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SUMMARY 

This dissertation explores interrelations between certain geometrical structures and string and M­

theory. It is divided into three parts. 

The first part is based on a study of BPS monopoles - highly topical objects both from a math-

ematical and physical point of view. The moduli spaces of BPS monopoles are hyperkahler 

manifolds which should possess certain features if the S-duality conjecture is to hold. Mathematical 

evidence is given that moduli spaces of various monopole configurations possess the requisite fea­

tures. First, moduli spaces of fundamental monopoles, as well as other toric hyperkahler manifolds 

are obtained by hyperkahler quotient. The description in terms of the hyperkahler quotient of moduli 

spaces of monopole configurations with either fixed or massless monopoles is also found. The method 

of construction provides essential information on the global properties of the hyperkahler manifolds. 

This information is then used to exhibit quantum marginal bound states of fundamental monopoles by 

finding certain square-integrable harmonic forms on the Taubian-Calabi manifolds. Next, classical 

dynamics of distinct fundamental monopoles are studied. The physical picture and the mathematical 

proof are given for the non-existence of classical bound states of fundamental (possibly massless) 

monopoles. Simple scattering process of distinct monopoles is described, and the associated scaling 

solution to the geodesic equations on the moduli space is presented. The same technique is extended 

to the case of many SU (2) monopoles, for which rigidly rotating solutions are also found. 

The second part of the dissertation focuses on Kahler and hyperkahler manifolds with dilatation 

invariance. The study is motivated by the appearance of these manifolds as target spaces of certain su­

perconformal theories with hypermultiplets. It is shown that the dilatation symmetry requires Kahler 

and hyperkahler manifolds to be cones over Sasakian and tri-Sasakian metrics respectively. Sasakian 

and tri-Sasakian geometries are described, and their significance in the developments relating to cone­

branes and the AdS/CFT correspondence is discussed. 

Finally, some single-sided BPS domain wall configurations in M-theory are investigated. These 

are smooth non-singular resolutions of Calabi-Yau orbifolds obtained by identifying the two sides 

of the wall under reflection. They may be thought of as domain walls at the end of the universe. 

Depending on their symmetries, the domain walls are classified according to the Bianchi scheme. The 

Kahler Ricci-flat examples are generalized to higher dimensions and, where possible, the orbifold 

singularities are resolved. Related domain wall type solutions with negative cosmological constant 

are also studied. 
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CHAPTER 1 

Introduction 

One of the striking features of supersymmetry is the pivotal role it has played in recent developments 

in many areas of theoretical physics. The presence of supersymmetry in a physical theory imposes 

constraints on the underlying geometrical structure. This dissertation explores a number of ways in 

which supersymmetry manifests itself through geometry in the context of string theory. 

The work presented in this thesis is motivated by two conjectures which are made about the various 

interrelationships between string theory and supersymmetric gauge theory. One conjecture asserts 

that the full quantum type IIB string theory is invariant under SL(2,'ll) modular transformations. 

This non-perturbative symmetry is called S-duality, and the conjecture is referred to as the S-duality 

conjecture. The type IIB theory contains solitonic objects which are described by four-dimensional 

N = 4 supersymmetric Yang-Mills (SYM) theory. The S-duality conjecture then generalizes the 

Strong-weak couplin~ duality conjecture of Montonen and Olive. 

The second conjecture, due to Maldacena, is the AdSICFT correspondence. 1 It asserts that, when 

compactified on AdS5 x S5 , the type IIB string theory is equivalent to the four-dimensional N = 4 

supersymmetric SU(N) Yang-Mills theory in the limit of large N. N = 4 SYM theory is a supercon­

formal four-dimensional field theory (SCFT). It is possible, with certain care, to extend Maldacena's 

original conjecture to a correspondence between supergravity (and string theory) on an Einstein space 

M with negative cosmological constant and certain SCFT on the boundary of M . 

Formulating, as well as testing the two conjectures relies on some remarkable features of four-

1 AdS stands for Anti-de Sitter space-time and CFT stands for Conformal Field Theory. 
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dimensional maximally supersymmetric (N = 4) Yang-Mills theory. The fact that N = 4 SYM 

theory is finite and that the coupling constant receives no quantum corrections endows supersymmetric 

solitons of the gauge theory - BPS monopoles and instantons - with ce1iain properties, which make 

them well suited for testing the above conjectures. In the case of S-duality, which is studied in the first 

part of the dissertation, supersymmetry imposes constraints on the geometry of the moduli space of 

BPS monopoles: the moduli space is required to be a hyperkahler manifold. Analyzing these hyper­

kahler geometries enables one to learn more about the spectrum of BPS monopoles and as a result to 

derive evidence in support of the S-duality conjecture. 

Maldacena's conjecture relates N = 4 SYM theory to ten-dimensional supergravity and it is 

with the supergravity side of the AdS/CFT correspondence that we concern ourselves. In the second 

part of the dissertation we study supergravity domain wall solutions and their space-time geometries. 

Depending on the amount of supersymmetry present in the problem, these manifolds admit additional 

:.· geometrical structures besides the Riemannian metric. In particular, we are led to investigate Kahler 

cones over Sasakian metrics, hyperkahler cones over tri- Sasakian metrics, Calabi-Yau manifolds with 

Bianchi type symmetries, as well as related spaces with negative cosmological constant. 

Let us now take a more detailed look at BPS monopoles and the role they play in S-duality. In 

the late 1970s it was conjectured [l, 2] that the N = 4 supersymmetric SU(2) gauge theory in 

four dimensions possesses an exact electro-magnetic duality under which the spectrum of electrically 

charged particles is mirrored by the spectrum of magnetically charged particles. This duality symme­

try is realized by the .Z2 group of transformations which map the weak coupling region of the theory 

to its strong coupling region, simultaneously interchanging states based on the elementary quanta 

with states based on simple soliton solutions. This symmetry is sometimes referred to as Strong-weak 
coupling duality. 

Magnetically charged soliton solutions of SYM theory are supersymmetric embeddings of the 

classical Bogomol'nyi-Prasad-Sommerfield (BPS) monopole [3, 4]. BPS monopoles are minimal 

energy topological field configurations of Yang-Mills theory, and as such saturate the Bogomol 'nyi 

energy bound [4]. The classical Bogomol'nyi bound remains true in the supersymmetric setting [S] , 

but now the topological (magnetic) charge is interpreted as the central charge of the supersymmetry 

algebra. A state saturating the Bogomol'nyi bound must be annihilated by one half (or possibly some 

other fraction) of all supercharges present in the theory. Thus another way to characterize a BPS state 

is to say that it preserves a fraction of the total supersymmetry of the theory. It is a feature of N = 4 

3 

. . fi ·t which in particular implies that the central charges do not receive quantum SYM theory that 1t 1s m e, . 

h f the BPS states are not renormalized. corrections, and hence t e masses o . . 

d d t N _ 4 SYM theories with arbitrary gauge 1. d lity may be exten e o -The Strong-weak coup mg ua h 

In h. duality transformations relate the strong y cou 1 pled region of the gauge t eory 
groups [6]. t IS case . G* dual to 

. G to the weakly coupled region of the gauge theory with gauge group 

with gauge group A D d E series in the standard classification, G 
G 2 Note that for simply-laced gauge groups, the ' an kl d 

. that the duality symmetry relates the wea y an is self-dual (at least locally). Therefore, one finds 

the strongly coupled regions of the same gauge theory. h 

h 1 [7] which is incorporated into the theory due tot e Taking into account the effect of the t eta ang e ' . . d t 

· k pling duality 1s augmente o . . 1 . field the .Z2 group of the Strong-wea cou ce of a non-tnvia ax1on , . 

presen a netic states includes BPS dyons - particles carrymg SL(2 .Z) As a consequence the spectrum of m g . . 1 

' . . . - which are obtained from monopole solutions by sem1class1ca both electnc and magnetic charges, . 

t. at1'on In the current literature this duahty is commo . . . nly referred to as S-duality. 
q uan 1z · · · b t the 

h . d b Sen [8 9] the S-duality conjecture makes non-trivial pred1ct10ns a ou 
As emp asize Y ' ' · · iclassical 

f BPS dyons and these predictions may be tested at weak couplmg usmg sem 
spectrum o ' . h . that for gauge group SU(2) . S .. ulated the task in geometncal terms by s owmg techmques. en re1orm . h . t ce 

1 b ken to U(l) the existence of the predicted dyon states is eqmv:;tlent to t e ex1s en spontaneous Y ro 

f . harmonic forms on the moduli space of classical BPS monopoles . . 
o certam 'th both max1-

l. f N - 4 SYM theories with arbitrary gauge groups w1 p edictions of S-dua 1ty or - h 

r 1 b t [lO 11 12 13 14]. Predictions fort e mal and non-maximal symmetry breaking are more e a ora e ' ' ' ' I addition how-

. . II embedded into the theories with higher rank gauge group. n ' 
SU(2) case arn tnv,a Y · I magnetic 

the matching of the electric and the magnetic spectra requires that there exist pure y 

ever, . f S [9] these threshold bound states bound states of zero binding energy. Following the suggest10n o en ' S 1 

may also be re-interp~eted as certain harmonic forms on the moduli space of relevant BP monopo e 

solutions. · 

. . d rties it is necessary to possess In order to find the predicted harmonic forms with reqmre prope . 

. know led e of the geometry of moduli spaces of classical BPS monopoles. By countmg 

the detailed g . . b h d [15 16] that the dimension of the . 1 le solutions Wern erg s owe ' the parameters of class1ca monopo h k"hl r 

demonstrated to be yper a e oduli spaces is a multiple of four. Moreover, these spaces were 

m d · the hyperkahler geometry. manifolds [ 17' 18]. Therefore, the geometry we are led to stu y is 

zThe roots of G* are the co-roots of the roots of G. 
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Hyperkahler manifolds are objects of great interest in both differential geometry and theoretical 

physics. Hyperkahler spaces constitute a subset of complex manifolds which are simultaneously 

Kahler with respect to a two-sphere of complex structures. They have restricted holonomy and are 

thus an essential ingredient in the Berger's classification scheme of Riemannian manifolds according 

to their holonomy group [19, 20]. The holonomy group of a hyperkahler manifold is a subgroup 

of Sp(k), which forces the real dimension of the manifold to be 4k. The fact that the holonomy is 

contained in Sp(k) also implies that a hyperkahler manifold is Ricci-flat. 

There is not an exhaustive classification of hyperkahler manifolds, and every explicit example is 

a welcome addition to the lore. New examples of compact and non-compact hyperkahler spaces are 

often obtained as a result of resolving outstanding issues in physics. Since all hyperkahler manifolds 

are Ricci-flat they automatically solve the vacuum Einstein equations. This property is used, for 

instance, in constructing supersymmetric solutions to various supergravity theories. Many solutions 

of the eleven-dimensional supergravity were constructed in [21], where the authors considered direct 

products of the seven-dimensional Minkowski space with an asymptotically flat hyperkahler four­

manifold; and of the three-dimensional Minkowski space with an asymptotically flat hyperkahler 

eight-manifold. Such solutions are BPS and are interpreted as a collection of intersecting p-branes, 

with a part of the hyperkiihler factor playing the role of the space transverse to all branes. 

Of central interest to this dissertation is the hyperkahler property of moduli spaces of BPS mono­

poles., In the mathematical language, these are moduli spaces of self-dual Yang-Mills connections 

on four-dimensional spaces admitting translational symmetry. To mention one of the major results , 

Atiyah and Hitchin constructed a hyperkahler four-manifold which is the moduli space of centred 

SU(2) monopoles of topological charge two [l7]. The authors made an ansatz for a rotationally in­

variant metric, and by using twistor methods and the self-duality equations they found the, essentially 
unique, solution. 

In the physics community the problem of finding moduli spaces of BPS monopoles has been 

addressed in at least two different ways. The first relies on the moduli space approximation advocated 

by Manton [22] which states that the low-energy dynamics of BPS monopoles is equivalent to the 

geodesic motion on the moduli space. The exact metric on the moduli space can be computed directly 

by integrating over 1!1
3 

the normalizable zero-modes of the classical monopole solution. A weak point 

of this method is that in most cases the family of monopole solutions is not known explicitly. In the 

second approach, also suggested by Manton [23] , the metric is read off from the kinetic term of the 

5 

oles The main disadvantage of this . "b interactions of well-separated monop . 
Lagrangian which descn es . . on of the moduli space, while the 
method is that it yields information only about the asymptotic regi 

. n the moduli space remains unknown. exact metnc o Id 

Note that hyperkahler manifo s are dy the situation in the following way. 
We propose to reme d · particular the 

h . t of view of symplectic geometry, an ' m ' b · studied from t e porn · 
amenable to emg . h h kahler setting (24]. In this dis-

. b adapted to work m t e yper 
symplectic quotient construction can e . b . tries on moduli spaces of BPS 

erkahler uotient construct10n to o tarn me 
sertation we use the hyp q . U lik the latter of the two methods de-

. I ebra leads to desired results. n e 
monopoles. Rather simple a g . the moduli space, and unlike 

abler uotient produces the exact metnc on 
scribed above, the hyperk q . f h nopole configuration and not 

. . es knowing only the symmetnes o t e mo 
the former method, It requrr h h perkahler quotient construction one can easily 

. . f th fields Moreover, from t e Y . 
the explicit form 

O 

e · . h .t ompleteness and topological 
. of the quotient mamfold, sue as 1 s c 

deduce various global properties . of the metric and to see what 
It i·s also straightforward to determine the ,sometry group triviality. 

subgroup of it preserves the hyperkahler structure. 

. duli s ace of a particular monopole configuration is known, one can 
Once the metnc on the mo p Th threshold bound states of 

. d uantum dynamics of the monopoles. e 
explore both classical an q . d" t d by S-duality are quantum 

. h" h k gauge groups pre 1c e . N _ 4 SYM theories with ig er ran . 
monopoles m - . f he N = 

4 
quantum mechamcs 

d the are states in the Hilbert space o t 
in their nature. In other wor s, y . 1 b und states are in one-to-one cor-

. (18 25] These quantum-mechamca o 
on the relevant moduh space ' · d li (

2
6] Thus the problem 

. I" ble harmonic forms on the mo u space . respondence with certam norma iza . 

f fi d"ng such harmomc forms . of checking S-duality amounts to the problem o n i . . 

11 the moduli space approximation . f BPS monopoles we reca 
Turning to the cl~ssical dynaffilcs o dynamics of BPS 

. t the moduli space approximation (22] , the low-energy 
of Manton. Accordmg 

O 

. Cl d or bound geodesics on the 
. d . motion on the moduh space. ose 

monopoles is eqmvalentto the geo esic . l While in the case of SU(2) 
ond to classical bound states of monopo es. 

moduli space would corresp . . ents revent their appearance in the 

monopoles such classical bound states should exist, physical argu: b pgeometrical argument which 

l This result can be prove Y a 
case of distinct fundamental monopo es. d l" es Although not solvable 

.. . ient construction of the relevant mo u 1 spac . 
exploits the hyperkahler quot . 

1 
t For example, one notices 

. uations may be integrable for a part1cu ar ansa z. . 
in general, the geodesic eq . h dyonic charges possess scalmg 

. . on the moduli space of monopoles wit no . 
that geodesic equat10ns . . 1 . This solution describes either a 

Th S making a scaling ansatz leads to an exphc1t so ut10n. s~rnmetry. u 
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simple scattering of distinct funda 1 
menta monopoles th f 

or at o well-separated SU(2) 
Interestingly th · . . monopoles. 

' ere is an mtimate . 
3 . . connect10n between solutions of ' . 

ffi. and solutwns of the self-d J" . . the Bogomol ny1 equation on 
. ua ity equat10ns m one higher dimensi . 
mstantons on ffi.4 (in oth . on. More prec1sely, periodic SYM 

er words, mstantons on ffi.3 x si) . 
for the same gauge group V" d are eqmvalent to BPS monopoles on ffi.3 

. . iewe from the string theory perspective B 
are the mtersections of N parallel D" . h1 ' PS SU(N) k-monopoles 

me et 3-branes (D3-branes) with k . . 
Moving one of the D3-bra fi . . Dmchlet strings (D-strings) 

nes a mte distance away from the stack . 
SU(N - l) x U(l) and gives ris t . breaks the gauge group SU(N) to 

e o a massive monopole. 

SYM multi-instantons are realized as Dirichlet instantons in the 

IIB theory. One of the ways to test M ld ' . presence of D3-branes of the type 
. a acena s con1ecture [27 28 29] . 
mstantons for gauge group SU(N) R ' ' mvolves studying SYM multi-

. emarkably, the moduli space of SU( .. 
large N limit is AdSs x ss O h . N) mult1-mstantons in the 

. . n t e supergrav1ty side of the corres onden 5 
near-honzon geometry of N . .d p ce, AdSs X S represents the 

comc1 ent D3-branes in the limit when N. 
on the string theory side [301 . . . . is large. Computations made 

are m accord with those made on the 
the results support the suggest d gauge theory side [31] ' and hence 

e correspondence. Although the connecti 
and BPS monopoles is evident ·t . on between SYM instantons 
. . ' I is yet unclear what the correct descri . . 

limit of large N is taken I h . pt10n of the latter is once the 
. n ot er words, it remains an o en r 

monopoles on the supergravity side of th AdS p p oblem to find the "image" of BPS 
e ICFT correspondence. 

Let us investigate more cl 1 . , ' ose y the supergravity side of the AdS/ 
ma1 version of the conjecture th h . CFT correspondence. In the orig-

e near- onzon geometry of N co· .d 
the limit of large N The . mc1 ent D3-branes was considered in 

· associated supergr · t . 
av1 y solut10n near the branes is A 5 

ary of AdS5 at infinity is the Mink ki D dS5 x S . The bound-
. ows our-space M4. The CFT on M . . 

eqmvalent to the supergravity th . 4, which is conjectured to be 
eory m the bulk AdSs x ss h . 

. -" d" ' as maximal numbe f m iour 1mensions, N = 4 R 1 . r O supersymmetries 
. ep acmg the compact factor ss b so . 

Xs leads to reduced supersymm t y me other Emstein five-manifold 
e ry, and the correspondi t d. 

large N limit of N = 4 SYM th ng our- imensiona1 SCFT differs from the 
eory. If the manifold Xs preserves no 

holonomy group is unrestricted th th . supersymmetry, that is its 
. . ' en e construct10n of the field theor i . 

solut10n mterpolating between th . y s difficult. The supergravity 
e near-bonzon AdS x X 

t h 5 5 geometry and the M C( 
a t e boundary (C(X ) is a t . 4 x X s) geometry 

5 me nc cone over Xs) leads to the inter . 
as the world-volume theory of D3 b . . pretat10n of the associated SCFT 

- ranes this time pla d . . 
[32]. ce at a corneal singularity of M4 x C(Xs) 

7 

It is possible to generalize the conjecture further and consider p-brane solutions in eleven dimen­

sions interpolating between near-horizon geometries AdSp+2 x X and geometries Mp+l x C(X) 

at infinity [33]. Here X is a (11 - (p + 2) )-dimensional Einstein manifold and C(X) is a metric 

cone over X. One can consider, for example, M-theory 2-branes (M2-branes), p = 2, for which X 

is a seven-manifold. The dual three-dimensional SCFT would be the world-volume theory on the 

M2-branes placed at a singularity of Mp+l x C(X). 

To identify or construct the SCFTs it is helpful to take manifolds X 5 and X with reduced holon­

omy so that they preserve some degree of supersyrnmetry. Thus one is led to consider Sasakian 

and tri-Sasakian manifolds, metric cones over which are Kahler and hyperkahler manifolds respec­

tively. This is another instance where supersyrnmetry considerations determine the relevant geomet­

rical structures. 

There are reasons to believe (see e.g. [34]) that the AdS/CFT correspondence is a special case of 

a more widely applicable correspondence between supergravity theories3 and quantum field theories 

in one lower dimension. Written in horospherical coordinates the d-dimensional AdS metric, which 

is invariant under SO(d - 2, 2), is a special case of a domain wall metric. Hence the near-horizon 

geometry looks like a domain wall solution of a (possibly compactified) supergravity theory. It is then 

of interest to investigate domain wall solutions of ten- and eleven-dimensional ~upergravity theories 

and their compactifications. In particular, we can consider solutions of the form M4 x lE p-3,1 , where 

M 4 is a non-compact Riemannian manifold which is either Ricci-flat or has negative cosmological 

constant. Such a domain wall would be a solution of a (p + 1 )-dimensional supergravity theory. We 

are then looking for metrics on M4 which depend on only one coordinate transverse to the brane and 

are invariant under a transitively acting Lie group with three-dimensional orbits. Such groups have 

been classified by Bi~nchi [35]. Four of the Bianchi type groups, Bianchi types I, II, Vlo and Vllo , 

yield domain wall solutions, some of which have already been found as supergravity domain walls. 

Conventionally, orbifold domain wall metrics have a singularity at the location of the wall where 

a distributional energy source has been inserted. This treatment is unnatural for two reasons. First, 

there are no obvious sources in M-theory, and secondly, the induced metric on the domain wall itself 

is singular. Taking a different viewpoint one may try to resolve the singularity. It is indeed possible 

to do so, but in the process one needs to identify the two sides of the domain wall and regard the 

conventional solution as accurate only asymptotically. Near the wall this asymptotic metric becomes 

30 ne needs to be careful to consider only those supergravity theories which are effective theories for some consistent 
quantum theories . 
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a non-singular gravitational instanton I f: .c 
. n act, ior several of the B. h. 

dimensional gravitational . t . ianc J type solutions such four-
ms antons do mdeed exist. Th 

walls at the end of the uni S . ese solutions may be thought of as domain 
. verse. ufficJently far away from the wall . . 

orbJfold domain wall pert . . the convent10na1 picture of an 
ams, whlle near the wall the space-time decompactifies. 

Thesis Outline: 

Chapter 2 pro · d h b 
VJ es t e ackground material for Chapters 3 to 5 wh. h d . 

hyperkahler geometry and S-d 1" . Jc eal with BPS monopoles, 
ua Jty COUJecture. Section 2 1 1 d. 

th · · · 1scusses BPS m 1 . 
eones, explaining the ph sical f . onopo es m gauge 

. . y ramework and presentmg various mono . 
pred1ct10ns are discussed . S . pole s0Jut10ns. S-duality 

m ect10n 2.1.2, where we outline the . . 
groups emphasizing the ones th t . predJct10ns for higher rank gauge 

. a we wish to check. In Section 2 1 3 . . 
whJch have been used until . . we dJscuss vanous methods 

now to construct hyperkahler metrics on . 
second half of this review chapt S . . monopole moduh spaces. The 

er, ect10n 2.2, mtroduces the mathe . 
hyperkahler manifold in Section 2 2 1 . matJcal framework. We define a 

. . . ' and supply a number of exam les in S . . 
mam mathematical tool for find· . p ectwn 2.2.2. Finally, our 

mg metncs on monopole moduli 
construction - is introduced . S . spaces - the hyperkahler quotient 

m ect10n 2.2.3. 

Chapter 3 is devot d t h . 
. e o t e apphcation of the hyperkahler uotie . 

scnbe the features of the canst t" . q nt construct10n. We first de-
rue Jon which are common to all forthco . 

we reproduce the following . 
1 

mmg examples. In Section 3.2 
, prev10us y known hyperkahler manifold . . 

ALE, cyclic ALF, Calabi and Taub' C . . s. Euchdean Taub-NUT, cyclic 
Ian- alab1. Then m Section 3 3 

fundamental monopoles. Secti 3 3 . . we construct moduli spaces of 
. on . .1 contams the hyperkahler uotie . 

moduh space of distinct fund l q nt construct10n of the relative 
amenta monopoles for arbitrary au e r . 

breaking - the so-called L \Vi . . g g g oup with maximal symmetry 
ee- emberg-Y1 manifold. One of the virt 

construction may be easily modified . ues of our method is that the 
to descnbe two degenerate limits of th . . 

These are moduli spaces for th . . . e Lee-Wemberg-Y1 space. 
eones contammg non-abelian mono o . 

spaces for theories containing fixed C ii . . p les (Sect10n 3.3.2) and moduli 
. m mtely massive) monopoles (Section 3 . 

tams the construction of th G'bb .3.3). Sect10n 3.4 con-
e I ons-Manton metric, which is the as . . 

space of many SU(2) mono 1 . . . ymptotJc metnc on the moduli 
po es. Fmally, m Sect10n 3 5 we d' · Jscuss an alt · · 

monopole moduli spaces in terms f. . ematJve mterpretation of 
o mtersectmg branes proposed b H . 

Ch Y anany and Witten 
apter 4 contains results on normalizable h . . 

armomc forms who . . 
S-duality conjecture. We disc S . . . se exJstence is predicted by the 

uss -duality predJct10ns only for theories w·th 
J gauge group of rank 
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greater than one, i.e. gauge groups other than SU(2). When the gauge group is broken to its maximal 

torus, there exists a unique purely magnetic threshold bound state of distinct fundamental monopoles. 

The construction of associated harmonic form is reviewed in Section 4.2. If the unbroken gauge 

group contains a non-abelian factor, one expects to find a unique threshold bound state of a number of 

massive and massless monopoles. In Section 4.3 a proposal is made for a candidate harmonic form, 

and the particular case of two massive fundamental monopoles is treated in detail. 

In Chapter 5 some aspects of classical low-energy dynamics of fundamental monopoles are dis­

cussed. Section 5.1 contains the proof of the non-existence of closed or bound geodesics on the 

Lee-Weinberg-Yi and the Taubian-Calabi manifolds, which would correspond to classical bound 

states of distinct fundamental monopoles. In Section 5.2 we solve the geodesic equations on the Lee­

Weinberg-Yi manifold with a homothety ansatz to find a solution that describes the simplest scattering 

process of distinct fundamental monopoles carrying no dyonic charges. Some comments pertinent to 

the case of well-separated SU(2) monopoles with no dyonic charges are also made. In Section 5.2.3 

we make another ansatz that describes a rigidly rotating configuration of monopoles in a plane and 

discuss the results. 

In Chapter 6 we discuss rigid N = 2 supersymmetric hypermultiplets in four dimensions. We 

demonstrate that the target space geometry has to be a metric cone over a tri-Sasakian manifold. We 

also discuss metric cones over Sasakian and Sasakian-Einstein manifolds and their applications in the 

context of cone-branes and the AdS/CFT correspondence. The Sasakian and tri-Sasakian geometries 

are reviewed in Section 6.1. 

In Chapter 7 domain walls in M-theory are studied. We consider supergravity domain wall so­

lutions invariant under transitive actions of various Bianchi type groups. Section 7.1 reviews briefly 

the Bianchi classification of Lie groups with three-dimensional orbits. Sections 7.2 and 7.5 describe 

four-dimensional Ricci-flat solutions, with particular emphasis on the Bianchi type II case which is 

BPS. In Section 7.3 we argue that it is desirable to resolve the singularity at the origin of the Bianchi 

type II four-manifold and propose such a resolution. The resulting manifold may be interpreted as a 

single-sided domain wall, or a "domain wall at the end of the universe". The solutions are described 

in a unifying fashion in temis of the Kahler potential which solves appropriate Monge- Ampere equa­

tions. In Sections 7.4 and 7.5 .3 these equations are modified to include a negative cosmological 

constant and solved to find metrics with various Bianchi type symmetries. In Section 7.6 all the four­

dimensional solutions are generalized, with the use of solutions to the Monge- Ampere equations, to 
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higher-dimensional Calabi-Yau manifold II 
s, as we as to related ·t; Id · 

constant. mam o s with negative cosmological 

Finally, Chapter 8 summ · . 
anzes the results presented in the thesis . 

CHAPTER 2 

Monopoles and Hyperkahler Geometry: a Review 

This review chapter is divided into two parts. In the first part, Section 2.1, we summarize a few 

important results concerning the conjectured S-duality symmetry of four-dimensional N = 4 super­

symmetric Yang-Mills theory. We concern ourselves with theories whose gauge groups have rank 

higher than one, although a few comments are made about the SU(2) case. In Section 2.1.1 we first 

describe BPS monopole solutions of ordinary Yang- Mills-Higgs theory with gauge group SU(2). 

These can be naturally embedded into N = 4 SU(2) SYM theory. We then move on to discuss soli­

ton solutions of SYM theories with higher rank gauge group G, taking G = SU(n) as an example. 

We explain what it means for the gauge group to be broken maximally or non-maximally. Then, in 

the case of maximal symmetry breaking, we describe how a number of soliton solutions of this the­

ory may be obtained _as embeddings of the basic SU(2) monopole. In particular, we describe how 

fundamental monopole solutions are constructed. We briefly discuss monopoles in theories with non­

abelian unbroken gauge group. Predictions of S-duality for both cases are reviewed in Section 2.1.2. 

This prompts us to look for metrics on the moduli spaces of monopoles. In Section 2.1.3 we discuss 

various methods of computing these metrics . . 

The second part of this chapter is devoted to hyperkahler geometry. In Section 2.2.1 we give 

a definition of a hyperkahler manifold, followed by a number of examples in Section 2.2.2. These 

include Euclidean Taub-NUT, asymptotically locally flat (ALF), asymptotically locally Euclidean 

(ALE) and Calabi metrics. The hyperkahler quotient construction is introduced in Section 2.2.3 . 

There we also present two types of basic group actions from which all the group actions used in 
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Chapter 3 are constructed. These are real translations and U(l) rotations. We find moment maps 
associated with these group actions. 

2.1 S-duality and BPS Monopoles 

2.1.1 Monopoles in Gauge Theories 

Classical Euler- Lagrange equations of SU(2) Yang-Mills-Higgs theory with a symmetry breaking 

potential admit static solitonic solutions [36, 37]. In the asymptotic region the scalar Higgs field is 

approximately constant and breaks the SU(2) gauge symmetry to U(l) . In this region one can define 

a magnetic field in the usual sense. From far off the topological solitons look like point sources 

of the magnetic and the scalar Higgs fields, which is the reason for calling these solitons magnetic 

monopoles. The SU(2) magnetic monopoles differ from the abelian Dirac monopole in that they 

have an extended core and are everywhere smooth field configurations. 

If one regards the symmetry breaking as a boundary condition at infinity, a limit may be taken 

consistently in which the Higgs field potential vanishes. This is the Prasad-Sommerfield limit [3]. 

Topological soliton solutions persist. In fact, in the Prasad-Sommerfield limit there is a first order 

equation - the Bogomol'nyi equation [4] - describing static field configurations of the theory of 

minimal energy. Solutions of this equation automatically solve the Euler-Lagrange equations and are 

called Bogomol'nyi- Prasad-Sommerfield (BPS) monopoles. The explicit solution for a monopole of 

unit charge is given in [3]. This solution has four parameters, or moduli: three translational, associated ' 
wi'th its position in JR.

3
, and one dyonic, associated with the U(l) phase. Hence the parameter, or 

moduli space of a charge one BPS monopole is the flat JR.3 x U(l). 

It is possible to define global magnetic charge of a BPS monopole which is topological in nature. 

This topological charge takes values in K2 ( sig)) = Z and hence is integral. BPS soliton solutions 

with topological (magnetic) charge k are called k-monopoles. The moduli space is the parameter space 

of all gauge-inequivalent solutions in one topological sector. Weinberg [15] showed that the dimension 

of this moduli space is ( 4k - 1), and gave a physical interpretation to these parameters. A k-monopole 

may be viewed as a superposition of k monopoles of unit charge with large inter-monopole separations 

[38]. Each I-monopole is characterized by three positions and one U(l) orientation. Since only the 

relative U(l) orientation has physical significance, the total number of non-gauge zero-modes of a 

k-monopole is 3k + ( k - 1) = 4k - 1. Adding one overall phase paramete~ the overall U (I) charge, 

renders the k-monopole moduli space 4k-dimensional. 
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embe.JJ..t ~"to b . art of four-dimensional SYM theory . -Hi s SU(2) theory is the osornc p . . 

Yang-Mills gg d scalar Higgs fields take values m the Lie . N - 4 supersyrnmetry. l As before, the gauge an 

with - · . BPS oles of YMH theory 2 d transform in the adjoint representat10n. monop 
algebra .su(2) of SU( ) an 1 Illl·ni·mal energy configurations 

. · BPS monopo es are t i·n this supersyrnmetnc extens10n. are also presen 

and as such saturate the Bogomol'nyi energy bound 

M?_ IZI, 

h mmetry algebra [5]. States saturating where z is, schematically, the central charge of t e supersy There are 16 

' . d are annihilated by one half of the supersymmetry charges. 
the Bogomol nyi boun . . . and eight of them annihilate 

N 4 mmetry algebra m four dimens10ns, supercharges in the = supersy etry 

. 2! - 16-dimensional representation of the supersymm the BPS state. Hence BPS states fall mto a -

algebra, called the ultra-short representation. h Solutions of this kind exist in N = 
. t the SU(2) gauge t eory. Topological solitons are not umque o . d. . to 

. . s [16, 39]. In what follows we restnct our iscussion 4 SYM theories with arbitrary gauge group . . b'tr ry 

k 1 'th some modification to ar i a theory although all the concepts and remar s app y wi 

SU(n) gauge , Th e and the Higgs fields take values in su(n) and transform 
compact semi-simple gauge groups. e gaug . . - ( t ) 

. . . s field to be constant at mfimty </Joo - t1, ... , n ' in the adjoint representation. Fmng the Hlgg . H C SU(n), 

SU( ) auge symmetry to a subgroup + t = O, spontaneously breaks the n g i1 +, · · n 

f SU(n) commuting with </Joo · 
which consists of elements 

O 

. . U(l)n-l f SU(n). We refer to this 
H · h 1mal torus 0 

Generically, all t i 's are distinct and is t e max ' . . de in which case the 
. however happen that some of the ti s comci 

case as maximally broken. It might, ' f the ( n - l) U ( 1) 
residual gauge symmetry is enhanced. For instance, when two ti 's are equal, one o 

( ) factor We refer to this case as non-maximally broken. 
factors is replaced by an SU 2 . . . 'bl define a magnetic field in the 

Let us treat the maximally broken case first. It is still possi e to . be 

. ( ) Similarly a set of magnetic charges may . . on which now takes values m .su n . ' . 
asymptotic reg1 ' . ( SU(n) ) = zn-l _ Thus a magnetic soliton solution 
globally defined which now take values m K2 U(1Jn- 1 . . A number 

) of topological charges of distmct types. 
is labelled by an ( n - I )-vector ( n 1 , . . . , nn- 1 . . . le embedding of the SU (2) BPS 

of monopole solutions in this theory may be. o~tai~ed by a prmcip_ solutions called fundamental 
f ( n) There is a distmgmshed set of ( n 1) 

monopole along a root o .su . can choose to work in the unitary 
--~---- ~:--N-:-;---;4~S~YM-;:;-;:;th::::e=ory contains six Higgs scalars, but we fi Id W should also 

!The supermultiplet of = S0(5) and the theory has effectively one scalar e . . e Id t tial g
auge which breaks the S0(6) R-sym.metryltlo 1 d to, the Prasad-Sommerfield limit, because the Higgs fie po en 

' . f ·t ·y gauge natura y ea s ld 
remark that the ch01ce o um ai . h .d tically for one effective scalar fie . 
V(cp')=tr[c;i/,q/]2,J,J =l , ... ,6 ,vams es1 en 
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monopoles, that are obtained as embedd' f . 
mgs o a unit charge SU(2) 

.su(n). The i-th fundamental monopole along a simple root of 
monopole has charge (0, .. . , 0 1 0 ) . . . 

reason for calling these m 1 , , , . . . , 0 with 1 m the Hh place. The 
onopo es fundamental is twofold F . 

one SU(2) solution each f d . rrst, bemg an embedding of a charge 
, un amenta1 monopole has four de ees o 

and one phase. There is ... gr f freedom: three translational 
no room for mtemal" structure. Secondly a char 

pole may be viewed as a superp ·t· f ' ge (n1, · · · , nn-1) mono-
os1 wn o n1 monopoles oft e (1 

(0, 1, 0, ... , 0), etc. This interpret t' . YP , 0, ... , 0), n2 monopoles of type 
a wn ts supported by the BPS m D 

counting. The moduli space of h ass ormula as well as by parameter 
sue a monopole has 4 ~n-1 

· L..-i-1 ni parameters whose h · 1 1s analogous to that of the - ' P ys1ca meaning 
parameters of an SU(2) k-monopole. 

Only monopoles obtained as SU(2) emb dd' . 
e mgs along simple root h. h . 

Dynkin diagram of SU ( ) . s w IC are lmked in the 
n mteract. Note that there is no physical mecha . . 

fundamental monopoles of different . msm that mixes phases of 
types, I.e. of monopoles char d · h 

factors. From this fact we . D ge wit respect to different U ( l) 
can m er that the moduli space of char e ( 

a U(lr-1 = rn-1 s g l , 1, · · · , 1) monopole possess 
ymmetry. Moreover, for n > 2 there . . 

[16] of charge (l l) . exists a spherically symmetric solution 
. '· · ·' with 4(n - 1) normalizable zero-mod . . 

ric solution may be interpreted as a su . . es. This spherically symmet-
perpos1tton, at the same point of the . 

fundamental monopoles of d'ffi ' appropriate number of 
. I erent types. In the moduli space of the ( 

solution corresponds to a fixed point of S0(3) . n1, . . . , nn-1)-monopole this 
rotat10ns. 

'Let us now tum to the f . 
" . case o non-maximal symmetry breaking. When (n - , . . 

the unbroken gauge symmetry . H _ K r - l) t i s comc1de, 
is - xU(lf,whereKisasub fS ( 

number of topological charges ea t'Il b group o U n) of rank r . A 
. n s I e defined. They take values in 7f ( SU(n) ) - r 

we see that theories with non-abel' .d 2 
K x U(I) r - .Z , and 

. Ian res1 ual symmetry have fewer t 1 . 
whose unbroken gauge group is H = U( )n-I opo og1cal charges than theories 

integers, r of which are t l . 1 . A BPS monopole solution is still labelled by ( n - l) 
opo og1cal charges and the remaining (n - r - 1) . 

[16]. It does not seem possibl t d fi are non-abehan charges 
e o e ne a global non-abelian char e . 

[ 40]. There are also other concept l b g m the presence of a monopole 
ua pro lems that arise in connectio . . 

but it is beyond the scope of th. b . f . n with non-abeltan charges, 
IS rie review to dwell on them W l 

configurations may be found for h. h . . e mere y point out that monopole 
w JC the non-abehan part of the Ion - . 

and it is still possible to talk b . g range magnetic field vanishes 
a out a moduli space with a well defined . 

unbroken H = U(1r-1 a metnc. In the limit when the 
g uge symmetry is enhanced to H = · K x U(l r 

monopoles associated with (n - r ) ' masses of fundamental 
- 1) roots of the Cartan subalgebra of K tend t 

o zero. These 
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fundamental monopoles become massless. An isolated massless soliton is not a well defined physical 

object since the size of its core becomes infinite. Even in the presence of a massive monopole the 

physical interpretation of massless solitons carrying a non-abelian charge is still not well understood. 

A particular case of non-abelian symmetry breaking that we investigate in detail in the following 

chapters is r = 2. This theory admits two fundamental monopoles and (n - 3) massless monopoles, 

the latter forming a non-abelian cloud. The physics of this non-abelian cloud for n = 4 was studied 

in [41]. In analogy with monopole solutions obtained via an SU(2) embedding along some root in 

the Lie algebra, SYM theory with unbroken gauge group U( l) x SU(n - 2) x U(l) admits a number 

of solutions, which are obtained by embedding the solution of the SU ( 4) gauge theory broken to 

U(l) x SU(2) x U(l) consisting of one massless and two massive monopoles [42). This monopole 

solution has charge (1, [1, .. . , 1], 1), where the (n - 3) integers inside square brackets denote non­

abelian charges. In [12] an interpretation of this solution was put forward to the effect that it consists 

of two massive fundamental monopoles and a cloud of (n - 3) .massless monopoles. 

2.1.2 S-duality Predictions 

As explained in the Introduction, S-duality is a conjectured exact symmetry of N = 4 SYM the­

ory which acts non-trivially on the gauge coupling T = e /27f + ig-2 , simultaneously acting on 

electric and magnetic quantum numbers of the states in the theory. The group of S-duality transfor­

mations for SYM theories with simply-laced gauge groups is SL(2 , Z). This duality symmetry is 

non-perturbative, in the sense that it is not expected to be valid order by order in the power series 

expansion in the gauge coupling g. Therefore, the only feasible way to test the S-duality conjecture is 

to study quantities, whose tree-level values are unchanged by quantum corrections [8]. 

States in the ultra-short multiplet of the N = 4 supersymmetric theory, BPS states which break 

one half of the total supersymmetry, have the desirable property. Since they saturate the Bogomol'nyi 

energy bound, their masses are equal to the central charge of the supersymmetry algebra which is not 

renormalized. Hence if one assumes that N = 4 SYM theory does not undergo any phase transitions, 

the dimension of a supersymmetry multiplet cannot change and the spectrum of BPS states remains 

unaltered for any value of the coupling. Electrically charged states saturating the Bogomol 'nyi energy 

bound are gauge bosons, and magnetically charged BPS states are magnetic monopoles discussed in 

the previous section. 

The SL (2, Z ) duality group acts on the complex gauge coupling T = B/27r + ig-2 by fractional 
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linear transformations: 

aT +b 
T-t-

CT+d' 

where a, b, c, d E z and ad - be = l The . 
. duality group bas two generators: T -t -1 / T and 

T -t T + l. If we set the theta angle to zero, e = 0 the first 
of Montonen and Olive [l] I th. , generates Strong-weak coupling duality 

· n IS case the strongly coupled re · f b . 
weakly coupled · . gwn ° t e theory is equivalent to the 

reg10n with the roles of the elementar electric 
solitonic states (the magnetic mo l ) . y quanta (the gauge bosons) and the 

BPS states into BPS states. nopo es mterchanged. In general, S-duality transformations map 

Let us first consider SU(2) N = 4 SY . 

electric and magnetic quantum numbers {I :;h.:o:~:]. G,:~n the existence of a gauge boson with 

BPS states 'th ' coup mg, S-duality predicts the existence of 
WI quantum numbers { } 

a, -c at a transformed value of the . 
necessarily relatively prime). Assuming that tb . coupling T (a and c are 
i e the th d e spectrum of states varies continuously with coupling 
· · eory oes not undergo a phas t . . ' 

e rans1t1on, we conclude that the states { } . 
values of T in . a, -c must exist at all 

, particular at weak coupling. States with h . 
c arge quantum numbers { o 1} . 

SU(2) monopoles of Section 2.1.l. States 'th h ' areumtcharge 
wi c arge quantum numbers { a l} =/: 0 

dyons which may be obtained from the classical mon . ' ' a ' are BPS 

[9] S d d opole solut10n by semiclassical quantization In 
en e uced that for S-dualit s · 

y ymmetry to hold, there must exist bound states of c m 1 
and/or dyons each carrying unit magnetic charge. onopo es 

Since the duality symm t · h 
, e ry Is t e symmetry of the full quantu h 

nbt be detected at the classical level H fi . m t eory, these bound states can 
. ence to nd the predicted bound states we . 

collective zero-modes of the classical SU(
2
) . must quantize the 

c-monopole solution which req · kn . 
on the moduli space of such a monopole. ' urres owmg the metric 

Let us reformulate in geometrical terms the task of looking for 
Following [18] Blum showed 2 . quantum bound states of monopoles. 

[ 5] that the low-energy dynamics of BPS . . 
the N 4 monopoles IS equivalent to 

= supersymmetric quantum mechanics on the moduli s ace. . . . 
version of the modul. . . p This is a supersymmetnc 

I space approxunat10n of Manton [22]. States in the H'lb . 
tum mechanics are in one-to-one co . I ert space of this quan-

d r rrespondence with square-integrable real differential forms on th 

mo u i space of the centred monopole configuration. Four anti-commutin e 

may be identified with differential operators d [J [J [J . g supersymmetry operators 
. . ' l ' J' K actmg on forms, where d is th t . 

denvat1ve and a a a h e ex enor 
l' J' K are t e Dolbault operators assoc. t d 

(dt at at at . . ia e to the three complex structures I J K 
' 1, J, K are therr respective adjoints) Tb . ' ' 

. e quantum-mechamcal Hamiltonian becomes the 
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Hodge-de Rahm Laplacian 

d dt + dt d - 2(a1at + at a1 + aJat + at aJ + aKat + at aK) - I I . J J K K · 

A BPS state is an eigenstate of this Laplacian. For reasons explained in [9], we are particularly 

interested in eigenstates with zero eigenvalue, which are normalizable harmonic forms. 

We conclude the discussion of the SU(2) case by mentioning that the exact metric on the moduli 

space of charge c SU(2) monopoles is known only for c = 2, it is the Atiyah- Hitchin manifold [17]. 

Sen found a unique normalizable harmonic two-form on the Atiyah-Hitchin space thus showing that 

the bound state predicted by S-duality exists. 

Let us now discuss predictions of S-duality for theories with gauge group SU(n). Already in the 

maximally broken case these predictions are more elaborate. Firstly, note that the SU(2) S-duality 

predictions are "embedded" into the n > 2 case, i.e. associated to each charge (0, 0, ... , k, . . . , 0) 

fundamental monopole there is an infinite tower of dyonic bound states a la Sen. In addition, there are 

purely magnetic bound states of several fundamental monopoles as we shall demonstrate presently. 

Electrically charged BPS states are gauge particles that aquire mass through the Higgs mechanism. 

For abelian unbroken gauge group U ( 1) n-l only ( n - l) photons with the charge vector corresponding 

to a Cartan generator stay massless, while the remaining (dimSU(n)-(n- l)) particles acquire mass. 

These are massive gauge bosons, and their number, !(dimSU(n) - n + l), is equal to the number 

of fundamental monopoles (n - l) only for n = 2. In order that the electric and the magnetic spectra 

match there must appear !(dimSU(n) - (n - 1)) - (n - l) additional magnetic states. 

Consider the simplest case n = 3, with gauge group SU(3) -t U(l) 2• There are three electrically 

charged vector mesons, whose charges in the two unbroken U(l)'s are (1 , 0) , (0, 1) and (1, 1). From 

the BPS mass formula we know that the mass of the third gauge boson is equal to the sum of the 

masses of the first two. The S-duals of the first two objects are fundamental monopoles associated 

with the two simple roots of su(3). Then the dual of the third one must be a charge (1 , 1) monopole, 

which we know from the previous section to be the bound state, with zero binding energy, of the two 

fundamental monopoles. Such a zero-energy bound state is called a threshold bound state because it 

is only marginally stable against decaying into its fundamental constituents. A very clear description 

of the simplest SU(3) case can be found in [10]. 

For arbitrary values of n S-duality predicts the existence of a unique threshold bound state in the 

topological sector of charge (1, 1, ... , 1) . In geometrical terms this means that one expects to find a 

unique normalizable harmonic form on the moduli space of centred charge (1, 1, . .. , 1) monopole. 

UN!Vl:.h.'$1 ' 
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The predicted harmonic form was h .b. . 
ex I Ited m [10, 43] for gauge group SU(3) -t U(1)2 a d . 

for gauge group SU(n) -t U(lr-i. , n m [44] 

When the gauge g · b 
roup is roken non-maximally to H K U( ) = X 1 r, the electrically charged 

sector contains massless el . 
ementary excitations. If S-duality is to hold 

solitons char ed . ' one expects to find massless 
g under non-abehan gauge subgroup K. In add"t" . . 

there a . I ion, as m the maximally broken case 
re massive gauge bosons for every U(l) factor in H S d I" . . , 

sector . - ua ity predictions for the massive 

are much the same as those in the maximally broken case. One should keep in mind h 
that some of th . b , owever, 

e massive osons and hence their solitonic duals will form non-t . . 1 . 
of K A d ·1 · nv,a representations 

· eta1 ed discussion of S-dualit t . 
y or non-abehan gauge theories is given in [13 14] H 

shall foe h h . , · ere we 
us on t et eory with gauge group SU(n) -t U(l) x SU(n - 2) 

detailed countin for n _ . x U(l). Let us present a 
g - 4, showmg that there must appear a threshold b d . 

fu d 1 oun state of two massive 
n amenta monopoles and one massless one. 

SU(4) -t U(l) x SU(2) x U(l) 

All the fields transform · th d . . 
m e a Jomt representation of the gauge group Th 1 . 

sector of N - 4 SYM . · e e ementary particle 
- theory with gauge group SU ( 4) has 15 = dim (Ad ) d 

The b k · SU(4) egreesoffreedom 

un ro. en gauge group U(l) x SU(2) x U(l) has the following decomposition into irreducibl~ 

representations: 

15 = ,!- EB ~ EB ~ EB ~ EB 2 EB 2 EB 2 EB 1 EB i 
massless sector m . " ' (2.1) 

ass1ve sector 

What are the states making th 
. . up e components in this decomposition? Let us denote each elementar 

state by its electnc charge vector with respect to the thr y 
U(l) ee components of the unbroken gauge group 

x .SU(2) x U(l). For clarity, we put square brackets around the non-abelian charge. With the 

convent10ns we can write . l . se 
massive e ectncally charged states in (2.1) as follows: 

(!, [OJ , 0) } 

(1 , [l] , 0) 
doublet of SU(2) 

(2.2) 

(0, [OJ, 1) } (0, [I], 1) 
doublet of SU(2) 

(1, [l], 1) singlet of SU(2) 
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The first pair of states - a boson carrying one unit of abelian U(l) charge and another boson 

carrying in addition a unit of non-abelian charge _:_ transform in the fundamental representation 2 

of SU(2). Every boson has its antiparticle partner, hence there is a pair - anti-(1 , [OJ , 0) and anti­

(1, [1], 0) - transforming in the anti-fundamental representation 2 of SU(2). The same holds for the 

second pair of bosons in (2.2) which are charged with respect to the other U( l) factor. The BPS mass 

formula does not distinguish between the two states in the doublet, since the non-abelian excitation is 

massless. However, the presence of a massless excitation is manifest in the symmetries of the moduli 

space. 

The massless sector consists of three photons - one for each U(l) factor and one for the SU(2) 

factor, - a massless gauge boson (0, [1], 0) carrying a unit of non-abelian charge and its anti-particle. 

The non-abelian photon, the massless gauge boson and its anti-particle transform in the adjoint repre­

sentation 3 of SU(2), and the two other photons are singlets of SU(2). 

These massless and massive states account for all the available degrees of freedom in the system, 

and are in accord with decomposition (2.1). The state of most interest to us is the S-dual of the massive 

singlet (1 , [1], 1). The BPS mass formula shows that the mass of this state is the sum of the masses of 

two states, one from each of the doublets in (2.2). 

For n > 4 S-duality demands the existence of a threshold bound state of two fundamental and 

(n - 3) massless monopoles, which is the S-dual of the massive singlet (1, [1, . .. , 1], 1). 

2.1.3 Metrics on Monopole Moduli Spaces 

It is clear from the above discussion that in order to check predictions of S-duality one needs to know 

the metric on the mo~uli space of BPS monopoles and to search for certain harmonic forms on the 

moduli space. In this section we would like to summarize methods of constructing moduli space 

metrics which have been used until now. 

The exact metric on the moduli space of monopole solutions may be constructed by direct compu­

tations in field theory as follows. Static BPS configurations of a given magnetic (topological) charge 

which are not related by local gauge transformations, are parametrized by m collective coordinates 

Za, a= 1, ... , m. These collective coordinates are called moduli and are regarded as coordinates on 

the moduli space of these monopole configurations. In the moduli space approximation proposed by 

Manton [22] one assumes that small time-dependant fluctuations around a static BPS solution can be 

approximated by a configuration that is gauge equivalent to one of these BPS solutions. Physically, 
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this assumption means that objects with small relative velocities and/or arbitrary small electric charges 

are, in some sense, almost BPS. It is a property of static BPS multi-monopole and multi-dyon solu­

tions that there is no net force between the constituent objects - the electric and magnetic repulsion 

is balanced by the scalar attraction. Therefore, low-energy dynamics of the system is described by the 

kinetic term of the bosonic part of the Lagrangian only. It can be expressed (see e.g. [18)) in terms 

the background gauge zero-modes 6aAµ: 

9ab = J d3
x tr(6aAµ6bAµ) , 

where Aµ = ( cl> , Ai), i = 1, 2, 3, is the Higgs and the gauge fields. Thus low-energy dynamics of 

the fields is reduced to the dynamics of a point particle moving along geodesics on the n-dimensional 

moduli space. Although this method is quite straightforward, it has a definite drawback. In most cases 

the full family of solutions of a given magnetic charge is unknown and it is, therefore, impossible to 

calculate the complete set of background gauge zero-modes. 

Another approach works for any monopole configuration but is valid only in the asymptotic region 

of the moduli space where monopoles are widely separated. It has been developed, and first applied 

by Manton [23] and consequently applied by Gibbons and Manton in [45]. It uses the fact that the 

long-range interactions between slowly moving monopoles are well understood, which allows one to 

construct the Lagrangian and deduce the metric 9ab from it. In [ 45] Gibbons and Manton applied this 

~ethod to the case of SU(2) monopoles of arbitrary charge. They found the asymptotic metric, which 

we refer to as the Gibbons-Manton metric. The Gibbons-Manton metric is not a good candidate for 

the exact metric on the moduli space since it has indefinite signature and develops singularities in the 

interior. 

Lee, Weinberg and Yi [11] (see also [10, 46)) followed the same line of thought and constructed 

the asymptotic metric on the moduli space of distinct fundamental monopoles for any simple gauge 

group G broken to its maximal torus. They conjectured that this asymptotic metric, which we refer 

to as the Lee-Weinberg-Yi (LWY) metric, was, in fact, the exact metric on the moduli space. This 

statement was later proved to be true by Murray in [47] and by Chalmers in [48] . 

As we have already mentioned in Section 2.1.1, the number of normalizable zero-modes of a 

solution to the Bogomol'nyi equations is a multiple of four. Moreover, the 4n-dimensional moduli 

space is hyperkahler (see Section 2.2). Atiyah and Hitchin [17] gave a proof of this fact based on 

mathematical properties of the Bogomol'nyi equations. An alternative proof due to Gauntlett [18] 

relies on his finding that quantum low-energy dynamics of monopoles is equivalent to the N = 4 
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supersymmetric quantum mechanics on the moduli space. This quantum mechanical model is nothing 

else than the N = 4 supersyiilmetric one-dimensional non-linear sigma-model, whose target space is 

the moduli space. Extended N = 4 supersymmetry imposes constraints on the geometry of the target 

space: it requires the target space, and consequently the moduli space, to be a hyperkahler manifold. 

It turns out that in some cases the isometries of the moduli space, deduced from the space-time and 

internal symmetries of the theory, together with the hyperkahlerity requirement completely determine 

the metric on the moduli space. This approach was used by Atiyah and Hitchin [17] for the moduli 

space metric of charge 2 SU(2) monopole and by Gauntlett and Lowe [10] and Lee, Weinberg and Yi 

[43] for the charge (1 , 1) SU(3) monopole. 

Atiyah and Hitchin argued that the eight-dimensional moduli space of charge two SU(2) mono­

pole can be decomposed into a four-dimensional moduli space of centred monopoles, Mrel, and the 

flat moduli space of the centre of mass: 

si X Mrel 
M = 1R3 X --~-:v 

They showed further that M must be hyperkahler, and since JR3 x S1 carries a flat hyperkahler struc­

ture, Mrel must also be hyperkahler. Besides, the isometry group of Mrel is just S0(3). They looked 

for such a complete hyperkahler four-manifold by applying the twistor construction and solving the 

Monge-Ampere equations, and arrived at a metric expressed in terms of complete elliptic integrals 

now known as the Atiyah-Hitchin metric. 

Now consider charge (1, 1) SU(3) monopoles. The moduli space of charge (1, 1) monopoles 

was first studied by Connell [46] using Nahm data, and later by Gauntlett and Lowe [10] and Lee, 

Weinberg and Yi [43]. They showed that the moduli space can be isometrically decomposed as: 

]RX Mrel 
M =1R3 X ----

z 

The JR3 factor corresponds to spatial translations of the centre of .mass and the lR factor to the overall 

U ( 1) phase. All the information about the monopole interactions is contained in the metric on the 

relative, or centred, moduli space Mrel. The exact form of the metric on Mrel may be deduced from 

the symmetry, hyperkahlerity and the asymptotic behaviour of monopoles. · The isometry group of 

Mrel for any monopole configuration must contain an S0(3), or even an SU(2), factor since the 

centre of mass motion has been taken out. From Section 2.1.1 we know that there exists a spherically 

symmetric monopole solution, which is the superposition of two fundamental monopoles at the origin 

of the relative moduli space. Hence the origin of Mrel is a fixed point of the S0(3) action. There is no 
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physical mechanism that mixes the U(l) phases of distinct fundamental monopoles, hence the relative 

phase is conserved, implying that Mrel is axially symmetric. In other words, the isometry group of 

Mrel · U( ) . 
contams a I factor which preserves the hyperkahler structure. At large separations the two 

monopoles do not detect each other's presence, so the relative moduli space is asymptotically locally 

flat. The only hyperkahler metric in four dimensions which fits all the abovementioned requirements 

is the Euclidean Taub-NUT metric with positive mass parameter. 2 

Thus symmetry arguments are sufficient to uniquely determine MreL of two monopoles for any 

gauge group. This is not the case for higher charge monopole solutions since there is no complete 

classification of hyperkahler manifolds. 

.. 2.2 Hyperkahler Geometry 

2.2.1 Hyperkahler Manifolds 

A 4n-real-dimensional manifold M with a Riemannian metric g and three complex structures J J K 
' ' 

is called hyperkahler if the following conditions hold: 

• The three complex structures, which are endomorphisms on the tangent space TM, obey the 

algebra of unit quaternions: 

1
2 

= 1 2 = K 2 = - IT4n, IJ = K, etc. 

• The Riemannian metric g is hermitian with respect to I, J and K: 

g(X, Y) = g(IX, IY), etc. 

with X , Y ET M vector fields on the tangent space of M. 

• The complex structures are covariantly constant with respect to the Levi-Civita connection v' 

of g: 

v' I = v' J = v' K = 0. 

Associated to each complex structure is a Kahler form - a nowhere vanishing real two-form _ 

defined by: 

wI (X, Y) = g(X, IY) , w
1 (X, Y ) = g(X , J Y ), wK (X , Y ) = g(X, KY) . 

2

Hyperkahler four-m_anifolds with S 0 (3) isometry have been classified in ( 17] ; they are the flat ]R4 , the self-dual Taub­
NUT , the At1yah-H1tchin and the Eguchi-Hanson metrics. 
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The three complex structures I , J, K are integrable if and only if the Kahler forms are parallel with 

respect to the Levi-Civita connection of g, or equivalently, if they are closed 

dwI = dw1 = dwK = 0 . 

It is sometimes convenient to regard a hyperkahler manifold as a complex-symplectic manifold. If 

we pick J to be the prefered complex structure, then wI is the Kahler form, and, in addition, (M , g, I) 

is endowed with a complex-symplectic form: 

h J · K w = w +iw . 

This complex-symplectic form is holomorphic with respect to I and is sometimes called the holomor­

phic Kahler form. 

Every hyperkahler manifold is Ricci-flat. This follows directly from the fact that the holonomy 

group of a hyperkahler manifold is contained in Sp( n), which in tum is a subgroup of SU (2n) . It is 

not difficult to prove that holonomy of a Riemannian manifold is contained in SU(2n) if and only if 

the Ricci tensor vanishes identically [49]. Therefore a hyperkahler manifold is automatically a solu­

tion to vacuum Einstein's equations.3 There is no complete classification of hyperkahler manifolds, 

making every explicit example of a hyperkahler metric a welcome contribution to the general lore. 

Most of the known hyperkahler spaces are non-compact and many are asymptotically flat. We give 

a few examples in the next section. Trivially, metric products of non-compact asymptotically fl at 

hyperkahler manifolds are again manifolds of the same type. Explicit examples of compact hyper­

kahler manifolds are less plentiful. In four dimensions every hyperkahler manifold is a Calabi-Yau 

space, i.e. it is a Kahler Ricci-flat manifold, of which the K3 surface is an example. There are fur­

ther examples of compact hyperkahler manifolds in dimensions eight and higher to be found in the 

mathematical literature, but these are not of immediate interest to. the present work. 

2.2.2 Examples 

Flat space: 

A trivial example of a hyperkahler manifold is the quaternionic flat space IR4n 

standard flat metric 

3For a concise discussion of hyperkahler manifolds and their properties see e.g. [50]. 

IHr with its 

(2.3) 
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a = 1, . .. , n, where we identify a point (xa xa xa a) 
1, 2, 3,X4 

qa = X1 + ix~ + j X3 + k x:J; · A triplet of Kahler forms is 
E IR

4
n with a quaternion qa E lHf as 

1 
-2 L dqa I\ dil = iwl + jwJ + kwl\ 

a 

where w1 w1 wK th K"hl 
' ' are e a er forms associated to the standard complex structures I J K TT1)4n. 

, , on m. . 

WI L dx1 I\ dx2 - dx3 I\ dx4 , (2.4) 
a 

WJ = L dx1 I\ dx3 - dx4 I\ dx2 , 
a 

WK = L dx1 I\ dx4 - dx2 I\ dx3 . 
a 

For future convenience, let us rewrite this flat hyperkahler structure in complex coordinates (za a) E 
~- tr12n w· h a 'w 

\L- • It q = za + wa j and ff.a = -a - a . . 
z w J, metnc (2.3) and three Kahler forms (2.4) are: 

g 

a 

and the complex-symplectic form wh - wJ + · K · 
- ZW IS 

Wh = L dza I\ dwa. 
a 

(2.5) 

Let us now give a few non t · · 1 
. . - nvia examples of non-compact hyperkahler manifolds in four and 

higher dimensions. 

Taub-NUT: 

The Euclidean Taub-NUT metric on JR4 is asymptotically locally flat, has isometry group U(2) ~ 
U(l) x SU(2) and may be written in the form: 

ds2 = V dr2 + v-1 (dT + w(r). dr)2, 
(2.6) 

where V = l + If!-, r is the coordinate on flat IR3 _ / / · . . . 
' r - r ' and T Is a penod1c coordinate with period 

21r. The one-form w = w(r). dr is such that curl w(r) = 
grad V, where curl and grad are standard 

operators on IR3. This implies that V is a harmonic function on JR3. 
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Constant m is the so-called mass parameter. When m > 0, the metric (2.6) is positive-definite and 

non-singular. The apparent singularity at the origin r = 0 is an artefact of spherical polar coordinates. 

Introducing a new radial coordinate p = ,Ji near r = 0, metric (2.6) becomes a flat metric written 

in terms of left-invariant SU(2) one-forms. When m < 0, metric (2.6) changes signature from 

( + + + +) to ( - - - - ) at r = -m and is singular at that point. 

The potential function V has to be a harmonic function on IR3 , and hence may include more than 

one poles. The following function with k centres, located at points (x1 , ... xk) in IR3 , also solves the 

self-duality equations: 

1 1 1 
V=l+I l+I I+ ... + 1· 

r-x1 r-x2 fr -xk 
(2.7) 

The metric of the form (2.6) with V as in (2. 7) is called a multi-centre Taub-NUT, or for short multi-

Taub-NUT metric. 

ALE: 

Omitting the constant from the potential function V (2.7) of a two-centre Taub-NUT metric leads 

to a four-dimensional hyperkahler metric which is not asymptotically flat. This is the Eguchi-Hanson 

gravitational instanton [51]. It is asymptotically locally Euclidean (ALE) [52]. The Eguchi-Hanson 

metric is complete and is a minimal resolution of the singularity (C2 /Z2. 

More generally, for any finite subgroup r of SU(2) the singularity C2 /r has a minimal reso­

lution. These non-singular manifolds were constructed by Kronheimer [53] using the hyperkahler 

quotient construction, who also showed that they were ALE. The finite subgroups r are in one-to-one 

correspondence with Dynkin diagrams for simple An, Dn and E6, E1, Es groups [54]. Subgroups 

r = Zn+ 1 correspond to the An series, and minimal resolutions of the An singularity are called cyclic 

ALE spaces. The Eguchi- Hanson manifold is then a minimal resolution of the A1 singularity. Other 

cyclic ALE manifolds, which are also called multi-Eguchi-Hanson or multi-instanton, were first con­

structed by Gibbons and Hawking in [55] (see also [56]) by adding the appropriate number of simple 

poles to the potential function V. The multi-Eguchi-Hanson manifold with k centres located at points 

(x1 , ... xk) in IR3 has metric (2.6) with 

(2.8) 

ALF: 

Inspired by the relation between the Taub-NUT and the Eguchi- Hanson metrics we may wonder 
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whether there are ALF counterparts to other ALE metrics of Kronheimer. In the cyclic case the answer 

is straightforward. The cyclic ALF metrics are the multi-Taub-NUT metrics, which were first written 

down by Hawking in [57]. 

The ALF boundary condition is compatible with the action of the binary dihedral group associated 

to the Dn series, and corresponding ALF metrics have been found. Cherkis and Kapustin [58) found 

the Kahler potential and the twistor space for these metrics. Kronheimer's quotient construction may 

be modified to prove their existence, although there is little hope of obtaining explicit expressions for 

the metrics in this way. The situation does not repeat itself in the E n case. One can demonstrate [59) 

that the ALF boundary condition is not compatible with the action on (C2 of the binary tetrahedral, 

octahedral and icosahedral groups associated with E 6 , E7 and E
8 

groups respectively. 

Calabi: 

The Eguchi-Hanson metric is the standard hyperkahler structure on the cotangent bundle of com­

plex projective line, T* CP
1

, and as such can be viewed as the first member of another family of 

hyperkahler metrics. This is the family of Calabi metrics [60) on the total space of the cotangent 

bundle of complex projective space T* (Cpn, whose holonomy is Sp(n) . 

2.2.3 Hyperkahler Quotient 

Definition of the hyperkahler quotient: 

Hyperkahler manifolds may be usefulJy studied from the point of view of symplectic geometry. 

In symplectic geometry there is a construction called the symplectic quotient [61) which allows one 

to obtain new symplectic manifolds from known ones. It was first noticed by Hitchin, Karlhede, 

Linstrom and Rocek [24) that this construction adapts naturally to hyperkahler geometry. Before we 

state their result, some preliminary explanations are in order. 

Let (M, g, I , J, K) be a hyperkahler manifold and Ga Lie group, with Lie algebra g, acting on 

M. The action of a Lie group G , generated by vector X E TpM , p E M, is said to be isometric if 

.Cx g/p = 0, holomorphic if .Cx I/p = 0, and Hamiltonian if £ xw1 /p = 0 at any point p E M, where 

.Cx is the Lie derivative along X. By definition of the Lie derivative we have: 

where l(X)w
1 

denotes the in terior product (contraction) of the Kahler form wI with the vector X . 

However, we know that the two-forms w1
, wJ , wK are closed, hence the one-forms l(X)w1 , etc. are 
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also closed. If the first de Rahm cohomology group H 1 ( M , JR.) vanishes there exist, at least locally, 

functions µ 1 , µ J , µ K, such that 

dµ 1 (X) = l(X)w1
, etc. (2.9) 

This defines the functions µI , µ and µ up to an a 1t1ve cons an . J K dd. · t t To be well defined globally, 

however, these functions have to be equivariant, i.e. commute with the actions of G on both M and 

· d fi · I J and µK globally which g*. For a general Lie group G there could be an obstruct10n to e nmg µ , µ 

lies in a cohomology group of g. Luckily the obstruction vanishes for semi-simple Lie groups or a 

torus. We can write the three moment maps more succinctly as a single mapµ = (µ1, µJ, µK) 

µ : M -t g* x I m IHI = g* x JR.3 · 

The theorem of Hitchin et al [24] states that if (M, g , I , J, K) is a hyperkahler manifold and G is 

a Lie group, with Lie algebra g, which acts on M by isometries preserving the hyperkahler structure, 

there will be an associated moment map µ : M -t g* 0 JR.3 . Consider level sets of the moment map 

µ =(,where ( is an invariant element of g* under the co-adjoint action. Then 

is also a hyperkahler manifold with a hyperkahler metric induced from g. 

We shall not prove the theorem here, but point out that the proof emphasizes the role of the 

complex-symplectic form wh and relies on the analogous theorem for the symplectic (Kahler) quo­

tient. 

If G is compact and acts free I y on µ -1 ( () , and M is complete, then X ( is also complete. The 

manifold M may admit another group K that acts tri-holomorphically, i.e. preserves all three complex 

structures of M, and isometrically and whose action commutes with that of G. Such K will descend 

onto X as a group of tri-holomorphic isometries. 
( . 

As an aside, everything said about Riemannian metrics carri~s over, at least locally, to metncs 

) Unless Stated Otherwise, in the following we will be concerned with the with signature ( 4p, 4q . 

positive-definite case . 

Group actions and moment map calculations: 

Let us consider two basic group actions which will arise time and again in the quotient construc­

tions of Chapter 3. These are real translations and U( I) rotations. Below we describe how these 

groups act on a flat hyperkahler four-space IHI and calculate the associated moment maps. 
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The flat hyperkahler structure (2.3) and (2.4) is invariant under real translations: 

q ~ q - t, t E IR . (2.10) 

The moment map for this action is 

1 
µ = 2(q - q). (2.11) 

To see that this is the case, it is easiest to perform calculations in complex coordinates (quaternionic 
analysis has not yet been fully developed because of the anti-commutativity property of quaternions). 
In complex coordinates defined before (2.5) the IR action (2.10) becomes 

~ z 1 -t ) 

z2 
) 

and is generated by X = 8 / 8z 1 + 8 / 8z1 . Given the standard hyperkahler structure (2.5), we can 
calculate the moment map from the definition (2.9): 

and , 

It can be easily checked that rewriting µ = iµ 1 + µhj in terms of quaternion q = z 1 + z 2j gives 
precisely expression (2.11). 

The flat hyperkahler structure is also invariant under right multiplications by unit quaternions p, 
such that p j5 = 1: 

Unit quaternions are in one-to-one correspondence with elements of SU(2), so this action is isomor­
phic to a right SU(2) action. By contrast, left multiplications by unit quaternions 

q ~ pq 

preserve the metric (2.3) but rotate the three Kahler forms. This may also be seen by noting that since 
the metric is flat we may identify the tangent space with IHI. Then the complex structures I , J, K act 
on IHI by left multiplication by i , j, k. The action of I, J, K thus commutes with right actions. 
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A particular action of a U(l) subgroup of SU(2) that we shall be using is given by the following 
one parameter family of right multiplications: 

Its moment map is: 

1 ·­
µ = 2qiq. 

(2.12) 

(2.13) 

This expression can again be deduced by performing the calculation in complex coordinates. In terms 
of (z 1, z2) the U(l) action (2.12) becomes 

z2 ~ e-it z2 

. X - . ( 1 a;a 1 - -18/ozl - z2 a I 8z2 + z2 a I 8z2). As before, by definition It 1s generated by vector - i z z z 

of the moment map we find: 

and 

dµI = _!(z1dz1 + z 1dz1 - z2dz2 
- z2dz2

) = -td(\z
1

1
2 

- lz
2!2) 2 

dµh = i(z1dz 2 + z 2dz 1) = id(z1z2
) =* µh = iz

1 
z

2
. 

Expression (2.13) follows straightforwardly from the above formulae by rewriting them in terms of q 

and q. 
Away from the origin, q = o, the U(l) action (2.12) is free . Using moment map (2.13) one can 

identify the orbit spac~ of this action with JR3, the origin corresponding to the fixed point set q = 0. 
· · b · IR4 \ {O} ~ IR3 \ { O} whose fibres are Hence moment map (2.13) defines a R1emanman su merston 

circles S 1
. 

For later purposes it will prove useful to express the flat metric on IHI in coordinates adapted to this 
submersion. Any quaternion may be written as 

q = aei'lj;/2 ' 

where 'l/; is real, 'l/; E (0, 4n], and a is a pure imaginary quaternion, a = -a. Then the U(l) action 

(2.12) is given by 

'l/; ~ 'l/;+2t. 
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The moment map (2.13) defines three cartesian coordinates r by 

r = qiq = aia = -aia . 

A short calculation reveals that flat metric (2.3) on IHI in coordinates ('l/J, r) becomes 

2 1(1 2 ) ds = 4 -;.dr + r(d'lj) + w . dr) 2 , (2.14) 

with r = lrl and 

curlw = grad (}) , 

where the curl and grad operations are taken with respect to flat Euclidean metric on JR.3 Metric 

(2.14) is singular at r = 0 = q = 0, but this is merely a coordinate artefact arising from the fact 

that the U(l) action (2.12) has a fixed point at the origin. Away from that fixed point metric (2.14) 

is defined on the standard Dirac circle bundle over JR.3 \ { O}, and horizontal one-form ( dT + w . dr) 

defines the standard Dirac monopole connection. 

CHAPTER 3 

Hyperkahler Quotient Construction at Work 

In this chapter we aim to construct, using the hyperkahler quotient, a number of metrics that play an 

important role in checking the S-duality hypothesis in N = 4 SYM theory in four space-time dimen­

sions . Our results concern mainly moduli spaces of monopoles in theories with higher rank gauge 

groups. The isometry group of the moduli space of distinct fundamental monopoles is larger than 

those of higher charge SU(2) monopoles. As a consequence, moduli spaces of distinct fundamental 

monopoles are simpler to construct by the hyperkahler quotient. 

Although the use of the hyperkahler quotient in this context is not in itself new, our treatment 

has the advantage that rather little machinery is necessary to obtain simple and tractable expressions 

for the metric. For example, Hitchin showed [62] that the ADHMN construction [63] of the moduli 

space of self-dual connections on JR.3 is equivalent to an infinite-dimensional hyperkahler quotient, 

where the moment map constraint is nothing else than the Bogomol'nyi equation. Another example 

is the construction of Dancer [64] which gives an eight-dimensional hyperkahler manifold which has 

an interpretation of the centred charge (2, 1) monopole moduli space in theory with gauge group 

SU(3) -t U(l) x SU(2). The charge (·, 1) monopole in this configuration is fixed, that is it is 

infinitely massive. Further application of the hyperkahler quotient with a different group action to this 

eight-dimensional manifold leads to a one-parameter family of four-dimensional hyperkahler metrics. 

The metric for the zero value of the parameter corresponds to the double-cover of the Atiyah-Hitchin 

manifold. 

The hyperkahler quotient construction affords a straightforward analysis of some global properties 
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of monopole moduli spaces. It also enables us to make statements about isometries and geodesics 

on these manifolds, which are not otherwise apparent from the local forms of the metrics given in 

[10, 11, 45]. From Section 2.2.3 we know that the quotient manifold is complete if the group acts 

freely on the level sets of the moment map. If the quotient space has singularities, the quotient 

construction permits an easy analysis of possible resolutions. In some cases it is possible to find a 

set of global coordinates on the quotient space, which implies that the space is topologically trivial. 

We can also easily determine the group of tri-holomorphic isometries on the quotient manifold. This 

is done by finding transformations which leave invariant the moment map equations, as well as the 

metric on the original hyperkahler manifold. 

The material in this chapter is derived primarily from [65) and is organized as follows. In Sec­

tion 3.1 we describe some features of the construction which are common to all the forthcoming 

applications. Section 3.2 contains the hyperkahler quotient construction of a number of well known 

hyperkahler manifolds already mentioned in Section 2.2.2. These are Euclidean Taub-NUT, cyclic 

ALF and ALE, Calabi and Taubian-Calabi manifolds. 

In Section 3.3 we use the hyperkahler quotient to re-derive the Lee- Weinberg-Yi manifold, which 

is the relative moduli space of distinct fundamental monopoles [43]. Our approach provides a natural 

' setting for the investigation of certain degenerations of the Lee-Weinberg-Yi manifold. These dege-

nerations lead to moduli spaces of fundamental monopoles for non-maximally broken gauge groups, 

as well as to moduli spaces of fixed, or infinitely massive monopoles. 

Our most elaborate example is presented in Section 3.4. There we construct a new class of metrics, 

which include, as a special case, a positive mass parameter version of the Gibbons-Manton metric 

[45]. 

Some of the moduli space metrics constructed in Sections 3.3 and 3.4 have figured in the studies 

of three-dimensional SYM theories [66, 67]. Three-dimensional N = 4 SYM theories appear as 

world-volume theories of certain configurations of intersecting branes in the ten-dimensional type IIB 

string theory. In Section 3.5 we present this alternative interpretation of monopole moduli spaces, in 

particular of the massless and the infinitely massive degenerations of the Lee-Weinberg-Yi manifold. 

In the appropriate limit, the near-horizon geometry of the intersecting brane configuration is likely to 

be of interest for the AdS/CFT correspondence. 
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3.1 General Setup of the Construction 

In all examples of hyperkahler manifolds in this chapter we start with a 4(m + d)-dimensional Eu­

clidean space M = JR4(m+d) = JHF+d with its standard flat hyperkahler structure (2.3) and (2.4). 

As group G, acting on M, we take ad-dimensional subgroup of the Euclidean group of motions, 

E ( 4m + 4d), on M. The group G is generated by real translations and left U ( 1) rotations described 

in Section 2.2.3. The quotient manifold X( is then 4m-dimensional. In all our examples there is a 

tri-holomorphic action of the torus group Tm = U(lr on M = JHF+d, which commutes with the 

action of G and hence descends onto the quotient X( as the group of tri-holomorphic isometries. 

The general local form of the metric admitting a tri-holomorphic torus action was written down 

by Lindstrom and Rocek [68] and Pedersen and Poon [69): 

(3.1) 

where a, b = l ... m, cab is the inverse of Gab, and the Tm action is generated by Killing vector 

fields 8 / f}T a. Unless stated otherwise, we assume Einstein summation convention. In order that the 

metric (3.1) is hyperkahler, the matrix Gab and the one-forms Wab must satisfy the following linear 

partial differential equations: 

a 
-
8 

. Gbe xi 
a 

a . 
- WJ 
8xi be 

a 

a 
a i Gae, 

xb 

a . ..k a 
_ i _ iJ --G 

. W ae - E 8 k be ' 
8xb Xa 

where i, j, k = l, 2, 3, x~ are components of ra and w~b are components of Wab· Clearly, given matrix 

Gab, the second equation determines one-forms Wab up to a gauge equivalence. Thus to identify a 

metric of the form (3.1) one needs only to calculate Gab · We shall use this fact later to relate metrics 

obtained by the quotient construction to previously known forms. 

If ra = lral and Gab = 6ab/ra, (3.1) becomes a metric product on lHF of m flat factors (2.14). 

The torus action is tri-holomorphic and the associated moment map in the present case is given (up to 

a scalar multiple) byµ = ra, which may be used to parameterise the space of orbits of the Tm action. 

3.2 Known Spaces 

In this section we obtain some well known and widely used manifolds by the hyperkahler quotient. 

Not all constructions are new, some have already been known to mathematicians. For example, the 
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Taub-NUT metric is often used as an example of the symplectic quotient [61], while the cyclic ALE 

spaces are a special case of Kronheimer's hyperkahler quotient construction [53]. Our notation, how­

ever, has the advantage of being rather simple and explicit. 

3.2.1 Euclidean Taub-NUT Metric 

The prototype case of constructions we are interested in is that of the Euclidean Taub-NUT space 

(2.6). We will describe this in great detail in order to omit explicit computations in the forthcoming 

examples. Let us start with space 

M=IHixIHI (3.2) 

parametrized by quaternionic coordinates ( q, w). Let G = 1R , t E lR , act by rotations (2.12) on the 

first IHI factor and by translations (2.10) on the second IHI factor: 

(q, w) ~ (qeil, w - >.t), ,\ E JR. (3 .3) 

From Section 2.2.3 the moment map for this action is: 

l ,\ 

2qiq+ 2 (w-w) µ (3.4) 

1 
2r + ,\y' 

where r = qi q and w = (y + y), y E lR. The flat metric on Mis 

ds
2 = l (tdr

2 
+ r(d'lj; + w. dr)2) + dy2 + dy2

. (3.5) 

Action (3.3) corresponds to ('l/J , y) ~ ('lj; + 2t,y- >.t), which leaves T = 'ljJ +¥-invariant. Without 

loss of generality we set 

( = 0. (3.6) 

On the five-dimensional intersection of the three level sets µ - 1 (0) one has y = -r /2,\, and hence the 

induced metric on µ- 1 (0) is: 

ds
2 = -

4

1 
(!dr

2 
+ r(dT + 3...dy + w · dr)2) + dy2 + -

1
-dr2 

r >. 4).2 · 
(3.7) 

The metric on the quotient Xo = µ- 1 (0) /JR is obtained by projecting (3 .7) orthogonally to the Killing 

vector field 8 / oy. Completing the square in (3. 7) gives 

ds
2 

= l ( t + }2) dr
2 

+ l ( t + }2) -l ( dT + w · dr) 
2 

+(.2:_+l)(d d(dT+w·dr))
2 

>- 2 y+ 2 ({2 +1) 
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Finally, the metric on the quotient Xo = µ- 1 (0)/ JR is 

2 1(1 1) 2 1(1 1)-l 2 
ds = - - + - dr + - - + - (dT + w · dr) . 

4 r >.2 4 r ).2 
(3.8) 

This is the standard form of the Taub-NUT metric with positive mass parameter ,\ 2. It appears to be 

singular at r = 0. However it is easily seen that lR acts freely on µ-1 ( 0), and hence the singularity at 

r = 0 is merely a coordinate singularity which may be removed provided that the U(l) coordinate T 

is identified with an appropriate period. To obtain global coordinates on the quotient space note that 

on the zero-set µ - 1 (0), y = -q i q/2 and the lR action shifts y, so we may set y = 0. Thus q serves 

as a global coordinate and we see that the Taub-NUT metric is topologically equivalent to JR4 . Also, 

if ,\ ~ oo the Taub-NUT metric (3. 8) degenerates to a flat metric (2.14) on JR4 . 

The Taub-NUT metric with negative mass parameter may be obtained in an analogous way, how­

ever instead of starting with the positive-definite metric on M = IHI x IHI we start with the flat metric 

of signature (4, 4): 

ds 2 = dq dq - dw dw . 

Following all the same steps yields the same metric (3.8) with >.2 replaced by -,\2 . 

The lR action (3.3) commutes with the U(l) action: 

(q, w) ~ (qeia, w) 

which descends to the Taub-NUT metric (3.8) as the tri-holomorphic action T ~ T + 2a. In addition, 

the following action of unit quaternions 

( q' w) ~ (p q' p w p)' 

pp= l, commutes with both of the previous actions and leaves µ- 1 (0) invariant. After dividing out 

by a discrete factor to ensure that the action of the isometry group ,is effective, we deduce that the full 

isometry group of the Taub-NUT metric is U(2) = (SU(2) x U(l))/Z2 . 

3.2.2 Cyclic ALF Metrics 

Cyclic ALF metrics are the multi-Taub-NUT metrics of [57] which we have already mentioned in 

Section 2.2.2. Take 

M=WxIHI 
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with coordinates ( qa, w), a = 1, . .. , m, and G = !Rm with action 

w ---+ w - L ta . 

The moment map of this action is: 

where ra = qa i fJ.a and y = (w - w)/2. Then µ - 1(() is given by 

1 
2ra = (a -y. 

Making the following redefinitions: 

the level set of the moment map is given by 

ra = Xa - r. 

The metric on X( takes the multi-centre form 

ds 2 = !vdr2 + !v-1(dT + W · dr) 2 

4 4 ' 

with , 

and 

curlw = grad V. 

Because 

(3.9) 

(3.10) 

we require (a i= (b, Va and b, in order that the !Rm action be free . Constants Xa specify relative 

positions of the centres. Note that all the coefficients multiplying the inverse distances in the expres­

sion for V are the same, they are all set equal to one. In fact they can be equal to any other constant 

as long as they remain the same. Only then potential orbifold singularities at points r = Xa can be 

resolved by identifying T periodically. The isometry group of multi-Taub-NUT metrics, m > 1, is 

just U(l) unless all the centres lie on a straight line in which case there is an extra U(l) symmetry. 

When m = 1 we recover the Taub-NUT metric (3.8). 
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3.2.3 Cyclic ALE Metrics 

Cyclic ALE metrics are the multi-instanton, or multi-Eguchi-Hanson metrics that we have encoun­

tered in Section 2.2.2. This time take 

M=JHFxlH[ 

with coordinates (qa, q), a= 1, . .. , m, and G =Tm= (t1, ... , tm) with action 

The moment maps for this action are 

1 
µa = 2 ( qa i fJ.a - qi q) · 

If ra = qai fJ.a and r = qi q, then µ- 1 (() is given by 

Making the following redefinition: 

the level sets of the moment maps are given by 

ra = Xa + r, 

and the metric on X( takes the multi-centre form (3.10) with 

1 1 
V = ;: + L jr + Xa I 

As in the ALF case, we must require ( a i= ( b · to avoid orbifold singularities at the points where two 

or more centres coincide. The comments made about the isometry group and orbifold singularities of 

cyclic ALF metrics form > 1 hold equally well for cyclic ALE metrics. Note that the case m = 1 

coincides with the Eguchi-Hanson metric, whose isometry group is U(2) , on T*((CITD 1
) which is the 

first of the Calabi series of metrics that we construct next. 
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3.2.4 Calabi Metrics 

The construction of the Calabi metric on T* ( <CJIDm) is perhaps the oldest of the hyperkahler quotient 

constructions [60). We choose 

M=W+l 

with coordinates qa ,a = 1, ... , m + 1, and G = U(l) with action 

(3.11) 

and moment map 

1 1 
µ = 2 L qa i if a = 2 L r a , 

where r a = qa i if a. The level set of the moment map µ- 1 ( () is given by 
.•· 

where the three-vector ( must be non-vanishing if the action (3.11) is to be free. Let us make the 

following redefinition to make the formulae tidier: 

Then t~e potential function Gij in (3.1) is: 

1 
( = -x. 

2 

1 1 
----+­/x-Lri/ ri' 

1 

(3.12) 

i, j = 1, ... , m. Action (3 .11) commutes with the tri-holomorphic action of SU ( m + 1) given by 

where Uac is a (m + 1) x (m + 1) quaternion valued matrix with no j or k components satisfying 

det U = l. 

Left multiplications by unit quaternions 
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induce the rotation of ra'.s. Choosing p such that this is an S0(2) rotation about the ( direction, this 

left action will leave µ- 1 ( () invariant. Such an S0(2) action will preserve a single complex structure. 

Thus the Calabi metric is invariant under an effective action of U(m + 1)/Zm+i, of which 

SU(m + 1)/Zm+l acts tri-holomorphically. With respect to a privileged complex structure we 

have a holomorphic effective action of U(m + 1) /Zm+l· The principal orbits are of the form 

U(m+ 1) /U(m- 1) x U(l). There is a degenerate orbit of the form U(m+ 1) /U(m) x U(l) ~ <CJIDm 

cones ponding to the zero section of T* ( <CJIDm). If ( = 0 the metric becomes incomplete - it has an 

orbifold singularity at q = 0. 

A recent theorem of Swann and Dancer [70] shows that the Calabi metric is the unique complete 

cohomogeneity one1 hyperkahler metric of dimension greater than four. 

3.2.5 Taubian-Calabi Metrics 

The passage between ALE and ALF boundary conditions in the cyclic case is accomplished by adding 

a constant factor to the potential function V (see Section 2.2.2). By analogy, we could entertain the 

idea that the asymptotic form of the Calabi metric (3.12) may be altered by adding a constant term 

to the potential function Gij (now a matrix). In fact, this change can be implemented by altering the 

group action to include a real translation on one of the IHI factors in M of Section 3.2.4. As a result 

we obtain a family of Taubian-Calabi metrics on ffi.4m. The name Taubian-Calab(is due to [71). Take 

M=WxII-II 

parametrized by quaternion coordinates (qa , w), a= l, .. . , m, and G = JR. with action 

(3.13) 

w ---+ w-t , tEffi.. 

The moment map is 1"' ._ (w-w) 
µ = 2 0 qa iqa + 2 ·. 

Without loss of generality we can choose the zero-set of the moment map µ- 1 (0) which is given by 

(3.14) 

where, as previously, ra = qa iiJa and y = 1/2(w -w). There is a Tm action on the IHim factor which 

commutes with G, therefore the metric on the quotient Xo is of the general form (3 .1) with metric 

1 A manifold is cohomogeneity one if the generic, or principle, orbit of the isometry group has real codimension one. 
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components Gab given by: 
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1 
l+-

ra 

1, a -:f. b. 

(3.15) 

The quotient space Xo has a tri-holomorphic right action of U(m)/Zm and a left action of SU(2) 

by unit quaternions. Hence the total isometry group of the Taubian-Calabi metric is, up to a discrete 

factor, U(m) x SU(2). The principle orbits of U(m) are U(m)/U(m - 2) which are (4m _ 4)­

dimensional. The left action of SU(2) rotates the qa's, and therefore ra's, but leaves invariant the 

phases of qa 's, and hence it increases the dimension of the principle orbit by two. We conclude 

that the principle orbits of the Taubian- Calabi metric are of codimension two. A straightforward 

generalization of the argument given for the Taub-NUT metric implies that the qa 's may serve as 

global coordinates, and we get a complete metric on JR4m. Setting m = 1 gives the Taub-NUT 

metric. 

In addition to continuous symmetries the Taubian-Calabi metrics admit many discrete symme­

tries. There are m reflections Ra : qa -+ -qa and Sm permutation group on m letters, both acting 

tri-holomorphically. Their fixed point sets are totally geodesic and hyperkahler. In this way we see 

that the 4m-dimensional Taubian-Calabi manifold contains, as a totally geodesic submanifold, the 

4n-dimensional Taubian-Calabi manifold for n < m. 

3.3 Moduli Spaces of Fundamental Monopoles 

We are now ready to construct hyperkahler metrics on moduli spaces of fundamental monopoles. 

We shall first construct the Lee-Weinberg-Yi (LWY) metric on the relative moduli space of charge 

(1, 1, ... , 1) monopoles when the gauge group SU(m + 2) is broken to its maximal torus U(l)m+l . 

This metric was first presented in [11], where its form was deduced from an asymptotic (Lienard­

Wiechert) analysis of interactions between fundamental monopoles. 

From the physics of monopoles and their interactions we gather the following facts about the 

relative moduli space Mrel of charge (1 , 1, . .. , 1) monopoles. The origin of Mrel is fixed by the 

rotation group S0(3) due to the existence of a spherically symmetric solution. Moreover, S0(3) 

rotates the three complex structures and hence does not act tri-holomorphically. We also know that 

there is no process that changes electric charges of individual monopoles, thus the isometry group of 

Mret contai rm t t h. h · ns a ac or, w tc acts preservmg the hyperkahler structure. Knowing these facts we 
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can find a set-up for the hyperkahler quotient construction that yields the Lee- Weinberg- Yi metric. 

This is done in Section 3.3.1 

From the quotient construction we shall see that the Lee-Weinberg-Yi metric is determined by 

m linearly independent vectors in .!Rm whose matrix of inner products gives the reduced mass matrix 

of distinct fundamental monopoles. It is conceivable that some of these m vectors vanish or become 

infinitely large. Nevertheless the hyperkahler quotient construction still goes through. The new hyper­

kahler spaces correspond in some sense to degenerations of the Lee-Weinberg-Yi manifold. We 

interpret these degenerations as limits in which some of the monopole masses vanish or become 

infinite. A special case of the moduli space metric in the massless limit has already been considered 

in [12]. In Section 3.3.2 we identify this metric as the Taubian-Calabi metric of Section 3.2.5 and 

obtain its generalizations. In Section 3.3.3 we interpret of the second degeneration as the limit in 

which some of the monopoles are fixed, or infinitely massive. This interpretation is supported by the 

brane picture of Section 3.5, as well as by the Nahm data analysis performed in [72]. 

3.3.1 Lee-Weinberg-Yi Metric 

The metric we are about to construct is the metric on the relative moduli space of ( m + 1) distinct 

fundamental monopoles in N = 4 SYM theory with gauge group SU(m + 2) broken to U(lr+l. 

The Lee-Weinberg-Yi metric on JR4m is perhaps the simplest generalization of the Taub- NUT metric 

to higher dimensions. When m = 1 we recover Taub-NUT metric (3 .8) which is the exact metric on 

the relative moduli space of distinct fundamental SU (3) monopoles [10, 43, 46]. Take 

M=IHFx!HF 

with coordinates (qa,wa), a= I, ... , m, and G =.!Rm= (t1 , ... , tm) with action 

(3.16) 

The action of G commutes with the tri-holomorphic action of K = rm = U(I)m = (a1 , ... , am) 

given by 

(3.17) 

Wa -+ Wa. 
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Moment maps of the ]Rm action are 

(3.18) 

where the m x m rea] matrix >.} is taken to be non-singular. The Lee-Weinberg-Yi metric is then the 

induced metric on µ-1 
( 0) /JRm. The zero-sets of the moment maps are given by 

- 1 b 
µa - !? a + Aa Yb = 0 , (3.19) 

where r a = qa i if.a and Ya = l /2( Wa - wa). A short calculation shows that the metric on the quotient 

IS 

I 

where 

and 

ds 2 

V = ,-l 
- /\ ' 

' curlcw(ra) = grade (r:) . 

(3.20) 

(3.21) 

The tri-holomorphic Tm action is generated by m vectors 8/Eha. Condition (3 .19) is invariant under 

the following action of unit quaternions: 

Wa -+ PWaP · 

Hence the metric on µ -
1 (0)/JRm is preserved by this SU(2) action, as well as by the tri-holomorphic 

Tm action (3.17). As remarked above, to specify a 4m -dimensional hyperkahler metric with a tri­

holomorphic Tm action it suffices to know them x m matrix Gab(ra)- The remaining parts of the 

metric may then be deduced by direct computation. In the present case Gab depends on the matrix 

µab· Physically, µab is (up to an overall constant factor) the reduced mass matrix of fundamental 

monopoles. Geometrically, µab is related to the matrix of inner products of them linearly independent 

translation vectors defining the ]Rm action (3.16). These translation vectors v(b) E ]Rm, b = 1, ... , m, 

have components: 
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Thus 

If one thinks of the vectors v(b) as defining a lattice A in ]Rm with metric g(v(a), v(b)), then µab are 

the components of the metric on the reciprocal lattice A*. 

As long as the matrix >.j is invertible we may use equations (3.19) to eliminate Yb 's in favour of 

ra's on µ - 1 (0) . It then follows, as it did for the Taub- NUT metric, that m quaternions qa serve as 

global coordinates on the Lee-Weinberg- Yi manifold which makes it homeomorphic to JR4m. The 

LWY metric is complete since the ]Rm action on µ- 1 ( 0) is free and is regular at infinity. 

If the matrix >.j becomes singular or diverges, i.e. if the translation vectors v(a) cease to be linearly 

independent or become infinite respectively, we are led to various degenerate cases. In these cases the 

reduced mass matrix µab drops in rank or diverges. Physically, this is associated with enhanced gauge 

symmetries due to the appearance of massless monopoles or due to some monopoles acquiring infinite 

mass respectively. 

So far we have considered monopoles of a specific gauge group SU(m + 2). However, our 

construction may be easily generalized to work for any semi-simple group of rank (m + 1). In the 

notation of [11], >-a 's (not to be confused with the translation matrix >.g) are essentially inner products 

between the simple roots of the Dynkin diagram of the gauge group. One replaces the flat metric on 

M by a related flat metric 

the Kahler forms by 

and the action (3 .16) by 

The form of the moment map (3.18) remains unchanged, and the resulting metric is precisely of the 

form given in [11]. 

3.3.2 Moduli Spaces of Massless Monopoles 

It is interesting to ask how the LWY metric would change if some of the monopoles became massless. 

Massless monopole appear in gauge theories where the unbroken gauge group contains a non-abelian 
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factor. This question was addressed by Lee, Weinberg and Yi in (12]. They argued that it makes 

sense to talk about moduli spaces only for monopole configurations with no net non-abelian charge, 

in which case no non-normalizable zero-modes appear. They also suggested that the metric on the 

moduli space of such configurations is the massless limit of the metric on the moduli space of distinct 

fundamental mopopoles (the Lee- Weinberg-Yi metric). This argument allowed the authors of (12) to 

obtain the metric in the case when the gauge group is 

SU(m + 2) -t SU(m) x U(1)2
, 

but did not yield an explicit answer in the more general case 

SU(m + 2) -t SU(m + 2 - k) x U(I)k , (3 .22) 

.fr = 2, ... , m + 1. For simplicity we consider only unitary gauge groups, although, with minor 

modifications, the results are also valid for symplectic groups of rank ( m + 1). Nate that the situation 

becomes more complicated when one considers non-simply-laced gauge groups, for which monopoles 

corresponding to composite roots do not account for all the missing states in the magnetic spectrum 

(73]. 

Using the hyperkahler quotient method we construct the metrics in the case of the symmetry 

breaking (3.22). We analyze in detail the metric on the moduli space of monopoles for the case 

m = ,2, k = 2. To illustrate how the hyperkahler quotient construction of Section 3.3.1 has to be 

modified we begin by considering the case m = 1. 

Degeneration of Taub-NUT to flat metric: 

The exact metric on the relative moduli space of distinct fundamental SU(3) monopoles is the 

Taub- NUT metric with positive mass parameter (10, 43, 46]. If one of the monopoles becomes mass­

less, the Taub-NUT metric degenerates to a flat metric on IR?.4 . 

In the notation of Section 3.2.1 this is equivalent to taking>- -t oo. Define v = >.-1 , so that v -t O 

when A -t oo. In order that the action (3.3) be well defined we must introduce a new parameter i and 

a new quatemionic coordinate w in the following way: 

vi = t, w = vw . (3 .23) 

The action (3.3) then becomes: 

(3.24) 

w -t w - vi . 
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In the limit v -t O the U(l) action (3.24) is trivial and the metric on the quotient space Xo is just the 

flat metric (2.14). 

SU(m + 2) -t SU(m) x U(1) 2 
: 

Physically this situation corresponds to having two massive and ( m - 1) massless monopoles. We 

now show that in this case the Lee-Weinberg-Yi metric degenerates to the Taubian-Calabi metric of 

Section 3.2.5. 

When ( m - 1) monopoles become massless, the reduced mass matrix µab drops in rank to rank = 

1. By (3.21) this is equivalent to Vab having rank one and the translation vectors v(a) not being 

linearly independent. By analogy with (3 .23) we define new group parameters ta and new quatemionic 

coordinates Wa to be: 

Then the action (3 .16) becomes: 

(3.25) 

When the rank of Vab is one there is only one independent coordinate Wa and the !Rm action (3.25) 

reduces to the IR action (3 .13 ). Then all the elements of µab are equal and the Lee- Weinberg- Yi 

metric (3.20) on IR4m degenerates to the Taubian-Calabi metric (3.15) on IR4m. In taking the quotient 

we ignore the contributions to the flat metric on M from the (m -1) coordinates Wa which transform 

trivially under the redefined action (3 .25). 

From Section 3.2.5 we know that the part of the full isometry group of the Taubian- Calabi metric 

which acts tri-holomorphically and effectively is U(m) /'1Lm. This result agrees, up to a discrete factor, 

with that of (12]. Giving a physical interpretation to the degrees of freedom of metric (3.15) is not 

straightforward. It does not make sense to consider a soliton of zero energy on its own. Such an object 

is not localized in space and has no definite size. However in the presence of a massive monopole 

the behaviour of massless solitons changes. They form a massless cloud that carries a net non-abelian 

charge and is characterized by one size parameter R = I; r a . The quantity R is clearly invariant 

under the full isometry grnup U(m) x SU(2) since the metric on M, and consequently I; qaif.a, is 

preserved by both the U(m) action and the SU(2) action, and qaif.a = lqaiiJ.al = ra. Hence R is an 

invariant of the isometry group. 

Let us focus on the simplest non-trivial case m = 2. 
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SU(4) -r SU(2) x U(1)2: 

The Taubian-Calabi metric (3.15) on JR8 is: 

4ds
2 = ( 1 + :Jdd + 2dr1 · dr2 + ( 1 + :Jdr~ (3.26) 

+ 
1 

[r1( l +r2)(dT1+w(r1)·dr1) 2 
1 + r1 + r2 

- 2r1 r2(dT1 + w(r1) · dr1)(dT2 + w(r2) · dr2) + r2(1 + r1)(dT2 + w(r2) · dr2) 2] , 

where 

curlw(ri) = grad ( :J , i = 1, 2 . 

The tri-holomorphic action of U(2) preserves (r1 + r 2 ) and has four-dimensional orbits. The left 

SU(2) action preserves the length of any vector and the inner products between three-vectors but 
~-

rotates the vectors around. Thus it rotates (r1 + r2) keeping lr1 + r2 I unchanged. This makes the 

principle orbits six -dimensional. 

Metric (3.26) describes the moduli space of distinct centred fundamental SU(4) monopoles of 

charge (1, 1, 1) in the limit when one of the monopoles becomes massless. We denote such a state 

by a charge vector (1, [1], 1), where square brackets are placed around the charge of the fundamental 

monopole mass vanishes. There are eight parameters on the moduli space: r 1, T1, r2, T2. Four of them 

correspond to positions of the two massive monopoles relative to the centre of mass coordinates and 
' 

the relative U (l) phase. Thus there are four parameters left to describe the massless monopole. Orbits 

of the SU(2) action are ellipsoids. An ellipsoid with the two massive monopoles situated at the foci 

is the massless cloud. The physics of this cloud was recently investigated in [41]. The fields of the 

two massive monopoles are not altered when the (0, [1], 0) monopole moves around the ellipsoid. 

To gain some insight into the behaviour of the metric (3.26) we consider it in two interesting limits. 

Note that the vector r1 points from the (1, 0, 0) monopole to the (0, [1], 0) monopole, and r2 points 

from the (0, [l], 0) monopole to the (0, 0, 1) monopole. Consider the first limiting case: r 1 = r 2 . The 

massless SU(2) monopole is situated midway between the two massive ones. The metric (3.26) and 

the hyperkahler structure are invariant under the interchange of the two quaternionic coordinates q1 

and q2. The fixed point set of this isometry q1 = q2 (or, equivalently, r1 = r2 and T1 = T2) is a 

totally geodesic submanifold. From (3.26) we see that the metric on this totally geodesic submanifold 

is isomorphic to the Taub-NUT metric. This is a very interesting situation: the two massive SU(4) 

monopoles (1, 0, 0) and (0, 0, 1) behave like two distinct fundamental SU(3) monopoles (1 , 0) and 
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( o, 1) and do not notice the presence of the massless monopole! The SU ( 2) ellipsoid degenerates to 

an open interval between the two fundamental monopoles. 

The second limit is when the two massive monopoles are situated on top of each other: r1 = - r2 

and 71 = -T2 . These equations define a totally geodesic submanifold, the metric on which is flat. We 

could have anticipated this result on the following grounds. As the two massive monopoles coincide 

we effectively have one massive and one massless monopole which is analogous to the 80(5) :::::; 

Sp(2) -, Sp(l) x U(l) case studied in [12], and the metric on the relative moduli space of such 

a configuration was shown to be flat. In this case the ellipsoid becomes a sphere with the massive 

monopoles at its centre. 

SU(m + 2) -r SU(m + 2 - k) x U(lt : 

We can now construct metrics on moduli spaces for all the intermediate cases of symmetry break­

ing. These are generalizations of Taubian-Calabi metrics (3 .15) which can be obtained by the hyper­

kahler quotient starting with 

M = !HF X ]H[k-1 . 

In this case ( m + 1 - k) monopoles become massless, k = 2, ... , m, and hence the rank of µab 

(and of vab) is equal to (k - 1). The group action is (3.25), where only (k - 1) coordinates Wi, 

i = 1, ... , k - l, are independent. The potential function Gab is the same as in (3:20) with µab of the 

form: -(+~b ···) µab - . . 
. . 

where µ~b is the (k - 1) x ( k - l) reduced mass matrix of k distinct fundamental monopoles. It is 

not difficult to see that (up to a discrete factor) the isometry group for this manifold is: 

SU(2) x U(m - (k - 2)) x U(1t-2 
. 

3.3.3 Moduli Spaces of Fixed Monopoles 

In this section we consider another interesting degeneration of the Lee-Weinberg-Yi metric which 

occurs when the translation matrix Aab itself, and not its inverse Vab, drops in rank. If Aab has rank 

one, the !Rm action (3 .16) 

I 

]. 
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reduces to the IP?.m action (3.9), and there is effectively one wa coordinate. Proceeding with the hyper­

kahler quotient construction of Section 3.2.2 we obtain the cyclic ALF manifold with m centres. This 

is the relative moduli space of ( m + 1) distinct fundamental monopoles, where the positions of all 

but one monopoles are fixed, i.e. all except one monopoles are infinitely heavy. The free monopole 

described by the one Wa coordinate moves in the background of m infinitely massive monopoles. 

If the rank of Aab is 1 < k < m, the metric on the relative moduli space of k free monopoles 

moving in the background of ( m + 1 - k) fixed monopoles is a 4k-dimensional generalization of 

cyclic ALF spaces. 

3.4 Asymptotic Metric for Many SU(2) Monopoles 

A more complicated example which also generalizes the Taub-NUT space is the asymptotic metric 
.. 
on the moduli space of charge m SU(2) monopoles [45]. We begin by constructing the higher di-

mensional analogue of the Taub-NUT metric with positive mass parameter (3.8), and then construct 

the higher dimensional analogue of the Taub-NUT metric with negative mass parameter. It is this 

latter case that describes the behaviour of many well-separated SU (2) monopoles. The hyperkahler 

quotient construction of the positive mass parameter metric has also been performed independently 

by R. Goto [74] . We take 

M = ]Hl~m(m-1) X W 

with coordinates (qab, wa) , a = 1, ... , m, a < b, and the group G = JP?.~m(m-1) 

action 

Wa -+ Wa - ~ tac , 
C 

where tac = -tea for c < a. The !m(m - 1) moment maps are 

1 
µab = 2rab + (Ya - Yb) , 

(3.27) 

{ (tab)} with 

(3.28) 

(3 .29) 

where r ab = qab i ifab and Ya = ( Wa - wa) /2. The level set µ- 1 ( () of the moment maps is given by 

1 
2rab = -(Ya - Yb) +Cab· (3.30) 
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Using (3.30) one can eliminate the rab's in favour of the ra's on µ-1
((). Projecting orthogonally to 

the orbits of action (3.28) we can eliminate the !m(m - 1) phases of the quaternions qab's and use 

them quaternions Wa as local coordinates on Xc,. Let us make the following redefinitions: 

In this notation the metric on the quotient Xc, is of the form (3.1) with potential functions given by: 

Gaa = 1+"' 1 
~ Ira - rb - Xabl 

(no sum over a) , (3.31) 

1 
Gab = 

Ira - rb - Xabl 

As pointed out in [45] the case of positive mass parameter appears to be relevant to the motion of 

a = 1 black holes . 

The metric constructed by Gibbons and Manton in [ 45] is the negative mass parameter version of 

(3 .31). To arrive at the Gibbons-Manton metric one starts with the following flat metric on M (3.27): 

and chooses Cab = 0. Physically, coordinates Wa correspond to positions and internal phases of m 

unit charge well-separated SU(2) monopoles. Just as in the case of the Lee-Weinberg- Yi manifold 

more complicated metrics may be constructed by introducing weights. 

The quotient construction is invariant under m real translations of the Wa 's: 

Wa -+ Wa +ta, 

and it appears that the isometry group of (3 .31) contains an IP?.m factor. However, the phases of the 

monopoles encoded into the real parts of Wa 's have to be periodically identified, which replaces IP?.m 

by Tm. 

The global behaviour of these metrics is quite complicated, de'spite the simplicity of the construc-

tion. Let us point out that metrics (3.31) are non-singular if and only if the Cab's satisfy the following 

conditions: 

~Cab# o. 
a,bET 

Here T is a cycle of arbitrary length in a simplex, whose vertices are associated to the quaternions Wa 

and edges to the quaternions qab· Thus the problem of calculating the topology of the quotient space 
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has been restated in graph-theoretical terms. Goto [74] found that the Euler number of the quotient 

space is x(X() = mm-2. 

As in the case of Taubian-Calabi metrics, metric (3.31) with Cab f:. 0 admits various discrete 

symmetries, e.g. reflections and permutation groups, as tri-holomorphic isometries. It follows that the 

4m-dimensional metric contains totally geodesic copies of the first non-trivial case m = 2. Since the 

Gibbons-Manton metric differs from the exact metric on the moduli space of many SU(2) monopoles 

by exponentially small terms, the last statement is presumably related to the observation of Bielawski 

that the exact SU(2) moduli space of m monopoles always admits a totally geodesic copy of the 

Atiyah-Hitchin manifold [75]. 

3.5 Brane Interpretation of Monopole Moduli Spaces 

It is instructive to view SL(2, Z) duality of four-dimensional N = 4 SYM theory as the field-theoretic 

counterpart of the more fundamental SL(2, Z) duality, or S-duality, of the ten-dimensional type IIB 

string theory. Precise formulation of this correspondence can be achieved in the context of Dirichlet 

branes [76]. BPS monopoles of four-dimensional SYM theories are viewed as solitons of the world­

volume theories on the brane. The relevant configuration of intersecting solitonic and Dirichlet branes 

was proposed by Hanany and Witten [67]. The motivation for [67] came from the desire to learn more 

about Gertain phenomena displayed by three-dimensional N = 4 supersymmetric gauge theories [77]. 

Findings of [77] prompted Hanany and Witten to investigate the relation between moduli spaces of 

BPS monopoles and the Coulomb branch of the three-dimensional effective world-volume theories 

on the brane. Here we present intersecting brane configurations considered in [67] in order to view 

moduli spaces of fundamental monopoles of Section 3.3 in a different light. The two limits in which 

the Lee-Weinberg-Yi metric degenerates, studied in Sections 3.3.2 and 3.3.3, can be interpreted in 

terms of relative separations of parallel branes in the ten-dimensional Minkowski space-time M 10 . 

An intriguing property of three-dimensional N = 4 supersymmetric gauge theories is that, in 

certain cases, the Coulomb branch of vacua is isomorphic, as a hyperkahler manifold, to the moduli 

space of BPS monopoles of four-dimensional N = 4 supersymmetric gauge theory. Seiberg and 

Witten [77] found that the Coulomb branch of the three-dimensional SU(2) gauge theory with no 

matter multiplets is isomorphic to the moduli space of charge two SU(2) monopole - the Atiyah­

Hitchin manifold. This result was generalized to three-dimensional gauge theories with arbitrary 

unitary gauge groups in [78], where it was demonstrated that the Coulomb branch of the (2 + 1) 
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1 2 1 2 n-1 n 

k 

Wn-1 , tn-1 

(a) (b) 

Figure 3.1: Brane configuration: (a) two parallel NS5-branes with k D3-branes stretched between 
them; (b) n parallel NSS-branes with D3-branes stretched between them. 

SU(k) theory with no matter is precisely the moduli space of charge k SU(2) monopole in (3 + 1) 

dimensions. 

Various interpretations of this duality have been offered, most of which make a connection with 

string, M- or F-theories. Here we shall discuss the interpretation due to Hanany and Witten [67] which 

most naturally accommodates our results on moduli spaces of fundamental monopoles. 

Consider the following supersymmetric brane configuration in the type IIB string theory on M10 

with coordinates (x0 = t, x1, ... , x 9 ) (fig. 3. la). We have two parallel solitonic (NS) 5-branes, 

( 
0 1 2 3 4 5) p . . f whose (5 + I)-dimensional world volumes are parametrized by x , x , x , x , x , x . os1t1ons o 

the two 5-branes, which are separated in the x6 direction, in the four-space transverse to the branes 

are t 1 = (x6)i, w 1 = (x7, x 8 , x 9 )i of the first brane, and t2 = (x6)2, w2 = w1 of the second 

brane respectively. rn· addition, there are k parallel D3-branes suspended between the two 5-branes, 

whose (3 + 1 )-dimensional world volumes are parametrized by ( x 0
, x1, x2, x6

). The position of the 

i-th D3-brane in the transverse six-space is Yi = (x 3
, x 4

, x 5 )i, w1. = w2, where i = 1, .. . , k. Hence 

NSS-branes and D3-branes share three world-volume directions (x 0
, x1, x2) and can, in some sense, 

be regarded as intersecting. 

It is well known that the effective world-volume theory of k parallel D3-branes is the three-

dimensional N = 4 U(k) gauge theory. Non-zero relative separation of all k branes breaks the 

gauge group U(k) to U(l)k. Thus to an observer on a D3-brane the low-energy theory is a U(k) elec­

tric gauge theory with no matter. The Coulomb branch of the moduli space of vacua is parametrized 
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by 3k transverse positions, Yi, of the branes and k scalars, bi , dual to the vector fields living on the 

brane. 2 Hence the Coulomb branch is a 4k-dimensional manifold. Moreover, since the gauge theory 

has extended N = 4 supersymmetry, this 4k-dimensional manifold is hyperkahler. 

How does an observer on a 5-brane see this situation? To simplify the terminology, we suppress 

the two dimensions (x1 , x2) that are common to all branes. Thus an observer on a 5-brane sees the 

four-dimensional N = 4 U(2) gauge theory, with U(2) broken to U(1) 2 by the relative separation 

of the 5-branes. The centre of U(2) plays no role in what follows, and hence the 5-branes are seen to 

carry an SU(2) gauge theory broken to U(l) . The expectation value of the Higgs field controlling the 

gauge symmetry breaking is nothing else than the separation between the 5-branes in the x 6 direction, 

x 6 = t2 - t1 . Since the 5-branes have two infinite directions more than the D3-branes, the 5-brane 

theory can be treated classically. From the point of view of the 5-brane theory, the ends of a D3-brane 
.. -

look like magnetic monopoles. Thus the 5-brane observer sees a charge k SU(2) monopole. 

The intersecting brane configuration that we have just described breaks one half of the total super­

symmetry, which guarantees that the SU(2) k-monopole is BPS. From Section 2.1.3 we have learned 

that the classical moduli space of an SU(2) k-monopole is a hyperkahler manifold labelled by 4k real 

parameters. These parameters are the 3k positions of the D3-branes, Yi, plus k scalars, bi- But these 

are precisely the moduli parametrizing the Coulomb branch of the three-dimensional N = 4 U(k) 

gauge theory. 
' 

We conclude that the Coulomb branch of the three-dimensional N = 4 U ( k) gauge theory 

with no matter is isometric, as a hyperkahler manifold, to the classical moduli space of SU(2) k­

rnonopoles of four-dimensional N = 4 SYM theory. Recall that the asymptotic metric on this moduli 

space is the Gibbons-Manton metric constructed in Section 3.4. For k = 2 the asymptotic metric 

is the Taub-NUT metric with negative mass parameter, which differs from the exact metric on the 

moduli space, the Atiyah-Hitchin manifold, by exponentially small terms. These exponentially small 

corrections arise as instanton corrections to the Coulomb branch of the quantum (2 + 1 )-dimensional 

gauge theory. This interpretation of instanton corrections in quantum gauge theory was exploited by 

Fraser and Tong [79] in an attempt to compute the exact metric on the moduli space of many SU(2) 

monopoles. 

The brane configuration in fig. 3.la can be generalized to accommodate moduli spaces of fun­

damental monopoles in four-dimensional theories with arbitrary gauge groups which we discussed 

21n three dimensions, the Hodge dual of a vector is a scalar. 
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in Section 3.3. The new BPS configuration of intersecting branes (fig. 3.1 b) consists of n parallel 

NS5-branes with the values of the x6 coordinate x6 = ii, ... , t5. The i-th brane is connected to the 

( i + 1 )-th brane by ki D3-branes, i = 1, . . . , n - 1. As before, this configuration can be viewed in 

two different ways. An observer on a D3-brane sees three-dimensional N = 4 gauge theory with 

gauge group U(k1) x U(k2) x .. . x U(kn- 1). Massless hypermultiplets of the theory transform in 

the (k1, k 2) EB (k2 , k 3 ) EB .. . EB (kn-2 , kn-l) representation. An observer on a 5-brane sees a classical 

charge (k1, k2, .. . , kn- i) monopole in four-dimensional N = 4 SU(n) gauge theory. Depending on 

the positions of the 5-branes in the x 6 direction, the SU(n) gauge symmetry is broken maximally or 

non-maximally. Generalizing the analysis carried out for two 5-branes, we conclude that the Coulomb 

branch of the three-dimensional N = 4 U(k1) x U(k2) x .. . x U(kn-1) gauge theory is isometric, 

as a hyperkahler manifold, to the classical moduli space of charge (k1, k2, . . . , kn-1) monopole in 

four-dimensional N = 4 SU(n) gauge theory. 

When all ki = 1, the gauge group of the D3-brane theory is the abelian U(lt-
1. This theory 

contains (n - 2) neutral hypermultiplets, and we can factor out a surplus U(l) to arrive at a U(1r-
2 

gauge theory with (n - 2) charged hypermultiplets. On the other hand, this is the charge (1 , 1, . .. , 1) 

monopole of four-dimensional SYM theory with maximally broken SU(n) gauge group. The relative 

moduli space of this monopole is the Lee-Weinberg-Yi metric of Section 3.3. In the simplest case, 

n = 3, it is the Taub-NUT metric with positive mass parameter. Hence we expect the Coulomb branch 

of the three-dimensional U ( 1) gauge theory with one charged hypermultiplet to be the smooth Taub­

NUT manifold. This is precisely what was found in [77] using different techniques. Note also that 

the three-dimensional N = 4 theory with abelian gauge group does not contain instantons, and hence 

the metric on the Coulomb branch is given exactly by the one-loop formula with no exponentially 

small corrections. The _metric must also be invariant under shifts of the scalars parametrizing the 

Coulomb branch. In the monopole language this means that the asymptotic metric on the moduli 

space of monopoles in the case of maximal gauge symmetry breaking is exact, and that it possesses a 

tri-holomorphic torus action. This is precisely what we found in Section 3.3 

Recall that in Section 3.3 we discussed two limits in which the Lee-Weinberg-Yi metric can 

degenerate. The first limit arises when the unbroken gauge symmetry is enhanced to non-abelian 

symmetry. This happens when some of the expectation values ( t 1, . . . , tn) of the Higgs field at infinity 

are equal. In the language of 5-branes, the Higgs field expectation values are positions of the 5-branes 

in the x6 direction. Thus when two or more 5-branes coincide, the unbroken gauge symmetry of four-
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dimensional N = 4 SYM theory is enhanced to contain a non-abelian factor. Moreover, masses of 

fundamental monopoles are proportional, and their sizes are inverse proportional, to the Higgs field 

expectation values, and hence to the separations between the 5-branes. Therefore, when any two 

5-branes coincide, corresponding monopoles become massless. For example, if all but two of then 

5-branes are coincident, the unbroken gauge symmetry is SU(n-2) x U(1)2, and (n-3) fundamental 

monopoles become massless. The monopole moduli space in this case is the Taubian-Calabi manifold 

of Section 3.2.5. 

Performing a mirror transformation to convert the NS5-branes to D5-branes, followed by T-duality 

transformations to reduce the D3-branes to solitonic strings, we obtain a new intersecting brane con­

figuration of the type IIB theory. Such a system of strings ending on D3-branes was considered by 

Diaconescu [80]. He showed that the end points of strings on 3-branes correspond to BPS monopoles 

of [.our-dimensional N = 4 gauge theory. Now take a limit of the number n of D3-branes going to 

infinity, and have all but one D3-brane coincide. This configuration can be analyzed in the context 

of the AdS/CFT correspondence [27]. The effective CFT on the boundary is N = 4 supersymmetric 

and contains at least on massive BPS monopole. It is conjectured to be equivalent to the supergravity 

theory on the near-horizon geometry of the intersecting brane configuration. 

The second limit in which the Lee-Weinberg-Yi metric degenerates corresponds to keeping one 

or more fundamental monopoles fixed. In the brane picture, if one of the NS5-branes is moved out to 

infinity, the corresponding fundamental monopoles shrink to zero size and become singular points of 
I 

infinite mass. Monopole configurations containing infinitely massive, or fixed, monopoles were also 

investigated by Houghton using Nahm data [72]. 

CHAPTER 4 

Threshold Bound States of Monopoles 

In this chapter we shall present evidence in support of the S-duality conjecture in the context of N = 4 

supersymmetric gauge theories with higher rank gauge groups. We have already demonstrated in Sec­

tion 2.1.2 the connection between predicted purely magnetic bound states of zero binding energy and 

normalizable harmonic forms on the relevant moduli spaces. Here we present the predicted harmonic 

forms . 

In Chapter 3 we have obtained metrics on moduli spaces of fundamental moriopoles in theories 

with both maximal and non-maximal gauge symmetry breaking. When the gauge group SU(n + 2) 

is broken to its maximal torus U(1t+1, the relative moduli space of (n + 1) distinct fundamental 

monopoles is the Lee-Weinberg-Yi metric on JR4n. The charge ( 1, 1, . . . , 1) monopole is interpreted 

as a threshold bound state of ( n + l) distinct fundamental monopoles. This bound state is quantum­

mechanical in nature and should appear in the spectrum of the Hamiltonian of the supersymmetric 

quantum mechanics on· the moduli space. Being a zero-energy bound state, it corresponds to a unique 

normalizable harmonic form on the Lee-Weinberg-Yi manifold. 

In the simplest case SU(3) -t U(1) 2 , the Lee-Weinberg-Yi manifold is the self-dual Taub­

NUT (TN) metric. A (anti)self-dual two-form on the TN manifold may be constructed as a linear 

combination of three two-forms forming a basis of (anti)self-dual two-forms. The coefficient functions 

are required to satisfy an ODE which can be solved explicitly. Only one of the solutions yields a non­

degenerate square-integrable U(l)-invariant harmonic two-form predicted by S-duality [10, 43]. This 

argument, however, can not be generalized to n > l. The candidate harmonic 2n-form for n > l was 
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constructed by Gibbons in [ 44]. His form has the correct transformation properties under the isometry 

group - it is yn_invariant - and is square-integrable, but the question of self-duality and uniqueness 

still remains open. We present the construction of Gibbons in Section 4.2 and offer a few speculative 

arguments of how one can go about proving the uniqueness property. 

When the gauge group SU(n + 2) is broken non-maximally to SU(n + 2 - r) x U(l?, there 

are r topological charges and corresponding to them are r massive fundamental monopoles. This 

time, however, the long-range magnetic fields of these massive solitons transform non-trivially under 

the unbroken SU(n + 2 - r), and fundamental monopoles aquire a non-abelian magnetic charge. 

The study of monopoles with non-abelian long-range magnetic fields shows that it is not possible to 

apply global non-abelian gauge transformations to these solutions to produce a dyonic object, as can 

be done with solitons charged under an abelian magnetic field. It turns out that one cannot define 

a global non-abelian charge in the presence of a monopole [40]. In addition to these non-abelian 

massive monopoles, massless solitonic objects appear in a theory with non-abelian gauge symmetry. 

These are, presumably, dual to the massless gauge bosons appearing in the electric spectrum of the 

theory. Taking a massless limit of the classical monopole solution leads to the size of the monopole 

core becoming infinitely spread out, with the fields tending to their vacuum expectation values . The 

strange behaviour of massless solitons is checked by the presence of a massive monopole. It is, in 

fact, poss~ble to find combinations of massive and massless monopoles whose long-range non-abelian 

fields, and, consequently, non-abelian charges, cancel. Massless monopoles in such a configuration 

combine to form a sort of cloud carrying non-abelian charge [12]. Properties of this non-abelian cloud 

for n = 2, r = 2 were studied in [41]. 

The case we treat in detail in Section 4.3 is when the gauge group SU(n + 2) is broken to U(l) x 

SU(n) x U(l). The material in this section is derived from [81]. The monopole configuration with 

vanishing non-abelian charges consists of two massive fundamental monopoles and ( n - 1) massless 

ones. As we found in Section 3.3.2, the relative moduli space of this solution is the Taubian-Calabi 

metric on JR4n. S-duality predicts (see Section 2.1.2) the existence of a unique threshold bound state 

of two massive and (n - 1) massless monopoles which transforms as a singlet under the unbroken 

non-abelian gauge group SU ( n). Such a state, in turn, corresponds to a unique square-integrable 

SU(n) -invariant harmonic 2n-form on the Taubian-Calabi 4n-dimensional manifold. In Section 4.3 

we present a candidate harmonic form, whose construction was left as an outstanding problem in [12]. 

The proposed harmonic 2n-form possesses correct transformation properties, and for n = 2 can be 
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explicitly checked to be square-integrable. As in the maximally broken case, we have no rigorous 

proof of either its uniqueness or self-duality. We have also not been able to demonstrate its square­

integrability for n > 2. Nevertheless, the fact that the candidate form converges in then = 2 case and 

has correct symmetry property is a good incentive to believe that our conjecture is correct. 

The problem of existence and uniqueness of the predicted harmonic forms can also be addressed 

in the following way. Square-integrable harmonic forms are elements of L 2 cohomology classes on 

the moduli space. It is desirable to be able to calculate the dimensions of the L 2 cohomology groups 

of the relevant manifolds, and to prove a vanishing type theorem. However, the theory of square­

integrable cohomology on non-compact spaces (see e.g. [82]) is still in its infancy and does not offer 

definite answers to these questions. 

As an aside, let us mention that S-duality predictions for SU(2) N = 4 SYM theory were for­

mulated by Sen [9], who exhibited the required harmonic two-fonn on the Atiyah-Hitchin manifold. 

Since only the asymptotic form of the metric on the moduli space of higher charge SU(2) monopoles 

is known, the required harmonic forms cannot be found by explicit computations. Segal and Selby 

[83] proved the existence, although not the uniqueness, of the middle-dimensional harmonic form on 

the moduli space of many SU(2) monopoles. However the techniques used in [83] are not applicable 

to moduli spaces of distinct fundamental monopoles. For the rest of the chapter we consider gauge 

theories with gauge groups of rank higher than one. 

4.1 Threshold Bound States and Harmonic Forms 

Both for theories with maximal and non-maximal gauge symmetry breaking S-duality predicts the 

existence of a unique threshold bound state of monopoles of certain topological charge. This state 

should be present in the spectrum of the Hamiltonian of the N = 4 supersymmetric quantum me­

chanics on the relevant moduli space. States in the Hilbert space of this quantum mechanics are in 

one-to-one correspondence with real square-integrable differential forms on the moduli space [18, 25]. 

The quantum-mechanical Hamiltonian is the usual Hodge-de Rahm Laplacian acting on forms : 

where d and dt are the exterior derivative operator and its adjoint. On even-dimensional manifolds 

dt = - * d *· All BPS states are eigenstates of the Hodge-de Rahm Laplacian. In particular, the 

BPS bound state of zero binding energy predicted by S-duality is an eigenstate of the Laplacian with 

I I 
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zero eigenvalue. Differential forms in the kernel of the Hodge-de Rahm Laplacian are harmonic. 

Moreover, the threshold bound state is a singlet under the adjoint action of the unbroken gauge group. 

And since the unbroken gauge symmetry manifests itself as tri-holomorphic isometry of the moduli 

space, the square-integrable harmonic form should be invariant under the action of the group of tri­

holomorphic isometries of the moduli space metric. 

The threshold bound state is unique, which requires the harmonic form to be unique as well. 

Recall that there is a natural isomorphism between r -forms and (4n - r)-forms on a 4n-dimensional 

differential manifold realized by the Hodge star operator*, the so-called Hodge duality. Therefore, to 

avoid getting duplicates via Hodge duality, the desired harmonic form should be a self-dual (or anti­

self-dual) middle-dimensional differential form (a 2n-form). This is a necessary but not sufficient 

condition for the 2n-form to be unique. 

In brief, we are looking for non-degenerate square-integrable middle-dimensional (anti)self-dual 
I 

harmonic forms on the relevant moduli space, which are invariant under the action of the tri-holo-

morphic isometry group of the moduli space metric. 

4.2 L2 Harmonic Form on the Lee-Weinberg-Yi Manifold 

In this section we consider N = 4 SYM theories with gauge group SU(n + 2) broken to U(lt+1. 

The relative moduli space of (n + 1) distinct fundamental monopoles is the Lee-Weinberg-Yi metric 

on IR4~ constructed in Section 3.3. The Lee-Weinberg-Yi manifold is topologically trivial, and hence 

harmonic forms that we find do not come from the non-trivial topology. 

4.2.1 Harmonic two-form on the Taub-NUT Manifold 

Consider the simplest case n = l, the gauge group is SU(3) -t U(1) 2 . The predicted bound state is 

the charge (1 , 1) monopole that manifests itself as a non-degenerate square-integrable U(l)-invariant 

(anti)self-dual harmonic two-form on the Taub-NUT space. 

The Taub-NUT manifold is well understood, and the required two-form has already been con­

structed in a different context in [84]. Let us demonstrate how this can be done. The Taub-NUT 

metric (3.8) written in terms of three left-invariant SU(2) one-forms is: 

where V = l + i and d<Yi !Eijk<Yj I\ <Yk, i , j, k = l, 2, 3. An orthonormal basis for the above 
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metric is given by: 

In terms of these one-forms, the three Kahler forms, that form a basis of self-dual two-forms, are: 

(4.1) 

And the three two-forms forming a basis of anti-self-dual two-forms are: 

(4.2) 

Then the most general (anti)self-dual form can be written as: 

sefl-dual = I: 1t)(r)wi+) , anti - self- dual = I: 1}-)(r)wi-). (4.3) 

The two-form we are looking for must be harmonic. Being (anti)self-dual, the two-forms (4.3) are 

harmonic if they are closed. The requirement for the two-forms (4.3) to be closed yields the following 

first order differential equation for f ( ±) ( r): 

dj(±) 
- -+vl±l = O. 

dr 

It follows immediately that the only non-singular normalizable harmonic two-form is: 

O = dV dr I\ <Y3 + v-1<Y1 /\ <Y2 = d(V <Y3) , 
dr 

(4.4) 

which is self-dual. From the second equality we see that it is invariant under U(l) transformations 

generated by the vector field 8 / 8T dual to <Y3 . 

The two-from (4.4) can also be constructed in a different way [44]. Take the Killing field K = 
8/8T that generates the tri-holomorphic U(l) isometry of the Taub-NUT manifold. The one-form 

dual to a j 8T with respect to metric (3.8) has components Ac, = 9af3Kf3 and satisfies the Killing equa­

tion A(a;/3) = O, where (;) denotes the covariant derivative with respect to the Levi-Civita connection 

of (3.8). Now consider the two-form F = dA with components Fa/3 = A[a;/3]· It is harmonic, i.e. 

closed and co-closed, which follows from the Ricci identity valid for any Killing vector Kµ 

Contract this expression on a and (3 and recall that every hyperkahler manifold is Ricci-flat, i.e. 

Ra/3 = 0, to get: 

v' * Fa/3 = 0 . 

11 
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Acting on F , 'v is nothing else than the Hodge-de Rahm Laplacian ( d * d * + * d * d) acting on forms, 

and hence we deduce that 

dF = 0 , d * F = 0 . 

Thus by virtue of the construction, the two-form F = dA is harmonic and is preserved by the 

tri-holomorphic Killing vector K . Moreover, it is square-integrable: 

IIFll 2 = / IFl 2 
d \!OZ < CXJ , 

which follows from the analysis of the behaviour of IFI at infinity, i.e. for large r. Clearly, the 

dependence of F on the compact coordinates is not important for the estimate, since integration over 

those yields some bounded constant value. By construction, IFI "' 1/ r 2 for large r, and the unit 

volum~ on the Taub- NUT manifold d\!Ol "'r2dr · d(compact part). Then JIFJJ2 
rv ~ for r -t oo, 

which is sufficiently fast to render F square-integrable. 

The required middle-dimensional form on the Lee-Weinberg-Y1 manifold can be obtained by 

generalizing this construction. This was done by Gibbons in [ 44]. 

4.2.2 Harmonic 2n-form on the Lee-Weinberg- Yi Manifold 

As discussed in Section 3.3.1, the group of tri-holomorphic isometries of the Lee-Weinberg-Yi 

manifold ,(3•.20) is Tn. Hence the harmonic 2n-form on the Lee-Weinberg-Yi space should be T n­

invariant. Torus Tn is generated by n vectors Ka = a/ 8Ta , a = 1, . . . , n (NB a is a label and not 

a coordinate index) . Denote by Aa n Killing one-forms dual to Ka . By analogy with the Taub-NUT 

example, we construct n two-forms 

pa= dAa , 

every one of which is harmonic by the same argument as before. Now, the norm of the two-form 

IFa I "' r~ at infinity. Asymptotically the Lee-Weinberg-Yi manifold differs from the metric product 

of n Taub- NUT spaces parametrized by (ra , Ta) each, by a constant matrix µab (the reduced mass 

matrix). Hence the volume of the Lee- Weinberg-Yi metric has the same asymptotic dependence on 

radial coordinates ra as does an-fold product of Taub-NUT metrics: 

a=n 

II r~ . 
a= l 

A harmonic 2n-form may be constructed by taking n -fold wedge products of the two-fo rms Fa . 

But the only combination which gives a square-integrable and T n-invariant 2n-form is clearly: 

D = pl /\ p2 /\ . .. /\ pn . 
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This is the required non-degenerate normalizable harmonic 2n-form on the Lee-Weinberg-Yi mani­

fold. Note that although Dis square-integrable, the (2n -1)-form B , such that D = dB , is not. Thus 

D is a non-trivial element of the middle L2 cohomology class on the Lee-Weinberg- Yi manifold. 

Self-duality of D does not follow directly from this construction, and should be checked explicitly. 

Direct computations are rather cumbersome and have not been performed. Even if the candidate form 

is self-dual the issue of uniqueness still remains. Ideally, if one could prove the uniqueness of D, one 

would not have to check the self-duality property explicitly. 

Uniqueness of the harmonic form: 

To the best of my knowledge no rigorous proof of uniqueness is known. Below is a somewhat 

sketchy argument of how one could go about proving the uniqueness property. Recall from the hyper­

kahler quotient construction of the Lee-Weinberg-Yi metric in Section 3.3.1 that the family of these 

metrics is , in some sense, parametrized by the reduced mass matrix µab · One can picture the space 

of µ as a cone: the open cone corresponds to a generic non-singular µ, the axis corresponds to a 

diagonalµ reducing the LWY metric on IR4n to a direct product of n Taub-NUT metrics (TNn), and 

the boundary of the cone is where µ drops in rank. As far as the square-integrability of harmonic 

forms goes, we are most interested in how the volume of the manifold grows with r a at infinity. Since 

the difference between the LWY metric and a product of Taub-NUT metrics T Nn is the constant 

matrix µ, it is reasonable to suppose that the two spaces have the same L2 cohomology. 

The last relation can be formulated in more precise terms. Using the hyperkahler quotient, one 

constructs a quasi-isometry between LWY and TNn , i.e. a diffeomorphism f 

such that if g is the metric on M LWY and h is the metric on T Nn , 

c g:Sf*h:Sc- 1g , c =const, 

where f* is the push-forward map acting on tensors. The inverse 1-1 exists and from the above 

equation we have 

Invoking a general mathematical theorem we deduce the equivalence of the L2 cohomology on the 

two spaces. The next step is to use the uniqueness of the harmonic two-form (4.4) on the Taub- NUT 

I 
I 
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manifold and to extend this result to a direct product of Taub-NUT manifolds. More work is needed 

to make this argument into a rigorous proof. 

4.3 L2 Harmonic Form on the Taubian-Calabi Manifold 

Consider N = 4 SYM theory with gauge group SU(n + 2) broken to U(l) x SU(n) x U(l). The 

relative moduli space of the charge ( 1, [1 , ... , 1] , 1) monopole is the Taubian-Calabi (TC) metric on 

~ 4n constructed in Section 3.2.5. 

where a, b = 1, .. . , n and Gab is given by: 

1 
1 +-' 

ra 

1, a f. b . 

(4.5) 

(4.6) 

The subgroup of the isometry group of ( 4.5) that preserves its hyperkiihler structure is U ( n), which is 

considerably larger than the Tn tri-holomorphic isometry of the Lee-Weinberg-Yi manifold. 

S-duality predicts the existence of a unique threshold bound state of two massive and ( n - 1) 

massless fundamental monopoles, which corresponds to a unique SU(n)-invariant square-integrable 

harmqnit 2n-form on the Taubian-Calabi 4n-manifold. The Taubian-Calabi manifold is topologically 

trivial, and hence square-integrable harmonic forms come from the geometry rather than the topology 

of the manifold. In order to construct the predicted harmonic form on the Taubian-Calabi manifold 

we exploit ideas presented in the previous section. 

4.3.1 Candidate Harmonic 2n-form 

The tri-holomorphic isometry group of (4.5) U(n) is locally isomorphic to a direct product U(n) ~ 

SU(n) x U(l). Generators of the maximal torus Tn C U(n) are the vector fields 8/8Ta. Then vector 

K 

generates the U(l) subgroup of U(n) in the above factorization of U(n). The Killing vector K 

commutes with all the generators of the SU ( n) subgroup. It is this fact that prompts us to use K for 

constructing a SU(n) -invariant harmonic form on TC4n . Physically, K generates the relative U(l) 

charge of the two massive fundamental monopoles. 
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Killing one-form A dual to K with respect to metric (4.5) is 

A = L c-;;}(dTb + W(b). drb). (4.7) 

a 

Given Gab (4.6), we compute: 

"G-1 - Tb 
D ab - 1 + '\' r · 

a ~ C 

(4.8) 

Let F = d A. By the same logic as before, the two-form F so constructed is both closed and co­

closed: 

Take an n-fold wedge product of the two-forms: 

D = ~ (4.9) 

n times 

By virtue of the construction n is harmonic and SU ( n )-invariant. We conjecture that: 

n is the unique square-integrable harmonic 2n-Jorm on the Taubian-Calabi 4n-manifold. 

To show that the square norm of n is finite: 

(4.10) 

we need to evaluate the asymptotic behaviour of the unit volume d vol of (4.5) as well as IDI. 

4.3.2 Estimates of the Unit Volume 

The 4n coordinates on TC4n split into n compact Tn-fibre coordinates Ta and n sets of spherical polar 

coordinates r a = ( r a, Ba, <Pa) on n copies of flat ~ 3
. 

The unit volume on M is: 

dvol = (detgij )1l 2 II dra dBa de/Ja dTa , 
a 

where the wedge product of forms is assumed. The determinant of the Taubian-Calabi metric 9ij, 

i , j = 1, . .. ,4n, is: 

(detgij) 112 = detGbc · II r~sinBa, 
a 
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where the product factor comes from n flat IR3 components of the metric expressed in spherical polar 

coordinates. It is a simple matter to evaluate the determinant of the matrix Gab in (4.6): 

d G 
_ 1 + I:c re 

et ab - . 
r1 r2 ... rn 

Then the unit volume d ivz is: 

dl,vl = (l + I:>c) IJra sinBadradBad</JadTa. (4.11) 

C a 

Since the ranges of Ta , Ba and <Pa are compact, performing the integration in (4.10) over these variables 

yields some bounded constant value. Thus we are concerned only with the dependence of d l,vl on 

the radial coordinates ra. There are n radial coordinates ra, and the notion of infinity is somewhat 

ambiguous. To proceed we shall introduce an effective radial coordinate t in place of these n original 

coordinJ tes, and by infinity we shalJ mean the region of TC4n where t is large. The idea is to replace 

n degrees of freedom with infinite ranges by one degree of freedom with an infinite range and ( n - l) 

compact degrees of freedom. 

For clarity consider then = 2 case. Set the radial three-vectors r1 and r2 to be: 

ri t sin a, 

f2 t cos a , 

where t E (0 ,, oo ), a E [O , 21r], and f 1 , f2 are unit vectors. Then the sizes of r1 and r2 are: 

r1 = t sin a , r2 = t cos a , 

and hence 

dr1 I\ dr2 = t dt I\ da . 

With this re-parametrization, the unit volume (4.11) for n = 2 becomes: 

d l,vl = ( 1 + t ( sin a + cos a)) t2 sin a cos a t dt da , 

which, in the limit of large t, has the following dependence on the effective radial coordinate t: 

d ivz rv t4 dt . (4.12) 

It is obvious how this re-parametrization generalizes ton > 2. Hence the unit volume of the Taubian­

Calabi metric on IR4n in the limit of large t grows as : 

d ivz rv t2n dt . 
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This provides the lower bound on how quickly IDI should decay at infinity. Unfortunately, estimating 

In I is not as straightforward as it was in the Lee-Weinberg-Yi case. Let us write down components 

ofn. 

4.3.3 Components of n 

It is convenient to write components of the 2n-form n in an orthonormal basis. Let us pick an ortho­

normal basis of frames for (4.5). The frame fields and their inverses are labelled by a pair of indices 

(Oa) or (ra), with a= l , . .. , n and r = l , 2, 3. The orthonormal basis of one-forms is: 

(G-l f2)ab (dTb + W(b) · drb), 

( G1 f2 )abe(rb) . 

(4.13) 

G112 is a symmetric matrix such that Gab = G;~2 G~{2 and G-1/2 is its inverse. In spherical polar 

coordinates the one-forms e(ra ) are: 

dra, 

Ta sin Ba d</Ja . 

In terms of these frames a flat metric on the a-th IR3 factor is dr~ 

(4.13) are: 

(G1; 2) ~ 
ab a ' Tb 

-1;2 - a 
( G )ab (E(rb) - Wr(b)-a ) . 

Tb 

(4.14) 

(4.15) 

The vectors E(rb) are dual to e(ra) ( 4.14). Here wr(b) stands for the r-th component of the connection 

one-forms wb = w(b) · drb in spherical polar coordinates. In terms of frames (4.13) the Taubian-Calabi 

metric (4.5) is simply 

a a,r 

Given (4.7) and (4.8), the two-form F = d A is 

F =] rI: d(dTa +wa) + d( rI: ) I\ (dTa +wa) , 
. + re 1 + re 

(4.16) 

which, written in terms of frames (4.13), becomes: 

F = ~ ( Ta ) Gl /2G-1/2e(lf) (\ e(Od) _ 1 G-1/2G-1/2e(2d) (\ e(3/) 
8rb l + I:rc ad bf ra( I + I:rc) ad af ' 

(4.17) 
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where one has to remember to sum over all the repeated indices, i.e. over a, b, d and f. 

Introducing a collective index A = ( ( Oa), ( ra)), a component of n looks like 

nA1B1 ... AnBn = LFA1B1 · · · FAnBn, 
p 

(4.18) 

where P denotes all possible permutations of distinct indices Aa, Bb . The general expression is rather 

cumbersome and we shall not give it here. 

As it turns out, the question of convergence is a very delicate one, and it is not sufficient to make 

rough estimates of IDI. In fact, it appears to be essential that the square of the norm of n, IDl 2 , is 

computed exactly. Certain cancellations of undesirable terms - terms that do not decay sufficiently 

fast at infinity - occur, leading to square-integrability of n. We have succeeded in evaluating IDl2 

explicitly by computing directly components of n only in the case n = 2. 

4.3.4 Square-integrability of D on TC8 

Already in this case the algebra is rather involved but still tractable: To evaluate IDl 2 we use.d the 

algebraic package Maple to keep track of the combinatorics. The exact expression for IDl 2 offers 

little insight, and here we shall only present the result. 

Substituting the effective radial coordinate t in place of r 1 and r2 and taking the limit t -+ oo we 

find: 

This is a narrow escape! Putting together what we know about the asymptotic behaviour of the 

harmonic four-form and the unit volume of the Taubian-Calabi metric on IR8 ( 4.12), we see that the 

square norm (4.10) of the candidate harmonic form n converges: 

11n112 
rv - t4 dt = - < 00. 

/ 

1 1 

t 6 t 

We have not yet been able to extend this argument to 2n-forms for n > 2. 

CHAPTER 5 

Classical Bound States of Fundamental Monopoles 

In this chapter we study some aspects of classical dynamics of fundamental monopoles. It was demon­

strated by Manton [22] that the classical dynamics of slowly moving monopoles or dyons is equivalent 

to the geodesic flow on the relevant moduli space. In brief, the argument runs as follows. Since there is 

no net force between static BPS solitons - the repulsive magnetic force is cancelled by the attractive 

scalar force - there exist multi-monopole configurations saturating the Bogomol'nyi energy bound. 

In the case of SU(2) monopoles, a multi-monopole solution can be interpreted as a superposition of 

many SU(2) monopoles of unit charge, at least when the constituents are well-separated. In the case 

of SU ( n) monopoles, there exists a multi-monopole solution that can be everywhere interpreted as 

a superposition of a number of distinct fundamental monopoles. When the fields are allowed to vary 

with time, they will evolve along a path in the relevant moduli space, provided that the initial data cor­

respond to slow motion tangent to the moduli space. These time-dependent solutions are almost BPS. 

Since the potential energy of BPS solitons is constant, it is only the kinetic term of the underlying 

fields that induces a metric on the moduli space. One concludes that the relevant path on the moduli 

space along which the fields evolve is a geodesic. This is the moduli space approximation. Thus if we 

wish to study classical dynamics of slowly moving monopoles, we need to solve geodesic equations 

on the relative moduli space. 

In Section 5.1 we demonstrate the non-existence of closed or bound I geodesics on the Lee­

Weinberg-Yi and the Taubian-Calabi manifolds. We explain why it is not surprising that no classical 

1 By bound we mean confined to a compact set at all times. 
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bound states of monopoles exist in the associated gauge theories . 

In Section 5.2 we study the classical scattering of distinct fundamental monopoles. Although we 

do not expect the motion to be integrable in general, we are able to solve the geodesic equations in a 

special case. The scaling solution which we present in Section 5.2.1 describes the simplest scattering 

of fundamental monopoles with zero dyonic charges: individual monopoles approach one another 

from infinity, pass through the origin and move out to infinity, their velocity at infinity approaching a 

constant value. 

When all the conserved (dyonic) charges vanish, equations of motion for a system of many well­

separated SU(2) monopoles are, up to an overall sign, identical to the equations of motion for a system 

of fundamental monopoles. Hence, one can again make the scaling ansatz and integrate the equations 

of motion. We find that the qualitative behaviour of individual SU(2) monopoles is different from the 
, 

behaviour of distinct fundamental monopoles. 

The analysis in Section 5.2.2 shows that scaling solutions for distinct fundamental monopoles 

carrying constant dyonic charges do not exist. 

Another type of simple monopole motion is rigid rotations. Making the appropriate ansatz in Sec­

tion 5.2.3, we find that such motions are not allowed for distinct fundamental monopoles (which is 

consistent with conclusions of Section 5.1). Interestingly, for many well-separated SU(2) monopoles 

with zero dyqnic charges the ansatz yields a solution, i.e. there exist closed geodesics on the Gibbons­

Manton manifold representing rigidly rotating SU(2) monopoles. However, solving the equations ex­

plicitly yields circular geodesics in the unphysical region of the Gibbons-Manton metric. Physically, 

there are no closed orbits for pure monopoles since the net force is repulsive. This is in accord with 

the analysis of the two-monopole system performed in [85]. From physical considerations, as well 

as from reference [85] we know that closed orbits of well-separated SU(2) dyons do exist. In this 

case, however, the dyons cannot all lie in the same plane due to the presence of electrical charges. To 

demonstrate this point we substitute the rotational ansatz into the equations of motion on the reduced 

Gibbons-Manton manifold with non-zero dyonic charges and show that although a solution exists it 

lies in the unphysical region of the Gibbons-Manton space. 

5.1 Non-existence of Bound Geodesics 

The low-energy dynamics of two well-separated SU (2) monopoles was studied by Gibbons and Man­

ton in [85] , where they found bound orbits for two well-separated SU(2) dyons. The existence of 
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bound orbits is not surprising, since the dyons are oppositely charged with respect to one unbroken 

U ( 1), which gives rise to attractive Coulomb forces. The situation is different for two or more dis­

tinct fundamental SU(n + 2) monopoles. Distinct fundame~tal monopoles carry dyonic charges with 

respect to different U(l) factors in the unbroken gauge group U(lt+l, which does not give rise to 

attractive forces. As seen from the asymptotic analysis of monopole interactions performed by Lee, 

Weinberg and Yi [43], the forces between these dyons are repulsive. By the moduli space approxi­

mation, classical bound states of monopoles or dyons correspond to closed or bound geodesics on 

the relevant moduli space. Hence we do not expect to find any closed or even bound geodesics on the 

Lee-Weinberg-Yi manifold, which is the relative moduli space of the charge (1, 1, .. . , 1) monopoles. 

Let us now give an argument for the non-existence of bound geodesics on the Lee- Weinberg­

Yi manifold. The same argument is valid for geodesics on the Taubian-Calabi manifold, although a 

physical interpretation of the low-energy dynamics of massless monopoles is less clear. 

If the topology of the moduli space is complicated, one may invoke a general result of Benci 

and Giannoni [86] for open manifolds to establish the existence of closed geodesics. However, if the 

manifold is topologically trivial, such arguments give no information. 

For topologically trivial manifolds, such as the Lee-Weinberg-Yi (3.20) and the Taubian-Calabi 

(3 .15) spaces, one may instead use the following criterion. If there exists an everywhere distance­

increasing vector field V, then there are no closed or bound geodesics on this manifold. The distance­

increasing condition means that the Lie derivative of the metric along V satisfies: 

.Cvg(X, Y) > 0 , 

for all 4n-vectors X, Y, or equivalently 

Along a geodesic with a tangent vector L one therefore has: 

d 
dtg(V, L) = .Cvg(L, L) > 0. 

(5.1) 

(5 .2) 

Now if this is a bound or closed geodesic one may average over a time period T. The left-hand side 

of (5.2) tends to zero as T -1 oo, while the right-hand side is some positive constant. This is a 

contradiction. 

The existence of a distance~increasing vector field on the Lee-Weinberg-Yi (3.20) and the Taubian­

Calabi (3.15) manifolds can be easily demonstrated if we make use of the hyperkahler quotient con­

struction. Both the Lee- Weinberg-Yi and the Taubian-Calabi manifolds were obtained by choosing 
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the zero-set as the level set the moment map. Why thls detail is important becomes clear presently. 

The vector field V is induced on the quotient space X 0 from the following JR.+ = {a } action on 

M = JHpn X JH!P : 

qaiqa -+ a1/2 q iq a a , (5.3) 

'l/Ja -+ 'l/Ja, 

Rewi -+ Rewi, 

Imwi -+ aimwi, a> 0 , 

where qa = rae- i1Pa/2 , a= l , . .. , m and i = 1, .. . ,p. This JR.+ action leaves invariant the level set 

µ- 1 (0) and commutes with the JR.m, T m and SU(2) actions. It descends to give a well defined JR.+ ac-

;· 

tion on Xo = µ - 1 (0) /JR.m which stabilises the origin qa = 0, and corresponds on the Lee-Weinberg-

Yi metric to the spherically symmetric monopole. Action (5.3) is clearly distance-increasing on M , 

so its restriction to µ - 1 (0) / JR.m is also distance-increasing. Note that the argument just given is a 

more geometric version of the generalized Virial Theorem discussed earlier in [ 44]. 

5.2 Scattering of Fundamental Monopoles 

The exact m~tric on the moduli space of n distinct fundamental SU ( n + l) monopoles is the Lee­

Weinberg-Yi metric on IR4n . For the sake of capturing the full physical picture, we begin with the 

moduli space metric with the centre of mass coordinates included and reinstate factors of g (the gauge 

coupling) and 1r into the solution. The exact metric is (see e.g. [ 43]): 

where the elements of the matrix G ij are 

a-1 is the inverse of G and 

g2 Aij 
m + - """'-

i 41r L.., r · · ' 
j-f:i iJ 

g2 >.. iJ . _j_ . 

- -- 'i -r-J . 
41r rij 

L AijWij' 
#i 

- Aij w ij , i -/: j , 

(5.4) 

(5 .5) 

(5 .6) 
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where i, j = 1, .. . , n , Xi is the position of the i-th monopole in JR.3 , r i j = Xi - Xj is the separation 

vector between the i-th and the j-th monopoles, and rij = lrijl· Wij is the value at Xi of the Dirac 

potential due to the j-th monopole, which satisfies 

(5.7) 

Positive constants Aij depend on the gauge group. In fact, for gauge group SU(n + 1) Aij = 1 for all 

pairs ( i , j) , and in the following we shall restrict ourselves to this case. 

We can study dynamics of the fundamental monopoles by finding geodesics on theLee-Weinberg­

Yi manifold which describe monopole interactions. The Lee-Weinberg-Yi manifold (5.4) can be 

viewed as the total space of the rn principle bundle over a conformally flat JR.3n base. We refer to the 

base manifold JR.3n as the reduced moduli space M red· Recall that the moduli space metric is invari­

ant under the rn action. Hence from the physical point of view it is simplest to project the geodesics 

onto M red and encode the motion in the toric fibres into conserved quantities associated with the rn 

isometry. 

In other words, n of the 4n variables in the Lagrangian obtained from the Lee-Weinberg-Yi 

metric: 

are not dynamicaL Instead one can identify n conserved charges: 

Qi = a~1(dTj W· . dxk) 
i J dt + J k dt ' 

(5.8) 

and eliminate Ti 's from (5 .8) in favour of the conserved charges Q i to obtain the effective Lagrangian 

(5.9) 

Two cases shall be considered separately: (i) all Qi vanish and (ii) non-zero Qi. 

Scattering of monopoles: 

Let us first discuss scattering of monopoles. When all dyonic charges vanish the effective La­

grangian and the equations of motion on the reduced moduli space possess scaling invariance. This 

property prompts one to look for scaling solutions (sometimes also called similarity or homothety 
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solutions). To illustrate what is meant by a scaling solution consider the Lagrangian for a particle 

moving in some potential V(x): 

with equations of motion 

x = - d~ V(x) = -V'(x). 

If the potential V(x) is such that 

V'(ax) = aPV'(x) 

for some function of time a(t), and pa rational number, then one can make the following ansatz: 

x(t) = a(t) y. 

All the;time-dependence is contained in the scalar function a(t), and the vector y is independent of 

time. The equations of motion then become: 

ay = -aPV'(y). 

Since the original Lagrangian possesses scaling invariance, the equations of motion are equivalent to 

the following system: 

a 
aP 

y 

C, 

- ~ V'(y), 

where C is some constant. The first ODE yields the time-dependent scaling factor, while solutions of 

the second equation, if they exist, are called central configurations. Solving the latter is equivalent to 

finding critical points aw / oy = o of the function w 

C 2 
W = -y + V(y). 

2 

Physical systems of this type, i.e. where the potential scales, are encountered, for example, in 

celestial mechanics. The evolution equation of the scaling factor is akin to the Friedmann equation in 

an FRW cosmological model. The problem of looking for central configuration in this case is the n­

body problem of gravitating bodies. The classification of all central configuration of such a system is 

an outstanding problem. Another example of a system possessing scaling invariance is the Newtonian 

matrix cosmology discussed in [87], where the authors find some scaling solutions to the equations of 

motion. 

5.2 Scattering of Fundamental Monopoles 
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When all conserved charges Qi of distinct fundamental monopoles vanish, one intuitively ex­

pects to find a solution which would describe the simplest scattering process: individual monopoles 

arranged in some symmetric configuration, moving with constant speeds at infinity, come closer to­

gether, losing their individual identity, pass through the origin, forming the spherically symmetric 

charge ( 1, 1, ... , 1) monopole, move apart, regaining their individual character, and return to free 

particle motion at infinity (possibly in a different symmetric configuration). This motion, expressed 

in terms of particle dynamics on the reduced space, can be described by a scaling solution. 

In the following we shall also discuss similarity geodesics on the asymptotic moduli space of 

many SU(2) monopoles (the Gibbons- Manton manifold). We shall demonstrate that such solutions 

are permitted. 

In the case of non-vanishing dyonic charges Qi, equations of motion on the reduced moduli space 

of fundamental monopoles do not possess such a scaling symmetry, and hence one does not expect 

the scaling ansatz to lead to a solution. 

Rigidly rotating monopole configurations: 

Another type of monopole motions which can be described by a relatively simple ansatz is rigid 

rotations. As in the scaling ansatz, the time-dependence of the positions of monopoles is under control. 

One can imagine a system of monopoles in a plane rotating rigidly about some axis p~rpendicular to 

it, in other words so that the distances between individual monopoles are fixed. Corresponding to this 

motion is a closed geodesic on the moduli space. To find such a solution on the reduced moduli space 

one should make the following ansatz: 

Xi=WXXi, 
(5.10) 

where w is the constant angular velocity common to all monopoles in the system. It follows from 

(5.10) that: 

i:ij = W X rij , 

where rij = Xi - Xj · Hence 

which is the statement that the individual particles do not move with respect to one another. The 

assumption that the monopoles are contained in a plane and rotate about an axis perpendicular to it 
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· implies that w · r ij = 0 and hence 

.. I 12 
rij = - w r i j. 

Substituting this ansatz into the Euler-Lagrange equations we find that the constant angular velo­

city factors out and its specific value is unimportant. One is left with a set of equations containing no 

time-dependant terms analogous to equations describing central configurations in the scaling ansatz. 

Since rigid rotations are represented by closed geodesics on the moduli space, they correspond to 

classical bound states of monopoles. As we have demonstrated in Section 5.1 for distinct fundamental 

monopoles classical bound states do not exist. Thus when in Section 5.2.3 we use the ansatz (5.10) 

to solve the geodesic equations on the Lee-Weinberg-Yi manifold (with vanishing dyonic charges), 

we find that the equations do not admit a solution. This is only consistent with what we already 

knew. On the contrary, in the case of many well-separated SU(2) monopoles with no dyonic charges 
... i-

the rotational ansatz (5.10) leads to equations which admit solutions. These solutions, however, are 

in the unphysical region of the Gibbons-Manton space. This is to be expected since the net force 

between two SU(2) monopoles is repulsive. Making the same ansatz for well-separated SU(2) dyons 

again leads to an unphysical solution since the dyons cannot all lie in the same plane as our ansatz 

presupposes. 

5.2.1 Scattering of Uncharged Fundamental Monopoles 

. ' 
Setting Qi = 0 and using (5.5) in (5.9) gives: 

(5.11 ) 

The Euler-Lagrange equations 
(J,C d (J,C - 0 
-- - --- -
OXk dt OXk 

for the above Lagrangian are: 

.. 9
2 

"'"' ( 1 rfkr ik r i k 'T"ikrik) 
ffikXk=-~ --3-+---2- ' 

47f i =f.k 2 r ik T°i k r i k 
(5.12) 

where xk = fftxk. Now let us make the following ansatz: 

(5 .13) 

Then rij = a (t ) aij and T"ij = a aij · Equations of motion (5.12) become. 

9
2 

a k 1 ( ii 1 (a) 2) mka k = - L _ i_ ::- - - - - . 

47f i=/.k aik a a 2 a 
(5.14) 
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All t -dependence is now collected on the right-hand side of the equation. The common practice in 

solving this type of problems in celestial mechanics is to require that the t-dependence amounts to a 

constant. We shall do the same and separate (5.14) into the t -dependent part and the part describing 

dynamics in the transverse space: 

(5.15) 

(5 .16) 

where C is a real constant that may be positive or negative. Note that C = 0 is not allowed for a 

physical solution of (5.14). Moreover, there is a trivial scaling symmetry of (5.14) which allows us to 

rescale C. Hence it is sufficient to consider two values of the constant C = ±1. 

Let us look for solutions of (5.15). First of all, a(t) = canst trivially solves the equation and 

describes a static solution, which is not of much interest to us. Another obvious guess is a power-law 

solution a(t) = tP. However, equation (5.15) is inhomogeneous and clearly does not admit a solution 

of this type, unless C = 0, which is not physically meaningful. Nevertheless, it is possible to solve 

(5 .15). 

Letting a= x and a= y, we can rewrite (5.15) as: 

x Y , 

y 
2x(l - Cx ) ' 

which implies 

dy y 

dx - 2x ( 1 - C x) · 

If C = 1, (5 .18) can be integrated to give 

y = voo ~ , 

where v00 is a constant of integration. 

If C = -1 , (5. 18) can be integrated to give 

y = VooJ X: 1 . 

(5.17) 

(5.18) 

(5 .19) 

(5.20) 

We can visualize these solutions by sketching them on a phase diagram (fig . 5.1). For large values 
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a 

C = 1 

------1--------------------

C = -1 

1' I a 

Figure 5.1: Phase-plane diagram of the two solutions. 

of a, the velocity of the particles approaches a constant value v00 . If we follow the curve for C = 1 

towards small a, we find that at a = 1 the velocity a blows up. This is not a physically realistic 

behaviour for distinct fundamental monopoles. 

The solution for C = -1 shows that the monopoles reach the origin a = 0. This is the type of 

behaviour we expect for distinct fundamental monopoles. On the moduli space, the Lee-Weinberg­

Yi manifold, the origin is just a coordinate singularity. If the Lee-Weinberg-Yi metric (5.4) were 

expressed in Cartesian coordinates, we would expect the proper time along a geodesic through the 

origin to be proportional to the radial distance. Coordinates on the Lee-Weinberg-Yi manifold (5.4) 

are, in some sense, a square root of the spherical polar coordinates. To be more precise, the point 

r = 0 on the Taub-NUT manifold (3.8) is merely a coordinate singularity (see Section 2.2.2), and in 

the neighbourhood of the origin the metric looks flat if we replace r by p2 . The geodesics described 

by the C = -1 curve pass through the origin and do so in finite proper time t which we estimate from 

(5.17) and (5.18) to be 

This is precisely the expected dependence, since the origin is a regular point of the manifold. 

We should now check for which value of C, if any, equation (5.16) has solutions. In other words, 

whether it is possible to find configurations of fundamental monopoles compatible with this equation 

(cf. central configurations in the simple example described above). Finding central configurations of 

5.2 Scattering of Fundamental Monopoles 
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Figure 5.2: Schematic dependence of Won aik . 

2 

(5.16) is equivalent to finding critical points 8 ~k W = 0 of the function W = m~ak + V: 

_!__ (mka~ + v) = 0 . 
8ak 2 

(5.21) 

Comparing this with (5.16) we find V to be 

g2 
V = C-L aik. 

4n i-:f.k 

When C = 1 the potential V is positive and the total energy is always positive, hence W has no critical 

points. Intuitively, critical points of W should exist for C = -1. In this case in the neighbourhood 

of ai = O V decreases from zero sufficiently fast, and the schematic dependence of W on aik is 

sketched on fig. 5.2. Finding and classifying all central configurations that solve (5.16) is a challenging 

problem, in the same way a_s it is challenging to find all central configurations of a gravitating n-body 

problem. However, a few symmetric configurations are easy to spot. For two distinct fundamental 

monopoles a 12 = const is clearly a solution. For three monopoles an equilateral triangle is a solution. 

We can see that any sufficiently symmetric planar (or possibly non-planar) arrangement of n particles 

about the origin would correspond to a critical point of W . 

Note that equations (5.17) are invariant under the change of sign oft: d/ dt -+ -d/ dt and hence 

y -+ -y. This means that the problem is symmetric under time-reversal. Positive t corresponds to 

monopoles moving away from the origin, while negative t corresponds to monopoles moving towards 

the origin. 

'I 
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We shall now discuss the case of many well-separated SU(2) monopoles. Compare equations of 

motion (5.12) on the Lee-Weinberg-Yi manifold with equations of motion on the Gibbons-Manton 

manifold in [45] for Qi = 0. Rewritten in the notation adopted here the equations of motion are: 

(5.22) 

The only difference between equations (5.22) and (5.12) is the overall change of sign of the right-hand 

side, hence these equations are also integrable for the ansatz (5.13). However, the constant C in (5.15) 

and (5.16) and in the two sets of solutions (5.19) and (5.20) must be replaced by another constant 

C = -C. It is the first solution (5.19) with C = 1, and hence C = -1, that is now physically 

applicable. Equation (5.16) becomes: 

which admits solutions for C = -1. Monopole configurations solving this equation are the same 

monopole configurations as those solving equation (5.16) for C = -1. 

The Gibbons-Manton metric (3.31) is a good approximation to the exact metric on the moduli 

space of higher charge SU(2) monopoles. It differs from the still unknown exact metric by exponen­

tially small terms. In the asymptotic region of the moduli space described by the Gibbons-Manton 

metric, a higher charge SU(2) monopole may be regarded as a superposition of many well-separated 

charge one SU(2) monopoles. This approximation breaks down when the inter-monopole distances 

are comparable with the size of their cores. If we follow the geodesic (5.19) into the interior, we see 

that it is not regular at a = l. This behaviour of the solution is perfectly natural, since the approxi­

mation is no longer valid for short inter-monopole distances, i.e. in the neighbourhood of a = l. 

Similarity solutions like (5.19) exist only in the asymptotic region of the exact moduli space, and we 

do not expect the precise form of the solution to remain valid in the interior. The k charge one SU (2) 

monopoles sent in from infinity in a highly symmetrical arrangement, lose their identity and presum­

ably form an SU(2) k-monopole with appropriate symmetry. A number of such symmetric SU(2) 

k-monopole solutions were found in [88, 89, 90] by solving the Nahm data numerically. 

To sum up, we have found a set of geodesics on the Lee- Weinberg-Yi manifold describing a sim­

ple scattering of many distinct fundamental monopoles carrying no dyonic charges. These geodesics 

are nothing other than similarity solutions to the equations of motion of the effective Lagrangian on the 

reduced moduli space. Individual fundamental monopoles behave like free point particles at infinity. 
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Sent in from infinity in a symmetric configuration, they approach one another forming a spherically 

symmetric charge (1 , 1 . .. 1) monopole at the origin. Reversing the direction of time, we can watch 

this spherically symmetric monopole split up into fundamental constituents which move away in a 

symmetric configuration and return to free particle motion at infinity. A qualitative argument suggests 

that if the initial arrangement of the fundamental monopoles is not symmetrical, the system would 

have a non-zero angular momentum, monopoles would not reach the origin and the spherically sym­

metric monopole would not be formed. A quantitative description of this process should be possible. 

We have also noticed that the equations of motion on the reduced Gibbons-Manton manifold are, 

up to a sign, identical to the equations of motion on the reduced Lee-Weinberg-Yi manifold. The 

sign difference accounts for the difference in the qualitative behaviour between many well-separated 

SU(2) monopoles and distinct fundamental monopoles. The Gibbons-Manton metric changes signa­

ture and develops singularities when two or more charge one SU(2) monopoles come close together, 

thus it is a valid approximation to the exact metric only in the asymptotic regions of the moduli space. 

We therefore expect the similarity solution to break down in the region near the multi-monopole core. 

This is precisely the effect we have observed. 

5.2.2 Scattering of Charged Fundamental Monopoles 

Next we would like to see whether the similarity ansatz (5.13) solves the equations of motion of Leff 

(5.9) for distinct fundamental monopoles with non-vanishing charges Qi. We go through the same 

steps as we have done in the previous case. 

For Qi -/ 0 and using (5.5) and (5.6) the effective Lagrangian (5.9) becomes: 

Leff = (5 .23) 

The last term in the Lagrangian (5.23) vanishes due to (5.7). The Euler- Lagrange equations of (5.23) 

are: 

(5.24) 

The only difference between these and the equations of motion in the uncharged case (5.12) is the 

presence of the firs t term in parenthesis on the right-hand side. The presence of this term breaks scaling 
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symmetry of the problem. Therefore, it is not surprising that making the same ansatz, Xi = a ( t) ai, 

we find that the equations of motion 

(5.25) 

do not separate into at-independent part and the evolution equation for the scaling factor a(t). If we 

require that the two terms involving a(t) are constant independently : 

.. 2 C aa = 1, (5.26) 

t (~ -t (~)2) = C2 ' 

we arrive at an over-constrained system, admitting no solutions that satisfy both equations simultane­

ously. This suggests that similarity solutions to (5.25) do not exist, which is consistent with the result 

of Section 5.1. 

5.2.3 Rigidly Rotating Monopole Configurations 

Let us now make the ansatz (5.10) 

Xi = w X Xi. 

Consider first a system of distinct fundamental monopoles with all dyonic charges vanishing, Qi = 0 . . 

' Substitute the above ansatz into the equations of motion (5.12). The first and third terms in parenthesis 

on the right-hand side of the equation vanish since r ij = 0 and, eliminating the constant I w 12, we have: 

(5.27) 

This equation contains no t-dependent terms and it is, up to a constant, identical to equation (5.16) 

with C = l. Thus solving (5.27) is equivalent to finding central configurations of equations (5.16). 

Recall from the discussion in Section 5.2.1 that central configurations of (5.16) exist only for C = -1. 

We conclude that there are no solutions of (5.27). This conclusion is consistent with the result of 

Section 5.1, where we have proved that no closed geodesics exist on the Lee-Weinberg-Yi manifold. 

Consider now a system of many well-separated SU(2) monopoles. In this case equations of 

motion on the reduced moduli space are (5 .22), and substituting the rotational ansatz we have: 

(5.28) 
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This equation is precisely equation (5.16) with C = -1, which does admit central configurations. 

At this stage one has to proceed with caution. Recall that the system consists of SU(2) monopoles 

with no electrical charges, hence the only force between them is the repulsive magnetic force. Conse­

quently, one does not expect to find any classical bound states or, equivalently, any closed geodesics. 

This apparent contradiction is easily resolved. Consider a system of two monopoles. One can 

solve equations (5.28) explicitely to find r = r 12 : 

g2 1 
r=--

41r µ ' 

whereµ= m 1m2/(m1 + m2) is the reduced mass of two monopoles. This is the value of r where the 

metric on the relative moduli space of two well-separated SU(2) monopoles - the Taub-NUT metric 

with negative mass parameter - develops a singularity and changes signature. Hence in this region 

the asymptotic moduli space metric is no longer a good approximation to the exact moduli space (the 

Atiyah-Hitchin metric). Therefore the solution we found is unphysical. The conclusion is valid for 

more than two monopoles. 

Let us apply the rotational ansatz to monopole configurations with non-vanishing dyonic charges. 

Based on the results of Section 5.1 we do not expect to find solutions in the case of distinct fundamen­

tal monopoles, let us therefore turn to well-separated SU(2) dyons. Given ansatz (5.10) the equations 

of motions (see [ 45]) reduce to: 

(5.29) 

Consider a system of two dyons and solve equations (5.29) to find: 

g2 1 ( 1 q2 ) 
µ= -- 1+---

41r r r2 g2w2 ' 
(5.30) 

where q = Q1 
- Q2 and, as before, r = r 12 andµ is the reduced mass. The authors of [85] studied 

orbits of two well-separated dyons and concluded that closed orbits exist but the motion of dyons is 

not planar. In fact all dyon orbits are conic sections. With a non-vanishing electric charge, it is not 

possible for the dyons to move in the same plane. Rather the planes to which the motion of individual 

dyons is confined are parallel. Hence it is not surprising that the solution of (5.30) is unphysical. To 

reproduce the circular orbits of [85] we need to modify the ansatz (5.10) to allow w · rij -=I= 0, while 

w · Xi = 0. In this instance the resulting equations are more complicated than (5.29). 



CHAPTER 6 

Cones, tri-Sasakian Structures and Superconformal Invariance 

In this chapter, based primarily on [91], we explore two geometrical structures, namely Sasakian and 

tri-Sasakian structures defined naturally on odd-dimensional manifolds, as well as their relationship 

to Kahler and hyperkahler geometries. Developments in superconformal field theories and other areas 

of string theory have indicated that Sasakian and tri-Sasakian geometries arise as the underlying 

mathematical structures. 

There has been great interest in rigid conformally invariant supersyrnmetric field theories. In 

particular de Wit, Kleijn and Vandoren [92] have studied N = 2 models containing hypermultiplets 

taking values in a hyperkahler manifold (M, 9µv , If v ), whereµ, v = 1, ... , 4k = dimM and a = 

1, 2, 3. They find the following necessary condition that the target manifold admits an infinitesimal 

dilatation invariance: (M , 9µv) admits a vector field Wµ such that 

(6.1) 

In the following sections we point out that condition (6.1) implies (regardless of any hyperkahler 

condition) that M is a cone, C(B), over a base manifold B , i.e. in coordinates xµ = (r, xi), i = 

1, ... , dimM - 1, the metric 9µv on the cone C(B) is 

(6.2) 

where hij(xk) is the metric on the base B which depends only on xk. Moreover, in these coordinates 

a 
W=r -

8r' 

I I 
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and the dilatation acts on C(B) as 

The differential operator W = r8 / 8r is sometimes called the Eulerian vector field . 

In the case that (M ,9µv) is a Ricci-flat Kahler manifold, condition (6.1) implies that the vector 

field ir,µ is holomorphic, that the base manifold B carries a Sasakian structure and hence the metric 

9µv admits a holomorphic Killing vector field 

where I~ is the complex structure. Presumably this case arises in N = 1 rigid superconformally 

invariant the9ries [32]. If (M , 9µv) is Ricci-flat then B must be Sasakian- Einstein. We do not know 

whether rigid N = l superconformal invariance implies that the metric should be Ricci-flat. 

In the case that (M , 9µv) is hyperkahler, the base manifold B admits a tri-Sasakian structure and 

the metric 9µv also admits an SU(2) action by isometries which permutes the complex structures 

Ii , h and fJ. In this case the metric is necessarily Ricci-flat and the base manifold is necessarily 

Einstein. 

This chapter is organized as follows. In Section 6.1 we shall introduce Sasakian and tri-Sasakian 

geometries, not yet well known to physicists, emphasizing their connection with Kahler and hyper­

kahler geometries. In Section 6.2 we study equation ( 6.1) in an arbitrary metric g µv and show that 

it leads to equation (6.2). In Section 6.3 we assume (M, g) is Kahler. In Section 6.4 we assume 

(M,g) is hyperkahler. In Section 6.5 we discuss a general homothety which does not satisfy (6.1). 

Section 6.6 contains examples, and in Section 6.7 we discuss applications of the results. We find it 

remarkable how simply our main results follow from equation (6.1) and, although there are a number 

of discussions of cone geometries in the pure mathematics literature, the simple and direct treatment 

presented here is likely to be especially appealing to field theorists. 

6.1 Sasakian and tri-Sasakian Geometries 

Historically, the notion of Sasakian geometry arose from the study of contact geometry [93), and it 

is usually defined via contact structure by adding to it a Riemannian metric with some additional 

conditions (see e.g. [94)) . 
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A (2n + 1) real-dimensional manifold S with a Riemannian metric h and a triple ( e, rJ, «I>) of 

tensor fields - where e is a Killing vector, rJ is a one-form and «I> is a (1 , 1) tensor fields on S - is 

called Sasakian if the following conditions hold: 

• The Killing vector field e (called the characteristic vector field) and the one-form rJ (called the 

characteristic one-form), which is dual toe, i.e. rJ(Y) = g(e, Y) for all vectors Y E TS, 

satisfy 

rJ(e)=1 , 

in other words the Killing vector e has unit length; 

• The Riemannian metric h is compatible with the Sasakian structure ( e, rJ, «I>) 

h(«I> X, «I> Y) = h(X, Y) - rJ(X)rJ(Y) , 

where X , Y E T Sare any two vector fields on S; 

• The (1, 1) tensor field «I> which is an endomorphism on T S defined by «I>(X) = V x e (Vis the 

Levi-Civita connection of h) satisfies 

«I> o «I>(Y) = - Y + rJ(Y) e 

and 

('\7 X «I>)(Y) = h(e, Y) X - h(X, Y) e. 

There are other properties which may be derived from, or are equivalent to those, but we shall 

omit them here and refer the reader to the book by Blair [94) and a more recent publication by Boyer, 

Galicki and Mann [95) and references therein. The above definition parallels the standard definition 

of a Kahler manifold. In fact ;he two geometries are intimately related. It is this relation that can 

be used to provide a more economical definition of a Sasakian manifold offering greater geometrical 

insight: 

A Riemannian manifold ( S, h) of real dimension k is Sasakian if the holonomy group of the metric 

cone C ( S) = JR+ x S on S with metric g = dr2 + r 2 h reduces to a subgroup of U ( k! 1 ). Then 

k = 2n + 1, n ~ 1 and the manifold ( C ( S), g) is Kahler. 

This definition is consistent with the conclusions reached in the forthcoming sections. 

A Sasakian manifold does not automatically satisfy the Einstein equations. Sasakian-Einstein 

manifolds form a subclass of all Sasakian metrics for which the holonomy group of the metric cone 

11 
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C(S) reduces to a subgroup of the unitary group SU( k!l ). This implies that the Kahler manifold 

C(S) with the cone metric g is Ricci-flat. 

Some typical examples of Sasakian-Einstein manifolds are the Euclidean space JR2n+l, the sphere 

s2n+l and the real projective space miii2n+1 with their canonical metrics. 

Recall how hypercomplex geometry arises from the notion of complex geometry (see e.g. [19]) , 

when instead of one complex structure a manifold carries three complex structures satisfying certain 

commutation relations. In much the same way the notion of Sasakian geometry may be refined to 

manifolds carrying Sasakian 3-structures, otherwise known as tri-Sasakian manifolds. 

A (4n + 3) real-dimensional (n 2:: 1) manifold S with a Riemannian metric hand three Sasakian 

structures (~a , 'T/a , <I>a), a = l , 2, 3, is tri- Sasakian if the three Killing vector fields ~a are such that 

and 

and moreover the tensor fields satisfy the following conditions: 

As before a more insightful definition of a tri-Sasakian manifold may be given in terms of the 

requirement of holonomy reduction: 

A Riemannian manifold (S, h) of real dimension k is tri-Sasakian if the holonomy group of the 

metric cone C(S) = JR+ x Son S with metric g = dr2 + r 2 h reduces to a subgroup of Sp(k! 1
). 

Then k = 4n + 3, n 2:: 1 and the manifold ( C ( S), g) is hyperkahler. 

Since a hyperkahler manifold is necessarily Ricci-flat, every tri-Sasakian manifold is Einstein. 

The simplest examples of tri-Sasakian manifolds are the sphere 3 4n+3 and the real projective space 

miii4n+3 with their canonical metrics. Every three-dimensional Sasakian-Einstein manifold must also 

carry a tri-Sasakian structure (cf. every four-dimensional Ricci-flat Kahler manifold is hyperkahler) . 

For an in depth discussion of tri-Sasakian manifolds and orbifolds see [95, 96] and references therein . 

6.2 Cones and Dilatations 87 

6.2 Cones and Dilatations 

A manifold (M, 9µv) regardless of signature of 9µv admits a conformal Killing vector field W if and 

only if 

(6.3) 

for some smooth function <p. If <p is constant, ir,µ is said to generate a homothety. If ir,µ is hypersurface 

orthogonal, i.e. 

Wµ = aµJ ~ Wµ;v = Wv;µ (6.4) 

for some function f , we say that (M, g) admits ari infinitesimal dilatation . Since equations (6.3) and 

(6.4) are equivalent to equation (6.1) this is the situation we are interested in. It follows that 

(6.5) 

Moreover, defining 

we have 

(6.6) 

We choose the arbitrary constant of integration such that 

V = 2f. 

Now we pick f as one of the ·coordinates and find the metric 9µv on M to be 

There is no cross term df dxi in the metric because ir,µ is orthogonal to the surface f = canst. 

Finally, we write out the equation 

(6.8) 

Using the fact that 

I 

JI 
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and substituting (6.7) into (6.8), we obtain for the ( i, j) component 

8gij 
f 8f = 9ij · 

If we define 

r 2 = 2f ' 

the solution of (6.9) may be written as 

and the basic result (6.2) follows. 

(6.9) 

In fact we need not assume that the metric 9µv is Riemannian, but if Wµ were time-like we would 

need to adjust the signs in (6.2). Note that since V -/= 0 we cannot have wµ light-like. From (6.5) we 

find that , 

But (v' µ v' v - v' v v' µ) W°' = Rfiµv w.B gives 

which contracted on a and µ gives 

w.B R,ev = O. (6.10) 

Obviously (6.10) is incompatible with 9µv being an Einstein metric with non-vanishing scalar cur­

vature. However, it is not incompatible with 9µ v being Ricci-flat, and indeed this will be true if the 

metric hij on the base is Einstein such that 

Rij = ( n - I) hij , 

where n = dimM. Such a metric 9µv is called a Ricci-flat cone. 

Note that the assumption (6.4) that the homothety ir,µ is hypersurface orthogonal played an es­

sential role. For example, Chave, Tod and Valent [97] have exhibited a Ricci-flat (hyperkahler) four­

metric admitting a homothety which is not hypersurface orthogonal. 

We conclude this section by remarking that cones have arisen in supergravity theories under the 

guise of "generalized dimensional reduction". For example, Lavrinenko et al [98] have used the 

scaling invariance of supergravity theories to construct solutions which are eleven-dimensional cones 

over ten-dimensional base manifolds. 
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6.3 Kahlerian Cones and Sasakian Structures 

Now we suppose that M = C(B) is a Kahler manifold with a (covariantly constant) complex structure 

I . We have 

(6.11) 

-It+ It= 0. 

Hence necessarily W is a holomorphic vector field. The reader is cautioned however that since 

Lww = d(iww) + iw(dw) = 2w, 

where w is the Kahler form with components Wµv = 9µcrl~, we have 

and hence W is not Hamiltonian and there is no conventional moment map. 

The vector field 

(6.12) 

satisfies 

Kµ;v = Wµv. 

Thus K is a Killing field and it is easily seen to be holomorphic and to commute with w. In addition, 

K is a Hamiltonian vector field whose moment map is f, and hence the level sets of the moment map 

coincide with the base manifold B. Kµ is tangent to the base manifold B and is therefore a Killing 

field of the metric hij. From (6.12) we have 

Thus the length of the vector Kµ is constant along the base manifold B. Choosing V = I as our base 

manifold we have the following structure on B : 

• a one-form T/i = Ki 

• a vector field ~i = Ki 

• an endomorphism <I>i = Ij of the tangent bundle TB of B 
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• a metric hij . 

It is straightforward to check that (B, hij, ti, 'f/i, <I>ij) satisfies the conditions to be a Sasakian 

manifold defined in Section 6.1. 

Note that we have not assumed that Mis Ricci-flat. If we did so, then (B, hij) would necessarily 

be a Sasakian- Einstein manifold. 

6.4 Hyperkahlerian Cones and tri-Sasakian Structures 

Now we suppose M = C(B) is hyperkahler and hence necessarily Ricci-flat. The base metric must 

therefore be Einstein. The vector field W is tri-holomorphic, i.e. it preserves the three complex 

structures la and their algebra. There are three Killing vector fields Ka tangent to B and commuting 

with w: 

However now 

and 

Thus we have a non-triholomorphic SU(2) action on M which descends to the base manifold B. We 

' now have the-following structure on B: 

• three one-forms ryf = (Ka)i 

• three endomorphisms ( <I>a )~ = (Ja)~ of the tangent bundle TB of B 

• a metric hij . 

It can be easily verified that the tensor fields satisfy all conditions in the definition of a tri-Sasakian 

structure given in Section 6.1, and hence the base manifold Bis tri-Sasakian. Each generator Ka of 

the SU(2) action is holomorphic with respect to its own complex structure la, and f is the associated 

moment map. The emergence of an extra SU(2) isometry group was noticed in [92]. For more infor­

mation and references to the mathematical literature on tri-Sasakian structures the reader is directed 

to [33, 95, 96]. 
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6.5 Hypersurface Non-orthogonality 

As we have emphasized above the assumption (6.4) that the ·homothetic Killing field w is hypersurface 

orthogonal is essential for our result. Suppose that w is a. homothety which is not hypersurface or­

thogonal. Defining 

one finds that 

Lw l~ = l':,F~ - F':rl~ . 

Thus, in general, w need not be holomorphic with respect to any complex structure. Moreover, defin­

ing K as in (6.12) we have 

Therefore we do not necessarily have an extra isometry. One might wonder whether, assuming M 

is hyperkahler, any non-trivial homothety could exist. In their paper Chave et al [97] gave a family 

of four-dimensional hyperkahler metrics with a tri-holomorphic homothety which is not hypersurface 

orthogonal. The metric is of the form 

where the metric on the base gives a ( 4, 0) sigma model and Wand A satisfy monopole-like equations. 

6.6 Symmetry Enhancement and Examples 

There is no shortage of examples of tri-Sasakian manifolds (see [33] and references therein). How­

ever, unless we take B to be a sphere S4k-l with its standard tri-Sasakian structure, the manifold M 

will be singular at the vertex -r = 0. In some cases the singularity may be removed to give a non­

singular hyperkahler manifold which no longer admits an exact dilatation symmetry but continues to 

do so approximately at infinity. 

The obvious examples are the ALE cones for which the base B is S 3 If, where r is a finite 

subgroup r c SU(2) C SO( 4) . They may be thought of as the quotient of JR4 by r with an orbifold 

fixed point at the origin. As is well known [53] this may be blown up to give a non-singular manifold. 

It is instructive to consider the multi-centre case (see e.g. [55]). This may be constructed as the 

hyperkahler quotient [65] 

w+l I I (U(l)r · 
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The level sets of the moment maps are 

\ (6.13) 

where a = 1, ... , m, and the quaternions (qa, q) parametrize IH[m+l. The quantities ((a - (13 ) 

correspond to the relative separation of the centres. Now let (a -+ 0 for all a . We get the orbifold 

limit in which the sizes of all two-cycles shrink to zero. In the same limit the level sets (6.13) become 

invariant under the dilatation of IH[m+l given by 

which descends to the quotient orbifold. Thus the appearance of the dilatation symmetry is asso­

ciated with the shrinking of two-cycles. Note that a general ALE metric has no SU(2) isometry, 

tri-holomqrphic or not. As we approach the orbifold limit the isometry group is enhanced to include 

IR+ x SU (2) where IR+ corresponds to dilatations. Note also that although there are many hyperkahler 

manifolds with non-triholomorphic SU(2) actions they are not all cones. Neither are they necessarily 

asymptotically conical. For example, all BPS monopole moduli spaces presented in Chapter 3 admit 

such an SU(2) or S0(3) action, which arises from rotations in physical space, but they do not admit 

dilatations because of the scale set by the monopole mass. 

An interesting question for further study is whether one can construct non-locally flat dilatation 

invariant hyperk,ahler manifolds using the hyperkahler quotient construction on a flat space. 

6. 7 Discussion 

Cones over Sasakian and tri-Sasakian manifolds have made an appearance in M-theory [32, 33]. One 

considers p-brane solutions of the form 

2 

H-a ( -dt2 + dx~) + H 7J gc , 

with H =I+ (a/r )/3 and gc the metric on a Ricci-flat cone with base B. These interpolate between 

JEP, 1 x C(B) at infinity and AdSp+2 x B near the throat. This supergravity solution corresponds to a 

large number, k, of Dirichlet p-branes. 

The general belief is that the U ( 1) factor of the world-volume U ( k) gauge theory is associated 

with the centre of mass motion. The (9 - p) scalars give the transverse coordinates of the branes. 

The amount of supersymmetry of the world-volume theory is expected to agree with the amount of 

supersymmetry of the supergravity background. 
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If p = 3 it is tempting to make a connection with the four-dimensional rigid N = 2 conformally 

invariant theories considered in [92]. However, although cones appear both in the construction of the 

bulk space-time and as the target space of the world-volume theory the cones are, in general, not the 

same. The base B of the cone used to construct the bulk space-time is five-dimensional and Einstein­

Sasakian. The base of the cone of the target space of a putative N = 2 world-volume theory must be 

( 4n - 1 )-dimensional and tri-Sasakian. Moreover, the amounts of supersymmetry of the supergravity 

solution and the world-volume theory do not agree. 

We have a better bet with N = I superconformal theories based on six-dimensional Calabi­

Yau cones. The idea would be that the six centre of mass coordinates of the D3-branes in the ten­

dimensional type IIB string theory should assemble into three complex Higgs fields of the world­

volume theory. This appears to coincide with the example considered in [32]: one takes B = 

(SU(2) x SU(2))/U(l) with its Sasakian-Einstein structure. 

For the M2-brane the cone of the supergravity solution is seven-dimensional and this could be 

taken to be tri-Sasakian. One might then contemplate identifying a hypermultiplet of the (2 + 1)­

dimensional world-volume theory with the coordinates transverse to the M2-brane. However, this 

looks rather artificial and suggests that one should look elsewhere for the geometrical origin of the 

hypermultiplets. By analogy with our discussion for the D3-brane it would seem to be more fruitful 

to follow [32] and consider three-dimensional N = 2 world-volume theories 1 associated to an eight­

dimensional Calabi-Yau cone. The case analyzed in [32] is B = S0(5)/S0(3) with its standard 

Sasakian-Einstein structure. 

1The counting N = 2 is from the three-dimensional point of view. 

,, 

I 



CHAPTER 7 

Single-sided Domain Walls 

It is now widely recognized that topological defects with p spatial dimensions (p-branes) invariant 

under half the maximum number of supersymmetries - BPS configurations - play a central role 

in non-perturbative string theory and M-theory. If p is less than (n - 3), where n is the space-time 

dimension, then such objects can be studied in at least two limits. One is the light approximation 

in which the gravitational field that the objects generate is ignored. Treated classically, the world­

volume theory of such objects is described by a Dirac-Bom-Infeld type action. The other is the 

heavy approximation, in which the gravitational field generated by the objects is taken into account 

and one looks for solutions of the supergravity equations of motion. 

If p < n - 3 heavy branes give rise to asymptotically flat metrics in directions transverse to the 

brane, and from a distance they behave more or less like light branes moving in a flat background. 

However, if p = n - 3 (~ortices) or p = n - 2 (domain walls), the metrics they generate are not 

asymptotically flat. For vortices - for example, the 7-brane of the ten-dimensional type IIB theory 

(99] - the metric has an angular deficit. In the case of domain walls, their effect on space-time can 

be even more drastic. For example, conventional domain walls, even in the thin-wall approximation, 

bring about the compactification of space [100]. This happens as follows. Either side of the domain 

wall is isometric to the interior of a time-like hyperboloid in Minkowski spacetime JEn-l,l. To get 

the entire spacetime one glues two such domain walls back to back. The induced metric is continuous 

across the domain wall but the second fundamental form has a discontinuity which gives the distribu­

tional stress tensor. Another feature of conventional domain walls, which is more or less obvious from 
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the description just given, is that one does not expect to have more than one in a static configuration. 

Domain walls of an unconventional (orbifold) type play an important role in Hofava and Witten's 

approach to the Es x Es heterotic string theory in M-theory [101, 102). They also have a drastic 

global effect on the structure of space-time. Of course, in addition to their gravitational fields one 

must take into account the effects of anomalies and the four-form field strength. 

In this chapter, which is based on [103], we study the global structure of some other space-times 

containing BPS domain walls that have arisen in M-theory. A striking feature of M-theory is the 

extent to which configurations in eleven dimensions are non-singular even though they may appear 

to be singular in lower dimensions. We shall therefore be particularly interested in everywhere non­

singular configurations. 

The organization of the chapter is as follows. Section 7 .1 contains the background material. It de­

scribes bri~fly the Bianchi classification scheme, since the domain wall solutions of M-theory that we 

intend to study are invariant under group actions of various Bianchi types. Since most geometries that 

arise are Kahler we introduce the Monge- Ampere equation, which allows us to give a more uniform 

description of the metrics. We then study various solutions of M-theory which have symmetries of a 

domain wall. In Section 7.2 vacuum Bianchi type I and II solutions are presented. The most impor­

tant example is BPS and is based on the Bianchi type II group, otherwise known as the Heisenberg 

group. Usually this is regarded as an orbifold solution with a singularity. In Section 7.3 we argue 

that it is desirabie to resolve the singularity and show how this may be achieved to give a complete 

non-singular solution representing a single-sided domain wall. Bianchi type VI0 and VIIo domain 

walls are presented in Section 7.5, and the singularity of the latter solution is argued to be resolv­

able. A description of the four-metrics in terms of the Kahler potential which solves the appropriate 

Monge-Ampere equation is given. 

These four-dimensional Ricci-flat examples are generalized to higher dimensional Calabi-Yau 

metrics in Section 7.6 (except in the Bianchi type I case for which the metric exists in odd as well as 

in even dimensions). 

Related Bianchi type solutions, some of which are BPS, with negative cosmological constant are 

presented in Sections 7.4 and 7.5.3, and their higher-dimensional generalizations are considered in 

Section 7 .6. We believe that these are relevant for the AdS/CFT correspondence and other future 

applications of eleven-dimensional supergravity. 

Before closing the discussion of single-sided domain walls, in Section 7 .7 we comment on solu-
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tions invariant under other Bianchi type groups, namely the Bianchi type III. 

7.1 Bianchi Domain Walls 

We shall consider p-brane solutions of the form: 

M X JEP-3,1 
4 ' 

where M4 is a non-compact Riemannian four-manifold which is either Ricci-flat or has negative cos­

mological constant. If p = 3 we would be considering domain walls in five space-time dimensions. 

We are looking for metrics on M4 which depend only on one coordinate t, transverse to the domain 

wall. The metric should be homogeneous in the directions parallel to the wall. Mathematically, this 

means that we are looking for cohomogeneity one, or hypersurface homogeneous, metrics invariant 

under the action of Lie group G which acts transitively on three-dimensional orbits. In the cases we 

are interested in G may be taken to be three-dimensional and the possible groups have been classified 

by Bianchi (see e.g. [35]). The problem is very similar to that encountered in studying homogeneous 

Lorentzian cosmologies and we shall freely use standard results from that subject [104). The Bianchi 

types relevant for this chapter are type I, II, VI0 and VIIo . Domain walls of types I and II are discussed 

in Section 7.2 while the treatment of the more "exotic" solutions is relegated to Section 7.5. 

In the following we shall find that all Ricci-flat solutions are singular and describe how the sin­

gularity of the type II solution may be resolved. The resolution of this singularity gives a complete 

Ricci-flat Kahler manifold that we shall call the BKTY metric. 1 

In the light of the AdS/CFT correspondence [27, 28, 29] and its generalization [34] it is instructive 

to investigate domain walls in the Anti-de Sitter background. Sections 7.4 and 7.5.3 are therefore de­

voted to the study of four-manifolds of the abovementioned Bianchi types with negative cosmological 

constant. 

7.1.1 Bianchi Models 

Let us now be more specific about the four-manifolds M4 in question. Spaces of interest are homoge­

neous manifolds with the following ansatz for the metric: 

(7.1) 

1The name BKTY is derived from the initials of the authors of [105 , 106, 107] who constructed this space as a certain 
degeneration of the K3 surface. 
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Bianchi type n1 n2 n3 Group of motions 

I 0 0 0 JR3 

II 0 0 1 Nil 
Vlo 1 -1 0 E(l, 1) 

VIIo 1 1 0 E(2) 

Table 7 .1: Several Bianchi type groups 

Here t is the imaginary time and the metric coefficients are functions oft only. The one-forms { ak} , 

k = l, 2, 3, are left-invariant one-forms of the three-dimensional group G of isometric motions and 

as such satisfy: 
k l i . 

da = - - nk E · ·k a I\ aJ no sum over k , 2 iJ ' 

where constants { nk} are the structure constants of G. The four-manifolds may be classified according 

to their group of isometric motions. This is the Bianchi classification in which each type corresponds 

to a particular set of values of the structure constants { nk}. In the following manifolds of four Bianchi 

types will arise, whose properties are summarized in Table 7 .1. Note that all four groups of isometric 

motions are solvable, in fact they all have one non-trivial commutator. The Einstein equations for 

metric (7.1) reduce to the following set of second-order ODEs: 

-Roo 
a b C -+-+- , (7.2) 
a b C 

R\ 
(abc) · 1 1 

[nf a4 
- (n2b2 - n 3c2)2] (7.3) --+---

abc 2 a 2b2c2 

R22 
(abc) · 1 1 

[n~b4 
- (n1a2 - n3c2)2] (7.4) --+---

abc 2 a 2b2c2 

R33 
(abc)· 1 1 

[n~c4 - (n1a2 - n2b2)
2
] (7.5) --+---

abc 2 a 2b2c2 

where a = da/ dt , etc. If the metric on M4 is Ricci-flat, i.e. Rab 

integrable in most cases. The resulting manifolds are singular. 2 

0, equations (7 .2)-(7 .5) are 

For non-Ricci-flat manifolds, in paiticular for manifolds with Rab = Aoab' A < 0, the Einstein 

equations are not in general integrable. However, a number of solutions with extra symmetries exist. 

For example, in Section 7.4 we discuss the Bergmann metric - a Bianchi type II solution with ne­

gative cosmological constant. Unlike the Ricci-flat Bianchi type II solution, the Bergmann metric is 

complete. 

2Many self-dual four-dimensional vacuum solutions of various Bianchi types have been found in [108]. 
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7.1.2 Monge-Ampere Equation 

From the theory of Kahler manifolds it is known that the Kahler metric may be obtained from a 

real-valued function of complex holomorphic coordinates z, z = { za, za} called the Kahler potential: 

9ab = 8a {% K(z, z) . 

Here aa = 8 / aza and {% = 8 / azb. A Kahler manifold is Kahler-Einstein if the Kahler metric 9ab 

satisfies the Einstein equations: 

These are equivalent to the requirement that the Kahler potential satisfy the so-called Monge-Ampere 

equation obtained as follows. The Ricci tensor is given by: 

nab = - aa {% log det g(z, z)) ' 

and hence the Kahler-Einstein condition reduces to 

det(3a {% K) = e-AK. (7.6) 

In general this is a complex partial differential equation solving which is not straightforward. If, how­

ever, the manifold possesses certain amount of symmetry, the Monge-Ampere equation may reduce 

to an ODE. In the following sections we shall deduce Monge-Ampere equations and their solutions 

for most of the Kahler manifolds that we study. 

7 .2 Vacuum Solutions of Bianchi type I and II 

We shall begin by assuming that the domain walls are invariant under three translations, i.e. that they 

are Bianchi type I, or Kasner, ~ut we shall find that to be supersymmetric objects they should instead 

be invariant under the nilpotent Bianchi type II group Nil often called the Heisenberg group. 

7.2.1 Kasner walls 

One's first idea might be to choose the metric on M4 to depend only on one "transverse" coordinate, 

call it t, and to be independent of the other three coordinates (x1 , x 2 , x3 ) say. Thus th~ metric admits 

an isometric action of JR3 or, if we identify, T 3 and falls into the vacuum Bianchi I, or Kasner class of 

solutions [109] : 

(7.7) 

I 
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where constant a1, a2, a3 satisfy: 

(7 .8) 

There are two problems with this metric. The first problem is that if metric (7 .7) is not flat, it is 

singular at the domain wall t = 0; and the second problem is that it is not BPS. 

Consider, for example the rotationally symmetric case 

Metric (7.7) is then singular at t = 0, but complete as t -+ oo. Thus, in accordance with our general 

remarks made in the beginning of the chapter, it is not asymptotically flat in the usual sense although 

the curvature falls off as C 2
. 

7.2.2 B~S Walls: Bianchi type II ,. 

To be BPS the manifold M4 must admit at least one, and hence at least two, covariantly constant 

spinors. If the solution admits at least one tri-holomorphic Killing vector it may be cast in the form: 

(7.9) 

where x = (x1 , x2 , x 3 ) with 

curl w = grad V. 

One may eith~r regard the ignorable coordinate T as lying in the world-volume of the p-brane or as a 

Kaluza- Klein coordinate. Obviously, one may entertain both interpretations simultaneously, in which 

case one is considering the double-dimensional reduction of a brane in a lower dimensional space 

[110]. For the time being we will not tie ourselves down on this point. In order to get a domain wall 

solution we want some sort of invariance under two further translations and we are naturally led to 

choose for the harmonic function V 

V =z, 

where we now interpret the coordinate z as a transverse coordinate. With x1 = x, x 2 = y, x 3 = z 

metric (7.9) becomes: 

The transverse proper distance is given by 

2 3 
t = - z2 3 . 

(7 .10) 
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The metric is complete as z -+ +oo, the curvature again falls off as r 2 but it clearly has a singularity 

at z = 0, at which the signature changes from ( + + ++) to (- - --). We shall return to this point 

shortly. 

The Monge-Ampere equation and the Kahler potential for this metric will be given in Sec­

tion 7.4.3, where suitable complex coordinates are introduced. 

7 .2.3 Geometrical Considerations and the Heisenberg Group 

Evidently metric (7 .10) is not invariant under translations in the y coordinate; nevertheless it admits 

a three-dimensional group of isometries. The metric may be written in the general form (7 .1) so that 

the group of isometric motions is manifest: 

2 2 

ds2 = dt2 + (~t)-3 (0'3)2 + (~t) 3 ((0'1)2 + (0'2)2)' (7.11) 

where {O'k} are left-invariant one forms on the Nil, or the Heisenberg group. From this point on we 

shall refer to the metric (7 .10) ( or (7 .11)) as the Heisenberg metric. 

The Heisenberg group may be defined as the nilpotent group Nil 

upper triangular matrices: 

The Lie algebra of Nil has as a basis3 : 

{g} of 3 x 3 real-valued 

3We adhere to the conventions that if a group G with Lie algebra [ea, eb] = Ca e bee acts on the left on a manifold M then 
the Killing vector fields Ra have Lie brackets [Ra, Rb] = -Ca \Re, while the left-invariant one-forms g- 1 dg = ea CJa 
satisfy dCJe = -!Ca eb(Ja I\ (lb, 
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and the only non-vanishing commutator is 

The basis elements { ek} correspond to three right-invariant Killing vector fields 

a a 
8x + y 8T' 
a 
8y, 

a 
8T ' 

for which the only non-vanishing commutator is 

and three left-invariant one-forms 

al 

whence 

dx, 

dy, 

dT - xdy, 

In addition, this metric admits a rotational Killing vector of the form 

8 8 x2 - y2 8 
m= - x - +y - - -. 

8y 8x 2 8T 

This Killing field m induces a rotation of a 1 into a 2 but leaves a 3 invariant. 

(7 .12) 

(7.13) 

(7.14) 

The four-dimensional Heisenberg manifold (7 .10) is Ricci-flat Kahler and hence carries a hyper­

kahler structure. To exhibit the three Kahler forms Jet us introduce the following orthonormal basis of 

one-forms { e0 , ek}: 

eo 1 
z-2 (dT - xdy) , (7 .15) 

el 1 
Z2 dx , 

e2 1 
z2 dy, 

e3 1 
z2 dz. 
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In terms of these frames the three self-dual two-forms which are the Kahler forms are: 

Dx = e0 I\ e1 + e2 /\ e3 , and cyclic permutations , (7.16) 

and for the Heisenberg metric (7 .10) these become 

( dT - xdy) /\ dx + z dy I\ dz , (7.17) 

Dy (dT-xdy)/\dy+zdz/\dx, 

Dz (dT-xdy)/\dz+zdx/\dy. 

It is easily seen that the self-dual two-forms Dx , Dy and Dz - the Kahler forms - are closed and 

hence harmonic. They are clearly invariant under the action of the Heisenberg group. However only 

Dz is invariant under the circle action generated by the rotational Killing field m (7.14). 

7.2.4 Circle Bundles and Volume Growth 

If one wishes to identify the coordinates x and y to obtain a two-dimensional torus one is forced to 

make appropriate identifications of the coordinate T. The result is a circle bundle over a two-torus. 

Such bundles Mk are indexed by an integer k which is essentially the Chern class. They are often 

referred to as Nilmanifolds. 

If the periods of ( x, y, T) are ( Lx, Ly, LT) then one must have: 

k = LxLy E z. 
LT 

(7.18) 

If that is true then 

and hence exp(Lxe1), exp(Lye2) and exp(LTe3) will close on a discrete group Nk. One then has: 

which clearly admits a global right action of U(l) = exp(ze3). 

The curvature of the connection pulled back to the base T 2 is 

and the Dirac quantization condition is 

F = d a 3 = dy I\ dx , 

L
I { F=kEZ. 
T Jr2 

(7.19) 
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We shall see in Section 7.3.6 that the relevant value of the integer k in our case is k = 3. Formula 

(7.19) takes on a more conventional appearance if one chooses LT = 21r. Alternatively, one could 

think of e = 21r / LT as an electric charge. It has been known for some time that a Kaluza- Klein 

reduction on the Heisenberg group gives rise to a uniform magnetic field [111]. Interestingly, since 

the present solution is BPS, it should be stable against production of monopole-anti-monopole pairs. 

This is in contrast to other examples of magnetic fields in Kaluza- Klein theories, for example in vacua 

studied in [112, 113] such monopole- anti-monopole pairs are produced. 

The curves of constant ( x, y, T) are geodesics orthogonal to the group orbits and the coordinate t 

is the radial distance. If the orbits are compact we may estimate how the four-volume of a geodesic 

ball increases with t by calculating the four-volume of the metric (7 .10) between t = t1 say and t. 
4 

This is easily seen to grow with t as ts. We shall use this fact in Section 7.3.5 to compare with the 

work of Bando, Kobayashi, Tian and Yau [105, 106, 107] on an exact metric on the complement of a 

smooth cubic curve in ([]D2 . 

7 .3 Resolution of the Singularity 

In this section we describe the physical motivation for resolving the singularity of the Heisenberg 

manifold (7 .10) and analyze the underlying mathematical structure of the proposed resolution. 

7.3.1 8-branes, 6-branes and T-duality 

The metric (7.10) has been reached previously by a different route. The massive type IIA ten­

dimensional theory of Romans [114] admits BPS solutions corresponding to Dirichlet 8-branes whose 

properties have been discussed by Polchinski and Witten [115] and Bergshoeff et al [99]. The solu­

tions are based on a harmonic function of the coordinate transverse to the 8-branes, which has dis­

continuities at the location of the 8-branes. The relation of Romans' theory to eleven-dimensional 

supergravity theory is unclear.4 However, under a double T-duality with respect to two coordinates 

lying in the 8-brane, x and y say, it may be reduced to a 6-brane solution of the IIA theory compac­

tified to eight dimensions. Under T-duality, the coordinates x and y become transverse coordinates 

and, strictly speaking, because the solution is independent of the coordinates x and y, one has a su­

perposition of 6-branes. A 6-brane solution of the ten-dimensional type IIA theory may be lifted to 

eleven dimensions to give a BPS 7-brane wrapped around the eleventh dimension. In other words the 

4See however [116]. 
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eleven-dimensional 7-brane is a Ricci-flat metric of the form: 

JE6,l X M 4, 

where M4 is a multi-Taub-NUT metric of the form (7.9) : 

with 

curlw = grad V. 

105 

(7.20) 

The coordinate T is the eleventh direction. Coordinates x are transverse to the 6-brane. A single 

6-brane corresponds to the Taub-NUT metric (see Section 3.2.1) with positive mass which has 

1 
V = l+-. 

r 

In order to get a superposition of 6-branes which is independent of x and y (at least up to gauge 

transformations) one should choose 

V = z, 

and this is indeed what Bergshoeff et al [99] find. 

7 .3.2 Sources 

As it stands, metric (7 .10) is singular at z = 0. In fact this singularity resembles the singularity in 

the self-dual Taub- NUT metric with negative mass parameter for which V = l - 1/r in (7.9) (see 

Section 3.2.1). On the three-surfacer = l the metric changes signature from (++++)to (- - --). 

The Taub-NUT metric with negative mass parameter is asymptotic to a complete topologically non­

singular self-dual Riemannian manifold - the Atiyah-Hitchin manifold [17]. The presence of the 

singularity at r = l is a clear indication of the fact that the Taub- NUT approximation is broken already 

at values of r greater than one. It is natural to suppose that something similar may be happening in the 

case of the Heisenberg metric (7.10). Indeed, in the next section we shall make a concrete proposal 

for the exact metric. 

However, Bergshoeff et al [99] and others writing on supergravity domain walls. [ 117] do some­

thing else. They replace z by [z[ which results in a configuration symmetric under the reflection 

z --+ -z. The justification for this procedure is that one has inserted a distributional source at z = 0 

representing the domain wall, and the regions z > 0 and z < 0 correspond to the two sides of the do­

main wall. Geometrically this resembles but is not equivalent to the procedure of Israel [118] used in 
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classical general relativity, who describes a shell of matter by gluing together two smooth space-times 

M± across a hypersurface ~- The Israel matching conditions are that the two metrics gt induced on 

~ from M± agree. One then evaluates the distributional stress tensor from the discontinuity in the 

second fundamental forms (K/; - Kij) across~-

From the point of view of M-theory there are two objections to doing this in the present case: 

• There are no obvious sources in M-theory, 

• The induced metric on the hypersurface ~ given by z = 0 is singular. 

7 .3.3 Orbifold Walls 

An alternative attitude to the singularity of (7 .10) at z = 0 would be to identify the region z > 0 with 

the region ; < 0. The singularity would then be viewed as a consequence of the fact that the reflection 

z -t - z has a fixed point set. Thus one has something analogous to the two orbifold domain walls at 

the ends of an interval in Hofava and Witten's compactification of the eleven-dimensional M-theory 

on 8 1 x Z 2 to give the Es x Es heterotic theory in ten dimensions [101, 102]. In the formulation of 

[119] one considers the following eleven-dimensional metric on JE3,1 x 8 1 /Z2 x X 6 : 

d 2 1 4 H2 d 2 H 6 5 = H g µv + Y + g AB , 

I 

where g!v is the four-metric on the flat Minkowski space-time JE3,1 , y is the coordinate on the interval 

8 1 /Z2 ranging from - 1r p to 1r p, and g~B is the metric on the compact Calabi-Yau space X 6. Function 

H is a harmonic function linear in y and invariant under the reflection y -t -y. In addition, there 

is a non-vanishing four-form field strength in the eleven-dimensional theory. In the effective five­

dimensional theory obtained by generalized Kaluza-Klein dimensional reduction on the Calabi-Yau 

space X 6 , this solution can be viewed as a pair of 3-brane domain walls on the orbifold fixed planes 

y = 0 and y = 1rp. The 3-branes are in fact the M-theory 5-branes with two world-volume dimensions 

"wrapped" on a two-cycle in X 6 . 

In our case the solution is defined on JE 6,1 x JR+ x Nil, where JR+ is parametrized by z > 0, and 

the three-manifold Nil parametrized by ( x, y, T) is the group manifold of the Heisenberg group. We 

may think of this as a 9-brane solution of eleven-dimensional supergravity, where the world-volume 

of the 9-brane is taken to be Nil x JE6 ,1 . Replacing Nil by Mk = Ni l/Nk defined in Section 7.2.4 

amounts to "wrapping" the 9-brane on the 8 1 bundle over T 2 . Just as in the Hofava-Witten case we 

do not have the full 80(9, 1) Lorentz invariance, rather it is broken to 80(6, 1) x Nil. 
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7 .3.4 Scherk-Schwarz Reduction to Seven Dimensions 

In the light of the comments above, particularly the absence of the Lorentz invariance, perhaps the 

most attractive interpretation of the solution (7 .10) is that adopted by Lavrinenko et al [98]. One 

regards it as a solution of the so-called "massive" eight-dimensional theory which is obtained by re­

ducing eleven-dimensional supergravity a la Scherk and Schwarz [120]. In other words, one restricts 

the eleven-dimensional theory to solutions invariant under the action of the three-dimensional Heisen­

berg group. The resulting theory has a potential for the scalar fields arising from the reduction, and, 

as a consequence, there is no solution with the eight-dimensional Poincare invariance. Lavrinenko et 

al [98] therefore propose using the BPS solution (7 .10). In their interpretation z is, as with us, the 

transverse coordinate (i.e. the eighth coordinate) and (x, y, T) are the ninth, tenth and eleventh coor­

dinates in no particular order. Since the size of the x and y directions goes to infinity as z -t oo, and 

the size of the T direction goes to zero, the Scherk- Schwarz reduction is not really a compactification 

even if one identifies the coordinates so as to obtain an 8 1 bundle over T 2
. It is, however, certainly a 

consistent truncation of the theory. 

7 .3.5 Blowing up the Singularity 

If the configuration (7 .10) really does come from M-theory we still face the problem of the source. 

There are two possibilities: 

• Either to follow Bergshoeff et al [99] and Lavrinenko et al [98] and take the view that the 

domain wall has two sides, 

• Or to adopt the orbifold interpretation and identify the regions of positive and negative z. 

Both approaches give rise to a singularity. The question arises as to whether one can somehow 

smooth out the singularity? We are going to argue that the answer is no if we adopt the first course 

and yes if we adopt the second. Assuming that only gravity with no extra form-fields is present, we 

thus seek a non-singular Ricci-flat BPS metric which is asymptotic to the Heisenberg metric (7.10). 

To see that the first approach is ruled out we note that if the singularity could be resolved, then 

keeping coordinates (x, y, T) would give a complete Ricci-flat metric on JR. x ~'where~ is a closed 

complete three-manifold. In particular, the manifold would have two "ends", i.e. two infinite regions. 

However, if this were true we could construct a "line" between the two ends, that is a geodesic which 

minimizes the length between any two points lying on it. But by the Cheeger-Gromoll theorem this 
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is impossible (see e.g. [50]). Thus we are forced to adopt the second course of action which is 

investigated in detail in the following section. 

Before doing so it is perhaps worthwhile pointing out the analogy of the situation in question 

with the case of the blow up of IE4 /Z2. One might have wondered if it is possible to glue together 

two copies of IE4 to get a Ricci-flat wormhole-like structure with topology lR x W 3 . Again, by the 

Cheeger- Gromoll theorem this cannot happen. In fact, we know that the correct blow up of JE4 /Z2 

is the Eguchi- Hanson manifold on the cotangent bundle of ([]D1 [51] and that this manifold has only 

one infinite region. 

Another completely analogous situation is the Taub- NUT approximation to an orientifold plane. 

This is obtained by taking the metric (7.9) with V = l - l/r and making a further identification [121]. 

The metric is incomplete because of the singularity at r = l. This singularity cannot be resolved by 
.. 

joining together two copies of the Taub-NUT metric across r = l because this would also produce 

a manifold with two ends. The correct way to blow up the singularity of the Taub-NUT metric is to 

pass to the Atiyah- Hitchin manifold. 

7.3.6 Complement of a Cubic in (CJP2
: the BKTY Metric 

We now tum to the problem of finding, or more properly speaking identifying, the exact metric of 

which the Hei~e:hberg metric (7.10) is an asymptotic approximation. This task is greatly facilitated 

by the extremely helpful review of Kobayashi [59] on degenerations of the metric on K3 and in 

what follows we shall rely heavily on that reference. The general self-dual four-metric on K3 has 

(including an overall scale) a 58 parameter moduli space. As we move to the boundary of the moduli 

space in certain directions the four-metric may decompactify, while remaining complete and non­

singular. Among the degenerations discussed by Kobayashi there is one he refers to as type II (not 

to be confused with Bianchi type II). It may be constructed by considering the complement M4 = 

([]D2 \ C of a smooth cubic curve C in the complex plane ([]D2 . This has a Kahler metric : the Fubini­

Study metric which is incomplete because the cubic has been removed. However, using general 

existence theorems for solutions of the Monge-Ampere equation Yau, Tian, Bando and Kobayashi 

[105, 106, 107] have shown that there exists a complete non-singular Ricci-flat Kahler (and hence 

self-dual) metric on M4. Clearly the metric must blow up on the cubic C which corresponds to 

infinity. 

Consider now the neighbourhood of the cubic C. The curve itself is topologically a two-torus T 2 . 
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A normal neighbourhood consists of a disc bundle over T 2 . The centre of the disc corresponds to 

infinity in M4. The radial direction corresponds to a geodesic in the self-dual metric. A surface of 

constant radius is a circle bundle over the torus. This is the three-dimensional Nilmanifold. 

Kobayashi tells us that, as we approach infinity, the Nilmanifold collapses in such a way that the 

metric spheres are an 8 1 bundle over T 2 , the size of the 8 1 falls off as r 1/ 3 (t is the radial distance) 

and the size of each cycle in T 2 grows as t 113 . The volume of a metric ball grows as t413 . This is 

exactly the behaviour of the Heisenberg metric (7 .11) . It is therefore very plausible that the metrics 

constructed by Yau, Tian, Bando and Kobayashi do indeed asymptote to the metric (7.11). In what 

follows we shall assume that this is true. 

The topology of M4 is non-trivial5 : it is not simply connected and has 

Hence if arguments like those in [122] apply, the manifold should admit at least two normalizable 

anti-self-dual two-forms. Using the analysis of [122] one deduces that there should be a 2 x 3 = 6 

dimensional family of transverse traceless zero modes of the Lichnerowicz operator. Adding the trivial 

overall scaling we expect to find a seven-dimensional family of metrics. 

7.3.7 Gravitational Action 

Complete Ricci-flat (vacuum) Einstein manifolds are gravitational instantons. Let us evaluate their 

gravitational action. If M is a non-compact manifold or a compact manifold with boundary 8M the 

gravitational action is: 

- - R -- TrJC l 1· l l 
l61r M 81r 8M ' 

(7.21) 

where R is the Ricci tensor_ and JC is the second fundamental form on M. The first term is the 

contribution from the bulk which vanishes for Ricci-flat manifolds; the second term is the contribution 

from the boundary (possibly boundary at infinity). Traditionally only four-manifolds were regarded as 

gravitational instantons, however expression (7 .21) is valid for complete Ricci-flat Einstein manifolds 

in any dimension. 

Let us estimate the contribution from the boundary. Let n be a vector normal to the boundary 

8M, then the second term in (7.21) is: 

l l l 8 -
8 

TrJC = -
8 
~ (Vol8M) . 

7f 8M 7f un 
---------------

5 We thank Ryushi Goto for this computation. 
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By Vol aM we mean the unit volume of the boundary. For four-dimensional Ricci-flat manifolds, if t 

is the radial distance, the boundary term contribution to the action is finite if Vol aM grows no faster 

than linear in t. This implies that the volume growth of a large metric sphere at infinity should be no 

faster than t2. Similarly, for higher-dimensional instantons the "critical" volume growth for which the 

boundary contribution to the action is finite (but not necessarily vanishing) is t2 . 

The BKTY manifold possesses a non-compact complete Ricci-flat Kahler metric with the Heisen­

berg end and can thus be viewed as a gravitational instanton. Since it is Ricci-flat, its gravitational 

action receives no contribution from the first term in (7.21). At infinity the BKTY metric looks like 

the Heisenberg metric (7 .11 ). The boundary of (7 .11) at large values oft looks like an S1 bundle over 

T 2, where the two-torus is parametrized by ( x, y), and T is the fibre coordinate. Hence the second 

term in (7.21) is: 

- TrK = -- (VolaM) = -- -t V . 1 1 1 a 1 a [ ( 3 ) l/
3 l 

81r 8M 81r an 81r at 2 . 

V = Lx Ly LT, where Lx, Ly and LT are the periods of x, y and T as described in Section 7.2.4, and 

we get 

Note that the unit volume of aM grows as t 113 , which is slower than the critical estimate t, hence 

it is not surprising that the gravitational action of the BKTY instanton is finite and tends to zero as 

t-+ +oo. 

7.4 Bianchi types I and II with Negative Cosmological Constant 

In this section we look for p-brane solutions of the form M 4 x JEP- 3,1 , where now M 4 is not a Ricci­

flat manifold but rather a four-manifold with negative cosmological constant. Such solutions may be 

interpreted as branes in the Anti-de Sitter background and are likely to be of interest in connection 

with the AdS/CFT correspondence [27, 28, 29, 34]. 

In this section we consider four-manifolds of Bianchi types I and II. The relevant metrics must be 

solutions of the Einstein equations (7.2)-(7.5) with Rab = Aoab' A < 0, and appropriate values of the 

structure constants { nk} given in Table 7 .1. 
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7.4.1 Bianchi type I 

In this case nk = 0 and the Einstein equations are integrable. While there is no polynomial solutions 

like the Kasner metric (7.7), the solution is obtained by replacing t°'k in (7.7) with 

( 
sinh( v-3A t) ) ! (tanh ( v-3A t)) °'k ' 
tanh ( v123A t) 2 

where the powers ak again satisfy relations (7.8). Setting a.1 = 1, we get a complete non-singular 

(in contrast with the singular Kasner metric) instanton if the coordinate x is suitably identified. This 

Kasner-Anti-de Sitter metric could be used to construct domain walls. Note, however, that like its 

vacuum counterpart (7.7) this metric is not BPS. 

7.4.2 Bianchi type II: the Bergmann Metric 

Substituting the relevant structure constants into the Einstein equations (7.2)-(7.5) we find b(t) 

co a ( t) + ci. However, we are only interested in self-dual metrics and for these the constants co, c1 

are c0 = 1, c1 = 0. Hence we necessarily have b(t) = a(t), and the Einstein equations reduce to: 

-A 
a C 

2- + - ' (7.22) 
a C 

-A 
(aac)· c2 

(7.23) ----
a2c 2a4 ' 

-A 
( ca2). c2 

(7.24) --+-
a2c 2a4 · 

It is not straightforward to solve equations (7.22)-(7.24), in fact it is not clear whether they are inte­

grable in general. However, there exists a special solution for which 

a(t) = A e°'t , c(t) = B e't , 

where a , ,, A, Bare constants. Substituting this ansatz into (7.22)-(7.24) we find: 

Since only the ratio A/ B plays a role we are free to choose A = 1, which gives B = H ­
Clearly, the solution is invariant under time-reversal t -+ -t; and hence it suffices to consider negative 

parameters a < 0. The Bianchi type II four-metric thus becomes: 

d 2 d 2 -2t c-;;, (( 1) 2 ( 2) 2) gA - 4t c-;;, ( 3)2 s = t + e v- 6 a + a + - - e v- 6 a 
3 ' 

(7.25) 
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where {erk} are the left-invariant one-forms (7.13). A convenient choice of the cosmological constant 

is A= -2/3, for which (7.25) becomes: 

(7 .26) 

In metric (7 .26) one recognizes the Bergmann metric - a non-compact Kahler symmetric space 

SU(2, 1)/U(2). Note that the Bergmann metric is complete (unlike the vacuum Bianchi type II 

metric (7.10)). It is also BPS. 

Another form of the Bergmann metric where the U(2) group action is manifest is: 

(7 .27) 

.. 
Expressed in this form the metric is a limiting case of the general U(2)-invariant Taub-NUT-AdS 

family of metrics [123] when N --+ oo (N is the NUT charge). Such a family can be written in the 

form (see equation (2.6) in reference [123]): 

(7.28) 

where j (r) = I+ 1 r 2 (1 + 4:;1) and U(r) = I+ 2:;1 . Now, to take the limit of large NUT charge 

rescale the radial coordinate r = p/N in the above formulae and take N --+ oo. Metric (7.28) 
• 

becomes: 

(7.29) 

and taking 2p = R~ 
2 

we get back to expression (7.27). 
4(1+6 R) 

7.4.3 Horospheres 

To elucidate the geometrical structure of the Bergmann manifold and the role played by the Heisenberg 

group we shall now describe the way the Bergmann manifold arises as the set of horospheres of 

an odd-dimensional Anti-de Sitter space. We shall also obtain the Monge-Ampere equation for a 

Bianchi type II four-manifold. A solution to the equation with a negative cosmological constant gives 

the Kahler potential for the Bergmann metric. We make use of the defined complex coordinates and 

solve the Ricci-flat Monge-Ampere equation to obtain the Kahler potential for the Heisenberg metric 

(7.11). 
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Suppose G / H is a non-compact Riemannian symmetric space. The Iwasawa theorem (see e.g. 

[124]) tells us that every element g E G may be uniquely expressed as 

g = han , 

where h E H C G, a E AC G, n ENC G; A is abelian and N is nilpotent subgroups of G. This 

means that we may also think of G /Has a solvable group G solv = At>< N with a left-invariant metric, 

where t>< denotes a semi-direct product. The orbits of N in G / H are called horospheres. The set of 

horospheres is labelled by elements of A. They are permuted by elements of H. The simplest example 

would be an n-dimensional real hyperbolic space G / H = 1-{n, A = lR,- and N = IRn-l. If we think 

of 1-{n as a quadric in JEn ,l ((n + 1)-dimensional Minkowski space-time) then the horospheres are the 

intersections of the quadric with a f~mily of parallel null hypersurfaces related by boosts. There is a 

similar description of an n-dirnensional Anti-de Sitter space AdSn regarded as a quadric in !En-1,2 . 

This description of the hyperbolic and the Anti-de Sitter spaces will be useful in Section 7.7. 

The case of a complex hyperbolic n-space 1-l''c is slightly more complicated. Thinking of IE2n,2 as 

cn,l, the (2n + 1)-dimensional Anti- de Sitter space, AdS2n+l, is given by the quadric 

n 

lzol2 - I: lzal2 = 1. 
a=l 

Then the complex hyperbolic n-space He 
1 

is obtained by identifying za with 

ei8 za, a = I, .. . , n. Thus ( z0 , .. . , zn) are homogeneous coordinates on 1-le,- The nilpotent group 

N turns out to be the (2n - I)-dimensional Heisenberg group (see Section 7.6). Let us see how 

this works in detail. It is helpful to recall that the inhomogeneous coordinates (a are defined in the 

usual way as (a = za I z0 an_d make manifest the action of u ( n) on 1-lc. Our aim is to find a set of 

coordinates which make manifest the action of the Heisenberg group N . 

Let us first introduce complex null coordinates u and v: 

u 

V 

Defi ne z and wi, i = I , . . . , n - I , to be 

u 
z =­

v' 
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In terms of inhomogeneous coordinates ( (i, (n) these are 

z 
2 

---1 
1-(n , 

v12 (i 
1-(n 
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(7.30) 

A complex hyperbolic n-space is topologically the interior of a unit ball in en and the map 

( (i, (n) --+ ( wi, z) provides a bi-holomorphism from the interior of the unit ball in en into the interior 

of the paraboloid 

As we have mentioned above7--l«:'; is obtained from AdS2n+1as the base of the Hopf fibration, with 

the time-like Hopf fibre parametrized by e such that 

u = 

V 

(z + z - ~ i [wi[2)! ' 
ei() 

(z + z - ~i [wi[2)! , 

wi ei() 
(7 .31) 

The real quantity (z + z - ~i [wi[2) is invariant under the action of the Heisenberg group N 

parametrized by (a i, b): 

wi --+ wi + ai ' 

z + i b + ~ ! rai f2 + iii wi. 62 

Considered as a subgroup of SU(n, 1) C S0(2n, 2) N acts on 7--l«:'; as 

u --+ u+(ib+L}faif 2 )v+ai zi, 

V --+ V, 

Finally, the abelian group A= IR+ parametrized by>.. acts as (z, wi) --+ (>..2 z, >.. wi) or 

u --+ >..u , 

(7.32) 
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Having identified all group actions, let us now formulate the problem in terms of the Kahler 

potential. The Kahler potential for the metric on the horospheres may be obtained from the Kahler 

potential on the AdS2n+l manifold which in terms of inhomogeneous coordinates (a is given by 

n-1 

K((a, (a)= - log(L l(i [2 + ICl 2 
- 1). 

i=l 

From (7.30) 

and hence the Kahler potential on the horospheres becomes (up to a Kahler gauge transformation) 

(7.33) 

Let us derive the Monge-Ampere equation to which Kahler potential (7 .33) is a solution. Since the 

resulting metric contains the higher-dimensional extension of the Heisenberg group (see Section 7.6) 

as a group of isometries we must assume that the Kahler potential depends only on the real quantity 

f = z + z - ~i fwi[ 2. Then the Monge-Ampere equation (7.6) becomes an ordinary differential 

equation: 

(K't-1 K" = (-1r-1 e-AK' (7.34) 

where K' = dK/df. 

Let us make the connection with the form of the four-dimensional Bergmann metric (7 .26). In this 

case n = 2, and there are two complex coordinates (z, w). We can pass from this parametrization to 

the parametrization of (7.26) in terms of (t, x, y, T) as follows: 

z-z . ( xy) i T- 2 
(7.35) 

z + z ww=f, 

1 . 
w 2(x+iy), 

t ef. 

For n = 2 the Monge-Ampere equation (7.34) becomes 

K' K" = - e- AK . (7.36) 

In terms of the Kahler potential K(f) the compatible Kahler metric is 

ds 2 = -K' dw I\ dw + K" (dz - w dw)(dz - w dw). (7.37) 
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The Kahler potential (7.33) for n = 2 

K = - log f = - log log t (7 .38) 

is clearly a solution of equation (7 .36) for A = -3. The Kahler metric 9aii = Ba [%K - the Bergmann 

metric in complex coordinates - obtained from the Kahler potential (7.38) is: 

1 1 
ds 2 = f dw I\ dw + J2 ( dz - w dw) ( dz - w dw) . 

Rewriting this metric using definitions (7.35) we get the Bergmann metric in the standard form (7.26). 

Let us solve the Monge-Ampere equation (7.36) in the Ricci-flat case A= 0. Here we present the 

four-dimensional case n = 2 leaving the treatment of the higher-dimensional example to Section 7 .6. 

Solution of.(7.36) should yield the Kahler potential for the Heisenberg metric (7.11). Integrating the 

equation 

K' K" = -1 , 

we get 

K' = -Jc - 2f K " = - l 
' Jc-2f ' 

where c is the integration constant which, without loss of generality, we may set to zero. Substituting 

these expressions into (7.37) and ignoring an overall constant factor we obtain the Heisenberg metric 

(7.11). Note that the preferred complex structure, with respect to which the Kahler potential is defined, 

is the one whose associated Kahler form is U( l)-invariant. It is the two-form nz (7 .17) presented in 

Section 7.2.3. 

7.5 Exotic Asymptotics: Bianchi types VII0 and VI0 

In this section we propose to investigate p-brane solutions whose asymptotics are more unusual than 

the ones considered in Section 7.2. We turn to Bianchi types Vllo and VIo whose groups of isometric 

motions are E(2) and E(l , 1) respectively (see Table 7.1).6 

We do not discuss the most general manifolds of the above types but rather focus on self-dual 

metrics, which are BPS. Vacuum four-metrics of this kind are Ricci-flat Kahler metrics. The Einstein 

6We consider type Vila spaces before type Via spaces because the type VIi a metri c is, in some sense, simpler si nce its 

isometry group is E(2). 
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equations (7.2)-(7.5) in the vacuum self-dual case reduce to a set of first-order ODEs: 

2 I 2 b2 2 (7.39) -a - n1 a + n2 · + n3 c , 
a 

~ b' 
b 

b2 2 2 
- n2 + n3 c + n 1 a , (7.40) 

2 I 
- c 
C 

2 2 b2 - n3 c + n1 a + n2 . (7.41) 

For convenience we have introduced another radial coordinate rJ in place of t such that dt = abc drJ 

and ( )
1 

denotes differentiation with respect to 'T/ · 

In Sections 7.5.1 and 7.5.2 we solve equations (7 .39)-(7.41) to obtain self-dual vacuum Bianchi 

type Vllo and VIo metrics and discuss their properties. In Section 7.5 .3 we discuss Bianchi type Vllo 

and VIo manifolds with negative cosmological constant. 

7.5.1 Vacuum Solutions of Bianchi type VII0 and Solvmanifolds 

The group of isometries of a self-dual Bianchi type Vllo metric is E(2), whose structure constants are 

n1 = n2 = 1 and n3 = 0 and a set of left-invariant one-forms is: 

(Tl cos T dx + sin T dy , 

- sin T dx + cos T dy , 

Self-duality equations (7.39)-(7.41) become: 

2 I 
-a 
a 

~ b' 
b 
2 I 
- c 
C 

These are easily solved to yield the metric: 

- a2 + b2, 

- b2 + a2 
' 

a2 + b2. 

(7.42) 

(7.43) 

where >. is the integration constant. Let us estimate the volume of a large metric ball as was done in 

Section 7.2 for the Heisenberg manifold. Introducing, as before, an effective radi~l coordinate t to 

return to the ansatz (7.1), we find that the metric volume grows as t2 for large t . 

Interestingly, this is the predicted volume growth of another type of a degeneration of the K3 

surface in Kobayashi's review [59]. In fact, Kobayashi proved the existence and the completeness of 

11 
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a gravitational instanton whose three-dimensional hypersurfaces t = canst represent a collapse of 

Solvmanifolds.7 The non-compact complete metric on a degeneration of the K3 surface is expected to 

have quadratic volume growth of large metric spheres and have as an asymptotic metric the standard 

flat metric on <C* x <C*. It is not known explicitly. 

The present situation parallels the one we have already encountered with the Heisenberg metric. 

The Heisenberg metric (7 .10) is singular at the origin, but the singularity can be resolved by passing to 

another self-dual metric, the BKTY gravitational instanton, whose asymptotic form is exponentially 

close to the Heisenberg metric. The singularity at the origin of the Bianchi type VIIa metric (7.43) may 

be resolved by passing to a non-singular manifold, whose existence and completeness is guaranteed 

by the general theorem of Kobayashi [59]. 

As we have pointed out, the large metric spheres have quadratic volume growth for large t. Ac­

cording to the estimates in Section 7.3.7, this is the critical volume growth for which the boundary 

term contribution to the gravitational action is constant and finite. 

Alternatively, metric (7.43) may be obtained by solving the Monge-Ampere equation (7.6) for a 

Ricci-flat Kahler metric with appropriate symmetries. If we assume that the Kahler potential K is 

independent of the imaginary parts of z1 = u1 + i v1 and z2 = u2 + i v2 , we obtain a metric with two 

commuting holomorphic isometries. If one further assumes that K depends only on the combination 

J(u 1 ) 2 + (u2 ) 2 one gains an extra S0(2) isometric action. From the first glance the resulting metric 

appears to be in_variant under the direct product S0(2) x JR2 but, in fact, it turns out that the group 

of isometries is the semi-direct product S0(2) t>< JR2 = E(2). Thus one obtains a Bianchi type VIIa 

metric. 

A short explicit calculation reveals that in polar coordinates (r , T) 

u 1 = r cos T , u 2 = r sin T , 

the Kahler potential depends only on r and the metric becomes: 

ds 2 = K" dr 2 + r K' (a3
)
2 + :' ((a1

)
2 + (a2

)
2

) + ( K" - : ') (a1)2 , (7.44) 

where K' = dK/dr and {ak} are the left-invariant E(2) one-forms (7.42). Then the Monge-Ampere 

equation reduces to an ODE first written down by Calabi [125]: 

K" K' -AK 
---= e (7.45) 

r 

7Usually the Bianchi type VI0 group E(l , 1) is referred to as Solv or Solvable group. It is clear, however, that it is the 

type VIIo manifold that has the volume growth predicted by Kobayashi. Its associated isometry group E(2) is also solvable. 
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with A the cosmological constant. When A = 0, the vacuum case, Calabi found that 

K'(r) = )r2 - a2_, (7.46) 

where a is the integration constant. Metric (7.44) with (7.46) is precisely the metric (7.43). Inciden­

tally, this metric is the helicoid metric found by Aliev et al [126] who obtained it using the connection 

between the real Monge-Ampere equation and minimal surfaces. It is singular at 'f/ = 0. 

7.5.2 Vacuum Solutions of Bianchi type Via 

The group of motions preserving Bianchi type Vla metrics is E(l , 1). From Table 7.1 the structure 

constants are n 1 = 1, n2 = -1 and n3 = 0, and hence the left-invariant one-forms are: 

al cosh T dx + sinh T dy , 

sinh T dx + cosh T dy , 

dT. 

The self-duality equations (7.39)-(7.41) become: 

2 / 
-a 
a 

~ b' 
b 
2 / 
- c 
C 

a2 + b2, 

a2 - b2. 

These can be easily solved to give the following Ricci-flat Kahler metric: 

where .\ is the integration COI_lstant. This metric is incomplete at the origin 'f/ = 0. 

(7.47) 

(7.48) 

Such self-dual metrics of Bianchi type VIa were also displayed by Aliev et al [126] and were 

referred to as catenoid metrics. 

One can find a description of the metric (7.48) in terms of the Kahler potential, as was done in 

the previous section for the type VIIa metric (7.43), Again assuming that the Kahler potential K 

is independent of the imaginary parts of z1 = u 1 + i v1 and z2 = u 2 + i v2 , we obtain a metric 

with two commuting holomorphic isometries. Now assume that K depends only on the combination 

J ( u 1 ) 2 - ( u 2 ) 2 thus gaining an SO(l, 1) isometric action. The resulting metric has as its group of 

isometries the semi-direct product SO(l, 1) t>< JR2 = E(l, 1). 

I I 
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Defining new coordinates ( r, T) as 

1 h 2 . h U = r cos T , U = r S1Il T , 

we find that the Kahler potential depends only on rand the metric becomes: 

(7.49) 

where { erk} are the left-invariant E(l, 1) one-forms (7.47). The Monge-Ampere equation in this case 

differs from Calabi's equation (7.45) by a sign: 

K" K' -AK --=-e . 
r 

In the vacuum case, A = 0, the Monge-Ampere equation 

K"K' 
--=-1 

r 

is solved by 

K'(r) = Ja2 - r 2 , 

where a is the integration constant. This is the metric (7.48). 

7.5.3 Bianchi type VIl0 and VI0 with Negative Cosmological constant 

• 

(7 .50) 

(7 .51) 

If the cosmological constant A is negative, Calabi [125) proved that there exists a solution of (7.45) 

which gives a complete non-singular metric on IR4 . Unlike the analogous metric of the Bianchi type 

II (the Bergmann metric of Section 7.4.2), but like the Kasner-Anti-de Sitter metric of Section 7.4.1, 

this metric is not homogeneous. 

Analogously, Calabi's argument concerning the existence of a solution of equation (7.45) with 

negative cosmological constant is applicable to the Bianchi type VIo case. It may thus be argued that 

solutions of (7 .50) exist, although the completeness of the metrics has to be demonstrated separately. 

7 .6 Higher-dimensional Examples of Domain Walls 

In this section we would like to give examples of domain walls of the form M x EP-3
,
1 in eleven 

dimensions, where manifold M remains hypersurface homogeneous but has dimension higher than 

four. Firstly, we describe Calabi- Yau manifolds which are the higher-dimensional generalizations of 
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the BKTY instanton of Section 7.3.6. We find their asymptotic metrics by solving the vacuum Einstein 

equations in 2n dimensions. We then give particular examples of such asymptotic metrics which arise 

as extensions of the vacuum Bianchi type II, or Heisenberg metric (7 .11) to higher dimensions. In 

addition, we present three series of higher-dimensional metrics originating from four-metrics of other 

Bianchi types: type I (7.7), type VIIo (7.43) and type VIo (7.48) metrics. We do so by generalizing the 

relevant Monge-Ampere equations and arguing the existence of solutions, which provide the Kahler 

potentials for the metrics in question. 

By the extensions of Bianchi type metrics from four to arbitrary number of dimensions we mean 

the following. The Bianchi type I isometry group IR3 extended to (n + 1) dimensions is simply 

!Rn . The Bianchi type II three-dimensional group of isometries given by the left-invariant one-forms 

(7.13) may be easily generalized to a (2n + I)-dimensional group parametrized by (xi, Yi, T), where 

i = 1, ... , n, with the following left-invariant one-forms: 

satisfying 

er1 dx 
i i ' 

n 

dT- ~ xdy· L....,; i i , 

i=l 

der3 = - L er; I\ er; . 

(7.52) 

The Bianchi type VIo and VIIo groups are three-dimensional groups E(l, 1) and E(2) respectively. 

In higher dimensions these become E(n - 1, 1) and E(n) respectively. 

7.6.1 Higher-dimensional BKTY Metrics and Their Asymptotic Forms 

In this section we shall again use reference [59) in which Kobayashi proves the existence theorem for 

complete Ricci-flat Kahler metrics on X - D with ci (X) = [DJ, where X is a Pano manifold8 and 

D is a complex codimension one hypersurface in X. Here [DJ is a Poincare dual of D. From Yau's 

solution to Calabi 's conjecture one can infer that D carries a Ricci-flat -Kahler metric. Although the 

gravitational instanton is not known explicitly, Kobayashi provides some detailed information on the 

asymptotic form of the metric. It has the following properties. 

Let t(p) measure the distance from some fixed point in X - D to a point p E X - D. Then far away 

from the chosen fixed point, i.e. for large t, the metric spheres have a structure of an S1 bundle over 

8 X is Fano if its first Chem class is positive, c1 > O. 
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n -1 
D. The size of the fibre, with respect to the induced metric on the metric spheres, decays as t - n+i , 

1 
while the radius of the (n - 1) complex-dimensional base grows as tn+1. Given this information one 

can estimate the volume growth of a large metric ball to be: 

O rv i n+l • i n+l i rv i n+l . V l J 2(n-l),_1_ - n-1 d ..1.!!._ 
(7.53) 

In this section we shall use the above information to make an ansatz for the asymptotic form of the 

metric and to show that it is an exact solution of the vacuum Einstein equations. We find that although 

the solution is Ricci-flat and Kahler it is singular. In fact, it bears the same relation to the gravitational 

instantons of Kobayashi as does the Heisenberg metric to the BKTY gravitational instanton: outside 

a compact set the complete metric differs from this asymptotic form by exponentially small terms. 

It can be easily seen that the Heisenberg manifold (7 .11) is a special case, n = 2, of this set­

up. As we,have already described in Section 7.3.6, Kobayashi points out that for n = 2 the BKTY 

gravitational instanton arises as a certain degeneration of the K3 surface. The metric spheres at large 

t represent a collapse of a Nilmanifold to a flat T 2, and the volume of a metric ball grows as t413
. The 

Ricci-flat metric on D is necessarily flat only in this case. 

Consider the following ansatz compatible with the above remarks: 

(7.54) 

Here 9ab is the complete Ricci-flat Kahler metric on D, a, b = 1, · · · , 2(n - 1); T is the periodic 

coordinate on the canonical bundle over D and A is a one-form that depends only on xa such that its 

exterior derivative is proportional to the Kahler form on D, dA = -a J, a is a constant. 

The Einstein equations for (7.54) reduce to a system of second order ODEs for the functions a(t) 

and c(t) : 

0 
.. · · ( · ) 2 2 a ac a 2 c 
- + - + (2n - 3) - + 2a - , 
a ac a a4 
.. .. 
C a 
-+2(n-1)-, 
C a 

0 

.. . . 2 c ac 2 c 
- + 2(n - 1)- - 2(n - l)a - . 
c ac a4 

0 

Let us look for solutions with polynomial dependence on the radial coordinate t of the form: 

(7.55) 

(7.56) 

(7.57) 

(7 .58) 
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whereµ, v, >-1, >-2 are constants. Substituting (7.58) into equations (7.55)-(7.57) we find: 

0 

0 

0 

2 

>-2(>-2 - 1) + >-1>-2 + (2n - 3)>.~ + 2a2 t!_ t2(1+>-1-2>-2) 
v4 ' 

>-1 (>-1 - 1) + 2(n - l)>.2(>-2 - 1) , 
2 

>-1 (>-1 - 1) + 2(n - l)>-1>-2 - 2(n - 1) a 2 µ
4 

t2(1+>-1- 2>-2) . 
V 

123 

(7.59) 

(7.60) 

(7.61) 

According to the ansatz (7.58) equations (7.59)-(7.61) must reduce to algebraic equations for the 

constantsµ, v, >-1, >-2. Hence we find that >.1 and >.2 must satisfy: 

(7.62) 

Substituting (7.62) into (7.60) we obtain a quadratic equation for >.2 

(n + l)>.~ - (n + 2)>.2 + 1 = 0, (7.63) 

which is solved hy: 

>. (1) - 1 >-2(2) = 1 . 
2 -n+l' (7.64) 

From (7 .62) we have: 

>. (1) - - n - l >. (12) = 1 . 
1 - n+l' (7.65) 

We discard the pair (>-l2), >.~2)) = (1, 1) since it satisfies both (7.59) and (7.61) only for n = 0. We 

are thus left with the other pair of solutions (>.1, >-2) = (>-l1), >.~1)) = (- ~+i, nti ). Let us now find 

the constantsµ , v and a. From (7.61), or equivalently from (7.59), we have 

µ2 
a2-

v4 

1 

(n + 1)2 (7.66) 

The values ofµ and v for n_ = 2 may be read off from the Heisenberg metric (7.11): µ = (3/2)-1/3 

and v = (3/2) 113
. With these values (7.66) gives 

1 
a=-. 

2 
(7.67) 

Since the parametrization of the one-form A should not depend on the dimension of M, we are 

compelled to choose constantsµ and v to satisfy (7.66) with a= 1/2 and consistent with their values 

for n = 2. An appropriate choice is: 

(7 .68) 
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Absorbing constant -(j = -1/2 into the definition of the one-form A we can now write down the 

asymptotic metric for the 2n-dimensional BKTY gravitational instanton: 

(
n+l )-2 ~+i (n +l )n!i b 

ds 2 = dt 2 + ~t (d'T + A) 2 + ~t 9abdxadx , (7.69) 

where now dA is precisely the Kahler form on D. 

Metric (7.69) has indeed the volume growth predicted by Kobayashi: 

V O ,..._, t n+l • t n+l ,..._, n+l . l J -n-1 2(n - 1)·-l-dt t--1!!_ 

7 .6.2 Bianchi type I 

Metrics of Kasner type (7.7) exist in arbitrary number of dimensions; the metric becomes: 

where 

(7.70) 
k=l k=l 

Just as the Kasner metric (7.7), these metrics are not BPS. 

7 .6.3 Bianchi type II 

A particular case of the asymptotic BKTY 2n-dimensional metric (7.69) is one whose isometry group 

is the higher-dimensional Bianchi type II group. In this case the arbitrary Calabi-Yau (2n - 2)­

dimensional metric 9abdxa dxb is flat: 

n-1 

9abdxa dxb = L ((j;)2 + ((Y;) 2
. 

i=l 

and the term involving the connection on the canonical bundle over 9abdxa dxb is simply ( (j3
) 
2

; where 

{ (j;, (j;, (j
3 } are the one-forms (7 .52). 

To find the Kahler potential generating the metric (7.69) for the special case of Bianchi type II 

isometry group we solve the Monge- Ampere equation (7.34) with A = 0: 

(K't-1 K" = (-l)n-1 . (7.71) 
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It is sufficient to know K'(f), where f = z + z - Li JwiJ 2 , since the higher-dimensional Bianchi 

type II metric is expressed in terms of K' and K" as follows: 

ds 2 = -K' L dwi I\ diii + K" (dz - Lui dwi)(dz - wi du}), 
i 

which after coordinate redefinitions (7.35), with ( w, x, y) replaced by ( wi, xi, yi) becomes 

Integrating equation (7.71) we find: 

n-1 1 
K' = ( -1) --;;- ( n f) ri , 

and hence 
n-1 n-1 

K" = ( -1) --,,--- ( n f) - --,,--- . 

(7.72) 

To compare with the metric we have obtained by solving the self-duality equations let us define a new 

radial coordinate t such that 

(
n + 1 ) n

2
-i:1 f = --t . 

2n 

Written in terms oft the metric (7 .72) is the same as (7.69) up to an overall constant factor. 

7 .6.4 Bianchi type VIl0 and VI0 

The analysis based on solving the Monge-Ampere equations (7.45) and (7.50) may be extended to 

arbitrary number of dimensions. In fact in the case of Bianchi type VII0 it was done by Calabi in [125]. 

If M is parametrized by n complex coordinates za, a = 1, ... , n, and one assumes, as was done in 

Section 7 .5 .1, that the Kahler potential K is independent of the imaginary parts of za = ua + i va 

and is solely a function ofr = J(ul )2 + ... + (un)2, the resulting metric will have E(n) isometry 

group. The Monge-Ampere equation reduces to 

(
K')n-1 
- K" = 1. 
r 

It is solved by 

K ( r) = 1r ( c + r ~ ) dr , c = canst . 

The manifold is a higher-dimensional vacuum Bianchj type VII0 metric whose isometry group is 

E (n ). It is incomplete. Arguments analogous to the ones just given extend to the Bianchi type VI0 

metrics. 
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7.7 Other Bianchi Types: Bianchi type III 

We have not attempted here to survey all known cohomogeneity one Einstein metrics. Even in four 

dimensions this would be a formidable task. Some pertinent references in that case are [104, 108). 

However we would like to comment on the Bianchi type III situation since it may well prove relevant 

for various applications of Anti-de Sitter space-time. 

The most general diagonal Lorentzian Bianchi type III local solution is given in [127). A simple 

analytic continuation of the metric in [127] gives a Riemannian metric with negative scalar curvature 

A< 0: 

ds2 = - + -1 + ' 3 ( dT
2 

dD,
2 

da.
2 

) 

A sinh2 T sinh2 T tanh2 T 

which is presumably the most general local solution with this signature. Setting 

gives 

T 
t = logtanh 2 

ds 2 = 1 ( dt2 + sinh2 t dD:_ 1 + cosh2 t da.2
) . 

(7.73) 

In (7.73) dD:_ 1 is the standard metric on the hyperbolic two-space 1-l2 . The isometry group of the 

manifold is therefore S0(2, 1) x S0(2). The group S0(2, 1) has a two-dimensional subgroup (h 

which acts transitively on 1-l2 and combined with S0(2) we get a three-dimensional Lie group with 

three-dimensional orbits whose Lie algebra corresponds to Bianchi type III. Explicitly we consider 

1-l2 in horospheric coordinates ( x, y): 

dx2 + dy2 

y2 

and (h = IR t>< IR is generated by a I a X and X a I a X + y a I a y . 

In fact the metric (7.73) is that of hyperbolic four-space 1-l4 (cf. Section 7.4.3). This may be seen 

by isometrically embedding (7 .73) into JE4•1 as: 
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where 

x3 
x4 

xo + xl 

xo-x1 

x2 

cosh t cos a. , 

cosh t sin a. , 

1 . h 
- Slll t, 
y 

( y + :
2 

) sinh t , 

X . h - sm t. 
y 

127 

It is obvious that the Bianchi type III solution (7.73) may be extended to (n + 2) dimensions by 

replacing the metric on 1-l2 by that on 1-ln. The group G2 is replaced by the group Gn = IR t>< !Rn-l, 

generated by 8 / 8 x i and x i 8 / 8 x i + y 8 / 8 y, i = 1, . . . , n -1. Then the generalization of the Bianchi 

type III group is (IR t>< !Rn-l) x S0(2). 

I 
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CHAPTER 8 

Conclusion 

Let us recapitulate the results presented in this thesis. The work in the first part of this dissertation 

(Chapters 2 to 5) was motivated by the S-duality conjecture. It states that N = 4 supersymmetric 

Yang- Mills theory is invariant under the SL(2 , Z) group of symmetry transformations which act non­

trivially on both the coupling as well as on the states in the theory. We investigated the consequences 

of this conjecture in the context of SYM theories with higher rank gauge groups. 

In Chapter 2 we reformulated predictions of the S-duality hypothesis in geometrical terms: the 

problem of studying the spectrum of BPS solitons of the SYM theory was reduced to the problem 

of investigating the spectrum of normalizable eigenstates of the Hodge-de Rahm Laplacian on the 

moduli space of these solitons. More specifically, if S-duality is a true symmetry of the theory, one 

expects to find certain normalizable harmonic forms on the relevant moduli spaces. 

The first step towards e~hibiting these harmonic forms was taken in Chapter 3, where exact metrics 

on monopole moduli spaces were constructed. It is well known that moduli spaces of solutions to the 

Bogomol'nyi equations are hyperkahler manifolds, and it is this property that was exploited to obtain 

the moduli space metrics. It is a common lore of hyperkahler geometry that hyperkahler manifolds 

are amenable to being quotiented. We advocated the use of the hyperkahler quotient construction in 

obtaining the desired hyperkahler metrics . This approach allowed us not only to obtain the metrics 

explicitly, but also to gain insight into some global properties of the manifolds . Since all the spaces 

we proposed to study were toric hyperkahler manifolds, computations involved in implementing the 

quotient construction simplified dramatically. To exemplify the hyperkahler quotient construction we 

1 I 

I 
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firs t obtained a number of well known hyperkahler manifolds. We then turned to moduli spaces of 

fundamental monopoles and re-derived the Lee- Weinberg- Yi metric. One of the advantages of our 

approach is that we were able to deduce immediately that the Lee-Weinberg- Yi metric was complete 

and topologically trivial - a result which had previously required a lengthy analysis. The hyperkahler 

quotient construction led naturally to the discussion of two degenerations of the Lee- Weinberg- Yi 

metric. One corresponded to the metric on the moduli space of monopoles in theories with non­

maximally broken gauge symmetry. We identified a subset of these metrics to be the Taubian-Calabi 

manifolds and analyzed their global properties. The other degeneration corresponded to the moduli 

space metric of a configuration of fundamental monopoles, some of which were fixed, or infinitely 

massive. We also constructed a family of new hyperkahler metrics, a special case of which was the 

metric on the moduli space of many well-separated SU(2) monopoles. We concluded the chapter 

by presenting an alternative interpretation for the monopole moduli spaces in terms of world-volume 

theories of certain intersecting D-brane configurations in the type IIB string theory. 

In Chapter 4 we exhibited harmonic forms on the moduli spaces of fundamental monopoles, which · 

are associated with threshold bound states predicted by S-duality. The new result in this chapter 

was the candidate harmonic form on the Taubian- Calabi manifold. Although we could not offer a 

rigorous proof of the uniqueness of the candidate harmonic form, the fact that it possesses correct 

symmetry properties and is normalizable, at least in the eight-dimensional case, strongly suggests 

that the candidate form is indeed the desired harmonic form. This is the first quantitative evidence 

supporting the S-duality conjecture for theories with non-abelian unbroken gauge groups. 

In Chapter 5 we investigated classical dynamics of fundamental monopoles. The study of clas­

sical dynamics of slowly moving BPS monopoles can be conveniently relegated to the study of the 

geodesic flow on the monopole moduli space. We first proved that there were no classical bound states 

of fundamental monopoles by proving the non-existence of closed or bound geodesics on the Lee­

Weinberg- Yi and the Taubian-Calabi manifolds. Our argument relied on the hyperkahler quotient 

construction of these metrics. We then studied classical scattering of distinct fundamental monopoles . 

Although the equations of motion are not integrable in general, we found scaling solutions (otherwise 

known as similarity or homothety solutions). These scaling solutions describe the simplest scattering 

of monopoles carrying no dyonic charges. We also found that such similarity solutions exist on the 

moduli space of well-separated SU(2) monopoles. 

The work in the second part of the dissertation (Chapters 6 and 7) derives its motivation from the 
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AdS/CFT correspondence principle. Most of the results in Chapter 6 are deduced from one condition: 

the target space of hypermultiplets in the rigid N = 2 SCFT is required to be a hyperkahler mani­

fold invariant under dilatations. We demonstrated that the manifold admitting a dilatation (regardless 

of any hyperkahler condition) must be a metric cone. In fact, the base manifolds should be either 

Sasakian or tri-Sasakian, and cones over them are Kahler and hyperkahler respectively. We offered a 

few speculative remarks regarding possible applications of these novel geometries to cone-branes and 

the AdS/CFT correspondence. 

Finally, Chapter 7 was devoted to domain wall solutions in M-theory. We studied domain walls 

which are products of a four-manifold with flat Minkowski space of an appropriate dimension. We re­

stricted ourselves to considering four-metrics of cohomogeneity one with isometry groups of Bianchi 

type. We first looked for Ricci-flat solutions. Our main example was the Bianchi type II metric which 

we called the Heisenberg metric. It is BPS and has a singularity at the location of the domain wall. 

In the conventional interpretation of the solution one inserts a distributional source at the singularity. 

However, there are no obvious sources in M-theory, and hence it is reasonable to seek a resolution 

of the singularity. We argued that there is a natural way in which the singularity may be resolved: 

we identified the two sides of the domain wall and replaced the Heisenberg manifold by a smooth 

gravitational instanton whose asymptotic form is exponentially close to the Heisenberg metric. In 

this way we obtained a "domain wall at the end of the universe". A similar procedure was applied 

to the Bianchi type Vila four-metric. The solutions were generalized to higher dimensions, and a 

smooth Calabi-Yau resolution was found in the Bianchi type II case. Motivated by the AdS/CFT cor­

respondence, we also found cohomogeneity one metrics with Bianchi type symmetries with negative 

cosmological constant. In addition, we gave a description of all Kahler spaces which arose in this 

chapter in terms of the Kahler potential. 

I 
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