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Singly-spinning Myers-Perry black holes in d ≥ 6 spacetime dimensions are unstable

for sufficiently large angular momentum. We numerically construct (in d = 6 and

d = 7) two new stationary branches of lumpy (rippled) black hole solutions which

bifurcate from the onset of this ultraspinning instability. We give evidence that one of

these branches connects through a topology-changing merger to black ring solutions

which we also construct numerically. The other branch approaches a solution with

large curvature invariants. We are also able to compare the d = 7 ring solutions

with results from finite-size corrections to the blackfold approach, finding excellent

agreement.

Introduction. As expressed by John Wheeler’s statement, “Black holes have no hair”

[1], black holes (BHs) in four spacetime dimensions are remarkably simple objects. The

topology, rigidity, uniqueness, and no-hair theorems ensure that Kerr BHs are the only

stationary, vacuum, and asymptotically flat solutions to general relativity, and that they are

uniquely specified by their mass M and angular momentum J [2]. Because Kerr BHs are

also linear mode stable [3], any stellar object undergoing gravitational collapse towards a

BH is expected to settle to the Kerr solution.

Yet, the uniqueness of the Kerr BH may seem surprising given the close connection

between gravity and fluids. According to the membrane paradigm [4], external observers will

find that BH horizons behave like fluid membranes, endowed with a viscosity, conductivity,

temperature, entropy, etc. Moreover, in certain circumstances there are formal mappings

between solutions of general relativity and solutions of Navier-Stokes [5, 6]. Fluids, however,

lack strong uniqueness theorems and admit a rich structure of solutions. Indeed, rotational
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instabilities appear in fluid droplets and non-spherical solutions develop [7]. In particular,

a ring configuration is preferred for high spin. Therefore, it may be natural to suspect that

BHs behave like fluid droplets and have a greater diversity of solutions. This is the emerging

picture in d > 4 spacetime dimensions.

In higher dimensions, gravity becomes weaker as it spreads out over extra dimensions.

Horizons are therefore more flexible, creating new gravitational phenomena with no four-

dimensional counterparts. For example, in d ≥ 5 black strings exist and suffer from the

Gregory-Laflamme instability [8]. This instability leads to a fractal-like array of spherical

BHs and cosmic censorship violation [9, 10]. This behaviour is similar to the Rayleigh-

Plateau instability, where a fluid jet breaks into an array of spherical droplets [11].

In addition, there are black rings with horizon topology S1 × Sd−3. These have been

constructed in closed analytic form in d = 5 [12] and numerically in d = 6 [13]. (The list

of other BH horizon topologies that are allowed in d > 4 were discussed in [14]). In any

d ≥ 5, black rings can be found perturbatively using the blackfold approach if the S1 radius

is much larger than the Sd−3 radius [15]. In addition to new topologies, these rings introduce

non-uniqueness since there are different ring solutions with the same M and J .

Given this rich structure, understanding the space of BH solutions in higher dimensions

is an open and difficult task. Though, it is also an important task in scenarios where higher

dimensions are unavoidable, such as those arising from string theory or holography.

Let us therefore summarise of the state of the art, focusing on asymptotically flat station-

ary solutions. In d = 4 Kerr BHs are the only such solutions. For a fixed mass M , increasing

the angular momentum J decreases the BH temperature TH and the horizon area AH , until

the BH reaches extremality at J = GM2, where the BH has vanishing temperature but

non-vanishing horizon area [16].

The higher dimensional analogues to Kerr BHs are the Myers-Perry (MP) solutions [17].

Also in higher dimensions, BHs can have
⌊
d−1
2

⌋
independent angular momenta. For simplic-

ity, we only consider the singly-spinning case with one non-zero J .

Like Kerr BHs, singly-spinning MP BHs in d = 5 at fixed M will have decreasing TH and

AH with increasing J . Unlike Kerr BHs however, both TH and AH vanish at extremality [16],

giving a naked singularity. This singularity is the merger point between the MP solutions

and the S1×S2 black rings [12]. As mentioned earlier, these rings are not uniquely specified

by M and J . There are two branches: the “fat” branch connected to the naked singularity,
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and a “thin” branch which for large J resembles bent black strings. There is also an infinite

family of solutions with disconnected horizons, such as black saturns [18] and black di-rings

[19], which all connect to the black ring and MP BH at the naked singularity.

In d ≥ 6, singly-spinning MP BHs can have arbitrarily large angular momentum. For

large rotation, the horizon becomes thin as it spreads along the plane of rotation. These

BHs can become unstable to the ultraspinning instability, which is of Gregory-Laflamme type

[20–22]. It was conjectured that the threshold mode of this instability signals a bifurcation

to a new branch of axisymmetric rotating BHs with lumpy or rippled Sd−2 horizons. These

“lumpy” BHs are also conjectured to connect to black rings [15, 20]. More lumpy BH

solutions may appear from the threshold of higher harmonic modes and connect to black

saturns and di-rings, etc.

In this manuscript, we will take a firm step towards the completion of the phase diagram

of singly-spinning asymptotically flat solutions of general relativity in d ≥ 6. We confirm

the existence of lumpy BHs by explicit numerical construction in d = 6 and d = 7. We also

numerically construct black rings in d = 6 (reproducing [13]) and in d = 7. We find that

there are two families of lumpy BHs that bifurcate from the same MP solution. Our results

give robust evidence that one of these lumpy BH branches connects to the fat black ring via

a topology changing merger. The existence of the complementary branch of lumpy BHs was

not anticipated in previous studies [15], and we find that they approach a solution containing

large curvature. As a byproduct of our analysis, we are also able to check the finite-size

corrections to the blackfold approach for the thin black rings in d = 7. We find excellent

agreement between these analytic results and our numerics, even for an adimensional angular

momentum of order one.

Method. The singly-spinning MP BHs, the lumpy BHs, and the black rings all have

an asymptotic timelike Killing vector ∂t and rotate with angular velocity ΩH along the

rotational Killing vector ∂ψ such that K = ∂t + ΩH∂ψ generates a Killing horizon. These

geometries can be written in the form

ds2 = −A dt2 +B dy2 + C(dx+ Fdy)2

+S1 (dψ −Wdt)2 + S2 dΩ2
d−4 (1)

where dΩ2
d−4 is the line element of a unit (d−4)-sphere, and A,B,C, S1, S2,W, F are functions
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of the coordinates y and x. For the MP and lumpy BHs, y is a radial coordinate and x is

an angular coordinate. For the black ring, x and y resemble the bipolar ring coordinates

in [23]. We choose these functions to vanish smoothly in the appropriate places to yield

horizons with the correct topology, and demand that they have flat asymptotics.

To find A,B,C, S1, S2,W, F , we use the DeTurck method [24, 25]. This method requires

no à priori gauge fixing and yields elliptic equations for these kinds of boundary value

problems [26]. We use pseudospectral collocation on a Chebyshev grid (a patched grid for the

rings) to discretise our PDE system. The resulting system of nonlinear algebraic equations

is solved using Newton-Raphson relaxation. In our case, there are no Ricci solitons meaning

the so-called DeTurck vector ξ must vanish. We therefore check that |ξ| = 0 with an error

smaller than 10−8, and that |ξ| vanishes exponentially with increasing grid size, as predicted

by pseudospectral methods. For the black rings, we also confirm that our results do not

depend on our specific choice of gauge or patch boundary.

We compute the mass M and angular momentum J from a Komar Integral at infinity,

and obtain the angular velocity ΩH , entropy SH = AH/4 and temperature TH . We verify

that the Smarr relation d−3
d−2 M = TH SH + ΩHJ and the first law dM = THdSH + ΩHdJ

are satisfied to less than 5% error [37]. The lumpy BHs are parametrised by a rotation

parameter in horizon radius units a/r+. The black rings are parametrised by ΩH/TH . More

details concerning the quality of the numerics can be found in the appendix.

Results. The phase diagram of stationary solutions is best described by thermodynamic

quantities. A meaningful comparison can be made between solutions if one introduces the

dimensionless spin j, area aH , angular velocity ωH , and temperature tH via [15]

jd−3 = cj
Jd−3

GMd−2 , ad−3H = ca
Ad−3H

(GM)d−2
, (2)

ωH = cω ΩH (GM)
1

d−3 , tH = ct TH (GM)
1

d−3 ,

where the constants cj, ca, cω, ct can be found in [15].

Fig. 1 shows the horizon area aH as a function of the angular momentum j in d = 6. The

solid green line describes the singly spinning MP BH [17]. The large red square indicates

the zero mode of the ultraspinning instability [21, 22]. Two families of the lumpy BHs

(the black squares and brown dots) branch from this zero mode in a second-order phase

transition. Note, however, that the lumpy BHs follow a curve that is close to the MP curve.
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FIG. 1: Horizon area aH versus the spin j in d = 6. The solid green curve describes the single

spinning MP BH; the large red square indicates the onset of the ultraspinning instability; the brown

dots and black squares describe the two branches of lumpy BHs. The branch given by brown dots

leads around a cusp and then towards the black rings (blue circles). The dashed red curve is the

blackfold prediction for the black rings. Isolated magenta squares on the MP BH curve are the

onset of higher harmonics of the ultraspinning instability. The inset plot is a zoomed out plot.

To better understand their relationship, Fig. 2 shows ∆aH as a function of j, where ∆aH is

the difference in aH between a given solution and the MP BH with the same j.

Note that the brown dots move towards a higher j with a higher entropy than MP, hits a

cusp, and then decreases in aH and j, eventually having a lower entropy than the MP BH.

This implies that the lumpy BHs are non-unique even among their own family, and provide

the first example of non-uniqueness among an asymptotically flat vacuum spherical family

[38]. Continuing along this curve, we find that this branch of lumpy BHs approaches the

black ring solutions given by the blue circles. (This black ring curve extends and agrees

with the curve in [13]). A topology-changing merger between the lumpy BHs and the black

rings is expected to occur through a conical geometry [27–30]. Indeed, we find that the Ricci

scalar of the induced horizon geometry grows as we approach the merger.

As further evidence for a merger, we plot the other thermodynamic variables as a function

of j in Fig. 3 and Fig. 4. Again, we find the black ring and lumpy BHs approaching each

other. In these plots, the cusps are described by smooth turning points.

The second family of lumpy BHs (the black squares) was not anticipated. To understand
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FIG. 2: Difference in horizon area ∆aH between a given solution and the MP BH with the same

spin j, as a function of j. (Same colour scheme as Fig. 1.) The inset is a zoomed in plot.

their existence, consider a perturbative expansion of the lumpy BHs around the ultraspinning

merger point. At leading order, the amplitude of the lumpy BHs can be positive or negative

and their entropy is linear in the amplitude; hence we have two branches of solutions. Note

that previous studies [15] drew intuition from the Kaluza-Klein (non)-uniform black string

system [8, 9] where periodicity ensures that the entropy is instead quadratic in the linear

amplitude.

Predicting where these lumpy BHs lead is difficult; we can only conjecture a few pos-

sibilities. As we move along this family away from the merger with MP BH (red square),

we find that curvature invariants of these lumpy BHs grow large [39]. The curvature is

largest where the function S2 in (1) vanishes. This suggests (but by no means implies) a

possible topological transition to a S2 × Sd−4 solution [40] with rotation on the S2. Such a

solution would be supported by spin-spin interaction and hence does not have a blackfold

approximation at lowest order [31]. We admit that there are other possibilities such as a

double MP BH (also supported by spin-spin repulsion). This lumpy BH branch might also

simply end in a nakedly singular configuration. A zero-temperature limit is also possible,

but Fig. 3 suggests we are still far from zero temperature.

We have repeated our calculation in d = 7 and find similar behaviour. The phase diagrams

are displayed in Fig. 5 and Fig. 6.

We can compare our numerical black ring results to analytical results from the blackfold
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FIG. 3: Temperature tH as a function of the spin j. The inset plot is a zoomed out plot. (Same

colour scheme as Fig. 1.)
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FIG. 4: Angular velocity ωH as a function of the spin j. The inset plot is a zoomed out plot.

(Same colour scheme as Fig. 1).

approximation, which is valid for large j. In d = 6, this is given by aH ' 1
j
, tH ' 4j, ωH '

1
4j2

, and is shown by the dashed red line in Figs 1, 3 and 4. These results agree with our

numerics for large j. In d > 6, one can also include finite-size corrections to the blackfold

approximation (which only become dominant over self-gravitational effects in d > 6 [32]).
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For d = 7, these are given by [33]

ωH =
1

2j

(
1 +

6ξ0
j8/3

)
, tH =

3j1/3

2
1
12

(
1− 3ξ0

j8/3

)
,

aH =
2

1
12

j1/3

(
1 +

ξ0
j8/3

)
, where ξ0 =

13Γ(4
3
)2

(120)
(
2
2
3
)(

3
1
2
)
Γ(5

6
)2
. (3)

This is illustrated for d = 7 in Fig. 5 and Fig. 6, where the dashed red line is the leading order

blackfold result and the solid red line includes finite-size corrections. With the corrections,

the agreement is impressive, even giving aH to ∼ 1% when j ∼ O(1). This is the first time

these corrections have been compared to a numerical solution.
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FIG. 5: Phase diagrams in d = 7. The main plot is the horizon area aH as a function of the spin j.

The inset is the difference in area ∆aH vs the spin j. (Same colour scheme as Fig. 1.) The added

solid red line is the blackfold curve with finite-size corrections

Finally, note that in Figs 1, 3, 4, 5, and 6, the isolated magenta squares describe the

zero modes of the ultraspinning higher harmonics [21, 22]. Given our results, we conjecture

that two families of lumpy solutions will branch from each of these points, one of which will

connect to (possibly lumpy) black saturns or black di-rings etc.
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FIG. 6: Temperature tH as a function of spin j. The inset shows the angular velocity ωH as a

function of j. (Same colour scheme as Fig. 5.)
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Appendix A: Numerical details

In this appendix we give some numerical details regarding the construction of both the

lumpy black holes and black rings. We first test numerical convergence. Since we are using

spectral collocation methods, we expect to find exponential convergence as the number of

points is varied. This is exactly what we see in Fig. 7. On the left panel of Fig. 7, we consider

some lumpy BHs and show how the square of the Weyl tensor C2 = CabcdCabcd varies as the

number of points is changed.

Another quantity we can use to test convergence is the norm of the deTurck vector ξ2.
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In the DeTurck method [24, 25] this is the vector ξµ = gαβ
(
Γµαβ + Γ̄µαβ

)
, where Γ̄µαβ is the

Levi-Civita connection for a chosen reference metric ḡ. For the boundary value problems

considered here, the solutions found are necessarily solutions of the vacuum Einstein equa-

tions in the gauge ξµ = 0, so the norm of the deTurck vector is a measure of how well the

gauge condition is satisfied. On the right panel of Fig. 7, we take some black ring solutions

and we plot the norm of the DeTurck vector as a function of grid points. We again see

exponential convergence.
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FIG. 7: Left: convergence test for the Weyl tensor for lumpy black holes in d = 7. We plot

1−|C2(N)|∞/|C2(N + 1)|∞, as a function of the number of grid points N . From bottom to top, we

have j = 1.097, 1.117 and 1.136. Right: convergence test of the norm of the DeTurck vector |ξ2|∞
for rings in d = 7 as a function of the grid points (N +N)×N . From top to bottom, j = 1.05 (fat

branch), j = 1.01 (thin branch), j = 1.64 (thin branch). The j = 1.64 plot plateaus after reaching

the limits of machine precision.

There is another test of numerical accuracy for the energy and angular momentum ex-

tracted from our solutions. Since our solutions are asymptotically flat, the expansion of the

metric off spatial infinity is controlled by perturbations of flat space in a given gauge. We

can then take advantage of the fact that flat space can be written as a warped product of

a two-dimensional space (spanned by t, R, say) and a round Sd−2 sphere. We can thus use

the expansion of [34], to catalog the possible boundary behaviours of our functions in terms

of spherical harmonics on the Sd−2 sphere that preserve the SO(2)× SO(d− 3) symmetry

of the line element (1). If we fix the metric at infinity to have the following form:

ds2 = −dt2 + dR2 +R2(dθ2 + cos2 θdΩ2
d−4 + sin2 θdψ2) , (A1)
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then the asymptotic behavior of gtt and gtψ take the following simple form

gtt = −1 + E0
Y0(θ)

Rd−3 +O(R−(d−1)) (A2)

gtψ = J0
Y1
ψ(θ)

Rd−3 +O(R−(d−1)) , (A3)

where Y`s(θ) and Y`v
a (θ) are scalar and vector harmonics on Sd−2 with quantum numbers

`s ≥ 0 and `v ≥ 1, respectively, and both E0 and J0 are constants. Note that these metric

functions are gauge invariant for spacetimes with the symmetries detailed above. Both the

energy and angular momentum can solely be written as linear functions of these constants.

In d = 7, our radial coordinate is asymptotically defined as y ∝ R−1/2, which means we

can extract E0 by taking two numerical derivatives of gtt. In d = 6, our radial coordinate is

asymptotically y ∝ 1/R, so we require three derivatives to extract E0. In any dimension, we

defined our metric functions such that J0 could be extracted by taking a single numerical

derivative. A good test of accuracy is to measure if these two coefficients are constants. This

can be best done by performing a χ2 fit, and extracting the standard error. For all of our

solutions, we find that the error in E0 is smaller than 10−3%, except for the last few points

close to the merger, in which case the error increases to 0.1% for the lumpy black holes, and

1% for the rings. The errors in J0 are much smaller (∼ 10−5%).

A final test can be extracted from the the Smarr law. Since we can independently

compute the energy, angular momentum, angular velocity, entropy and temperature, we can

test whether the Smarr law is satisfied. Again, for the solutions in d = 7, we find that to be

true within 10−3%, except for the last couple of points close to the merger where it increases

to 0.1%. We find that the d = 6 rings satisfy the Smarr law to within 10−3% except for the

points close to the merger, where the error increases to 5%.

We emphasise that the error in the Smarr law and in the energy is a generous overesti-

mation of the error in our plots. In our plots for the rings, the energy is obtained directly

from the Smarr law after first obtaining the angular momentum, angular velocity, entropy,

and temperature. This is more accurate since it only involves taking a single derivative for
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the angular momentum.
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