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Abstract

We construct the holographic dual of an electrically charged, localised defect in a conformal field

theory at strong coupling, by applying a spatially dependent chemical potential. We find that

the IR behaviour of the spacetime depends on the spatial falloff of the potential. Moreover, for

sufficiently localized defects with large amplitude, we find that a new gravitational phenomenon

occurs: a spherical extremal charged black hole nucleates in the bulk: a hovering black hole. This

is a second order quantum phase transition. We construct this new phase with several profiles for

the chemical potential and study its properties. We find an apparently universal behaviour for

the entropy of the defect as a function of its amplitude. We comment on the possible field theory

implications of our results.
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I. INTRODUCTION AND SUMMARY

Over the past several years, gauge/gravity duality has been applied to problems of interest

in condensed matter physics, with surprising results. By now, gravitational duals of many

condensed matter phenomena have been found, and the gravitational solutions have been

used to gain new insight into strongly correlated matter.

Charged defects are a common feature of many condensed matter systems, with many

materials showing great sensitivity to the presence of impurities. Here, we build a gravity

dual to an isolated defect at a quantum critical point and study its properties. (See [1–3] for

some earlier discussions of a single impurity in a holographic context.) More precisely, we
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study a localised electrically charged defect in a strongly coupled 2+1 dimensional conformal

field theory. This is described by a chemical potential

µ(r) = ap(r) , (I.1)

where we have factored out an overall amplitude a and the profile p(r) vanishes at large r.

Interesting effects have recently been found in the study of an impurity of this type at linear

order about a background with constant µ [4]. We will study the nonlinear effects when

(I.1) represents the total chemical potential.

Adding a chemical potential to the CFT corresponds to adding the term
∫
d3xµ(r)ρ(r) to

the CFT action. The chemical potential has dimension one and the induced charge density

ρ(r) has dimension two. The following simple scaling argument relates the fall-off of µ(r)

to whether this is a relevant, marginal, or irrelevant deformation. If the large r behaviour

is µ ∼ a/rβ, then the dimension of a is 1 − β. So one expects that β < 1 is a relevant

deformation, β > 1 is irrelevant, and β = 1 is marginal.

The gravitational dual is a static, axi-symmetric solution of Einstein-Maxwell theory with

negative cosmological constant. We focus on solutions at zero temperature. We construct

these solutions perturbatively for small amplitude a and numerically for larger a, for several

profiles p(r). We indeed find that the part of the geometry corresponding to the infrared

(IR) is determined by the fall-off of the chemical potential.1 When µ(r) falls off faster than

1/r, the zero temperature solution has a standard Poincaré horizon, as expected for an

irrelevant deformation. When µ(r) ∝ 1/r asymptotically, the T = 0 solution does not have

a standard Poincaré horizon, but rather an extremal horizon with nonzero electric flux. This

near horizon geometry can be described analytically, and corresponds to a new conformal

fixed point in the dual CFT. When µ(r) falls-off more slowly than 1/r, we can find finite

temperature solutions with a regular black hole horizon in the IR, but the horizon appears

to become singular as T → 0.

The fall-off of the chemical potential also determines the induced total charge. We will

see using either field theory or gravitational arguments, that the total charge vanishes when

µ(r) falls off faster than 1/r, diverges when µ(r) falls off slower than 1/r, and is finite and

nonzero only when the fall off is µ(r) ∝ 1/r.

1 The relation between the asymptotic behaviour on the boundary and the near horizon geometry in the

bulk has been studied in the case of pure gravity (with no Maxwell field) in [5].
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The special marginal case where µ(r) = a/r everywhere is of particular interest. The

corresponding bulk solution can now be found analytically. (It can be obtained by an

analytic continuation of a previously known charged, hyperbolic black hole.) The induced

charge density is a delta function at the origin, so we will call this defect the “point charge”.

The exact solution describing the IR geometry of this point charge also describes the IR

geometry of all marginal deformations.

Perhaps our most surprising result concerns what happens when one increases the

strength of the defect. In both the irrelevant and marginal cases, as one increases the

amplitude a, a novel effect takes place: a spherical extremal charged black hole nucleates

in the bulk. The solution remains static and the black hole hovers above the IR horizon,

with the electrostatic force towards the boundary balancing the tendency of objects to fall

towards the IR horizon. Near the hovering black hole, the solution looks exactly like that

of the standard Reissner-Nördstrom-AdS solution.

The hovering black holes only exist when the amplitude is larger than some critical value

a?, and the size of the black hole goes to zero as a → a? from above. This corresponds

to a second order quantum phase transition in the CFT with defect. For a small range

of amplitudes above a?, solutions exist both with and without black holes, but the black

hole solutions dominate in any thermodynamic ensemble. As one continues to increase the

amplitude, the size of the hovering black hole continues to grow, without any apparent

bound.

The existence of hovering black holes in the bulk implies that the entropy of the defect

increases rapidly with a.2 In fact, the way this entropy increases with a appears to be

universal – that is, independent of the profile p(r) (provided that it doesn’t fall off more

slowly than 1/r). In Fig. 1, we plot the entropy of the hovering black hole as a function of

a/a?. The different colours represent five different profiles for the chemical potential. The

fact that they seem to follow the same curve is remarkable, and not understood. When

a is close to a? and the black hole is very small, the curve is linear: S ∝ (a − a?). This

is similar to what happens for small black holes in global AdS (but the slope is different).

The agreement for larger black holes is mysterious. We currently have neither a field theory

2 It has been argued that extreme Reissner-Nördstrom black holes might be unstable in string theory since

they have a large entropy at zero temperature and a diverging density of states [6]. We will not address

this potential complication here.
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argument nor a gravitational argument that explains this universality.
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FIG. 1: Entropy of the hovering black hole as a function of a/a? for several boundary profiles.

The different symbols, which are labeled on the right, indicate the various profiles we

have considered. One of the profiles has an additional parameter which here is b = 0.075.

(Here and in the remainder of the paper, we make plots in units of the AdS length L = 1.)

II. SETUP AND CLOSED-FORM SOLUTIONS

We wish to consider solutions of the Einstein-Maxwell equations that asymptote to AdS4.

The action is

S =
1

16πG

∫
d4x
√
−g
[
R +

6

L2
− F abFab

]
, (II.1)

where L is the AdS length scale and F ≡ dA is the Maxwell field strength. This action

yields the following equations of motion:

Gab ≡ Rab +
3

L2
gab − 2

(
FacF

c
b −

1

4
gabF

cdFcd

)
= 0 , ∇aF

ab = 0 . (II.2)

We are interested in static, axisymmetric solutions. Therefore, there is a timelike Killing

vector ∂t and an axisymmetric Killing vector ∂φ. Our solutions will depend upon the re-

maining two coordinates (i.e., the problem is cohomogeneity two). The field theory metric

is conformal to the metric on the AdS boundary. We choose the boundary to be conformal

to Minkowski space

ds2
∂ = −dt2 + dr2 + r2dφ2 . (II.3)
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The chemical potential on the field theory is given by the gauge field on the boundary. We

choose some axisymmetric profile for the gauge field

A|∂ = µ(r)dt , lim
r→∞

µ(r) = 0 , (II.4)

where the second condition is placed to model a localised defect. We shall see that many

physical properties of our solutions will depend upon the falloff.

We are therefore searching for regular solutions to (II.2) satisfying the conditions (II.3)

and (II.4). The solution with µ = 0 (i.e. the vacuum solution) with the above conditions is

of course AdS4 in Poincaré coordinates

ds2
AdS =

L2

z2

(
−dt2 + dr2 + r2dφ2 + dz2

)
, A = 0 . (II.5)

As it turns out, there is also an analytic solution for (at least) one other profile for µ(r)

which we will discuss shortly. If we relax the second condition in (II.4), there is also the

well-known Reissner-Nördstrom-AdS solution for a constant boundary profile µ(r) ≡ µ0.

A. Point charge conformal defect

Consider a boundary profile with the chemical potential

µ(r) =
a

r
. (II.6)

For this (and only this) choice of falloff the parameter a is dimensionless, and thus there

are no scales in this problem. In fact, this choice of boundary chemical potential breaks

boundary translations but preserves an SO(2, 1) × SO(2) subgroup of the full SO(3, 2)

symmetry group of the conformal vacuum (II.5). Importantly, there is a preserved scaling

symmetry, which scales time while simultaneously scaling towards r = 0 on the boundary.

Note that the chemical potential is singular at the origin, which (as we will see) can

be interpreted as the presence of a conformal defect at that point. This conformal defect

should be viewed as an IR fixed point that can govern the low-energy physics obtained when a

translation-breaking chemical potential is applied. The properties of this defect are universal

data characterising the CFT and are calculable. A similar electric defect was studied in the

O(N) model in [7]: interestingly, our results obtained from gravity are qualitatively similar

to those obtained therein. In [8] a very similar fixed point was also argued to govern the IR

physics of a vortex in a holographic superconductor.
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We would like to describe the bulk geometry corresponding to (II.6). But first, it would

be convenient to work in coordinates that make the preserved symmetry manifest. First,

note that R2,1 is conformal to AdS2 × S1:

− dt2 + dr2 + r2dφ2 = r2

(
−dt2 + dr2

r2
+ dφ2

)
. (II.7)

The preserved subgroup SO(2, 1) × SO(2) is now realised geometrically by the isometry

group of AdS2 × S1. The defect at the origin is located at the boundary of AdS2. We

would now like to write AdS4 so that it is foliated by such a slicing rather than by R2,1.

Notice that the r and z components in (II.5) form a conformally flat subspace written in

Cartesian coordinates. We simply perform a Cartesian to polar transformation, introducing

a new radial coordinate 1/η and angular coordinate ξ related to the usual polar angle by

cos θ = 1− ξ2:

r =
ξ
√

2− ξ2

η
, z =

1− ξ2

η
, (II.8)

which gives us the following line element for pure AdS4

ds2
AdS =

L2

(1− ξ2)2

[
−η2dt2 +

dη2

η2
+

4dξ2

2− ξ2
+ ξ2(2− ξ2)dφ2

]
. (II.9)

Here (t, η) form the AdS2 factor. The conformal boundary is located at ξ = 1, and the

boundary metric is now AdS2 × S1, as desired. The origin of the boundary, r = z = 0, has

been mapped to η →∞, which is itself the timelike boundary of this new AdS2 factor. The

symmetry axis at r = 0 is now located at ξ = 0, and the φ circle smoothly closes off there

with periodicity 2π. The Poincaré horizon (z → ∞) is now at η = 0 and by construction

now connects to the boundary. See Fig. 2 for a pictorial representation of this coordinate

system.

Now by turning on an appropriate gauge field, we can find an exact charged solution to

the Maxwell-Einstein system (II.2). We will call this solution the point charge, for reasons

that will become clear. Since we want to keep the symmetries of the AdS2×S1, the solution

will only depend nontrivially on ξ. The line element and gauge field are given by

ds2 =
L2

λ2(1− ξ2)2

[
−η2dt2 +

dη2

η2
+

4λ2dξ2

f(ξ)
+ ξ2f(ξ)dφ2

]
, A = Laλη dt , (II.10)

where 1 ≤ λ . 4.43 is a constant, and

f(ξ) = 2− ξ2 + (λ− 1)(1− ξ2)2(2− (λ+ 3)ξ2) , aλ =

√
(λ− 1)(λ+ 3)

λ2
. (II.11)
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FIG. 2: Sketches for the two coordinate systems (left) Eq. (II.5) and (right) Eq. (II.9).

This solution can be obtained by first performing a double Wick-rotation of a magnetically

charged hyperbolic black hole [9] in AdS4. The parameters can then be tuned to remove

singularities, and we are left with the above one-parameter family of solutions. This solution

has appeared earlier in the literature (in different coordinates) and shown to be essentially

the unique near horizon geometry for a smooth extremal horizon in AdS [10]. We are now

interpreting it as the entire bulk geometry.

The gauge field has no dependence on the holographic direction ξ, and corresponds to

a constant electric field of magnitude aλ pointing along the radial direction of the AdS2.

In the limit λ → 1, the gauge field vanishes and this solution approaches vacuum AdS4 as

written in (II.9). Note from (II.11) that there are two values of λ which give the same aλ,

meaning that there are two branches of solutions, as well as a maximum value at a = aλmax.

We will comment on the relative interpretation of these two branches shortly.

What is the charge of this solution? Via the normal rules of AdS/CFT, the field theory

current jµ is defined in terms of a functional derivative3,

〈jµ(x)〉 = − δS

δaµ(x)
=

1

4π

√
−g∂MF aµNa , (II.12)

where aµ is the boundary value of the bulk gauge field, Na is a normal vector to the boundary,

and g∂M refers to the metric on the boundary, including all conformal factors. This means

3 Rather than use the normalisation of the action given in (II.1), here we have simply picked a convenient

normalisation for the current to minimise factors in later formulas.
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that the total charge can be written as

Q =

∫
Σ

d2x nµ
δS

δaµ(x)
, (II.13)

with Σ a spacelike slice on the boundary and nµ a timelike vector normal to this spacelike

slice.

In most circumstances the boundary at infinity has only one component. In our case,

however, it actually has two: we have the usual conformal boundary as ξ → 1, but we also

have the boundary of the AdS2 factor at η → ∞, extending along all ξ. Only the latter

component contributes to the charge, which we can now explicitly evaluate to be

Q =
1

4π

∫
∂AdS2×S1

dξdφ
√
gΣ

√
−gttgηηF tη =

1

2
λLaλ . (II.14)

A plot of the charge as a function of the applied electric field is shown in Fig. 3.
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FIG. 3: Charge Q on defect as a function of applied electric field aλ. The lower branch of

solutions is continuously connected to vacuum AdS4 with zero charge and applied field.

In the boundary theory, this charge is localised at the boundary of the AdS2. It is helpful

to interpret this in the original R2,1 conformal frame: if we map back to the coordinates (II.3),

the chemical potential on the boundary is indeed µ(r) = aλ/r, and the charge computed

above arises from a delta function contribution to the field theory charge density localised

at the origin: 〈ρ(x)〉 = Qδ(2)(x). Thus we have a finite charge bound to the defect. It is

because of this delta function that we refer to this solution as the “point charge”.
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Next, we turn to the entropy. The existence of the AdS2 endows the bulk solution with

an extremal horizon at η = 0, which extends from ξ = 0 to the boundary at ξ = 1, and

whose associated entropy is

S(λ) =
1

4GN

∫
H
dξdφ

√
gξξgφφ =

πL2

GNλ

∫ ξΛ

0

dξ
ξ

(1− ξ2)2
, (II.15)

where we have cut off the ξ integral at a UV cutoff ξΛ ∼ 1. As this horizon intersects

the boundary in a circle that surrounds the defect, it should actually be interpreted as

an entanglement entropy computed via the usual Ryu-Takayanagi prescription [11]: indeed

every constant-η slice, including that at η →∞, is a bulk minimal surface.

Thus, we are computing the entanglement entropy of the defect with its surroundings.

This defect entropy [12] is a well-studied object in two dimensions; see e.g. [13] for a dis-

cussion of the higher dimensional case. The UV divergence in (II.15) is thus the usual UV

divergence of the entanglement entropy: we can obtain a finite answer by subtracting the

same entanglement entropy computed without the defect present, i.e. with λ→ 1. As usual,

some care must be taken in the matching of cutoffs in this subtraction. By ensuring that

the φ circle has the same asymptotic size at the cutoff, we obtain for the regulated entropy

∆S(λ) = S(λ)− S(λ = 1) =
πL2

2GN

(
1− 1

λ

)
. (II.16)

A plot of the regulated entropy versus the total charge is displayed in Fig. 4.

Finally, we note that while the solutions are uniquely labeled by λ, there are two values of

λ that give the same aλ, meaning that there are two branches of solutions that meet at the

maximum value of aλmax ≈ 0.678 at λamax = 1
2
(
√

33 − 3) ≈ 1.37. Clearly only one of these

branches (the one with λ < λamax) is continuously connected to vacuum AdS4 at λ = 1, as

shown in Fig. 3. Since this branch has a smaller charge, we will call it the “lower branch”,

and the other the “upper branch”. One can show that for λ > λ0 ≈ 4.43, f(ξ) develops

extra zeros in the domain of interest, so λ ∈ [1, λ0).

We have performed a preliminary investigation of the perturbation spectrum around this

solution. These fluctuations can be classified by their conformal dimensions under AdS2

scaling. As it turns out, the upper branch with λ > λamax supports a perturbation in the

scalar channel that is relevant with respect to AdS2 scaling, meaning that it is unstable in

the RG sense. This operator becomes marginal precisely at λ = λamax, where its existence

can be understood in terms of an infinitesimal variation of the charge without changing the

10
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FIG. 4: Regulated defect entropy for the two branches of the point-charge solution as a function

of defect charge Q. Note the existence of a maximum charge.

boundary conditions on aλ, and is irrelevant in the lower branch for λ < λamax. Thus in the

absence of fine-tuning in the UV, we expect only the lower branch to be realised in physical

applications, as we will explicitly find in the remainder of this paper.

III. EXPECTATIONS

Before undertaking a detailed gravitational analysis for more general chemical potentials,

we first discuss some expectations for the results based on simple analytical arguments.

A. Relevance of chemical potential and the total charge

Recall that the central problem of this paper is to study a boundary profile for the

chemical potential of the form

µ(r) = ap(r) , (III.1)

with p(r) some choice of profile function. Normally a chemical potential is always a relevant

deformation, but this is the case only for a homogenous potential. Let us assume that at

large r, p(r) behaves as a power law, p(r) ∼ r−β. Then, as mentioned in the introduction,
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the dimension of a is 1− β: we can conclude immediately that for β > 1 this constitutes an

irrelevant perturbation, but for β < 1 the perturbation is relevant and we should flow to a

new fixed point. For the precise value β = 1, a is dimensionless and the perturbation appears

marginal. In this case we can actually construct a line of IR fixed points (parametrized by

a) explicitly in gravity: these are the point charge solutions described above.

We would now like to understand how we expect the induced charge density 〈ρ(r)〉 to

behave in the presence of such a chemical potential. The full dependence on r will clearly

depend on details; in this section we will attempt only to determine its asymptotic falloff

with r. At large r the chemical potential is small, and one might expect a linear-response

analysis about the vacuum to be valid, where schematically the charge density obeys 〈ρ(x)〉 ∼∫
d3y〈ρ(x)ρ(y)〉µ(y). In the Euclidean vacuum we have 〈ρ(x)ρ(y)〉 ∼ k|x− y|−4, where k is

a constant that counts the number of charged degrees of freedom in the CFT.

Thus in the presence of a chemical potential that is static, we can perform the integral

over Euclidean time to find that the charge density should behave as

〈ρ(~x)〉 ∼
∫
d2y

kµ(~y)

|~x− ~y|3
≈ k

∫
d2yµ(y)

1

|~x|3
, (III.2)

where all arguments are now purely spatial, and in the last equality we have assumed

|~x| � |~y|, i.e. we are far outside the core4. The behavior of this integral depends on the

value of β.

For β > 2, the integral is divergent in the UV. This means that the integral will be cut

off by a length scale RΛ coming from the structure of the profile function p(r) at small r,

and we find

〈ρ(r)〉 ∼ k
aR2−β

Λ

r3
β > 2 . (III.3)

In particular, note that an arbitrarily well-localized charge distribution still sources a power-

law tail in the induced charge r, and even communicates details about the core of the

distribution (stored in the existence of the scale RΛ) to arbitrarily long distances. This is

due to the long-range correlations present in the vacuum of the CFT.

4 Note that naively there is a UV divergence in this expression arising from the short-distance behavior of

the correlator when x approaches y. There is actually a delta function contact term present in the vacuum

correlator. The coefficients of such contact terms are often thought to be scheme-dependent: however in

this case the requirement that the total charge operator annihilates the vaccum fixes the coefficient of this

delta function to precisely cancel the UV divergence in (3.2).
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For β < 2, the integral instead appears to diverge in the IR: however here we are using

the wrong integrand, as the second approximation |~x| � |~y| in (III.2) is invalid. We should

instead cut off the integral at |~y| ∼ |~x| to find

〈ρ(r)〉 ∼ k
a

rβ+1
∼ kµ(r)

r
β < 2 . (III.4)

For β = 2, we expect to find extra logarithmic factors.

We now use these results to demonstrate an interesting fact: in a CFT, the net induced

charge by a sufficiently localized chemical potential is zero. The basic idea is that current is

conserved, and thus to accumulate a charge in the interior we must pull charge from infinity,

so the chemical potential must fall off sufficiently slowly to make this possible. Consider

starting in the vacuum with a = 0 in (III.1) and slowly increasing the chemical potential

by making a(t) a slowly varying function of time. In the case β < 2, note that current

conservation ∂µj
µ = 0 together with (III.4) tells us that at large r the radial inflow of

current satisfies

Dr〈jr〉 = −∂t〈ρ〉 ∼ k
ȧ(t)

rβ+1
. (III.5)

Now the net charge accumulated in the interior is equal to the total flux of current through

a large circle at infinity, i.e.

dQ

dt
= lim

r→∞
r

∮
dφjr ∼ lim

r→∞
k
ȧ(t)

rβ−1
. (III.6)

So if we also have β > 1, then this flux is zero. This conclusion also holds for the faster

falloff with β > 2 (III.3). Thus any irrelevant chemical potential cannot pull charge from

infinity and will only redistribute the charge that is already present in the vacuum, meaning

that the net charge will always vanish. On the other hand, for a relevant chemical potential

with β < 1, we find from (III.4) that the total charge diverges. Thus, the only way to obtain

a finite and nonzero amount of charge is with a precisely marginal profile, which is the case

for the point charge solution studied above.

We also note that simple generalisations of the arguments above also allow us to predict

the asymptotic falloff of other quantities, e.g. the energy density 〈T tt〉. To determine this

following the logic leading to (III.2) we now need to consider a three-point function, as

the two-point function 〈Tρ〉 vanishes. We thus have an expression of the schematic form

〈T (x)〉 ∼
∫
d3y1d

3y2〈T (x)ρ(y1)ρ(y2)〉µ(y1)µ(y2). The precise form of the three-point function

is complicated, but we know that its total mass dimension is 7. Performing the integrals
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over t1 and t2 above will reduce this dimension down to 5. If we can now assume in the

integral above that |~x| � |~y1|, |~y2|, then we find the analog of (III.2) for the energy density

to be:

〈T tt(x)〉 ∼ C

∫
d2y1d

2y2
1

|~x|5
µ(y1)µ(y2), (III.7)

where C is a constant. The integrals above converge in the IR if β > 2, and so we find

〈T tt(r)〉 ∼
C

r5
β > 2 , (III.8)

whereas if β < 2 the integrals over y are IR divergent and should be cut off where we are

evaluating the energy, leading to

〈T tt(r)〉 ∼
C

r2β+1
β < 2 . (III.9)

The above reasoning is precisely the same as for the charge density. We note that the above

expressions may receive extra logarithmic factors in r, as the dimension of the current and

energy are both integers; indeed through explicit perturbative calculations we do find such

logarithmic corrections when β > 2.

B. Charged geodesics and the existence of hovering black holes

For generic µ(r), the bulk Einstein-Maxwell solution is not known analytically, and we

will find it numerically. Given such a solution without a hovering black hole, how could one

determine if a small spherical black hole can be added and remain static? Sufficiently small

extremal black holes behave essentially like test particles in a background. Therefore, we

can search for static time-like orbits for charged particles. These correspond to stationary

points of the geodesic equation coupled to a Lorentz force:

Ua∇aUb =
q

m
FabU

b with UaUa = −1 , (III.10)

where q is the particle charge and m its mass. A similarly motivated study of probe orbits

was performed in a gauged supergravity model in [14]. For static spacetimes, such as the ones

we are considering, we can readily integrate this equation. The fixed points of Eq. (III.10)

will correspond to local extrema of the following potential

V =
√
−gtt −

q

m
At . (III.11)
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Note that the normalisation of Fab in the action (II.1) was chosen so that V is identically

zero for extremal (|q| = m) particles in flat space.

By symmetry, it is easy to show that any minima or maxima of V must lie on the axis

of symmetry. It is also clear from the form of V that the particles for which the orbits

will form first must maximise |q|/m. Since Reissner-Nördstrom (RN) black holes in flat

space must have |q| ≤ m, we focus on the extremal case, for which |q| = m. Our task is

therefore to study extrema of (III.11) for extremal particles along the axis as a function of

the holographic direction.

At a minimum of the potential, one can expect to place a small (extremal) particle. Yet,

we now argue that static hovering black hole solutions exist only if this potential V has a

minimum below zero (not necessarily just when a minimum exists). Essentially, small static

black holes behave as though they are in flat space, and V must be zero for extremal particles

in flat space. As an instructive example, let us compute this potential for global AdS and

ask when an extremal RN black hole forms. In this case, the chemical potential is constant

and equal to µ. Our potential would reduce to:

Vglobal AdS(r) =

√
1 +

r2

L2
− µ . (III.12)

Clearly, there is a minimum in the potential for any value of µ. Yet, the entropy of extremal

RN black holes in global AdS is given by

S =
π L2

3
(µ2 − 1) , (III.13)

So small black holes have µ ≈ 1, where the minimum of Vglobal AdS crosses zero.

Finally, let us compute the potential for the point charge solution (II.10). It is given by

Vpoint ∝
λ−

√
(λ− 1)(λ+ 3)

λ2
η . (III.14)

The potential therefore has constant slope and does not develop extrema.

IV. NUMERICAL CONSTRUCTION

In this section, we describe our numerical construction of these solutions. The reader

who is uninterested in numerical details may freely skip this section. We opt to use the

DeTurck method, first introduced in [15] and studied in great detail in [16]. The method
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first requires a choice of reference metric ḡ that is compatible with the boundary conditions.

One then solves the Einstein-Maxwell-DeTurck equations

GH
ab ≡ Gab −∇(aξb) = 0 , ∇aF

ab = 0 , (IV.1)

where ξµ = gρσ
[
Γµρσ(g)− Γµρσ(ḡ)

]
, and Γµρσ(g) is the Levi-Civita connection for a metric g.

These equations are identical to the Einstein-Maxwell equations (II.2) with an additional

DeTurck term ∇(aξb). The new term produces non-degenerate kinetic terms for all metric

components and automatically fixes the gauge 4xµ = gρσΓµρσ(ḡ), a generalisation of Har-

monic gauge. In addition, for the systems considered in this paper, one can show that the

Einstein-Maxwell-DeTurck equations are an elliptic system of PDEs [15].

It is clear from inspection that any solution to Gab = 0 with ξ = 0 is a solution of GH
ab = 0.

The converse, however, is not necessarily true. For certain types of problems, it is possible

to prove that solutions with ξ 6= 0, coined DeTurck solitons, cannot exist [16]. For the case

at hand, we do not have such a proof; the proof in [16] relies crucially on a maximal principal

argument, which is invalidated by the presence of a gauge field.

Fortunately, for boundary value problems with well-posed boundary conditions, the el-

lipticity of the equations guarantees that solutions are locally unique. In particular, the

solutions of the Einstein-Maxwell equations cannot be arbitrarily close to DeTurck solitons.

We should therefore be able to distinguish between DeTurck solitons and true solutions to

Einstein-Maxwell by a careful monitoring of ξaξa ≥ 0.

To solve the resulting PDEs, we employ Newton-Raphson iteration using pseudo-spectral

collocation on a (possibly patched) Chebyshev grid. Our patched grids are non-overlapping

and formed using transfinite interpolation.

This method is expected to have exponential convergence with increasing grid size if

the metric functions are smooth. While the equations for extremal horizons can sometimes

yield highly non-analytic solutions, we expect our solutions to approach known, smooth

extremal horizons. We have checked that our solutions exhibit the expected exponential

convergence of spectral methods, down to machine precision. More specifically, we checked

that the maximum value of the DeTurck norm |ξ2
N |max and the error in entropy 1−SN−1/SN

decreases exponentially with increasing grid size N .
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A. Background solutions with defects

In this section, we detail the numerical construction of ‘background’ solutions with defects

on the boundary, but no black hole in the bulk. As we mentioned earlier, the DeTurck

method requires an appropriate choice of reference metric. For this purpose, we just choose

the AdS4 metric as written in (II.9), but with a new radial coordinate

η =
η̄2
√

2− η̄4

1− η̄4
, (IV.2)

so that η̄ ∈ (0, 1). Our metric ansatz is then

ds2 =
L2

(1− ξ2)2

[
− η̄4(2− η̄4)

(1− η̄4)2
Q1dt2 +

16Q2 dη̄2

η̄2(2− η̄4)2(1− η̄4)2
(IV.3)

+
4Q3

2− ξ2

(
dξ − ξ Q5dη̄

η̄

)2

+ ξ2(2− ξ2)Q4 dφ2

]
, (IV.4)

and for the gauge field, we choose

A = LQ6 dt . (IV.5)

The Qi are functions of the coordinates η̄ and ξ. Written this way, the AdS length scale L

drops out of our equations of motion.

Let us now discuss the boundary conditions. At the conformal boundary ξ = 1, we

require the boundary metric to be conformal to Minkowski space, and for the gauge field to

approach our profile µ(r). The relationship between the coordinates r and η̄ on the boundary

is given by the coordinate transformation (II.8) and (IV.2). That is, at the boundary we

require

Qi(η̄, ξ = 1) =


1 : i = 1, . . . , 4

0 : i = 5

µ

(
1−η̄4

η̄2
√

2−η̄4

)
: i = 6

, (IV.6)

Since η̄ = 1 is the ‘origin’ of the boundary metric, we require a similar condition there:

Qi(η̄ = 1, ξ) =


1 : i = 1, . . . , 4

0 : i = 5

µ (0) : i = 6

. (IV.7)

At the axis ξ = 0, we require regularity. This means

∂ξQi(η̄, ξ = 0) = 0, : i 6= 4

Q4(η̄, ξ = 0) = Q3(η̄, ξ = 0) (IV.8)
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There is an extremal horizon at η̄ = 0 where we again require regularity:

Q1(η̄ = 0, ξ) = Q2(η̄ = 0, ξ)

∂η̄Qi(η̄ = 0, ξ) = 0, : i = 2, . . . , 4

Qi(η̄ = 0, ξ) = 0, : i = 5, 6 (IV.9)

where we have assumed for consistency that limr→∞ µ(r) = 0. Notice that our boundary

condition at the extremal horizon does not fix the IR geometry there. Even though the

IR horizon in the reference metric is the Poincaré horizon, the solution is allowed to be

something else, such as the point charge described in section II A. As mentioned in section

III A, the IR geometry we find depends upon the falloff of µ.

Since we are interested in seeing how various quantities change as we scale the chemical

potential, we choose µ(r) = a p(r) for some fixed profile p(r), and vary the number a. We

begin with a small a, where AdS4 is a natural seed solution, then slowly increase a.

After constructing these solutions, we compute the potential for charged (extremal)

geodesics, and see if there is a value of a at which this potential develops a minimum

that is negative. As we explained in section III B, this is the value of a at which we expect

static hovering black holes solutions to exist.

B. Hovering black holes

In this section, we describe our construction of hovering extremal black holes in the

‘background’ solutions computed in the previous section. Compared to the ‘background’

solutions, the construction of the solution with black holes has two major complications: an

additional boundary in the integration domain, and the lack of an appropriate seed. We will

describe our approach to the first complication before discussing the second.

To begin, we must search for a reference metric that is compatible with our boundary

conditions. Our reference metric must have an extremal black hole horizon between two axes,

an IR horizon, and the conformal boundary (see Fig. 5). Since there are five boundaries,

two of which are horizons, we will choose to work in two different coordinate systems, each

one adapted to one of the horizons.

To aid in the construction of the reference metric, let us begin again with AdS in the

usual Poincaré coordinates (II.5). Now we perform a Cartesian to bipolar coordinate trans-
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formation

r =
x
√

2− x2(1− x2)(1− y2)2

1− (1− x2)2(1− y2)2
, z =

y
√

2− y2

1− (1− x2)2(1− y2)2
(IV.10)

to give us

ds2
AdS =

L2

y2(2− y2)

{
− g2dt2 +

4(1− y2)2dy2

2− y2

+ (1− y2)4

(
4dx2

2− x2
+ x2(2− x2)(1− x2)2dφ2

)}
, (IV.11)

where

g = 1− (1− x2)2(1− y2)2 . (IV.12)

See the left panel of Fig. 6 for a sketch of this coordinate system. In this new coordinate

system, the axis is split into x = 0 and x = 1 with a bipolar centre between them at y = 1.

The boundary is now at y = 0, and the entire Poincaré horizon has been mapped to the

point x = y = 0.

Based on this line element (IV.11), we write down the following reference metric

ds2
ref =

L2

y2(2− y2)

{
− g2(1− y2)4dt2 +

4dy2

(1− y2)2(2− y2)

+
4dx2

2− x2
+ x2(2− x2)(1− x2)2dφ2

}
. (IV.13)

This metric (IV.13) only differs from (IV.11) by a few factors of (1− y2) in several compo-

nents. As a result, there is now an extremal horizon at y = 1 where there used to be the
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FIG. 6: Sketches for the bipolar (left) and elliptic (right) coordinate systems.

bipolar centre. Furthermore, the geometry at y = 0 is unchanged. This means that we will

still recover the Poincaré horizon at x = y = 0. We therefore have a line element that is

well-suited to the hovering black hole horizon (at the ‘line’ y = 1), but ill-suited for the IR

horizon (at the ‘point’ x = y = 0).

To find a coordinate system better suited to the IR horizon, notice that in going from

(IV.11) to (IV.13), we multiplied the dx2 and dy2 components by the same factor of (1−y2)4.

This means that these components are still conformal to bipolar coordinates (i.e. still

conformally flat), and we can move to any orthogonal coordinate system of flat space. Let

us then move to elliptic coordinates:

x =

√
1− 1− σ4√

1− (1− χ2)2σ4(2− σ4)
, y =

√
1−

√
1− (1− χ2)2σ4(2− σ4) , (IV.14)

which gives

ds2
ref =

L2

(1− χ2)2

{
σ4(2−σ4)h2dt2 +

16dσ2

σ2(2− σ4)2h
+

4dχ2

(2− χ2)h
+
χ2(2− χ2)(1− σ4)2dφ2

h2

}
,

(IV.15)

where

h = 1− (1− χ2)2σ4(2− σ4) . (IV.16)

See the right panel of Fig. 6 for a sketch of this coordinate system. In these ‘elliptic’

coordinates, the IR horizon is at σ = 0, the boundary is at χ = 1, the two axes are at χ = 0
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and σ = 1, and the black hole horizon is at the point σ = 1, χ = 0. This coordinate system

is better adapted to the IR horizon, but not the black hole horizon.

To summarize, we have an appropriate reference metric described by the two coordinate

systems (IV.13) and (IV.15), and each boundary of our integration domain is well described

in at least one of these coordinates. The map between the coordinates is given by (IV.14).

Now let us write down a metric ansatz. In bipolar (x, y) coordinates, we have

ds2 =
L2

y2(2− y2)

{
− g2(1− y2)4F1dt2 +

4F2dy2

(1− y2)2(2− y2)

+
4F3

2− x2

(
dx− x(2− x2)F5dy

(1− y2)g

)2

+ x2(2− x2)(1− x2)2F4dφ2

}
,

(IV.17)

while in elliptic (σ, χ) coordinates, we have

ds2 =
L2

(1− χ2)2

{
σ4(2− σ4)h2G1dt2 +

16G2dσ2

σ2(2− σ4)2h

+
4G3

(2− χ2)h

(
dχ− 2χ(2− χ2)G5dσ

σ(2− σ4)h

)2

+
χ2(2− χ2)(1− σ4)2G4dφ2

h2

}
.

(IV.18)

As for the gauge field, we choose

A = LF6 dt = LG6 dt . (IV.19)

We treat Fi as functions of (x, y) and Gi as functions of (σ, χ).

The boundary conditions are similar to those for the ‘background’ defect solution in

section IV A. At the boundary y = 0 or χ = 1, we have

Fi(x, y = 0) =


1 : i = 1, . . . , 4

0 : i = 5

µ
(

1−x2

x
√

2−x2

)
: i = 6

, Gi(σ, χ = 1) =


1 : i = 1, . . . , 4

0 : i = 5

µ
(

1−σ4

σ2
√

2−σ4

)
: i = 6

,

(IV.20)

The remaining boundary conditions are imposed by regularity. At one of the axes, we have

∂xFi(x = 0, y) = 0, : i 6= 4

F4(x = 0, y) = F3(x = 0, y)

∂ξGi(σ, χ = 0) = 0, : i 6= 4

G4(σ, χ = 0) = G3(σ, χ = 0) . (IV.21)
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At the other axis,

∂xFi(x = 1, y) = 0, : i 6= 4, 5

F4(x = 1, y) = F3(x = 0, y)

F5(x = 1, y) = 0

∂χGi(σ = 1, χ) = 0, : i 6= 4, 5

G4(σ = 1, χ) = G3(η = 1, χ)

G5(σ = 1, χ) = 0 . (IV.22)

We restrict ourselves to imposing boundary conditions on the black hole horizon in bipolar

coordinates, and the IR horizon in elliptic coordinates. These conditions are

∂yFi(x, y = 1) = 0, : i = 2, . . . , 4,

F1(x, y = 1) = F2(x, y = 1)

F5(x, y = 1) = 0

F6(x, y = 1) = 0 , (IV.23)

for the black hole horizon, and

∂yGi(σ = 0, χ) = 0, : i = 2, . . . , 4,

G1(σ = 0, χ) = G2(σ = 0, χ)

G5(σ = 0, χ) = 0

G6(σ = 0, χ) = 0 , (IV.24)

for the IR horizon.

In practice, we partition the integration domain into two non-overlapping ‘patches’, one

in each coordinate system. We place a grid on each patch using transfinite interpolation,

then solve the system subject to the above boundary conditions. Since we have two non-

overlapping patches, in addition to the conditions above, we have additional patching condi-

tions on any (artificial) patch boundaries where we impose that the two line elements (IV.17)

and (IV.18) and their first derivatives are equivalent under the transformation (IV.14). We

choose our patch boundary to extend from the point (x = 1, y = 0) or (σ = 1, χ = 1) to

somewhere along the line x = 0 or χ = 0.
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In order to find a solution using our methods (Newton-Raphson), we require a good seed

solution. Unfortunately, the solutions we are looking for are not close to any previously

known solution to the Einstein-Maxwell equations, so there are no readily available seeds.

To remedy this, consider the following equations

GH
µν [g, A]− δ GH

µν [ḡ, A] = 0 , ∇µF
µν = 0 , (IV.25)

where δ is a constant, g is the metric, ḡ is the reference metric, and we are now working

in a coordinate basis. By construction, δ = 1, g = ḡ, and A = 0 is a solution to the

above equations of motion, and δ = 0 recovers the same equations of motion as (IV.1).

Furthermore, (IV.25) has the same differential operator as (IV.1), so they are also Elliptic

equations. The new equations are also consistent with the boundary conditions we have

outlined above.

We can therefore attempt to find solutions to (IV.1) using the following procedure. Begin

with δ = 1, g = ḡ, and A = 0, which is a solution to (IV.25). Now continue to solve (IV.25)

by slowly increasing the amplitude a until it exceeds the value at which black holes are

expected to form. (This value is determined by an analysis of the ‘background’ solutions

whose construction we described in section IV A.) Then we slowly decrease δ until we reach

δ = 0, where we would have a solution to (IV.1).

V. NUMERICAL RESULTS

Let us now discuss the results of our numerical construction which was outlined above.

We have studied a number of profiles for the chemical potential:

µI1(r) =
a(

r2

`2
+ 1
)3/2

µI2(r) =
a(

r2

`2
+ 1
)4

µI3(r) = a e−
r2

`2

µI4(r) =
a r2

`2
(
r2

`2
+ 1
)4

(V.1a)
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µM1(r) =
a(

r2

`2
+ 1
)1/2

µM2(r) = a

[
1(

r2

`2
+ 1
)4 +

b r2

`2( r
2

`2
+ 1)3/2

]
.

(V.1b)

In the profile M2, there is an additional parameter b which we keep fixed when varying a.

Note that these profiles include a length scale `. Due to the conformal symmetry of the UV

theory, our results only depend upon the product a`. We therefore henceforth set ` = 1.

These profiles are plotted in Fig. 7.
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FIG. 7: Sketches for the profiles in Eq. (V.1).

We can divide the profiles above into two groups depending on their falloffs. The first

four (profiles I1 to I4) have a falloff faster than 1/r, and so are ‘irrelevant’ profiles. The final

two (profiles M1 and M2) fall as 1/r and so are ‘marginal’ profiles. Absent from the present

section are any profiles with a falloff slower than 1/r (i.e. ‘relevant’ profiles). Our numerics

do not seem to allow us to study such profiles at zero temperature.

A. Background solutions

We first consider the gravitational solutions without a black hole. We begin by comparing

our numerical results to perturbation theory and our expectations in III A, then discuss the

existence of a maximum amplitude for these solutions, and analyze the effective potential

for the static orbits of extremal charged particles.
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In the irrelevant case, profiles with small amplitudes can be studied perturbatively about

AdS4. The details for this perturbative calculation are in Appendix A. The charge density

ρ(r) can be extracted from the behaviour of the gauge field near the boundary. According

to our perturbative analysis, the charge density, ρ(r) for our irrelevant profiles has a 1/r3

falloff5. Our irrelevant profiles agree with this perturbative analysis. Fig. 8 contains four

panels with plots of the charge density for several values of the amplitude a for one of our

profiles. The purple dashed line is the analytic prediction from the perturbation theory. The

agreement at large r is good, confirming the expected falloff of the charge density.

As we mentioned in section II A, the charge density of the point charge solution is located

at the origin in a delta function. In our marginal profiles, there is no longer such a delta

function since the chemical potential is smooth. As an additional numerical check, we verify

that the total charge of our marginal profiles matches that of the point charge with the same

1/r falloff, as can be seen in Fig. 9.

We can repeat this calculation for the energy density T tt , which can be extracted using a

standard holographic renormalisation procedure [17, 18]. In this case we expect the large r

behaviour of our profiles to have a 1/r5 falloff (III.8) possibly modified by ln r terms6. We

again find good quantitative agreement between numerics and perturbation theory. Two

typical runs for the first profile in Eq. (V.1a) are shown in Fig. 10. For this profile, the

decay extracted at large r is compatible with r−5 log r. For completeness, we also include

the stress tensor for one of our marginal profiles in Fig. 11. The falloff of this stress tensor

goes as 1/r3, consistent with our discussion in section III A.

We also note that we did not input the IR geometry into our code. So as an additional

check of our numerics, we can verify that the IR geometry is the same as the Poincaré

horizon for the irrelevant profiles and the same as the point charge (II.10) for the marginal

profiles. This can be seen, for instance, by computing the Ricci scalar of the induced horizon

geometry as a function of
√
gφφ on the horizon. This is plotted in Fig. 12 for one of the

marginal profiles.

For each of the profiles, we are unable to find background solutions with an amplitude

5 For any irrelevant profile that decays slower than 1/r2, the charge density instead decays as µ(r)/r at

large r. A profile with precisely 1/r2 falloff has a charge density decaying as log r/r3. For simplicity, we

did not consider irrelevant profiles with slower than 1/r2 falloff.
6 This again depends on choosing irrelevant profiles that decay faster than r−2.
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FIG. 8: Charge density as a function of the boundary radial coordinate r for profile I3 defined in

Eq. (V.1a): the purple dashed line indicates the perturbative prediction whereas the blue

dots represent our numerical data.

above some (profile dependent) value amax. In the irrelevant case, these solutions appear to

be becoming singular. Fig. 13 shows the maximum value of the Kretschmann scalar as a

function of the amplitude for one of the irrelevant profiles. The Kretschmann scalar begins

at the AdS4 value of 24/L4 for small amplitudes and increases rapidly near a ≈ 4. In the

26



��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

�



FIG. 9: Total charge as a function of amplitude. The red line is the value for the point charge

(up to amax), and the dots are numerical data for the profile M1.

point charge solution in section II A, there is also a maximum value amax ≈ 0.6675. We

were unable to extend our marginal profiles above this value, nor were we able to construct

a second branch of solutions. This is consistent with our discussion in section II A. Here,

the point charge solutions and the solutions with a marginal profile do not appear to be

singular.

Now we compute the effective potential V for timelike static orbits of (extremal) charged

test particles. Rather than use a specific coordinate system, we opt to plot the potential as

a function of the thermal length `T ≡
√
−gtt. Note that the Poincaré horizon has thermal

length `T = 0.

For profiles with amplitudes in the range 0 < a < amax, we typically find three different

regimes for the qualitative behaviour of V . For 0 < a < a′, V does not have any extrema.

For a′ < a < a?, there is a local maximum and a local minimum in V , but the minimum is

above zero. For a? < a < amax, there is still a maximum and minimum, but the minimum

is now below zero. All of these regimes can be seen in Fig. 14 where we plot the potential

along the axis for a representative profile.

The potential (including off the axis) can be visualised in Fig. 15. There, we have mapped
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FIG. 10: Stress energy tensor as a function of the boundary radial coordinate r for I1 defined in

Eq. (V.1a): the purple dashed line indicates the perturbative prediction whereas the

blue dots represent our numerical data.

our coordinate system into a quarter disk with the quarter circle representing the IR horizon

and the two sides representing the symmetry axis and the boundary. This is not gauge

invariant, but nevertheless provides a visual aid for the shape of the potential. One can

clearly see that the minimum along the axis is indeed a true minimum and not a saddle

point.

The amplitudes a′ and amax thus represent critical amplitudes. As we have explained in

section III B, a′ is the critical amplitude above which a small extremal charged particle is

stable in the geodesic approximation. Above a?, we expect hovering black hole solutions to

exist.

In table I we show the values for a? for all of the profiles in Eq. (V.1). In addition, we also

plot in Fig. 16 what the several profiles look like for a = a?. As one can see, these curves differ

significantly from one another. We have attempted to search for possible physical quantities

at a = a? that might give a universal quantity or property for the black hole nucleation.

These include: the total area under the profiles, the total enthalpy
∫ +∞

0
µ(r)ρ(r)rdr, the

r−3 coefficient of the large r expansion of ρ(r), the total energy and the Gibbs free energy.

None of these show any universality.

Interestingly, unlike the irrelevant profiles we have tried, the marginal profiles do not
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FIG. 11: Stress energy tensor as a function of the boundary radial coordinate r for M1 defined in

Eq. (V.1b).

I1 I2 I3 I4 M1 M2(b = 0.075)

a? 3.63 6.99 3.8 29.09 N/A 6.20

TABLE I: The critical value at which hovering black holes form for our various profiles in

Eq. (V.1).

necessarily have such a critical a′ or a? below amax. That is, no extrema develop. This is

not true for all marginal profiles since profile M2 yields these critical amplitudes a′ and a?

for sufficiently small values of b.

B. Hovering black holes

Now let us discuss our numerical results for the hovering solutions. As explained earlier

in this section and in section III B, all of these solutions have an amplitude a > a?, where a?

is the critical amplitude above which the effective potential for extremal charged geodesics

develops a minimum below zero. Since profile M1 does not contain this critical value, it is

omitted from this discussion. Here, we fix the parameter b = 0.075 in the profile M2 which

does have such an a?.
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FIG. 12: Ricci scalar the of induced IR horizon geometry a function of
√
gφφ on the horizon. The

red line is the analytic result for the point charge, the dots are numerical data. Here, we

use profile M1 with a = 0.2.

Note that we have found hovering black holes for both marginal and irrelevant profiles.

These profiles yield different IR geometries. As in the background case, we again verified

here that the IR geometry approaches the Poincaré horizon for irrelevant profiles and that

of the point charge for marginal profiles. We also verified that the total charge is zero in the

irrelevant case. In the marginal case, we confirmed that the integral of the boundary charge

density is equal to the sum of the charge on the black hole and on the IR horizon.

First, let us examine the near horizon geometry of the hovering black holes. We find

that they match that of spherically symmetric extremal Reissner-Nördstrom black holes in

AdS. If our solutions are smooth, this is required by a classification theorem of near-horizon

geometries [10]. For instance, the entropy of these black holes as a function of its total

charge matches that of Reissner-Nördstrom:

S =
L2

6
π
(√

12Q2 + 1− 1
)
. (V.2)

In Fig. 17 we plot the entropy of the numerical hovering black hole (blue dots) as a function

of the charge contained inside the horizon. The dashed red line is the analytic prediction

(V.2). The agreement is excellent. We note that we have not required this as an input to
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FIG. 13: Maximum value of the Kretschmann scalar for one of the irrelevant profiles as a

function of the amplitude. For a = 0, we recover the AdS4 result 24/L4.
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FIG. 14: Plots of the potential Eq. (III.11) along the axis for a representative profile.

our numerics, so this is a reassuring numerical check.

It is amusing to ask where the flux from the charged black hole goes in the case where

µ(r) is an irrelevant deformation. We have seen in Sec. III A that the total charge at

infinity is zero, and the IR geometry consists of a Poincaré horizon which has no charge.
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FIG. 15: Shape of the potential Eq. (III.11) for a representative profile with a? < a < amax. The

green plane represents V = 0. The potential is zero on the IR horizon (here mapped to a

quarter circle), and diverges as it approaches the boundary. There is a global minimum

on the axis.
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FIG. 16: Sketches for the profiles Eq. (V.1) for a = a?. In this plot, we set b = 0.075.

So in Fefferman-Graham coordinates, the flux must all escape through the “sides” (in our

coordinates, this is the boundary at large distance from the axis of symmetry).

Note that there is a region in parameter space where the hovering black hole solutions

coexist with the solutions without the black hole, namely for a ∈ (a?, amax). It is therefore
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FIG. 17: Entropy of the hovering black hole as a function of the total charge enclosed in a

hovering horizon. The blue dots are our numerical data, and the dashed red curve is the

analytic prediction (V.2). This particular example was generated using profile I1 in

Eq. V.1.

natural to ask which of these phases will dominate in a particular ensemble. In the micro-

canonical ensemble, it is clear that the solutions with hovering black holes will dominate

because they have nonvanishing entropy. Furthermore, the phase transition at a = a? is

second order because there, the black holes have zero size. This in turn indicates that, at

any non-zero but small temperature, the hovering solutions dominate all ensembles, because

they are guaranteed to dominate the micro-canonical ensemble and the transition is second

order [19]. We also point out that this is a quantum phase transition since our solutions

are at zero temperature. The transition is localized in space, as it involves a total entropy

which does not scale with volume. Thus (as is usual in holography) the thermodynamic

limit required for a phase transition is provided not by infinite volume, but by the fact that

we are working at large N .

The size of the hovering black holes increases monotonically as we increase the amplitude

a and can become quite large. If we define a horizon radius by r+ =
√
S/π, then we find

that it can be larger than the AdS length scale L. In fact, we have reached sizes as large as

r+ ∼ 3L.

As mentioned in the introduction, the way in which the hovering black holes grow with

33



a/a? appears to exhibit a remarkable universality. It seems completely independent of the

profile of the chemical potential. The plot on the left of Fig. 18 shows the entropy of the

hovering black hole as a function of a/a? for five different boundary profiles. The fact that

the curves agree is surprising and not understood. The plot on the right is a close-up of the

data for small black holes, and shows a clear linear dependence. The analogous curve for

extremal RN black holes in global AdS is given by (III.13). This also has a linear scaling for

small black holes, but the slope is different and (III.13) is nowhere a good approximation to

Fig. 18. This is not surprising since the boundary geometry is R×S2 rather than Minkowski

space, and the chemical potential is constant.
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FIG. 18: Entropy of the hovering black hole as a function of a/a? for several boundary profiles.

The left panel shows all of our data points, while the right panel shows a zoom of our

data close to a/a? ∼ 1. The different symbols used indicate the various profiles we have

considered, which we label on the right. Here we have chosen b = 0.075.

VI. DISCUSSION & OUTLOOK

We have constructed the holographic dual of a localised electrically charged defect in a

strongly coupled conformal field theory. When the strength of the defect is large enough, the

dual gravitational description contains a charged black hole hovering above the IR horizon.

This hovering black hole can have unusual consequences in the dual field theory. One obvious

consequence is that there must be a large number of degenerate states localised near the

defect. Since the hovering black hole is in the middle of the bulk (not in the UV or IR part
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of the spacetime) it will have its biggest effect at intermediate or “mid-infrared” energies.

It is as if the degenerate states all have a similar characteristic size. Imagine sending a

signal in the dual field theory toward the defect. At high energies the signal will pass

right through, corresponding to a perturbation of the bulk that passes above the hovering

black hole. At low energies, the signal will also pass by largely unchanged, corresponding

to a perturbation of the bulk that passes below the hovering black hole. For a suitable

range of intermediate energies, the perturbation hits the black hole and is largely absorbed.

The resulting black hole is now slightly non-extremal and will Hawking evaporate (at finite

N) back to extremality. In the dual field theory, this corresponds to the signal “rapidly

thermalising” with the degenerate states around the defect, and then radiating away the

excess heat. One should see a dramatic signature of this as one scans in energy. It would

be interesting to investigate this phenomenon further.

Perhaps the most important open question is to understand the universal behaviour we

see for the entropy as a function of the strength of the defect discussed above. It would help

enormously to have an analytic solution of this type. Analytic solutions are indeed known

in slightly different contexts. There is a charged C-metric that describes a charged black

hole uniformly accelerating in a spacetime with no cosmological constant [20]. The source of

the acceleration is a conical singularity along the axis which acts like a cosmic string pulling

the black hole. One can remove the conical singularity by adding a background electric flux

tube which can source the acceleration [21]. We need a solution of this type with nonzero

Λ. There is indeed a generalisation of the charged C-metric to include Λ 6= 0 [22], but it is

apparently not known how to add the background electric flux tube analytically.

This universal behaviour is reminiscent of Choptuik scaling [23], which concerns small

black holes formed from, e.g., the collapse of spherical scalar fields. It was found that near

the threshold for black hole formation, the size of the black hole scaled with the initial

amplitude of the scalar field in a universal way that was independent of the initial radial

profile. The universality we find for hovering black holes has a similar character, but there

are two important differences. First, we are considering static, zero temperature ground

states, not dynamical collapse. Second, and more importantly, our universality extends to

large black holes, not just very small ones.

We have not discussed the case of a relevant deformation, where µ(r) falls off more slowly

than 1/r. We have found finite temperature solutions without a black hole, but the IR
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appears to become singular as T → 0. At finite temperature, there are certain profiles that

permit hovering black holes, but these static orbits do not persist down to zero temperature.

There are several new directions that are worth exploring. Rather than a single isolated

defect, one could consider an array of defects. When their amplitude is small, the IR will be

described by an extremal charged horizon. (In this case there is no complication associated

with the fall-off of the chemical potential as we saw for a single isolated defect, though these

horizons might be highly non-analytic which would pose a technical challenge.) As one

increases the strength of the defects, one expects spherical charged black holes to develop,

hovering above the horizon. Eventually, one can imagine that all the charge will be contained

in the localized black holes and none will remain on the IR horizon. This may be dual to

localization in the presence of strong defects.

Besides an array of defects, one can also attempt to find axisymmetric solutions with

multiple hovering black holes at various distances into the bulk. A study of charged geodesics

in our hovering solutions suggests that our profiles do not permit additional hovering black

holes, but this might still be accomplished by introducing a profile with additional length

scales.

We have focussed mostly on zero temperature solutions, but T > 0 solutions with nonex-

tremal hovering black holes should exist as well. If one now includes a charged scalar field

in the theory, then at low temperature, the scalar field will condense around the charged

black holes. This is just a localized version of the instability resulting in the holographic

superconductor [24]. Nuggets of the charged condensate 〈O〉 will form in the dual theory.

Even in the phase without black holes, if the electric field in the bulk is strong enough along

the axis r = 0, one might expect there to be an instability to forming a nonzero charged

scalar field there.

From a purely gravitational standpoint, the existence of hovering black holes is an in-

teresting new type of black hole solution. One might wonder if analogous solutions exist

for neutral black holes. One could imagine constructing such a solution by replacing the

flat Minkowski metric with a suitable inhomogeneous boundary metric (or taking gravity

coupled to a neutral scalar field with an inhomogeneous source). The resulting bulk solution

might contain a static geodesic above the Poincaré horizon. If so, one could add a small

Schwarzschild black hole at the location of the geodesic and it should remain static.
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Note added in proof: in Section III B it was argued that hovering black holes can form

only when the minimum Vmin of the effective potential felt by a test particle drops below

zero. This is actually only the case when there is vanishing potential difference ∆µ between

the hovering black hole horizon and the Poincare horizon. We have recently checked that

hovering black holes also exist with nonzero potential difference, in which case the analysis

in Section III B does not immediately apply.

Appendix A: Perturbative results for small amplitude defects

In this appendix we give the details of our perturbative calculation for small amplitudes

about AdS4. While the specifics of this calculation depend upon the profile, the profiles

that decay faster than 1/r2 at large r are very similar. For simplicity, we will only detail

the perturbative calculation for the profile I1 to second order in a.

We begin by writing our line element and gauge field in Fefferman-Graham coordinates:

ds2 =
L2

z2

[
−G(r, z)dt2 +B(r, z)dr2 + C(r, z)r2dφ2 + dz2

]
(A.1a)

and

A = At(r, z) dt , (A.1b)

where G, B, C and At are functions of r and z to be determined in what follows. We then
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expand our functions in powers of a:

G = 1 +
+∞∑
i=1

a2iG(2i)(r, z)

B = 1 +
+∞∑
i=1

a2iB(2i)(r, z)

C = 1 +
+∞∑
i=1

a2iC(2i)(r, z)

At =
+∞∑
i=0

a2i+1A
(2i+1)
t (r, z) .

Notice that to first order in a, only At is non-trivial, so we can solve this order using just

the Maxwell equations.

The Maxwell equations yields the following linear equation for A
(1)
t :

∂2A
(1)
t

∂z2
+
∂2A

(1)
t

∂r2
+

1

r

∂A
(1)
t

∂r
= 0 . (A.2)

Our objective is to solve Eq. (A.2) subject to our boundary profile:

aA
(1)
t (r, 0) = µI1(r) =

a(
r2

`2
+ 1
)3/2

. (A.3)

We start by assuming a separable solution of the form

A
(1)
t (r, z) = R(r)Z(z) . (A.4)

Which, upon imposing bulk regularity, leads to

Z(z) = e−k z and R(r) = J0(kr) , (A.5)

where k is a separation constant, and J0 is the zeroth order Bessel function of the first kind.

The general smooth solution of Eq. (A.2) can then be written as

A
(1)
t (r, z) =

∫ +∞

0

dk kf(k) J0(kr) e−k z (A.6)

where f is a function determined by boundary conditions. Using the fact that Bessel func-

tions form a basis on the semi-infinite line, we can further observe the following∫ +∞

0

dr r J0(kr) J0(k′r) =
δ(k − k′)

k
and

∫ +∞

0

dk k J0(kr) J0(kr′) =
δ(r − r′)

r
, (A.7)
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for k, k′, r, r′ ∈ R+. Which in turn implies that:

f(k) =

∫ +∞

0

dr r J0(kr)A
(1)
t (r, 0) . (A.8)

This together with Eq. (A.6) gives us our solution to first order in a.

For the simple profile (A.3) one finds

f(k) = `2e−` k , (A.9)

which, together with Eq. (A.6), gives

aA
(1)
t (r, z) =

a `2(z + `)

[r2 + (z + `)2]3/2
. (A.10)

Expanding this equation in z gives us the charge density to first order in a:

ρ(r) = − a`2 (r2 − 2`2)

4π (r2 + `2)5/2
, (A.11)

which at large r decays like −(a`2)/(4πr3), as expected. A simple integration tells us that

the total charge Q is zero.

We can construct new linear solutions for different profiles by exploiting the fact that

Eq. (A.2) is linear. In particular, we can find what happens for a generic Maxwell field

whose boundary behaviour is given by

aA
(1)
t (r, 0) =

a(
r2

`2
+ 1
) 3

2
+n

=

√
π(−1)n2−n−1`2n+3

Γ
(
n+ 3

2

) Dn
(

1

`3
µI1

)
for n ∈ N , (A.12)

where D(f) ≡ `−1∂f/∂`, which gives

aA
(1)
t (r, z) =

√
π(−1)n2−n−1`2n+3

Γ
(
n+ 3

2

) Dn
(

1

`3

a `2(z + `)

[r2 + (z + `)2]3/2

)
for n ∈ N . (A.13)

We now proceed to second order. The calculation gets substantially more involved, so

we continue to discuss our profile I1 and henceforth keep n = 0. At this order, the Maxwell

equations are already satisfied, and we need to solve the Einstein equations. We first define

the function q = G(2) − C(2), which we will use to replace the function G(2). From the zz

component of Eq. (II.2) we find

B(2) =
z2C ′1(r)

2 r
+C2(r)+

1

64

{
9`5(z2 − `2) arctan

(
z+`
r

)
r5

+
9`5(z + `)

r4
−9`6

r4
−

21`5 arctan
(
z+`
r

)
r3

+

48r2`4 [r2 + `(2z + `)]

[r2 + (z + `)2]3
− 2`4 [3`(4z + 3`)− 32r2]

r2 [r2 + (z + `)2]
− 4`4 [28r2 + `(23z + 16`)]

[r2 + (z + `)2]2

}
− q(r, z) ,

(A.14)
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where C1, and C2 are arbitrary integration functions. It turns out that the rz component

of Eq. (II.2) can also be integrated, to express C(2) in terms of q:

C(2) = −r∂q
∂r
− q − 1

32r5

{
16r4z2C ′1(r) +

3

2
`5
(
11r2 + 3`2

)
arctan

(
r

z + `

)
−

144r9`4 [r2 + `(2z + `)]

[r2 + (z + `)2]4
+

8r7`4 [43r2 + `(44z + 25`)]

[r2 + (z + `)2]3
− 2r5`4 [124r2 + `(25z + 18`)]

[r2 + (z + `)2]2
+

r3`4 [32r2 − 3`(6z + 5`)]

r2 + (z + `)2
+

9

2
z2`5 arctan

(
z + `

r

)
+

9

2
rz`5

}
+ C3(r) , (A.15)

where C3 is another integration function. The trace of Eq. (II.2) expresses C2(r) as a function

of C1(r) and C3(r):

C2(r) = −2C1(r) + C3(r) + κ0 +
9π`7

128r5
+

33π`5

128r3
, (A.16)

where κ0 is an integration constant. The rr component of Eq. (II.2) gives the only “dynam-

ical” equation to solve for q, which takes the following form:

∂2q

∂z2
− 2

z

∂q

∂z
+
∂2q

∂r2
+

3

r

∂q

∂r

− 9`5

64r7

(
11r2 − 5z2 + 5`2

)
arctan

(
z + `

r

)
− 2r2C ′3(r) + z2 [rC ′′1 (r)− C ′1(r)]

2r3
+

`4

128r7 [r2 + (z + `)2]4

[
99πr10`− 128r11 − 2r9

(
320z2 + 413z`+ 185`2

)
+

9πr8`
(
44z2 + 88z`+ 49`2

)
+ 4r7(z + `)2

(
304z2 + 63z`− 188`2

)
+

18πr6`(z + `)2
(
33z2 + 66z`+ 43`2

)
− 12r5`(z + `)4(24z + 61`)+

18πr4`(z + `)4
(
22z2 + 44z`+ 37`2

)
+ 12r3`(11z − 20`)(z + `)6

+ 9πr2`(z + `)6
(
11z2 + 22z`+ 31`2

)
+ 18r`(5z − `)(z + `)8 + 45π`3(z + `)8

]
. (A.17)

The remaining component of the Einstein equations is automatically satisfied if we solve

(A.14), (A.15), and (A.17).

Let us now simplify the complicated equation (A.17) by a number of redefinitions. We

first parametrise C1 and C3 as:

C1(r) ≡ r (3λ′0 + rλ′′0)

C3(r) ≡ rλ′1 + 2λ1
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where λ0 and λ1 are arbitrary functions of r. If we redefine q as

q = λ0 + λ1 +
z2C1

2r2
+

1

r

∂

∂r

(
q̃ − z ∂q̃

∂z

)
(A.18)

and then redefine q̃ as

q̃ = q̂ +
π`6(z + `)

128r3
+

5`5(z + `)

256r2
+

1

2
`4 log

(√
r2 + (z + `)2

)
+

1

r2 + (z + `)2

[
1

32
`4
(
5r2 + 3`2

)
+

3z`5

32
+

1

16
`4(z + `)2

]
−[

z2`5

64r3
+
z (13r2`4 + `6)

32r3
+

31r2`5 + `7

64r3

]
arctan

(
z + `

r

)
+

1

r

(
13

64
πz`4 +

33π`5

128

)
, (A.19)

we find that (A.17) reduces to

∂2q̂

∂z2
+
∂2q̂

∂r2
+

1

r

∂q̂

∂r
= 0 , (A.20)

which is actually the same as Eq. (A.2). It therefore has the solution

q(r, z) =

∫ +∞

0

dk kg(k) J0(kr) e−k z , (A.21)

for some integration function g. We have thus solved the equations to second order in a,

aside from the undetermined functions λ0, λ1, g, and the constant κ0.

The remainder of the calculation is completed by imposing boundary conditions. Apart

from regularity everywhere in the bulk, we must choose q̂(r, 0) carefully, to ensure that our

boundary metric is conformally flat. This condition translates into finding q̂ such that

G(2)(r, 0) = B(2)(r, 0) = C(2)(r, 0) , (A.22)

which allows us to express λ1 and q̂(r, 0) in terms of elementary functions. We will omit

from the text what λ1 turns out to be, but for reference we present here q̂

q̂(r, 0) =
3

32
`4Li2

(
−r

2

`2

)
+

5

64
`4 log

(
r2

`2
+ 1

)
(A.23)

where Li2 is the dilogarithm function. Note that the expression for q̂ everywhere in the

bulk will involve an integral form similar to Eq. (A.6), which we omit here. After fixing

all integration variables by demanding regularity we can finally read off the stress energy

tensor. Since the stress energy tensor must obey the Ward identities and is traceless, there

is only one independent component. Here we choose to present T tt for which we obtain:

T tt =
A2

512π `
f
(r
`

)
, (A.24)
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with

f(x) =
1

(1 + x2)5 [12
(
1 + x2

) (
9x4 − 51x2 + 20

)
K
(
−x2

)
+ 128

(
5x4 − 8x2 + 2

)
− 3

(
111x4 − 410x2 + 119

)
E
(
−x2

)
] , (A.25)

where K(y) and E(y) are the complete Elliptic integral of the first kind and complete Elliptic

integral, respectively.
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