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Abstract

The peanosphere (or “mating of trees”) construction of Duplantier, Miller, and

Sheffield encodes certain types of γ-Liouville quantum gravity (LQG) surfaces (γ ∈ (0, 2))

decorated with an independent SLEκ (κ = 16/γ2 > 4) in terms of a correlated two-

dimensional Brownian motion and provides a framework for showing that random planar

maps decorated with statistical physics models converge to LQG decorated with an

SLE. Previously, the correlation for the Brownian motion was only explicitly identified

as − cos(4π/κ) for κ ∈ (4, 8] and unknown for κ > 8. The main result of this work is

that this formula holds for all κ > 4. This supplies the missing ingredient for proving

convergence results of the aforementioned type for κ > 8. Our proof is based on the

calculation of a certain tail exponent for SLEκ on a quantum wedge and then matching

it with an exponent which is well-known for Brownian motion.
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1 Introduction

Suppose that h is an instance of the Gaussian free field (GFF) on a planar domain D and

γ ∈ (0, 2). Formally the γ-Liouville quantum gravity (LQG) surface associated with h is the

Riemannian manifold with metric tensor given by

eγh(z)(dx2 + dy2), (1.1)

where dx2 + dy2 denotes the Euclidean metric on D. This expression does not make literal

sense since h is a distribution and does not take values at points. However, one can make
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sense of the volume form associated with (1.1) as a random measure via various regularization

procedures, e.g. the ones used in [6]. The metric space structure of LQG has been constructed

in the special case γ =
√

8/3 in [22] building on [23] and, upon combining with [21], will be

identified with the Brownian map in [27, 28], but it remains an open problem to construct

the metric for other values of γ ∈ (0, 2).

One of the main sources of significance of LQG is that it has been conjectured to describe

the scaling limits of random planar maps decorated by statistical physics models. This

conjecture can be formulated in several different ways by specifying the topology. For

example, one can view random planar maps as metric spaces and endow them with the

Gromov-Hausdorff topology. Convergence under this topology has been established in the

case of uniformly random quadrangulations to the Brownian map in [18, 19]. Combining

with the aforementioned works gives the Gromov-Hausdorff convergence to
√

8/3-LQG. An

alternative approach is to start off with a random planar map, embed it conformally into

C (e.g. via circle packing, Riemann uniformization, etc...) and show that the random area

measure it induces (i.e., the pushforward of the uniform measure on the faces of the map)

converges weakly to an LQG measure. Establishing this type of convergence is an open

problem for any γ ∈ (0, 2).

The work [5] takes a third approach through its peanosphere or mating of trees construction.

More precisely, let γ ∈ (0, 2), κ′ = 16/γ2 > 4, and (Zt)t∈R = (Lt, Rt)t∈R be a correlated

two-dimensional two-sided Brownian motion. Then Z encodes a pair of Brownian continuum

random trees [1, 2, 3] with L and R as their contour functions. As explained in [5, Section 1.1],

one can glue the two trees together to obtain a topological sphere endowed with a measure

and the space-filling peano curve which traces the interface between the two trees1. In [5] the

authors show that there is a canonical way of embedding this measure-endowed topological

sphere into C ∪ {∞} such that the pushforward of the measure is a form of γ-LQG and the

image of the spacing-filling curve is an independent space-filling form of Schramm’s SLE [32]

1This is the source of the name peanosphere.
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with parameter2 κ′ from ∞ to ∞ as defined in [20]; see also [5]. Moreover, it is shown in

[5] that both the field h and the space-filling SLE are a.s. determined by Z. That is, the

peanosphere comes equipped with a canonical conformal structure.

It is proved in [5] that for γ ∈ [
√

2, 2) (equivalently, for κ′ ∈ (4, 8]) the correlation between

L and R is given by − cos(4π/κ′) ≥ 0. The correlation between L and R for γ ∈ (0,
√

2)

(equivalently, for κ′ > 8) is left as an open problem [5, Question 13.4]. The main result of

this paper is that the correlation between L and R is given by − cos(4π/κ′) for all κ′ > 4 (so

that L and R are negatively correlated for κ′ > 8).

For κ′ ∈ (4, 8], the peanosphere construction can be viewed as a continuum analogue of

the bijection introduced by Sheffield in [36, Section 4.1], which encodes a critical Fortuin-

Kasteleyn (FK) decorated planar map in terms of a word in a certain alphabet of five letters.

Indeed, the manner in which the space-filling SLEκ′ path η and the γ-LQG surface are

encoded by Z closely parallels the manner in which an FK planar map is described by a word

under the bijection of [36] (see [5, 11, 12] for more details). This correspondence allows one

to interpret various scaling limit statements for FK planar maps, as proven in [36, 11, 13, 14],

as convergence results for FK decorated random planar maps to SLE decorated LQG with

respect to the peanosphere topology; see also [4] for a calculation of some exponents associated

with an FK planar map which match the corresponding exponents which can be derived

in the continuum using [5]. Under this topology, two spanning tree decorated surfaces are

said to be close if the contour functions of the tree/dual tree pairs are close. On the FK

planar map side, the tree/dual tree pair is generated using Sheffield’s bijection [36] and in the

continuum this pair is given by trees of GFF flow lines [20] whose peano curve is space-filling

SLEκ′ . In [12], the authors use peanosphere convergence, plus some additional estimates, to

prove convergence of critical FK planar maps toward CLEκ′-decorated LQG for κ′ ∈ (4, 8) in

a stronger topology, which encodes the full topological structure of the collection of loops as

2We use the convention of [24, 25, 26, 20] of writing κ′ > 4 for the SLE parameter and κ = 16/κ′ for the
dual parameter.
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well as the areas and boundary lengths of all of their complementary connected components.

Recently the techniques of [36] have been generalized in [10] to the setting of random planar

maps decorated with a certain type of spanning tree. It is in particular shown in [10] that

for a certain range of parameter values, the contour functions converge in the scaling limit

to a negatively correlated Brownian motion (which extends [36, Theorem 2.5]). In another

work [16], it is shown that the height functions associated with the northwest tree and its dual

tree which arise from a so-called bipolar orientation on a random planar map also converge to

a certain pair of negatively correlated Brownian motions. The result of [16] is strengthened

(for the case of triangulations) in [9], which shows convergence of two pairs of height functions

to two pairs of negatively correlated Brownian motions, corresponding to two space-filling

SLE curves traveling in a direction perpendicular (in the sense of imaginary geometry) to

each other. In all of the above cases the correlation of the Brownian motion is explicit.

Our main result allows us to interpret these limit results as convergence of random planar

maps decorated with a statistical physics model to certain γ-LQG surfaces with γ ∈ (0,
√

2)

decorated with an SLEκ′ with κ′ > 8.

Moreover, knowing the correlation of (L,R) allows us to understand the interplay between

two-dimensional Brownian motion and the space-filling SLE on top of the LQG surface at a

quantitative level. For example, the KPZ-like formula established in [8] relates the Hausdorff

dimension of an arbitrary random Borel set A ⊂ C which is determined by the space-filling

SLEκ′ (viewed modulo monotone reparameterization of time) in the peanosphere construction

to the Hausdorff dimension of its pre-image under the Brownian motion (L,R). This reduces

the problem of computing the Hausdorff dimension of A to the problem of computing the

dimension of an (often much simpler) set defined in terms of (L,R) (many examples of this

type are given in [8]). Our result implies that the formula derived in [8] is valid for all κ′ > 4

and not just κ′ ∈ (4, 8].

Finally, we remark that our result supplies the missing ingredient in order to identify the

correlation of the two-dimensional Brownian excursion appearing in the finite-volume version
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of the peanosphere construction [23, Theorem 1.1] in the case γ ∈ (0,
√

2).
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1.1 Main result

Now we give the formal statement of our main result. We will remind the reader of the

precise description of the objects involved in Section 1.2.

Given γ ∈ (0, 2) and κ′ = 16/γ2, let η be a whole-plane space-filling SLEκ′ from ∞ to ∞

(defined in [20, Sections 1.2.3 and 4.3]; see also Section 1.2.2 of the present paper). Let

γ = 4/
√
κ′ and let C = (C, h, 0,∞) be a γ-quantum cone independent from η, as in [5,

Section 4.3] or Section 1.2.3 of the present paper. Let µh and νh, respectively, be the γ-

quantum area measure and γ-quantum boundary measure induced by h. Let η̃ be the curve

obtained by parameterizing η by µh-mass, so that η̃(0) = 0 and µh(η̃([t1, t2])) = t2 − t1 for

each t1, t2 ∈ R with t1 < t2. Let Zt = (Lt, Rt) denote the net change in the νh-length of the

left and right boundaries of η̃((−∞, t]) relative to time 0. Then Z evolves as a two-sided

Brownian motion with some correlation [5, Theorem 1.13] and Z a.s. determines the pair (η, C)

modulo rotation and scaling [5, Theorem 1.14] (this is the mathematically precise formulation

of the mating of trees/peanosphere construction described above). For γ ∈ [
√

2, 2), by [5,

Theorem 1.13] the correlation of Z is − cos(4π/κ′). Similar results are also proved in the

upper half-plane setting. See Section 1.2.3 for the definition of the quantum wedge.
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Theorem 1.1. In the above setting, for γ ∈ (0,
√

2), the correlation of Z is still given

by − cos(4π/κ′). Furthermore, suppose that (H, h , 0,∞) is a 3γ/2-quantum wedge and η′

is a chordal SLEκ′ from 0 to ∞ in H sampled independently of h and let η̃′ be the curve

which arises by reparameterizing η′ by quantum mass with respect to h. Then the change

in the left and right quantum boundary lengths of H \ η̃′([0, t]) with respect to h evolve as a

two-dimensional correlated Brownian motion with correlation − cos(4π/κ′).

We note that in light of Lemma 1.8 below, either of the two statements of Theorem 1.1

implies the other.

1.2 Preliminaries

1.2.1 Basic notation

Here we record some basic notation which we will use throughout this paper.

Notation 1.2. If a and b are two quantities, we write a � b (resp. a � b) if there is a constant

C (independent of the parameters of interest) such that a ≤ Cb (resp. a ≥ Cb). We write

a � b if a � b and a � b.

Notation 1.3. If a and b are two quantities which depend on a parameter x, we write a = ox(b)

(resp. a = Ox(b)) if a/b→ 0 (resp. a/b remains bounded) as x→ 0 or as x→∞, depending

on context. We write a = o∞x (b) if a = ox(b
s) for each s > 0.

Unless otherwise stated, all implicit constants in �,�, �, Ox(·), and ox(·) which are involved

in the proof of a result are allowed to depend only on the extra parameters which the implicit

constants in the statement of the result are allowed to depend on.

1.2.2 Schramm-Loewner evolution

Schramm-Loewner evolution (SLEκ) is a one-parameter family of conformally invariant

laws on two-dimensional fractal curves indexed by κ > 0, originally introduced in [32] as a
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candidate for the scaling limit of various discrete statistical physics models. We refer the

reader to [17, 38] for an introduction to SLE.

Whole-plane space-filling SLEκ′ from ∞ to ∞ for κ′ > 4 is a variant of SLEκ′ introduced

in [20, Sections 1.2.3 and 4.3] and [5, Footnote 9]. In the case when κ′ ≥ 8, so ordinary

SLEκ′ is space-filling (which is the only case we will use in this paper), space-filling SLEκ′

from ∞ to ∞ is a bi-infinite SLEκ′ curve which fills in all of C, starting and ending at ∞.

It has the property that if one runs it up until any stopping time τ , its complement is an

unbounded simply connected domain and the conditional law of the path is given by that of

an ordinary chordal SLEκ′ in the remaining domain from the tip at time τ to ∞. It can also

be constructed directly from ordinary SLEκ′ using a limiting procedure as follows (this is not

equivalent to but easy to see from the GFF-based construction given in [20]). Suppose that η′

is a chordal SLEκ′ in H from 0 to ∞ and that z0 ∈ H is fixed. For each ε > 0 let η′ε be given

by ε−1(η′ − z0) parameterized according to Lebesgue measure and, for each r > 0, let τε,r

(resp. σε,r) be the first time that η′ε hits ∂Br(0) (resp. fills Br(0)). Then the law of η′ε|[τε,r,σε,r]

converges in total variation as ε→ 0 to the restriction of whole-plane SLEκ′ from ∞ to ∞

to the interval of times between when it first hits Br(0) and fills Br(0), also parameterized

according to Lebesgue measure.

In what follows, whenever we refer to whole-plane space-filling SLEκ′ , we mean whole-plane

space-filling SLEκ′ from ∞ to ∞. We record the aforementioned fact about the conditional

law of whole-plane space-filling SLEκ′ for κ′ ≥ 8 in the following lemma, which follows from

the definition in [5, Footnote 9] together with a basic limiting argument.

Lemma 1.4. Let κ′ ≥ 8 and let η be a whole-plane space-filling SLEκ′ from ∞ to ∞. Let

τ be a stopping time for η. Then C \ η((−∞, τ ]) is a.s. simply connected, unbounded, and

the conditional law of η|[τ,∞) given η|(−∞,τ ] is that of a chordal SLEκ′ from η(τ) to ∞ in

C \ η((−∞, τ ]).

In the case when κ′ ∈ (4, 8), ordinary SLEκ′ does not fill in open sets, but rather forms
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“bubbles” which it surrounds, but never enters [31]. Space-filling SLEκ′ in this case is obtained

by continuously filling in these bubbles as they are disconnected from ∞. It is the peano

curve associated with the exploration tree in the construction of CLEκ′ [34]. We will not

need the κ′ ∈ (4, 8) case in this paper.

1.2.3 Quantum surfaces

Fix γ ∈ (0, 2) (in this paper we will always take γ = 4/
√
κ′ ∈ (0,

√
2)). Also let k be a non-

negative integer. A γ-LQG surface with k marked points [6, 35, 5] is an equivalence class of

k+ 2-tuples (D, h, z1, . . . , zk), where D ⊂ C is a domain (possibly all of C), h is a distribution

on D, and z1, . . . , zk ∈ D are marked points. Two such k + 2-tuples (D, h, z1, . . . , zk) and

(D̃, h̃, z̃1, . . . , z̃k) are declared to be equivalent if there is a conformal map f : D̃ → D such

that

h̃ = h ◦ f +Q log |f ′| and f(z̃j) = zj, ∀j ∈ {1, . . . , k} (1.2)

where

Q :=
2

γ
+
γ

2
. (1.3)

In [6], it is shown that in the case when h is some variant of the GFF on D (which is the

only case we will consider in this paper), the corresponding quantum surface has a natural

area measure µh on D (which is a regularization of “eγh(z) dz”, where dz denotes Lebesgue

measure on D) and a natural boundary length measure νh on ∂D (which is a regularization

of “e
γ
2
h(z) |dz|”, where |dz| denotes the pushforward of Lebesgue measure on ∂D under a

conformal map D→ D). By [6, Proposition 2.1] and its boundary analogue, these measures

are preserved under transformations of the form (1.2). We note that the measure νh can be

extended to certain curves lying in the interior of the domain D (in particular, this is true

for SLEκ curves with κ = γ2). See [35, 5].

The main types of quantum surfaces which we will be interested in in this paper are the

so-called quantum wedges and quantum cones, which are defined in [35, Section 1.6] and [5,
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Sections 4.2 and 4.3]. For α ∈ (0, Q), an α-quantum wedge is a doubly marked quantum

surface W = (H, h , 0,∞) defined as follows. Let H(H) be the Hilbert space used to define a

free-boundary GFF on H [35, Section 3] (i.e. the completion of the space of smooth functions

on H with respect to the inner product (f, g)∇ = (2π)−1
∫
H∇f(z) · ∇g(z) dz). Let H0(H)

(resp. H†(H)) be the space of functions in H(H) which are constant on each semicircle in H

centered at 0 (resp. its orthogonal complement).

Let α ∈ (0, Q), with Q as in (1.3). Following [5, Definition 4.3], we define an α-quantum

wedge to be the doubly marked quantum surface W = (H, h , 0,∞), where h is a random

distribution on H defined as follows. The projection h† of h onto H†(H) agrees in law with

the projection onto H†(H) of a free-boundary GFF on H. The projection h0 of h onto

H0(H) is independent of h† and is defined as follows. For s ≥ 0, h0(e−s) = B2s + αs, where

B is a standard linear Brownian motion; and for s < 0, h0(e−s) = B̂−2s + αs, where B̂ is

independent from B and has the law of a standard linear Brownian motion conditioned so

that B̂2s + (Q− α)s > 0 for all s > 0. Note that a quantum wedge has two marked points, 0

and ∞. Every bounded subset of H has finite quantum mass a.s. and every neighborhood of

∞ (i.e. any open set which contains H \Br(0) for some r > 0) has infinite mass a.s.

A quantum wedge is only defined modulo transformations of the form (1.2), so if we continue

to parameterize the wedge by (H, 0,∞), the distribution h can be replaced with another

distribution obtained via (1.2) with f given by a scaling by a positive constant. Different

choices of h are referred to as different embeddings of the same surface.

Definition 1.5. The distribution h defined just above is called the circle average embedding of

a quantum wedge.

We will consider several other embeddings of a quantum wedge in Section 4.2.

Remark 1.6. The circle average embedding of a quantum wedge is convenient for the following

reason. Suppose that hF is a free-boundary GFF on H with additive constant chosen so

that its circle average over ∂B1(0) ∩ H is 0 (which is the main normalization used in [5])
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and let h := hF − α log | · |. Then with h as in Definition 1.5, the restrictions of h and h to

B1(0) ∩H agree in law. Indeed, if we let h0 be the projection of h onto H0(H) (equivalently

the semicircle average process around 0), then h0(e−s) evolves as a two-sided Brownian

motion, so (h0(e−s))s≥0
d
= (h0(e−s))s≥0. Moreover, the projections of h and h onto H†(H)

agree in law by definition.

For α ∈ (0, Q), an α-quantum cone is a doubly marked quantum surface C = (C, h, 0,∞)

which is similar to an α-quantum wedge but is parameterized by the whole plane rather than

the half-plane. We will now describe the definition of this object, which first appeared in [5,

Definition 4.9]. Let H(C) be the Hilbert space used to define the whole-plane GFF on C.

Let H0(C) (resp. H†(C)) be the space of functions in H(C) which are constant on each circle

centered at 0 (resp. its orthogonal complement). An embedding h of a γ-quantum cone into

C can be constructed as follows. The projection h† of h onto H†(C) agrees in law with the

corresponding projection of a whole-plane GFF on C. The projection h0 of h onto H0(C) is

independent of h† and is described as follows. For s ≥ 0, h0(e−s) = Bs + αs, where B is a

standard linear Brownian motion; and for s < 0, h0(e−s) = B̂−s + αs, where B̂ is a standard

linear Brownian motion conditioned so that B̂s + (Q − α)s > 0 for all s > 0, independent

from B.

Remark 1.7. In [5], the sets of quantum cones and quantum wedges are sometimes parame-

terized by a different parameter, called the weight, which is equal to γ(γ/2 +Q− α) in the

wedge case and 2γ(Q− α) in the cone case, with Q as in (1.2). The reason for this choice

of parameter is that it behaves nicely under the various “gluing” and “cutting” operations

considered in [5]. In this paper we will not consider the weight parameter and will always

identify our wedges and cones by α, the size of the logarithmic singularity at 0.

The main fact which we will use about quantum cones in this paper is the following lemma,

which allows us to reduce the problem of studying a space-filling SLEκ′ on a γ-quantum cone

to the problem of studying an ordinary chordal SLEκ′ on a 3
2
γ-quantum wedge.
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Lemma 1.8. Let κ′ ≥ 8 and γ = 4/
√
κ′ ∈ (0,

√
2]. Let C = (C, h, 0,∞) be a γ-quantum

cone. Let η be a whole-plane space-filling SLEκ′ from ∞ to ∞ independent from C. Let η̃ be

the curve obtained by parameterizing η by γ-quantum mass with respect to h so that η̃(0) = 0.

Let W be the quantum surface obtained by restricting h to C \ η̃((−∞, 0]). Then the pair

(W , η̃|[0,∞)) has the law of a 3γ
2

-quantum wedge together with an independent chordal SLEκ′

parameterized by quantum mass with respect to this wedge.

Proof. This is essentially proven as part of the proof of [5, Lemma 9.2], but we give the details

for completeness. Let η− and η+ be the left and right boundaries of η̃((−∞, 0]). Then η± are

independent of C; the law of η− is that of a whole-plane SLEκ(2− κ) from 0 to ∞; and the

conditional law of η+ given η− is that of a chordal SLEκ(−κ/2;−κ/2) from 0 to ∞ in C \ η−.

Indeed, this follows from the construction of [5, Footnote 9] as well as [20, Theorems 1.1

and 1.11]. By [5, Theorem 1.12], the law of the quantum surface W ′ obtained by restricting

C to C \ η− is that of a (2γ − 2/γ)-quantum wedge. By [5, Theorem 1.9], the surface W

obtained by cutting W ′ by η+ has the law of a 3γ
2

-quantum wedge. The law of η̃|[0,∞) is

obtained from Lemma 1.4 and the independence of W and η̃|[0,∞) (the latter viewed as a

curve modulo monotone reparameterization) follows from independence of η and C together

with Lemma 1.4.

1.3 Approximate cone time event

In this subsection we reduce the proof of Theorem 1.1 to the problem of calculating the tail

exponent for the probability of a certain event.

Assume we are in the setting described in Section 1.1. A π/2-cone time of the Brownian

motion Z = (L,R) is a time t ∈ R for which there exists t′ > t such that Ls ≥ Lt and Rs ≥ Rt

for each s ∈ [t, t′]. That is, Z stays in the “cone” R2
+ + Zt for some positive amount of time

after t. In the case when κ′ ∈ (4, 8), the covariance of the peanosphere Brownian motion Z

is obtained by computing the Hausdorff dimension of its π/2-cone times in terms of κ′ and
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comparing the formula thus obtained to the known formula for the Hausdorff dimension of the

set of π/2-cone times in terms of the correlation [7]. The Hausdorff dimension is calculated

in terms of κ′ by observing that cone times for the Brownian motion correspond to local cut

times for η, see [5, Lemma 9.4].

In the case when κ′ > 8, the curve η a.s. does not have any local cut times, so Z a.s. does not

have any π/2-cone times, hence has non-positive correlation [37]. To compute the correlation

in this case, we will compute the tail exponent for the probability that 0 is an “approximate

π/2-cone time” for Z, meaning that the event

Ẽt
δ :=

{
inf
s∈[0,t]

Ls ≥ −δ and inf
s∈[0,t]

Rs ≥ −δ
}

(1.4)

occurs for t close to 1 and δ close to 0. The tail exponent for the probability of Ẽt
δ is computed

in terms of the correlation of Lt and Rt in [37, Equation (4.3)].

Lemma 1.9. Let −α = −α(γ) be the correlation of L and R and let

σ(γ) :=
π

arccos(α)
. (1.5)

There is a constant c > 0 depending only on α, such that for δ > 0 and t ≥ δ1/2 we have

P
[
Ẽt
δ

]
= (c+ oδ(1))t−σ(γ)/2δσ(γ),

where here the oδ(1) is uniformly bounded for δ > 0 and t ≥ δ1/2 and tends to 0 as δ → 0 for

each fixed t.

Proof. Let A be a linear transformation chosen in such a way that Z̃ := AZ is a standard

two-dimensional Brownian motion (variances equal to 1, covariance equal to 0). Then an

approximate π/2-cone time for Z is the same as an approximate arccos(α)-cone time for Z̃.

Hence the statement of the lemma follows from [37, Equation (4.3)].
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In light of Lemma 1.9, to prove Theorem 1.1 it suffices to show that

σ(γ) =
4

γ2
=
κ′

4
. (1.6)

Remark 1.10. The event Ẽt
δ of (1.4) can equivalently be defined as follows. Let f : C \

η̃((−∞, 0]) → H be a conformal map which takes 0 to 0 and ∞ to ∞. Let h := h ◦ f−1 +

Q log |(f−1)′| and let η̃′ := f(η̃|[0,∞)). By Lemma 1.8, the quantum surface W = (H, h , 0,∞)

has the law of a 3
2
γ-quantum wedge and η̃′ is a chordal SLEκ′ from 0 to ∞ in H which is

independent from W and parameterized by γ-quantum mass with respect to h . For δ > 0,

let x δ,L and x δ,R be the unique points respectively in R− and R+ so that νh([−x δ,L, 0]) =

νh([0, x δ,R]) = δ. Then Ẽt
δ is the same as the event that η̃′ does not hit either (−∞,−x δ,L] or

[x δ,R,∞) before time t. Since η̃′ is boundary filling, Ẽt
δ is also the same as the event that η̃′

does not hit either −x δ,L or x δ,R before time t.

1.4 Outline

In the remainder of this paper, we will prove (1.6), hence Theorem 1.1. For the proof, we will

use the alternative description of the event Ẽt
δ given in Remark 1.10. In Section 2, we will

use the SLE martingales of [33] to prove an estimate for the probability that a chordal SLEκ′

from 0 to ∞ in H exits the Euclidean ball of fixed radius r > 0 before hitting −zL or zR,

where zL, zR ∈ (0,∞). In Section 3, we will prove some moment estimates for the quantum

boundary measure induced by a GFF which together with the estimates of Section 2 will

enable us to prove a variant of (1.6) with Ẽt
δ replaced by the event that the following is

true. With x δ,L and x δ,R as in Remark 1.10, the curve η̃′ exits the Euclidean ball of radius

r before hitting either −x δ,L or x δ,R. The arguments of this section are similar to those

used to estimate the quantum measure in [6, Section 4]. In Section 4, we will extract (1.6)

from the estimate of Section 3 using some techniques which are similar to those found in [5,

Section 10.4].
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2 Euclidean exponent for the SLE event

Recall that η′ is an SLEκ′ from 0 to ∞ in H, and let (Wt)t≥0 and (gt)t≥0 denote its Loewner

driving function and Loewner maps, respectively. Assume throughout this section that η′ is

parameterized by half-plane capacity, and let

Ft := σ(η′(s) : s ∈ [0, t]). (2.1)

The purpose of this section is to prove the following proposition, i.e., we calculate the exponent

for a Euclidean analogue of the event Ẽt
δ of (1.4).

Proposition 2.1. For any T > 0 and zL, zR ∈ (0, 1) define the event ET
zL,zR

by

ET
zL,zR

:= {−zL, zR 6∈ η′([0, T ])}.

Then the following estimate holds for ρ := κ′ − 4:

P
[
ET
zL,zR

]
= P

[
E1
zL/
√
T ,zR/

√
T

]
,

P[E1
zL,zR

] = (zL + zR)ρ
2/(2κ′)z

ρ/κ′+ozL (1)

L z
ρ/κ′+ozR (1)

R ,

(2.2)

where the rates of convergence of ozL(1) and ozR(1) depend only on κ′. For any r > 0 define

the stopping time Tr := inf{t > 0 : |η′(t)| ≥ r}. Then

P
[
ETr
zL,zR

]
= P

[
ET1

zL/r,zR/r

]
,

P[ET1
zL,zR

] = (zL + zR)ρ
2/(2κ′)z

ρ/κ′+ozL (1)

L z
ρ/κ′+ozR (1)

R .

(2.3)

Both for the upper and the lower bound in Proposition 2.1 we will use the following result

from [33, Theorem 6, Remark 7].

Lemma 2.2. Define ρ := κ′ − 4, and let T̂L (resp. T̂R) denote the first time that η′ hits −zL
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(resp. zR). For each t ∈ [0, T̂L] (resp. t ∈ [0, T̂R]) define zLt := gt(−zL) (resp. zRt := gt(zR))

and define the stochastic process (Mt)t≥0 by

Mt =


|Wt − zRt |ρ/κ

′|Wt − zLt |ρ/κ
′|zRt − zLt |ρ

2/(2κ′) if t ∈ [0, T̂L ∧ T̂R],

0 if t ≥ T̂L ∧ T̂R.

Then Mt is a local martingale.

It is also proved in [33, Theorem 6] that the law of η′ weighted by Mt (run up to an appropriate

stopping time) has the law of a chordal SLEκ′(ρ; ρ) with force points at −zL and zR, but we

will not need this result. Note that the derivative term in [33] vanishes for ρ = κ′ − 4.

For our proof of the lower bound in Proposition 2.1 we will need that (Mt)t≥0 is a true

martingale, not only a local martingale.

Lemma 2.3. The local martingale (Mt)t≥0 defined in Lemma 2.2 is a martingale.

Proof. It is sufficient to prove that for any t ≥ 0 we have E[sups∈[0,t] Ms] < ∞. This is

sufficient, since if (σk)k∈N are stopping times such that (Mσk∧t)t≥0 are martingales and

σk →∞ a.s., we can use the dominated convergence theorem to argue that Mσk∧t →Mt in

L1 for each t ≥ 0.

Applying Itô’s formula and the Loewner equation, we have that both zRt −Wt and Wt − zLt

are constant multiples of Bessel processes of dimension 1 + 4
κ′
< 2. Since the law of a Bessel

process of dimension δ is stochastically dominated by the law of a Bessel process of dimension

δ′ provided 0 < δ < δ′, it follows that there exist two stochastic processes B̂R, B̂L which

are constant multiples of two-dimensional Bessel processes such that zRt −Wt ≤ B̂R
t and

zLt − Wt ≤ B̂L
t for all t ≥ 0. Since B̂R and B̂L each have the law of the modulus of a

two-dimensional Brownian motion, Doob’s maximal inequality implies that

P

[
sup
s∈[0,t]

|zqs −Ws| > x

]
= o∞x (x) for q ∈ {L,R}. (2.4)

16



Using that |zRt − zLt | ≤ 2 max(|zLt −Wt|, |zRt −Wt|), ρ > 0 (so that all of the exponents in

the definition of Mt are positive), and the sum of the exponents in the definition of Mt is

equal to κ′

2
− 2, we have that

E

[
sup
s∈[0,t]

Ms

]
� E

[
sup
s∈[0,t]

(|zRs −Ws| ∨ 1)κ
′/2−2

]
+ E

[
sup
s∈[0,t]

(|zLs −Ws|) ∨ 1)κ
′/2−2

]
<∞.

We have M0 = (zL + zR)ρ
2/(2κ′)z

ρ/κ′

L z
ρ/κ′

R , i.e., M0 has the same exponents as the probability

of the event E1
zL,zR

in Proposition 2.1. In order to prove the estimate (2.2) for T = 1 it is

therefore sufficient to prove that P[E1
zL,zR

] is approximately equal to the expected value of

(Mt)t≥0 stopped at some appropriate stopping time. This is our strategy for the proof both

of the upper bound and of the lower bound in (2.2).

2.1 Euclidean upper bound

As indicated above we will establish the upper bound of P[E1
zL,zR

] in Proposition 2.1 by

defining an appropriate stopping time for (Mt)t≥0. We will use the following stopping time

σu for some u > 0:

σu = inf{t ≥ 0 : Mt = (zRzL)u or Mt = 0}. (2.5)

In order to prove that P[E1
zL,zR

] is bounded above by E[Mσu ] = E[M0] (up to o(1) errors) it

is sufficient to prove that σu < 1 with very high probability for small zL, zR. This is sufficient

since E[Mσu ] is approximately equal to P[Mσu = (zLzR)u] for small u. The following two

technical lemmas will help us establish that σu < 1 with very high probability. In Lemma 2.4

we prove that with very high probability Im η′(t) does not stay close to the real line for all

t ∈ [0, 1]. Lemma 2.5 implies a lower bound for Mt in terms of Im η′(t).
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Lemma 2.4. For each ε > 0 we let

Fε :=

{
sup
t∈[0,1]

Im(η′(t)) ≤ ε

}
.

Then P[Fε] = o∞ε (ε).

Proof. By scale invariance of SLE the statement of the lemma is equivalent to the statement

that if F ′n := {supt∈[0,n] Im(η′(t)) ≤ 1} for n ∈ N then we have P[F ′n] = o∞n (1/n). Define the

stopping time T̃ by

T̃ := inf{t ≥ 0 : Im(η′(t)) ≥ 1}. (2.6)

It is sufficient to prove that there is a constant p > 0 s.t. for all n ∈ N

P[T̃ < (n+ 1) | Fn] ≥ p, (2.7)

since this bound implies P[F ′n] ≤ (1− p)n = o∞n (1/n). Here Fn is as in (2.1).

Define p := P[T̃ < 1]. Since (2.7) clearly holds on the event that T̃ ≤ n we assume T̃ > n.

Define l := {x + i : x ∈ R}, and for each n ∈ N define l′n := {gn(z) : z ∈ l}. By [17,

Equation (4.5)] each z ∈ l′n satisfies Im(z) ≤ 1, and l′n is a connected set dividing the upper

half-plane into an upper and a lower part, hence the SLE gn(η′) hits l′n before it hits l. The

estimate (2.7) follows by the conformal Markov property of SLE.

Lemma 2.5. Consider the stopping time T̃ defined by (2.6). Let S ⊂ H denote the right

boundary of η′([0, T̃ ]), and let λ denote Lebesgue measure on R. Then there is a universal

constant c > 0 such that λ(gT̃ (S)) > c. The same likewise holds if we instead take S to be the

left boundary of η′([0, T̃ ]).

Proof. We assume without loss of generality that S is equal to the right boundary of η′([0, T̃ ]).

Let (Bt)t≥0 be a Brownian motion in C independent of η′, and for each z ∈ H let Pz[·] be the

law under which B0 = z. For each z ∈ H let Iz be the horizontal line segment from i+ z − 1
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to i+ z + 1, and define the two stopping times τ and τ̂ for (Bt)t≥0 (conditioned on FT̃ ) as

follows.

τ = inf{t ≥ 0 : Bt 6∈ H\η′([0, T̃ ])}, τ̂ = inf{t ≥ 0 : ImBt = 2}.

By conformal invariance of Brownian motion and the explicit expression for the Poisson

kernel of H, see [17, Exercise 2.23], we have

λ(gt(S)) = lim
y→∞

πyPiy[Bτ ∈ S | FT̃ ]

≥ lim
y→∞

πyPiy[Bτ̂ ∈ Iη′(T̃ ) | FT̃ ]× inf
z∈I

η′(T̃ )

Pz[Bτ ∈ S | FT̃ ].
(2.8)

By using the explicit formula for the Poisson kernel of H it holds a.s. that

lim
y→∞

πyPiy[Bτ̂ ∈ Iη′(T̃ ) | FT̃ ] = 2. (2.9)

For each z ∈ H let K ′z be the half-line K ′z := z+R−. Let S ′z be the subset of the boundary of

H\K ′z corresponding to the lower part of K ′z (viewing the boundary of H\K ′z as a collection

of prime ends), and let τ ′ := inf{t ≥ 0 : Bt 6∈ H\K ′
η′(T̃ )
}. If ImB0 ≥ 2 it holds by a geometric

argument that {Bτ ′ ∈ S ′η′(T̃ )
} ⊂ {Bτ ∈ S}. Therefore

inf
z∈I

η′(T̃ )

Pz[Bτ ∈ S | FT̃ ] ≥ inf
z∈I

η′(T̃ )

Pz[Bτ ′ ∈ S ′η′(T̃ )
| FT̃ ] = inf

z∈Ii
Pz[Bτ ′ ∈ S ′i] � 1.

This estimate combined with (2.8) and (2.9) implies the assertion of the lemma.

Proof of upper bound in (2.2) for T = 1. It is sufficient to prove that for small enough u > 0,

P[E1
zL,zR

] � (zRzL)−uz
ρ/κ′

R z
ρ/κ′

L (zR + zL)ρ
2/(2κ′). (2.10)

Recall the definition (2.5) of σu. The process (Mσu∧t)t≥0 is a bounded martingale if u is chosen
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small enough that M0 ≤ (zLzR)u, hence the optional stopping theorem implies E[Mσu ] = M0.

This implies further that

P[Mσu = (zRzL)u] = (zRzL)−uE[Mσu ]

= (zRzL)−uE[M0] = (zRzL)−uz
ρ/κ′

R z
ρ/κ′

L (zR + zL)ρ
2/(2κ′).

(2.11)

We claim that for each u > 0 there exists some sufficiently small s > 0 only depending on u

such that {σu ≥ 1} ⊂ F(zRzL)s for sufficiently small zL, zR, with the latter event defined as in

Lemma 2.4 with ε = (zRzL)s. Define the stopping time T̃s by T̃s := inf{t ≥ 0 : Im(η′(t)) ≥

(zRzL)s}. If T̃s ≤ 1, i.e. F(zRzL)s does not occur, and M1 6= 0, Lemma 2.5 implies that

zL
T̃s
−WT̃s

> c(zRzL)s and WT̃s
− zR

T̃s
> c(zRzL)s, where c is the constant in the statement of

the lemma. Hence MT̃s
> (zRzL)u for sufficiently small s, zL, zR, so σu < 1 and the claim

follows. We have

E1
zL,zR

∩ {Mσu = 0} ⊂ {σu ≥ 1} ⊂ F(zRzL)s .

By Lemma 2.4 and (2.11) we have

P[E1
zL,zR

] ≤ P[F(zRzL)s ] + P[E1
zL,zR

;Mσu = (zRzL)u]

� z
ρ/κ′+ou(1)
R z

ρ/κ′+ou(1)
L (zR + zL)ρ

2/(2κ′).

The result follows since u > 0 was arbitrary.

2.2 Euclidean lower bound

Recall the definition of E1
zL,zR

and (Mt)t≥0 in Proposition 2.1 and Lemma 2.2, respectively. In

this section we will prove that P[E1
zL,zR

] is bounded below by E[M1] = M0 up to o(1) errors

in the exponents. In order to prove this estimate we need to show that the contribution to

E[M1] of large values of M1 is very small.

Proof of lower bound in (2.2) for T = 1. Since (Mt)t≥0 is a martingale by Lemma 2.3, we
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have that

M0 = E[M1] = E[M1;M1 > (zRzL)−u] + E[M1; 0 < M1 ≤ (zRzL)−u].

Since |zqt −Wt| ≤ |zRt − zLt | for q ∈ {L,R} and all of the exponents in the definition of Mt

are positive and sum to κ′

2
− 2, we have that Mt ≤ |zRt − zLt |κ

′/2−2. Therefore,

E
[
M1;M1 > (zRzL)−u

]
≤ E

[
|zR1 − zL1 |κ

′/2−2; |zR1 − zL1 |κ
′/2−2 > (zRzL)−u

]
= o∞zRzL(zRzL),

(2.12)

where the last equality follows from large deviation estimates for Bessel processes as in

the proof of Lemma 2.3. It follows that E[M1;M1 > (zRzL)−u] < 1
2
M0 if either zR or zL is

sufficiently small, and therefore

M0 � E[M1; 0 < M1 ≤ (zRzL)−u] ≤ (zRzL)−uP(M1 > 0),

which implies that

P[E1
zL,zR

] = P[M1 > 0] � z
ρ/κ′+ozR (1)

R z
ρ/κ′+ozL (1)

L (zR + zL)ρ
2/(2κ′).

2.3 Proof of Proposition 2.1

By the scaling property of SLE it is sufficient to prove the estimates (2.2) and (2.3) for T = 1

and r = 1, respectively. Combining the results of Sections 2.1 and 2.2 we have proved (2.2)

for T = 1. To prove the estimate (2.3) and hence complete the proof of Proposition 2.1, it

suffices to show that T1 is of order 1 with high probability.

Proof of Proposition 2.1. The lower bound of (2.3) is immediate from (2.2), since the half-

plane capacity of η′ stopped upon hitting ∂D∩H is bounded above by the half-plane capacity
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of D ∩H, which implies that we a.s. have T1 � 1. To complete the proof of the proposition

we need to prove the upper bound of (2.3). Let λ denote Lebesgue measure on R. By [17,

Equation (3.14)] and the surrounding text we have

λ(gT1(η′([0, T1]))) ≥ c > 0,

where the constant c is universal. Conditioned on ET1
zL,zR

we have

(zRT1
−WT1) + (WT1 − zLT1

) ≥ λ(gT1(η′([0, T1]))),

hence at least one of the following inequalities holds on ET1
zL,zR

: zRT1
−WT1 ≥ c/2 or WT1−zLT1

≥

c/2. By large deviation estimates for Bessel processes as in the proof of Lemma 2.3 we have

that for any u > 0

P
[
ET1
zL,zR

;T1 < (zLzR)u
]
�

∑
q∈{L,R}

P

[
sup

t∈[0,(zLzR)u]

|zqt −Wt| ≥ c/2

]
= o∞zLzR(zLzR). (2.13)

We conclude the proof of the proposition by observing that

P[ET1
zL,zR

] ≤ P[E(zLzR)u

zL,zR
] + P[ET1

zL,zR
;T1 < (zLzR)u],

which by (2.10) and (2.13) implies that

P[ET1
zL,zR

] ≤ (zL + zR)ρ
2/(2κ′)z

ρ/κ′+ozL (1)

L z
ρ/κ′+ozR (1)

R .

3 The quantum exponent

In this section, we will calculate the probability of a certain event associated with the γ-

quantum boundary measure of a 3
2
γ-quantum wedge. Throughout this section we will make use
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of the convention introduced in Section 1.2.3, namely we fix κ′ > 8 and γ = 4/
√
κ′ ∈ (0,

√
2)

and do not make dependence on κ′, γ explicit. The main result of this section is the following

proposition.

Proposition 3.1. Let h be the circle average embedding of a 3
2
γ-quantum wedge in (H, 0,∞),

as in Definition 1.5, let νh be the γ-quantum boundary measure induced by h, and let η′ be a

chordal SLEκ′ in H from 0 to ∞ independent of h. For r > 0, let

Tr := inf {t > 0 : |η′(t)| = r} (3.1)

and for δ > 0 let

ETr
δ := {νh (η′([0, Tr]) ∩ R−) ≤ δ and νh (η′([0, Tr]) ∩ R+) ≤ δ} . (3.2)

For each fixed r ∈ (0, 1], we have

P
[
ETr
δ

]
= δ4/γ2+oδ(1).

3.1 Moment estimates for the quantum boundary measure

In this subsection we will state some estimates for the moments of a certain quantity associated

with the quantum boundary measure induced by a free-boundary GFF on H, which will be

proven in the next two subsections. Let Q be as in (1.3) and fix α ∈ [0, Q). For the proof of

Proposition 3.1 we only need the case where α = 3
2
γ (note that α < Q for γ ∈ (0,

√
2)), but

it is no more difficult to treat the general case. Also let

a := Q− α. (3.3)
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Let hF be a free boundary GFF on H, normalized so that its semicircle average over ∂B1(0)∩H

is 0. Let h := hF − α log | · |, so that h is an unscaled α-quantum wedge as defined in [5,

Section 1.4]. Let νh be the γ-quantum boundary measure induced by h.

Fix r ∈ (0, 1]. For δ > 0, let xδ,L and xδ,R be the non-negative random variables such that

νh([−xδ,L, 0]) = νh([0, xδ,R]) = δ. Let xδ,L = xδ,L ∧ r and xδ,R = xδ,R ∧ r. In this subsection

we will compute the joint moments of xδ,L and xδ,R. This calculation, together with the

estimate (2.3) of Section 2, will be used to compute the probability in Proposition 3.1.

Proposition 3.2. Let xδ,L and xδ,R for δ > 0 be as above. For λ1, λ2 > 0 we have

lim
δ→0

logE
[
xλ1
δ,Lx

λ2
δ,R

]
log δ−1

=
a−

√
a2 + 4(λ1 + λ2)

γ
, (3.4)

with a as in (3.3).

We will deduce Proposition 3.2 from two similar propositions which concern moments of only

a single random variable (rather than joint moments) and imply the upper and lower bounds

in Proposition 3.2, respectively.

Proposition 3.3. Suppose we are in the setting of Proposition 3.2. For each λ > 0,

lim
δ→0

logE
[
xλδ,L
]

log δ−1
=
a−
√
a2 + 4λ

γ
, (3.5)

with a as in (3.3).

Proposition 3.4. Let h be an unscaled α-quantum wedge as above. For δ > 0, let xδ be such

that νh([−xδ, xδ]) = δ. Also fix r > 0 and let xδ := xδ ∧ r. Then

lim
δ→0

logE
[
xλδ
]

log δ−1
=
a−
√
a2 + 4λ

γ
,

with a as in (3.3).
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The following lemma tells us that in order to prove Propositions 3.2, 3.3, and 3.4, we need

only prove the upper bound for the limit in Proposition 3.3 and a lower bound for the limit

in Proposition 3.4.

Lemma 3.5. Let xδ,L, xδ,R be defined as in the beginning of this subsection and let xδ be as

in Proposition 3.4 (with the same choice of r). For each λ1, λ2 > 0, we have

lim
δ→0

logE
[
xλ1+λ2
δ

]
log δ−1

≤ lim
δ→0

logE
[
xλ1
δ,Lx

λ2
δ,R

]
log δ−1

≤ lim
δ→0

logE
[
xλ1+λ2
δ,L

]
log δ−1

. (3.6)

Proof. By definition, we have xδ ≤ xδ,L ∧ xδ,R, which gives the first inequality in (3.6). The

second inequality follows from

E
[
xλ1
δ,Lx

λ2
δ,R

]
≤ E

[
(xδ,L + xδ,R)λ1+λ2

]
≤ 2λ1+λ2E

[
xλ1+λ2
δ,L + xλ1+λ2

δ,R

]
= 2λ1+λ2+1E

[
xλ1+λ2
δ,L

]
.

The proofs of the lower bound in Proposition 3.3 and the upper bound in Proposition 3.4

will be completed in the next two subsections. Both proofs use arguments similar to those

found in [6, Section 4]. In particular, both estimates are established by first proving the

semicircle average version of the estimate and then showing that the exponential of γ times

the semicircle average is in some sense a good approximation for the quantum measure.

3.2 Circle average KPZ and tail estimates

In this subsection we will establish several lemmas which are similar to various results in [6,

Section 4] and which are needed for the proofs of the results in Section 3.1. Throughout

this subsection and the next, we assume we are in the setting of Section 3.1, and we use the

notation introduced there plus the following additional notation. For ε > 0, let hε(z) be the
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semicircle average of h about ∂Bε(z) ∩H. For t ∈ R, let

Vt := −he−t(0) +Qt, (3.7)

with Q as in (1.3). As explained in [6, Section 6.1], Vt is distributed as B2t + at where B is a

standard linear two-sided Brownian motion and a is as in (3.3) (here we recall that h has a

−α-log singularity at 0).

Let

Aδ :=
2

γ
log δ−1 and τδ := inf{t ≥ 0 : Vt = Aδ}. (3.8)

As we will see, exp(−τδ) is a good estimator of xδ,L. The semicircle average version of

Proposition 3.3 is the following simple fact regarding Brownian motion.

Lemma 3.6. For λ > 0 we have

lim
δ→0

logE
[
e−λτδ

]
log δ−1

=
a−
√
a2 + 4λ

γ
. (3.9)

Proof. Write Vt = B2t + at, with B a standard linear Brownian motion. Let

β :=

√
a2 + 4λ− a

2

so that β2 + aβ = λ. We observe that t 7→ exp (βB2t − β2t) is a non-negative martingale.

Furthermore, using that α < Q so that a > 0, for t ≤ τδ we have B2t ≤ Aδ. In particular,

t 7→ exp (βB2τδ∧t − β2τδ ∧ t) is bounded and P[τδ < ∞] = 1. By the optional stopping

theorem,

E
[
exp

(
βB2τδ − β2τδ

)]
= 1.

Since B2τδ = Aδ − aτδ, we have

E
[
e−λτδ

]
= e−βAδ = δ2β/γ = δ

√
a2+4λ−a

γ
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which implies the statement of the lemma.

To deduce Proposition 3.3 from Lemma 3.6, we first need a lower bound for the γ-quantum

boundary length of an interval. The needed estimate can be deduced in a similar manner

to [6, Lemma 4.5], but for brevity we give an alternative argument based on the theory of

Gaussian multiplicative chaos [15, 30].

Lemma 3.7. Let hF be as in Section 3.1 and let νhF be its associated γ-quantum boundary

measure. Let I ⊂ ∂H be a bounded open interval. Then νhF (I) has finite moments of all

negative orders.

Proof. This follows from general Gaussian multiplicative chaos theory applied to νhF . See, e.g.

[30, Theorems 2.11 and 2.12]. See also [29, Section 4.4] for an approximation scheme for νhF

to which Gaussian multiplicative chaos theory applies (the approximation scheme is stated in

the context of the unit disk D, but a similar formula works for the upper half-plane).

Lemma 3.8. Let τ be a stopping time for the filtration Ft = σ(Vs : s ∈ (−∞, t]). Also fix

u > 0. We have

P
[
νh([0, e

−τ ]) < δu exp
(
−γ

2
Vτ

)
| Fτ

]
= o∞δ (δ) (3.10)

as δ → 0+, at a deterministic rate which does not depend on τ .

Proof. Fix a stopping time τ as in the statement of the lemma. The restriction of h to

Be−τ (0) ∩H is determined by the orthogonal projection of h onto the set of functions with

mean zero on all semicircles centered at 0 together with the values of Vt for t ≥ τ (c.f. [5,

Lemma 4.1]). Since t 7→ Vt has the law of a two-sided drifted Brownian motion normalized

to vanish at 0, it follows from the strong Markov property of Brownian motion that the

conditional law given Fτ of the restriction of h − he−τ (0) to Be−τ (0) ∩ H is that of a free

boundary GFF restricted to Be−τ (0) ∩ H and normalized so that its semicircle average

vanishes on ∂Be−τ (0) ∩ H. It follows from the construction of νh via semicircle averages
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(see [6, Section 6]) that e−
γ
2
he−τ (0)νh([0, e

−τ ]) is determined by the restriction of h− he−τ (0)

to Be−τ (0) ∩H.

Let φ(z) := e−τz. Let h̃ = h ◦ φ+Q log e−τ , with Q as in (1.3). By the boundary analogue

of [6, Proposition 2.1], we have νh([0, e−τ ]) = νh̃([0, 1]). Let h̃∗ be the restriction to B1(0)∩H

of the field h ◦ φ − he−τ (0). By conformal invariance of the free boundary GFF and the

discussion above, it follows that the conditional law given Fτ of the restriction of h ◦ φ

to B1(0) ∩ H is the same as the law of h|B1(0)∩H, modulo a global additive constant. The

semicircle average of h ◦ φ over ∂B1(0) ∩H is given by he−τ (0). It therefore follows that the

conditional law of h̃∗ given Fτ is the same as the law of h|B1(0)∩H.

By the definition of the γ-quantum boundary measure we have

νh̃([0, 1]) = exp
(γ

2
he−τ (0)− γ

2
Qτ
)
νh̃∗([0, 1]) = exp

(
−γ

2
Vτ

)
νh̃∗([0, 1]). (3.11)

By Lemma 3.7, the conditional law given Fτ of νh̃∗([0, 1]) has moments of all negative orders,

so by Chebyshev’s inequality, for each δ > 0 we have that P
[
νh̃∗([0, 1]) ≤ δu | Fτ

]
decays

faster than any power of δ. We thus obtain the statement of the lemma.

3.3 Proof of the moment estimates

In this subsection we will prove the upper bound in Proposition 3.3 and the lower bound in

Proposition 3.4, thereby completing the proof of the propositions in Section 3.3. Our first

proof is similar to the argument given in [6, Section 4.4].

Proof of Proposition 3.3, upper bound. Fix s ∈ (0, 1). For δ > 0, let τδs be as in (3.8) with

δs in place of δ, so that with Aδ as in (3.8) we have

τδs = inf{t ≥ 0 : Vt = sAδ}.
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Let x̂δ,s := exp(−τδs). For λ > 0, we have

E
[
xλδ,L
]
≤ E

[
x̂λδ,s
]

+ E
[
xλδ,L ; x̂δ,s ≤ xδ,L

]
. (3.12)

By Lemma 3.6 (applied with δs in place of δ) we have

lim
δ→0

logE
[
x̂λδ,s
]

log δ−1
= s

a−
√
a2 + 4λ

γ
. (3.13)

On the event {x̂δ,s ≤ xδ,L} we have

νh([−x̂δ,s, 0]) ≤ δ = δ1−s exp
(
−γ

2
Vτδs

)
.

By Lemma 3.8, P[x̂δ,s ≤ xδ,L] = o∞δ (δ). By definition, we have xδ,L ≤ r, so E
[
xλδ,L; x̂δ,s ≤ xδ,L

]
decays faster than any power of δ. Since s is arbitrary, the desired upper bound now follows

from (3.12) and (3.13).

Finally we prove the lower bound in Proposition 3.4.

Proof of Proposition 3.4, lower bound. For δ > 0 let τδ be as in (3.8) and let x̂δ := e−τδ . We

note that τδ ≥ 0, so x̂δ ≤ 1. Also let Fτδ := σ(Vt : t ≤ τδ). We claim there exists a constant

c > 0 (independent of δ) such that

P[x̂δ ≤ xδ | Fτδ ] = P[νh([−x̂δ, x̂δ]) ≤ δ | Fτδ ] ≥ c a.s. (3.14)

Assuming that (3.14) holds, we get that for λ > 0,

E
[
xλδ
]
≥ E

[
x̂λδP[x̂δ ≤ xδ | Fτδ ]

]
≥ cE

[
x̂λδ
]
,

which implies the desired lower bound.
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It remains only to prove (3.14). To this end, we define φ, h̃, and h̃∗ as in the proof of

Lemma 3.8 with τ = τδ, so that the conditional law of h̃∗ given Fτδ is the same as the law of

h|B1(0)∩H; and (as in (3.11)) we have

νh([−x̂δ, x̂δ]) = exp
(
−γ

2
Vτδ

)
νh̃∗([−1, 1]) = δνh̃∗([−1, 1]).

It is easy to see that P
[
νh̃∗([−1, 1]) ≤ 1

]
> 0, and (3.14) follows.

3.4 Proof of Proposition 3.1

Since h is the circle average embedding of a quantum wedge and h is a free-boundary GFF

normalized so that its semicircle average over ∂B1(0) ∩H vanishes, Remark 1.6 implies that

we can couple h and h such that h ≡ h on D ∩H. For δ > 0, let x δ,L and x δ,R be chosen so

that νh([−x δ,L, 0]) = νh([0, x δ,R]) = δ (as in Remark 1.10). By our choice of coupling we have

x δ,L ∧ r = xδ,L and x δ,R ∧ r = xδ,R.

Assume that the SLE curve η′ is sampled independently from h and h . Then ETr
δ is the event

that η′ reaches ∂Br(0) before hitting either −x δ,L or x δ,R (in particular, ETr
δ occurs a.s. if

x δ,L > r and x δ,R > r). By Proposition 2.1, for each u > 0 we have

x
ρ/κ′+u
δ,L x

ρ/κ′+u
δ,R (xδ,L + xδ,R)ρ

2/(2κ′) � P
[
ETr
δ | h

]
� x

ρ/κ′−u
δ,L x

ρ/κ′−u
δ,R (xδ,L + xδ,R)ρ

2/(2κ′) (3.15)

with ρ = κ′ − 4, as in Section 2, and the implicit constants deterministic and independent of

δ (but possibly depending on r and u). From the inequality

1

2
(εp1 + εp2) ≤ (ε1 + ε2)p ≤ 2p(εp1 + εp2) for all p, ε1, ε2 > 0

and symmetry between xδ,L and xδ,R, we infer that the expectations of the left and right sides
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of (3.15) are bounded above and below by constants (depending only on κ′) times

E
[
x
ρ/κ′+ou(1)
δ,L x

(ρ2+2ρ)/(2κ′)+ou(1)
δ,R

]

where here the ou(1) is deterministic and independent of δ. By Proposition 3.2 applied

with α = 3
2
γ, this latter quantity is of order δ4/γ2+ou(1). Since u is arbitrary, we obtain the

proposition.

4 Conclusion of the proof

In this section we will deduce (1.6) from Proposition 3.1 and thereby complete the proof of

Theorem 1.1. Suppose we are in the setting of Section 1.1. Define the 3
2
γ-quantum wedge

W = (H, h , 0,∞) and the SLEκ′ curve η̃′ as in Remark 1.10. For t > 0 and δ > 0, let Ẽt
δ be

as in (1.4). Equivalently, by Remark 1.10,

Ẽt
δ := {νh(η̃′([0, t]) ∩ R−) ≤ δ and νh(η̃′([0, t]) ∩ R+) ≤ δ} . (4.1)

For r > 0 let Tr be as in (3.1) and let ETr
δ be as in (3.2).

Roughly speaking, we will show that P[Ẽ1
δ ] is a good approximation of P[ET1

δ ]. Combining

this with Proposition 3.1 will complete the proof of (1.6). Showing that P[ET1
δ ] is less than

or equal to P[Ẽ1
δ ] (up to o(1) error in the exponent) is relatively simple. One just needs to

notice that when η̃′ exits the Euclidean unit ball, with overwhelmingly high probability it

will contain a Euclidean ball of radius δoδ(1), and will therefore have quantum mass at least

δoδ(1) with overwhelmingly high probability. Therefore Ẽt
δ occurs for some t ≥ δoδ(1). The

details are provided in Section 4.1.

The upper bound of P[Ẽ1
δ ] in terms of P[ET1

δ ] is more difficult. One could worry that if Ẽ1
δ

occurs, then the Euclidean size of η̃′([0, 1]) under the circle average embedding is very small
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with high probability. This scenario cannot be ruled out directly by using the quantum

mass tail estimate because the upper tail only has a power law decay (see [30, Theorems

2.11 and 2.12]). In Section 4.2, by exploring the relationship between various embeddings

of a 3
2
γ-quantum wedge, we will show that conditioned on Ẽ1

δ , there is a uniformly positive

probability that ETr
δ occurs for some δ-independent constant r > 0.

4.1 Upper bound for σ(γ)

We first prove an analogue of [5, Proposition 10.13], which in turn is an analogue of [6,

Lemma 4.5].

Proposition 4.1. Fix γ ∈ (0,
√

2) and let (H, h , 0,∞) be a 3
2
γ-quantum wedge under the

circle average embedding (Definition 1.5). Let η′ be an independent chordal SLEκ′ in H from

0 to ∞ parametrized by capacity. Then with T1 as in (3.1), we have

P[µh(η′([0, T1])) ≤ δ] = o∞δ (δ). (4.2)

Proof. Let r denote 1/2 times the radius of the largest Euclidean ball contained in η′([0, T1])

and let z be the center of this ball. Then it suffices to show that

P[µhF (Br(z)) ≤ δ] = o∞δ (δ),

where hF has the law of a free boundary GFF with the additive constant fixed so that the

average of hF on H ∩ ∂D is equal to 0. The reason why we can replace h by hF is that

h |D∩H agrees in law with the restriction of hF − 3
2
γ log | · | to D ∩H and Br(z) ⊂ D ∩H, so

−3
2
γ log | · | is positive on Br(z). As argued in the proof of [5, Proposition 10.13], the law of

the random variable r−1 has an exponential tail at ∞ (although the argument there is for a
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whole plane, the same argument works for H). In particular, for δ > 0 we have

P
[
r ≤ (log δ−1)−2

]
= o∞δ (δ).

Conditioned on η′([0, T1]) (which is independent from hF ) the regular conditional law of the

circle average hFr (z) is that of a Gaussian with variance at most −2 log r (see [6, Section 3.1]).

Here we use the fact that Br(z) lies at distance at least r from R. By the Gaussian tail

bound, for each fixed s ∈ (0, 1) we have

P
[
eγh

F
r (z) ≤ δs | r ≥ (log δ−1)−2

]
= o∞δ (δ).

On the other hand, by [6, Lemma 4.6] we have that

P
[
µhF (Br(z)) ≤ δ | r ≥ (log δ−1)−2, eγh

F
r (z) ≥ δs

]
= o∞δ (δ).

The proof concludes.

For fixed s > 0, we have

P[ET1
δ ] ≤ P[Eδs

δ ] + P[T1 ≤ δs]. (4.3)

By Proposition 4.1, for each s > 0,

lim
δ→0

logP[T1 ≤ δs]

log δ−1
= −∞. (4.4)

By Lemma 1.9,

lim
δ→0

logP[Ẽδs

δ ]

log δ−1
= −(1− s/2)σ(γ), (4.5)

with σ(γ) as in (1.5). By Proposition 3.1,

lim
δ→0

logP[ET1
δ ]

log δ−1
= − 4

γ2
. (4.6)
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Since s is arbitrary, we can combine (4.3), (4.4), (4.5), and (4.6) to obtain σ(γ) ≤ 4/γ2, which

is the upper bound in (1.6).

4.2 Lower bound for σ(γ)

4.2.1 Notation for quantum surfaces

Let W be the 3
2
γ-quantum wedge in Section 1. In the remainder of this section, we will

consider several different parameterizations of W. Recall that W is an equivalence class of

4-tuples (D, h , a, b), with D ⊂ C, h a distribution on D, and a, b ∈ ∂D where the equivalence

relation is defined in terms of transformations on the form (1.2).

We will consider two coordinate systems: (H, 0,∞) and (S,+∞,−∞) where S := R×(0, π) is

a horizontal strip. Whenever we switch between the two coordinate systems, we assume that

the corresponding objects are related as in (1.2) with f the canonical coordinate transformation

between the two systems

z 7→ −e−z, z ∈ S. (4.7)

Since a wedge only has two marked boundary points, knowing the coordinate system is

not sufficient to determine the embedding of the surface, i.e. there is one free parameter

corresponding to scaling H or horizontally translating S. We will consider several different

embeddings ofW into each of H and S. We slightly abuse notation by using the same symbols

for embeddings into H and S, always keeping in mind that the corresponding fields are related

via the map (4.7). Hereafter, we will denote an embedding of h in a given coordinate system

by h•, where • indicates the particular choice of embedding. After we define h• in one

coordinate system, we simultaneously define h• in the other coordinate system by applying

the coordinate change formula (1.2) with the mapping (4.7).

In (S,+∞,−∞), we let X•t be the average process of h• along the vertical line segment

{t}×(0, π), where • is the symbol representing the embedding. Before fixing the embedding of

34



W into (S,+∞,−∞), the average process is defined up to a horizontal translation. Therefore

we can fix the embedding of W on (S,+∞,−∞) by specifying the translation of the average

process. We define the circle average embedding of W into (S,+∞,−∞) by requiring

inf{t ∈ R : X•t = 0} = 0 and denote the field (resp. average process) on S by hC (resp. XC).

Note that the circle average embedding into S is the image of the circle average embedding

into H (Definition 1.5) under the coordinate change (4.7), and in keeping with our convention

the latter embedding will also be denoted by hC in the remainder of this section. By the

definition of a 3
2
γ-quantum wedge and by (1.2), under the circle average embedding in S there

are standard Brownian motions B, B̂ such that XC
t = B2t − at for t ≥ 0 and XC

t = B̂−2t − at

for t < 0, where a = Q− 3
2
γ and B̂ is conditioned such that XC

t ≥ 0 for t < 0.

We will also consider the so-called smooth centering embedding, which we denote by hS. It is

introduced in the context of quantum cones in [5, Section 10.4.2]. Let φ be a fixed positive

smooth function supported on [0, 1] with integral 1. The smooth centering embedding of W

into (S,+∞,−∞) is such that

inf

{
t ∈ R :

∫ ∞
−∞

Xsφ(s− t)ds ≤ 0

}
= 0.

Since limt→∞Xt = −∞ and limt→−∞Xt = +∞, hS is well-defined almost surely. Heuristically,

the smooth centering embedding is close to the circle average embedding, but is sometimes

easier to work with since it involves the integral of the field against a smooth function, rather

than the integral against a distribution (namely the uniform measure on a circle).

Different embeddings of W into (H, 0,∞) (resp. (S,+∞,−∞)) differ by a scaling (resp.

horizontal translation). We let σH
•,�(W) (resp. σS•,�(W)) be the possibly random constant

c such that h�(·) = h•(c·) + Q log c (resp. h�(·) = h•(· + c)). Note that the form of the

transformation (4.7) implies that σH
•,�(W) = e−σ

S
•,�(W).

Other embeddings of the 3
2
γ-quantum wedge are defined using the chordal SLEκ′ curve η̃′,

which we recall is first sampled independently from W and then parametrized by γ-quantum
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mass with respect to W. One such embedding is the so-called unit radius embedding of W,

which we denote by hU . On (H, 0,∞) it is defined such that

1 = inf {r ≥ 0 : η̃′([0, 1]) ⊂ Br(0) ∩H} .

We will also have the occasion to consider the quantum surface

W∗ := (η̃′([1,∞)), h∗, η̃′(1), η̃′(∞))

obtained by restricting W to η̃′([1,∞)). By [5, Lemma 9.3] (see also the proof of [5,

Lemma 9.2]), W∗ is a 3
2
γ-quantum wedge independent of (Zt)t∈[0,1]. We will mainly be

interested in W∗ embedded in (H, 0,∞) in two ways. One is the circle average embedding

hC∗ . The other one is defined as follows. Consider W embedded in (H, 0,∞) under the

unit radius embedding hU . Let Ψ : H \ η̃′([0, 1]) → H be the conformal map such that

Ψ(η̃′(1)) = 0,Ψ(∞) = ∞, and limz→∞Ψ(z)/z = 1. Then hΨ
∗ := hU ◦ Ψ−1 + Q log |(Ψ−1)′|

gives an embedding of W∗ into (H, 0,∞), which we will call the Ψ-embedding of W∗.

4.2.2 Smooth centering embedding and conclusion of the proof

In Section 4.2.3, we will prove the following proposition, which is a variant of a result proved

in [5, Section 10.4.2] for quantum cones. The proof will use similar techniques as the proof in

[5].

Proposition 4.2. Let W = (H, hS, 0,∞) be a 3
2
γ-quantum wedge with the smooth centering

embedding and let η̃′ be an independent chordal SLEκ′ in H from 0 to ∞ parameterized by

quantum mass with respect to hS. There are deterministic constants c, r > 0 and an event G

such that the following is true for all δ ∈ (0, 1
2
).

(i) P[G | Ẽ1
δ ] ≥ c.
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(ii) On G ∩ Ẽ1
δ , we have η̃′([0, 1])) 6⊂ Br(0).

Remark 4.3. The condition that η̃′([0, 1])) 6⊂ Br(0) in (ii) above can also be written as

σH
S,U(W) > r, in the notation of Section 4.2.1.

It is convenient to use the smooth centering embedding rather than the circle average

embedding in Proposition 4.2 for the following reason. Our proof of the proposition will

involve comparing certain embeddings of the quantum wedge W with those of the quantum

wedgeW∗ obtained by restricting the field to H\ η̃′([0, 1]). To do this, we will need to consider

how various embeddings transform under a conformal map H \ η̃′([0, 1])→ H. The behavior

of the smooth centering embedding under such a map is easier to control than that of the

circle average embedding, since controlling the former amounts to estimating the integral of

the field against a smooth test function, whereas controlling the latter amounts to estimating

the average of the field over some distorted circle. See in particular Lemma 4.6 below.

Before we prove Proposition 4.2 in Section 4.2.3, we first explain why it almost implies the

lower bound for σ(γ) in (1.6). If Proposition 4.2 were true with the circle average embedding

hC in place of hS, then the corresponding event G would satisfy G∩Ẽ1
δ ⊂ ETr

δ . By condition (i)

in Proposition 4.2, P[Ẽ1
δ ] � P[ETr

δ ]. Combined with Proposition 3.1, this implies σ(γ) ≥ 4/γ2.

The following simple fact bridges the gap between the smooth centering embedding and the

circle average embedding.

Lemma 4.4. Let a > 0 and let Bt be a standard linear Brownian motion starting from 0.

For M > 0, let τM = inf{t ≥ 0 : Bt − at = −M}. Let FM be the event that

∫ ∞
0

(Bs − as)φ(s− t)ds ≥ 0, ∀t ∈ [0, τM ].

There are deterministic, M-independent constants c, C > 0 such that P[FM ] ≤ Ce−cM
2

for

each M > 0. The same holds if we replace Bt by B2t
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Proof. By the reflection principle for Brownian motion,

P[τM−1 ≤ 2] ≤ P
[

inf
t∈[0,2]

Bt ≤ 1 + 2a−M
]
≤ Ce−cM

2

for some c, C > 0 as in the statement of the lemma.

It remains to control the probability of FM ∩ {τM−1 > 2}. We assume that M > 1 (so that

the time τ ′M−1 we define next is well-defined and satisfies τ ′M−1 < τM almost surely). Let

τ ′M−1 be the last time t before τM such that Bt − at = 1 −M . Since φ is supported on

[0, 1], on the event FM ∩ {τM−1 > 2} there must be a time t ∈ [τ ′M−1 − 1, τ ′M−1] such that

Bt − at ≥ 0. Note that the time reversal of {Bt − at : t ∈ [τ ′M−1 − 1, τ ′M−1]} is a Brownian

motion with drift starting from 1 −M conditioned on the uniformly positive probability

event that it does not reach −M before time 1. Hence Doob’s maximal inequality implies

P[FM , τM−1 > 2] ≤ Ce−cM
2
.

By scaling, the statement still holds if we replace Bt by B2t.

Proof of the lower bound of σ(γ) given Proposition 4.2. Given δ > 0, set M = | log δ| 23 . Let

AM be the event that

inf

{
t ∈ R :

∫ ∞
−∞

XC
s φ(s− t)ds = 0

}
> inf

{
t ∈ R : XC

t = −M
}

where XC
t is the average process of hC in (S,+∞,−∞). In this case, XC

t = B2t − at for

t ≥ 0, where B is a standard linear Brownian motion and a = Q − 3
2
γ > 0. Furthermore,

AM ⊂ FM where FM is as in Lemma 4.4 for this Brownian motion with drift. Therefore,

P[AM ] ≤ C exp(−c| log δ| 43 ) = o∞δ (δ).

Let G be as in Proposition 4.2. On the event G ∩ Ẽ1
δ ∩AcM , under (S,+∞,−∞) coordinates

and the smooth centering embedding of W , the following are true:

(i) η̃′([0, 1]) 6⊂ [− log r,∞)× [0, π].
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(ii) inf{t ∈ R : XS
t = −M} > 0.

(iii) νhS(η̃′([0, 1]) ∩ (R× {0})) ≤ δ and νhS(η̃′([0, 1]) ∩ (R× {π})) ≤ δ.

r

eη
0([0; 1])

−log(−z)

−exp(−z)

1 −log(r)

eη
0([0; 1])

H

S

Figure 1: Smooth centering embedding of W into (H, 0,∞) (left) and (S,+∞,−∞) (right).
On the left (resp. right), the dotted red semi-circle (resp. line segment) corresponds to the
unit radius (resp. intersection with the imaginary axis) under the circle average embedding
of the modified field hM . Note that this semi-circle (resp. line segment) is contained in (resp.
to the right of) the unit circle (resp. imaginary axis) for the smooth centering embedding on
the event AcM in the proof of the lower bound of σ(γ). The event G of Proposition 4.2 is such

that if G∩ Ẽ1
δ occurs we have η̃′([0, 1]) 6⊂ Br(0) on the left (resp. η̃′([0, 1]) is not contained in

[− log r,∞)× [0, π] on the right).

Let hM := h +M . Since the law of a quantum wedge is invariant under multiplying its area

by a constant [5, Proposition 4.6], (S, hM ,+∞,−∞) has the law of a 3
2
γ-quantum wedge.

Let hCM be the circle-average embedding of this wedge into S. Let η̃′M be given by η̃′ in

(S,+∞,−∞)-coordinates parameterized by quantum mass with respect to hCM . If G∩Ẽ1
δ ∩AcM

occurs, then if we consider hCM under (S,+∞,−∞) coordinates, the above conditions (i)

through (iii) imply that the following are true.

(i) η̃′M([0, eγM ]) 6⊂ [− log r,∞)× [0, π].

(ii) νhCM

(
η̃′M([0, eγM ]) ∩ (R× {0})

)
≤ δeγM/2 and

νhCM

(
η̃′M([0, eγM ]) ∩ (R× {π})

)
≤ δeγM/2.

In particular, if we switch back to (H, 0,∞) coordinates, the event ETr
δeγM/2

as defined in

Proposition 3.1 with (hCM , η̃
′
M) in place of (hC , η̃′) occurs. Since (hCM , η̃

′
M)

d
= (hC , η̃′),

P[G ∩ Ẽ1
δ ∩ AcM ] ≤ P[ETr

δeγM/2
].
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By Proposition 3.1 (recall that M = | log δ| 23 ) we have

lim
δ→0

logP[ETr
δeγM/2

]

log δ−1
= − 4

γ2
.

By condition (i) in Proposition 4.2,

−σ(γ) = lim
δ→0

logP[G, Ẽ1
δ ]

log δ−1
≤ lim

δ→0

logP[ETr
δeγM/2

]

log δ−1
∨ lim
δ→0

logP[AM ]

log δ−1
= − 4

γ2
.

4.2.3 Proof of Proposition 4.2

In light of the preceding two subsections, to complete the proof of (1.6) and hence of

Theorem 1.1, it remains only to prove Proposition 4.2. The proof will proceed as follows.

Recall the definition of the wedge W∗ from Section 4.2.1. In Lemma 4.5, we will construct

events G1 and G2 such that G1 ∩ G2 has uniformly positive conditional probability given

Ẽ1
δ and on G1 ∩G2 ∩ Ẽ1

δ , the Ψ-embedding and circle average embedding of W∗ differ by a

bounded scaling factor. Heuristically, this means that the 3
2
γ-quantum wedges W and W∗

are comparable to one another, up to a δ-independent constant. Then, in Lemma 4.6, we will

define an event F (t0) of probability close to 1 which is independent from Ẽ1
δ such that on

F (t0), the smoothed averages over large semicircles of the embedding hΨ
∗ of W∗ (expressed as

perturbed smoothed semicircle averages of hC) are under control. These lemmas together will

enable us to bound the scaling factor between hU and hS on an event of positive conditional

probability given Ẽ1
δ , which by Remark 4.3 will prove Proposition 4.2.

We first construct an event where the scaling factor σH
Ψ,C(W∗) (as defined in Section 4.2.1) is

bounded from above and below.

Lemma 4.5. There is a deterministic constant c0 ∈ (0, 1), an event G1 which is measurable

with respect to (Zt)t∈[0,1], and an event G2 which is independent of (Zt)t∈[0,1] such that the

following holds for each δ ∈ (0, 1
2
):
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(i) P[G1 | Ẽ1
δ ] ≥ c0 and P[G2] ≥ c0;

(ii) On the event Ẽ1
δ ∩G1 ∩G2, σH

Ψ,C(W∗) ∈ [10−3, 103]

Proof. Let G1 := {1 ≤ L1 ≤ 2} ∩ {1 ≤ R1 ≤ 2}. By [37, Theorem 2], P[G1 | Ẽ1
δ ] ≥ c0 for

some c0 > 0 independent of δ.

Suppose W has the unit radius embedding into (H, 0,∞). Let x− and x+ be defined such

that η̃′([0, 1]) ∩ R = [x−, x+]. By [17, Equation (3.14)] and the definitions of the unit radius

embedding and the Ψ-embedding, we have |Ψ(x+)−Ψ(x−)| ∈ [10−2, 102]. On the other hand,

if δ ∈ (0, 1
2
) then on G1 ∩ Ẽ1

δ , we have

νhΨ
∗

([Ψ(x−), 0]) = L1 + νhU ([x−, 0]) ∈ [1, 3]

and similarly for νhΨ
∗

([0,Ψ(x+)]).

Let

G2 := {νhC∗ ([−1, 1]) < 1/2} ∩ {νhC∗ ([0, 2]) > 3} ∩ {νhC∗ ([−2, 0]) > 3}.

Then G2 is independent of (Zt)t∈[0,1] and P[G2] ≥ c0 for some (possibly smaller) c0 > 0

independent of δ. On G2, the interval [Ψ(x−),Ψ(x+)] after mapping to the circle average

embedding ofW∗ will contain [−1, 1] and be contained in [−2, 2]. Therefore, on Ẽ1
δ ∩G1∩G2,

the scaling factor between hΨ
∗ and hC∗ lies in [10−3, 103].

Our next lemma is a variant of [5, Proposition 10.19]. The proof follows from essentially the

same argument, so we will make it brief. In the statement of the lemma, we let G be the

collection of conformal maps of the following form: g : H \ A→ H, where A ranges over all

hulls with a tip p ∈ ∂A \ R in H such that 0 ∈ A ⊂ D and g satisfies g(p) = 0, g(∞) =∞,

and limz→∞ g(z)/z ∈ [10−3, 103].

Lemma 4.6. Let K be a fixed constant and φ̃ : H→ [0,∞) be a radially symmetric smooth

function supported on B1(0) \ Be−1(0). Suppose hC is the circle average embedding of a
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3
2
γ-quantum wedge into (H, 0,∞). For t ∈ R, let hCt = hC(et·) +Q log |et · |. For t0 ∈ R, let

F (t0) be the event that the inner product (hCt , |(g−1)′|2φ̃ ◦ g−1) is bigger than K for all t ≥ t0

and g ∈ G. Then limt0→∞ P[F (t0)] = 1.

Proof. Let h be the whole plane Gaussian free field plus −3
2
γ log |z| normalized so that its

circle average over ∂D is 0. Let ht = h(et·) +Qt and

mn := inf
t∈[n,n+1],g∈G

(ht, |(g−1)′|2φ̃ ◦ g−1) ∀n = 0, 1, 2, . . .

Write h = h0 + h† where h0 is the radially symmetric part of h and h† = h − h0 (recall

Section 1.2.3). Define m0
n and m†n in the same manner as mn but with h0 and h†, respectively,

in place of h, so that m0
n and m†n are independent and m0

n +m†n ≤ mn. Since the law of h† is

scale invariant in law, {m†n}n∈N is a stationary sequence, hence it has stationary increments.

Since the circle average process of h is a drifted Brownian motion, and we observe that

(1, |(g−1)′|2φ̃ ◦ g−1) is independent of g, {m0
n}n∈N also has stationary increments. By results

from Gaussian analysis (see [5, Proposition 10.18] and the discussion afterwards), both m0
n

and m†n are finite and have finite variance. The Birkhoff ergodic theorem now implies that

both M0 := limn→∞ n
−1m0

n and M † := limn→∞ n
−1m†n exist a.s. Since {m†n}n∈N is stationary,

M † = 0 a.s. Since Q− 3
2
γ > 0, we find that M0 > 0 a.s. Hence limn→∞ n

−1mn > 0, which

implies the statement of the lemma with ht in place of hCt .

Since hC and h are absolutely continuous with respect to each other on C \ B(0, 10), if

we define mn with hC in place of h, we still have limn→∞mn =∞ a.s. By straightforward

distortion estimates and since φ̃ is compactly supported, (Q log | · |, |(g−1)′|2φ̃◦g−1) is bounded

from above and below uniformly over all g ∈ G. This concludes the proof.

Proof of Proposition 4.2. Let G1, G2, and c0 be chosen so that the conclusion of Lemma 4.5

holds. Throughout the proof we will assume G1 ∩G2 ∩ Ẽ1
δ occurs.
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1 σ
H

U;S

eη
0([0; 1])

g

1

g(eη0([0; 1]))

H H

Figure 2: Unit radius embedding of W (left) and circle average embedding of W∗
(right). The boundary of η̃′([0, 1]) on the left divides W into two independent quan-
tum surfaces: U = (h |η̃′([0,1]), η̃

′([0, 1]), 0, η̃′(1), inf(η̃′([0, 1]) ∩ R), sup(η̃′([0, 1]) ∩ R)) and

W∗ = (h |η̃′([1,∞)), η̃
′([1,∞)), η̃′(1),∞). The occurrence of Ẽ1

δ depends only on U , while
the diameter under the smooth centering embedding of η̃′([0, 1]) depends mainly on W∗. We
use the independence of U ,W∗ to establish Lemma 4.5, which implies that g ∈ G on the event
G1 ∩G2 (see the statement of Lemmas 4.5 and 4.6 for the notation). Then we approximate
the smoothed drifted circle average for large radii on the left figure (in blue) by a ’distorted’
average over the corresponding region on the right figure, and use Lemma 4.6 to conclude
that for sufficiently large radii this is positive with uniformly positive probability conditioned
on Ẽ1

δ . This result is the content of Proposition 4.2.

Suppose (hU , η̃′) is the unit radius embedding of (W , η̃′) into (H, 0,∞). Note that η̃′([0, 1]) ⊂

B1(0) in this embedding. Let g : H \ η̃′([0, 1])→ H be such that g(η̃′(1)) = 0, g(∞) =∞ and

hU ◦ g−1 +Q log |(g−1)′| = hC∗ , (4.8)

where hC∗ is the circle average embedding ofW∗ into (H, 0,∞). By condition (ii) in Lemma 4.5,

we have g ∈ G where G is defined as in Lemma 4.6.

Let φ be as in the definition of the smooth centering embedding. Let φ̃ : H 7→ [0,∞) be

defined by

φ̃(z) :=
1

π
|z|−2φ(− log |z|),

so that φ̃ is a radially symmetric bump function on H and πφ̃(e−t)e−2t = φ(t) for each t ∈ R.

Also define φ̃t(·) := e−2tφ̃(e−t·) for t ∈ R.

Letting (XU
s )s∈R denote the average process of hU over vertical lines in (S,+∞,−∞) coordi-
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nates the following holds

∫ ∞
−∞

XU
s φ(s+ t)ds = (hU(et·) +Q log |et · |, φ̃)

= (hU(g−1(·)) +Q log |g−1(·)|, |(g−1)′(·)|2φ̃t ◦ g−1)

= (hC∗ +Q log | · |, |(g−1)′(·)|2φ̃t ◦ g−1)−Q(log |(g−1)′(·)|, |(g−1)′(·)|2φ̃t ◦ g−1)

+Q(log |g−1(·)| − log | · |, |(g−1)′(·)|2φ̃t ◦ g−1),

(4.9)

where the first identity follows by using polar coordinates and the canonical transformation

between H and S, the second identity follows by using the coordinate change formula for the

inner product (·, ·), and the third identity follows from (4.8).

We will bound for each term on the right-hand side of (4.9). By the Taylor expansion of g

near ∞, |g(z)/z| is bounded from above and below outside of H \ Be2(0). Therefore there

exists a constant K1 > 0 such that for all t ≥ 2 we have

∣∣(log |g−1(·)| − log | · |, |(g−1)′(·)|2φ̃t ◦ g−1)
∣∣ =

∣∣(log | · | − log |g(·)|, φ̃t)
∣∣ ≤ K1,

which bounds the second term on the right-hand side of (4.9). Since g ∈ G, distortion

estimates imply that |g′(·)| has universal upper and lower bounds on H \ Be2(0). Since

|(g−1)′(g(·))| = 1/|g′(·)|, there exists a constant K2 > 0 such that for all t ≥ 2 we have

∣∣(log |(g−1)′(·)|, |(g−1)′(·)|2φ̃t ◦ g−1)
∣∣ =

∣∣(log |(g−1)′ ◦ g(·)|, φ̃t)
∣∣ ≤ K2(1, φ̃t) = K2,

which bounds the third term on the right-hand side of (4.9). Define K := Q(K1 +K2).

Let F (t0) be defined as in Lemma 4.6 for the quantum wedge W∗ and this choice of constant

K. Then we can pick a deterministic t0 ≥ 2 large enough such that P[F (t0)] ≥ 1− c0/2.

Let G := G1 ∩ G2 ∩ F (t0). By independence of {G1, Ẽ
1
δ} and {G2, F (t0)} together with
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condition (i) in Lemma 4.5, we have

P[G | Ẽ1
δ ] ≥ c2

0/2.

For t ≥ 0, let gt(z) := e−tg(etz) so that gt : H \ e−tη′([0, 1])→ H. Then for t ≥ 0, we have

gt ∈ G and

(hC∗ +Q log | · |, |(g−1)′(·)|2φ̃t ◦ g−1) = (hC∗ (et·) +Q log |et · |, |(g−1
t )′(·)|2φ̃ ◦ g−1

t ).

By definition of F (t0), on G this latter quantity is at least K for each t ≥ t0. By (4.9) and

our bounds for the second and third term on the right-hand side, we obtain

∫ ∞
−∞

XU
s φ(s+ t)ds ≥ 0 ∀t ≥ t0.

Therefore σSS,U (W) ≤ t0, which means σH
S,U (W) ≥ e−t0 . In light of Remark 4.3, the constants

c = c2
0/2 and r = e−t0 and the event G meet the requirements in Proposition 4.2.
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