{equation*}
\delta v_{a}^{\mu}=-\Gamma_{a \nu \sigma}^{\mu} v_{b}^{c} d z_{c}^{\sigma} . \tag{3.51}
\end{equation*}
$$

$\left(v \mu_{a}^{\mu}+d v_{a}^{\mu}\right)-\left(v \mu_{a}^{\mu}+\delta v_{a}^{\mu}\right) \cdots$ is a vector (at P^{\prime}), and the limit $P^{\prime} \longrightarrow P$ yields the covariant derivative:

$$
\begin{equation*}
\nabla_{a}^{\mu}{ }_{a}^{c}=\nabla_{a}^{\mu}, \underset{\sigma}{c}+\Gamma_{a \nu \sigma}^{\mu} c_{\sigma}^{c} \nabla_{b}^{\nu} \tag{3.52}
\end{equation*}
$$

The IHS will be a tensor only if, from (3.50), the T is transform as:

The covariant derivative of a covariant vector field can be defined by means of the following requirement: scalar products, in the form of (3.17), are unchanged under parallel displacement of the vectors. If the result of parailelly transferfing v_{μ}^{a} from P to P^{\prime} is $v_{\mu}^{a}+\delta v_{\mu}^{a}$, this requirement translates into:

$$
\begin{equation*}
p_{a t}^{c} \cdot\left(\left.v_{\mu}^{t} \delta u\right|_{e} ^{\mu}+u l_{c}^{\mu} \delta v_{\mu}^{t}\right)=0 \tag{3.54}
\end{equation*}
$$

Taking $a=1$ leads to:

$$
\begin{equation*}
\delta v_{\mu}^{a}=+T_{\neq \mu \sigma}^{\lambda}{ }_{j} v_{\lambda}^{t} d z_{c}^{\sigma} \tag{3.55}
\end{equation*}
$$

so that the corresponding covariant derivative is:

$$
\begin{equation*}
v_{\mu ; \sigma}^{a}=v_{\mu, \sigma}^{a}{ }^{c}-\Gamma_{\sigma \mu \sigma}^{\lambda} c^{c} v_{\lambda}^{b} . \tag{3.56}
\end{equation*}
$$

Taking $\mathrm{a}=2$ leads to a restriction on the Γ 's:

$$
\left.\begin{array}{l}
\Gamma_{1 \nu \sigma}^{\mu i c}=T_{2 \nu \sigma}^{\mu_{2}^{2} c} \tag{3.57}\\
T_{1 \nu \sigma}^{\mu, c}=-T_{2 \nu \sigma}^{\mu},
\end{array}\right\}
$$

The affine connection can be related to the metric tensor via the following requirement: $\quad\left(v_{\mu}^{a}+\delta v_{\mu}^{a}\right)$ is the covariant counterpart (in the sense of (3.15)) of ($V_{a}^{\mu}+\delta v_{a}^{\mu}$) w.r.t. the metric tensor at P^{\prime}. This translates into:

$$
\begin{equation*}
\left(v_{\mu}^{a}+\delta v_{\mu}^{a}\right)=\left(\varepsilon_{\mu \nu}^{a f}+g_{\mu \nu, \sigma}^{\rho}{ }^{\circ} c_{\sigma}^{c} d z_{c}^{\sigma}\right)\left(v_{\sigma}^{\nu}+\delta v_{\sigma}^{\nu}\right) \tag{3.58}
\end{equation*}
$$

which in turn entails:

$$
\begin{equation*}
g_{\mu \nu}^{a b} ; \sigma=0 . \tag{3.59}
\end{equation*}
$$

The metric tensor is symmetric (see (3.21)), so that (3.59)
only determines the T 's uniquely if they also are symmetric:

$$
\begin{equation*}
T_{a \nu \sigma=}^{\mu q c}=T_{a \sigma \nu}^{\mu c t} \tag{3.60}
\end{equation*}
$$

The solution is then:

$$
\begin{equation*}
T_{e v \sigma}^{\lambda_{G c}}=\frac{1}{2} g_{e}^{\lambda \mu}\left(g_{\mu \nu, \sigma}^{a t}+g_{\mu \sigma, \nu}^{i c}{ }^{\sigma}-g_{\nu \sigma, \mu}^{t c}\right) \tag{3.61}
\end{equation*}
$$

an Hon satisfying (3.57), (3.59) and (3.60) is a Kähler space, K_{n}. From now on we shall restrict attention to such spaces, mainly on the grounds of simplicity, and because there seems to be no physical motivation for considering more general possibilities. (3.21), (3.59) and (3.60) imply that the $R_{2 n}$ is now inter alia a (real) Riemannian space.

Because $g_{\mu \nu}^{a t}$ has the particular structure (3.22), it might be thought that (3.57) are consequences of (3.61); but this is not so: they entail certain restrictions on the derivatives of the metric tensor, as will now appear. When combined with (3.60), (3.57) imply that there are only two distinct Γ 's, $\Gamma_{(a)}^{\lambda} \cdot \nu_{\sigma}$ say, where:

$$
\left.\begin{array}{l}
T_{(1) \cdot v \sigma}^{\lambda} \equiv T_{1 \nu \sigma}^{\lambda_{1}}=T_{2 \nu \sigma}^{\lambda 21}=T_{2 \nu \sigma}^{\lambda}=-T_{1 \nu \sigma}^{\lambda 2} \tag{3.62}\\
T_{(2) \cdot v \sigma}^{\lambda} \equiv T_{2 \nu \sigma}^{\lambda \lambda 2}=T_{1 \nu \sigma}^{\lambda 12}=T_{1 \nu \sigma}^{\lambda 2}=-T_{2 \nu \sigma}^{\lambda 1},
\end{array}\right\}
$$

A precisely similar set of relations - call them (3.62') exist also for the completely-covariant quantities

$$
\begin{equation*}
T_{\mu \nu \sigma}^{a b_{c}} \equiv g_{\mu \lambda}^{a} T_{e \nu \sigma}^{\lambda f_{c}}=\frac{1}{2}\left(g_{\mu \nu, \sigma}^{a b t}+g_{\mu \sigma, \nu}^{a c}-g_{\nu \sigma, \mu}^{f c c}\right), \tag{3.63}
\end{equation*}
$$

with $T_{\mu \nu \sigma}^{(0)}$ related to the $T_{(\omega)}^{\lambda} \cdot \nu \sigma$ by:

$$
\left.\begin{array}{l}
T_{\mu \nu \sigma}^{(1)}=\gamma_{\mu \lambda} T_{(1) \cdot \nu \sigma}^{\lambda}-\omega_{\mu \lambda} T_{(21) \cdot \nu \sigma}^{\lambda} \tag{3.64i}\\
T_{\mu \nu \sigma}^{(2)}=\gamma_{\mu \lambda \lambda} T_{(2) \cdot \nu \sigma}^{\lambda}+\omega_{\mu \lambda} T_{(1) \cdot \nu \sigma}^{\lambda}
\end{array}\right\}
$$

with the inverse:

$$
\left.\begin{array}{l}
T_{(1)}^{\lambda} \cdot \nu \sigma=\gamma^{\lambda \mu} T_{\mu \nu \sigma}^{(1)}+\omega^{\lambda \mu} T_{\mu \nu \sigma}^{(2)} \tag{3.64ii}\\
T_{(2)}^{\lambda} \cdot \nu \sigma=\gamma^{\lambda \mu} T_{\mu \nu \sigma}^{(2)}-\omega^{\lambda \mu} T_{\mu \nu \sigma}
\end{array}\right\}
$$

Inserting (3.63) into (3.62') entails:

$$
\left.\begin{array}{l}
\gamma_{\mu \sigma, \nu}-\gamma_{\nu \sigma, \mu}=-\omega_{\mu \sigma, \nu}+\omega_{\nu \sigma, \mu}{ }^{2} \tag{3.65}\\
\gamma_{\mu \sigma, \nu}-\gamma_{\nu \sigma, \mu}=\omega_{\mu \sigma, \nu}-\omega_{\nu \sigma, \mu}
\end{array}\right\}
$$

An for satisfying (3.57), (3.59) and (3.60) is a Kähler space, \mathcal{K}_{n}. From now on we shall restrict attention to such spaces, mainly on the grounds of simplicity, and because there seems to be no physical motivation for considering more general possibilities. (3.21), (3.59) and (3.60) imply that the $R_{2 n}$ is now inter alia a (real) Riemannian space.

Because $g_{\mu \nu}^{a t}$ has the particular structure (3.22), it might be thought that (3.57) are consequences of (3.61); but this is not so: they entail certain restrictions on the derivatives of the metric tensor, as will now appear. When combined with (3.60), (3.57) imply that there are only two distinct Γ 's, $\Gamma_{(a) \cdot v \sigma}^{\lambda}$ say, where:

$$
\left.\begin{array}{l}
T_{(1)}^{\lambda} \cdot \nu \sigma \equiv T_{1 \nu \sigma}^{\lambda_{1}}=T_{2 \nu \sigma}^{\lambda 21}=T_{2 \nu \sigma}^{\lambda 12}=-T_{1 \nu \sigma}^{\lambda_{2} 2} \tag{3.62}\\
T_{(2) \cdot \nu \sigma}^{\lambda} \equiv T_{2 \nu \sigma}^{\lambda \lambda 2}=T_{1 \nu \sigma}^{\lambda_{1}}=T_{1 \nu \sigma}^{\lambda_{2}}=-T_{2 \nu \sigma}^{\lambda 1},
\end{array}\right\}
$$

A precisely similar set of relations - call them (3.62') exist also for the completely-covariant quantities

$$
\begin{equation*}
T_{\mu \nu \sigma}^{a f c} \equiv g_{\mu \lambda}^{a e} T_{e \nu \sigma}^{\lambda f c}=\frac{1}{2}\left(g_{\mu \nu}^{a t c} \sigma+g_{\mu \sigma, \nu}^{a c}-g_{\nu \sigma, \mu}^{f c}\right), \tag{3.63}
\end{equation*}
$$ with $T_{\mu \nu \sigma}^{(a)}$ related to the $\Gamma_{(0)}^{\lambda}, \nu \sigma$ by:

$$
\left.\begin{array}{l}
T_{\mu \nu \sigma}^{(1)}=\gamma_{\mu \lambda} \cdot T_{(1) \cdot \nu \sigma}^{\lambda}-\omega_{\mu \lambda} T_{(21}^{\prime \lambda} \cdot \nu \sigma \tag{3.64i}\\
\Gamma_{\mu \nu \sigma}^{(2)}=\gamma_{\mu \lambda} T_{(2) \cdot \nu \sigma}+\omega_{\mu \lambda} T_{(1) \cdot \nu \sigma}^{\lambda}
\end{array}\right\}
$$

with the inverse:

$$
\left.\begin{array}{l}
T_{(1) \cdot \nu \sigma}^{\lambda}=\gamma^{\lambda \mu} T_{\mu \nu \sigma}^{(1)}+\omega^{\lambda \mu} T_{\mu \nu \sigma}^{(2)} \tag{3.64ii}\\
T_{(2)}^{\lambda} \cdot \nu \sigma=\gamma^{\lambda \mu} T_{\mu \nu \sigma}^{(2)}-\omega^{\lambda} \mu T_{\mu \nu \sigma}^{(\nu)}
\end{array}\right\}
$$

Inserting (3.63) into (3.62') entails:

$$
\left.\begin{array}{l}
\gamma_{\mu \sigma, i}-\gamma_{\nu \sigma, \mu}=-\omega_{\mu \sigma, \nu}+\omega_{\nu \sigma, \mu}{ }^{2} \tag{3.65}\\
\gamma_{\mu \sigma, \nu}-\gamma_{\nu \sigma, \mu^{2}}=\omega_{\mu \sigma, \nu}-\omega_{\nu \sigma, \mu}
\end{array}\right\}
$$

By cyclically permuting indices and adding, one obtains:

$$
\begin{equation*}
\omega_{\mu \nu, \sigma}+\omega_{\nu \sigma, \mu}+\omega_{\sigma \mu, \stackrel{a}{\nu}}=0 \tag{3.66}
\end{equation*}
$$

(cf. Maxwell's equation (1.4i)). (3.65) + (3.66) imply:

$$
\left.\begin{array}{l}
\omega_{\mu \nu, \sigma}=\gamma_{\mu \sigma, \nu}^{2}-\gamma_{\nu \sigma, \mu} \tag{3.67}\\
\omega_{\mu \nu, \sigma^{2}}=-\gamma_{\mu \sigma, \eta}+\gamma_{\nu \sigma, \mu}
\end{array}\right\}
$$

so that the derivatives of $\omega_{\mu \nu}$ are in fact completely determined by those of $\gamma_{\mu \nu}$. In terms of the latter, one has:

$$
\begin{equation*}
\Gamma_{\mu \nu \sigma}^{(a)}=\frac{1}{2}\left(\gamma_{\mu \nu, \sigma}+\gamma_{\mu \sigma, \eta}-\gamma_{\nu \sigma, \mu}\right) \tag{3.68}
\end{equation*}
$$

One may note that in a \mathcal{W}_{4}, for example, there are (2×40) distinct components of the connection and that the (10×8) different derivatives of the $\gamma_{\mu \nu}$, alone, are sufficient to produce just this multiplicity. However, there is in fact a single function, $\Omega\left(z z_{a}^{\mu}\right)$ say, which determines not only the derivatives of both $\omega_{\mu \nu}$, and $\gamma_{\mu \nu}$ but also these quantities themselves. The existence of this 'basic function' is not so immediately evident in the present formalism as it was in that of Chapter 2 (the author only tumbled to it in the course of explicit calculations of the 2-dimensional case), but can be demonstrated as follows. Multiply the second equation of (3.65) by i and subtract from the first, giving:

$$
\begin{equation*}
G_{\mu \sigma}, \dot{\nu}-i G_{\mu \sigma, \nu}^{2}=G_{\nu \sigma, \mu}-i G_{\nu \sigma, \mu} \tag{3.69}
\end{equation*}
$$

Write

$$
\begin{align*}
z \mu & \equiv z \mu_{1}^{\mu}+\left.i z\right|_{2} ^{\mu} ; & \overline{z \mu^{\mu}}=z \mu_{1}^{\mu}-\left.i z\right|_{2} ^{\mu} \tag{3.70}\\
2 \frac{\partial}{\partial z^{\mu}} & =\frac{\partial}{\partial z_{1}^{\mu}}-i \frac{\partial}{\partial z_{2}^{\mu}} ; & 2 \frac{\partial}{\partial \overline{z^{\mu}}}=\frac{\partial}{\partial z_{1}^{\mu}}+i \frac{\partial}{\partial z_{2}^{\mu}} \tag{3.71}
\end{align*}
$$

Then
so that (3.69) can be written:

$$
\begin{equation*}
\frac{\partial G_{\mu \sigma}}{\partial z^{\nu}}=\frac{\partial G_{\nu \sigma}}{\partial z^{\mu}} \tag{3.72}
\end{equation*}
$$

This, together with the complex conjugate equation, leads, by
steps as given in [67] pp.397-8, to the existence of a real function $\Omega(z, \bar{z})$ such that:

$$
\begin{equation*}
G_{\mu \nu}=4 \frac{\partial^{2} \Omega}{\partial z z^{\mu} \partial z^{\nu}} \tag{3.73}
\end{equation*}
$$

Clearly, Ω is uniquely determined up to addition of the real part of an arbitrary analytic function, i.e. $\Omega^{\bullet} \rightarrow \Omega^{*}$, where

$$
\begin{equation*}
\Omega^{*}=\Omega+\frac{1}{2}\left[f\left(z^{\alpha}\right)+\overline{f\left(z^{\alpha}\right)}\right] \tag{3.74}
\end{equation*}
$$

Using (3.71), (3.73) implies:

$$
\left.\begin{array}{l}
\gamma_{\mu \nu}=\Omega, \mu, \nu+\Omega, \mu_{, \nu}^{2} \tag{3.75}\\
\omega_{\mu \nu}=\Omega, \mu_{\nu, \nu}^{2}-\Omega, \mu, \nu
\end{array}\right\}
$$

One can show, by comparing this equation with the corresponding one in the dashed coordinate system, that under, (3.41) " Ω remains unchanged in value (at a given point of. \mathcal{K}_{n}), i.e. transforms as a scalar, within the latitude allowed by (3.74).

It is interesting to note that a necessary and sufficient condition for $(3.57)+(3.60)$ to hold is: the Γ^{\prime} s can be made to vanish at any one point of C_{n} by an analytic coordinate transformation. This is closely parallel to the corresponding Riemannian result, and throws extra light on the nature of the Kählerian requirement (3.57). We shali demonstrate only the sufficiency - proof of the converse is almost as straightforward. Suppose, then, that in the new (dashed) coordinate system the $\left(T_{a \nu}^{\mu}{ }_{a}^{c}\right)^{\prime}$ all vanish at the point with coordinates ($z_{a}^{\prime \prime}$). Then in the original system the Γ 's must have had the values, at this point:

$$
\begin{equation*}
\Gamma_{a \nu \sigma}^{\mu}{ }_{a}^{\alpha}=\frac{\partial z \mu_{a}^{\prime}}{\partial z_{s}^{\alpha^{\prime}}} \frac{\partial^{2} z_{s}^{\alpha}}{\partial z_{f}^{\prime} \partial z_{c}^{\alpha}} \tag{3.76}
\end{equation*}
$$

(use (3.53), with dashed and undashed indices interchanged).

The RHS is obviously symmetric in ($\begin{gathered}b \\ \nu\end{gathered}, \underset{c}{c}$) (condition (3.60)), while the $C-R$ equations (3.43) ensure that it also satisfies (3.57).

We note, finally, that the theory of geodesics goes through precisely as for a Riemannian space. By.(3.12), the scalar product of any vector with itself is real:

$$
\begin{equation*}
(v \mid v)=\overline{(v \mid v)} \tag{3.77}
\end{equation*}
$$

Putting $a=1$ in (3.17), this real number is just:

$$
\begin{equation*}
(v \mid v)_{1}=v_{\mu}^{a} v v_{a}^{\mu} \tag{3.78}
\end{equation*}
$$

Take v to be the infinitessimal displacement vector $d z$, and call the corresponding real number $d s^{2}$. Then there is the line-element formula:

$$
\begin{align*}
d s^{2} & =d z_{\mu}^{a} d z_{a}^{\mu}=g_{\mu \nu}^{a t} d z_{a}^{\mu} d z_{b}^{\nu} \\
& =Y_{\mu \nu}^{\mu}\left(d z_{1}^{\mu} d z_{1}^{\nu}+d z_{2}^{\mu} d z_{2}^{\nu}\right)+\omega_{\mu \nu}\left(d z_{1}^{\mu} d z_{2}^{\nu}-d z_{2}^{\mu} d z_{1}^{\nu}\right) \tag{3.79}\\
& =G_{\mu \nu} d z^{\mu} d \bar{z}^{\nu} .
\end{align*}
$$

Either by auto-parallel displacement of the unit vector $\frac{d f_{0}}{d s}$, or from the variational principle:

$$
\begin{equation*}
\delta \int d s=0, \tag{3.80}
\end{equation*}
$$

one arrives at the geodesic equation:

$$
\begin{equation*}
\frac{d^{2} z_{a}^{1}}{d s^{2}}+T_{a \nu \nu \sigma}^{\mu} \frac{d z_{b}}{d s} \frac{d z_{c}^{\sigma}}{d s}=0 . \tag{3.81}
\end{equation*}
$$

§3.5 Curvature

The following few equations are completely standard, and
will be presented without comment; they hold for \mathcal{K}_{n} qua real 2n-dimensional Riemannian manifold.
where

$$
\begin{align*}
& R_{\mu \nu}^{a b s t} \equiv g_{\mu \lambda}^{a} R_{c}^{d} R_{\alpha \beta}^{d t} \tag{3.83}
\end{align*}
$$

Now utilize the special form (3.62) of the. T's. To do this, it is simplest to work in a geodesic coordinate system (cf. [67] p.156) for the point of $\mathcal{\beta}_{n}$ under consideration (we have already seen (p .75) that this is possible). Then (3.84) becomes:

$$
\begin{equation*}
R_{\mu \nu \nu \beta}^{a}{ }^{t^{s} s_{\alpha}^{t}}=\Gamma_{\mu \nu \alpha, \beta}^{a t b^{t}}-T_{\mu \nu \beta,}^{a f t},{ }_{\alpha}^{s} \tag{3.88}
\end{equation*}
$$

Inserting (3.62'), one finds just three distinct types of tensor component:

$$
\left.\begin{array}{l}
R_{\mu \nu \alpha \beta}^{(1)} \equiv R_{\mu \nu \alpha \beta}^{1} \alpha^{\prime} \tag{3.89}\\
R_{\mu \nu \alpha \beta}^{(2)} \equiv R_{\mu \nu \alpha \beta}^{2} \alpha^{\prime} \\
R_{\mu \nu \alpha \beta}^{(3)} \equiv R_{\mu \nu \alpha \beta}^{12}
\end{array}\right\}
$$

all others being expressible in terms of one of these, egg. $R_{\mu \nu \alpha \beta}^{22}=-R_{\beta \alpha \mu \nu}^{(2)}$.

Inserting into (3.88) the values of the $T_{\mu \nu \sigma}^{(2)}$ from (3.68), and using (3.67), one can obtain the following formulae:
$\left.R_{\mu \nu \alpha \beta}^{(1)}=\frac{1}{2}\left(\omega_{\mu \nu, \alpha^{2}, \beta^{2}}-\omega_{\mu \nu, \alpha^{2}, \beta}^{1}\right)=\frac{1}{2}\left(\omega_{\alpha \beta, \mu, \nu}{ }^{2}-\omega_{\alpha \beta, \nu^{2}, \nu}^{i}\right)\right)$
$\left.R_{\mu \nu \alpha \beta}^{(2)}=\frac{1}{2}\left(\gamma_{\mu \nu, \alpha_{\alpha}^{2}}^{2}-\gamma_{\mu \nu, \alpha_{, ~}^{2}}^{\prime}\right)=\frac{1}{2}\left(\omega_{\alpha \beta, \mu^{2}, \nu}^{\prime}+\omega_{\alpha \beta}, \mu^{2}, \nu_{\nu}^{2}\right)\right\}(3.90)$
$\left.R_{\mu \nu \alpha \beta}^{(3)}=\frac{1}{2}\left(\gamma_{\mu \nu, \alpha_{, \beta}}+\gamma_{\mu \nu, \alpha^{2}, \beta^{2}}\right)=\frac{1}{2}\left(\gamma_{\alpha \beta, \mu^{\mu}, \nu}+\gamma_{\alpha \beta, \mu^{2}, \nu}^{2}\right)\right)$
These entail the following symmetry properties (valid in all coordinate systems):

$$
\left.\begin{array}{l}
R_{\mu \nu \alpha \beta}^{(1)}=-R_{\mu \nu \beta \alpha}^{(1)}=-R_{\nu \mu \alpha \beta}^{(1)}=R_{\alpha \beta \mu \nu}^{(1)} \\
R_{\mu \nu \alpha \beta}^{(2)}=-R_{\mu \nu \beta \alpha}^{(2)}=+R_{\nu \mu \alpha \beta}^{(2)} \tag{3.91}\\
R_{\mu \nu \alpha \beta \beta}^{(3)}=+R_{\mu \nu \beta \beta \alpha}^{(3)}=+R_{\nu \mu \alpha \beta}^{(3)}=R_{\alpha \beta \mu \nu}^{(3)}
\end{array}\right\}
$$

Also, the content of the 'cyclic' identity (3.86) is:

$$
\begin{align*}
& R_{\mu\{\nu \alpha \beta\}}^{(1)}=0 \\
& R_{\mu\{\nu \alpha \beta\}}^{(2)}=0 \tag{3.92}\\
& R_{\mu \nu \alpha \beta}^{(1)}=R_{\mu \alpha \nu \beta}^{(3)}-R_{\mu \beta \nu \alpha}^{(3)}
\end{align*}
$$

(which could also have been deduced from (3.90)).
How many linearly independent components of the tensor $R \underset{\mu \nu \alpha \beta}{a f s t}$ are there? The third of (3.92) shows that $R_{\mu \nu \alpha \beta}^{(1)}$, which has all the symmetry properties of a Riemannian curvature tensor, can be eliminated from the count. $R_{\mu \nu \alpha \beta}^{(3)}$ is then not restricted by (3.92), and so has

$$
\begin{equation*}
\mathbb{N}_{3} \equiv \frac{1}{2} \frac{n(n+1)}{2}\left[\frac{n(n+1)}{2}+1\right] \tag{3.93}
\end{equation*}
$$

different components. The symmetry conditions (3.91) give

$$
\begin{equation*}
N_{2} \equiv \frac{n(n+1)}{2} \cdot \frac{n(n-1)}{2} \tag{3.94}
\end{equation*}
$$

as the number of different components of $R_{\mu \nu \alpha \beta}^{(2)}$; there remains only the second of (3.92) to take into account. If $\alpha=\beta$ or $\beta=\nu$ or $\nu=\alpha$, it gives only the (known) antisymmetry of $R^{(2)}$ in its last two indices. So ν, α, β must all be different, which totals $\frac{1}{6} n(n-1)(n-2)$ possibilities, and for each of these μ can take on any of its n values.

How many of these equations are linearly independent? If $n \leqslant 2$ there is no problem because there are then no equations of this type; so take $n \geqslant 3$. If $\mu=\nu$ the equation is:

$$
\begin{equation*}
R_{\mu \mu \alpha \beta}^{(2)}+R_{\mu \alpha \beta \mu}^{(2)}+R_{\mu \beta \mu \alpha}^{(2)}=0 \tag{3.95}
\end{equation*}
$$

(no summation), and none of the three componentst on the LHS appears in any other of the equations, so the particular one (3.95) is certainly independent of all the others. The same is true if $\mu=\alpha$ or if $\mu=\beta$ Equations of this type total $\frac{1}{2} n(n-1)(n-2)$. The remaining equations, of which there are $N \equiv \frac{1}{6} n(n-1)(n-2)(n-3)$, will have all four indices different. Consider any particular one, together with the three others formed by cyclically permuting all four indices. Then it is readily verified that these four equations contain between them six of the components of $R^{(2)}$ each repeated twice $(4 \times 3=6 \times 2)$, and further that none of these components figures in any of the other ($N-4$) equations. In other words, the set of N equations splits up into $\frac{N}{4}$ disjoint subsets. But in each subsrt only 3 of the 4 equations are linearly independent, since the 1st minus the 2nd plus the 3rd minus the 4 th gives identically zero. So, finally, the second of (3.92) amounts to $\frac{1}{2} n(n-1)(n-2)+\frac{3 N}{4}=\frac{1}{8} n(n-1)(n-2)(n+1)$ linearly independent relations among the components of $R^{(2)}$. Subtracting this number from $N_{(3)}+N_{(2)}$, one obtains

$$
\begin{equation*}
\left[\frac{1}{2} n\left(n+l_{i}\right)\right]^{2} \tag{3.96}
\end{equation*}
$$

as the number of independent components of the curvature tensor $R_{\mu \nu \alpha \beta \beta}^{a t s}$. (In a α_{4}, for example, there are 100.) To the
author's knowledge this simple result (3.96) is not in the literature.

Just as for $R \underset{\mu \nu \alpha \beta}{a b}$, there are only three distinct kinds of component of $R_{e}^{\lambda} \zeta \delta^{s} \beta^{t}$, namely:

The remainder of this section will be concerned with contractions of the curvature tensor. Use the p-symbol to contract (cf. (3.17)) R $\mathrm{R}_{\mathrm{a} \gamma}^{\mathrm{G}} \mathrm{\sigma}_{\alpha}^{\mathrm{s}} \mathrm{\beta}$ t over its first and third indexpairs, giving the two tensors:

$$
\begin{equation*}
\mathrm{B}_{\nu \beta}^{(r) f t} \equiv \mathrm{p}_{r}^{a}{ }^{a} \mathrm{R}_{a \nu \mu \beta}^{\mu t s^{\prime} t} \tag{3.98}
\end{equation*}
$$

Contraction, instead, over the first and second indices does not give identically zero, as in the Riemannian case, but nevertheless yie da no new tensors, since

$$
\begin{align*}
p_{+}{ }^{a} \cdot R_{a \mu \alpha \beta}^{\mu f} s t & =p_{r}^{a} \cdot f\left(R_{a \alpha \mu \beta}^{\mu} \rho^{f} t-R_{a \beta \mu \alpha}^{\mu t} f s\right. \\
& =B_{\alpha \beta}^{(r) s t}-B_{\beta \alpha}^{(r) t s} . \tag{3.99}
\end{align*}
$$

(3.98) says:

By utilizing the relations among the components of the curvature tensor which have just been derived, one finds that the quantities in (3.100) all derive from one symmetric and one antisymmetric matrix, in the following manner:.
author's knowledge this simple result (3.96) is not in the Iiterature.

Just as for $R{ }_{\mu \nu \alpha \beta}^{a b s}$, there are only three distinct kinds of component of $R_{e \nu}^{\lambda} f s_{\beta}^{t}$, namely:

The remainder of this section will be concerned with contractions of the curvature tensor. Use the p-symbol to contract (cf. (3.17)) R $\mathrm{R}_{\mathrm{H} \gamma}^{\mathrm{G}} \mathrm{s}_{\alpha \beta}^{t}$ over its first and third indexpairs, giving the two tensors:

$$
\begin{equation*}
B_{\nu \beta}^{(r) t t} \equiv p_{r}^{a} R^{\mu} R_{\alpha \nu \mu \beta}^{f} \tag{3.98}
\end{equation*}
$$

Contraction, instead, over the first and second indices aoes not give identicaliy zero, as in the Riemannian case, but nevertheless yieds no new tensors, since

$$
\begin{align*}
p_{+}{ }^{a} f R_{a \mu \alpha \beta}^{\mu} s^{s t} & =p_{r}^{a} \cdot f\left(R_{a \alpha \mu}^{\mu} \beta^{f t}-R_{a \beta \mu \alpha}^{f^{t} f}\right) \\
& =B_{\alpha \beta}^{(r) s t}-B_{\beta \alpha}^{(r) t s} . \tag{3.99}
\end{align*}
$$

(3.98) says:

$$
\left.\begin{array}{l}
B_{\nu \beta}^{(1)} f_{\nu t}=R \mu_{\nu \mu \beta}^{G} \mu^{t}+R_{2 \nu \mu \beta}^{\mu b 2 t}=R \alpha_{\nu}^{\mu} \mu_{\mu}^{t} \tag{3.100}\\
B^{(2)} v_{\beta}^{t}
\end{array}\right\}
$$

$$
\because
$$

By utilizing the relations among the components of the curvature tensor which have just been derixed, one finds that the quantities in (3.100) all derive from one symmetric and one antisymmetric matrix, in the following manner:

$$
\left.\begin{array}{l}
R_{(s) \mu \nu} \equiv B_{\mu \nu}^{(1)} \mu_{\mu \nu}=B_{\mu \nu}^{(1) 22}=-B^{(2) 12} \mu \nu=+B_{\mu \nu}^{(2) 21} \tag{3.101}\\
R_{(A) \mu \nu} \equiv B_{\mu \nu}^{(2), 1}=B^{(2) 22}=B^{(1))^{2} 2}=-B^{(1) 21} \mu \nu
\end{array}\right\}
$$

Comparison with (3.20) to (3.24) shows that $B^{(1)} \mu^{4} f^{f}$ is Hermitian, $B^{(2) a t}$ is anti-Hermitian, and that they are related by (cf. (3.24)): $\quad\left(i \times B^{(1)}\right)_{\mu^{\nu}}^{a t}=-B^{(2) a_{\nu} t}$.

So there is essentially only one contracted curvature tensor; and it is completely specified by the complex Hermitian matrix $\left(R_{(s) \mu \nu}+i R_{(A)} \mu_{\nu}\right)-j u s t$ as $\left(\gamma_{\mu \nu}+i \omega_{\mu \nu}\right)$ specifies the metric tensor.

The shortest route to an explicit formula for the contracted curvature tensor is via (3.99) which, with $r=2$, gives:

$$
\begin{align*}
& B_{\beta}^{(2)} s_{\beta}^{t}=\frac{1}{2}\left(R_{2}^{H} \mu_{\alpha}^{S t}-R_{1}^{\mu_{1}^{2} s_{\alpha}^{t}}\right) \tag{3.103}
\end{align*}
$$

$$
\begin{align*}
& R^{(A)}\left(\mu \nu=B^{(2)} \mu \nu=R_{(2)}^{\alpha} \cdot \alpha \mu \nu=T_{2 \alpha}^{\alpha} \alpha^{\prime} \mu, \nu-T_{2 \alpha \nu, ~}^{\alpha} \alpha^{\prime}, \dot{\alpha}\right\} \tag{3.104}
\end{align*}
$$

But (3.64ii) and (3.67) lead to:

$$
\begin{align*}
& \text { Write } \quad \Psi \equiv \frac{1}{4} \log g=\frac{1}{2} \log \left(\operatorname{det}\left\|G_{\mu \nu}\right\|\right) \tag{3.106}
\end{align*}
$$

Then, combining (3.104) and (3.105):

$$
\left.\begin{array}{l}
\mathrm{R}_{(s) \mu \nu}=\Psi, \mu^{\mu}, \nu+\Psi, \mu^{2}, \nu \tag{3.107}\\
\mathrm{R}_{(A) \mu \nu}^{2}=\Psi, \mu^{2}, \nu-\Psi, \mu^{2}, \dot{2}
\end{array}\right\}
$$

The behaviour of Ψ under the analytic coordinate trans' formation (3.41) is worth noting. (3.40) and (3.47) imply that, in terms of the complex coordinate notation introduced in (3.70), the transformation law for $G_{\mu \nu}$ can be written:

$$
\begin{equation*}
G_{\mu \nu}^{\prime}=\frac{\partial z^{\alpha}}{\partial \mu^{\prime}} \sqrt{\left.\frac{\partial z^{\prime} \beta}{\partial z^{\prime \prime}}\right)} G_{\alpha \beta} \tag{3.108}
\end{equation*}
$$

$$
\therefore \Psi^{\prime}=\Psi+\frac{\frac{1}{2}}{2}\left[\log \left(\operatorname{det}\left\|\frac{\partial z^{\lambda}}{\partial z^{\top}}\right\|\right)+\log \left(\operatorname{det} \| \overline{\frac{\partial z^{\lambda}}{\partial z^{2}} \|}\right)\right] \text { (3.109) }
$$

If the first index-pair of $B^{(r)} \mu_{\mu \nu}{ }^{\dagger}$ is raised, the resulting mixed tensors satisfy relations precisely similar to (3.101) -
call them (3.101') - with

$$
\left.\begin{array}{l}
R_{(S)^{\lambda} \cdot \nu}=\gamma^{\lambda \mu} R_{(s) \mu \nu}+\omega^{\lambda \mu} R_{(A) \mu \nu} \tag{3.110}\\
R_{(A)^{\lambda} \cdot \nu}=\gamma^{\lambda \mu} R_{(A) \mu \nu}-\omega^{\lambda \mu} R_{(S) \mu \nu}
\end{array}\right\}
$$

Defining the possible contractions of $B_{a \nu}^{(r) \lambda t}$ by:
one finds:

$$
\left.\begin{array}{l}
B^{(q, r)} \equiv p_{q}^{a \cdot f} B^{(r) \cdot b} \\
B^{(1,1)}=B^{(2,2)}=2 R(s)^{\lambda} \cdot \lambda \tag{3.112}\\
B^{(1,2)}=B^{(2,1)}=0
\end{array}\right\}
$$

so that there is essentially one, real, curvature scalar.
Various conteactions of the Bianchi identities (3.87) can be made. In contrast to the Riemannian case, it is possible to get identities involving only the contracted, curvature tensor by a single contraction (namely, over the first and second index-pairs); when written out, however, these have precisely the structure $(3.66)+(3.67)$, and so are equivalent to a statement of the existence of a Ψ such that (3.107) hold; they therefore tell us nothing new. The doublycontrácted identities are a fortiori already contained in (3.107); they take the quasi-Riemannian form:

$$
\begin{equation*}
\left(B^{(1) \alpha} \underset{s}{f}-\frac{1}{2} \delta_{\nu}^{\alpha} \delta_{s}^{f} B_{a \lambda}^{(\omega \lambda}\right) ; \alpha=0, \tag{3.113}
\end{equation*}
$$

which can also be written:

§3.6 Subspaces

This section is concerned with placing in a rather more general context the theory of analytic subspaces to which Yano's discussion ${ }^{[69]}$ (cf. Chapter 2) is contined. The purpose is to emphasize and make explicit (with a proof which is the author's) the fact that choosing the imbedding functions to be analytic does not give the whole class of Kähler manifolds which are contained in the original K_{n}. A theorem due to Calabi ${ }^{[72]}$ which complements and is more profound than this essentially straightforward point is given at the end of the section. (It should be added that in [68], p. 176 Bochner gives examples of manifolds not imbeddable complex-analytically in a flat manifold of any finite dimension; and that, from its authors' different standpoint, a related remark occurs in [71] p.534.)

We work primarily in terms of complex coordinates, defined as in (3.70). Also, only local imbeding is considered (global questions are of course much harder). Let a \mathcal{K}_{n} be given, with coordinate system $\left(z_{a}^{\mu}\right)$. Introduce the constraintd:

$$
\begin{equation*}
z^{\mu}=\mathrm{I}^{\mu}\left(\xi^{\alpha}, \overline{\xi^{\alpha}}\right) \tag{3.114}
\end{equation*}
$$

where the f^{μ} are n functions of the $m<n$ complex variables ξ^{α} and of their complex conjugates $\overline{\xi^{\alpha}}$. (As in Chapter 2, let $\alpha, \beta \ldots$ range over 1 to m, while $\mu, \nu \ldots$ range over 1 to n_{0}) (3.114) defines a certain subspace of the $\mathcal{J} \alpha_{n}$, of real dimension 2 m provided that the system of constraints has its maximum rank (cf. [67] p.75); call it $S_{2 m}$. Under
what conditions is $S_{2 m}$ a \mathcal{K}_{m} ? The question is not as it stands well posed, since the method of equipping the $S_{2 m}$ with a metric has not been specified. Let the $\mathcal{f} \alpha_{n}$ have basic function $\Omega\left(z \mu, \overline{z^{\mu}}\right)$, so that its metric is determined by the complex equation (3.73). Write

$$
\begin{equation*}
\Omega\left(\pm{ }^{\mu}\left(\xi^{\alpha}, \overline{\xi^{\alpha}}\right), \overline{\Psi^{\mu}\left(\xi^{\alpha}, \overline{\xi^{\alpha}}\right)}\right) \equiv \hat{\Omega}\left(\xi^{\alpha}, \overline{\xi^{\alpha}}\right), \tag{3.215}
\end{equation*}
$$

and consider the following possibility.
Definition I: The metric tensor for $S_{2 m}$ is

$$
\left(\begin{array}{cc}
\hat{g}_{\alpha \beta}^{s} t
\end{array}\right)=\left(\begin{array}{cc}
\hat{\gamma}_{\alpha \beta} & \hat{\omega}_{\alpha \beta} \tag{3.116}\\
-\hat{\omega}_{\alpha \beta} & \hat{\gamma}_{\alpha \beta}
\end{array}\right)^{2 m}
$$

where $\quad \hat{\gamma}_{\alpha \beta}+i \hat{\omega}_{\alpha \beta} \equiv \hat{G}_{\alpha \beta}=4 \frac{\partial^{2} \hat{\Omega}}{\partial \xi^{\alpha} \partial \overline{\xi \beta}}$.
It is clear that, with this definition, $S_{2 m}$ is ia \mathcal{K}_{m}. However, this is not in fact a very useful way of defining the metric, since if P, P^{\prime} are two neighbouring points of \mathcal{K}_{n} both lying in $S_{2 m}$ then the distance $|\overrightarrow{P P}|$ is, by (3.79):

$$
\begin{align*}
d s & \left.=\left[\xi_{\mu \nu}^{a b} d z \psi_{a}^{\mu}\right\} z_{f}^{\nu}\right]^{1 / 2}=\left[G_{\mu \nu} d z \mu \overline{d z^{\nu}}\right]^{1 / 2} \\
& =\left[4 \frac{\partial^{2} \Omega}{\partial z z^{\mu} \partial z^{\nu}}\left(\frac{\partial f^{\mu}}{\partial \xi^{\alpha}} d \xi^{\alpha}+\frac{\partial f \mu}{\partial \xi^{\alpha}} d \overline{\xi^{\alpha}}\right)\left(\frac{\partial \overline{f^{\nu}}}{\partial \xi \beta} d \overline{\xi \beta}+\frac{\partial f^{\nu}}{\partial \xi \beta} d \xi \beta\right)\right]^{1 / 2} \tag{3.218}
\end{align*}
$$

qua displacement in \mathcal{K}_{n}, and:

$$
\begin{align*}
\hat{\mathrm{ds}} & =\left[\hat{\varepsilon}_{s t} \alpha \xi_{s}^{\alpha} d \xi \beta_{t}\right]^{1 / 2}=\left[\hat{G}_{\alpha \beta} d \xi^{\alpha} d \overline{\xi \beta}\right]^{1 / 2} \\
& =\left[4 \frac{\partial^{2} \hat{\Omega}}{\partial \xi^{\alpha} \partial \overrightarrow{\xi \beta}} d \xi^{\alpha} d \overline{\xi \beta}\right]^{1 / 2} \tag{3.119}
\end{align*}
$$

qua displacement in $S_{2 m}$, and in general as $\neq \hat{d s}$. We therefore abandon this definition, and adopt
Definition II: The metric tensor in $S_{2 m}$ is:

$$
\begin{equation*}
\hat{g}_{\alpha \beta}^{s, t}=\sum_{\mu, a} \sum_{\nu, t} \frac{\partial z_{a}^{\mu}}{\partial \xi_{s}^{\alpha}} \frac{\partial z_{t}^{\nu}}{\partial \xi \beta_{t}} g_{\mu \nu}^{a b} \tag{3.120}
\end{equation*}
$$

This ensures (cf. (3.218)) that the distance $|\overrightarrow{\mathrm{PP}}|$ is the same in the two spaces: the manifold $\left(S_{2 m}\right.$ is said to be imbedded isometrically in \mathcal{K}_{n}. $S_{2 m}$ is however no longer necessarily
a K_{m}. It the f^{μ} are analytic functions of the ξ^{α} only, then, using the $C-R$ equations, (3.120) can be translated into:

$$
\left(\hat{g}_{\alpha \beta}^{s t}\right)=\left(\begin{array}{cc}
\hat{\gamma}_{\alpha \beta} & \hat{\omega}_{\alpha \beta} \tag{3.121i}\\
-\widehat{\omega}_{\alpha \beta} & \hat{\gamma}_{\alpha \beta}
\end{array}\right)
$$

where

$$
\begin{equation*}
\hat{\gamma}_{\alpha \beta}+i \hat{\omega}_{\alpha \beta}=\frac{\partial z^{\mu}}{\partial \xi^{\alpha}} \frac{\partial \overrightarrow{z^{\nu}}}{\partial \overline{\xi \beta}} G_{\mu \nu}=4 \frac{\partial^{2} \hat{\Omega}}{\partial \xi^{2} \partial \frac{2}{\xi \beta}} \tag{3.121ii}
\end{equation*}
$$

so that $S_{2 m}$ is a \mathcal{W}_{m}. This is the case of analytic subspaces, mentioned in Chapter 2, and first treated in [65] pp.335-8. However, one can readily show that. for $S_{2 m}$ to be a α_{m} it is not necessary that the f^{μ} be analytic. Proof. Consiaer any \mathcal{K}_{m}, with coordinate system (ξ_{s}^{α}), and metric tensor ($\hat{\mathrm{g}}_{\alpha}^{s} \mathrm{\beta}$). The latter is a Riemannian metric inva real $2 \mathrm{~m}-$ dimensional space, $R_{2 m}$ say. This $R_{2 m}$ can be`imbedded isometrically in a real euclidean space, E_{N} say, where $\mathbb{N} \leqslant \frac{2 m(2 m+1)}{2}$ (cf. [67] p.268). Let the metric tensor of the latter have as eigenvalues (+1) r times, (-1) (N-r) times. This \mathbb{E}_{N} can in turn be imbedded in an $\mathbb{E}_{N^{\prime}}$ which is such that it has eigenvalues (+1) r^{\prime} times, (-1) ($N^{\prime}-r^{1}$) times, where $r^{\prime},\left(N^{\prime}-r^{\prime}\right)$ are the smallest even integers not less than r,

$$
\begin{equation*}
\Omega=\frac{1}{4} \sum_{A=1}^{N / 2} \varepsilon_{A}\left[\left(d z_{1}^{A}\right)^{2}+\left(d z_{2}^{A}\right)^{2}\right] \tag{3.122i}
\end{equation*}
$$

where

$$
\varepsilon_{A}=\left\{\begin{array}{cc}
+1 & 1 \leqslant A \leqslant \frac{1}{2} r^{\prime} \tag{3.122ii}\\
-1 & \frac{1}{2} r^{\prime}<A \leqslant \frac{1}{2} \mathbb{N}^{\prime}
\end{array}\right.
$$

We have, therefore, a \mathcal{K}_{m} which is imbedded isometrically in the sense of Definition II in a $\mathcal{K}_{\frac{N^{\prime}}{2}}$. Suppose the contrary of what is to be proved. Then there exists a set of $\frac{1}{2} \mathbb{N}^{\text {P }}$ analytic functions of the $\xi^{\alpha}, F^{A}\left(\xi^{\alpha}\right)$ say, such that \mathcal{K}_{m} is
the subspace of $\mathcal{K}_{\frac{N^{\prime}}{}}$ determined by:

$$
\begin{equation*}
z^{A}=F^{A}\left(\xi^{\alpha}\right) \quad\left(A=1,2 \ldots \frac{1}{2} N^{1}\right) \tag{3.123}
\end{equation*}
$$

Therefore the metric in \mathcal{K}_{m} is derivable (cf. (3.12lii)) from the following basic function:

$$
\begin{equation*}
\hat{\Omega}\left(\xi^{\alpha}, \overline{\xi^{\alpha}}\right)=\Omega\left(F^{A}, \overline{F^{A}}\right)=\frac{1}{4} \sum_{A=1}^{N^{\prime} / 2} \varepsilon_{A}\left|F^{A}\left(\xi^{\alpha}\right)\right|^{2} \tag{3.124}
\end{equation*}
$$

But the initial $\mathcal{\alpha}_{m}$ was arbitrary, so it can be chosen so as to have a basic function which is not expressible as the sum of squares of moduli of $\frac{1}{2} N^{\prime}$ (which is $\leqslant m^{2}+\frac{1}{2} m+1$) analytic functions of the ξ^{α}, thereby giving a contradiction.

Reverting to analytic imbedding, a beautiful result of I.Calabi ${ }^{[72]}$ should be mentioned. Define ε_{∞}, to be the infinite-dimensional euclidean Kähler space with metric derived from a basic function of form (3.122i) but with the summation over $(-\infty,+\infty)$, and with $\quad \varepsilon_{A}=\left\{\begin{array}{rl}+1 & 1 \leqslant A<\infty \\ -1 & -\infty<A \leqslant-1\end{array}\right.$
Points of ε_{∞} are those with finite norm in the sense of

$$
\sum_{-\infty}^{\infty}\left|z^{A}\right|^{2}<\infty
$$

(so the ε_{∞} is a Hilbert space). He proves that any $\mathcal{\alpha}_{n}$ can be imbedded isometrically and analytically in ε_{∞} or (There is also a converse result.)

§3.7 Formulae relating formalisms I and II

Write the change of variables (2.11) as:

$$
\left.\begin{array}{l}
z{ }^{\mu}=z \mu_{1}^{\mu}+i z_{2}^{\mu} \tag{3.125}\\
z \mu^{\bar{\mu}}=z_{1}^{\mu}-i z_{2}^{\mu}
\end{array}\right\}
$$

and apply it to the quantities of Chapter 2 to convert them, using essentially the matrix ($\left.T^{i^{\prime}}{ }_{j}\right)$ of (2.13), to their components in Yano's 'real coordinate system', i.e. Into the formalism or the present chapter. In the following formulae 'conj' means interchange barred and unbarred indices on the IHS and i and $-i$ on the RHS.

$$
\begin{align*}
& v^{\mu}=v_{1}^{\mu}+i v_{2}^{\mu} ; \text { conj. , (3.126) } \\
& v_{\mu}=\frac{1}{2} v_{\mu}^{1}+\frac{1}{2 i} v_{\mu}^{2} ; \text { conj. } \tag{3.127}\\
& g_{\mu \bar{\nu}}=\frac{1}{3}\left(\gamma_{\mu \nu}+i \omega_{\mu \nu}\right) ; \text { conj } \text {. } \tag{3.128}\\
& g^{\mu \bar{\nu}}=2\left(\gamma^{\mu \nu}+i \omega^{\mu \nu}\right) \text {; conj. } \tag{3.129}\\
& T_{\bar{\mu} \nu \sigma}=\frac{1}{2}\left(\Gamma_{\mu \nu \sigma}^{(1)}-i \Gamma_{\mu \nu \sigma}^{(2)}\right) ; \text { conj } . \tag{3.130}\\
& \Gamma^{\lambda}{ }_{v \sigma}=\Gamma_{(1) \cdot v \sigma}^{\lambda}-i \Gamma_{(2, \lambda}^{\lambda} \cdot v \sigma \quad ; \quad \text { conj. } \tag{3.13I}\\
& R_{\mu \bar{\nu} \alpha \bar{\beta}}=\frac{1}{4}\left(R_{\mu \nu \alpha \beta}^{(1)}-R_{\mu \nu \alpha \beta}^{(3)}-i R_{\mu \nu \alpha \beta}^{(2)}-i R_{\alpha \beta \mu \nu}^{(2)}\right) ; \text { conj. } \tag{3.132}
\end{align*}
$$

There are also the relations inverse to (3.132):

$$
\begin{align*}
& R_{(2)}^{\lambda} \lambda_{\nu \alpha \beta}=\frac{1}{2 i}\left(R^{\lambda} \cdot \nu \alpha \bar{\beta}+R_{\nu}^{\lambda} \nu_{\bar{\alpha} \beta}-R^{\lambda} \cdot \bar{\nu} \bar{\alpha} \beta-R^{\lambda} \cdot \bar{\nu} \alpha \bar{\beta}\right) \tag{3.133}\\
& R_{(3)}^{\lambda} \cdot \nu \alpha \beta=\frac{1}{2}\left(R_{\cdot \nu}^{\lambda} \alpha_{\bar{\beta}}-R^{\lambda} \cdot \nu \bar{\alpha} \beta+R^{\bar{\lambda}} \cdot \bar{\nu} \bar{\alpha} \beta-R^{\bar{\lambda}} \cdot \bar{\nu} \alpha \bar{\beta}\right)
\end{align*}
$$

By combining this last equation wịth (2.24ii) + (3.13I) one can obtain the following expressions, "alternative to (but also deducible from) those which result from (3.83):

$$
\begin{align*}
& \left.R_{(1)}^{\lambda} \cdot \nu \alpha \beta=\frac{1}{2}\left(T_{(1)}^{\lambda} \cdot \nu \alpha, \beta-T_{(1, \nu \rho, \alpha,}^{\lambda}+\Gamma_{(2)}^{\lambda} \cdot \cdot \alpha,\right)_{\beta}^{2}-\Gamma_{(2)}^{\lambda} \cdot \nu \beta, \alpha^{2}\right) \\
& \mathbb{R}_{(2)}^{\lambda} \lambda_{\cdot \alpha \beta}=\frac{1}{2}\left(T_{(1)} \lambda_{\nu \alpha,}^{\lambda},{ }_{\beta}^{2}-T_{(1)}^{\lambda}{ }_{\cdot \nu \beta},{ }_{\alpha}^{2}-T_{(2)}^{\lambda} \lambda_{\nu \alpha, \beta}+T_{(2)} \lambda_{\nu \beta}, \alpha\right) \tag{3.134}
\end{align*}
$$

CHAPTER 4

The Real Limit Space M_{n}

§4.1 Definition

Let, α_{n} be any Kähler space, and ($\left.z\right|_{a} ^{(k)}$ a coordinate system for it. Consider the manifold, M_{n} say, of real dimension n, defined by the constraints:

$$
\begin{equation*}
z \mu_{2}^{\mu}=0 \tag{4.1}
\end{equation*}
$$

Let ($z_{a}^{\mu}{ }^{\prime}$) be a new coordinate system for \mathcal{K}_{n}, derived from the old by the analytic transformation:

$$
\begin{equation*}
z_{1}^{\mu \prime}+i z_{2}^{\mu_{2}^{\prime}}=\mathcal{P}^{\mu}\left(z_{1}^{\alpha}+i z_{2}^{\alpha}\right) \tag{4.2}
\end{equation*}
$$

Then the constraints:

$$
z_{2}^{\mu_{2}^{\prime}}=0
$$

do not in general give the same subspace, M_{n}. The latter can therefore only be studied meaningfully when the coordinate transformation group in \mathcal{K}_{n} is suitably restricted, as will now be shown.

Theorem (4.3): A necessary and sufficient condition for M_{n} to be an invariant subspace under the transformation (4.2) is:

$$
\begin{equation*}
\rho^{\mu}\left(z^{\alpha}\right)=\overline{x^{\mu}}\left(z^{\alpha}\right) \tag{4.4}
\end{equation*}
$$

(For the definition of the complex conjugate of a function see the remarks following (2.5).) Functions satisfying (4.4) will be called real analytic functions, and correspondingly (4.2) a real analytic coordinate transformation.

Proof: To prove necessity, suppose that M_{n} is invariant.
Then

$$
\begin{gathered}
z_{2}^{\mu}=0 \Rightarrow z_{2}^{\mu}=0 \\
\therefore \quad x^{\mu}\left(z_{1}^{\alpha}\right)^{\prime}=\overline{د^{\mu}\left(z_{1}^{\alpha}\right)}=\overline{\Phi^{\mu}\left(z_{1}^{\alpha}\right)}
\end{gathered}
$$

The two analytic functions I^{μ} and $\overline{I^{\mu}}$ therefore coincide when all their arguments are real. By the fundamental theorem on uniqueness of analytic continuation of functions of several complex variables (ct. [74] p.34), this entails that e^{μ} and \bar{I}^{μ} coincide everywhere in their domain of analyicity. This argument is reveisible, which therefore proves sufficiency also. For the remainder of the chapter, only real analytic coordinate transformations in \mathcal{K}_{n} will be considered, so that M_{n} is well defined.

If $Q_{s}^{\alpha} \ldots \beta_{t}\left(z \mu_{a}^{\mu}\right)$ is any (tensorial or otherwise) field defined over some domain of \mathcal{K}_{n}, then the value of the quantity Q at any point of M_{n}, will be distinguished by enclosing it in angular brackets, $\left\langle Q_{s}^{\alpha} \ldots \beta_{t}\right\rangle$, and will be called a real limit' value of Q. An equation which obviously holds identically is: $\left\langle z_{2}^{\mu}\right\rangle \equiv 0$
Define:

$$
\begin{equation*}
x^{\mu} \equiv\left\langle z^{\mu}\right\rangle=\left\langle z_{1}^{\mu}\right\rangle \tag{4.5}
\end{equation*}
$$

The coordinate system $\left(z \mu_{a}^{\mu}\right)$ on $\mathcal{\beta}_{n}$ will be said to 'induce' the coordinate system $\left(x^{\mu}\right)$ on M_{n}. If $\left(x y^{\mu}\right)$ is the coordinate system induced by $\left(z \mu_{a}^{\prime}\right)$, then: ..

$$
x^{\mu^{\prime}}=\left\langle z^{\mu^{\prime}}\right\rangle=\left\langle f^{\mu}\left(z^{\alpha}\right)\right\rangle=\Psi^{\mu}\left(z_{1}^{\alpha}\right)=\mathrm{I}^{\mu}\left(\mathrm{x}^{\alpha}\right) \quad \text { (4.7) }
$$

which is a real coordinate transformation in M_{n} 'induced' by the real analytic transformation (4.2) in $\mathcal{\alpha}_{n}$. M_{n}, a real n-dimensional manifold with this transformation group, will be called the real limit space. (A preliminary study of this space appeared early in the literature, in $[65]$ pp.344-6. The connection with Crumeyrolle's 'sous-variété diagonale' has
already been noted in §1.3.)
At any point $P=\left(x^{\mu}\right)$ of M_{n} there is a real n-dimensional tangent vector space, $V_{n}(P)$ say, spanned by any n Iinearly independent infinitessimal displacements $\overrightarrow{P P}^{\prime}=\left(d x \mu^{\mu}\right)$, $P^{\prime} \in M_{n}$. There is clearly a (1-1) correspondance between the vectors $\epsilon V_{n}(P)$ and those vectors $\epsilon \dot{V}_{n}(P)$ whose components v_{a}^{μ} satisfy $v_{2}^{\mu}=0$. Using this correspondance, one can define in the following way an 'induced' Hermitian scalar product on M_{n}. Let $d x \mu$, dy ${ }^{\mu}$ be any two infinitessimal displacements in M_{n}, at P. Then, distinguishing this scalar product in M_{n} by using square brackets, (3.25) implies:

$$
\begin{equation*}
[d y \mid d x]=\left\langle\gamma_{\mu \nu}+i \omega_{\mu \nu}\right\rangle d x \mu^{\mu} d y^{\nu} \tag{4.8}
\end{equation*}
$$

If the two displacements coincide, we get the line-element expression for M_{n} :

$$
\begin{equation*}
d s^{2}=\left\langle\gamma_{\mu \nu}\right\rangle d x \psi^{\mu} d x^{\nu} \tag{4.9}
\end{equation*}
$$

(4.9) shows that lengths are determined in M_{n}, as in a Riemannian space, by a real symmetric matrix. The antisymmetric $\left\langle\omega_{\mu \nu}\right\rangle$, however, does not only enter into the geometry of M_{n} via its influence on "curvature (see below) (4.8) shows that even when undifferentiated it will affect angular measure in the space.

The transformation properties of real limit values of quantities under (4.7) will now be exhibited. For any quantity Q, difierentiation w.r.t. $z l_{1}^{\mu}$ clearly commutes with the bracket operation:

$$
\begin{equation*}
\frac{\partial}{\partial z \mu_{1}}\left\langle Q_{s}^{\alpha} \ldots \beta_{t}\right\rangle=\left\langle\frac{\partial}{\partial z \mu_{1}^{\mu}} Q_{s}^{\alpha} \ldots \beta_{t}\right\rangle \tag{4.10}
\end{equation*}
$$

(4.5), (4.6) and the C-R equations therefore imply:

$$
\left.\begin{array}{l}
\left\langle\frac{\partial z_{1}^{\prime \prime}}{\partial z_{1}^{\prime}}\right\rangle=\left\langle\frac{\partial z \mu_{2}^{\prime}}{\partial z_{2}^{\prime}}\right\rangle=\frac{\partial x_{1}^{\prime}}{\partial x^{\prime}} \tag{4.11}\\
\left\langle\frac{\partial z_{2}^{\prime}}{\partial z_{1}^{\prime}}\right\rangle=\left\langle\frac{\partial z_{1}^{\prime}}{\partial z_{2}^{\prime \prime}}\right\rangle=0
\end{array}\right\}
$$

A real limit value, $\left\langle Q^{\mu}\right\rangle$ say, transforming under (4.7) as:

$$
\begin{equation*}
\left\langle Q \mu^{\prime}\right\rangle=\frac{\partial x \mu^{\prime}}{\partial x^{\alpha}}\left\langle Q^{\alpha}\right\rangle \tag{4.12}
\end{equation*}
$$

will be called a real contravariant vector field in M_{n}, with analogous definitions for other tensors. The metric tensor in \mathcal{K}_{n} transforms under (4.2) as $(c f .(3.39)+(3.44))$:

$$
\begin{equation*}
\dot{g}_{\mu \nu}^{a} t^{\prime}=\frac{\partial z_{s}^{\alpha}}{\partial z_{\alpha}^{\prime \prime}} \frac{\partial z \beta_{t}^{\beta}}{\partial z_{6}^{\prime}} \delta_{\alpha}^{s}{ }_{\beta}^{t} \tag{4.13}
\end{equation*}
$$

Taking real limits of both sides one finds, using (4.11), that $\left\langle\gamma_{\mu \nu}\right\rangle$ and $\left\langle\omega_{\mu \nu}\right\rangle$ each transform separately under (4.7) as real second-rank tensors. In a similar way one findis that $\langle R(s) \mu \nu\rangle$, $\left\langle R_{(A) \mu \nu}\right\rangle$, and $\left\langle R_{(i)}^{\lambda} \cdot \nu \alpha \beta\right\rangle(i=1,2,3)$, are all real tensors of the appropriate ranks (2, and 4). Differentiation of (4.II) and use of the $C-R$ equations gives:

$$
\begin{equation*}
\left\langle\frac{\partial^{2} z_{2}^{\alpha, \prime}}{\partial z_{2}^{\mu} \partial z_{2}^{\prime \prime}}\right\rangle=0 \tag{4.14}
\end{equation*}
$$

From this, and the transformation law (3.53) for the Tav ${ }_{\text {a }}{ }^{c}$, one finds that $\left\langle\Gamma_{(1)}^{\lambda} \cdot \nu \sigma\right\rangle$ transforms like a real Riemannian affine connection, and $\left\langle T_{(2)}^{\lambda} \cdot v \sigma\right\rangle$ as a real thira-rank tensor; from (3.64i) the transformation behaviour of the quantities $\left\langle T_{\mu V \sigma}^{(a)}\right\rangle$ can also be found.
(It is perhaps worth remarking that there is no inconsistency between the tensorial character of $\left\langle T_{(2)} \lambda \cdot \nu \sigma\right\rangle$ under (4.7) and the fiact that all the $\Gamma_{a y \sigma}^{\lambda G c}$ ean be 'transformed away' at any one point of $\mathcal{\alpha}_{n}$; the resolution lies in the realization that to accomplish the latter it will in general be necessary to make a non-real analytic coordinate transformation.)

84.2 The structure of M_{n}

In this section the geometrical structure of M_{n} will be approached from a rather different angle, thereby complementing and extending the results just obtained. (The method of analysis and the conclusions drawn do not appear to have antecedents in the lIterature.)

It has been assumed throughout the preceding work, usually implicitly, that the basic function $\Omega\left(z \mu_{a}^{\mu}\right)$ is 'sufficiently' differentiable - up to fifth order, occasionally. In some neighbourhood of the real limit space there therefore exists the following Taylor-type expansion:

$$
\begin{equation*}
\Omega=a^{(0)}+a_{\mu}^{(1)} z_{2}^{\mu}+\frac{1}{2!} a_{\mu \nu}^{(2)} z_{2}^{\mu} z_{2}^{\nu}+\frac{1}{3!} a_{\mu \nu \sigma}^{(3)} z_{2}^{\mu} z_{2}^{\nu} z_{2}^{\sigma} \ldots \tag{4.15}
\end{equation*}
$$

where the $a^{(+)}$are functions of the $\left\langle z_{1}^{\alpha}\right\rangle \equiv x^{\alpha}$, given by:

$$
\begin{equation*}
a_{\mu \nu \cdots \theta}^{(r)}=\left\langle\frac{\partial^{(r)} \Omega}{\partial z_{2}^{\mu} \partial z_{2}^{\gamma} \ldots \partial z_{2}^{\theta}}\right\rangle \tag{4.16}
\end{equation*}
$$

and so are totally symmetric in their indices. (3.75) implies:

$$
\left.\begin{array}{l}
\left\langle\gamma_{\mu \nu}\right\rangle=a^{(0)} \mu_{\nu, \nu}^{\prime}+a_{\mu \nu}^{(2)} \tag{4.17}\\
\left\langle\omega_{\mu \nu}\right\rangle=a_{\nu, \mu}^{(1)}-a^{(1)} \mu, \nu
\end{array}\right\}
$$

Now, Ω is only determinate up to the addition of the real part of an arbitrary analytic function, so that a completely equivalent basic function is (cf. (3.74)):

$$
\begin{align*}
\Omega^{*} & =\Omega+\frac{1}{2}\left[f\left(z^{\alpha}\right)+\overline{f\left(z^{\alpha}\right)}\right] \\
& =\Omega+f_{1}\left(z_{1, z_{2}^{\alpha}}^{\alpha}\right) \tag{4.18}\\
f\left(z^{\alpha}\right) & \equiv f_{1}\left(z_{1}^{\alpha}, z_{2}^{\alpha}\right)+i f_{2}\left(z_{1}^{\alpha}, z_{2}^{\alpha}\right) . \tag{4.19}
\end{align*}
$$

if
By expanding f_{1} in a Taylor series at $z_{2}^{\alpha}=0$, and using the $C-R$ equations, it is readily established that the expansion of $\Omega^{*}(\mathrm{cf} .(4.15))$ is such that:

$$
\left.\begin{array}{rl}
a^{(0)^{*}} & =a^{(0)}+\left\langle f_{1}\right\rangle \tag{4.20}\\
a_{\mu}^{(1)^{*}} & =a_{\mu}^{(1)}-\left\langle f_{2}\right\rangle, \mu \\
a_{\mu \nu}^{(2)^{*}} & =a_{\mu \nu}^{(2)}-\left\langle\mathbf{I}_{1}\right\rangle, \mu, \nu
\end{array}\right\}
$$

and so on. (It is readily verified that 'starring' the RHS of (4.17) leads to just the same metric, as it must.) Now, $\left\langle P_{1}\right\rangle$ and $\left\langle f_{2}\right\rangle$ are two arbitrary and independent functions of x^{μ}. Choosing $\left\langle f_{1}\right\rangle=-a^{(0)}$ ensures that $\left\langle\Omega^{*}\right\rangle=0$; such a choice of basic function will be called 'canonical'. The possibility of this choice immediately dampens any hopes that M_{n} might contain a scalar field suitable for 'geometrizing' a physical meson field; this is rather ironic, in view of the fact that the whole geometry is derivable from a scalar, Ω. The freedom implied by the second of (4.20) is a precise counterpart of the gauge invarLance of electromagnetic theory.

We now examine more closely the nature of the coefficients up to the fourth order in the power series (4.15); so, rename these first few and (choosing a canonical basic function) write:

$$
\Omega=A_{\mu} z_{2}^{\mu}+\frac{1}{2!} g_{\mu \nu} z_{2}^{\mu} z_{2}^{\nu}+\frac{1}{3!} S_{\mu \nu \sigma} z_{2}^{\mu} z_{2}^{\nu} z_{2}^{\sigma}+\frac{1}{4!} H_{\mu \nu \sigma K} z_{2}^{\mu} z_{2}^{\nu} z_{2}^{\sigma} z_{2}^{k} ; \text {. (4.2I) }
$$

The relation of the first two coefficients to the metric tensor of M_{n} is (cf. (4.17)):

$$
\left.\begin{array}{l}
\left\langle\gamma_{\mu \nu}\right\rangle=g_{\mu \nu} \tag{4.22}\\
\left\langle\omega_{\mu \nu}\right\rangle=A_{\nu}, \mu F A \mu, \nu
\end{array}\right\}
$$

It is a reasonable presupposition that the third and fourth coefficients in (4.21) will play a part in determining the affine connection and curvature tensors of M_{n}; it is the
purpose of the remainder of the present section to elucidate this remark.

Under the (real) analytic coordinate transformation (4.2), inducing the real transformation (4.7) in M_{n}, one finds, from the defining equation (4.16), that the coefficionts in (4.21) transform as follows:

$$
\begin{aligned}
& A_{\mu}^{\prime}=\frac{\partial x^{\alpha}}{\partial x^{\prime}}{ }^{\prime} A_{\alpha} \\
& g_{\mu \nu}^{\prime}=\frac{\partial x^{\alpha}}{\partial x^{\prime} \nu^{\prime}} \frac{\partial x^{\beta}}{\partial x^{\nu^{\prime}}} g_{\alpha \beta}{ }^{\prime} \\
& \left.S_{\mu \nu \sigma}^{\prime}=\frac{\partial x^{\alpha}}{\partial x^{\prime}} \frac{\partial x^{\beta}}{\partial x^{\nu^{\prime}}} \frac{\partial x^{\varepsilon}}{\partial x^{\sigma}}, S_{\alpha \beta \varepsilon}-\frac{\partial x^{\alpha}}{\partial x^{t} \mu^{\prime}} \frac{\partial^{2} x \beta}{\partial x^{\prime} \partial x^{\sigma^{\prime \prime}}} A_{\alpha, \beta}-\frac{\partial^{3} x^{\alpha}}{\partial x^{\prime} \mu^{\prime} \partial x^{\nu^{\prime}} \partial x^{\sigma^{\prime}}} A_{\alpha}\right\}(4.23) \\
& H_{\mu \nu \sigma k}^{\prime}=\frac{\partial x^{\alpha}}{\partial x \mu^{\prime}}, \frac{\partial x \beta}{\partial x^{\gamma^{\prime}}} \frac{\partial x^{\sigma}}{\partial x^{\sigma^{\prime}}} \frac{\partial x^{\theta}}{\partial x^{k^{k}}}, H_{\alpha \beta \varepsilon \theta}-\frac{\partial x^{\alpha}}{\partial x^{\left\langle\mu^{\prime}\right.}} \frac{\partial^{3} x \beta}{\partial x^{\nu^{\prime}} \partial x^{\sigma^{\prime}} \partial x^{\left.k^{\prime}\right\}}} g_{\alpha \beta} \\
& -\left(\frac{\partial x^{\alpha}}{\partial x \mu^{\prime}} \frac{\partial x \beta}{\partial x^{\left\{\nu^{\prime}\right.}} \frac{\partial^{2} x^{\varepsilon}}{\partial x^{\sigma^{\prime}} \partial x^{\left.\kappa^{\prime}\right\}}}+\frac{\partial x^{\alpha}}{\partial x^{\left[k^{\prime} k^{\prime}\right.}} \frac{\partial x \beta}{\partial x^{\sigma^{\prime}}} \frac{\partial^{2} x^{\varepsilon}}{\partial x^{\prime \prime} x^{\prime} \partial \mu^{\prime}}\right) \dot{g}_{\alpha \beta, \varepsilon}
\end{aligned}
$$

where the curly bracket notation, as introduced previously, indicates sumation over the terms obtained by cyclic permutation of the indices. (4.23) only hold for canonical basic functions. The last two equations show the non-tensorial nature of $S_{\mu \nu \sigma}$ and $H_{\mu \nu \sigma k}$. It is, however, possible to associate with each of them a closely related totally symmetric tensor; and these tensors, $T_{\mu \nu \sigma}$ and $K_{\mu \nu \sigma K}$ say, can, then be ușed in conjunction with A_{μ} and $g_{\mu \nu}$ and their derivatives W.r.t. the x^{μ} to provide a covariant description of the geometry of M_{n} up to the level of the curvature tensors one would need in addition an infinite number of other tensors, of fifth and higher ranks, corresponding to the infinite power series (4.21), to characterize the complete geometry in terms of quantities accessible on M_{n} talone ($c f$. the remarks in §1.1).

In the rest of this section the \rangle signs will be omitted, since all quantities will be real limit values; correspondingly $\frac{\partial}{\partial z \mu_{1}}$ (written, μ) and $\frac{\partial}{\partial x^{\mu}}$ (written , μ a notation anticipated in (4.22) \& (4.23)) are interchangeable; and 'tensor' will always mean tensor under. M_{n} 's real transformation group (4.7).

Introduce the following quantities formed from g g $\mu \nu=$ $\left\langle\gamma_{\mu \nu}\right\rangle$ as if it was a Riemannian metric tensor.
The inverse matrix: $\quad g^{\lambda \mu} g_{\mu \nu}=\delta_{\nu}^{\lambda}$

$$
(4.24)^{i}
$$

$$
\begin{gathered}
T_{\cdot \nu \sigma}^{(R) \lambda}={ }^{\frac{1}{2} g^{\lambda \mu}\left(g \mu \nu, \sigma+g \mu \sigma, \nu-g_{\nu \sigma, \mu}\right)} \\
R^{(R) \lambda} \cdot \nu \alpha \beta=\left[T^{(R) \lambda} \cdot \nu \alpha, \beta-T^{(R) \lambda} \cdot \theta \alpha T_{\cdot \nu \beta}^{(R) \theta}\right]-\left[,^{\alpha \leftrightarrow \beta}\right]
\end{gathered}
$$

We shall now find $T_{\mu \nu \sigma}$, in subsection (i), and $K_{\mu \nu \sigma k}$ in (ii), the procedures in the two cases being closely parallel.
(i) By (3.75) etc. it is clear that $S_{\mu \nu \sigma}$ will only figure in (real limit) expressions which involve first derivatives of $\gamma_{\mu \nu} w_{p} r . t$. the z_{2}^{α}. $T_{\mu \nu \sigma}^{(2)}$ is one such:

$$
\Gamma_{\mu \nu \sigma}^{(2)}=\frac{1}{2}\left(A_{\nu, \mu, \sigma}+A_{\sigma, \mu, \nu}-A_{\mu, \nu, \dot{\sigma}}+S_{\mu \nu \sigma}\right) \quad \text { (4.27) }
$$

but it is not a tensor. From the transformation properties of $T_{(1) \cdot v \sigma}^{\lambda}$ (cf. $\left\{4.1\right.$) and of the 'Riemannian' object $T_{V, V \sigma}^{(R)}$ it follows that ($\left.\Gamma_{(1)}^{\lambda} \cdot v \sigma-\Gamma^{(\Omega)} \lambda_{v \sigma}\right)$ is a tensor. Therefore so is $\quad \omega_{\mu \lambda}\left(\Gamma_{(1)}^{\lambda} \cdot v \sigma-\Gamma_{\cdot v \sigma}^{(R) \lambda}\right)$ Therefore, by (3.64i), we can introduce the following tensor:

$$
\begin{equation*}
J_{\mu v \sigma} \equiv T_{\mu \nu \sigma}^{(2)}-\omega_{\mu \lambda} T_{V \nu \sigma}^{(R) \lambda} \tag{4.28}
\end{equation*}
$$

J is symmetric in its last two indices, so we can define a totally symmetric tensor by:

$$
\begin{equation*}
T_{\mu \nu \sigma} \equiv J_{\{\mu \nu \sigma\}} \tag{4.29}
\end{equation*}
$$

Combining (4.27) - (4.29) gives:

$$
\begin{equation*}
S_{\mu \nu \sigma}=\frac{2}{3} T_{\mu \nu \sigma}-\frac{1}{3} A_{\{\mu, \nu, \sigma\}}-\frac{2}{3} \omega_{\lambda i \mu} T_{0}^{(R) \lambda}{ }_{\cdot \nu \sigma\}} \tag{4.30}
\end{equation*}
$$

Combining (4.27), (4.28) and (4.30) gives the (surprisingly simple) result:

$$
\begin{equation*}
J_{\mu \nu \sigma}=\frac{1}{3} T_{\mu \nu \sigma}+\frac{1}{3}\left(\omega_{\mu \nu \mid \sigma}+\omega_{\mu \sigma \mid \nu}\right) \tag{4.3I}
\end{equation*}
$$

where a vertical stroke signifies covariant differentiation w.r.t. the aftine connection $\Gamma^{(R) \lambda} \cdot \nu \sigma$.

In spaces for which $A_{\mu} \equiv 0$, $S_{\mu \nu \sigma}$ does transform as a tensor (cf. (4.23)). (4.30) shows that this tensor is just $\frac{2}{3} T_{\mu \nu \sigma}$, which is justification for considering T as the tensorial counterpart of S.

A remark on the form of (4.3I). Its 'gauge-invariance' (the fact that the A_{μ} 's only appear via the combination $\omega_{\mu \nu}$) is noteworthy, and is connected with the existence of just the 'right' number of derivatives of $\omega_{\mu \nu} w . r . t$. the x^{μ}, in the following sense. The tensor on the LHS of (4.3I) has $\frac{1}{2} n^{2}(n+1)$ ($=40$ in M_{4}) linearly independent components, because $T_{\mu \nu \sigma}^{(2)}$ has. Any totally symmetric third-rank tensor, and therefore T, has only $\frac{1}{6} n(n+1)(n+2) \quad\left(=20\right.$ in $\left.M_{4}\right)$, so that some quantity other than T and with at least $\frac{1}{3} n\left(n^{2}-1\right)$ different components must also enter into the RHS. Now, the number of derivatives of the $\omega_{\mu \nu} w . r . t . x^{\mu}$ is $\frac{1}{2} n^{2}(n-1)$, but these are connected by the 'Maxwell'-type identities:

$$
\begin{equation*}
\omega_{\{\mu \nu, \sigma\}} \equiv 0 \tag{4.32}
\end{equation*}
$$

of which there are $\frac{1}{6} n(n-1)(n-2)$; so that the number of Inearly independent derivatives of the $\omega_{\mu \nu}$ is $\frac{1}{3} n\left(n^{2}-1\right)$ ($=20$ in M_{4}).
(ii) It is clear that $H_{\mu \nu \sigma k}$ will only figure in expressions which involve second derivatives of $\gamma_{\mu \nu}$ w.r.t. the z_{2}^{α}. $T_{\mu \nu \sigma, k_{k}^{2}}^{(2)}$ is one such:

$$
\begin{equation*}
\Gamma_{\mu \nu \sigma, k}^{(2)}=\frac{1}{2}\left(\gamma_{\sigma k}, \mu^{\prime}, \nu, \gamma_{\nu k, \mu^{\prime}, \sigma}^{\prime}-\gamma_{\mu k, \nu, \sigma}+H_{\mu \nu \sigma k}\right) \tag{4.33}
\end{equation*}
$$

but it is not a tensor. Neither $R^{(1)} \mu^{(1)}$ nor $\mathbb{R}_{\mu \nu \sigma k}^{(2)}$ involve this quantity (cf. (3.90)), but from (3.84) we find:

$$
\begin{aligned}
R_{\mu \nu \sigma k}^{(3)}= & T_{\mu \nu \sigma, k^{2}}^{(2)}+T_{\mu \nu k, \sigma}^{(1)}-T_{\alpha \mu k}^{(1)} T_{(1) \cdot \nu \sigma}^{\alpha} \\
& -T_{\alpha \mu k}^{(2)} T_{(2) \cdot \nu \sigma}^{\alpha}-T_{\alpha \mu \sigma}^{(1)} T_{(1) \cdot \nu k}^{\alpha}-T_{\alpha \mu \sigma}^{(2)} T_{(2) \cdot \nu k}^{\alpha} \quad(4 \cdot 34)
\end{aligned}
$$

$\mathrm{R}^{(3)}$ is symmetric in its last two (and in its first two) indices, so we can define a totally symmetric tensor by:

$$
\begin{equation*}
\mathrm{K}_{\mu \nu \sigma k}=\mathrm{R}^{(3)} \mu_{\{\nu \sigma k\}} \tag{4.35}
\end{equation*}
$$

Combining (4.33) - (4.35) gives:

$$
\begin{align*}
\mathbb{H}_{\mu \nu \sigma k}= & \frac{2}{3} K_{\mu \nu \sigma k}-\frac{1}{3} \gamma_{\{\nu \sigma, k\}, \mu} \\
& +\frac{4}{3}\left(T_{\alpha \mu\{k}^{(1)} T_{(1) \cdot \nu \sigma\}}+T_{\alpha \mu\{k}^{(2)} T_{(2) \cdot \nu \sigma\}}^{\alpha}\right) \tag{4.36}
\end{align*}
$$

Combining (4.33), (4.34) and (4.36) (or alternatively, judieions use of (3.91) and (3.92)) gives:

$$
\begin{equation*}
R_{\mu \nu \sigma K}^{(3)}=\frac{1}{3} K_{\mu \nu \sigma k}+\frac{1}{3}\left(R_{\mu \mu \nu K}^{(1)}+R_{\mu k \nu \sigma}^{(1)}\right) \tag{4.37}
\end{equation*}
$$

In spaces for which $g \mu \nu \equiv 0$; $H \mu \nu \sigma k$ does transform as a tensor (cf. (4.23)). (4.36) entails that this tensors just $\frac{2}{3} K_{\mu v \sigma k}$, which is justification for considering K as the tensorial counterpart of H .

A remark on the form of (4.37). The tensor on the LHS has $\frac{1}{8} n(n+1)\left(n^{2}+n+2\right) \quad\left(=55\right.$ in $\left.M_{4}\right)$ linearly independent components (ci. (3.93)). Any totally symmetric fourth-rank tensor, and therefore K, has only $\frac{1}{24} n(n+1)(n+2)(n+3)$ ($=35$ in M_{4}), so that some quantity other, than X and
with at least $\frac{1}{12} n^{2}\left(n^{2}-1\right)$ different components must also enter into the RHS. But this is precisely the number of linearly independent components of $R_{\mu \nu \sigma k}^{(1)}$ since (cf. §3.5) it has all the symmetry properties of a Riemannian curvature tensor and the latter is well known ${ }^{[25]}$ to have this number of components ($=20$ in M_{4}).

The section concludes with formulae from which all geometrical quantities up to the curvature tensors can be found in terms of the set:

(4.31) gives $J_{\mu \nu \sigma}$ in terms of these (it is independent of $\mathbb{K}_{\mu \vee \sigma k}$). From (4.28), and by use of the identities:

$$
\begin{align*}
& \gamma^{\mu \alpha} \gamma_{\alpha \nu}+\omega^{\mu \alpha} \omega_{\alpha \nu}=\delta_{\nu}^{\mu} \\
& \omega^{\mu \alpha} \gamma_{\alpha \nu}-\gamma^{\mu \alpha} \omega_{\alpha \nu}=0 \tag{4.39}
\end{align*}
$$

(which are a transcription of (3. 26)), one finds:

$$
\left.\begin{array}{l}
T_{\mu \nu \sigma}^{(1)}=T_{\mu \nu \sigma}^{(R)} \tag{4.40}\\
T_{\mu \nu \sigma}^{(2)}=\omega_{\mu \lambda} \Gamma_{(R) \lambda \nu \sigma}^{(2)}+J_{\mu \nu \sigma} \\
T_{(1) \cdot \nu \sigma}^{\lambda}=T^{(R) \lambda} \cdot \nu \sigma+\omega^{\lambda} \mu J_{\mu \nu \sigma} \\
T_{(2) \cdot \nu \sigma}=\Gamma^{\lambda} J_{\mu \nu \sigma}
\end{array}\right\}
$$

(The fourth equation is in agreement with a result established in \oint 4.1: $\Gamma_{(2)}$. . σ is a tensor.) Contraction of the third
equation over (λ, y) gives (cf. (3.105)):

$$
\begin{equation*}
\Gamma_{(1) \cdot \alpha \sigma}^{\alpha}=\frac{1}{2} \frac{\partial}{\partial x^{\sigma}}\left(\operatorname{Iog} \operatorname{det}\left\|\gamma_{\mu v}+i \omega_{\mu \nu}\right\|\right) \tag{4.41}
\end{equation*}
$$

Contraction of the fourth equation gives:
where

$$
\left.T_{(2)}^{\alpha}\right)_{\alpha \sigma}=\frac{1}{3} T_{\sigma}-\frac{1}{3} j_{\sigma}
$$

and

$$
\begin{equation*}
T_{\sigma} \equiv \gamma^{\alpha \beta} T_{\sigma \alpha \beta} \tag{4.42}
\end{equation*}
$$

$$
j_{\sigma} \equiv \gamma^{\alpha \beta} \omega_{\sigma \alpha \mid \beta}
$$

The following formulae for the first two curvature tensors are valid throughout \mathcal{K}_{n} (not just in the real limit), and come from (3.83):

$$
\left.\begin{array}{l}
R_{(1)}^{\lambda} \cdot \nu \alpha \beta=\left[T_{(1)}^{\lambda} \cdot \nu \alpha, \beta-T_{(1) \cdot \rho \alpha}^{\lambda} T_{(1)} \rho_{\cdot \nu \beta}+T_{(2)}^{\lambda} \cdot \rho \alpha T_{(2)} \cdot \rho_{\nu \beta}\right]-[\alpha \leftrightarrow \beta] \\
R_{(2) \cdot v \alpha \beta}^{\lambda}=\left[-T_{(2)}^{\lambda} \cdot \nu \alpha \cdot \beta+T_{(1) \cdot \rho \alpha}^{\lambda} T_{(2)} \rho_{\nu \beta \beta}+T_{(2) \cdot \rho \alpha}^{\lambda} T_{(1)} \rho_{\cdot \nu \beta}\right]-[\alpha \leftrightarrow \beta] \cdot
\end{array}\right\}(4 \cdot 43)
$$

Inserting (4.40), these two tensors are therefore obtainable in terms of $A_{\mu}, g_{\mu \nu}, T_{\mu \nu \sigma}$, and their derivatives w.r.t. x^{α}. The third curvature tensor depends in addition on $K \mu \nu \sigma$, and from (3.97) and (4.37) is:

$$
\begin{equation*}
R_{(3) \cdot \cdot \alpha \beta}^{\lambda}=\frac{1}{3} \gamma^{\lambda} \mu K_{\mu \nu \alpha \beta}+\frac{1}{3} \gamma^{\lambda \mu}\left(R_{\mu \alpha \nu \beta}^{(1)}+R_{\mu \beta \nu \alpha}^{(1)}\right)+\omega^{\lambda \mu} R_{\alpha \beta \mu \nu}^{(2)} \tag{4.44}
\end{equation*}
$$

Finally, the contracted curvature tensors. From (3.104)
and (4.42):

$$
R_{(A) \mu \nu}=\frac{1}{3}\left(T_{\nu, \mu}-T_{\mu, i}\right)-\frac{1}{3}\left(j_{\nu, \mu}-j \mu, \nu\right)_{i}(4.45)
$$

while from (3.104) and (4.44), with the help of (3.92):

$$
\begin{equation*}
R_{(s) \mu \nu}=\frac{1}{3} K_{\mu \nu}+\frac{2}{3}\left(R_{(1)^{\alpha} \cdot \mu \alpha \nu}-\omega^{\alpha \beta} R_{\mu \nu \alpha \beta}^{(2)}\right), \tag{4.46}
\end{equation*}
$$

where $\quad K_{\mu \nu} \equiv Y^{\alpha \beta} K_{\mu \nu \alpha \beta}$.
It will be convenient to divide all these geometrical quantities into two classes: 'self-conjugate' (not the same as Yano's use of the term, cf. Chapter 2) and 'anti-selfconjugate'. The distinction arises as follows. Consider
the change:

$$
\begin{equation*}
\Omega \equiv \Omega\left(z_{1}^{\mu}, z_{2}^{\mu}\right) \longrightarrow \Omega^{*} \equiv \Omega\left(z_{1}^{\mu},-z_{2}^{\mu}\right) \tag{4.47}
\end{equation*}
$$

Under (4.47) a self-conjugate quantity goes into itself, whereas an anti-self-conjugate one changes sign. All the equations in this section (with the exception of the series expansion of Ω itself) will be observed to consist of sums of homogeneous terms (ie. all self-conjugate or all anti-selfconjugate). The classification is:
Self-conjugate: $g_{\mu \nu}, \gamma_{\mu \nu}, H_{\mu \nu \sigma k}, K_{\mu \nu \cdot \sigma k}, \Gamma_{\cdot \nu \sigma}^{(R)}, R^{(R) \lambda} \cdot \nu \alpha \beta$, $T_{(1)}^{\lambda} \cdot \nu \sigma, \operatorname{det}\left\|\gamma_{\mu \nu}+i \omega_{\mu \nu}\right\|, R_{(1)} \lambda^{\prime} \cdot \nu \alpha \beta, R_{(3)} \cdot \nu \alpha \beta, R_{(s) \mu \nu}$. Anti-self-conjugate: $A_{\mu}, \omega_{\mu \nu}, S_{\mu \nu \sigma}, T_{\mu \nu \sigma}, J_{\mu \nu \sigma}, T_{(2)} \lambda_{\nu \sigma \sigma}$, $j_{\mu}, R_{(2)} \cdot{ }_{\nu} \cdot \nu \beta, R_{(A) \mu \nu}$.
It is natural to look on the latter collection as the 'electromagnetic' quantities, the former as containing the 'gravitational' (and perhaps some other) field.

§4.3 Analytic continuation

The preceding section has provided a description of M_{n}. In this section, and the following chapter, the problem of the relation of M_{n} to its 'parent' K_{n} will be investigated. From the standpoint of physical theory, the eventual aim is to discover the nature of the 'Überwelt' $\left(\mathcal{K}_{4}\right)$ with, as data, only the known fields on space-time (M_{4}) (cf.§l.l). The problem is not entirely dissimilar from that faced by the cosmologist who, from data on a very 'thin' null shell, must try to reconstruct the whole universe in space and time (ci. [83] p.330). In the present case there is no precedent, and few hints as to how one should proceed; so the remainder of this work really consists only of suggestions and experiments no solutions are claimed.

Let X_{n} be any given real n-dimensional Riemannian manifold, with metric tensor $g_{\mu}^{(R)}$ affine connection $T^{(R)} \lambda / v \sigma$, and curvature tensor $R^{(\omega)} \lambda \alpha \beta$. Then it is possible to construct a \mathcal{K}_{n} whose real limit space M_{n} has the following properties:
(i) All anti-self-conjugate quantities vanish

$$
\begin{equation*}
\left\langle Y_{\mu \nu}\right\rangle=g_{\mu \nu}^{(R)} ;\left\langle\gamma^{\mu \nu}\right\rangle=g^{(R) \mu \nu} \tag{ii}
\end{equation*}
$$

(iii) $\left\langle\Gamma_{(1) \cdot \nu \sigma}^{\lambda}\right\rangle=\Gamma^{(R) \lambda} \cdot \nu \sigma$
(iv) $\left\langle R_{(1)}^{\lambda} \cdot v \alpha \beta\right\rangle=R^{(R) \lambda} \lambda_{v \alpha \beta}$

This real n-dimensional manifold $\cdot M_{n}$ is therefore very similar geometrically to the original X_{n}, but it should be noted that, it supports also the fourth-rank tensor $R_{(3)} \lambda^{2} \alpha \beta$ (and therefore $R_{(s) \mu \nu}$), which has no counterpart in X_{n}. The
\mathcal{K}_{n} will be called an analytic continuation of X_{n}, the name deriving from the method of construction, which will now be given.

Let $\left.(x)^{\mu}\right)$ be a coordinate system for X_{n}. The latter can be imbedded in a euclidean $E_{m}\left(m \leqslant \frac{1}{2} n(n+1)\right)$ (cf. [67] p.268). Let the line-element expression for E_{m} be:

$$
\left.\begin{array}{l}
d s^{2}=\sum_{k=1}^{m} \varepsilon_{k}\left(d u^{k}\right)^{2} \tag{4.48}\\
\varepsilon_{k}= \pm 1
\end{array}\right\}
$$

and let the imbeuding be:

$$
\begin{equation*}
u^{k}=f^{k}\left(x \mu^{\mu}\right) \tag{4.49}
\end{equation*}
$$

These two equations give, as line-element for the subspace X_{n} :

$$
\begin{equation*}
d s^{2}=\sum_{k=1}^{m} \varepsilon_{k} \frac{\partial f^{k}}{\partial x^{\mu}} \frac{\partial f^{k}}{\partial x^{\nu}} d x^{\mu} d x^{\nu} \tag{4.50}
\end{equation*}
$$

so that the (real) functions f^{k} are solutions of:

$$
\begin{equation*}
\sum_{k} \varepsilon_{k} \frac{\partial f^{k}}{\partial x^{\mu}} \frac{\partial f^{k}}{\partial x^{\nu}}=g_{\mu \nu}^{(R)} \tag{4.51}
\end{equation*}
$$

For each k, let $f^{k}\left(z^{\mu}\right)$ be the analytic function of n complex variables which is the analytic continuation ${ }^{[74]}$ of the function $f^{k}\left(x^{\mu}\right)$ of n real variables (and restrict attention to some domain of analyticity in the neighbourhood of the real axes). We now show that the \mathcal{K}_{n} with basic funotion: ${ }^{\text {" }}$

$$
\begin{equation*}
\Omega\left(z_{a}^{\mu}\right)=\frac{1}{4} \sum_{k} \varepsilon_{k}\left|f^{k}\left(z^{\mu}\right)\right|^{2} \tag{4.52}
\end{equation*}
$$

satisfies conditions (i) - (iv), and so is an analytic continuation of X_{n}. (Being so coordinate-dependent this construction is unlikely to be unique, but the extent of its non-uniqueness has not been established.) Split the functions f^{k} into their real and imaginary parts:

$$
\begin{equation*}
\left.f^{k}(z)^{\mu}\right) \equiv f_{1}^{k}\left(z f_{1}^{\mu}, z_{2}^{\mu}\right)+i f_{2}^{k}\left(z \mu_{1}^{\mu}, z_{2}^{\mu}\right) \tag{4.53}
\end{equation*}
$$

From (3.75) and (4.52) the metric in \mathcal{K}_{n} is (using the $C-R$ equations):

$$
\left.\begin{array}{l}
\gamma_{\mu \nu}=\sum_{k} \varepsilon_{k}\left(f_{1, \mu}^{k} f_{1, \nu}^{k}+f_{2}^{k}, \mu f_{2}^{k}, v\right) \tag{4.54}\\
\omega_{\mu \nu}=\sum_{k} \varepsilon_{k}\left(f_{2}^{k}, \mu f_{1, \nu}^{k}-f_{1}^{k}, \mu f_{2}^{k}, \nu\right)
\end{array}\right\}
$$

But the f^{k} are real functions (cf. (4.4)), so:.
and therefore $\left.\left\langle f_{1}^{k}\right\rangle=\left\langle f^{k}\right\rangle=f^{k}\left(z_{1}^{\mu}\right) \equiv f^{k}\left(x^{\mu}\right)\right\}(4.55)$ (As previously in the chapter, $z{ }_{1}^{\mu}$ and x^{μ} are used interchangeably.) Sc the real limit of (4.54) is, using (4.51):

$$
\left.\begin{array}{l}
\left\langle\gamma_{\mu \nu}\right\rangle=g_{\mu \nu}^{(R)} \tag{4.56}\\
\left\langle\omega_{\mu \nu}\right\rangle=0
\end{array}\right\}
$$

The vanishing of $\left\langle\omega_{\mu \nu}\right\rangle$ entails that $\left\langle\gamma^{\mu \nu}\right\rangle$ is just the inverse of the matrix $\left\langle\gamma_{\mu \nu}\right\rangle$ (cf. (4.39)); so (ii) holds. By differentiating the first of (4.54) and using the $C-R$ equations:

$$
\left.\begin{array}{l}
T_{\mu \nu \sigma}^{(1)}=\sum_{k} \varepsilon_{k}\left(f_{1}^{k}, \dot{\mu} f_{1}^{k}, \nu, \dot{\prime}+f_{2}^{k}, \dot{\mu} f_{2}^{k}, \nu, \dot{\sigma}\right) \tag{4.57}\\
T_{\mu \nu \sigma}^{(2)}=\sum_{k} \varepsilon_{k}\left(f_{2}^{k}, \dot{\mu} f_{1}^{k}, \dot{\nu}, \sigma-f_{1, \mu}^{k} f_{2}^{k}, \nu, \dot{\sigma}\right)
\end{array}\right\}
$$

Taking real limits, the second equation shows that $\left\langle T^{(2)} \mu_{\mu \nu \sigma}\right\rangle$, and therefore $\left\langle J_{\mu \nu \sigma}\right\rangle$, vanishes; (i), (iii) and (iv) are now immediately verifiable, using (4.40) and (4.43).

No particular value (e.g. zero) is to be expected for the third curvature tensor. One finds, from (4.34):

$$
\begin{align*}
\left\langle\mathrm{R}_{\mu \nu \sigma k}^{(3)}\right\rangle= & \left.\sum_{k} \varepsilon_{k}\left(\left\langle f_{1}^{k}\right\rangle, \mu, k\left\langle f_{1}^{k}\right\rangle, \nu, \sigma+f_{1}^{k}\right\rangle, \mu, \sigma\left\langle f_{1}^{k}\right\rangle, \nu, k\right) \\
& -\Gamma_{\alpha \mu k}^{(R)} \Gamma^{(R) \alpha} \cdot \nu \sigma-T_{\alpha \mu \sigma}^{(R)} \Gamma^{(R) \alpha} \cdot \nu k \tag{4.58}
\end{align*}
$$

whence $\left\langle K_{\mu_{\nu \sigma k}}\right\rangle$. can be found. There are also the relations, from (4.44) and (4.46) respectively:

$$
\begin{equation*}
\left\langle R_{(3)} \lambda_{\nu \alpha \beta}\right\rangle=\frac{1}{3} \xi^{(\beta) \lambda \mu}\left\langle X_{\mu \nu \alpha \beta}\right\rangle+\frac{1}{3}\left(R^{(R) \lambda} \cdot \alpha \mu \beta+R^{(R) \lambda} \cdot \beta \nu \alpha\right) \tag{4.59}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle R_{(s) \mu \nu}\right\rangle=\frac{1}{3}\left\langle K_{\mu \nu}\right\rangle+\frac{2}{3} R_{\mu \nu}^{(R)} \tag{4.60}
\end{equation*}
$$

The prescription just given enables a 'complex environment' to be constructed for any of the space-times of interest in general relativity (for example), but the resulting M_{n} 's suffer from the disadvantage, so far as electromagnetism is concerned, that all the anti-self-conjugate quantities are zero. Their vanishing is, in fact, a direct consequence of the first of equations (4.55). In order to construct spaces which, in the real limit, have non-vanishing 'electromagnetic' fields, one could therefore give up the requirement that the f^{k} be real analytic functions, by (for example) allowing some of the constants entering into the expressions for $\left.f^{k}(x)^{\mu}\right)$ to become complex. This could be called 'generalized analytic continuation', and will be exemplified in subsections (ii) and (iii) below. But first, in (i), we present a simple instance of analytic continuation proper, yielding our first concrete example of a non-trivial (non-flat) Kähler space.
(i) 2-dimensional surface of sphere. Parametrize the surface, X_{2}, of a sphere of radius a in three dimensions by the polar angles (θ, ϕ). An imbedding of X_{2} in E_{3} is:

$$
\left.\begin{array}{l}
x=a \sin \theta \cos \phi \tag{4.6I}\\
y=a \sin \theta \sin \phi \\
z=a \cos \theta
\end{array}\right\}
$$

Therefore its analytic continuation, \mathcal{K}_{2}, has basic function:

$$
\begin{align*}
\Omega & =\frac{1}{4} a^{2}\left(|\sin \theta \cos \phi|^{2}+|\sin \theta \sin \phi|^{2}+|\cos \theta|^{2}\right) \\
& =\frac{1}{4} a^{2}\left(\cosh 2 \theta_{2} \cosh ^{2} \phi_{2}-\cos 2 \theta_{1} \sinh ^{2} \phi_{2}\right) \tag{4.62}
\end{align*}
$$

Treating θ as the first coordinate, ϕ the second, the metric in $\mathcal{\alpha}_{2}$ is:

$$
\begin{align*}
& \gamma_{11}=a^{2}\left(\cosh 2 \theta_{2} \cosh ^{2} \phi_{2}+\cos 2 \theta_{1} \sinh ^{2} \phi_{2}\right) \\
& \gamma_{12}=\gamma_{21}=\frac{1}{2} a^{2} \sinh 2 \theta_{2} \sinh 2 \phi_{2} \tag{4.63}\\
& \gamma_{22}=a^{2}\left(\sinh ^{2} \theta_{2}+\sin ^{2} \theta_{1}\right) \cosh 2 \phi_{2} \\
& \omega_{12}=-\omega_{21}=\frac{1}{2} a^{2} \sin 2 \theta_{1} \sinh 2 \phi_{2}
\end{align*}
$$

By inspection, the real limit values are verified to be those of X_{2}. The $T_{a \nu \sigma}^{\lambda f}$, and thence, $R_{a y}^{\lambda b s} s_{\beta}^{t}$, can be computed from (4.63). The results are rather complicated; but in the real limit $R_{(1)} \lambda^{2} \alpha \beta$ reduces, as it must, to the curvature tensor of X_{2}, while:

$$
\begin{aligned}
\left\langle R_{(s) 11}\right\rangle=2 & \left\langle R_{\left.(s)_{22}\right\rangle}=2 \sin ^{2} \theta_{1}\right. \\
\left\langle R_{(s) 12}\right\rangle=0 & \left\langle R_{(s)}\right\rangle=\frac{4}{a^{2}}
\end{aligned}
$$

These may be compared with the Riccio tensor of X_{2} :

So $\left\langle K_{\mu \nu}\right\rangle$ does not vanish (cf. (4.60)).
Although X_{2} is a space of constant curvature, \mathcal{K}_{2} is nov (the curvature scalar is a function of θ_{1}, θ_{2} and ϕ_{2}); but in fact it could not be a space of constant curvature (see Chapter 2 for a proof).
(ii) de Sitter universe. Consider the spatially Plat Robertson-Walker line-element expression ([76] p.102):

$$
\begin{equation*}
d s^{2}=s^{2}(t)\left[\sum_{i=1}^{3}\left(d x^{i}\right)^{2}\right]-d t^{2} \tag{4.66}
\end{equation*}
$$

These universes are imbeddable in the E_{5} with line-element:

$$
\begin{equation*}
d s^{2}=\sum_{i=1}^{3}\left(d x^{\prime i}\right)^{2}+d \xi^{2}-d \eta^{2} \tag{4.67}
\end{equation*}
$$

by means of the constraints:

$$
\left.\begin{array}{rl}
x^{\prime i} & =x^{i} S(t) \tag{4.68}\\
\xi+\eta & =S(t) \\
\xi-\eta & =F(t)-\left[\sum_{i}\left(x^{i}\right)^{2}\right] S(t)
\end{array}\right\}
$$

provided that $\quad \frac{d F}{d t}=-1 / \frac{d S}{d t}$
. This imbedding is obtainable as a simple generalization of the work on $\mathrm{pp} .346-7$ of [75].) The Riemannian X_{4} with line-element (4.66) therefore has as analytic continuation the $\mathcal{\alpha}_{4}$ with basic function:

$$
\begin{equation*}
\Omega=\frac{1}{8}(S \vec{F}+\overrightarrow{S F})+\frac{1}{2} S \bar{S}\left[\sum_{i=1}^{3}\left(x_{2}^{i}\right)^{2}\right] \tag{4.70}
\end{equation*}
$$

where

$$
S \equiv S\left(t_{1}+i t_{2}\right), \text { and similarly } F
$$

We now specialize to the $\frac{d e \text { Sitter }}{t / R}$ metric, viz:
and (cf. (4.69):

$$
\left.\begin{array}{l}
S(t)=e^{t / R} \tag{4.71}\\
F(t)=R^{2} e^{-t / R}
\end{array}\right\}
$$

where R is a real constant. The corresponding \mathcal{K}_{4} has,
as non-vanishing components of the metric:

$$
\begin{align*}
& \gamma_{i i}=e^{2 t_{1} / R} \quad \text { (no summation) } \\
& \gamma_{44}=-\cos \frac{2 t_{2}}{R}+\frac{2}{R^{2}} e^{2 t / / R}\left[\sum_{i=1}^{3}\left(x_{2}^{i}\right)^{2}\right] \tag{4.72}\\
& \omega_{i 4}=-\frac{2 x_{2}^{i}}{R} e^{2 t 1 / R}
\end{align*}
$$

The real limit values are as expected. The real limit of the 'anomalous' object $R(s) \mu \nu$ is as follows:

$$
\begin{equation*}
\langle R(s) i i\rangle=\frac{2}{R^{2}} e^{2 t_{1} / R} \quad\left\langle R_{(s) 44}\right\rangle=-\frac{2}{R^{2}} \tag{4.73}
\end{equation*}
$$

which may be compared with the (Riemannian) Riccio tensor:

$$
\begin{equation*}
R_{i i}^{(R)}=\frac{3}{R^{2}} e^{2 t / R} \quad R_{44}^{(R)}=-\frac{3}{R^{2}} \tag{4.74}
\end{equation*}
$$

Therefore (cf. (4.60) for this case $\langle\mathrm{K} \mu \nu\rangle=0$.
If we make a generalized analytic continuation by taking
the constant R in (4.71) to be complex then, although $\left\langle\omega_{\mu \nu}\right\rangle$ is found to no longer vanish, at the same time $\left\langle\gamma_{\mu \nu}\right\rangle$ ceases to be of the de Sitter form: a sinusoidal oscillation appears in the t_{1}-dependence of the real limit metric. However, the de Sitter metric can also be put, by a coordinate transformation, in the time-independent form:

$$
\left.\begin{array}{l}
g_{i j}=\delta_{i j}+\frac{x^{2} \cdot x^{j}}{R^{2}-r^{2}} \tag{4.75}\\
g_{44}=-1+\frac{r^{2}}{R^{2}} \\
g_{i 4}=0
\end{array}\right\}
$$

and in this form will be amenable to the method given in (iii). (iii) Static, spherically symmetric space-times. Consider the E_{6} :

$$
\begin{equation*}
\left.\left.d s^{2}=\sum_{i=1}^{3}\left(d x^{i}\right)^{2}+d\right\}^{2}-d \eta^{2} \pm d\right\}^{2} \tag{4.76}
\end{equation*}
$$

with the constraints:

$$
\left.\begin{array}{l}
\xi=E(r) \cosh (a t+b) \tag{4.77}\\
\eta=E(r) \sinh (a t+b) \\
\}=F(r)
\end{array}\right\}
$$

where $\quad r^{2} \equiv \sum_{i=1}^{3}\left(x^{i}\right)^{2}$. There results the X_{4} with metric

$$
\left.\begin{array}{l}
g_{i j}^{(R)}=\delta_{i j}+\left[\left(\frac{d E}{d r}\right)^{2} \pm\left(\frac{d F}{d r}\right)^{2}\right] \frac{x^{i} x^{j}}{r^{2}} \tag{4.78}\\
g_{i 4}^{(R)}=0 \\
g_{44}^{(R)}=-E^{2} a^{2}
\end{array}\right\}
$$

which is equivalent to the general static spherically symmetric space-time (cf. [25] p.200). As analytic continuation there is the K_{4} with basic function:

$$
\begin{equation*}
\Omega=\frac{1}{4}\left[\sum_{i}\left|x^{i}\right|^{2}+|E(r)|^{2} \cos \left(2 a t_{2}\right) \pm|F(r)|^{2}\right] \tag{4.79}
\end{equation*}
$$

A generalized analytic continuation can be obtained by making
the constants a and b in (4.77) complex. However, if $a_{2} \neq 0$, a t_{1}-dependence appears in the real limit metric, so we keep a real; then (4.79) becomes generalized to:

$$
\Omega=\frac{1}{4}\left[\sum_{i}\left|x^{i}\right|^{2}+|E(r)|^{2} \cos \left(2 a t_{2}+2 b_{2}\right) \pm|F(r)|^{2}\right] \text { (4.80) }
$$ (independent of $\left.b_{1}\right)$. If the functions E and, F are chosen such that:

$$
\begin{equation*}
\left\langle\gamma_{\mu \nu}\right\rangle=g_{\mu \nu}^{(R)} \tag{4.81}
\end{equation*}
$$

where the RHS is any particular static spherically symmetric metric in these coordinates, then (4.80) implies that at the same time there appears the following spherically symmetric
'electrostatic' field:

$$
\left.\begin{array}{l}
\left\langle\omega_{i j}\right\rangle=0 \quad(i, j=1,2,3) \tag{4.82}\\
\left\langle\omega_{i 4}\right\rangle=\left(\frac{\tan 2 \omega_{2}}{2 a}\right)\left(\frac{d}{d r}\left\langle\gamma_{44}\right\rangle\right) \frac{x^{i}}{r}
\end{array}\right\}
$$

In the case of the Schwarzschild metric (i.e. $\left\langle\gamma_{44}\right\rangle=-1+\frac{2 m}{r}$) the second of (4.82) becomes:

$$
\begin{equation*}
\left\langle\omega_{i 4}\right\rangle=-\left(\frac{m \tan 2 \sigma_{2}}{a}\right) \frac{x^{i}}{r^{3}} \tag{4.83}
\end{equation*}
$$

which suggests that this displacement of the whole Schwarzschild space-time in the imaginary t-direction through a distance ($\frac{f_{2}}{a}$). has caused the particle at the origin to acquire a 'charge' of amount - $\left(\frac{m \cdot \tan 2 b_{2}}{a}\right)$.

In the case of the de Sitter metric (cf. (4.75):

$$
\left.\begin{array}{rl}
E(r) & =\left(R^{2}-r^{2}\right)^{1 / 2} \tag{4.84}\\
F(r) & =0 \\
a & =\frac{1}{R}
\end{array}\right\}
$$

Substitution in (4.80) yields the following real limit metric:

$$
\left.\begin{array}{l}
\left\langle\gamma_{\mu \nu}\right\rangle=\text { as in }(4.75) \tag{4.85}\\
\left\langle\omega_{i j}\right\rangle=0 \\
\left\langle\omega_{i 4}\right\rangle=\left(\frac{\tan 2 b_{2}}{R}\right) x^{i}
\end{array}\right\}
$$

which suggests an interpretation in terms of a uniform charge density $\quad \rho=\frac{3}{4 \pi} \frac{\tan 26_{2}}{R}$, creating a radial electrostatic field proportional to distance from the origin. One finds for the real limit of the contracted curvature tensor the following values:

$$
\begin{aligned}
\left\langle R_{(s) i j}\right\rangle & =\frac{2}{\sigma}\left(\delta_{i j}+\frac{x^{i} x^{j}}{R^{2}-r^{2}}\right)-\frac{2 R^{2} \sin ^{2} 2 b_{2}}{\sigma^{2}} \frac{x^{i} x^{j}}{R^{2}-r^{2}} \\
\left\langle R_{(s) i 4}\right\rangle & =0 \\
\left\langle R_{(S) 44}\right\rangle & =-\frac{2 \cos ^{2} 2 \sigma_{2}}{\sigma}\left(1-\frac{r^{2}}{R^{2}}\right) \\
\left\langle R_{(A) i j}\right\rangle & =0 \\
\left\langle R_{(A) i 4}\right\rangle & =\frac{\sin 4 \sigma_{2}}{\sigma^{2}} \frac{r^{2}}{R} x^{i} \\
\text { where } \quad \sigma & \equiv R^{2} \cos ^{2} 2 b_{2}+r^{2} \sin ^{2} 2 b_{2}
\end{aligned}
$$

CHAPTER 5

Field Equations for the Metric

The field equations in (say) the Einstein UFT fall naturally into two groups: the first connecting the metric with the affine connection, the second being a restriction of some kind on the curvature tensor (s). In the present context, the first group is straightforward; the second is very problematic and no definite conclusions are reached.

The first group of field equations is (cf. (3.57) etc.):

$$
\left.\begin{array}{l}
g_{\mu \nu ; \sigma}^{a f}=0 \tag{5.1}\\
T_{1 \nu}^{\lambda 1 c}=T_{2 \nu \sigma}^{\lambda 2 c}=T_{2 \sigma \nu}^{\lambda c} \\
T_{1 \nu \sigma}^{\lambda 2 c}=-T_{2 \nu \sigma}^{\lambda 1 c}=-T_{2 \sigma \nu}^{\lambda c}
\end{array}\right\}
$$

For $c=I$, the first of (5.1) implies, using the second and third, two equations which can be combined into the single complex equation:

$$
\begin{equation*}
G_{\mu \nu, \sigma}-G_{\alpha \nu}\left(T_{(1)}^{\alpha} \cdot \mu \sigma-i T_{(2)}^{\alpha} \cdot \mu \dot{\sigma}\right)-G_{\mu \alpha}\left(T_{(1)}^{\alpha} \cdot \nu \sigma+i T_{(2)}^{\alpha} \cdot \nu \sigma\right)=0 \tag{5.2}
\end{equation*}
$$

At any point P of M_{n} (in particular) this equation relates the derivatives w.r.t. the x^{μ} of the Hermitian matrix ${ }^{\prime \prime} G_{\mu \nu}$ to the affine connection components $T_{(a) \cdot v \sigma}^{\lambda}$ at P.

Compare (the real limit of) (5.2) with the corresponding equation of Einstein's UFT (cI. (1.98)). They are similar in form except that Einstein's Γ is are Hermitian, the present ones complex symmetric.

Compare (5.2) with the corresponding equation of Moffat's UFT (cf. (I.ll8)). They are similar in form except that
(a) his $\delta \mu \nu$ are complex symmetric, the present $G_{\mu \nu}$ Hermitian, and (b) his (in contrast to Einstein's and the present theory's) covariant derivatives are formed solely with the $T_{\lambda} \overbrace{\nu}$ of (1.119), the complex conjugate quantities playing no part.

Compare (5.2) with the corresponding equation of Crumeycole's theory (the first of (1.140)). Given the difference in the underlying number field the two equations are formally the same. However, his choice of metric tensor on W_{4} is not analogous to the present theory's, since (1.139) is stated in 'repères associés', and in this coordinate system our equivalent of (1.139) is (cf. (3.20)):

$$
\left.\begin{array}{ll}
g_{\alpha \beta}=\gamma_{\alpha \beta} & g_{\alpha \beta^{*}}=\omega_{\alpha \beta} \tag{5.3}\\
g_{\alpha^{*} \beta}=\omega_{\beta \alpha} & g_{\alpha^{*} \beta^{*}}=\gamma_{\alpha \beta}
\end{array}\right\}
$$

Only if (1.139) was to be read as holding in 'repères adaptés' would his $g_{i j}$ on W_{4} be (the real limit of) a Kähler-type metric.

A result which follows from (5.1) is (cf. (3.66)):

$$
\begin{equation*}
\omega_{\left\{\mu \nu, \frac{1}{\sigma}\right\}}=0 \tag{5.4}
\end{equation*}
$$

Like (5.2) this holds throughout \mathcal{K}_{n}, and therefore also on M_{n}. (5.4) does not seem to have counterparts in the theories just mentioned (see, in this connection, [28] p.737).

If the last two equations of (4.40) are inserted into (the real limit of) (5.2), then the real and imaginary parts of the latter just reduce to the known results:

$$
\left.\begin{array}{c}
\gamma_{\mu \nu \mid \sigma}=0 \tag{5.5}\\
\omega_{\mu \nu \mid \sigma}+J_{\nu \mu \sigma}-J_{\mu \nu \sigma}=0
\end{array}\right\}
$$

We now derive an identity which implies the existence of a conserved ('current') vector field in M_{n}. The contravariant form of the first of (5.1) is:

$$
\begin{equation*}
g \mu_{a b}^{\mu \nu} ; \sigma=0 \tag{5.6}
\end{equation*}
$$

The equation with $a=2, b=c=1$, and contracted over (ν, σ)
is: $\omega^{\mu \nu}, \nu+\omega^{\mu \alpha} T_{(1)}^{\nu} \cdot \alpha \nu+\gamma^{\mu \alpha} T_{(2) \cdot \alpha \nu}^{\nu}-\gamma^{\alpha \nu} T_{(2)}^{\mu} \cdot \alpha \nu=0$
Using (3.105), this can be written:

$$
\frac{1}{\sqrt{-G}}\left(\sqrt{-G} \omega^{\mu \nu}\right), \nu=-\gamma^{\mu \alpha} T_{(2)}^{\nu} \cdot \alpha \nu+\gamma^{\alpha \nu} T_{(2)}^{\mu} \cdot \alpha \nu
$$

Take real limits of both sides, and use (4.40), (4.31) \& (5.4):
$\frac{1}{\langle\sqrt{-G}\rangle}\left\langle\sqrt{-G} \omega^{\mu \nu}\right\rangle, \nu=\left\langle\left(-\gamma^{\mu \alpha} \gamma^{\nu \beta}+\gamma^{\alpha \nu} \gamma^{\mu} \beta\right) J_{\beta \alpha \nu}\right\rangle$

$$
\begin{align*}
& =\left\langle\gamma^{\mu \alpha} \gamma^{\nu \beta}\left(J_{\beta \alpha \nu}-J_{\alpha \beta \nu}\right)\right\rangle \\
& =\left\langle\gamma^{\mu \alpha} \gamma^{\nu \beta} \omega_{\alpha \beta \mid \nu}\right\rangle=\left\langle\gamma^{\mu \alpha} j_{\alpha}\right\rangle \tag{5.8}
\end{align*}
$$

Define $\left\langle j^{\mu}\right\rangle \equiv\left\langle\gamma^{\mu \alpha} j_{\alpha}\right\rangle$
Then the anti-symmetry of $\omega^{\mu \nu}$ implies that

$$
\begin{equation*}
\left\langle\sqrt{-G} j^{\mu}\right\rangle, \mu=0 \tag{5.10}
\end{equation*}
$$

So it would be quite natural to identify $\langle\sqrt{-G} j \mu\rangle$ as being proportional to the physical electric current vector density on M_{4}, and correspondingly $\int_{D} j^{0} \sqrt{-G} d^{3} x^{i}$ as the total charge contained in the region D of $M_{4} 0^{*}$

We turn now to the second group of field equations, those involving the curvature tensors. Concerning the status of field equations of this kind, the philosophy adopted here is the following. A possible formulation of the relativistic theory of gravitation (cf. the EIH approach) is to start from a general Riemannian manifold, X_{4} say, and then require that

$$
\begin{equation*}
R_{\mu \nu}=0 \tag{5.11}
\end{equation*}
$$

almost everywhere, i.e. with the exception of isolated singularities, which are to be identified with material particles. This is a considerable specialization of the X_{4}. Mutatis mutandis, we adopt the same viewpoint here, which is a less ambitious one than requiring the field equations to hold everywhere, with globally non-singular solutions (cf. e.g. [28] p. 737). The remainder of the chapter is concerned with investigating various analogues of (5.11), the goal being to find a set of equations for the various geometrical quantities on \mathcal{K}_{4} and M_{4} which is complete, compatible, and at the same time has solutions which may be expected to exhibit the correct 'physical' behaviour (general relativity, as a limiting case, is a useful guide here). (This is of course the goal of all classical UFT's.)

The strongest condition on the metric of \mathcal{K}_{4} would be:

$$
\begin{equation*}
R_{\mu \nu}^{a t} s s_{\beta}^{t}=0 \tag{5.12}
\end{equation*}
$$

such a \mathcal{K}_{4} is euclidean, so there is a coordinate system in which its basic function is:

$$
\begin{equation*}
\Omega=\frac{1}{4} \sum_{\alpha=1}^{4} \varepsilon_{\alpha}\left|z^{\alpha}\right|^{2} \tag{5.13}
\end{equation*}
$$

where $\varepsilon_{\alpha}= \pm 1$. In an arbitrary (allowable) coordinate system its basic function is of the form:

$$
\begin{equation*}
\Omega=\frac{1}{4} \sum_{\alpha=1}^{4} \varepsilon_{\alpha}\left|f^{\alpha}\left(z^{\beta}\right)\right|^{2} \tag{5.14}
\end{equation*}
$$

With the notation of (4.53), the metric tensor which follows from (5.14) is (cf. (4.54)):

$$
\left.\begin{array}{l}
\gamma_{\mu \nu}=\sum_{\alpha} \varepsilon_{\alpha}\left(f_{1, \mu}^{\alpha} f_{1, \nu}^{\alpha}+f_{2, \mu}^{\alpha} f_{2, \nu}^{\alpha}\right) \tag{5.15}\\
\omega_{\mu \nu}=\sum_{\alpha} \varepsilon_{\alpha}\left(f_{2, \mu}^{\alpha} f_{1, \nu}^{\alpha}-f_{1, \mu}^{\alpha} f_{2, \nu}^{\alpha}\right)
\end{array}\right\}
$$

Now consider M_{4}. Suppose the functional determinant of the $f_{1}^{\alpha}(x \beta)$ is non-zero, so that

$$
\begin{equation*}
x^{\alpha^{\prime}}=f_{1}^{\alpha}\left(x^{\beta}\right) \tag{5.16}
\end{equation*}
$$

represents an allowable coordinate transformation on M_{4}. Treating the $f_{2}^{\alpha}(x \beta)$ just as four scalar functions of the $x \beta$ (or of the $x \beta^{\prime}$), write:

$$
\begin{equation*}
\phi_{\alpha} \equiv \eta_{\alpha \beta} \mathbb{f}_{2}^{\beta} \tag{5.17}
\end{equation*}
$$

where $\quad \eta_{\alpha \beta} \equiv \varepsilon_{\alpha} \delta_{\alpha \beta}$ (no summation). Then in the dashed coordinate system:

$$
\left.\begin{array}{rl}
\left\langle\gamma_{\mu \nu}^{\prime}\right\rangle & =\eta_{\mu \nu}+\eta^{\alpha \beta} \phi_{\alpha, \mu^{\prime}} \phi_{\beta, \nu^{\prime}} \tag{5.18}\\
\left\langle\omega_{\mu \nu}^{\prime}\right\rangle & =\phi_{\nu, \mu^{\prime}}-\phi_{\mu, \nu^{\prime}} \\
\left\langle T_{(1) \mu \nu \sigma}^{\prime}\right\rangle & =\eta^{\alpha \beta} \phi_{\alpha, \mu^{\prime}} \phi_{\beta, \nu^{\prime} ; \sigma^{\prime}} \\
\left\langle T_{(2)}^{\prime \prime} \mu_{\nu \nu}\right\rangle & =-\phi_{\mu, \nu^{\prime}, \sigma^{\prime}}
\end{array}\right\}
$$

(These are not tensor equations; they only give the values of these quantities in the particular coordinate system ($x \mu^{\prime \prime}$) for M_{4}.) As for curvature tensors, (5.12) of course implies:
and therefore

$$
\left.\begin{array}{lc}
\left\langle R_{\left.(i)^{\lambda} \cdot \gamma_{\alpha \beta}\right\rangle}=0\right. \tag{5.19}\\
\left\langle\mathbb{K}_{\mu \nu \sigma K}\right\rangle=0
\end{array}\right\}
$$

On the other hand, considered as a Riemannian space with metric tensor $\left\langle\gamma_{\mu \nu}\right\rangle$ (cf. (4.9)), M_{4} is not flat, ie. $R^{(R) \lambda} \cdot{ }_{\nu \alpha \beta}$, which can be computed from the first of (5.18) as a function of the ϕ_{α}, is non-vanishing. $\left\langle T_{\mu \nu \sigma}\right\rangle$, which can be found from (5.18), is also non-zero.

Having characterized the (rather restricted) class of M_{4} 's which are compatible with the field equation (5.12) for \mathcal{K}_{4}, we next consider a less restrictive condition than the latter,
namely, one derivable from a variational principle of the form:

$$
\begin{equation*}
\left.\delta_{K_{4}} I \sqrt{g} \quad d^{8} z\right|_{a} ^{\mu}=0 \tag{5.20}
\end{equation*}
$$

where

$$
\begin{equation*}
g \equiv \operatorname{ket}^{k^{\alpha}}\left\|g_{\mu \nu}^{A f}\right\|=\left[\operatorname{det}\left\|G_{\mu \nu}\right\|\right]^{2} \equiv G^{2} \text {, say } \tag{5.21}
\end{equation*}
$$

and I is some function of the $g_{\mu \nu}^{a t}$ and their derivatives w.r.t. the $z_{\text {H }}^{H}$. Although other possibilities have been considered, we discuss here only the consequences resulting from the simplest choice for I (and the one most closely analogous to the general relativity Lagrangian for the iree gravitational field), namely the curvature scalar of $\} \alpha_{4}$:

$$
I=B^{(1,1)}=B^{(1) \mu_{a \mu}}=2 R_{\left.(S)^{\mu}\right)^{\mu}}=2\left(\gamma^{\mu \nu} R_{(s) \mu \nu}-\omega \mu^{\mu \nu} R_{(A) \mu \nu}\right) \text { (5.22) }
$$ The Euler-Lagrange equations are:

$$
\begin{align*}
& \mathrm{R}_{(s) \mu \nu}=0 \tag{5.23i}\\
& \mathrm{R}_{(A) \mu \nu}=0 \tag{5.23ii}
\end{align*}
$$

Although prima facie 16 different equations these can in fact, using $(3.106)+(3.107)$, immediately be integrated twice to give the single equation:

$$
\begin{equation*}
G=e \tag{5.24}
\end{equation*}
$$

where f is an arbitrary analytic function. Since, by (3.75), $G_{\mu \nu}$, and therefore G, is a function of Ω and its derivatives, (5.24) is a non-linear differential equation for Ω. It might be thought that the only solutions are the flat-space ones, (5.12). That this is not so will be demonstrated by explicitly constructing two non-filat spaces satistying (5.23), the first a \mathcal{K}_{2}, the second a $\mathcal{\alpha}_{4}$. consider the \mathcal{K}_{2} defined by the basic function:

$$
\begin{equation*}
\Omega=x_{1} \log \left[\frac{x_{1}}{\cos \left(\alpha t_{1}+\beta t_{2}\right)}\right] \tag{5.25}
\end{equation*}
$$

Its metric is (with $z^{0} \equiv t, z^{\prime} \equiv x$):

$$
\left.\begin{array}{l}
\gamma_{00}=\left(\alpha^{2}+\beta^{2}\right) x_{1} \sec ^{2}\left(\alpha t_{1}+\beta t_{2}\right) \tag{5.26}\\
\gamma_{01}=\gamma_{10}=\alpha \tan \left(\alpha t_{1}+\beta t_{2}\right) \\
\gamma_{11}=1 / x_{1} \\
\omega_{01}=-\omega_{10}=-\beta \tan \left(\alpha t_{1}+\beta t_{2}\right)
\end{array}\right\}
$$

Therefore

$$
\begin{equation*}
G=\left(\alpha^{2}+\beta^{2}\right)=\text { constant } \tag{5.27}
\end{equation*}
$$

so that (5.24) is clearly satisfied. By direct calculation
it is found that all the curvature tensor components $\vec{R}_{(i)}{ }^{\lambda} \cdot v \alpha \beta$ are non-zero (with the exception of $R_{(3)}{ }^{1} \cdot 011$), so it is certainly. not a flat Kähler space. If $\beta=0$, all anti-self-conjugate quantities are found to vanish. This could be forseen from the form of (5.25): Ω is then independent of the z_{2}^{μ}, so that the power series (4.15) consists only of the first term. As the second example, consider the following \mathcal{K}_{4}, which could be called a 'spatially isotropic' complex space-time:
where

$$
\left.\begin{array}{l}
\Omega=\frac{1}{4}|t|^{2}-\frac{1}{4} f(\sigma) \tag{5.28}\\
\sigma \equiv \sum_{i=1}^{3}\left|x^{i}\right|^{2}
\end{array}\right\}
$$

and f is some real function. The metric is (with $z^{0} \equiv t$):

$$
\left.\begin{array}{l}
G_{o o}=1 \tag{5.29}\\
G_{o i}=0 \\
G_{i j}=-I^{\prime} \delta_{i j}-I^{\prime \prime} \overline{x^{i}} x^{j}
\end{array}\right\}
$$

where $f^{\prime} \equiv \frac{d f}{d \sigma}$. This matrix has determinant:

$$
\begin{equation*}
-G=\left(f^{\prime}\right)^{3}+\left(f^{\prime}\right)^{2} f^{\prime \prime} \sigma \tag{5.30}
\end{equation*}
$$

(5.24) will certainly be satisfied if we make

$$
\left(f^{\prime}\right)^{3}+\left(f^{\prime}\right)^{2} f^{\prime \prime} \sigma=\text { constant }=1, \text { say }(5.3 I)
$$

This equation integrates to:

$$
\begin{align*}
f^{\prime} & =\left[1+\left(\frac{\sigma_{0}}{\sigma}\right)^{3}\right]^{1 / 3} \tag{5.32}\\
\therefore \quad I^{\prime \prime} & =-\frac{\sigma_{0}^{3}}{\sigma^{4}}\left[1+\left(\frac{\sigma_{0}}{\sigma}\right)^{3}\right]^{-2 / 3}
\end{align*}
$$

Using for the mornent the notation of Chapter 2, one finds that the curvature tensor components $R^{\bar{\lambda}} \bar{\nu} \bar{\sigma} K$ vanish unless all the indices are space-like, in which case:

$$
\left.\begin{array}{rl}
R^{i} \\
j k l \tag{5.33}
\end{array}=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)\left[\delta_{l k} \delta_{i j}+\delta_{l j} \delta_{i k}-\frac{4}{\sigma} \overline{x^{i}}\left(x^{k} \delta_{l j}+x^{i} \delta_{l k}\right)+\frac{4}{\sigma^{2}} \overline{x^{l}} \overline{x^{i}} x^{j} x^{k}\right]\right] \text { (5. }
$$

Having shown that the equations (5.23) possess non-trivial solutions in α_{n}, we now look at what they imply about Mn. for the rest of the chapter all quantities will be real. limit values, so we henceforth omit the \rangle signs. Using (4.46) and (4.45), (5.23) imply:

$$
\begin{align*}
& R_{(1)}^{\alpha} \mu_{\alpha \nu \nu}-\omega^{\alpha \beta} R_{\mu \nu \alpha \beta}^{(2)}=-\frac{1}{2} K_{\mu \nu} \tag{5.34i}\\
& j_{\nu, \mu}-j_{\mu, \nu}=T_{\nu, \mu}-T_{\mu, \nu} \tag{5.34ii}
\end{align*}
$$

Consider the latter first. Writing out its LHS, one obtains the following propagation equation for $\omega_{\mu \nu}$:

$$
\begin{align*}
& \gamma^{\alpha \beta} \omega_{\mu \nu|\alpha| \beta}+\omega_{\mu \rho}\left(\gamma^{\alpha \beta} R^{(R)} \rho_{\cdot \beta \gamma \alpha}\right)-\omega_{\nu \rho}\left(\gamma^{\alpha \beta} R^{(R)} \rho_{\cdot \beta \mu}\right) \\
& +\omega^{\alpha \beta} R_{\mu \nu \beta \alpha}^{(R)}-\gamma^{\alpha \beta}{ }_{\mid \mu} \omega_{\nu \alpha \mid \beta}+\gamma^{\alpha \beta}{ }_{\mid \nu} \omega_{\mu \alpha \mid \beta}=T_{\mu, \nu}-T_{\nu, \mu} \tag{5.35}
\end{align*}
$$

This may be compareu with the propagation equation for the physical electromagnetic field $F \mu \nu$ in general-relativistic Maxwell-Lorentz electrodynamics (cf. [81] p.176):

$$
\begin{gather*}
g^{(R) \alpha \beta} F_{\mu \nu|\alpha| \beta}+F_{\mu \rho}\left(g^{(R) \alpha \beta} R^{(R)} \rho_{\beta \gamma \alpha}\right)-F_{\nu \rho}\left(g^{(R) \alpha \beta} R^{(R) \rho} \rho_{\mu \mu \alpha}\right) \\
+F^{\alpha \beta} R_{\mu \nu \beta \alpha}^{(R)}=4 \pi\left(J_{\mu, \nu}-J_{\nu, \mu}\right) \tag{5.36}
\end{gather*}
$$

where J_{μ} is the physical current vector (cf. (1.4)). The close similarity between the last two equations suggests that T_{μ} should be correlated with J_{μ}, and so should vanish in

the absence of charged matter.

(5.34ii) are clearly equivalent to:

$$
\begin{equation*}
j_{\mu}=T_{\mu}+\Sigma, \mu \tag{5.37}
\end{equation*}
$$

where \sum is an arbitrary scalar function. (There is a certain similarity here with Schrödinger's theory ($c f .[82] \mathrm{p} .21$).)

Turn now to (5.34i) , Consider first the case of a 'selfconjugate' or 'non-electromagnetic' spacetime, defined as an M_{4} on which $a .11$ anti-self-conjugate quantities vanish. Then:

$$
\begin{align*}
\gamma^{\lambda \mu} & =g^{(R) \lambda \mu} \\
T_{(1)}^{\lambda} \cdot \nu \sigma & =T^{(R) \lambda} \cdot \nu \sigma \\
R_{(1) \cdot \nu \alpha \beta}^{\lambda} & =R^{(R) \lambda} \cdot \nu \alpha \beta \tag{5.38}\\
R(3) \cdot \cdot \gamma \alpha \beta & =\frac{1}{3} g^{(R) \lambda \mu} K_{\mu \nu \alpha \beta}+\frac{1}{3}\left(R^{(R) \lambda} \cdot \alpha \nu \beta+R_{i \beta}^{(R) \lambda} \cdot \beta \nu \alpha\right) \\
R_{(S) \mu \nu} & =\frac{1}{3} K_{\mu \nu}+\frac{2}{3} R_{\mu \nu}^{(R)}
\end{align*}
$$

So (5.34i) reduces to:

$$
\begin{equation*}
R_{\mu \nu}^{(R)}=-\frac{1}{2} K_{\mu \nu} \tag{5.39}
\end{equation*}
$$

Comparison with the corresponding general relativity equation suggests that $K_{\mu \nu}$ should be correlated with the physical energy-momentum tensor $T_{\mu \nu}$ (cf. (1.2)), and so should vanish in the absence of matter. We shall assume this correlation even when arti-selff-conjugate fields are not absent.

With these identifications in mind, we look at the case of a'source-free' space-time, defined as one satisfying:

$$
\begin{align*}
T_{\mu} & =0 \tag{5.40i}\\
K_{\mu \nu} & =0 \tag{5.40ii}
\end{align*}
$$

almost everywhere. Now, the 10 equations (5.34i) (with $K_{\mu \nu}=0$) involve not only the $\gamma_{\mu \nu}$ but also the 20 components
$\mathbb{T}_{\mu \nu \sigma}$, as may be seen by writing it more explicitly as:

$$
\left.\begin{array}{rl}
& R^{(R)}+\frac{1}{2} \omega^{\alpha \beta}\left(\omega_{\mu \lambda} R^{(R / \lambda} \cdot \lambda \alpha \beta\right.
\end{array}+\omega_{\nu \lambda} R^{(R \lambda \lambda} \mu_{\mu \alpha \beta}\right)-\frac{1}{4} \omega^{\alpha \beta}\left(\omega_{\alpha \beta|\mu| \nu}+\omega_{\alpha \beta|\nu| \mu)}\right) .
$$

in which $T_{\mu \nu \sigma}$ enters also via the $J_{\mu \nu \sigma}($ see (4.3I)). So it is necessary to supply field equations for the " $T_{\mu \nu \sigma}$ also; and the most natural choice is to replace (5.40i) by the stronger requirement:

$$
\begin{equation*}
T_{\mu \nu \sigma}=0 \tag{5.42}
\end{equation*}
$$

The souce-tree M_{4} would now be characterized by the following set of equations:

$$
\begin{gather*}
j_{\nu, \mu}-j_{\mu, \nu}=0 \tag{5.43i}\\
R_{\mu \nu}^{(R)}+E_{\mu \nu}=0 \tag{5.43ii}\\
T_{\mu \nu \sigma}=0
\end{gather*}
$$

where the second equation is an abbreviation for (5.4I) (with $T_{\mu \nu \sigma}=0$). There are the same number of equations as unknowh, which is 4 too many: betng covariant under the real transformation group, the LHS's should, for the usual reasons, satisfy four identities; but no such identities exist. (The situation is similar to that faced by Einstein and Straus when, in an early version of their theory, they tried to justify $R_{i k}=0$ as rield equation rather than the weaker (1.114ii) + (I.II4iii).) The nature of the difficulty can be pin-pointed by noting that the first term in (5.43ii) satisfies the Bianchi identities so that, for consistency, so must $\mathrm{E}_{\mu \nu}$; but explicit calculation shows that it does not in general, the condition that it should amounting to 4 equations
in the $\omega_{\mu \nu}$, which, when (5.43i) is also taken into account, one has no reason to expect can be satisfied other than by:

$$
\omega_{\mu \nu} \equiv 0
$$

so one is left with a solution manifold which is merely that of the empty-space field equations (5.11) of general relativity.

No satisfactory way of weakening, or of making consistent, the set (5.43) has been found in the context of the present approach. We therefore go on to consider field equations for M_{4} derived by means of a variational principle on M_{4}; this has the advantage of guaranteeing the existence of the required four identities among the equations, but the very considerable (in the author's opinion) conceptual disadvantage of leaving the 'parent' \mathcal{K}_{4} out of the picture.

Consider the variational principle:

$$
\begin{equation*}
\delta \int_{M_{4}} L \sqrt{-G} d^{4} x \equiv \int_{M_{4}}\left(T^{\mu \nu} \delta \gamma_{\mu \nu}-\Omega^{\mu \nu} \delta \omega_{\mu \nu}\right) \sqrt{-G} d^{4} x=0, \tag{5.44}
\end{equation*}
$$

I being a function of the metric on M_{4} and of its derivatives w.r.t. the $x \mu$, and the Euler-Lagrange equations being:

$$
\begin{align*}
& T^{\mu \nu}=0 \tag{5.45i}\\
& \Omega^{\mu \nu}=0 \tag{5.45ii}
\end{align*}
$$

Using the standard technique (see e.g. [3] \&23) for deriving conservation law by making infinitessimal transformations of the group (s) under which the Lagrangian is invariant, in this case real coordinate transformations in M_{4}, one can show that the LHS's of (5.45) are connected by the following four identities:

$$
Y_{\mu \beta} \Gamma_{1 \alpha}^{\beta^{\alpha}}+\omega_{\mu \beta} \Omega_{1 \alpha}^{\beta \alpha}-\frac{1}{2}\left(\gamma_{\mu \beta} \Gamma^{\beta \varepsilon}+\omega_{\mu \beta} \Omega^{\beta \varepsilon}\right) \omega \omega^{\rho \sigma} \omega_{\rho \sigma \mid \varepsilon}=0(5.46)
$$

where (4.40) and (5.4) have been used. In subsections (i) (iii) we shall investigate three possible Lagrangians, restricting attention throughout to the source-free case (see above), ie:

$$
\begin{equation*}
T_{\mu \nu \sigma}=K_{\mu \nu}=0 \tag{5.47}
\end{equation*}
$$

so that both $R_{(s) \mu \nu}$ and $R_{(A) \mu \nu}$ are functions only of the metric and its derivatives w.r.t. x^{μ}.
(i) At first sight the most natural choice for I is:

$$
\left.I=R_{(s)}\right)_{\mu}^{\mu}=\frac{2}{3} \gamma^{\mu \nu}\left(R_{(1)}^{\alpha} \cdot \mu_{\alpha \nu}-\omega^{\alpha \beta} R_{\mu \nu \alpha \beta}^{(2)}\right)+\frac{1}{3} \omega^{\mu \nu}\left(j_{\mu, \nu}-j_{\nu, \mu}\right) \quad(5.48)
$$ The corresponding tensors $T^{\mu \nu}, \Omega^{\mu \nu}$, have been computed, but are excessively complicated. In the static, spherically symmetric case, however, the field equations become relatively simple. We may take, as non-vanishing components of the metric:

$$
\left.\begin{array}{cc}
\gamma_{00}=e^{\nu} & \gamma_{11}=-e^{\lambda} \\
\gamma_{22}=-r^{2} & \gamma_{33}=-r^{2} \sin ^{2} \theta \tag{5.49}\\
\omega_{10}=-\omega_{01}= & \frac{\mathrm{P} e^{\frac{1}{2}(\lambda+\nu)}}{\left(1-\mathrm{F}^{2}\right)^{1 / 2}}
\end{array}\right\}
$$

whence

$$
\begin{equation*}
\sqrt{-G}=\frac{r^{2} \sin \theta e^{\frac{1}{2}(\lambda+\nu)}}{\left(I-F^{2}\right)^{1 / 2}} \tag{5.50}
\end{equation*}
$$

Inserting these expressions in the variational principle, one can obtain in a straightforward manner the three Euler-Iagrange equations for the three unknown functions of r. A class of solutions with $\not \equiv 0$ should exist, but has not been explicitly found (it might, of course, be empty).

In the non-electromagnetic case (of. (5.38)) the field equations derived from (5.48) are just:

$$
R_{\mu \nu}^{(R)}=0
$$

i.e. Einstein's empty-space field equations, while the identities (5.46) go over into the Bianchi identities. .

Since (5.45) are required to hold almost everywhere (i.e. with the exception of isolated singularities) they should, in so far as they are non-linear, predict, $10 r$ any particular choice of Lagrangian I, definite equations of motion for these singularities. With (5.48) as Lagrangian, however, there is sufficient analogy with Einstein's UFT for one to be fairly sure in advance that no Lorentz force will appear. ${ }^{[36]-[38]}$. This is clearly connected with the fact that in the present Lagrangian the curvature scalar formed Irom the $\gamma_{\mu \nu}, R^{(R)}$, is adjoined to quantities like $\gamma^{\mu \nu} \omega^{\alpha \beta} \omega_{\alpha \beta}|\mu| \nu$, and similarly in the case of Einstein's Lagrangian; whereas the Lagrangian for the physical electromagnetic field is of the form $F^{\mu \nu} F_{\mu \nu}$ (cf. (1.5)), and this form does lead, by an EIH type calculation, to the correct (Lorentz) force on electric monopole singularities. In (ii) and (iii) we discuss moves which can be made to meet this situation.

$$
\begin{equation*}
\text { (ii) Choose } \left.\quad I=R_{(s)}\right)^{\mu}-2 \lambda \tag{5.52}
\end{equation*}
$$

Let $T^{\mu \nu}$, $\Omega^{\mu \nu}$ represent the Hamiltonian derivatives of $\left(R_{(s)} \mu_{\mu} \sqrt{-G}\right)$ w.r.t. $Y_{\mu \nu}$, $\omega_{\mu \nu}$ respectively. By the usual formula for differentiation of determinants, one finds:

$$
\begin{equation*}
\delta \sqrt{-G}=\frac{1}{2} \sqrt{-G}\left(\gamma^{\mu \nu} \delta \gamma_{\mu \nu}-\omega \omega^{\mu \nu} \delta \omega_{\mu \nu}\right) \tag{5.53}
\end{equation*}
$$

The field equations resulting from (5.52) are therefore:

$$
\begin{array}{ll}
T^{\mu \nu}=\lambda \gamma^{\mu \nu} & \text { (5.54i) } \tag{5.54i}\\
\Omega^{\mu \nu}=\lambda \omega /^{\mu \nu} & \text { (5.54ii) }
\end{array}
$$

Suppose the $\omega_{\mu \nu}$ are connected with the physical $F_{\mu \nu}$ by:

$$
\begin{equation*}
\omega_{\mu \nu}=\eta F_{\mu \nu} \tag{5.55}
\end{equation*}
$$

where, since the IHS is dimensionless, the constant η has dimensions $\left(\frac{\text { charge } \times 1 \text { length }}{\text { mass }}\right)$. We want:

$$
\begin{equation*}
\mathcal{L}^{\mu \nu} \omega_{\mu \nu} \sim K F^{\mu \nu} F_{\mu \nu} \tag{5.56}
\end{equation*}
$$

($K=$ Einstein's gravitational constant), because then (5.46), will be something like the Lorentz force equation. Combining the last three equations gives:

$$
\begin{equation*}
\lambda \eta^{2} \sim K \tag{5.57}
\end{equation*}
$$

In this relation, both λ and η are unknown. The following 'plausibility argument' gives an upper bound on η. The classical radius of the electron is (taking $c=I$):

$$
\begin{equation*}
r_{0}=\frac{e^{2}}{m_{2}} \doteqdot 2.8 \times 10^{-13} \mathrm{~cm} \tag{5.58}
\end{equation*}
$$

All field strengths with which classical electromagnetism deals are therefore less than

$$
\begin{equation*}
F^{(\max)}=\frac{e}{r_{0}^{2}} \tag{5.59}
\end{equation*}
$$

and for all such fields the innear Maxwell theory is a good description; if the present non-linear theory is to provide an equally good account, these 'observable' fields must be such that (in coordinates for which $\gamma_{\mu \nu} \sim 1$):

Therefore

$$
\begin{array}{r}
\omega_{\mu \nu} \ll 1 \\
\eta<\frac{r_{0}^{2}}{e} \tag{5.6I}
\end{array}
$$

This implies, with (5.57), the following lower bound on λ :

$$
\begin{equation*}
\lambda>\frac{k e^{2}}{r_{0}^{4}} \sim \frac{10^{-40}}{r_{0}^{2}} \tag{5.62}
\end{equation*}
$$

(5.62) means that it is not possible to take, as the form of (5.54i) might at first suggest, λ to be of cosmological dimensions ($\sim 10^{-55} \mathrm{~cm}^{-2}$). The next most natural choice, which is consistent with (5.62), is:

$$
\begin{equation*}
\lambda=\frac{1}{r_{0}^{2}} \tag{5.63}
\end{equation*}
$$

This leads to $\omega_{\mu \nu} \sim 10^{-20}$ at the surface of an electron, so that linearity for observable fields would be well satisfied. Problems arise in connection with (5.54i), however: the gravitational field will now propagate (in the linear approximation) according to an analogue of the Klein-Gordon equation rather than the wave equation, which seems definitely unacceptable (although it should be mentioned that Lanczos' theory, ${ }^{[78]-[80]}$ employing a Riemannian manifold, is based on a proportionality such as (5.54i) with essentially the value (5.63) for λ).

$$
\text { (iii) Choose, } \begin{align*}
I & =B^{(1) \mu \nu} a B^{\mu} B_{\mu \nu}^{(1) a t} \\
& =2\left(R_{(s)}^{\mu \nu} R_{(s) \mu \nu}+R_{(A)}^{\mu \nu} R_{(A) \mu \nu}\right) \tag{5.64}
\end{align*}
$$

Where (cf. (3.101) \& (3.110)):

$$
\left.\begin{array}{l}
R_{(s)}^{\lambda k} \equiv B^{(1) \lambda k} 11=\gamma^{k \nu} R_{(s)^{\lambda} \cdot \nu}-\omega^{k \nu} R_{(A)^{\lambda} \cdot \nu} \tag{5.65}\\
R_{(A)}^{\lambda k} \equiv B_{12}^{(1) \lambda k}=\gamma^{k \nu} R_{(A) \cdot \nu}^{\lambda}+\omega^{k \nu} R_{(s)^{\lambda} \cdot \nu}
\end{array}\right\}
$$

The second term on the RHS of (5.64) resembles the Maxwell Lagrangian for the free electromagnetic field, and mainly on this account a Lagrangian of type similar to (5.64) for the combined gravitational and electromagnetic fields has been put forward on a number of occasions and in a variety of contexts, e.g. [52] p.63, [77] p.532, [79], [80], [81] p.230. In
contrast to case (i) above, however, there is now a departure from general relativity even for a non-electromagnetic M_{4}, for, by (5.38), the action principle then reduces to:

$$
\begin{equation*}
\delta \int_{M_{4}} R^{(R) \mu \nu} R^{(R)} \mu_{\nu} \sqrt{-g^{(R)}} d^{4} X=0 \tag{5.66}
\end{equation*}
$$

where $\quad g^{(R)} \equiv \operatorname{det}\left\|g_{\mu \nu}^{(R)}\right\|$. This latter Lagrangian is gaugeinvariant in Weyl's sense, and for that reason figured in his theory (see also [81] p.141). The following field equations result from (5.66) (the equations given in [98] are slightly erroneous):

$$
\begin{equation*}
\left(R_{\cdot \alpha}^{\mu} R^{\nu \alpha}-\frac{1}{4} g^{\mu \nu} R^{\alpha \beta} R_{\alpha \beta}\right)+\frac{1}{2}\left(R \mu^{\mu \sigma / \nu}+R^{\nu \sigma / \mu}-R /_{0}^{\mu / \sigma}\right)_{1 \sigma}=0 \tag{5.67}
\end{equation*}
$$

(where the superscript ${ }^{(R)}$ has been dropped, for simplicity). Contraction over (μ, ν), and use of the Bianchi identities, implies that the curvature scalar satisfies the wave equation:

$$
\begin{equation*}
\square \mathrm{R} \equiv g^{\alpha \beta} R_{|\alpha| \beta}=0 \tag{5.68}
\end{equation*}
$$

All solutions of (5.11) simultaneously satisty (5.67), but not of course vice versa. Whether (5.64) is a permissible choice of Lagrangian depends, therefore, inter alia, on whether it can be shown that (5.67) does not lead to physically unacceptable conclusions. This seems to be an open question (cf. [77] p. 533).

CHAPTER 6

Fields in ε_{4}

§6.1 Introduction

The previous chapters have treated curved \mathcal{K}_{n} 's. We shall now consider only flat ones:

$$
\left.\begin{array}{rl}
\Omega & =\frac{1}{4} \sum_{\alpha=1}^{4} \varepsilon_{\alpha}\left|z^{\alpha}\right|^{2} \tag{6.1}\\
\varepsilon_{\alpha} & = \pm 1
\end{array}\right\}
$$

The metric which corresponds to this basic function and coordingate system is:

$$
\left.\begin{array}{l}
Y_{\mu \nu}=\eta_{\mu \nu} \equiv \varepsilon_{\mu} \delta_{\mu \nu} \text { (no summation) } \\
\omega_{\mu \nu}=0
\end{array}\right\}
$$

At the same time the coordinate transformations will be restricted to the affine group:

$$
\begin{equation*}
z Y^{\mu^{\prime}}=\sum_{\alpha} A_{\mu \alpha} z^{\alpha} \tag{6.3}
\end{equation*}
$$

i.e. only position-independent, homogeneous transformations are allowed, and they are further required to leave the metric (6.2) invariant, so that (cf. (3.40)):

$$
\begin{equation*}
\sum_{\alpha} \sum_{\beta} A_{\alpha \mu}^{-1} \eta_{\alpha \beta} \overline{A_{\beta \nu}^{-1}}=\eta_{\mu \nu} \tag{6.4}
\end{equation*}
$$

We shall use the rather ugly term 'quasi-unitary' for these transformations, and write the group as $U(4)$ (it is unfortunate that group-theoretical nomenclature seems to be adapted primarily to groups deriving from positive definite forms, so that in the contrary case there are almost as many notations as authors). Under these conditions the \mathcal{K}_{4} is a (quasi-) unitary space, and will be written ε_{4}.

The motivation for this specialization is the following.

As discussed in \oint I.I, one would not expect a 'complete' physics to be constructible purely out of the sort of geometrical tensors considered so far. So one is led to examine the behaviour of 'extraneous' (in the sense of non-geometrical) fields on \mathcal{K}_{4}. This is a potentially very large area of investigation and will be no more than touched on here: it leads almost at once outside the scope of the present work and into quantum theory. In this chapter we treat only the question of the existence of Dirac spinors in ε_{4} (see ई6.3). $\oint 6.2$ assembles oneor two results relevant to the purpose. The present section concludes with some remarks on the subject of 'internal' symmetry groups.

Suppose (cf.§ I.l) that, as observers confined to M_{4}, our experience is only a partial view, a slice, of the 'real! physics, that of \mathcal{K}_{4}. The latter will (presumably) involve interactions which are covariant under $U(4)$. The only coordinate transformations permissible on M_{4} are (cf. Chapter 4) real transformations of the x^{μ}, which in the present context means: the Lorentz group, I_{4}. The latter is a 6 real parameter proper subgroup of $U(4)$ (we consider homogeneous transtormations only). The covariance of an interaction under the wider group $U(4)$ might therefore be interpreted by an observer on M_{4} in terms of (covariance under I_{4}, together with) some 'internal' symmetry property. Turning now to elementary particle physics, we find the following situation. The struature of the (inhomogeneous)

Lorentz group gives rise to a classitication of particles (strictly: of irreducible representations) according to their mass and spin. The classificatory possibilities latent in the group are thereby exhausted. However, the observed particle interaction symmetries either demand or at least invite the introduction of other quantum numbers: charge, baryonic charge, hypercharge, etc., which are not connected with spacetime coordinate transformations. Thus there arises the concept of isospace. Originally, the latter was taken to be threedimensional, and provided a 'geometrical' characterization of charge multiplets (in terms of isotopic spin). Subsequently, a real four-aimensional space was suggested ${ }^{[85]-[87]}$ in the attempt to incorporate strangeness ([88], and [89] Chapter V, review this work). More recently, attention has been primarily Hocussed on $\operatorname{SU}(3), \operatorname{SU}(6)$, and related groups. However, the group called here $U(4)$ has also been put forward: [90]-[92] In general the internal transformation group is unconnected with space-time coordinate transformations, so that the overall symmetry of (say) the Lagrangian is just the direct propuct of the two distinct types of group; attempts to modify this state of affairs meet with great difficulties.

Is there any connection between the situations, one hypgthetical, one actual, portrayed in the two preceding paragraphs? It would seem not entirely inconceivable that a case could be made for trying to relate the 4 'unphysical' degrees of freedom, z_{2}^{μ}, of a complex space-time to the
coordinates of (for example) a four-dimensional isospace; but without a much clearer picture of the supposed nature of fields in ε_{4} it is difficult to see how one might progress towards a less indefinite answer to the question.

```
\(\oint 6.2 U(4)\)
    \(U(4)^{[90][95]}\) is, like \(O(4)\) or \(L(4)\), a semi-simple group.
```

It contains the 'phase' transformations:

$$
\begin{equation*}
z \mu^{\mu^{\prime}}=e^{i \theta} z^{\mu} \quad(\theta \text { real }) \tag{6.5}
\end{equation*}
$$

as an invariant subgroup, so that there is the direct product decomposition:

$$
\begin{equation*}
U(4)=S U(4) \times U(I) \tag{6.6}
\end{equation*}
$$

Representations of $U(4)$ can therefore be classified according to their behaviour under $U(I)$ and $S U(4)$ separately. The . latter is a 15 real parameter simple group, and will now be considered in more detail.

The complex Lie algebras ([93] §53) of the $\operatorname{SU}(4)$'s associated with the various possible signatures (choices of ε_{μ}) in (6.1) are identical, differences only showing up in the real algebras. These distinguishing features will be ignored here, since questions of compactness, etc. are not the present concern, and none of the results of this or the following section are sensitive to choice of signature. The Lie algebra of $\operatorname{SU}(4)$ is, in Cartan's classification, A_{3}; it is of rank 3. and has the following Schouten (or Dynkin) diagram:

Since this is also the diagram for D_{3} (the 6-dimensional orthogonal group, $O(6)$), there is the isomorphism:

$$
\begin{equation*}
\operatorname{SU}(4) \cong O(6) \tag{6.8}
\end{equation*}
$$

The next few results are obtainable by straightforward application of the standard techniques, as collected in [94] in
particular. Calling the three simple root's of the Lie algebra α, β, γ, its 12 roots are:

$$
\begin{equation*}
\pm\{\alpha, \beta, \gamma, \alpha+\beta, \beta+\gamma, \alpha+\beta+\gamma\} \tag{6.9}
\end{equation*}
$$

From this, the canonical structure constants of the algebra can readily be computed. The dimension of the irreducible representation with diagram:

($\lambda_{\alpha}, \lambda_{\beta}, \lambda_{\gamma}$ non-negative integers) is found to be:

$$
\begin{equation*}
\mathbb{N}=\frac{1}{12} \mu_{\alpha} \mu_{\beta} \mu_{r}\left(\mu_{\alpha}+\mu_{\beta}\right)\left(\mu_{\beta}+\mu_{r}\right)\left(\mu_{\alpha}+\mu_{\beta}+\mu_{r}\right) \tag{6.10}
\end{equation*}
$$

where $\mu_{\alpha} \equiv \lambda_{\alpha}+1$, and similarly $\mu_{\beta}, \mu_{\gamma}$. The following table gives all the irreducible representations, up to power 3.

Representation

Greatest weight

Dimension N

$$
\begin{gather*}
0 \\
\frac{3}{4} \alpha+\frac{1}{2} \beta+\frac{1}{4} \gamma \\
\frac{1}{2} \alpha+\beta+\frac{1}{2} \gamma \tag{6}\\
\frac{3}{2} \alpha+\beta+\frac{1}{2} \gamma \\
\alpha+\beta+\gamma \tag{15}\\
\frac{5}{4} \alpha+\frac{3}{2} \beta+\frac{3}{4} \gamma \tag{20}\\
\alpha+2 \beta+\gamma \\
\frac{9}{4} \alpha+\frac{3}{2} \beta+\frac{3}{4} \gamma \\
\frac{7}{4} \alpha+\frac{3}{2} \beta+\frac{5}{4} \gamma \\
2 \alpha+2 \beta+\gamma \\
\frac{3}{2} \alpha+3 \beta+\frac{3}{2} \gamma \\
\frac{7}{4} \alpha+\frac{5}{2} \beta+\frac{5}{4} \gamma
\end{gather*}
$$

1
4.

10

$$
0_{0}^{1}-0_{0}^{1}
$$

- Weight diagram

[1]
$[1,1,1,1]$
$[1,1,2,1,1]$ $[1,1,2,2,2,1,1]$ $[1,2,3,3,3,2,1]$ $[1,2,3,4,4,3,2,1]$ $[1,1,3,3,4,3,3,1,1]$ $[1,1,2,3,3,3,3,2,1,1]$ $[1,2,4,5,6,6,5,4,2,1]$ $[1,2,4,5,7,7,7,5,4,2,1]$ $[1,1,3,4,6,6,8,6,6,4,3,1,1]$ $[1,2,4,6,8,9,9,8,6,4,2,1]$ $[1,3,5,8,10,10,10,8,5,3,1]$
where, in the last column, $(1,1,2,1,1)$ means

The second row corresponds to the vector representation of $\mathrm{SU}(4)$, the spinor one of $0_{+}(6) 0^{[97]}$
The third row corresponds to skew-symmetric tensor, and vector, respectively, for the two groups.
The fifth row corresponds to a zero-trace second rank Hermitian tensor, and a skew-symmetric second rank tensor, respectively. Use of the above table alone enables most products of low-order representations to be reduced unambiguously.

Whereas $O(n)$ is not simply connected, so that its basic representations are the two-valued (spinor) ones, $S U(4)$ does not possess two-valued representations ([99] pp.268-70).

We conclude by establishing an isomorphism which lies at the basis of the work in $\$ 6.3$, namely:

$$
\begin{equation*}
U(4) \cong 0_{+}(8) \cap \operatorname{Sp}(8) \tag{6.12}
\end{equation*}
$$

where + denotes the proper (positive determinant) subgroup, and $S p(8)$ is the real symplectic group in 8 dimensions.

In terms of the decompositions (3.36) and (3.37), (6.3) and (6.4) become:

$$
\binom{z_{1}^{\prime}}{z_{2}^{\prime \prime}}=\left(\begin{array}{cc}
A_{\mu \alpha^{\alpha}}^{(1)} & -A_{\mu \alpha}^{(2)} \tag{6.12}\\
A_{\mu_{\alpha}^{\alpha}}^{(1)} & A_{\mu^{\prime \alpha}}^{(1)}
\end{array}\right)\binom{z_{1}^{\alpha}}{z_{2}^{\alpha}}
$$

and

$$
\left(\begin{array}{cc}
\eta & 0 \tag{6.13}\\
0 & \eta
\end{array}\right)=\left(\begin{array}{cc}
A^{(1) T} & A^{(2) T} \\
-A^{(2) T} & A^{(1) T}
\end{array}\right)\left(\begin{array}{cc}
\eta & 0 \\
0 & \eta
\end{array}\right)\left(\begin{array}{ll}
A^{(1)} & -A^{(2)} \\
A^{(2)} & A^{(1)}
\end{array}\right)
$$

where ${ }^{\top}$ denotes the transposed matrix. (6.13) just says:

$$
\left.\begin{array}{l}
A^{(1) T} \eta A^{(1)}+A^{(2) T} \eta A^{(2)}=\eta \tag{6.14}\\
A^{(1) T} \eta A^{(2)}-A^{(2) T} \eta A^{(1)}=0
\end{array}\right\}
$$

which are the real and imaginary parts of (6.4). Consider
the general affine transformation of the 8-dimensional real space coordinatized by the z_{a}^{μ}, i.e:

$$
\binom{z_{1}^{\mu_{1}^{\prime}}}{z_{2}^{\mu_{2}^{\prime}}}=\left(\begin{array}{cc}
T_{\mu_{\alpha}}^{(11)} & T_{\mu \alpha}^{(12)} \tag{6.15}\\
T_{\mu_{\alpha}}^{(21)} & T_{\mu_{\alpha}}^{(22)}
\end{array}\right)\binom{z_{1}^{\alpha}}{z_{2}^{\alpha}}
$$

The condition that this be a real symplectic transformation, in the sense of leaving invariant the anti-symmetric bilinear form with matrix: $\quad\left(\begin{array}{cc}0 & I_{(4)} \\ -I_{(4)} & 0\end{array}\right)$
and that it should simultaneously be an orthogonal transformation, in the sense of leaving invariant the symetric bilinear form with matrix the LHS of (6.13), is found to entail that ($\left.T_{\mu \alpha}^{(a(t)}\right)$ must have a partitioned structure as in (6.12) and must satisfy equation (6.13). If, in addition, it is noted that the determinant of a transformation matrix of type (6.12) is inherently positive, being a perfect square, the proof of (6.11) is complete. (of course, the result is not specially dependent on the value $n=4$, but holds for all positive n.)

§6.3 Iinear wave equation

Spinors, in the sense of two-valued representations of the coordinate transformation group, do not exist in ε_{4}. Nevertheless, it is still possible to linearize the d'Alembertian operator, by a procedure precisely parallelling Dirac's original one. Throughout this section we shall suppose the metric to be positive definite: the transition to a space-time of Minkowski signature is straightforward, and the presentation is merely made more cumbersome by having continually to differ- . entiate between time and space values of the indices.

The wave operator in ε_{4} is:

$$
\begin{equation*}
\square \equiv 4 \sum_{\mu=1}^{4} \frac{\partial^{2}}{\partial z^{\mu} \partial z^{\mu}}=\sum_{\mu=1}^{4} \sum_{a=1}^{2}\left(\frac{\partial}{\partial z_{a}^{\mu}}\right)^{2}=\sum_{i=1}^{8}\left(\frac{\partial}{\partial z^{i}}\right)^{2} \tag{6.16}
\end{equation*}
$$

where in the last step an identification like (2.I) is involved. Following the procedure given in Brauer \& Weyl's classic paper $[102]$ (cf. also [99] pp.270-4), we introduce. 8 quantities p^{i} which enable \square to be written as a perfect square:

$$
\begin{equation*}
\square=\left(p^{i} \frac{\partial}{\partial z^{i}}\right)^{2} \tag{6.17}
\end{equation*}
$$

(introducing the summation convention). Equating the last two equations gives:

$$
\begin{equation*}
p^{i} p^{j}+p^{j} p_{8}^{i}=2 \cdot \delta^{i j} \tag{6.18}
\end{equation*}
$$

so that the set of 'units' $\prod_{i=1}^{8}\left(p^{i}\right)^{e_{i}}$ with $e_{i}=0$ or 1 spans a 256-dimensional Clifford algebra. (Gamba ${ }^{[105]}$ has also treated spinors in 8 dimensions, and the work of $\mathrm{Das}^{[50]}$ has already been mentioned.) A standard matrix representation of (6.18) is as follows (it will be distinguished by a hat):

$$
\left.\begin{array}{ll}
\hat{P}^{1}=I^{\prime \prime} \times I \times I \times I & \hat{P}^{5}=I^{\prime \prime \prime} \times I \times I \times I \\
\hat{P}^{2}=I \times I^{\prime \prime} \times I \times I & \hat{P}^{6}=I^{\prime} \times I^{\prime \prime \prime} \times I \times I \\
\hat{P}^{3}=I^{\prime} \times I^{\prime} \times I^{\prime \prime} \times I & \hat{P}^{7}=I^{\prime} \times I^{\prime} \times I^{\prime \prime \prime} \times I \\
\hat{P}^{4}=I^{\prime} \times I^{\prime} \times I \times I^{\prime \prime} & \hat{P}^{8}=I^{\prime} \times I^{\prime} \times I^{\prime} \times I^{\prime \prime \prime} \tag{6.20}
\end{array}\right\}
$$

where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \quad I^{\prime}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \quad I^{\prime \prime}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad I^{\prime \prime \prime}:=\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)$
and x represents outer or Kronecker multiplication. The first four matrices are real, the second four pure imaginary. Any other (16×16) representation of the algebra is obtainable from this one, by a non-singular 'spin-frame' transformation $S: \quad P^{i}=S^{-1} \hat{P}^{i} S$
and S is uniquely determined up to a (complex) scalar factor - this follows from Schur's lemma, and can be verified directly: the only matrix which commutes with all the \hat{P}^{\prime} s is (a multiple of) the unit matrix $I_{(16)}$. For reasons which will appear shortly, we use this Ireedom of choice of basis in the spin frame to convert (6.19) into a different representation, P^{i} say, by choosing as S in (6.21) a 'quasi'-permutation matrix, namely one that permutes the rows and columns of \hat{P}^{i} according to the lollowing scheme:
$\downarrow\left(\begin{array}{rrrrrrrrrrrrrrrr}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ 1 & 12 & 11 & -6 & 10 & 7 & -8 & 13 & 9 & 4 & 3 & -14 & 2 & 15 & -16 & 5\end{array}\right)$
where the notation means that e.g. under the row interchange operation the 6 th row of P^{i} is - (the 4 th row of $\hat{\mathrm{P}}^{i}$), and so on. The matrix S is unitary. "The resulting matrices P^{i} all have (unlike the \hat{P}^{i}) the following partitioned form:

$$
\left(p^{i}\right)=\left(\begin{array}{cc}
O_{(8)} & \pi^{i} \tag{6.23}\\
\pi^{i \dagger} & O_{(8)}
\end{array}\right)
$$

where t denotes Hermitian conjugate. Explicitly:

$$
\Pi^{\prime}=I_{(8)}
$$

$$
\Pi^{5}=\left(\begin{array}{lll|lll}
i & & & & & \\
& -i & & & & \\
& & -i & & & \\
& & & -i & & \\
\\
& & & -i & & \\
& & & & & \\
& & & & & \\
& & & &
\end{array}\right)
$$

$$
\Pi^{2}=\left(\begin{array}{cccc|ccc}
0 & 1 & 0 & 0 & & & \\
-1 & 0 & 0 & 0 & & & \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & & & \\
0 & 0 & -1 & 0 & -1 & 0 \\
\hline 0 & & & & & &
\end{array}\right)
$$

$$
\pi^{6}=\left(\begin{array}{cccccc}
0 & i & 0 & 0 & & \\
i & 0 & 0 & 0 & & \\
& 0 & & \\
& & & 0 & 0 & 0 \\
0 & 0 & -i & 0 \\
\hline & & & 0 & -i & 0
\end{array}\right)
$$

$$
\pi^{3}=\left(\begin{array}{ccc|ccc}
0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & -1 \\
-1 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$$
\pi^{7}=\left(\begin{array}{cccc|ccc}
0 & 0 & i & 0 & & & \\
i & 0 & 0 & 0 & 0 & 0 & -i \\
\hline 0 & 0 & 0 & i & 0 & 0 & -i \\
0 & -i & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\pi^{4}=\left(\begin{array}{cccc|cccc}
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 & & & & 1
\end{array}\right)
$$

$$
\pi^{8}=\left(\begin{array}{cccc|ccc}
0 & 0 & 0 & i & & & \\
& & & 0 & i & 0 \\
i & 0 & 0 & 0 & & & \\
\hline 0 & 0 & -i & 0 & & 0 & 0 \\
0 & i & 0 & 0 & & & 0 \\
\hline i & 0 & 0 & 0
\end{array}\right)
$$

(where blank spaces are occupied by zeros).
These are all unitary matrices; that they must be, follows by squaring both sides of (6.23). Also, Π^{\prime} is Hermitian, the other 7 anti-Hermitian. (These particular properties are not independent of the signature of ε_{4}.) The equivalent of the " γ^{5} " of Dirac 4-spinor theory is:

$$
\prod_{i=1}^{8} \mathrm{P}^{i}=\left(\begin{array}{cc}
I_{(8)} & 0 \tag{6.25}\\
0 & -I_{(8)}
\end{array}\right)
$$

Consider the 'Klein-Gordon' wave equation in ε_{4} :

$$
\begin{equation*}
\left(\square-k^{2}\right) \Psi=0 \tag{6.26}
\end{equation*}
$$

where k is some (real or pure imaginary) constant. Using (6.17), this can' be linearized to give the 'Dirac' wave equation:

$$
\begin{equation*}
\left(P^{i} \frac{\partial}{\partial z^{i}}-k\right) \Psi=0 \tag{6.27}
\end{equation*}
$$

where Ψ is a $(16 \times I)$ matrix. We now look at the way this equation behaves under coordinate transformations.

Let $O_{i k}$ be the matrix of an orthogonal transformation of the z^{i} :

$$
\begin{equation*}
z^{i^{\prime}}=\sum_{k} O_{i k} z^{k} \tag{6.28}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta_{i j}=\sum_{k} \sum_{l} 0_{k i}^{-1} \delta_{k l} 0_{l j}^{-1} \tag{6.29}
\end{equation*}
$$

Let ' P^{i} ' be the set of matrices which result from treating the index i as a (contravariant) vector index:

$$
\begin{equation*}
P^{i^{\prime}}=\sum_{k} O_{i k} P^{k} \tag{6.30}
\end{equation*}
$$

The $P^{i^{\prime}}$ will also satisfy the anti-commutation relations (6.18), and because the Clifford algebra possesses only inner automorphisms there must therefore exist a matrix, $S(0)$ say, such that:

$$
\begin{equation*}
P^{i}=[S(0)]^{-1} P^{i^{\prime}} S(0) \tag{6.3I}
\end{equation*}
$$

Combining the last two equations:

$$
\begin{equation*}
P^{i}=\sum_{k}[S(0)]^{-1} 0_{i k} P^{k} S(0) \tag{6.32}
\end{equation*}
$$

which says that under the coordinate and spin transformations combined the P^{\prime} s, and therefore the Dirac equation (6.27), are invariant. 0 may be said to induce this spin transformation $S(0)$. The relation between 0 and S is, because of the presence $0 . i$ an arbitrary multiplying factor on S, a 'projective' homomorphism; by suitable normalization (cf. [99]
p.273) the factor can be reduced to ± 2, giving a two-valued homomorphism. The behaviour of Ψ under $S(0)$ is:

$$
\begin{equation*}
\Psi^{\prime}=[S(0)]^{-1} \Psi \tag{6.33}
\end{equation*}
$$

So it transforms according to an irreducible but two-valued representation of $0(8)$. However, only some of the orthogonal transtormations (6.28) correspond to coordinate transformations in ε_{4} (see $\oint 6.2$); so it is prima facie unlikely that Ψ will transform irreducibly under U(4). It is the main purpose of the rest of the section to discover how it does transform. This will be done in two stages, corresponding to the two terms on the RHS of (6.11): we first show how Ψ transforms under $O_{+}(8)$ - this is common knowledge, from quantum theory - and then find what effect the simplectic condition has.

Since only the proper orthogonal group has to be considered we may restrict attention to the neighbourhood of the identity. If $\quad 0=I_{(8)}+\varepsilon \omega$
then the orthogonality condition (6.29) says:

$$
\begin{equation*}
\omega^{\top}+\omega=0 \tag{6.35}
\end{equation*}
$$

There are 28 linearly independent anti-symmetric (8×8) matrices, and they are spanned by the set $M^{(r s)} \equiv-M^{(s r)}(r<s)$ where:

$$
M_{i j}^{(r s)}=\left\{\begin{array}{cll}
+I & i=r & j=s \tag{6.36}\\
-I & i=s & j=r \\
0 & \text { otherwise }
\end{array}\right.
$$

Consider the infinitessimal transformation corresponding to one of these generators:

$$
\begin{equation*}
z^{i^{\prime}}=\sum_{k}\left(I+\varepsilon M^{(r s)}\right)_{i k} z^{k} \tag{6.37}
\end{equation*}
$$

In this case an explicit solution of the equation (6.32) for $S(0)$ is obtainable, in the usual way, and substitution in (6.33) gives as the induced transformation of Ψ :

$$
\begin{equation*}
\Psi^{\prime}=\left(I+\frac{1}{2} \varepsilon P^{r} P^{5}\right) \Psi \tag{6.38}
\end{equation*}
$$

We now consider infinitessimal unitary transformations in Ξ_{4}, and for this purpose revert temporarily to the complex coordinates z^{μ}. If, in (6.3):

$$
\begin{equation*}
A=I_{(4)}+\varepsilon a \tag{6.39}
\end{equation*}
$$

then the unitarity condition (6.4) says (since now $\eta_{\mu \nu}=\delta_{\mu \nu}$):

$$
\begin{equation*}
a^{t}+a=0 \tag{6.40}
\end{equation*}
$$

There are 16 Iinearly independent anti-Hermitian (4×4) matrices, and they are spanned by the following set:

$$
\begin{align*}
& \mathrm{F}=\left(\begin{array}{ccc}
-i & & \\
-i & & \\
& & - \\
& & -i
\end{array}\right) \\
& K_{1}=\left(\begin{array}{lll}
i & & \\
0 & 0 & \\
& 0 & -i
\end{array}\right) \\
& R_{2}=\left(\begin{array}{lll}
0 & & \\
& i & \\
& & \\
& & \\
\hline
\end{array}\right) \quad K_{3}=\left(\begin{array}{lll}
+1 & \alpha=\mu & \beta=\nu \\
-1 & \alpha=\nu & \beta=\mu
\end{array}\right. \tag{6.41}
\end{align*}
$$

$$
(\mu<\nu) \left\lvert\, \begin{array}{ll}
0 & \text { otherwise }
\end{array}\right.
$$

$$
+
$$

$$
\begin{gathered}
I_{\alpha \beta}^{(\mu \nu)} \\
(\mu<\nu)
\end{gathered}=\left\{\begin{array}{c}
-i \\
-i \\
0
\end{array}\right.
$$

$$
\begin{array}{ll}
\alpha=\mu & \beta=\nu \\
\alpha=\gamma & \beta=\mu
\end{array}
$$

otherwise

$$
\begin{align*}
\mathcal{F} & =M^{(15)}+M^{(26)}+M^{(37)}+M^{(48)} \\
\mathcal{K}_{1} & =-M^{(15)}+M^{(48)} \\
\mathcal{K}_{2} & =-M^{(26)}+M^{(48)} \\
\mathcal{K}_{3} & =-M^{(37)}+M^{(48)} \tag{6.42}\\
\mathcal{K}^{(\mu \nu)} & =M^{(\mu \nu)}+M^{(\mu+4, \nu+4)} \\
f^{(\mu \nu)} & =M^{(\mu, \nu+4)}+M^{(\nu, \mu+4)}
\end{align*}
$$

Combining (6.42) with (6.38) enables the transformation properties of Ψ under $U(4)$ to be found. By explicitly computing the transformation matrices, from (6.24), the following two rather remarkable facts emerge.
(i) If the 16 components of Ψ are relabelled according to the scheme:

$$
\begin{align*}
& \Psi^{1} \equiv s \\
&\left(\Psi^{2}, \Psi^{3}, \Psi^{4}, \Psi^{6}, \Psi^{7}, \Psi^{8}\right) \equiv\left(w_{12}, w_{13}, w_{14}, w_{43}, w_{24}, w_{32}\right) \tag{6.43}\\
&\left(\Psi^{9}, \Psi^{10}, \Psi^{11}, \Psi^{12}\right) \equiv\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \\
&\left(\Psi^{13}, \Psi^{14}, \Psi^{15}, \Psi^{16}\right) \equiv\left(v^{1}, v^{2}, v^{3}, v^{4}\right)
\end{align*}
$$

and if the 6 components on the second line are duplicated by:

$$
\begin{equation*}
w_{\mu \nu} \equiv-w_{\nu \mu} \quad(\mu \neq \nu) \tag{6.44}
\end{equation*}
$$

then under the 15 generators of $\underline{S U}(4)$, i.e. the set ($6: 41$) but excluding F, Ψ is found to transform in the manner implied by the index labeling in (6.43). So, instead of transforming irreducibly under $S U(4)$, it transforms according to a representation which is in its explicitly reduced form, with diagonal 'block' structure signified by the decomposition:

$$
\begin{equation*}
16=1+4+6+4+1 \tag{6.45}
\end{equation*}
$$

This (by hindsight), was the reason for making the change (6.22).
(ii) Consider now the behaviour of Ψ under the phase subgroup $U(1)$, with generator F. Again by inspection of the matrices, it turns out that the components of Ψ transform as tensor densities. (This fact is of course irrelevant for the unimodular transformations $S U(4)$ (cf. [99] p.264), which is why it is not in evidence in (i) above.)

Definition: A quantity transforming under (6.3) as a tensor but with inclusion of a factor

$$
\left(\operatorname{det}\left\|A_{\mu \nu}\right\|\right)^{-w}\left(\operatorname{det}\left\|\overline{A_{\mu \nu}}\right\|\right)^{-W^{\prime}}
$$

is called a tensor density of weight w and anti-weight w^{\prime} (c.: [67] p.12).

Take the determinant of (6.39), with $a=F$:

$$
\begin{equation*}
\operatorname{det}\left\|I_{(4)}+\varepsilon F\right\|=1-4 i \varepsilon \tag{6.46}
\end{equation*}
$$

This means that a density with the above weights will acquire the additional factor

$$
I+4 i\left(w-w^{\prime}\right) \varepsilon
$$

in its transformation law for F. The values of (w-w') for the components of Ψ are found to be as follows:

s	$-\frac{1}{2}$
t	$+\frac{1}{2}$
u_{μ}	$-\frac{1}{2}$
v_{μ}	$+\frac{1}{2}$
$w_{\mu \nu}$	$-\frac{1}{2}$

If, now, the wave equation (6.27) is written out explicitly using the matrices P^{i} as given by $(6.23)+(6.24)$, and in terms of the symbols introduced in (6.43), the 16 equations are:

$$
\begin{aligned}
& u^{\bar{\mu}}, \bar{\mu}-\frac{1}{2} k s=0 \\
& s_{, \mu}-w_{\mu}{ }^{\nu}, \bar{\nu}-\frac{1}{2} K u_{\mu}=0 \\
& \left(u_{\nu, \mu}-u_{\mu, \nu}\right)-\frac{1}{2} \varepsilon_{\mu \nu \rho \sigma}\left(v^{\sigma, \rho}-v^{\rho, \sigma}\right)-\frac{1}{2} K w_{\mu \nu}=0 \\
& t, \bar{\mu}+w_{\bar{\mu}}^{*}, \nu-\frac{1}{2} K v_{\bar{\mu}}=0 \\
& v^{\mu}, \mu-\frac{1}{2} k t=0
\end{aligned}
$$

where (cf. (3.71))

$$
\begin{align*}
& \mu^{\mu} \equiv \frac{\partial}{\partial z^{\mu}} \\
& \mathrm{w}^{* \mu \nu} \equiv \frac{1}{2} \varepsilon^{\mu \nu \sigma \rho} \quad \mathrm{w}_{\sigma \rho} \tag{6.49}
\end{align*}
$$

and
and where the metric tensor $\left(\delta_{\mu \bar{\nu}}\right)$ has been used to raise and lower indices (the components $u \bar{\mu}$ being in fact, with the present signature, numerically indistinguishable from u_{μ}). $\varepsilon_{\mu \nu \sigma \rho}\left(\varepsilon^{\mu \nu \sigma}\right)$ have weights $-I(+1)$ respectively, and anti-weights zero, so one can readily check that the LHS's in (6.48) do transtorm homogeneously under $U(4)$.

It is worth emphasizing that (6.48) is inter alia a perfectly ordinary Dirac equation in E_{8}, only the notation being unusual.

In conclusion, we consider briefly what happens to (6.48) if the restriction to flatness of the \mathcal{K}_{n}, and/or the restriction of (2.3) to the affine group (6.3), both imposed at the start of the chapter, are lifted. Since (6.48) is in the complex-coordinate notation, we use the İormalism of Chapter 2 for convenience.

Although covariant derivatives have been defined for tensors in a Kähler space, tensor densities have not figured at all in the preceding chapters (nor in the literature, so far as the author is aware). We therefore define the covariant
derivative of a scalar density, Σ say, with weights w and w^{\prime}, to be of the form:

$$
\begin{equation*}
\Sigma_{\mu \mu} \equiv \Sigma_{, \mu}+w \Delta_{\mu} \Sigma+w^{\prime} \Delta_{\mu}^{\prime} \Sigma \tag{6.50}
\end{equation*}
$$

formulae for higher rank tensor densities following by invoking the product rule for differentiation, in the usual way. A relation between the 'connection' quantities $\Delta_{\mu}, \Delta_{\mu}^{\prime}$, and the metric of α_{n} is obtainable by comparing the equations:

$$
\begin{equation*}
\left(\operatorname{det}\left\|g_{\mu \bar{v}}\right\|\right) ; \sigma=g \mu^{\bar{v}} g_{\mu \bar{v}} ; \sigma=0 \tag{6.51}
\end{equation*}
$$

$\left(\operatorname{det}\left\|g_{\mu \bar{\nu}}\right\|\right)_{; \sigma}=\left(\operatorname{det}\left\|g_{\mu \bar{\nu}}\right\|\right), \sigma-\left(\Delta_{\sigma}+\Delta_{\sigma}^{\prime}\right)\left(\operatorname{det}\left\|g_{\mu \bar{\nu}}\right\|\right)$ (6.52) the second one holding because the determinant of the metric tensor has weight and anti-weight -1. One deduces that

$$
\begin{equation*}
\Delta_{\mu}+\Delta_{\mu}^{\prime}=\Gamma^{\alpha}{ }_{\alpha \mu} \tag{6.53}
\end{equation*}
$$

but that $\left(\Delta_{\mu}-\Delta_{\mu}^{\prime}\right)$ is undetermined by the metric tensor. If we call this arbitrary quantity $\Omega_{\mu},(6.50)$ becomes:

$$
\begin{equation*}
\Sigma_{j \mu}=\Sigma_{\mu}+\left[\frac{1}{2}\left(w+w^{\prime}\right) T_{: \alpha \mu}^{\alpha}+\frac{1}{2}\left(w-w^{\prime}\right) \Omega_{\mu}\right] \Sigma \tag{6.54}
\end{equation*}
$$

Similarly, by consideration of the complex conjugate equation, one finds:

$$
\begin{equation*}
\Sigma_{; \bar{\mu}}=\Sigma_{, \bar{\mu}}+\left[\frac{1}{2}\left(w+w^{\prime}\right) \Gamma^{\bar{\alpha}} \cdot \bar{\mu}-\frac{1}{2}\left(w-w^{\prime}\right) \overline{\Omega_{\mu}}\right] \Sigma \tag{6.55}
\end{equation*}
$$

All that needs to be done to make (6.48) generally covariant is to replace commas by semi-colons. Because of the quantities' density character (see (6.47)), the Ω_{μ} will then enter the set of equations precisely as do the physical electromagnetic 4-potentials A_{μ} in the Dirac equation for a charged spinor field. (There is a connection here with Sciama's 'unitary Vierbein' formulation of electromagnetic theory (cf. [42] p.428).) The fact that the Ω_{μ} are unrelated to the

$$
144 .
$$

metric casts doubts, in the author's view, on whether the metric tensor is the 'seat' of the electromagnetic field after all, and therefore on presuppositions lying at the basis of the theory of complex space-time as presented here.

REYERENCES

(I) R.Utiyama 'Invariant theoretical interpretation of interaction' Phys.Rev. 101, 1597-607 (1956)
(2) Y.Mimura \& H.Takeno 'Wave geometry' Sci.Rep.Res.Inst.Theor. Phys.Hiroshima Univ. No.2, 122 pp . (1962)
(3) W.Pauli 'Theory of relativity' (1921. Pergamon 1958)
(4) H.Weyl 'Space - Time - Natter' 4th edn. (1922. Dover 1950)
(5) J.L.Synge 'A generalization of the Riemannian line element' Trans.Am.Math. Soc. 27, 61-7 (1925)
(6) J.H.Taylor 'A generalization of Levi-Civita's parallelism and the Frenet formulas' Trans.Am.Math.Soc. 27, 246-64 (1925)
(7) I. Berwald 'Untersuchung der Krümmung allremeiner metrischer Räume auf Grund des in ihnen herrschenden Parallelismus' Math. Zeits. 25, 40-13 (1926)
(8).E.Cartan 'Les espaces de Finsler' Act. Sci.et Ind. No. 79 (1934
(9) I.Berwald 'Two-dimensional Finsler spaces with rectilinear extremal.s' Ann.Math. 42, 84-112 (1941)
(10) H. Busemann 'The geometry of geodesics' (Academic Press 1955)
(11) H.Rund 'The differential geometry of Finsler spaces'
(Springer-Verlag, 1959)
(12) J. L. Synge \& A.Schild 'Tensor calculus' (Toronto U.P. 1949)
(13) E.Reichenbächer 'Die mechanischen Gleichungen im electromagnetischen Felde' Z.f.Phys. 33, 916-32 (1925)
(14) E.Reichenbächer 'Das komplexe Linienelement' Z.I'.Phys. 38, 329-45 (1926)
(15) A.M.Mosharrafa 'The metric of space and mass deficiency' Phil.Mag. 39, 728-38 (1948)
(16) J.I.Horváth \& A.Moór 'Entwicklung einer einheitlichen Feldtheorie becrundet auf die Finslersche Geometrie' Z.f.Phys. 131, 544-70 (1952)
(17) J.I.Horváth \& A.Moór 'Entwicklung einer Feldtheorie begrundet auf einen allgemeinen metrischen Linienelementraum' Hroc.Kon. Ned.Akad.Wet. 58, 421-9 \& 581-((1955)
(18) E.Schaffhauser-Graf 'Versuch einer 4-dimensionalen einheitlichen Feldtheorie der Gravitation und des Electromagnetismus' J.Rat.Mech.Anal. 2, 743-65 (1953)
(19) G.Stephenson \& C.W.Kilmister 'A unified theory of gravitation and electromagnetism' Nuovo Cim. 10, 230-5 (1953)
(20) J.I.Horváth 'Contributions to Stephenson-Kilmister's unified field theory' Nuovo Cim. 4, 571-6 (1956)
(21) G.Stephenson 'La géométrie de Finsler et les théories du champ unifié Ann. Inst. Poincaré 15, 205-15 (1957)
(22) J.Schaer 'De la possibilité d'une théorie unitaire finslerienne de I'électromagnétisme et da la gravitation' Arch. Sci. 13, 542-9 (1960)
(23) A.Einstein 'Field theories old and new' New York Times, 3 Feb. 1929
(24) L.Landau \& E.Lifshitz 'The classical theory of fields' (Pergamon 1951)
(25) P.G.Bergmann 'Introduction to the theory of relativity'
(26) M.-A.Tonnelat 'Les théories unitaires de I'électromagnétisme et de la gravitation' (Gauthier-Villars 1965)
(27) A.Einstein 'A generalization of the relativistic theory of gravitation' Ann. Math. 46, 578-84 (1945)
(28) A.Einstein \& E.G.Straus 'A generalization of the relativistic theory of gravitation. II' Ann.Math. 47, 131-41 (1946) (29) A Einstein 'A generalized theory of gravitation' Rev.Mod. Phys. 20, 35-9 (1948)
(30) A. Einstein 'The Bianchi identities in the generalized theory of gravitation' Canad.J.Math. 2, 120-8 (1950)
(37) A.Einstein 'The meaning of relativity' 5th edn. (Methuen 1951) ; 6th edn. (Methuen 1956)
(32) E.Schrödinger 'Space-time structure' (Cambridge U.P. I950)
(33) M.-A. Tonnelat 'Einstein's unified field theory' (1955.

Gordon \& Breach 1966)
(34) V.Hlavatý 'Geometry of Einstein's unified field theory'
(Noordhoff 1957)
(35) V.Hlavaty' Connections between Einstein's two unified field theories of relativity' Proc.Nat.Acad.Sci. 39, 507-10 (1953)
(36) I. Infeld 'The new Einstein theory and the equations of motion' Acta Phys.Polon. 10, 284-93 (1951)
(37) J.Callaway 'The equations of motion in Einstein's new unified tield theory' Phys.Rev. 92, 1567-70 (1953)
(38) M. Lenoir 'Les équations du mouvement en théorie du champ unifié' Cah.de Phys. 14, 331-9 (1960)
(39) B. Kursunoğlu 'Einstein's unified field theory' Proc. Phys.

Soc. 65A, 81-3 (1952)
(40) D.W.Sciama 'On a non-symmetric theory of the pure gravitational field' Proc. Camb. Phil.Soc. 54, 72-80 (1958)
(41) D.W. Sciama 'On the interpretation of the Einstein-Schrödinger unitied field theory' J.Math. Phys. 2, 472-1 (1961)
(42) D.W.Sciama 'On a geometrical theory of the electromagnetic field' Nuovo Cim. 8, 417-31 (1958)
(43) J.Moffat 'Generalized Riemann spaces' Proc.Camb.Phil.Soc. 52, 623-5 (1956)
(44) J.Moffat 'The foundations of a generalization of gravitation theory' Proc. Camb. Phil.Soc. 53, 473-88 (1957)
(45) J.Moffat ' On the motion of charged particles in the complexsymmetric unitied tield theory' Nuovo Cim. I, IU7-9 (1958)
(46) R.P.Kerr 'O. spherically symmetric solutions in Moffat's unified field theory' Nuovo Cim. 8, 789-97 (1958)
(47) J. Blackman 'New approach to unified field theory' J. Math. Phys. 8, 983-7 (1967)
(48) N.N. Ghosh 'Matrix treatment of a rigid body motion in complex space' Brall. Calcutta Math.Soc. 37, 43-50 (1945)
(49) A.Einstein 'Autobiographical notes' ir : 'Albert Einstein: Philosopher-scientist' Vol. 1 (1949. Harper 1959)
(50) A.Das 'Complex space-time and classical field theory. I' J.Math. Phys. 7, 45-51 (1966)
(51) A.Das 'The quantized complex space-time and quantum theory of free fields. II' J.Math. Phys. I, 52-60 (1966)
(52) A.Das 'Complex space-time and geometrization of electromagnetism. III' J.Math. Phys. 7, 61-3 (1966)
(53) E.E.H.Shin 'Space-time theory of elementary particles. II. Complex Minkowski space formalism' J.Math.Phys. I, 17480 (1966)
(54) E.H. Brown 'On the complex structure of the universe' J.Math. Phys. 1, 417-25 (1966)
(55) A.Crumeyrolle 'Sur des variétés différentielles dont les coordonnées appartiennent à une extension quadratique du corps des réels et l'application à la théorie unitaire d'EinsteinSchrödinger' C.R.Acad.Sci. 256, 2121-3 (1963). Also: Thèse (Paris 1961 \& Parma 1962-3)
(56) J.K.Iubanski \& L.Rosenteld 'Sur la representation des champs mésiques dans l'éspace à cinq dimensions' Physica ${ }^{2}$, 117-34 (1942)
(5\%) A.Pais 'Meson fields in projective space' Physica 2, 26784 (1942)
(58) J.A.Schouten 'On meson fields and conformal transformations' Rev.Mod.Phys. 21, 421-4 (1949)
(59) J.Podolanski 'Unified field theory in six dimensions'

Proc.Roy.Soc. A201, 234-60 (1950)
(60) J.Rayski 'Interpretation of electrodynamics and baryon theory within a six-dimensional manifold' Nucl. Phys. 17, 289316 (1960)
(61) E.Białas 'Gravito-electromagnetic field equations in Rayski's unitary field theory' Acta Phys.Polon. 20, 915-8 (1961) (62) L.Mariot \& P.Pigeaud 'Les champs mésoniques en théorie hexadimensionnelle' C.R.Acad.Sci. 257, 2248-51 (1963)
(63) J.A.Schouten \& D.van Dantzig 'Über die Differentialgeometrie einer Hermiteschen Ditferentialform und ihre Beziehungen zu den Feldgleichuncen der Physik' Proc. Kon.Acad.van Wet. Ansterdam 32, 60-4 (1929)
(64) J.A.Schouten 'Über unitäre Geometrie' Proc.Kon.Acad.van Wet. Amsterdam 32, 457-65 (1929)
(65) J.A.Schouten \& D.van Daritzig 'Über unitäre Geometrie' Math.Ann. 103, 319-46 (1930)
(66) E.Kähler 'Über eine bemerkenswerte Hermitesche Metrik' Abh.Math.Sem.Hambourg Univ. 9, 173-86 (1933)
(07) J.A.Schouten 'Ricci-calculus' (Springer-Verlag 1954) (68) K. Yano \& S.Bochner 'Curvature and Betti numbers' (Princeton U.P. 1953)
(69) K. Yano 'Differential geometry on complex and almost complex spaces' (Pergamon 1965)
(70) P.R.Halmos 'Finite dimensional vector spaces' (Princeton U.P. 1948)
(71) H.K.Nickerson, D.C.Spencer \& N.E.Steenrod 'Advanced calculus' Typescript (van Nostrand 1959)
(72) L.Calabi 'Isometric imbedding of complex manifolds' Ann. of Math. 58, 1-23 (1953)
(73) N. Coburn 'Semi-analytic unitary subspaces of unitary space' Amer.J.Math. 64, 714-24 (1942)
(74) S.Bochner \& W.T.Martin 'Several complex variables' (Princeton U.P. 1948)
(75) R.Tolman 'Relativity, thermodynamics and cosmology' (Oxford U.P. 1934)
(76) H.Bondi 'Cosmology' 2nd edn. (Cambridge U.P. 1960)
(77) H.S.Green 'Spinor fields in general relativity' Proc.Roy. Soc. A245, 521-35 (1958)
(78) C. Lanczos 'Matter waves and electricity' Phys.Rev. 61, 713-20 (1942)
(79) C.Lanczos 'Electricity and general relativity' Rev.Mod. Phys. 29, 337-50 (1957)
(80) C.Lanczos 'Électricité et relativité générale' Cahiers de Phys. 12, 247-55 (1958)
(81) A.S.Eddington 'The mathematical theory of relativity'
(82) E.Schrödinger 'Studies in the non-symmetric generalization of the theory of gravitation. I' Commun. Dublin Inst.Aāv. Study A No.6, 28pp. (I951)
(83) J.I.Synge 'Relativity: the general theory' (North-Hollend
1960)
(84) E.Wigner 'On the consequences of the symmetry of the nuclear Hamiltonian on the spectroscopy of nuclei' Phys.Rev. 5I, 106-19 (193\%)
(85) A.Pais 'On the program of a systematization of particles and interactions' Proc.Nat.Acad.Sci. 40, 484-92 (1954)
(86) A.Salam \& J.C.Polkinghome 'On the classification of fundamental particles' Nuovo Cim. 2, 685-90 (1955)
(87) J.C.Polkinghome 'On the strong interactions' Nuovo Cim. 6, 864-8 (1957)
(88) B.d'Espagnat, J.Prentki \& A.Salam 'On symnetries in elementary particle interactions' Nucl. Phys. 3, 446-55 (1957)
(89) P.Roman 'Theory of elementary particles' (North-Holland 1960)
(90) B. Kursunogilu 'New symmetry group for elementary particles. I. Generalization of Iorentz group via electrodynamics' Phys. Rev. 135, Br61-8 (1964)
(91) A.O. Barut 'Dynamical symmetry group based on Dirac equation and its generalization to elementary particles' Phys.Rev. 135, B839-42 (1964)
(92) A.O.Barut 'A symmetry group containing both the Lorentz group and SU_{3} ' Nuovo Cim. 32, 234-6 (1964)
(93) L.Pontrjagin 'Topological groups' (Princeton U.P. 1939)
(94) P.A. Rowlatt 'Group theory and elementary particles' (Longmans 1966)
(95) A.Barut 'Complex Lorentz group with a real metric' J.Math. Phys. 2, 1652-6 (1964)
(96) A.ten Kate 'Dirac algebra and the six-dimensional Lorentz group' J.Math. Phys • 9, 181-5 (1968)
(97) E.A.Lord 'The Dirac spinor in six dimensions' Proc.Camb. Phil.Soc. 64, 765-78 (1968)
(98) C.Gregory Non-linear invariants and the problem of motion Phys. Rev. 72, 72-5 (1947) (99) H.Weyl 'The classical groups' (Princeton U.P. 1939)
(100) E.M.Corson 'Introduction to tensors, spinors and relativistic wave equations' (Blackie 1953)
(101) J.Aharoni 'The special theory of relativity' (Oxtord U.P. 1965)
(I02) R.Brauer \& H.Weyl 'Spinors in n dimensions' Amer.J.Math. 57, 425-49 (1935)
(103) W.I.Bade \& H.Jehle 'An introduction to spinors' Rev.Mod. Phys. 25, '114-28 (1953)
(104) P.G.Bergmann 'Two-component spinors in general relativity' Phys.Rev. 107, 624-9 (1.957)
(105) A.Gamba 'Peculiarities of the eight-dimensional space' J.Math. Phys. 8, 775-81 (1967)

