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Abstract

We construct a gravitational dual of a Josephson junction. Calculations on the
gravity side reproduce the standard relation between the current across the junction
and the phase difference of the condensate. We also study the dependence of the
maximum current on the temperature and size of the junction and reproduce familiar
results.
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1 Introduction

One of the most remarkable results to emerge from string theory is gauge/gravity duality

[1, 2, 3] – the equivalence between a theory of gravity and a nongravitational theory. This

equivalence is called holographic since the nongravitational system lives in a lower dimen-

sional space than the one with gravity. In recent years this duality has been successfully

applied to condensed matter systems [4, 5]. In particular, a gravitational dual of a super-

conductor has been found [6, 7]. In this paper, we extend this construction to obtain a

gravitational dual of a Josephson junction.

A Josephson junction [8] consists of two superconductors separated by a weak link. If

the link supports a phase difference γ between the condensate of the two superconductors,

there will be a current across the junction given by

J = Jmax sin γ. (1.1)

This current exists with no applied voltage. There are several types of Josephson junctions

depending on the nature of this link. It can be an insulator (SIS junctions), a normal

conductor (SNS junctions), or even a very narrow superconductor (e.g. bridges and point

contacts).

We will construct a gravitational dual of an SNS Josephson junction and reproduce

(1.1). We will also show that Jmax decreases exponentially with the size of the weak link

as expected, and study its temperature dependence. Although our main motivation is to

extend the range of condensed matter phenomena that can be described gravitationally,

refinements of this approach may provide new insights into Josephson junctions made with

high Tc superconductors.

2 The Model

We begin with the action

S =

∫
d4x
√
−g
[
R +

6

L2
− 1

4
FµνF

µν − |Dψ|2 −m2|ψ|2
]
, (2.1)

where F = dA and D = ∇− iqA. We will restrict our analysis to the probe approximation.

That is, we rescale ψ = ψ̃/q, A = Ã/q and take q → ∞, keeping ψ̃ and Ã fixed. In this

limit, the backreaction of these fields on the metric can be ignored. Therefore, we can fix

the metric background to be the AdS planar Schwarzschild black hole:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dx2 + dy2) , f(r) =

r2

L2

(
1− r30

r3

)
, (2.2)
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where r0 is the black hole horizon radius and L the AdS length scale. The temperature of

this black hole is given by

T =
3r0

4πL2
. (2.3)

This simple model has been shown to provide a dual description of a superconductor [7].

As a consequence of a scaling symmetry, the critical temperature Tc of the superconductor

is proportional to the chemical potential µ. We will allow the chemical potential to have

spatial dependence1 µ(~x) so that a fixed temperature T is above the critical temperature

in a narrow gap but below the critical temperature elsewhere. In this way, we model two

superconductors separated by a normal phase.

Without loss of generality, we will create our junction along the x direction. Our fields

will now be functions of r and x. A Josephson junction requires a phase difference, so we

must include a phase in our scalar field. Therefore, we consider solutions of the form

ψ̃ = |ψ|eiϕ , Ã = At dt+ Ar dr + Ax dx , (2.4)

where |ψ|, ϕ, At, Ar, and Ax are all real functions of r and x. Instead of A, we wish to work

with the gauge-invariant fields M = A− dϕ.

The equations of motion are

∂2r |ψ|+
1

r2f
∂2x|ψ|+

(
f ′

f
+

2

r

)
∂r|ψ|+

1

f

(
M2

t

f
− fM2

r −
M2

x

r2
−m2

)
|ψ| = 0 , (2.5a)

∂2rMt +
1

r2f
∂2xMt +

2

r
∂rMt −

2|ψ|2

f
Mt = 0 , (2.5b)

∂2xMr − ∂r∂xMx − 2r2|ψ|2Mr = 0 , (2.5c)

∂2rMx − ∂r∂xMr +
f ′

f
(∂rMx − ∂xMr)−

2|ψ|2

f
Mx = 0 , (2.5d)

∂rMr +
1

r2f
∂xMx +

2

|ψ|

(
Mr∂r|ψ|+

Mx

r2f
∂x|ψ|

)
+

(
f ′

f
+

2

r

)
Mr = 0 . (2.5e)

Note that the phase ϕ no longer appears in the equations of motion. The first four equations

(2.5a-2.5d) are second-order dynamical equations while the last one (2.5e) is a first-order

constraint equation coming from the conservation of the source in Maxwell’s equations.

Now we discuss the boundary conditions, beginning with r = ∞. At this point, we will

work in units in which L = 1. For simplicity, we choose2 m2 = −2. With this choice of mass,

the scalar has the following asymptotic form near r =∞:

|ψ| = ψ(1)(x)

r
+
ψ(2)(x)

r2
+O

(
1

r3

)
. (2.6)

1For other inhomogeneous holographic superconductors, see [9, 10], and see [11] for a related solution.
2Our analysis can be extended to any mass above the Breitenlöhner-Freedman bound, m2 > −9/4.
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The ψ(1) and ψ(2) terms are both normalizable, so we have a choice of boundary conditions.

Here, we only consider the case ψ(1) = 0. Via gauge/gravity duality, ψ(2) then gives the

expectation value of a dimension two operator in the boundary field theory

〈O〉 = ψ(2). (2.7)

We interpret this operator as the superconducting condensate.

The Maxwell fields take the asymptotic form

Mt = µ(x)− ρ(x)

r
+O

(
1

r2

)
, (2.8)

Mr = O

(
1

r3

)
, (2.9)

Mx = ν(x) +
J

r
+O

(
1

r2

)
. (2.10)

The quantities µ(x), ρ(x), ν(x) and J are interpreted in the boundary field theory as the

chemical potential, charge density, superfluid velocity, and current, respectively. By solving

the equations of motion near r = ∞, it can be shown that J must be a constant. This

condition is imposed by the constraint (2.5e), which in turn enforces current conservation.

Our boundary conditions are determined by choosing J and µ(x).

At the horizon r = r0, regularity requires Mt = 0. This and the equations of motion

place boundary conditions on the remaining functions.

At x = ±∞, we require that the functions approach the homogeneous (x-independent)

solution. We solve the ordinary differential equations numerically, imposing regularity at

the horizon and choosing J and µ(∞) = µ(−∞) at r = ∞. With non-zero3 J , there are

typically two solutions. We choose the solution with the lower free energy, which is also the

solution that has a larger value of the condensate [13].

The gauge invariant phase difference is γ = ∆ϕ −
∫
Ax where the integral is across the

gap. Since the edges of our gap will not be completely sharp (for numerical reasons), it is

more convenient to use (2.10) and set

γ = −
∫ ∞
−∞

dx [ν(x)− ν(±∞)] . (2.11)

The second term is needed as a regulator since the homogeneous superconductor at x = ±∞
has a nonzero current and hence a nonzero superfluid velocity. Note that the value of this

term at +∞ and −∞ is the same. For numerical convenience, and because the phase

3For a discussion of holographic superconductors with nonzero current, see [12, 13, 14]
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difference γ between the two superconductors is a non-local quantity, we will reproduce (1.1)

by first picking J and then computing γ using (2.11).

The equations of motion (2.5) are invariant under the following scaling symmetry:

r → ar , (t, x, y)→ (t, x, y)/a , Mr →Mr/a , (Mt,Mx)→ a(Mt,Mx) . (2.12)

For homogeneous superconductors, the scale invariant temperature is T/µ, so changing µ

is equivalent to changing T . In the inhomogeneous case, T must still be constant, even

though µ = µ(x). The parameter a in (2.12) must be constant, so there is no symmetry

which exchanges an inhomogeneous chemical potential with an inhomogeneous temperature.

The scale invariant temperature is T/Tc where Tc is the critical temperature of the junction,

which is identical to the critical temperature of a homogenous superconductor with zero

current and µ = µ(∞) = µ(−∞). Tc is proportional to µ(∞) and given by

Tc ≈ 0.0588µ(∞) . (2.13)

When performing numerics, we will use (2.12) to set r0 = 1, and adjust T/Tc by varying

µ(∞).

We would like to choose a profile for µ(x) such that our system resembles an SNS

Josephson junction. Therefore, we choose µ(x) to be small and approximately constant

for x ∈ (− `
2
, `
2
) and then rise rapidly to µ(∞) outside this gap. Inside the gap, the effective

critical temperature is

T0 ≈ 0.0588µ(0) , (2.14)

For temperatures T0 < T < Tc, the gap is a normal conductor and the region outside the

gap is superconducting, so we indeed have an SNS Josephson junction. For temperatures

smaller than T0, our material is everywhere in the superconducting phase, and we have an

S-S’-S junction. For T > Tc, our material is entirely in the normal phase.

A profile that fits this description is given by

µ(x) = µ∞

{
1− 1− ε

2 tanh( `
2σ

)

[
tanh

(
x+ `

2

σ

)
− tanh

(
x− `

2

σ

)]}
, (2.15)

where µ∞ is the chemical potential at x = ±∞, and ` is the width of our junction4. The

quantities σ and ε control the steepness and depth of our profile, respectively. For ` � σ,

µ(x) is quite flat inside the junction (see Fig. 1). For this profile, T0 = ε Tc.

4We have tried a different profile which is less steep and consequently easier for numerics. This profile
was also able to reproduce (1.1).
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3 Numerics and Results

We can now attempt to solve the coupled system of nonlinear partial differential equations

(2.5) numerically for any value of J and any parameters in (2.15). In order to proceed, it is

convenient to impose boundary conditions at x = 0 and x = +∞ rather than at x = ±∞.

By using the equations of motion and their perturbations, one can prove that our boundary

conditions require that Mr be odd and |ψ|, Mt, and Mx be even. This in turn imposes, at

x = 0, Dirichlet boundary conditions on Mr and Neumann boundary conditions on the other

functions. We can also compactify both the radial coordinate r and boundary coordinate x

using the change of variables z = 1− r0/r and x̃ = tanh[x/(4σ)].

Our numerical method relies on a standard relaxation procedure, combined with spectral

methods defined on a Chebyshev grid. Due to the exponential convergence characteristic of

spectral methods on such a grid, we only require a few points in our spatial discretization

scheme. In all the plots in this manuscript, we use 41 points along the x̃ direction and

25 along z. We have varied the number of points, and found good agreement with the

aforementioned exponential convergence.

After solving the equations, the phase difference can be obtained through (2.11). We can

study the dependence on the size of our junction and on the temperature by varying ` and

µ∞, respectively. As an example, we show on the left panel of Fig. 1 a typical result of our

numerical code for Mt, showing the profile (2.15) imposed on the boundary.

A standard property of Josephson junctions is (1.1). We only consider phase differences

that lie in the interval (−π/2, π/2) since, within a cycle, the other phase differences corre-

spond to dynamically unstable junctions [16]. By feeding into our code successive values

of J and computing γ using (2.11), we constructed the graph on the right panel of Fig. 1.

The black solid line represents the best fit of our numerical data to (1.1). The agreement is

striking, and predicts a maximum current across the junction of Jmax/T
2
c ≈ 1.408. We have

used other profiles for µ(x) to model the junction, and the resulting curve shares the same

features as the right panel of Fig. 1, showing that (1.1) is a robust signature of holographic

SNS Josephson junctions. Two natural questions, which we address next, is how Jmax varies

with the junction width ` and the temperature T/Tc.

The dependence of Jmax on ` is shown on the left panel of Fig. 2. Once again, this curve

is in good agreement with condensed matter physics [15], which for SNS junctions, predicts

an exponential decay with growing ` in the maximum current:

Jmax/T
2
c = A0 e

− `
ξ . (3.1)

This universal law is only expected to hold as long as ξ � `. Furthermore, a similar behavior
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Figure 1: In the first graph, we represent Mt as a function of x and z for J/T 2
c ≈ 0.0081, showing

the boundary profile µ(x) imposed at z = 1. The second graph shows how J/T 2
c varies

as a function of γ. The solid line is the best fit sine curve. In both plots we use µ∞ = 6,
ε = 0.6, and σ = 0.5. The first plot has ` = 6 and the second has ` = 3.

is expected of the condensate within the barrier at zero current:

〈O〉x=0,J=0/T
2
c = A1 e

− `
2 ξ . (3.2)

Note that the value of the coherence length ξ should be the same in (3.1) and (3.2). We

have developed an independent code that studies the limiting case of zero current, in which

|ψ| and Mt are the only non-zero variables. We show, as an inset plot of the left panel of

Fig. 2, how 〈O〉x=0,J=0 varies with `. We fit both sets of data to (3.1) and (3.2) and find

{ξ, A0} ≈ {1.17, 17.96} and {ξ, A1} ≈ {1.26, 33.52} for Jmax/T
2
c and 〈O〉x=0,J=0/T

2
c , respec-

tively. Note that these two sets of numbers were computed using different numerical codes,

each depending on a different number of variables, and each having their own numerical

error. Furthermore, the normal and superconducting phases in our junction are not cleanly

separated – our numerics prevent us from choosing a profile for µ(x) that is too steep. We

believe this justifies the 7% disagreement between the two estimates of ξ.

We now turn our attention to the dependence of Jmax on the temperature. Since there

is not a simple form for the expected behavior of Jmax(T ), we do not include fits to our plot

on the right side of Fig. 2.

There are two distinct regimes for how Jmax varies with T , corresponding to the two

temperature scales (2.13) and (2.14) set by the profile (2.15). For temperatures smaller than

T0, our material is everywhere in the superconducting phase and we have an S-S’-S junction.
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Figure 2: In the first graph, we represent Jmax and 〈O〉x=0 (inset plot) as functions of ` for µ∞ = 6.0.
The second graph shows how Jmax/T

2
c varies as a function of T/Tc, for ` = 3. In all the

plots, we use ε = 0.6 and σ = 0.5. The black solid lines are the best fit exponential
curves.

In this regime, we find that our system deviates far from (1.1). Indeed, this behavior is

expected of S-S’-S junctions [17], but the deviation creates difficulties in finding Jmax so we

do not include that region in our plot. In Fig. 2, we have chosen ε = 0.6, so this region

corresponds to T/Tc < 0.6.

There is a complementary temperature regime near Tc, corresponding to the critical tem-

perature at which the entire junction is in the normal phase. Although this is an interesting

regime, it is difficult to probe numerically due to large scale separations between the con-

densate size 〈O〉 and the charge density ρ. However, we observe that as T approaches Tc,

Jmax approaches zero, as is expected.

4 Discussion

We have seen that the simplest model of a holographic superconductor can also be used

to construct a holographic Josephson junction by choosing µ(x) appropriately. Since the

chemical potential is not constant, one might wonder why we find stationary solutions.

After all, there is a nonzero electric field E(x) = µ′(x) on the boundary near the edges

of the gap which might be expected to make ρ time dependent. However this effect can
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be balanced by diffusion [18] leading to the stationary configuration we find.5 We expect

that holographic Josephson junctions with constant µ can be constructed by modifying the

boundary condition for the scalar field in a narrow gap along the lines discussed in [19].

We have restricted attention to the DC Josephson effect. The AC effect says that if a

voltage difference V is applied across the junction, then the solution is indeed time dependent

and the phase difference satisfies

dγ/dt = qV (4.1)

so one gets an alternating current. The added time dependence makes it harder to construct

the appropriate gravitational solutions. However, there is a good reason to expect that the

AC Josephson effect will also be reproduced on the gravity side: it can be obtained by

doing a bulk gauge transformation on half of the solution. Adding a voltage difference V

corresponds to adding a constant V to At, but this is gauge equivalent to changing the phase

of our charged scalar ψ by qV t. This is precisely (4.1).

Another natural extension of our model is to add a magnetic field. This should cause the

phase to increase linearly in a spatial direction along the junction. The dual gravitational

solutions now depend on three variables. We leave a discussion of their properties for future

work.

Our analysis has been restricted to the probe approximation. To go beyond the probe

limit and study the effects of backreaction, one must solve the full dynamical equations,

including Einstein’s equations. The first step in this direction was done in [14], where

the homogeneous superconductor with nonzero current was constructed. The backreacted

junction would require solving a set of nine coupled, nonlinear partial differential equations.

Our model can be extended to accommodate a junction whose weak link is a narrow

superconductor (a Dayem bridge). One would need a profile µ(x, y) that breaks supercon-

ductivity in the regions x ∈ (− `
2
, `
2
), |y| > h

2
. As in the case with a magnetic field, the

gravitational solutions will now depend on three variables. We expect these junctions to

support a larger Jmax.
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