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1 Introduction

The (quoted) bid-ask spread of a �nancial asset is the di�erence between the best quoted prices for

an immediate purchase and an immediate sale of that asset. The spread represents a potential pro�t

for the market maker handling the transaction, and is a major part of the transaction cost facing

investors, especially since the elimination of commissions and the reduction in exchange fees that has

happened in the last twenty years; see for example Jones (2002) and Angel et al. (2011). Measuring

the bid ask spread in practice can be quite time consuming (since it requires reconstruction of the

limit order book) and may be subject to a number of potential accuracy issues due to the quoting

strategies of High Frequency Traders, for example.

The seminal paper Roll (1984) provides a simple market microstructure model that allows one

to estimate the bid-ask spread from observed transaction prices alone, without information on the

underlying bid-ask price quotes and the order �ow (i.e., whether a trade was buyer- or seller-

induced). This is particularly useful for long historical data sets, which are often limited in their

scope. For instance, Hasbrouck (2009) notes that "investigations into the role of liquidity and

transaction costs in asset pricing must generally confront the fact that while many asset pricing tests

make use of U.S. equity returns from 1926 onward, the high-frequency data used to estimate trading

costs are usually not available prior to 1983. Accordingly, most studies either limit the sample to

the post-1983 period of common coverage or use the longer historical sample with liquidity proxies

estimated from daily data." Another area where the available data is limited are open-outcry markets

(like the CME), in which bid and ask quotes by traders expire (if not �lled) without recording (see,

e.g., Hasbrouck (2004) for more details).

In the famous Roll (1984) model, an observed (log) asset price pt evolves according to

pt = p∗t + It
s0

2
, p∗t = p∗t−1 + εt. (1)

∆pt := pt − pt−1 = εt + (It − It−1)
s0

2
, (2)

where p∗t is the underlying fundamental (log) price with innovations εt, and the trade direction

indicators {It} are i.i.d. and take the values ±1 with probability q0 := Pr(It = 1) = 1/2. It = 1
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indicates that the transaction is a purchase, and It = −1 denotes a sale. The price pt is observed,

whereas all other variables in Equation (1) are unobserved. The parameter of interest is the e�ective

bid-ask spread s0.
1 Roll (1984) assumes that {εt} is serially uncorrelated and uncorrelated with the

trade direction indicators {It}, and that the one period returns (i.e., the price increments) {∆pt}

have �nite second moments. Under these assumptions, s0 is identi�ed in a closed form as

s0 = 2
√
−Cov (∆pt,∆pt−1). (3)

Roll (1984) proposes to estimate s0 from (3) by replacing the theoretical covariance by its empirical

counterpart, i.e.,

ŝRoll := 2

√
− Ĉov (∆pt,∆pt−1). (4)

In practice, this estimator is not satisfactory, since the empirical �rst-order autocovariance of price

changes is often positive, in which case (4) is not well-de�ned. Another problem is that the non-

parametric distribution of the latent true one period returns (i.e., the latent fundamental price

increment), ∆p∗t = εt, is not identi�able in the original Roll model.

In a well-known alternative, Hasbrouck (2004) proposes to strengthen Roll's modeling assump-

tions by assuming that {εt} is i.i.d. with a known parametric distribution, and is independent of

{It}.2 He then uses a Bayesian Gibbs sampling methodology to estimate the spread parameter sub-

ject to a non-negativity constraint. Speci�cally, Hasbrouck (2004) assumes that εt ∼ i.i.d. N(0, σ2
ε),

where the parameter σε is estimated jointly with the spread s0. Unfortunately the spread estimator

of Hasbrouck (2004) performs poorly or is not well de�ned when εt is discrete or continuous but

fat-tailed and/or asymmetric. Basically the spread estimator of Hasbrouck (2004) is very sensitive

to departures from the assumption that εt ∼ i.i.d. N(0, σ2
ε). Moreover, it is di�cult to justify a

speci�c parametric distribution such as Gaussian for the latent εt.

1The bid-ask spread in Equation (1) is called e�ective bid-ask spread because it is based on the e�ective (average)

price pt that is paid to �ll an order, and not necessarily on the quoted bid or ask price, since it might be the case

that the order cannot be �lled at the latter price (e.g., due to insu�cient depth of the market).
2Hasbrouck (2004) presents an extension that relaxes the independence between {εt} and {It} assumption but

uses additional trade volume data.
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The more recent empirical �nance literature emphasizes several additional issues with the Roll

model: (a) It assumes balanced market order �ow, i.e., q0 = 1/2, which may be accurate on average,

but may be inaccurate for certain episodes of trading. (b) It assumes no serial correlation in trade

direction indicators, i.e., It is uncorrelated with It−j for any j ≥ 1. (c) Market orders are assumed not

to bring any news into the fundamental prices (i.e., no adverse selection), so that It is uncorrelated

with ∆p∗t+j for j ≥ 0. (d) Spreads are constant within the sample period. Admitting any one of

these e�ects in the model will lead to the undesired consequence that the spread estimators of Roll

(1984) and Hasbrouck (2004) become inconsistent (i.e., biased even as sample size goes to in�nity).

Furthermore, without additional model assumptions, or additional observed information (such as

trade volume data in addition to {pt}), it may not be possible to identify the spread jointly with

parameters describing order �ow imbalance or adverse selection, for example. See, e.g., Bleaney

and Li (2015) for a very recent discussion of all the above and additional problems with the original

Roll model.

In this paper we propose new methods for identifying the bid-ask spread s0 and the unknown

distribution of {εt} jointly from the observed time series transaction prices alone. The observed

prices {pt} could be daily or weekly closing prices, or high-frequency intra-day prices. Our methods

are based on the characteristic function approach, and hence do not require the existence of any �nite

moments of {∆pt}, and allow the latent {εt} to be discrete or continuous, symmetric or asymmetric.

Under the assumption of strict stationarity of the latent process {εt, It}∞t=1, our identi�cation results

do not require the full independence between {εt} and {It}, and mainly impose some restrictions

on the dependence structure of εt, εt−1, It, It−1 and It−2. Constructive identi�cation results for s0

and the characteristic function (ϕε) of εt or/and parameters in various extended Roll models are

established based on the joint characteristic function of consecutive one period returns

ϕ∆p,2(u, u′) := E
[
exp

(
iu∆pt + iu′∆pt−1

)]
for any (u, u′) ∈ R2, (5)

which is nonparametrically identi�ed from the observed price increment time series {∆pt}.

We �rst provide a closed-form solution of (s0, ϕε) in the basic Roll (1984) model under a mild
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sub-independence assumption, which is only slightly stronger than the uncorrelatedness condition

in Roll (1984) but is much weaker than the full independence between {εt} and {It} assumption in

Hasbrouck (2004). In addition, we do not impose �nite second moment of ∆pt as in Roll (1984)

and Gaussian error of εt as in Hasbrouck (2004). We then propose solutions to the four problems

(a)-(d) with the Roll model listed above. We show how to identify (s0, ϕε) and other parameters

associated with unbalanced order �ow and/or general asymmetric supported {It}, or those for

serially correlated {It}, or those capturing adverse selection e�ects, or the random spread. We also

extend the basic Roll model to the multivariate case and derive the identi�cation results. Again,

all these are accomplished without requiring additional data.

In principle, both the basic Roll (1984) model and the various extended Roll models could �t

into the vast measurement error literature ( see, e.g., Li and Vuong (1998), Carroll et al. (2006), Hu

(2008), Hu and Schennach (2008), Chen et al. (2011), Evdokimov and White (2012), Bonhomme

et al. (2016), Hu (2016), and the references therein). However, to the best of our knowledge, our

identi�cation results are not direct consequences of any existing published results. This is because

the Roll model and its various extensions contain some special structures, and our identi�cation

results utilize these special features and are constructive under conditions reasonable for �nancial

applications.

Our constructive identi�cation results for (s0, ϕε) or/and parameters in extended Roll models

are derived under conditions much weaker than those in the existing literature and more realistic

for �nancial applications when {pt} is the only information available. All our identi�cation results

are essentially based on solving the unknown model parameters by matching the nonparametri-

cally identi�ed characteristic function ϕ∆p,2(u, u′) to its model-implied semiparametric counterpart.

This approach actually leads to Hansen (1982) style overidenti�cation.3 Therefore, one could easily

compute consistent estimators of s0, the distribution of εt or/and other model parameters via min-

imum distance procedures based on empirical characteristic functions. And the overidenti�cation

restrictions allow for model speci�cation tests. As a natural follow-up to this identi�cation paper,

3See Chen and Santos (2015) for a notion of overidenti�cation in semiparametric and nonparametric models.
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Chen et al. (2016) studies in detail the estimation and testing aspects of these models and presents

an interesting empirical application. In particular, based on our constructive identi�cation results,

Chen et al. (2016) provides simple sample analog estimation of the spread s0, the characteristic

function of εt or/and other parameters in various extended Roll models (such as order �ow imbal-

ance, adverse selections). In the simulation studies, their sample analog spread estimator does not

su�er the pitfalls of the spread estimators of Roll (1984) and Hasbrouck (2004).

The rest of the paper is organized as follows: Section 2 presents the basic Roll model and

identi�cation of both the spread s0 and the characteristic function of εt in closed form, allowing

for {∆pt} to have in�nite �rst absolute moments. Section 3 considers extensions to models that

allow for unbalanced order �ow and more general asymmetric supported {It}. Section 4 studies

identi�cation in models with serially dependent {It}. Section 5 addresses the e�ects of a market

order on the latent fundamental price. Section 6 considers identi�cation in models with possibly

random spread. Section 7 extends the basic Roll model to a multivariate case. Section 8 concludes.

Appendix contains proofs that are not presented in the main text.

2 Identi�cation in Basic Roll Models

This section presents identi�cation (and overidenti�cation) results in a basic Roll (1984) type model

satisfying the following Assumption.

Assumption 1. (Basic Roll) (i) Data {pt}Tt=1 is generated from Equation (1) with s0 > 0, where

{εt, It}∞t=1 is a strictly stationary process; (ii) {It} has marginal distribution that takes the values

±1 with equal probability.

Throughout the paper we do not impose any restriction on the distribution of εt. It could be dis-

crete and could have no �nite moments, and its characteristic function (c.f.), ϕε(u) := E [exp (iuεt)],

could have many zeros.
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2.1 Diagonal Identi�cation

We �rst introduce the notion of sub-independence, which is weaker than independence.

De�nition 1. (Sub-independence) Real-valued random variables X and Y are sub-independent

if for all t ∈ R

E[exp(it(X + Y ))] = E[exp(itX)]E[exp(itY )], where i =
√
−1.

Sub-independence amounts to a restriction only on the diagonal of the joint characteristic func-

tion. It is a stronger restriction than uncorrelatedness, but strictly weaker than independence.4 See

Ebrahimi et al. (2010), Hamedani (2013) and the references therein for detailed discussion of the

notion of sub-independence. Schennach (2013) argues that it is similar to a conditional moment

restriction. We make the following assumption.

Assumption 2. (Sub-independence) (i) εt is sub-independent of (It−It−1) s02 ; It is sub-independent

of −It−1; (ii) εt + εt−1 is sub-independent of (It − It−2) s02 ; It is sub-independent of −It−2; and εt

is sub-independent of εt−1.

This assumption is enough for identi�cation for the basic Roll model. But it might be simpler

to replace the conditions that εt is sub-independent of (It−It−1) s02 and εt+εt−1 is sub-independent

of (It − It−2) s02 by their stronger versions that εt is independent of (It − It−1) and εt + εt−1 is

independent of (It − It−2) respectively.

Let ϕ∆p,1(u) := E [exp (iu∆pt)] be the marginal c.f. of one period returns ∆pt, and ϕ∆2p(u) :=

E
[
exp

(
iu∆2pt

)]
be the marginal c.f. of two period returns ∆2pt := pt − pt−2. By de�nition,

ϕ∆p,1(u) ≡ ϕ∆p,2(u, 0) and ϕ∆2p(u) ≡ ϕ∆p,2(u, u), and are nonparametrically identi�ed from data.

Let ϕI(u) := E [exp (iuIt)] be the c.f. of It. Under Assumptions 1(i) and 2(i), the c.f. of one

period returns, ∆pt = εt + (It − It−1) s02 , satis�es

ϕ∆p,1(u) = ϕε(u)ϕI

(
u
s0

2

)
ϕI

(
−us0

2

)
for all u ∈ R. (6)

4Recall that real-valued random variablesX and Y are independent if E[exp(i(tX+sY ))] = E[exp(itX)]E[exp(isY )]

for all t, s ∈ R.
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Under Assumptions 1(i) and 2(ii), the c.f. of two period returns, ∆2pt = εt + εt−1 + (It − It−2) s02 ,

satis�es

ϕ∆2p(u) = [ϕε(u)]2 ϕI

(
u
s0

2

)
ϕI

(
−us0

2

)
for all u ∈ R. (7)

Denote

V := {u ∈ R : ϕ∆p,1(u) 6= 0} . (8)

Since ϕ∆p,1(·) is uniformly continuous on R (see, e.g., page 3 of Lukacs (1972)) and ϕ∆p,1(0) = 1,

the set V contains an open interval of 0. This fact will be used repeatedly in the paper.

Equations (6) and (7) immediately imply that the c.f. ϕε(·) is identi�ed.

Theorem 1. Let Assumptions 1(i) and 2 hold. Then the c.f. ϕε(·) is identi�ed as

ϕε(u) =
ϕ∆2p(u)

ϕ∆p,1(u)
, ∀u ∈ V. (9)

This theorem states that ϕε(·) is identi�ed on V under very mild conditions, regardless whether

s0 and ϕI(·) are known or not.

We next consider identi�cation of s0. Equations (6) and (7) and the de�nition of V imply that:

for all u ∈ V we have ϕε(u) 6= 0, ϕI
(
u s02
)
ϕI
(
−u s02

)
6= 0 and ϕ∆2p(u) 6= 0. Denote

h(u) :=
ϕ2

∆p,1(u)

ϕ∆2p(u)
for any u ∈ V , (10)

which is continuous on V with h(0) = 1, and nonparametrically identi�ed from the data {∆pt}.

Moreover, Equations (6) and (7) imply that

h(u) = ϕI

(
u
s0

2

)
ϕI

(
−us0

2

)
for all u ∈ V. (11)

Since It is a discrete random variable, the c.f. ϕI(·) is analytic in u ∈ R. Equation (11) implies that

h(u) is analytic in V, and hence d2h(u)
du2 is well-de�ned in u ∈ V and satis�es5

d2h(0)

du2
= −s

2
0

2
V ar(It). (12)

5By de�nition (10) of h(·) and without invoking Equation (11), one su�cient condition for a twice-di�erentiable

h(·) is to assume that ϕ∆p,1(·) and ϕ∆2p(·) are twice di�erentiable. However, the twice-di�erentiability of these

characteristic functions requires that E[|∆pt|2] <∞ (see, e.g., Theorem 1.2. of Lukacs (1972)), which would exclude

some distributions such as Cauchy.
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Equation (12) would lead to the global identi�cation of s0 > 0 as soon as V ar(It) is known. This

is similar to the closed form solution (3) for s0 originally proposed in Roll (1984).

Under additional Assumption 1(ii) (i.e., balanced order �ow), we have ϕI(u) = cos(u) for all

u ∈ R and V ar(It) = 1, and hence Equation (11) becomes

h(u) =
[
cos
(
u
s0

2

)]2
for all u ∈ V. (13)

This immediately identi�es the unknown true spread s0 > 0, as stated in the following theorem.

Theorem 2. Let Assumptions 1 and 2 hold. Then: for some non-zero ũ ∈ V, the true spread s0 is

locally identi�ed as
{∣∣∣ 2

ũ

[
arccos

(√
h(ũ)

)
± πj

]∣∣∣ , j = 0, 1, 2, . . .
}
.

(1) If it is known that s0 ∈ S := [0, s] for some �nite s, then s0 is globally identi�ed in S as

s0 =
2

ũ
arccos

(√
h(ũ)

)
for some ũ ∈ (0, π/s) ∩ V.

(2) s0 is globally identi�ed in R+ as s0 =
√
−2d

2h(0)
du2 .

Theorem 2 provides two closed form identi�cation results for s0. One could estimate s0 by

sample analog principle based on either Theorem 2 part (1) or part (2). However, the sample

analog estimation of s0 based on Theorem 2 part (2) will not perform well in practice since it

involves nonparametric estimation of second derivative of h(·). In �nancial applications we expect

s0 to be a small positive value. Therefore, the restriction s0 ∈ S is very natural and the sample

analog estimation of s0 based on Theorem 2 part (1) is easy to compute as well. In the rest of the

paper we maintain the assumption s0 ∈ S and present identi�cation results similar to Theorem 2

part (1).

We next present an alternative identi�cation result for (s0, ϕε) under slightly di�erent conditions,

which are weaker in some respects but stronger in other respects. Under Assumptions 1(i)(ii) and

2(i), Equation (6) becomes

ϕ∆p,1(u) = ϕε(u)
[
cos
(
u
s0

2

)]2
for all u ∈ R. (14)

This relation immediately leads to the following result.
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Proposition 1. Let Assumptions 1 and 2(i) hold. Suppose that |ϕε(u)| > 0 for all u ∈ R. Denote

u0 := inf {u > 0 : ϕ∆p,1(u) = 0}. Then:

(1) s0 can be identi�ed as the unique element in S satisfying s0 = π/u0.

(2) ϕε can be identi�ed as ϕε(u) = ϕ∆p,1(u)
[
cos
(
πu
2u0

)]−2
on V.

Proposition 1 does not impose Assumption 2(ii) and hence allows quite general forms of temporal

dependence in {εt}. It does not restrict the joint distribution of (εt, εt−1) at all. However, it requires

stronger restrictions on the c.f. ϕε(·) of the latent εt. This condition would be satis�ed by Normal

or Cauchy errors, but would not be satis�ed by the uniform distribution, for example, nor would it

be satis�ed by any discrete distribution. In high frequency �nancial applications, ∆p∗t = εt often

contains discrete components. It is possible to weaken the condition that |ϕε(u)| > 0 for all u ∈ R

to the requirement that this holds over a large compact set, but then it would need some side

information to resolve the location of zeros of ϕε(·) from zeros implied by the parametric part in

Equation (14).

2.2 O�-diagonal Information

Theorem 2 part (1) already obtains overidenti�cation of the spread parameter s0 by considering a

set of values of u ∈ (0, π/s]∩V. We next show how to use additional restrictions from the joint c.f.

of consecutive one period returns ϕ∆p,2 (de�ned in (5)).

In the rest of the paper we make use of the following de�nition repeatedly. Let

H(u, u′) :=
ϕ∆p,2(u, u′)

ϕ∆p,1(u)ϕ∆p,1(u′)
for any (u, u′) ∈ V2

, (15)

which is continuous on V2
with H(0, 0) = 1, and is nonparametrically identi�ed from the data

{∆pt}.

Note that ϕ∆2p(u) ≡ ϕ∆p,2(u, u), the marginal c.f. of two period returns is found on the diagonal

of the joint c.f. ϕ∆p,2. We now seek to exploit restrictions on the o�-diagonal elements where u 6= u′.

Let ∆It := It − It−1.
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Assumption 3. (i) (εt, εt−1) is independent of (∆It,∆It−1); (ii) εt is independent of εt−1; and

(iii) It, It−1 and It−2 are independent.

Note that Assumption 3 is stronger than Assumption 2, but is weaker than the full independence

condition.

Under Assumptions 1 and 3, for all (u, u′) ∈ R2 we have:

ϕ∆p,2(u, u′) = ϕε(u)ϕε(u
′) cos

(
u
s0

2

)
cos
(

(u′ − u)
s0

2

)
cos
(
u′
s0

2

)
. (16)

Denote

U :=

{
(u, u′) ∈ V × V : min

s∈S

∣∣∣cos
(
u
s

2

)
cos
(
u′
s

2

)∣∣∣ > 0

}
. (17)

Let

R(u, u′; s) :=
cos
(
(u− u′) s2

)
cos
(
u s2
)

cos
(
u′ s2
) , (18)

which is well de�ned on U × S. Equation (16) implies that

H(u, u′) = R(u, u′; s0) for all (u, u′) ∈ V2
, (19)

and hence H(u, u′) is analytic and real-valued for all (u, u′) ∈ V2
. Equation (19) is free of the

nuisance function ϕε(·) and only depends on the parameter of interest s0, which is the key insight

of our alternative overidenti�cation methods.

Due to the continuity of the c.f. ϕ∆p,2(u, u′) in R2 and ϕ∆p,2(0, 0) = 1, the set V2
(and hence

U) contains an open ball of (0, 0), and hence Equation (19) contains in�nitely many overidentifying

restrictions for s0. Let U ⊆ U and |U| denote the number of points in U , which can be chosen such

that |U| ≥ 1. We introduce a simple population minimum distance criterion function on S:6

Q (s,U) :=
∑

(u,u′)∈U

|H(u, u′)−R(u, u′; s)|2 ≥ 0. (20)

Here, | · | denotes the modulus of a complex number i.e., |a + bi|2 = a2 + b2. Since Equation (19)

holds for all (u, u′) ∈ V2
and U ⊆ U ⊆ V2

, Q (s,U) is minimized at s = s0, i.e., Q (s0,U) = 0.

6If |U| = ∞, there is a slight abuse of notations in de�nition (20). Summations should be replaced by integrals

with respect to some (positive) sigma-�nite measure on U .
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Assumption 4. (i) s0 ∈ S; (ii) either (a) U = U ; or (b) U ⊂ U , and ∃(ũ, ũ) ∈ U such that

ũ ∈ (0, π/s).

We present an alternative identi�cation for s0 below.

Theorem 3. Let Assumptions 1, 3 and 4 hold. Then: s0 is identi�ed as the unique solution to

mins∈S Q (s,U), and satis�es the identi�able uniqueness on S.7

The proof of Theorem 3 is relegated to the Appendix. As shown in Theorem 2 part (1), for the

identi�cation of s0 it su�ces to choose a grid U satisfying Assumption 4(ii)(b) with |U| = 1. But

a grid U with larger |U| > 1 is better for more accurate estimation of s0. Theorem 3 suggests a

natural minimum distance estimation procedure for s0.

3 Models With General Unbalanced Order Flow

This section presents identi�cation results for two extended Roll models that relax Assumption 1(ii)

(i.e., balanced order �ow) imposed in the basic Roll model.

We maintain Assumptions 1(i) and 3 in this section, which implies that for all (u, u′) ∈ R2,

ϕ∆p,2(u, u′) = ϕε(u)ϕε(u
′)ϕI

(
u
s0

2

)
ϕI

(
(u′ − u)

s0

2

)
ϕI

(
−u′ s0

2

)
. (21)

Thus Theorem 1 remains valid, and the c.f. ϕε(·) is still identi�ed as (9) on V.

Equation (21) also implies the following identi�cation relation for (s0, ϕI(·)):

H(u, u′) =
ϕI
(
(u′ − u) s02

)
ϕI
(
−u s02

)
ϕI
(
u′ s02

) for all (u, u′) ∈ V2
. (22)

Since It is a discrete random variable, ϕI(·) is analytic, and hence H(u, u′) is analytic in (u, u′) ∈ V2
.

Note that Equation (12) remains valid without imposing Assumption 1(ii), and would lead

to global identi�cation of s0 as soon as V ar(It) is identi�ed. However, we need the o�-diagonal

information contained in Equation (22) for the identi�cation of the parameters of the probability

distribution of It in general unbalanced order �ow situations.

7That is, for all sequences {ak} ⊂ S with Q (ak,U) going to 0, we have |ak − s0| goes to zero.
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3.1 Unbalanced order �ow

Assumption 5. {It} takes values ±1 with unknown probability q0 := Pr(It = 1) ∈ (0, 1).

This relaxation of Assumption 1(ii) allows for unbalanced order �ow (i.e., q0 6= 1/2). Assumption

5 implies that the c.f. ϕI(·) of It takes the form

ϕI(u) = cos (u) + (2q0 − 1)× i sin (u) for all u ∈ R , (23)

and V ar(It) = 1− (2q0 − 1)2.

Equations (21) (or (22)) and (23) imply the following identi�cation relation for (s0, q0):

H(u, u′) = R(u, u′; s0, q0) for all (u, u′) ∈ V2
, (24)

where R(u, u′; s, q) (given in (53) in the Appendix) is a parametric function de�ned on U×S×(0, 1).

When q0 = 1/2 we have R(u, u′; s, 1/2) = R(u, u′; s) de�ned in (18), and Equation (24) becomes

the identi�cation relation (19) for s0 in Section 2.

Assumption 6. (i) s0 ∈ S; (ii) either (a) U = U ; or (b) U ⊂ U , and ∃(ũ, ũ), (ũ,−ũ) ∈ U such that

ũ ∈ (0, π/s).

Theorem 4. Let Assumptions 1(i), 3 and 5 hold. Then:

(1) q0 is identi�ed by Equations (55) and (56) (in the Appendix) with a small positive ũ ∈ V and

s0 > 0 is identi�ed via Equation (12). If s0 ∈ S then s0 is also identi�ed by Equation (54) (in the

Appendix) with a ũ ∈ (0, π/s) ∩ V.

(2) Further, suppose that Assumption 6 holds. Then: (s0, q0) is identi�ed as the unique solution to

the minimum distance criterion function based on Equation (24) evaluated on U .

See the Appendix for details of the proof of Theorem 4. In Theorem 4 part (2), the minimum

distance criterion function can be constructed similar to Equation (20).

3.2 Model when {It} has general discrete support

We now relax Assumption 5 to allow for more general support of the latent {It}.
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Assumption 7. {It} may take values in {−k1, . . . , 0, . . . ,+k2}, and Pr(It = −k1) > 0, Pr(It =

+k2) > 0.

Here, k1 and k2 are positive integers, measuring the strength of the order �ow. Assumption 7

allows for Pr(It = 0) = 0 or Pr(It = 0) > 0. It also allows for asymmetric support in the sense that

k1 6= k2.

Let π0 = [ ~π0l] denote the unknown true marginal probability distribution of {It}, where π0l :=

Pr(It = l) ≥ 0, for l = −k1, . . . , 0, . . . ,+k2 and
∑

l π0l = 1. Let ϕπ0(u) := Eπ0 [exp (iuIt)] denote

the true c.f. of It corresponding to probability π0, that is ϕπ0(·) ≡ ϕI(·), which is analytic and is

uniquely determined by the unknown π0. Denote

R(u, u′; s, π) :=
ϕπ
(
(u′ − u) s2

)
ϕπ
(
−u s2

)
ϕπ
(
u′ s2
) for any s ∈ S and π ∈ Π,

where Π := {π = [~πl], a probability mass function of It satisfying Assumption 7}, and ϕπ(u) :=

Eπ[exp (iuIt)] is the c.f. of π ∈ Π.

Equation (21) (or (22)) and Assumption 7 imply the following relation:

H(u, u′) = R(u, u′; s0, π0) for all (u, u′) ∈ V2
. (25)

We prove in the Appendix that Equation (25) identi�es both s0 and π0.

Theorem 5. Let Assumptions 1(i), 3 and 7 hold. Then: s0 ∈ S and π0 ∈ Π are identi�ed.

Recently Zhang and Hodges (2012) consider a model where our Assumption 7 is replaced by

{It} having support in {−λ,−1, 1, λ}. They do not study the identi�cation issue but directly apply

Bayesian Gibbs method to estimation under the additional assumption of εt ∼ i.i.d. N(0, σ2
ε).

Remark 1. Theorem 5 is more general than Theorem 4, which in turn includes Theorem 3 as a

special case. Theorem 5 suggests a natural minimum distance estimation procedure for s0 and π0.

Let Ĥ(u, u′) denote a nonparametric consistent estimator of H(u, u′) de�ned in (15), which could

be based on the empirical joint characteristic function ϕ̂∆p,2(u, u′) of ϕ∆p,2(u, u′) de�ned in (5).

14



Then one could estimate (s0, π0) by (ŝ, π̂), where

(ŝ, π̂) = arg inf
s∈S,π∈Π

∑
(u,u′)∈V2

|Ĥ(u, u′)−R(u, u′; s, π)|2.

One could then use the Wald statistic based on π̂ to test whether Assumption 1(ii) (balanced order

�ow) holds or not. See Chen et al. (2016) for details.

4 Models With Serially Dependent {It}

This section presents identi�cation results for extended Roll models that relax both Assumption

1(ii) and Assumption 3(iii) imposed in Section 2. Precisely we assume

Assumption 8. {It}∞t=1 is an irreducible and aperiodic �rst-order Markov chain with an unknown

true transition probability matrix Q0 := [q0
j,m] where

q0
j,m := Pr(It = m|It−1 = j) for j,m = −k, . . . , 0, . . . ,+k, and

∑
m

q0
j,m = 1. (26)

Therefore It is no longer sub-independent of −It−1 and Assumption 2 is no longer satis�ed, and

hence Theorem 1 is no longer applicable. Nevertheless, we shall establish the joint identi�cation of

ϕε(·) and s0 under Assumptions 1(i) and 3(i)(ii) and 8.

Let π0 = [ ~π0l] denote the unknown true marginal probability distribution of {It}, where π0l :=

Pr(It = l) for l = −k, . . . , 0, . . . ,+k and
∑

l π0l = 1. Let P0 denote the unknown true joint

probability distribution of (It, It−1). Under Assumption 8, {It}∞t=1 is an ergodic �nite-state Markov

chain, therefore π0l > 0 for l = −k, . . . , 0, . . . ,+k and Q0 uniquely determines π0 and P0 (see, e.g.,

De�nition 4.2.7 and Theorem 4.3.1 of Gallager (2014)).

Under Assumptions 1(i) and 3(i)(ii), we have: for all (u, u′) ∈ R2,

ϕ∆p,2(u, u′) = ϕε(u)ϕε(u
′)E
(

exp
[
iu
s0

2
(It − It−1)

]
exp

[
iu′
s0

2
(It−1 − It−2)

])
. (27)

This and Assumption 8 together yield the following identi�cation relation

H(u, u′) = R(u, u′; s0, P0) for all (u, u′) ∈ V2
, (28)
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where

R(u, u′; s0, P0) :=
E
(
exp

[
iu s02 (It − It−1)

]
exp

[
iu′ s02 (It−1 − It−2)

])
E
(
exp

[
iu s02 (It − It−1)

])
E
(
exp

[
iu′ s02 (It−1 − It−2)

]) .
Under Assumption 8, the support of (It − It−1) is {−2k, . . . , 0, . . . ,+2k}, and the joint support

of (It−1 − It−2, It − It−1) is given in expression (61) in the Appendix. Let Q0
∆I denote the joint

probability mass matrix of (It−1 − It−2, It − It−1), which is a (4k+1)× (4k+1) matrix. Let BQ0 be

a (2k+1)×(4k+1) matrix whose entries are either zero or simple functions of Q0
j,◦ = [q0

j,−k, · · · , q0
j,k]

(the j-th row vector of Q0) for j = −k, . . . , 0, . . . ,+k. Let AQ0,π0 denote a (4k + 1) × (2k + 1)

matrix whose entries are either zeros or simple products π0lq
0
i,j for l, i, j = −k, . . . , 0, . . . ,+k. See

the Appendix for the precise expressions of AQ0,π0 and BQ0 . The following equation shows the

relation between Q0
∆I and Q0, π0 :

Q0
∆I = AQ0,π0 ×BQ0 , (29)

Therefore the rank of Q0
∆I is at most 2k + 1.

Let Pall be the set of possible joint probability measures P of (It, It−1) satisfying Assumption

8. Let AQ,π (de�ned in the Appendix) be a (4k + 1)× (2k + 1) matrix associated with a P ∈ Pall.

De�ne

P :=

{
P ∈ Pall : AQ,π has full column rank 2k + 1; q−k,−k >

1

2
, qk,k >

1

2

}
. (30)

Assumption 9. (i) s0 ∈ S; (ii) P0 ∈ P.

Given the expression for AQ0,π0 in the Appendix, it being of full column rank is easily satis�ed.

For example, if q0
k,j > 0, for j = −k, · · · , k, or q0

−k,j > 0, for j = −k, · · · , k, then AQ0,π0 is of full

column rank. Also, when k = 1, the assumption that q0
−k,−k >

1
2 and q0

k,k >
1
2 could be interpreted

as a model of (time-varying) autocorrelation in the trade indicators: after a buy, the most likely

thing is another buy, and analogously for a sell.

Let ϕ∆I (·, ·) denote the true unknown joint c.f. of (It−1 − It−2, It − It−1). We note that the

identi�cation of Q0
∆I is equivalent to the identi�cation of ϕ∆I (·, ·). We establish the following

identi�cation results in the Appendix.
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Theorem 6. Let Assumptions 1(i), 3(i)(ii), 8 and 9 hold. Then:

(1) (s0, ϕ∆I (·, ·)) are identi�ed; and ϕε is identi�ed as ϕε(u) = ϕ∆p,1(u)[ϕ∆I

(
s0
2 u, 0

)
]−1 on V.

(2) If, in addition, q0
k,−j > 0 for j = 1, · · · , k and q0

−k,j > 0 for j = 0, 1, · · · , k, then the joint

distribution P0 of (It−1, It) is identi�ed.

Theorem 6 Part (1) establishes the identi�cation of Q0
∆I . Then BQ0 or equivalently the joint

distribution P0 of (It−1, It) can be recovered from the relation Q0
∆I = AQ0,π0 × BQ0 under some

conditions on AQ0,π0 . Theorem 6 part (2) provides one such su�cient condition. Note that under

Assumption 8, q0
k,−j > 0 for j = 1, · · · , k and q0

−k,j > 0 for j = 0, 1, · · · , k imply that AQ0,π0 has full

column rank. Also, when k = 1, the assumption that q0
1,−1 > 0, q0

−1,0 > 0 and q0
−1,1 > 0 is natural.

This problem is related to but cannot be directly implied by the existing identi�cation results

for a hidden Markov model with time series data alone. Recently Gassiat and Rousseau (2016)

considers identi�cation in a hidden Markov time series model under the assumption that the tran-

sition probability matrix is of full rank (see their theorem 1). From Equation (29) we note that

Q0
∆I in our model fails to satisfy their full rank condition. Since we only have a single time series

observation {pt}, our identi�cation results cannot be derived from the existing results (e.g., Hu and

Shum (2012), Hu (2016) and the references therein) on hidden Markov panel data models with a

large independent cross-section but a �xed �nite time period, either.

5 Adverse Selection

We have assumed that the price dynamics follow Equation (1) (Assumption 1(i)) in all the extensions

in Sections 3 and 4. We now relax this condition to allow for adverse selection problems.

We relax Equation (1) and suppose that

pt = p∗t + It
s0

2
, p∗t = p∗t−1 + δIt + εt. (31)

This equation arises from considering the presence of an adverse selection component in the spread,

see Equation (5.4) in Foucault et al. (2013). Here, δ measures the contribution of adverse selection,
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i.e., the e�ect of a market order on the latent true e�cient price. This implies that

∆pt = εt + α0It − β0It−1, with α0 ≡
s0

2
+ δ, β0 ≡

s0

2
. (32)

Rewriting (32) in the form of our previous price dynamics in (2), i.e., ∆pt = ∆p∗t + (It − It−1)s0/2,

we have ∆p∗t = εt+δIt, and thus Cov (∆p∗t , It) = δV ar(It) 6= 0 whenever δ 6= 0. Hence the Roll and

Hasbrouck spread estimators would be inconsistent (i.e., biased even as sample size goes to in�nity).

If {pt} is the only observable, even assuming εt ∼ i.i.d. N(0, σ2
ε) as in Hasbrouck (2004), (α0, β0, σ

2
ε)

is still not jointly identi�ed. We now show how to regain identi�cation by slightly strengthening

Assumption 3 to Assumption 10(ii) below.8

Assumption 10. (i) Data {pt}Tt=1 is generated from Equation (32) with α0 6= 0 and β0 > 0, where

{εt, It}∞t=1 is a strictly stationary process; and (ii) εt, εt−1, It, It−1 and It−2 are independent.

Assumption 10 implies that for all (u, u′) ∈ R2,

ϕ∆p,2(u, u′) = ϕε(u)ϕε(u
′)ϕI(uα0)ϕI(u

′α0 − uβ0)ϕI(−u′β0), (33)

ϕ∆p,1(u) = ϕ∆p,2(u, 0) = ϕε(u)ϕI(uα0)ϕI(−uβ0), (34)

Equation (34) immediately implies that the c.f. ϕε(·) is identi�ed once after (α0, β0) and ϕI(·)

are identi�ed. Also Equation (32) implies that the identi�cation of (s0, δ) is equivalent to the

identi�cation of (α0, β0) via the relation s0 = 2β0 and δ = α0 − β0.

Equation (33) also implies

H(u, u′) =
ϕI (u′α0 − uβ0)

ϕI (−uβ0)ϕI (u′α0)
for all (u, u′) ∈ V2

. (35)

Since It is a discrete random variable, ϕI(·) is analytic, and hence H(u, u′) is analytic in (u, u′) ∈ V2
.

Relation (35) immediately implies that

∂2H(0, 0)

∂u∂u′
= α0β0V ar(It), (36)

8Instead of imposing Assumption 10(ii), we could also obtain the identi�cation and consistent estimation of (α0, β0)

when additional data such as trade volume is available.
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hence the sign of α0 is identi�ed as the sign of ∂2H(0,0)
∂u∂u′ . Therefore in the rest of this section we

could assume that 0 < β0 ∈ B := [0, b] and 0 6= α0 ∈ B1 := [−b, b] for some �nite b ≥ s/2.

In the next several subsections we present the identi�cation of (α0, β0) when the functional form

of ϕI(·) is completely known, known up to a unknown parameter, or unknown.

5.1 Adverse selection with balanced order �ow

Under Assumption 1(ii) (balanced order �ow), ϕI(u) = cos (u) for all u ∈ R and V ar(It) = 1.

Denote

Uas :=

{
(u, u′) ∈ V2

: min
α∈B1,β∈B

| cos (uβ) cos
(
u′α
)
| > 0

}
, (37)

and a function on Uas × B1 × B as

R(u, u′;α, β) :=
cos (u′α− uβ)

cos (uβ) cos (u′α)
= 1 +

sin (uβ) sin (u′α)

cos (uβ) cos (u′α)
.

Equation (35) and Assumption 1(ii) now imply that

H(u, u′) = R(u, u′;α0, β0) for all (u, u′) ∈ V2
. (38)

Since V2
contains an open ball of (0, 0), for a small positive ũ ∈ V, we have (ũ, ũ), (ũ, 2ũ), (2ũ, ũ) ∈

V2
, and Equation (38) yields

sin2(ũα0) =
2H(ũ, ũ)−H(ũ, 2ũ)− 1

2H(ũ, ũ)− 2H(ũ, 2ũ)
, sin2(ũβ0) =

2H(ũ, ũ)−H(2ũ, ũ)− 1

2H(ũ, ũ)− 2H(2ũ, ũ)
. (39)

Assumption 11. (i) (α0, β0) ∈ B1×B; (ii) either (a) U = Uas; or (b) U ⊂ Uas and ∃(ũ, ũ), (ũ, 2ũ), (2ũ, ũ) ∈

U such that ũ ∈ (0, π
2b

).

For any ũ ∈ (0, π
2b

), a 7→ sin2 (ũa) is strictly increasing in a ∈ B = [0, b]. Hence Equation (39)

can be used to solve |α0| ∈ B and β0 ∈ B uniquely as

|α0| = ũ−1 arcsin

(√
2H(ũ, ũ)−H(ũ, 2ũ)− 1

2H(ũ, ũ)− 2H(ũ, 2ũ)

)
, β0 = ũ−1 arcsin

(√
2H(ũ, ũ)−H(2ũ, ũ)− 1

2H(ũ, ũ)− 2H(2ũ, ũ)

)
.

(40)

We are ready to state the following results.
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Theorem 7. Let Assumptions 1(ii), 10 and 11(i) hold. Then:

(1) (α0, β0) is identi�ed by Equations (36) and (40) with some ũ ∈ (0, π
2b

) ∩ V, and ϕε is identi�ed

on V as ϕε(u) = ϕ∆p,1(u)[cos (uα0) cos (uβ0)]−1.

(2) Further, let Let Assumption 11 hold. Then: (α0, β0) is identi�ed as the unique solution to the

minimum distance criterion function based on Equation (38) evaluated on U .

In Theorem 7 part (2), the minimum distance criterion function can be constructed similar to

Equation (20).

5.2 Adverse selection with unbalanced order �ow

Under Assumption 5, ϕI(u) = cos (u) + i(2q0 − 1) sin (u) for all u ∈ R, for a unknown q0 ∈ (0, 1).

Denote a function on Uas × B1 × B × (0, 1) as

R(u, u′;α, β, q) :=
(1 + tan(u′α) tan(uβ)) + i(2q − 1) (tan(u′α)− tan(uβ))

[1− i(2q − 1) tan(uβ)] [1 + i(2q − 1) tan(u′α)]
.

Equation (33) (or (35)) and Assumption 5 now imply that

H(u, u′) = R(u, u′;α0, β0, q0) for all (u, u′) ∈ V2
. (41)

We establish the following result in the Appendix.

Theorem 8. Let Assumptions 5, 10 and 11(i) hold. Then: (α0, β0, q0) is identi�ed by Equations

(78), (74) and (77) in the Appendix with some ũ ∈ (0, π
2b

) ∩ V; and ϕε is identi�ed on V as :

ϕε(u) = ϕ∆p,1(u) ([cos (uα0) + i(2q0 − 1) sin (uα0)] [cos (uβ0)− i(2q0 − 1) sin (uβ0)])−1.

Theorem 8 becomes Theorem 7 part (1) when q0 = 1/2.

5.3 Adverse selection when {It} has general discrete support

We now relax Assumption 5 to Assumption 7, and the c.f. ϕI(·) becomes a unknown analytic

function. Many notation and de�nitions in this subsection are the same as those in Subsection 3.2.
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Recall that π0 denotes the unknown true marginal probability distribution of {It}, and ϕπ0(·) = ϕI(·)

denotes the true c.f. of It corresponding to probability π0. Denote

R(u, u′;α, β, π) :=
ϕπ (u′α− uβ)

ϕπ (−uβ)ϕπ (u′α)
,

for any (α, β) ∈ B1 × B and π ∈ Π. And ϕπ(u) := Eπ[exp (iuIt)] is the c.f. of π ∈ Π.

Equation (33) (or (35)) and Assumption 7 now imply the following relation:

H(u, u′) = R(u, u′;α0, β0, π0) for all (u, u′) ∈ V2
. (42)

We prove in the Appendix that Equation (42) identi�es both (α0, β0) and π0.

Theorem 9. Let Assumptions 7, 10 and 11(i) hold. Then: (α0, β0) and π0 ∈ Π are identi�ed; and

ϕε is identi�ed on V as : ϕε(u) = ϕ∆p,1(u) [ϕI(uα0)ϕI(−uβ0)]−1.

Remark 2. Theorem 9 is more general than Theorem 8, except that (α0, β0, q0) could be solved in

closed form in Theorem 8. Theorem 9 suggests a natural minimum distance estimation procedure

for (α0, β0) and π0. Let Ĥ(u, u′) denote a nonparametric consistent estimator of H(u, u′) as in

Remark 1. Then one could estimate (α0, β0, π0) by (α̂, β̂, π̂), where

(α̂, β̂, π̂) = arg inf
α∈B1,β∈B,π∈Π

∑
(u,u′)∈V2

|Ĥ(u, u′)−R(u, u′;α, β, π)|2.

One could then use a Wald statistic to test α0 = β0 (no adverse selection), regardless whether

Assumption 1(ii) holds or not. See Chen et al. (2016) for details.

6 Random Spread

Consider the model with a random spread:

pt = p∗t +
st
2
It, p∗t = p∗t−1 + εt,

∆pt = εt +
1

2
(stIt − st−1It−1) . (43)
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Assumption 12. (i) Data {pt}Tt=1 is generated from Equation (43), where {εt, stIt}∞t=1 is a strictly

stationary process; (ii) It is independent of st, and Assumption 1(ii) holds; (iii) εt is sub-independent

of (stIt − st−1It−1)/2; stIt is sub-independent of −st−1It−1; (iv) εt + εt−1 is sub-independent of

(stIt − st−2It−2)/2; stIt is sub-independent of −st−2It−2; and εt is sub-independent of εt−1.

Assumption 12(i)(ii) is a natural extension of Assumption 1. Assumption 12(iii)(iv) is a natural

extension of Assumption 2.

Under Assumption 12, we have for all u ∈ R,

ϕ∆p,1 (u) = ϕε(u)
(
E
[
cos
(
u
st
2

)])2
, ϕ∆2p(u) = ϕ2

ε(u)
(
E
[
cos
(
u
st
2

)])2
. (44)

This immediately implies that the c.f. ϕε(·) is identi�ed as (9) on V. Next, for h(·) de�ned in (10),

Equation (44) implies the following relation:

h(u) =
(
E
[
cos
(
u
st
2

)])2
for all u ∈ V. (45)

Under Assumption 12(i)(ii), {st} has the same marginal distributions. The next assumption is

similar to the condition s0 ∈ (0, s] for the non-random spread s0 in all the previous sections.

Assumption 13. The unknown true probability distribution Fs(·) of st has support S = [0, s] with

Fs(0) = 0.

Note that the random spread st could be a discrete, or partly discrete and partly continuous

random variable since its distribution Fs() is not assumed to be di�erentiable or strictly increasing.

This assumption is extremely mild and reasonable for �nancial applications.

We prove in the Appendix that Equation (44) and Assumption 13 together identify the distri-

bution function Fs(·) of the random spread st.

Theorem 10. Let Assumption 12 hold. Then:

(1) The c.f. ϕε(·) is identi�ed as (9) on V.

(2) If further, Assumption 13 holds, then Fs(·) is identi�ed by Equation (85) in the Appendix.
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7 Multivariate Roll Models

Let pt = (p1,t, · · · , pn,t)ᵀ ∈ Rn, It = (I1,t, · · · , In,t)ᵀ ∈ {−1, 1}n, εt = (ε1,t, · · · , εn,t)ᵀ ∈ Rn and

∆pt = εt +
1

2
S0∆It, where S0 = Diag{s1,0, · · · .sn,0} (46)

By applying the identi�cation results of previous sections, each sj,0 can be identi�ed using indi-

vidual price series {pj,t} for j = 1, · · · , n. We focus on the identi�cation of the contemporaneous

dependence of It. For simplicity we consider a simple multivariate extension of the basic Roll model.

Assumption 14. (i) Data {pt}Tt=1 is generated from Equation (46) with sj,0 ∈ (0, s] for j = 1, · · · , n

and some �nite s, and {εt, It}∞t=1 is a strictly stationary process; (ii) (εt, εt−1) is independent of

(∆It,∆It−1); (iii) εt is independent of εt−1; and (iv) It, It−1 and It−2 are independent.

This assumption implies that for any (u1, u2) ∈ R2n,

ϕ∆p,2(u1, u2) := E (exp (iuᵀ1∆pt + iuᵀ2∆pt−1))

= ϕε(u1)ϕε(u2)E
(

exp

(
i

2
uᵀ1S0It

))
E
(

exp

(
i

2
(u2 − u1)ᵀS0It−1

))
E
(

exp

(
− i

2
uᵀ2S0It−2

))
.

(47)

Equation (47) evaluated at any (u, 0) ∈ R2n yields the relation for the c.f. of ∆pt:

ϕ∆p,1(u) := ϕ∆p,2(u, 0) = ϕε(u)E
(

exp

(
i

2
uᵀS0It

))
E
(

exp

(
− i

2
uᵀS0It−1

))
. (48)

Let W := {u ∈ Rn : ϕ∆p,1(u) 6= 0}, which contains an open ball of 0 ∈ Rn. Equations (47) and (48)

immediately imply the identi�cation of the c.f. ϕε(u) on W, and for all (u1, u2) ∈ W2
,

H(u1, u2) :=
ϕ∆p,2(u1, u2)

ϕ∆p,1(u1)ϕ∆p,1(u2)
=

E
(
exp

(
i
2(u2 − u1)ᵀS0It−1

))
E
(
exp

(
− i

2u
ᵀ
1S0It−1

))
E
(
exp

(
i
2u

ᵀ
2S0It−1

)) . (49)

The next assumption imposes a structure on the contemporaneous dependence of It.

Assumption 15. Let Ω be a symmetric, positive semi-de�nite n×n matrix. The diagonal elements

of Ω equal to one and the o�-diagonal elements of Ω are {ωjk}.

Y ∗t =
(
Y ∗1,t, · · · , Y ∗n,t

)ᵀ ∼ N (0,Ω)

Ij,t = 1
(
Y ∗j,t > 0

)
− 1

(
Y ∗j,t < 0

)
, for j = 1, · · · , n
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The covariance matrix Ω is allowed to be singular. For example, when n = 2, ω12 is allowed to

be 1, meaning I1,t = I2,t. There are n(n − 1)/2 free parameters {ωjk} to be identi�ed. For j 6= k

we de�ne:

qjk := Pr (Ij,t = −1, Ik,t = −1) = Pr
(
Y ∗j,t < 0, Y ∗k,t < 0

)
:= g (ωjk) , (50)

where, under Assumption 15, g(·) is strictly increasing. We prove the following result in the Ap-

pendix.

Theorem 11. (1) Let Assumption 14 hold, then ϕε(u) = ϕ∆p,2(u, u)[ϕ∆p,1(u)]−1 on W.

(2) Let Assumptions 14 and 15 hold. Then: sj,0, j = 1, · · · , n, is identi�ed as in Theorem 2

part (1); qjk is identi�ed as Equation (86) in the Appendix, and ωjk is identi�ed as g−1 (qjk), for

j, k = 1, · · · , n and j 6= k.

8 Conclusions

In this paper we provide identi�cation of the spread s0 and the distribution of the latent fundamental

price increments εt using transaction price time series observations alone. Our identi�cation results

do not require the existence of any �nite moments of the observed price increments, do not require

the full independence between {εt} and the latent trade direction indicators {It}, and allow the latent

εt to be discrete or continuous, symmetric or asymmetric. We �rst provide closed-form identi�cation

results under a mild sub-independence condition in the basic Roll (1984) model. We then establish

identi�cation in various extended Roll models, such as models with general unbalanced order �ow,

or serially dependent latent trade indicators, or adverse selection or a possibly random spread.

Identi�cation in a multivariate Roll model is also provided. Our results on the identi�cation of

(s0, ϕε) and the additional parameters in extended models are established under conditions much

weaker than those in the existing literature and are very reasonable for �nancial applications.

This paper focuses on constructive identi�cation results in basic Roll (1984) and extended Roll

models. However, our identi�cation strategy, the minimum distance between the nonparametri-

cally identi�ed (from data) joint characteristic function of consecutive one period returns and its
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model-implied semiparametric counterpart, allows for even more general models that include several

features of the extended Roll models all at once. In fact these minimum distance via characteristic

functions imply overidenti�cation restrictions in all these models. In the companion paper, Chen

et al. (2016), estimation and testing of the Roll type models based on this paper's identi�cation

results are presented.
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A Appendix

This Appendix contains additional proofs that are not presented in the main text.

A.1 Additional proofs for Sections 2 and 3

Proof of Theorem 3. The criterion function (20) is nonnegative, with Q(s0,U) = 0, under

Assumption 4(ii). For either case of Assumption 4(ii), ∃(ũ, ũ) ∈ U with ũ > 0. For this grid point,

the moment condition (19) yields the relation

cos2
(
ũ
s0

2

)
=

ϕ2
∆p,1(ũ)

ϕ∆p,2(ũ, ũ)
. (51)

By Assumption 4(ii), ũ is smaller than the �rst positive zero of u 7→ mins∈S cos
(
u s2
)
, and hence

s 7→ cos2
(
ũ s2
)
is strictly decreasing in s ∈ S. This implies that (51) holds only at s = s0 ∈ S,

which further implies that the criterion function is uniquely minimized at s = s0. Since Q(s,U) is

continuous in s ∈ S = [0, s], the identi�able uniqueness is trivially satis�ed.

Proof of Theorem 4. Under Assumptions 1(i), 3 and 5, we obtain the following special case of

Equation (21): for all (u, u′) ∈ R2,

ϕ∆p,2(u, u′) = ϕε(u)ϕε(u
′)
[
cos
(
u
s0

2

)
+ (2q0 − 1)i sin

(
u
s0

2

)] [
cos
(
u′
s0

2

)
− (2q0 − 1)i sin

(
u′
s0

2

)]
×
[
cos
(

(u′ − u)
s0

2

)
+ (2q0 − 1)i sin

(
(u′ − u)

s0

2

)]
. (52)

Hence

ϕ∆p,1(u) ≡ ϕ∆p,2(u, 0) = ϕε(u)
[
cos2

(
u
s0

2

)
+ (2q0 − 1)2 sin2

(
u
s0

2

)]
,

ϕ∆2p(u) ≡ ϕ∆p,2(u, u) = (ϕε(u))2
[
cos2

(
u
s0

2

)
+ (2q0 − 1)2 sin2

(
u
s0

2

)]
.

These immediately imply that the c.f. ϕε(·) is identi�ed as (9) on V. In addition to the de�nitions

of V, U and H(u, u′) given in Section 2, we introduce a function on U × S × (0, 1) as

R(u, u′; s, q) :=

[
cos
(
u s

2

)
+ (2q − 1)i sin

(
u s

2

)] [
cos
(
u′ s

2

)
− (2q − 1)i sin

(
u′ s

2

)]
×
[
cos
(
(u′ − u) s

2

)
+ (2q − 1)i sin

(
(u′ − u) s

2

)][
cos2

(
u s2
)

+ (2q − 1)2 sin2
(
u s2
)] [

cos2
(
u′ s2
)

+ (2q − 1)2 sin2
(
u′ s2
)] , (53)
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which is complex-valued unless q(q−1)(2q−1) sin
(
u s2
)

sin
(
u′ s2
)

sin
(
(u′ − u) s2

)
= 0. Equation (24)

implies thatH(u, u′) is complex-valued unless q0(q0−1)(2q0−1) sin
(
u s02
)

sin
(
u′ s02

)
sin
(
(u′ − u) s02

)
=

0.

For all (ũ, ũ) ∈ V2
with ũ 6= 0, the identi�cation Equation (24) yields the relations

H(ũ, ũ) =
1

cos2
(
ũ s02
)

+ (2q0 − 1)2 sin2
(
ũ s02
) ,

⇐⇒ cos2
(
ũ
s0

2

)
=

1/H(ũ, ũ)− (2q0 − 1)2

1− (2q0 − 1)2
, (54)

where H(ũ, ũ) is real-valued with H(ũ, ũ) > 1. Once (2q0 − 1)2 is identi�ed, Equation (54) can be

used to identify s0 in S if ũ ∈ (0, π/s) ∩ V (as in Section 2). For all (ũ,−ũ) ∈ V2
with ũ 6= 0,

Equation (24) implies

H(ũ,−ũ)

[H(ũ, ũ)]2
=
[
cos
(
ũ
s0

2

)
+ (2q0 − 1)i sin

(
ũ
s0

2

)]2
[cos (ũs0)− (2q0 − 1)i sin (ũs0)] .

Re

(
H(ũ,−ũ)

[H(ũ, ũ)]2

)
= (2q0 − 1)2 +

[
(2q0 − 1)2 − 1

]
cos2

(
ũ
s0

2

) [
1− 2 cos2

(
ũ
s0

2

)]
= 2(2q0 − 1)2 −H(ũ, ũ)−1 + 2

[
H(ũ, ũ)−1 − (2q0 − 1)2

]2
1− (2q0 − 1)2

,

where the last equality uses the relation implied by Equation (54). The �rst derivative of the right-

hand side of the above equation with respect to (2q0−1)2 is equal to 2
[H(ũ,ũ)−1−1]

2

[1−(2q0−1)2]2
, which is strictly

positive, since H(ũ, ũ) > 1 and q0 ∈ (0, 1). Therefore, (2q0 − 1)2 can be uniquely identi�ed as

(2q0 − 1)2 =
Re
(
H(ũ,−ũ)

[H(ũ,ũ)]2

)
+H(ũ, ũ)−1 − 2H(ũ, ũ)−2

2 + Re
(
H(ũ,−ũ)

[H(ũ,ũ)]2

)
− 3H(ũ, ũ)−1

. (55)

Finally,

Im

(
H(ũ,−ũ)

[H(ũ, ũ)]2

)
=
[
(2q0 − 1)2 − 1

]
(2q0 − 1) sin2

(
ũ
s0

2

)
sin (ũs0)

= 2(1− 2q0)(1−H(ũ, ũ)−1)

√
1/H(ũ, ũ)− (2q0 − 1)2

1− (2q0 − 1)2

√
1− 1/H(ũ, ũ)

1− (2q0 − 1)2
, (56)

which can be used to identify the sign of 2q0 − 1 for a small ũ > 0. These arguments establish the

statements in the theorem.
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Proof of Theorem 5. Under Assumptions 1(i) and 3, we obtain Equation (21) (and Equations (6)

and (7) with ϕπ0 ≡ ϕI in Section 2). Hence Theorem 1 remains valid and the c.f. ϕε(·) is identi�ed

as (9) on V.

Equation (21) also implies that, on V2
, Equation (25) is satis�ed by the true parameter value

(s0 ∈ S, ϕπ0). Suppose another pair (s̃ ∈ S, ψ(·)) also satis�es Equation (25), where ψ denotes the

c.f. associated with another probability mass function π satisfying Assumption 7. That is, on V2

we have:

H(u, u′) =
ϕπ0

(
s0
2 (u′ − u)

)
ϕπ0

(
s0
2 u
′
)
ϕπ0

(
− s0

2 u
) =

ψ
(
s̃
2 (u′ − u)

)
ψ
(
s̃
2u
′
)
ψ
(
− s̃

2u
) . (57)

Below we shall prove that, without any restriction on the support of {It} (such as Assumption 7),

ϕπ0( s02 u) = exp(ifu)ψ
(
s̃
2u
)
, where f ∈ R is a constant, This result is intuitive. Since we only

have observations for s0
2 (It − It−1), we could not di�erentiate between It and It + f , for a constant

f , or between (It, s0) and (It · s0s̃ , s̃), for a positive constant s̃, without additional information

about the support. Assumption 7 excludes the possibility of a change of the location or the scale,

then θ0 = (s0, π
ᵀ

0)ᵀ can be uniquely identi�ed from Equation (25). Denote h(u) = ψ
(
s̃
s0
u
)
, and

u1 = − s0
2 u, u2 = s0

2 u
′. Note that ϕπ0(·), ψ(·), h(·) are all analytic on R and equal to 1 at 0. There

exists a small neighbourhoodM of (0, 0) ⊂ V2
, such that ϕπ0 (u1), ϕπ0 (u2), ϕπ0 (u1 + u2), h (u1),

h (u2) and h (u1 + u2) are all bounded away from zero on (u1, u2) ∈M. Equation (57) gives

ϕπ0 (u1 + u2)

h (u1 + u2)
=
ϕπ0 (u1)

h (u1)

ϕπ0 (u2)

h (u2)
. (58)

De�ne γ(u) =
ϕπ0 (u)

h(u) , which is analytic on an open interval of 0. Equation (58) can be rewritten as

γ(u1 + u2) = γ(u1)γ(u2). (59)

In Theorem 1 on page 38 of Aczel (1966), it has been shown that the only nonzero analytic solutions

of (59) are the exponential functions, exp(au), where a ∈ C is a constant. Namely, ϕπ0( s02 u) =

exp(ãu)ψ
(
s̃
2u
)
, for some �xed ã ∈ C. Since, for all u ∈ R, ϕπ0(− s0

2 u) = ϕπ0( s02 u) and ψ
(
− s̃

2u
)

=

ψ
(
s̃
2u
)
, it is straightforward to show ã = if , for some f ∈ R. Equivalently,

s0

2
It =

s̃

2
Ĩt + f, (60)
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where the c.f. of It is ϕπ0(u), and the c.f. of Ĩt is ψ (u). Equation (60) implies the number of points in

the support of It is also identi�ed. Let the ordered sets {m1,m2, · · · ,ml} ⊂ {−k1, · · · , 0, · · · ,+k2}

and {m̃1, m̃2, · · · , m̃l} ⊂ {−k1, · · · , 0, · · · ,+k2} denote the supports of It and Ĩt, respectively. Equa-

tion (60) implies, for all i = 1, · · · , l,

m̃i =
s0

s̃
mi − f

2

s̃
.

Since m1 = m̃1 = −k1, and ml = m̃l = +k2, s0 = s̃ and f = 0. Therefore, s0 and the distribution

of It can be uniquely identi�ed.

A.2 Additional proofs for Section 4

Proof of Theorem 6 Part (1). Since {It} takes values in {−k, . . . , 0, . . . ,+k}, the support of

(It − It−1) is {−2k, . . . , 0, . . . ,+2k} and the joint support of (It−1 − It−2, It − It−1) is



(−2k, 0) · · · · · · · · · (−2k, 2k)

(−2k + 1,−1) (−2k + 1, 0) · · · · · · · · · (−2k + 1, 2k)

(−2k + 2,−2) (−2k + 2,−1) (−2k + 2, 0) · · · · · · · · · (−2k + 2, 2k)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(−1,−2k + 1) · · · · · · (−1, 0) · · · · · · (−1, 2k − 1) (−1, 2k)

(0,−2k) (0,−2k + 1) · · · · · · (0, 0) · · · · · · (0, 2k − 1) (0, 2k)

(1,−2k) (1,−2k + 1) · · · · · · (1, 0) · · · · · · (1, 2k − 1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(2k − 2,−2k) · · · · · · · · · (2k − 2, 0) (2k − 2, 1) (2k − 2, 2)

(2k − 1,−2k) · · · · · · · · · (2k − 1, 0) (2k − 1, 1)

(2k,−2k) · · · · · · · · · (2k, 0)



.

(61)

Let P ∈ P denote any candidate joint probability distribution of (It, It−1). Let π = [~πl] denote

the corresponding marginal probability distribution of {It}, and Q the corresponding transition

probability matrix with j−th row vector being Qj,◦ = [qj,−k, · · · , qj,k], for j = −k, . . . , 0, . . . ,+k,

where the summation of each component of Qj,◦ equals to 1 by de�nition. Let Q∆I denote the

corresponding joint probability mass matrix of (It−1 − It−2, It − It−1), which is a (4k+1)× (4k+1)

matrix. The following equation shows the connection between Q∆I and Q, π :

Q∆I = AQ,π ×BQ, (62)
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where AQ,π is the following (4k + 1)× (2k + 1) matrix

πkqk,−k 0 0 0 · · · · · · 0

πk−1qk−1,−k πkqk,−k+1 0 0 · · · · · · 0

πk−2qk−2,−k πk−1qk−1,−k+1 πkqk,−k+2 0 · · · · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

π−k+2q−k+2,−k π−k+3q−k+3,−k+1 π−k+4q−k+4,−k+2 · · · πkqk,k−2 0 0

π−k+1q−k+1,−k π−k+2q−k+2,−k+1 π−k+3q−k+3,−k+2 · · · πk−1qk−1,k−2 πkqk,k−1 0

π−kq−k,−k π−k+1q−k+1,−k+1 π−k+2q−k+2,−k+2 · · · πk−2qk−2,k−2 πk−1qk−1,k−1 πkqk,k

0 π−kq−k,−k+1 π−k+1q−k+1,−k+2 · · · πk−3qk−3,k−2 πk−2qk−2,k−1 πk−1qk−1,k

0 0 π−kq−k,−k+2 · · · πk−4qk−4,k−2 πk−3qk−3,k−1 πk−2qk−2,k

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · 0 0 π−kq−k,k−2 π−k+1q−k+1,k−1 π−k+2q−k+2,k

0 · · · 0 0 0 π−kq−k,k−1 π−k+1q−k+1,k

0 · · · 0 0 0 0 π−kq−k,k



,

and BQ is the following (2k + 1)× (4k + 1) matrix

0 · · · · · · · · · 0 0 0 0 0 Q−k,◦

0 · · · · · · · · · 0 0 0 0 Q−k+1,◦ 0

0 · · · · · · · · · 0 0 0 Q−k+2,◦ 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · · · · · · · 0 0 Q−1,◦ · · · 0 0

0 · · · · · · · · · 0 Q0,◦ 0 · · · 0 0

0 · · · · · · 0 Q1,◦ 0 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 Qk−2,◦ 0 0 0 · · · · · · 0 0

0 Qk−1,◦ 0 0 0 0 · · · · · · 0 0

Qk,◦ 0 0 0 0 0 · · · · · · 0 0


.

Thus the rank of Q∆I is at most 2k+ 1. Assumption P0 ∈ P and Equation (29) or (62) can be used

to recover Q0 and π0 once after Q0
∆I is identi�ed.

We now show that Equation (28) identi�es the c.f. ϕ∆I (and hence Q0
∆I). Recall that Equation

(28) implies that

H(u1, u2) =
ϕ∆I

(
s0
2 u1,

s0
2 u2

)
ϕ∆I

(
s0
2 u1, 0

)
ϕ∆I

(
0, s02 u2

) for all (u1, u2) ∈ V2
.

Let ψ∆I denote a c.f. associated with a candidate P ∈ P. If the pair (s̃, ψ∆I (·, ·)) also satis�es

Equation (28), i.e., for all (u1, u2) ∈ V2
,

H(u1, u2) =
ϕ∆I

(
s0
2 u1,

s0
2 u2

)
ϕ∆I

(
s0
2 u1, 0

)
ϕ∆I

(
0, s02 u2

) =
ψ∆I

(
s̃
2u1,

s̃
2u2

)
ψ∆I

(
s̃
2u1, 0

)
ψ∆I

(
0, s̃2u2

) . (63)
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Then on V2
, which contains a small neighbourhood of (0, 0)

ϕ∆I

(s0

2
u1,

s0

2
u2

)
ψ∆I

(
s̃

2
u1, 0

)
ψ∆I

(
0,
s̃

2
u2

)
= ψ∆I

(
s̃

2
u1,

s̃

2
u2

)
ϕ∆I

(s0

2
u1, 0

)
ϕ∆I

(
0,
s0

2
u2

)
.

(64)

Since {It} is discrete with support {−k, . . . , 0, . . . ,+k}, ϕ∆I (·, ·) and ψ∆I (·, ·) are entire c.f.. There-

fore ϕ∆I (·, ·) and ψ∆I (·, ·) have analytic continuations for all complex numbers (z1, z2) ∈ C2. Fur-

thermore, the analytic continuations, ϕ∆I (z1, z2) and ψ∆I (z1, z2) are entire functions, and Equation

(64) is satis�ed for all (z1, z2) ∈ C2.

Let Z :=
{
z ∈ C : ϕ∆I

(
s0
2 z, 0

)
= 0
}
, and Z̃ :=

{
z ∈ C : ψ∆I

(
s̃
2z, 0

)
= 0
}
. In the following we

shall show that Z = Z̃. Fix z1 = d+ fi ∈ Z, where d, f ∈ R. Then, for any z ∈ C,

ϕ∆I

(s0

2
z1,

s0

2
z
)
ψ∆I

(
s̃

2
z1, 0

)
ψ∆I

(
0,
s̃

2
z

)
= 0 (65)

De�ne a(z) =
(
exp

[
iz s02 (−2k)

]
, · · · , exp

[
iz s02 (−1)

]
, 1, exp

[
iz s02 (1)

]
, · · · , exp

[
iz s02 (2k)

])ᵀ
, then

ϕ∆I

(s0

2
z1,

s0

2
z
)

= a(z)ᵀQ0
∆Ia(z1) = a(z)ᵀAQ0,π0BQ0a(z1).

Thus z → ϕ∆I

(
s0
2 z1,

s0
2 z
)
is the null function if and only if AQ0,π0BQ0a(z1) = 0. Since AQ0,π0 is of

full column rank, AQ0,π0BQ0a(z1) = 0 if and only if BQ0a(z1) = 0. Note that

BQ0a(z1) =



q0
−k,−k + q0

−k,−k+1 exp
(
iz1

s0
2

)
+ q0
−k,−k+2 exp

(
2iz1

s0
2

)
+ · · ·+ q0

−k,k exp
(
2kiz1

s0
2

)
q0
−k+1,−k exp

(
−iz1 s02

)
+ q0
−k+1,−k+1 + q0

−k+1,−k+2 exp
(
iz1

s0
2

)
+ · · ·+ q0

−k+1,k exp
(
(2k − 1)iz1

s0
2

)
q0
−k+2,−k exp

(
−2iz1

s0
2

)
+ q0
−k+2,−k+1 exp

(
−iz1 s02

)
+ q0
−k+2,−k+2 + · · ·+ q0

−k+2,k exp
(
(2k − 2)iz1

s0
2

)
...

...
...

...

q0
k−2,−k exp

(
(−2k + 2)iz1

s0
2

)
+ · · ·+ q0

k−2,k−2 + q0
k−2,k−1 exp

(
iz1

s0
2

)
+ q0

k−2,k exp
(
2iz1

s0
2

)
q0
k−1,−k exp

(
(−2k + 1)iz1

s0
2

)
+ q0

k−1,−k+1 exp
(
(−2k + 2)iz1

s0
2

)
+ · · ·+ q0

k−1,k−1 + q0
k−1,k exp

(
iz1

s0
2

)
q0
k,−k exp

(
−2kiz1

s0
2

)
+ q0

k,−k+1 exp
(
(−2k + 1)iz1

s0
2

)
+ q0

k,−k+2 exp
(
(−2k + 2)iz1

s0
2

)
+ · · ·+ q0

k,k


The real part of the �rst component of BQ0a(z1) equals to

q0
−k,−k + q0

−k,−k+1 exp
(
−f

s0

2

)
cos

ds0

2
+ q0
−k,−k+2 exp

(
−2f

s0

2

)
cos

2ds0

2
+ · · ·+ q0

−k,k exp
(
−2kf

s0

2

)
cos

2kds0

2
, (66)

while the real part of the last component of BQ0a(z1) equals to

q0
k,−k exp

(
2kf

s0

2

)
cos

2kds0

2
+ q0

k,−k+1 exp
(

(2k − 1)f
s0

2

)
cos

(2k − 1)ds0

2
+ · · ·+ q0

k,k−1 exp
(
f
s0

2

)
cos

ds0

2
+ q0

k,k. (67)
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Since q0
k,k > 1/2 and q0

−k,−k > 1/2, either Equation (66) or (67) is strictly larger than zero, no

matter what value z1 takes. Therefore, AQ0,π0BQ0a(z1) 6= 0 and z → ϕ∆I

(
s0
2 z1,

s0
2 z
)
is not the null

function. Thus, it is possible to choose z2 ∈ C such that ϕ∆I

(
s0
2 z1,

s0
2 z2

)
6= 0, and ψ∆I

(
0, s̃2z2

)
6= 0.

Then Equation (65) leads to ψ∆I

(
s̃
2z1, 0

)
= 0, therefore Z ⊂ Z̃. A similar argument under the full

column rank of AQ,π shows that Z̃ ⊂ Z. Therefore Z̃ = Z.

Since ϕ∆I

(
s0
2 z, 0

)
and ψ∆I

(
s̃
2z, 0

)
have growth order 1, using Hadamard's factorization theorem

(see, e.g., Stein and Shakarchi (2003), page 147, Theorem 5.1), we can get that there exists a

polynomial R of degree ≤ 1 such that for all z ∈ C,

ϕ∆I

(s0

2
z, 0
)

= exp(R(z))ψ∆I

(
s̃

2
z, 0

)
.

Since ϕ∆I (0, 0) = ψ∆I (0, 0) = 1, there exists a complex number c such that ϕ∆I

(
s0
2 z, 0

)
=

exp(cz)ψ∆I

(
s̃
2z, 0

)
. Furthermore, for all z ∈ R, ϕ∆I

(
− s0

2 z, 0
)

= ϕ∆I

(
s0
2 z, 0

)
and ψ∆I

(
− s̃

2z, 0
)

=

ψ∆I

(
s̃
2z, 0

)
. It is straightforward to show c = if , for some f ∈ R. According to the support

information, the only possible value of f is zero. Therefore, ϕ∆I

(
s0
2 z, 0

)
= ψ∆I

(
s̃
2z, 0

)
, for all

z ∈ C. Since ϕ∆I

(
s0
2 z, 0

)
= ϕ∆I

(
0, s02 z

)
and ψ∆I

(
s̃
2z, 0

)
= ψ∆I

(
0, s̃2z

)
(by strict stationarity),

Equation (64) leads to

ϕ∆I

(s0

2
z1,

s0

2
z2

)
= ψ∆I

(
s̃

2
z1,

s̃

2
z2

)
for all (z1, z2) ∈ C2.

Namely, the joint distribution of
[
s0
2 (It−1 − It−2), s02 (It − It−1)

]
is identi�ed by Equation (28). Ac-

cording to the joint support information of (It−1 − It−2, It − It−1), s0 ∈ S can be identi�ed. There-

fore, (s0, ϕ∆I (·, ·)) is identi�ed.

Equation (27) implies that for all u ∈ R,

ϕ∆p,1(u) = ϕε(u)E
(

exp
[
iu
s0

2
(It − It−1)

])
.

Then ϕε(u) = ϕ∆p,1(u)[ϕ∆I

(
s0
2 u, 0

)
]−1 for all u ∈ V.

In general, (s0, ϕ∆I (·, ·)) cannot be identi�ed without information about the support, as illus-

trated by the following example.
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Example A.1. {It} could possibly take values in {−2,−1, 0, 1, 2}. The true marginal distribution

satis�es Pr(It = −1) = Pr(It = 1) = 1/2, and the transition matrix is [1/3 2/3; 2/3 1/3]. De�ne

Wt = 1/2 [It − It−1 + et], with {et} being independent of {It}, and Pr(et = −2) = b,Pr(et = 2) =

1− b.

It is easy to show the joint support of (Wt−1,Wt) is a subset of Equation (61) for k = 2.

Therefore, Equation (28) cannot distinguish (s, ϕ∆I (·, ·)) from (2s, ϕW (·, ·)), where ϕW (·, ·) is the

joint c.f.of (Wt−1,Wt). Simple calculations show Pr(Wt−1 = −2,Wt = −1) = Pr(Wt−1 = −1,Wt =

−2) = 1
9b

2 > 0, Pr(Wt−1 = 1,Wt = 2) = Pr(Wt−1 = 2,Wt = 1) = 1
9(1 − b)2 > 0. If one has

additional information that Pr(It = −2) = Pr(It = 2) = 0, then it is known that (−2,−1), (−1,−2),

(1, 2), (2, 1), are not in Equation (61) for k = 1. Thus one is able to distinguish (s, ϕ∆I (·, ·)) from

(2s, ϕW (·, ·)). More generally, let Wt = c [It − It−1 + et], where c is any constant and {et} is

independent of {It}. The joint support of (Wt−1,Wt) is not a subset of Equation (61) for k = 1.

Proof of Theorem 6 Part (2). According to Theorem 6 Part (1), s0 and the joint distribution

of (It−1 − It−2, It − It−1) can be identi�ed by Equation (28). For any �xed integer k, {It} takes

values in {−k, · · · , 0, · · · ,+k). The probabilities of the �rst row and the last row of Expression (61)

satisfy

π0,kq
0
k,−kQ

0
−k,◦ = [Pr(−2k, 0),Pr(−2k, 1), · · · ,Pr(−2k, 2k − 1),Pr(−2k, 2k)] , (68)

π0,−kq
0
−k,kQ

0
k,◦ = [Pr(2k,−2k),Pr(2k,−2k + 1), · · · ,Pr(2k,−1),Pr(−2k, 0)] , (69)

where Pr(−2k, j) and Pr(2k,−j) denote Pr(It−1 − It−2 = −2k, It − It−1 = j) and Pr(It−1 − It−2 =

2k, It− It−1 = −j), respectively. The right-hand side of Equations (68) and (69) are identi�ed from

Theorem 6 Part (1). In order to identify Q0
k,◦ and Q

0
−k,◦, π0,k, q

0
k,−k, π0,−k, q

0
−k,k need to be positive,

that is satis�ed under our assumption. By summing up each elements of Equations (68) and (69),

we get π0,kq
0
k,−k =

∑2k
j=0 Pr(−2k, j) and π0,−kq

0
−k,k =

∑2k
j=0 Pr(2k,−j). Therefore, Q0

k,◦ and Q
0
−k,◦
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can be identi�ed as

Q0
−k,◦ =

[Pr(−2k, 0),Pr(−2k, 1), · · · ,Pr(−2k, 2k − 1),Pr(−2k, 2k)]∑2k
j=0 Pr(−2k, j)

,

Q0
k,◦ =

[Pr(2k,−2k),Pr(2k,−2k + 1), · · · ,Pr(2k,−1),Pr(−2k, 0)]∑2k
j=0 Pr(2k,−j)

.

Consequently π0,k and π0,−k can be identi�ed as π0,k =
∑2k

j=0 Pr(−2k, j)/q0
k,−k, π0,−k =

∑2k
j=0 Pr(2k,−j)/q0

−k,k.

The probabilities of the second row and the second last row of Expression (61) satisfy

Pr(−2k + 1,−1) = π0,kq
0
k,−k+1q

0
−k+1,−k, Pr(−2k + 1, 2k) = π0,k−1q

0
k−1,−kq

0
−k,k, (70)

Pr(−2k + 1, j) = π0,kq
0
k,−k+1q

0
−k+1,−k+j+1 + π0,k−1q

0
k−1,−kq

0
−k,−k+j , for j = 0, 1, · · · , 2k − 1

(71)

Pr(2k − 1, 1) = π0,−kq
0
−k,k−1q

0
k−1,k, Pr(2k − 1,−2k) = π0,−k+1q

0
−k+1,kq

0
k,−k, (72)

Pr(2k − 1,−j) = π0,−kq
0
−k,k−1q

0
k−1,k−1−j + π0,−k+1q

0
−k+1,kq

0
k,k−j , for j = 0, 1, · · · , 2k − 1 (73)

Equations (70) and (72) can be used to identify π0,k−1q
0
k−1,−k, π0,−k+1q

0
−k+1,k, q

0
k−1,k and q

0
−k+1,−k.

Then Equations (71) and (73) can be used to identify q0
−k+1,j for j = −k + 1, · · · , k ( q0

k,−k+1 >

0 by assumption) and q0
k−1,j for j = −k, · · · , k − 1 (q0

−k,k−1 > 0 by assumption), respectively.

Consequently, π0,k−1 and π0,−k+1 can be identi�ed. Following the same strategy, the probabilities

of the third row and the third last row of Expression (61) can be used to identify π0,k−2, π0,−k+2,

Q0
k−2,◦ and Q

0
−k+2,◦. Essentially, the same strategy can be applied sequentially to identify π0 and

Q0.

A.3 Additional proofs for Section 5

Proof of Theorem 8. Recall that Assumptions 5 and 10 together imply that (41) holds. H(u, u′)

is complex-valued unless (2q0−1) sin (u′α0) sin (uβ0) sin (u′α0 − uβ0) = 0. Note that α0 6= 0, β0 > 0

and q0 ∈ (0, 1) by assumption,

∂2H(0, 0)

∂u∂u′
=
[
1− (2q0 − 1)2

]
α0β0, ⇒ β0

[
1− (2q0 − 1)2

]
=

∂2H(0,0)
∂u∂u′

α0
. (74)
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The left-hand side of Equation (74) is identi�ed from data. Furthermore, we have ∀u′ ∈ V :

∂H(0, u′)

∂u
= β0

[
1− (2q0 − 1)2

]
× tan(u′α0)− i(2q0 − 1) (tan(u′α0))2

1 + (2q0 − 1)2 (tan(u′α0))2 . (75)

By plugging Equation (74) into Equation (75), we obtain

∂H(0, u′)

∂u
/
∂2H(0, 0)

∂u∂u′
=

tan(u′α0)− i(2q0 − 1) (tan(u′α0))2

α0

(
1 + (2q0 − 1)2 (tan(u′α0))2

) . (76)

For any ũ ∈ (0, π
2b

) ∩ V, from Equation (76) we have

2q0 − 1 = −
Im
(
∂H(0,ũ)
∂u /∂

2H(0,0)
∂u∂u′

)
tan(ũα0) Re

(
∂H(0,ũ)
∂u /∂

2H(0,0)
∂u∂u′

) , (77)

and

tan(ũα0)

α0
=

[
Re
(
∂H(0,ũ)
∂u /∂

2H(0,0)
∂u∂u′

)]2
+
[
Im
(
∂H(0,ũ)
∂u /∂

2H(0,0)
∂u∂u′

)]2

Re
(
∂H(0,ũ)
∂u /∂

2H(0,0)
∂u∂u′

) . (78)

The sign of α0 can be identi�ed by Equation (36). The �rst derivative of the left-hand side of

Equation (78) with respective to α0 is
(1+tan2(ũα0))ũα0−tan(ũα0)

α2
0

, which is positive (negative), if ũα0 ∈

(0, π2 ) (if ũα0 ∈ (−π
2 , 0)). Therefore, 0 6= α0 ∈ B1 can be identi�ed from Equation (36) and (78).

Consequently q0 ∈ (0, 1) can be identi�ed from Equation (77) and 0 < β0 ∈ B can be identi�ed

from Equation (74). Finally the c.f. ϕε(u) is identi�ed from (α0, β0) and Equation (34). These

arguments complete the proof.

Proof of Theorem 9. Under Assumptions 7 and 10, Equation (42) is satis�ed by the true

parameter value (α0, β0, ϕπ0). Suppose another pair (α̃, β̃, ϕπ̃) also satis�es Equation (42) and ϕπ̃

denotes the c.f. associated with another probability mass function π̃ satisfying Assumption 7. That

is, on V2
we have:

H(u, u′) =
ϕπ0 (u′α0 − uβ0)

ϕπ0 (−uβ0)ϕπ0 (u′α0)
=

ϕπ̃

(
u′α̃− uβ̃

)
ϕπ̃

(
−uβ̃

)
ϕπ̃ (u′α̃)

, for all (u, u′) ∈ V2
, (79)

and H(u, u′) is analytic for all (u, u′) ∈ V2
. Let Re(V2

) =
{

(u, u′) ∈ V2
: Im (H(u, u′)) = 0

}
, which

can be identi�ed from data.
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Case 1: H(u, u′) is real for all (u, u′) ∈ V2
, i.e. Re(V2

) = V2
.

In this case, It has a symmetric distribution and ϕπ0 (u) is real valued for all u ∈ R. Denote

φ1(u) = ϕπ0 (uα0) and φ2(u) = ϕπ̃ (uα̃). Note that ∀w ∈ V :

∂H(0, w)

∂u1
= −β0

α0

[
φ′1(w)

φ1(w)
− φ′1(0)

]
= − β̃

α̃

[
φ′2(w)

φ2(w)
− φ′2(0)

]
=⇒ φ′1(w)

φ1(w)
=
α0

β0

β̃

α̃

φ′2(w)

φ2(w)
, (80)

where φ′1(0) = φ′2(0) = 0, since It is symmetrically distributed.

Since φ1(·) and φ2(·) are entire characteristic functions of growth order 1, we have ∀z ∈ C (see,

e.g., Stein and Shakarchi (2003), page 147, Theorem 5.1):

φ1(z) = exp (P1(z))

∞∏
n=1

(
1− z

an

)
exp

(
z

an

)
, φ2(z) = exp (P2(z))

∞∏
n=1

(
1− z

bn

)
exp

(
z

bn

)
,

where P1(z) and P2(z) are polynomials of degree ≤ 1, {a1, a2, · · · } and {b1, b2, · · · } denote (non-

zero) zeros of φ1(·) and φ2(·), respectively. According to Proposition 3.2. of Stein and Shakarchi

(2003) (page 141), we have

φ′1(z)

φ1(z)
= a0 +

∞∑
n=1

(
1

an
+

1

z − an

)
, ∀z ∈ C/{a1, a2, · · · }

φ′2(z)

φ2(z)
= b0 +

∞∑
n=1

(
1

bn
+

1

z − bn

)
, ∀z ∈ C/{b1, b2, · · · } (81)

where a0 = P ′1(z) and b0 = P ′2(z). Equations (80) and (81) imply {a1, a2, · · · } = {b1, b2, · · · }.

Therefore, we can get that there exists a polynomial R of degree ≤ 1 such that for all z ∈ C,

φ1(z) = exp(R(z))φ2(z). Using the similar argument as in the proof of Theorem 6 Part (1), we can

show that for all z ∈ C,

φ1(z) = exp(ifz)φ2(z), (82)

for some f ∈ R. Since Pr(It = −k1) > 0 and Pr(It = k2) > 0, Equation (82) implies f =

−k1 (α0 − α̃) = k2 (α0 − α̃). Therefore, α0 = α̃, f = 0 and φ1(z) = φ2(z), ϕπ0 (z) = ϕπ̃ (z). Along

with Equation (80), we have β0 = β̃.

Case 2: Re(V2
) ( V2

.

In this case, It is not symmetrically distributed and ϕπ0 (u) is complex valued except for some
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isolated points.

Re(V2
) =


(u, u′) ∈ V2

:

E [sin ((u′α0 − uβ0)It)]E [sin (uβ0It)]E [sin (u′α0It)]

+E [cos ((u′α0 − uβ0)It)]E [sin (uβ0It)]E [cos (u′α0It)]

+E [sin ((u′α0 − uβ0)It)]E [cos (uβ0It)]E [cos (u′α0It)]

−E [cos ((u′α0 − uβ0)It)]E [cos (uβ0It)]E [sin (u′α0It)] = 0


Re(V2

) includes some isolated vertical lines, horizontal lines, and straight lines with the same slope

β0

α0
. Therefore, we can identify β0

α0
from Re(V2

).

Denote h(u) = ϕπ̃

(
u α̃
α0

)
, and u1 = −uβ0, u2 = u′α0. Thus u′α̃ = u2

α̃
α0
, and −uβ̃ =

u1
β̃
β0

α0
α̃

α̃
α0

= u1
α̃
α0
, because β0

α0
= β̃

α̃ . Note that ϕπ0(·), ϕπ̃(·), h(·) are all analytic on R and

equal to 1 at 0. There exists a small neighbourhoodM of (0, 0) ⊂ V2
, such that ϕπ0 (u1), ϕπ0 (u2),

ϕπ0 (u1 + u2), h (u1), h (u2) and h (u1 + u2) are all bounded away from zero on (u1, u2) ∈ M.

Equation (79) gives

ϕπ0 (u1 + u2)

h (u1 + u2)
=
ϕπ0 (u1)

h (u1)

ϕπ0 (u2)

h (u2)
.

Then following the similar strategy as in the proof of Theorem 5, we can identify (α0, ϕπ0). Then

together with Re(V2
), we can identify β0. Finally the c.f. ϕε(u) is identi�ed from (α0, β0, ϕπ0) and

Equation (34). These arguments complete the proof.

A.4 Additional proofs for Sections 6 and 7

Proof of Theorem 10. Recall that, under Assumption 12, we have the following Equation (45):

h(u) =
(
E
[
cos
(
u
st
2

)])2
for all u ∈ V.

Since cos
(
ua2
)
≥ 0 for all u ∈

(
−π
s ,

π
s

)
∩ V and all a ∈ [0, s], we have:

0 ≤ E
[
cos
(
u
st
2

)]
=

∫ s

0
cos
(
u
a

2

)
dFs(a) =

√
h(u) for all u ∈

(
−π
s
,
π

s

)
∩ V. (83)

Let ϕs(·) denote the true unknown c.f. of st. Since st ∈ [0, s] with probability 1 (Assumption 13),

ϕs(·) is an entire c.f. (see, e.g., Theorem 3.2. of Lukacs (1972)). Equation (83) can be rewritten as
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Re
(
ϕs

(u
2

))
=

1

2
ϕs

(u
2

)
+

1

2
ϕs

(
−u
2

)
=
√
h(u), for all u ∈

(
−π
s
,
π

s

)
∩ V. (84)

Equation (84) gives the identi�cation of Re (ϕs (·)) in
(
−π
s ,

π
s

)
∩ V which contains a small neigh-

bourhood of zero. Because Re (ϕs (·)) has an analytic continuation for any complex number in the

complex plane, we can identify Re (ϕs (·)) on the real line.

De�ne the random variableWt = stIt and letG(·) be its distribution function. Simple calculation

shows Re (ϕs (·)) is the c.f. of Wt. Therefore, we can identify G(·). Furthermore, it satis�es :

G(w) = Pr (Wt ≤ w) =
1

2
Pr (st ≤ w) +

1

2
Pr (−st ≤ w) =


1
2Fs(w) + 1

2 w ≥ 0

1
2 −

1
2Fs(−w) w < 0

. (85)

Under Assumption 13, Fs(w) = 0 for w ≤ 0, therefore Equation (85) identi�es Fs(·). This completes

the proof of the theorem.

Proof of Theorem 11. Assumption 15 implies that for j = 1, · · · , n, Pr (Ij,t = 1) = Pr (Ij,t = −1) =

1
2 , since Y

∗
j,t follows a zero mean normal distribution. Under Assumption 15, qjk ∈ [0, 1

2 ] is strictly

increasing in ωjk ∈ [−1, 1], i.e. g is a strictly increasing function. Furthermore, we have

Pr (Ij,t = 1, Ik,t = 1) = qjk, Pr (Ij,t = 1, Ik,t = −1) =
1

2
− qjk, Pr (Ij,t = −1, Ik,t = 1) =

1

2
− qjk.

Let ũjk = (0, · · · , 0, ũ, 0, · · · , 0, ũ, 0, · · · , 0)ᵀ ∈ Rn, where the j-th and k-th elements of ũjk are equal

to ũ > 0 and all the other elements are zero. Equations (49) and (50) lead to: for j, k = 1, · · · , n

and j 6= k.

H(ũjk, ũjk) =

[
(1− 2qjk) cos

ũ(sj,0 − sk,0)

2
+ 2qjk cos

ũ(sj,0 + sk,0)

2

]−2

.

Choose a small positive ũ, such that cos
ũ(sj,0−sk,0)

2 > 0, cos
ũ(sj,0+sk,0)

2 > 0, and cos
ũ(sj,0+sk,0)

2 6=

cos
ũ(sj,0−sk,0)

2 . Thus, qjk is uniquely solved as

qjk =
[H(ũjk, ũjk)]−1/2 − cos

ũ(sj,0−sk,0)
2

2
(

cos
ũ(sj,0+sk,0)

2 − cos
ũ(sj,0−sk,0)

2

) . (86)

Thus we obtain the theorem.
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