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We numerically construct asymptotically anti-de Sitter (AdS) black holes in four dimensions that
contain only a single Killing vector field. These solutions, which we coin black resonators, link
the superradiant instability of Kerr-AdS to the nonlinear weakly turbulent instability of AdS by
connecting the onset of the superradiance instability to smooth, horizonless geometries called geons.
Furthermore, they demonstrate non-uniqueness of Kerr-AdS by sharing asymptotic charges. Where
black resonators coexist with Kerr-AdS, we find that the black resonators have higher entropy.
Nevertheless, we show that black resonators are unstable and comment on the implications for the
endpoint of the superradiant instability.

Introduction. As the simplest of gravitating objects,
black holes (BHs) play a fundamental role in our under-
standing of general relativity. Indeed, four-dimensional,
asymptotically flat BHs are stable and uniquely speci-
fied by their asymptotic charges [1]. However, there are
circumstances where stability and uniqueness can be vio-
lated, such as those in higher dimensions [2–11]. We will
argue that this can also be accomplished in four dimen-
sions with asymptotically anti-de Sitter (AdS) BHs.

Unlike Minkowski or de Sitter space, AdS contains a
timelike boundary at conformal infinity where reflect-
ing (energy and angular momentum conserving) bound-
ary conditions are typically imposed to render the ini-
tial value problem well posed [12]. The presence of this
boundary has drastic consequences for the stability of so-
lutions in AdS. For example, rotating BHs contain an er-
goregion from which energy can be extracted by the Pen-
rose process [13]. For waves, this phenomenon is called
superradiance [14–16]. In AdS, these waves return after
scattering from the boundary and extract more energy.
The process continues until the waves contain enough en-
ergy to backreact on the geometry, causing the so-called
superradiant instability [17–19].

The reflecting boundary also has implications for the
stability of AdS itself. A nonlinear instability may occur
if an excitation with arbitrarily small, but finite energy
around AdS continues to reflect off the boundary and
eventually forms a BH. There is numerical evidence in
support of this instability with a spherically symmetric
scalar field [20–22]. There is additionally a proposed per-
turbative explanation for this instability [20] which ap-
plies to pure gravity and beyond spherical symmetry [23].
At linear order in perturbation theory, AdS contains an
infinite tower of evenly-spaced normal modes. At higher
orders, resonances between modes cause higher modes to
be excited that grow linearly in time. In the generic case,
this leads to a breakdown of perturbation theory, and is
interpreted as the beginnings of a nonlinear instability.
This instability is called weakly turbulent due to this en-

ergy shift from longer to shorter length scales.
Though there is a breakdown of perturbation theory

for generic initial data, perturbation theory survives to
arbitrarily high orders when only a single mode is excited.
This leads to a family of horizonless time-periodic solu-
tions called oscillons (boson stars) for a real (complex)
scalar field [20, 21] and geons for pure gravity [23, 24].
These geons can be thought of as nonlinear normal modes
of AdS and are solutions that contain only a single Killing
field. Any gravitational radiation emitted by the geon is
balanced by absorption of waves reflected from the AdS
boundary. Since perturbation theory breaks down for
two-mode initial data, geons can be thought of as a basis
for the nonlinear instability [23, 24].

We will construct a new family of BHs that joins the
onset of the superradiant instability of Kerr-AdS [18, 19]
[40] to the geons. Since these BHs are time-periodic and
single out a particular frequency, we call them black res-
onators. One limit of black resonators corresponds to the
onset of the superradiant instability. Black resonators
are thus the BHs predicted by [25] and alluded to in
[19, 23, 26]. The opposite, zero-size limit of black res-
onators corresponds to the geons where this frequency is
given by a nonlinear normal mode of AdS [23, 24]. Like
the geons, black resonators are time-periodic and have
only one Killing field. The Killing field is also the hori-
zon generator, so black resonators have bifurcate Killing
horizons and globally well-defined horizon temperatures.
Numerical Approach. We will search for solutions

to the Einstein equation with a negative cosmological
constant Λ = −3/L2. That is, we will solve

Rab +
3

L2
gab = 0 , (1)

where L is the AdS length scale, gab the metric and Rab
the Ricci tensor. We wish to find asymptotically global
AdS solutions with a boundary metric conformal to the
Einstein static universe

ds2bdy = −dt2 + dθ2 + sin2 θdϕ2 . (2)
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We use the DeTurck method [27] which proceeds by
writing down any reference metric ḡ of our choice that
shares the same causal structure as the solution g we wish
to find. Then, rather than solve the Einstein equation
(1), we instead solve the Einstein-DeTurck equation:

Rab +
3

L2
−∇(aξb) = 0 , (3)

with ξa = gcd[Γacd(g)−Γacd(ḡ)], where Γ(g) is the Christof-
fel symbol associated with a metric g. Since we are solv-
ing different equations, we verify a posteriori that our
solutions to (3) satisfies ξa = 0 to machine precision, and
hence is also a solution to (1). In some cases, it is pos-
sible to prove that all solutions of (3) must have ξa = 0
[28], but we do not have such a proof for our case of in-
terest. However, we have verified that (3) yields elliptic
partial differential equations for which local uniqueness
theorems exist [29]. Thus, solutions with ξ 6= 0 cannot

have ξ arbitrarily small for all ranges of parameters, and
are therefore distinguishable from solutions with ξ = 0.

Following the DeTurck method, we need an ansatz and
a reference metric containing a single Killing field,

K = ∂t + ΩH∂ϕ , (4)

where ΩH will be the horizon angular velocity. K is a
Killing field, but ∂t and ∂ϕ are not. Thus, the solution
will neither be time independent nor axisymmetric, but
is instead time-periodic. We now perform the following
change of variables: dτ = dt and dφ = dϕ + ΩHdt. In
these coordinates, K = ∂τ and the boundary metric is:

ds2bdy = −dτ2 + dθ2 + sin2 θ(dφ− ΩHdτ)2 . (5)

For a general ansatz containing a Killing horizon gen-
erated by K, we choose:

ds2 =
L2

(1− y2)2

[
− y2q1∆(y) (dτ + y q6dy)

2
+

4y2+ q2dy2

∆(y)
+

4y2+ q3

2− x2
(

dx+ yx
√

2− x2 q7dy + y2x
√

2− x2 q8dτ
)2

+ (1− x2)2y2+q4

(
dφ− y2q5dτ +

x
√

2− x2q9dx

1− x2
+ y q10dy

)2 ]
, (6)

with ∆(y) = (1 − y2)2 + y2+(3 − 3y2 + y4) and qi =
qi(x, y, φ). As a reference metric, we take (6) with
q1 = q2 = q3 = q4 = 1, q5 = ΩH and qi = 0, for i ≥ 6.

If ΩH = 0, our reference metric is the Schwarzschild-
AdS BH with entropy S = πy2+L

2 and temperature

T =
1 + 3y2+
4πy+L

. (7)

To recover more familiar coordinates, redefine r/L =
y+/(1 − y2) and cos θ = x

√
2− x2. We chose this ref-

erence metric rather than Kerr-AdS for tidiness.
Since black resonators branch from the onset of the

superradiant instability of Kerr-AdS [18, 19], let us now
describe this instability in more detail. Perturbations of
Kerr-AdS are labeled by a type (scalar or vector) and
polar and azimutal wavenumbers ` and m, respectively.
While all Kerr-AdS BHs with ΩHL > 1 are superradi-
ant unstable, different perturbative modes have onsets in
difference places in parameter space. At these onsets are
zero modes which mark the appearance of a new family
of solutions which will be the black resonators.

For definitiveness and simplicity, we will focus on the
scalar mode ` = m = 2, which has an extra discrete
symmetry under x → −x. The Kerr-AdS parameters
corresponding to the onset of the superradiant instability

of this mode were obtained in [18, 19] [41].

Let us now discuss boundary conditions. At y = 0, we
demand a regular bifurcate Killing horizon generated by
∂τ with temperature (7). This amounts to q1(x, 0, φ) =
q2(x, 0, φ), with the remaining functions having Neumann
conditions. The boundary (y = 1) must approach that of
the reference metric, which is a Dirichlet condition. The
discrete symmetry x → −x requires that all of the qi’s
have Neumann boundary conditions at x = 0. At x = 1,
regularity requires q7(1, y, φ) = q8(1, y, φ) = 0 and Neu-
mann conditions for the remaining functions. Finally,
m = 2 requires that φ be periodic in φ ∈ (0, π].

With equations and boundary conditions, we can
now solve the system of partial differential equations
by numerical methods. We use a standard Newton-
Raphson algorithm and discretise the Einstein-DeTurck
equations using pseudospectral collocation (Chebyshev-
Gauss-Lobatto nodes along the x and y directions, and
Fourier nodes along the φ direction). The resulting alge-
braic linear systems are solved by LU decomposition.

Our reference metric is not Kerr-AdS, so we must con-
struct Kerr-AdS numerically. We fix y+, assume inde-
pendence in φ, and slowly increase ΩH from zero until we
are at the onset of the superradiant instability. Note that
this is consistent with our boundary conditions above.
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FIG. 1: E vs. J phase diagram of AdS black holes with Kerr-
AdS BHs (all regions above thick solid black line), geons in
[24] (bottom yellow dashed line), and black resonators (data
points). Also plotted are Kerr-AdS BHs with ΩHL ≤ 1
(dashed purple line and purple region above it), extremal
Kerr-AdS BHs (thick solid black line), and the onset of scalar
m = ` = 2 mode in [19] (thin blue line).

From here, we have tried to obtain black resonators
by varying ΩH and y+ using a perturbed Kerr-AdS as
a seed. This proved unsuccessful since Kerr-AdS is too
strong an attractor for Newton-Raphson. Instead, we
used y+ and a wiggliness parameter ε defined as

ε ≡
∫ π

0

q9(1, 0, φ) sin(mφ)dφ . (8)

We add the defining equation (8) to our system of equa-
tions and ΩH as an extra unknown. Any solution with
ε 6= 0 has φ dependence and hence cannot be Kerr-AdS.
Results. Our main result is shown in Fig. 1, where the

energy (E) versus angular momentum (J) phase diagram
of rotating BHs in AdS is presented in units of the AdS
radius L. Kerr-AdS BHs lie above the thick solid black
line, which refers to extremal (T = 0) Kerr-AdS BHs.
Kerr-AdS BHs with ΩHL < 1 are likely linearly stable
[19, 30] and lie in upper-left region above the dashed
purple line (the purple line itself refers to ΩHL = 1).
The onset of the superradiant instability for the scalar
` = m = 2 modes [19] lie on the thin blue line. The
geons from [24] lie on the bottom dashed line. The data
points refer to the black resonators we have constructed,
with parameters indicated by the plot markers.

From Fig. 1, we see that our solutions at small ε recover
the onset curve of [19]. This is a strong consistency check
since the onset curve was generated using the Teukolsky
equation in AdS, which only indirectly uses the metric
[18]. All of our black resonators also have ΩHL > 1,

●●●
●●●
●●
●●
●●
●●
●●
●●

●●
●●

●●●
●●●●●●●●● ● ● ● ● ● ● ● ● ● ●

◆◆
◆◆
◆◆
◆◆
◆◆
◆◆

◆◆
◆◆

◆◆
◆◆◆◆◆◆◆◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

����� ����� ����� ����� ����� ����� �����
����

����

����

����

����

����

����

� /��

�
/�
�

FIG. 2: Comparison of numerical ε = 0.1 black resonators
(blue disks) and the perturbative result (9) (red diamonds).

which indicates that no Killing vector can be found near
the conformal boundary that is everywhere timelike. We
also see that some black resonators extend below the ex-
tremal limit of Kerr-AdS BHs and are therefore the only
known regular solutions with these asymptotic charges.

Though we focused on the scalar ` = m = 2 mode, a
perturbative expansion can predict the entropy of small
E and J black resonators for more general modes [19].
For scalar modes with ` = m, the entropy is

S = 4πE2

[
1−

(
1 +

1

m

)
J

E L

]2
. (9)

For small black resonators, Fig. 2 shows good agreement
between our numerical results and the perturbative pre-
diction of (9) with m = 2. Since (9) assumes that zero-
size black resonators merge with geons, this agreement
can be taken as evidence that black resonators connect to
geons. Fig. 1 shows black resonators approaching geons,
but only down to size y+ ∼ 0.07.

We note that if black resonators with arbitrary m are
connected to geons, the minimum E for fixed J that black
resonators can have occurs when m → +∞ for an arbi-
trarily small black resonator (i.e. a geon with m = +∞).
This configuration saturates the BPS bound E = J/L.

Another quantity of interest is the entropy of black res-
onators compared with that of Kerr-AdS. At the same
asymptotic charges E and J , we find that black res-
onators have higher entropy than Kerr-AdS ( see for in-
stance Fig. 3). These solutions merge at the onset of
superradiance through a second order phase transition.

We show the energy density on the S2 of the boundary
metric (2) in Fig. 4 [31]. This figure represents an instant
in time and should be imagined as rotating with angular
velocity ΩH (i.e. in a time-periodic way).
Outlook. We have constructed new BHs in AdS with

a single Killing field which we call black resonators [42].
Black resonators are not ruled out by Hawking’s rigidity
theorem [32–35] since the single Killing field also gener-
ates the horizon. These BHs branch from the onset of the
superradiant instability in Kerr-AdS, and extend in their
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FIG. 3: Entropy of rotating BHs in AdS versus their energy
with Kerr-AdS BHs (solid blue line) and black resonators (red
triangles). The black resonators all have y+ = 0.16.
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FIG. 4: Energy density in units of L at a moment in time of
a black resonator with y+ = 0.16 and ε = 0.1.

zero-size limit to smooth horizonless geometries called
geons [23, 24]. The existence of black resonators proves
that Kerr-AdS is non-unique, even in four dimensions.
We focused on the scalar progenitor mode m = ` = 2,
but expect similar behaviour for other m and `. This
would mean a countably infinite violation of uniqueness
for rotating BHs in AdS with ΩHL > 1 and E > J/L.

In retrospect, new BHs could have been anticipated
from the AdS/CFT correspondence. Since CFTs are ex-
pected to saturate the bound E ≥ J/L, but Kerr-AdS
BHs do not, another BH might fill the gap. Though, this
argument does not suggest that these BHs have a single
Killing field or are connected to the superradiant onset.

The precise boundary CFT interpretation of these in-
stabilities and the black resonators remain mysterious.
We note that superradiance is not particular to four di-
mensions, and occurs also in AdS5. Furthermore, includ-
ing the full AdS5×S5 bulk geometry, so that the bound-
ary field theory is specifically N = 4 super Yang-Mills,
does not cure this instability.

Though these black resonators have more entropy than
Kerr-AdS, we argue that they are unstable, so they can-

not be the endpoint of the superradiant instability. While
black resonators with progenitor modes ` = m = 2 should
be stable to perturbations with m = ` = 2, they are un-
stable to higher m modes. The reason for this is that
small black resonators are well-approximated (as con-
firmed in (9) and Fig. 2) by a small Kerr-AdS BH at
the centre of a geon [19, 23], and small Kerr-AdS BHs
are still unstable to higher m modes. More precisely, the
results of [36] mathematically prove that our solutions are
unstable, since no Killing vector field that is everywhere
timelike can be found at the conformal boundary.

Our results support the conjecture of [37] that there is
no stationary endpoint to the superradiant instability in
AdS. Instead, modes with increasing m continue to be ex-
cited and develop. It may be possible for additional small
BHs to form as energy is deposited into higher m modes.
While such configurations should exist, they are them-
selves superradiantly unstable [38, 39]. Though classical
evolution may continue indefinitely, eventually the in-
creasingly high m modes will reach sub-Planckian length
scales. This may be viewed as a violation of the spirit of
cosmic censorship in that initial data well-described clas-
sically leads to a situation requiring quantum mechanics.

Acknowledgments

It is a pleasure to thank Dave Berenstein and Don
Marolf for discussions. The authors thankfully acknowl-
edge the computer resources, technical expertise, and
assistance provided by CENTRA/IST. Some compu-
tations were performed at the cluster ‘Baltasar-Sete-
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