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We calculate the scalar-gravitational quasi-normal modes of equal angular momenta Myers-Perry
black holes in odd dimensions. We find a new bar-mode (non-axisymmetric) classical instability for
D ≥ 7. These black holes were previously found to be unstable to axisymmetric perturbations for
spins very near extremality. The bar-mode instability we find sets in at much slower spins, and is
therefore the dominant instability of these black holes. This instability has important consequences
for the phase diagram of black holes in higher dimensions.

Introduction: Black holes in four spacetime dimensions
are remarkably featureless. The Kerr metric is the
unique stationary and axisymmetric solution to the
vacuum Einstein equations, and is completely charac-
terized by just two parameters, its mass and angular
momentum [1]. In contrast, General Relativity in
higher dimensions allows for a fantastic diversity of
different asymptotically flat black objects. In addition
to black holes of spherical topology, there are also
black rings [2], black Saturns [3], systems of bicycling
black rings [4], and so on 1. In fact, it has been shown
[6] that in marked contrast to the uniqueness of the
Kerr metric in four dimensions, in higher dimensions
there are many black holes of a given mass and set of
angular momenta. Perhaps more exotically, in [7], it
has been argued that an infinite number of black holes
can exist with the same set of conserved asymptotic
charges! Understanding the phase space of black hole
solutions, as well as their stability, is currently a very
active program of research.

In this Letter we report progress in this direction by
studying the classical stability of Myers-Perry (MP)
black holes, which are the generalization of the Kerr
solution to higher dimensions [8]. In D spacetime
dimensions these solutions are characterized by their
mass and b(D − 1)/2c angular momenta parameters.
The properties of these solutions strongly depends on
both the dimension of spacetime as well as the angular
momenta. For example, for D ≥ 6, when none of the
angular momenta vanish there is an extremal limit and
the black hole cannot be made to rotate arbitrarily fast,
just as in four dimensions. However, when at least one
of the angular momenta vanishes, there is no extremal
limit and the remaining angular momenta can be taken
to be arbitrarily large.

The lack of an extremal limit suggests that these
black holes might be unstable. Emparan and Myers [9]
showed that in the limit where n angular momenta are
taken to be arbitrarily large, the horizon ‘pancakes’ out

1 For a recent and comprehensive review, see [5]

to have topology R2n×SD−2n−2. Black holes with this
horizon shape are known as black branes, and were fa-
mously shown to be unstable by Gregory and Laflamme
[10]. Therefore, Emparan and Myers conjectured that
MP black holes should also be unstable, at least in
certain fast-spinning regions of the parameter space.
Although the comparison to the Gregory-Laflamme
instability was made in the limit of infinite rotation, it
was expected that the instability would set for finite,
sufficiently rapid rotation.

Since this conjecture, there has been much work
on investigating the stability of MP black holes in
various dimensions and for various configurations of the
angular momenta parameters. One of the most studied
cases has been in odd dimensions with all the angular
momenta equal. This is because in this limit the
metric becomes cohomogeneity-1, which is to say that
it depends non-trivially only on the radial coordinate,
and therefore the linearized Einstein equations form
a coupled system of ODE’s. For generic rotations,
the perturbation equations necessarily involve PDE’s,
greatly complicating the stability analysis. The fact
that there exists a cohomogeneity-1 MP metric is
rather remarkable, as the only other case in which the
linearized Einstein equations are known to separate on
a rotating black hole background is Kerr, as shown by
Teukolsky [11].

Although the perturbation equations become more
tractable for equal angular momenta, in this case the
spins cannot be made arbitrarily large, and a priori it
is not clear whether the black hole would be able to
rotate at a sufficiently rapid speed to become unstable.
A precise definition of sufficiently rapid was given in
[12], who formulated an ultraspinning condition based
upon black hole thermodynamics. In odd D ≥ 7 this
ultraspinning condition can be satisfied for the equal
angular momenta case, and therefore these black holes
might be unstable. Indeed, it was found that very near
extremality these black holes were unstable to pertur-
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bations that do not break rotational symmetries.2 It is
expected that this instability persists for all odd D ≥ 7.

No instability was found in D = 5, and in fact this
was not unexpected since the ultraspinning condition
is only possible in D ≥ 7. Further evidence for stability
in D = 5 for the case of equal angular momenta came
from the linear perturbative analysis of Ref. [14]. The
study of axisymmetric perturbations has been extended
to configurations with a single non-vanishing spin [15],
and more general configurations [16]. Instabilities have
been found in all D ≥ 6. These instabilities are very
important for the phase diagram of black holes in higher
dimensions, because at the threshold of instability,
the perturbations are time-independent and therefore
correspond to a new family of stationary, axisymmetric
black holes branching off of the MP family.

Thus far the discussion has been restricted to
axisymmetric perturbations. Of course a full analysis
of the stability of any physical system should include
all possible perturbations; therefore we now turn
to discuss non-axisymmetric perturbations. In an
impressive series of numerical simulations, it was found
that singly-spinning MP black holes were unstable
to non-axisymmetric instabilities, first in D = 5 [17],
and then in D = 6, 7, 8 [18]. These results strongly
suggest that black holes might be much more sensitive
to non-axisymmetric perturbations than to axisym-
metric perturbations, since D = 5 black holes are
stable to axisymmetric perturbations, but unstable to
non-axisymmetric ones. It might therefore be expected
that in higher D non-axisymmetric instabilities set in
for smaller spins than the axisymmetric ones.

The above results motivated the work presented here.
We study non-axisymmetric perturbations of higher
dimensional black holes. We restrict our attention to
the equal angular momenta case (and therefore odd
D), due to the simplification that occurs when the
metric is cohomogeneity-1. We find that in odd D ≥ 7,
equal angular momenta MP black holes are unstable
to non-axisymmetric perturbations, and that these
instabilities set in for much smaller rotations than
the previously discovered axisymmetric ultraspinning
instabilities [12]. Our analysis explores the full spectra
of scalar-gravitational perturbations, in particular its
quasi-normal mode frequencies. We studied the cases of
D = 5, 7, 9, 11, 13, 15, and found instabilities for D ≥ 7.
We expect these instabilities to persist for all higher
odd D.

Methodology and Results: The equal angular mo-

2 This instability was first found in D = 9 [12], but upon fur-
ther investigation (motivated by the study of the relationship
of near-horizon instabilities to instabilities of the full geometry
in Ref. [13]) the instability was found to also exist in D = 7.

menta Myers-Perry black hole line element is

d̄s
2

= −f(r)2dt2 + g(r)2dr2 (1)

+ h(r)2[dψ +Aadx
a − Ω(r)dt]2 + r2ĝabdx

adxb.

Here f, g, h,Ω are functions of r which can be found in
Ref. [12], and xa, ĝab are the coordinates and Fubini-

Study metric on CPN , respectively. N is related to the
spacetime dimension D by D = 2N + 3, while Aa is
related to the Kähler form J by dA = 2J . In this equal
angular momenta case the above metric functions de-
pend on two dimensionful parameters, which we take
to be the horizon radius r+, and the spin parameter a.
When a → 0, this reduces to the higher-dimensional
Schwarzschild metric, with the S2N+1 metric expressed
as the Hopf fibration. The presence of the CPN fac-
tor is what facilitates the separability of the equations
into ODE’s, rather than PDE’s. That this manifold
only exists for integer N explains why the separability
only happens in odd spacetime dimension. Extremality
is reached at a = aext, the value of which can also be
found in Ref. [12].

We studied linear perturbations of this background:

gµν = ḡµν + hµν , (2)

where barred quantities refer to the MP background.
We then solved the linearized vacuum Einstein equa-
tions, which after imposing the traceless and transverse
gauge conditions become

(∆Lh)µν ≡ −∇̄ρ∇̄ρhµν − 2R̄µρνσh
ρσ = 0. (3)

We further used the stationarity and axisymmetry of
the background metric to decompose the time and
azimuthal dependence as hµν ∝ e−i(ωt−mψ). Here
ω is a complex number which will be determined
numerically, and m is restricted to be an integer. The
azimuthal coordinate is ψ, and therefore perturbations
with m = 0 are axisymmetric, whilst those with
m 6= 0 are non-axisymmetric. Lastly, following [12], we
separated the angular dependence of the perturbation
hµν through the use of charged scalar harmonics on

CPN . As this decomposition is beyond the scope of this
article, and results in numerous lengthy equations, we
refer the reader to the original article for details [12].
Each such charged scalar harmonic can be classified
by two integers (κ,m), with κ ≥ 0. We also mention
that mode stability for tensor perturbations was shown
in [20], for both axisymmetric and non-axisymmetric
modes. The vector case remains to be investigated.

Our strategy was to look for exponentially growing
solutions to the above equations. These are modes with
Im(ω) > 0. Threshold unstable modes have Im(ω) = 0,
and the spin at which this happens is labelled acrit.
The absence of exponentially growing modes does not
establish stability, but the existence of one clearly does
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FIG. 1: Plot of Im(ω) for for the dominantly unstable mode,
(κ,m) = (0, 2). The black points at a = 0 were computed
using a different code based upon the gauge invariant formal-
ism of Ref [19]. Note that as D increases the critical spin
for which Im(ω) = 0 decreases. For D = 5, Im(ω) → 0− as
a/aext → 1, and we find no instability. The inset plot zooms
the region where Im(ω) becomes positive.

imply an instability. We used the physically relevant
boundary conditions of ingoing waves at the horizon,
and outgoing near infinity. This choice corresponds
to studying the quasi-normal mode spectrum of these
black holes 3. With the decomposition of perturbations
described above, the problem has now been reduced to
a quadratic Sturm-Liouville eigenvalue problem for ω
in a coupled system of ODE’s. We used a numerical
scheme based on spectral methods to solve these
equations, see Ref. [12] for more details 4.

Our results are as follows. In D = 5, we find no
instability, which is consistent with Ref. [14], who also
studied the equal angular momenta case. It is also con-
sistent with Ref. [17], who found an instability, but only
for singly-spinning black holes. For D = 7, 9, 11, 13, 15,
we find numerous bar-mode instabilities. In Fig. 1 we
plot Im(ω) for the (κ,m) = (0, 2) mode, which is the
first mode to go unstable as the spin in increased. We
refer to this mode as the dominantly unstable mode, as
it sets in before any others, and is the mode with the
largest growth rate. For completeness we also show in
Fig. 2 the real part of the dominant mode, as a function

3 For a review of quasi-normal modes, see Ref. [21].
4 Actually, Ref. [12] used an identical numerical scheme, but ap-

plied it to a slightly different problem, the study of the Gregory-
Laflamme instability for the black string constructed out of
these MP black holes.
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FIG. 2: Plot of Re(ω) for for the dominantly unstable mode,
(κ,m) = (0, 2). The black points at a = 0 were computed
using a different code based upon the gauge invariant for-
malism of Ref [19].

of a/r+. Our results indicate that acrit/r+ saturates
as a function of D, which suggests a possibly analytic
understanding in a 1/D expansion as in [24].

We expect that the unstable modes we find will
persist for all odd D ≥ 7. In all dimensions studied,
the dominant instability was due to the (κ,m) = (0, 2)
mode. We also found instabilities for (0,m) modes
with m > 2 as well as for (1,m) modes with m ≥ 1,
but these have a larger value of acrit

5 In Table I we
tabulate the critical spin at which the bar mode and
axisymmetric instabilities first set in. The bar mode
instabilities set in for much smaller rotation speeds,
and are therefore the dominant instabilities of these
black holes.

We computed several checks on our results. First,
we computed the Schwarzschild quasi-normal modes
using the gauge-invariant formalism of Ref. [19] and
found that our results reproduced this spectrum as
a→ 0. We also computed the axisymmetric (2, 0) mode
that was first found to be unstable, and compared our
result with Ref. [12], who only calculated this mode
for Im(ω) > 0. It was expected that as a was increased
from zero, ω would in general be complex, reach ω = 0
at acrit, and then become purely imaginary. However,
we find that this mode is always purely imaginary,
taking the form Im(ω) = iK(a) where K(a) is a real

5 This is in contrast to the phenomenon of superradiance in AdS
space, where larger m modes become unstable before smaller
m modes, first conjectured in [22], and later explicitly checked
in [23] using the Teukoslky formalism.
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D 1− acrit/aext (NA) 1− acrit/aext (A)

7 0.1891 2.339× 10−5

9 0.2537 2.116× 10−3

11 0.2587 7.854× 10−3

13 0.2631 1.504× 10−2

15 0.2669 2.232× 10−2

TABLE I: Critical rotations for non-axisymmetric (NA) and
axisymmetric (A) ultraspinning instabilities. The critical
rotation is defined to be the largest rotation such that there
are no instabilties for the sector of perturbations in question
(axisymmetric or non-axisymmetric). The values for the (A)
sector were first presented in [12] and [13]. Note that the bar
mode instability sets in for much smaller spins.

function that is negative for a < acrit, zero at acrit, and
positive for a > acrit. For a > acrit, our results agreed
with Ref. [12].

Discussion: While a thorough investigation of the
linear mode stability is still far from complete for
the full MP family, it is nearly finished in the equal
angular momenta sector. Scalar perturbations have
been examined here in the non-axisymmetric case,
and in Ref. [12] for the axisymmetric one. Tensor
perturbations of both types were studied in [20]. Only
vector perturbations remain to be analyzed, although
it is expected that the dominantly unstable modes
will be scalars. Thus it is likely that we have found
the dominant instabilities for these black holes, and it
is then natural to inquire about the endpoint of this
instability.

Of course, this question deserves a full non-linear
numerical treatment, but our results provide some
insights. Due to the fact that these perturbations
break axisymmetry, the black hole will radiate angular
momentum and energy, and in doing so spin down until
it reaches a stable spin. In order for the black hole to
be able to radiate, the loss of angular momentum and
energy must be consistent with Hawking’s Area Law,
δA ≥ 0. This condition was shown to be equivalent
to the superradiant bound Re(ω) − mΩH < 0 [18],
and indeed, we find that only after this condition is
satisfied are there modes with Im(ω) > 0. Therefore,
for initial spins slightly larger than the critical values,
it is expected that the black holes will simply radiate
until they reach a stable configuration.

However, for initial spins much larger than the
critical value it will take the black holes some finite
amount of time to radiate away their excess angular
momentum, and during this time the horizon will be
rapidly deformed by the growing perturbation. An
exciting possible outcome of this scenario would be that
the time scale for the growth of the perturbation might
exceed the time scale for radiation, and that the black

hole might actually fragment into a multiple black
hole configuration. If the fragmentation is sufficiently
violent, these black holes could fly apart and escape
to infinity. Otherwise, they would continue to radiate
away energy and angular momentum and would eventu-
ally inspiral and merge into a single, non-axisymmetric
black hole. This black hole would itself continue to
radiate until it settled down to axisymmetric and
stationary state. This is a fascinating, but speculative
possibility for the endpoint of the instability that would
necessarily violate the cosmic censorship.

This bar mode instability has implications for the
stability of some of the more novel black hole solutions
that branch off from the MP family. The points in the
black hole phase diagram where these solutions join
with the MP black holes correspond to the existence
of axisymmetric perturbations with ω = 0. As the
spins for which these modes exist are all much greater
than the smallest non-axisymmetric acrit we find, our
results suggest that these new solutions will be unstable
at least near the branching point, and perhaps more
generally.

A curious feature of our solutions concerned the
existence of purely imaginary frequencies ω. As noted
earlier, the (2, 0) unstable mode was found to be purely
imaginary for any a. We also found that the a→ 0 limit
of the (1,m) unstable modes were purely imaginary.
In D = 4, purely imaginary frequencies have special
status, and some of them are associated with changes
in the algebraic classification of the spacetime. The
important role that these purely imaginary modes
had in determining the stability of the black hole,
and in connecting the MP family to new stationary
axisymmetric families suggested that there might be
a connection with changes in algebraic classifications.
However, it has recently been shown that there are no
algebraically special modes of Schwarzschild in D ≥ 5
[25], and therefore it appears unlikely that any special
geometrical significance can be assigned to these modes.

In summary, we have found a new, non-axisymmetric
instability of a certain class of higher dimensional
rotating black holes. These black holes were previously
found to be unstable to axisymmetric perturbations,
and the instabilities we find occur for much slower
rotation speeds. We expect that the instability we find
with the smallest acrit corresponds to the dominant
instability of equal angular momenta Myers-Perry black
holes. We discussed two possible endpoints of this
instability, either spinning down through gravitational
radiation, or through a more complicated process
involving black hole fragmentation as an intermediate
step.
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