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Schizophrenia may develop from disruptions in functional connectivity regulated by neurotransmitters such as 

dopamine and acetylcholine. The modulatory effects of these neurotransmitters might explain how 

antipsychotics attenuate symptoms of schizophrenia and account for the variable response to antipsychotics 

observed in clinical practice. Based on the putative mechanisms of antipsychotics and evidence of disrupted 

connectivity in schizophrenia, we hypothesised that functional network connectivity, as assessed using 

network-based statistics, would exhibit differences between treatment response subtypes of schizophrenia 

and healthy controls. Resting-state functional MRI data were obtained from 17 healthy controls as well as 

individuals with schizophrenia who responded well to first-line atypical antipsychotics (first-line responders; 

FLR, n=18), had failed at least two trials of antipsychotics but responded to clozapine (treatment-resistant 

schizophrenia; TRS, n=18), or failed at least two trials of antipsychotics and a trial of clozapine (ultra-

treatment-resistant schizophrenia; UTRS, n=16). Data were pre-processed using the Advanced Normalisation 

Toolkit and BrainWavelet Toolbox. Network connectivity was assessed using the Network-Based Statistics 

toolbox in Matlab. ANOVA revealed a significant difference in functional connectivity between groups that 

extended between cerebellar and parietal regions to the frontal cortex (p<0.05). Post-hoc T-tests revealed 

weaker network connectivity in individuals with UTRS compared with healthy controls but no other differences 
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between groups. Results demonstrated distinct differences in functional connectivity between individuals with 

UTRS and healthy controls. Future work must determine whether these changes occur prior to the onset of 

treatment and if they can be used to predict resistance to antipsychotics during first-episode psychosis.  

Keywords: schizophrenia, treatment resistance, treatment response, magnetic resonance imaging, 

network based statistics, clozapine 

1. Introduction 

Post-mortem and in vivo studies have provided overwhelming evidence of aberrant functional 

connectivity in schizophrenia (Friston et al., 2016; Kanaan et al., 2005; Karbasforoushan and 

Woodward, 2012; Lynall et al., 2010; Menon, 2011; Zhou et al., 2007), supporting a role for 

dysconnection in the aetiology of the disorder (Stephan et al., 2009). Evidence suggests that 

functional dysconnectivity in schizophrenia could arise from the abnormal regulation of synaptic 

plasticity (Stephan et al., 2009). In particular, disrupted synaptic plasticity could be attributed to the 

downstream effects of dopamine, acetylcholine and serotonin on N-methyl-D-aspartate (NMDA) 

receptor-mediated synaptic function (Stephan et al., 2009). NMDA receptors mediate long-term 

potentiation (LTP) and long-term depression (LTD) via their effects on the functional state and 

number of α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionoic acid (AMPA) receptors at synaptic 

junctions (Lau and Zukin, 2007; Montgomery and Madison, 2004; Stephan et al., 2009). Therefore, 

modulating the activity or transport of NMDA receptors is likely to affect LTP and LTD by inducing 

downstream changes in brain connectivity (Stephan et al., 2009).  

Given the large body of literature identifying disrupted resting-state networks (RSNs) in 

schizophrenia (Lynall et al., 2010; Menon, 2011), the modulatory effects of these neurotransmitters 

on synaptic plasticity and overall functional connectivity might explain how antipsychotic drugs (D2 

and 5-HT2A receptor antagonists) attenuate symptoms of the disorder. However, while there is a 

general consensus that dysconnectivity is a hallmark of schizophrenia, several studies disagree about 

the nature of dysconnections within specific networks (Yu et al., 2012). Considering the 

heterogeneous nature of schizophrenia, it is conceivable that the discrepancies in functional 

dysconnectivity may be attributed to disrupted neurotransmission. If the functional network 

connectivity and pathophysiology of schizophrenia is different amongst individuals with the disorder, 

the likelihood of a single antipsychotic agent or class inducing remission in all individuals is 

improbable. In fact, what we observe is a division of schizophrenia into different response subtypes, 

with first- and second-generation antipsychotics providing relief for ~70% of individuals (Agid et al., 

2011) and clozapine (the gold-standard treatment for those who fail to respond to first-line therapy) 

providing relief for only 30%-70% of its recipients (Elkis, 2007; Essali et al., 2009; Kane and Correll, 



2016; Kane et al., 1988). Farooq and colleagues proposed subtyping schizophrenia according to 

treatment response, suggesting that division into subgroups, especially within the scope of research 

and drug development, could help us better understand and thereby treat this often disabling 

disorder (Farooq et al., 2013; Lee et al., 2015). This concept is supported by work demonstrating 

differences in dopaminergic and glutamatergic transmission between first-line responders (FLR) and 

individuals who fail to respond to treatment (Demjaha et al., 2014; Goldstein et al., 2015; Howes et 

al., 2015). 

Network-based statistics provide a useful tool for investigating the functional organisation of the 

human brain (Zalesky et al., 2010) and have been used to investigate differences between healthy 

controls and people with schizophrenia. Zalesky et al. reported a sub-network of 40 pairwise 

functional connections that were significantly weaker in those with schizophrenia when compared 

with healthy controls (Zalesky et al., 2010). This sub-network comprised fronto-temporal, occipito-

temporal, supplementary motor area-temporal and -occipital connections as well as connections 

within the cingulum (Zalesky et al., 2010), consistent with previously reported abnormalities (Ellison-

Wright et al., 2008; Fletcher et al., 1999; Fornito et al., 2009). A study by Cocchi et al. employing the 

same analytical technique identified three sub-networks with differing connectivity in people with 

schizophrenia and reported that although structure-function relationships were disrupted in one 

sub-network (lower correlation between functional connectivity and white matter integrity), the 

other  two sub-networks exhibited no such disruption (Cocchi et al., 2014). 

In contrast to more traditional methods for analysing resting-state brain data (such as independent 

components analysis (ICA)), network-based statistics consider the brain as a network, permitting 

investigation of the brain as an integrated system, rather than a collection of individual components 

(Bullmore and Sporns, 2009). By shifting away from low-dimensional ICA and seed-based correlation 

methods toward high-dimensional analysis, a richer examination of network connections is possible 

(Smith et al., 2013).  

Network organisation is likely to be influenced by disturbances in structural or functional 

connectivity and may vary between individuals exhibiting different types of disruption. Modulation 

of NMDA receptor-mediated synaptic plasticity by dopamine, serotonin and acetylcholine is 

hypothesised to account for the functional dysconnectivity observed in individuals with 

schizophrenia (Stephan et al., 2009). Should the underlying mechanisms responsible for modulation 

differ between treatment responders and non-responders, then network connectivity will also be 

affected to varying degrees. Given the growing body of literature indicating disrupted network 

connectivity in people with schizophrenia, it was hypothesised that network connectivity, as 



assessed using network-based statistics, would exhibit differences between treatment response 

subtypes of schizophrenia and healthy controls. We anticipated that those who failed to respond to 

first-line therapy and clozapine monotherapy would exhibit the greatest degree of dysconnectivity; 

however, disruptions in network organisation in treatment responders and those with treatment 

resistant schizophrenia (TRS; clozapine responders) were also expected. 

2. Methods 

2.1 Participants 

Details about participant recruitment have been described previously (Anderson et al., 2015). 

Briefly, individuals with a diagnosis of schizophrenia according to the Diagnostic and Statistical 

Manual of Mental Disorders (DSM-IV) were recruited from mental health services in Auckland, New 

Zealand. Participants were enrolled into one of three study arms. Those who were responding well 

to first-line atypical antipsychotic monotherapy were assigned to the “first-line responder” (FLR) 

group; response to treatment was assessed by the treating psychiatrist, based on an improvement of 

positive symptoms and according to standard practice and current treatment guidelines for 

schizophrenia (Lehman et al., 2004; McGorry, 2005). Those who had failed at least two previous six-

to-eight-week trials of atypical antipsychotics and were now receiving clozapine were assigned to 

the “treatment-resistant” (TRS) group and participants who had failed at least two previous six-to-

eight-week trials of atypical antipsychotics and had also failed an adequate trial of clozapine 

monotherapy (at least 8 weeks post titration (Mouaffak et al., 2006)) were assigned to the “ultra-

treatment-resistant” (UTRS) group. The study was approved by the Northern X Regional Ethics 

Committee and all participants gave informed written consent. 

Duration of psychosis, Positive and Negative Syndrome Scale (PANSS) scores (Kay et al., 1987)  and 

past and present substance abuse (evaluated using the Alcohol, Smoking and Substance Involvement 

Screening Test (ASSIST; World Health Organisation) scale) were assessed at study entry. 

Antipsychotic dose at the time of assessment was converted to chlorpromazine equivalents using 

formulae with power transformation (Andreasen et al., 2010). In the absence of a power formula, 

amisulpride chlorpromazine equivalents were calculated using expert consensus regarding 

antipsychotic dosing (Gardner et al., 2010). Participants also provided a urine sample, which was 

screened for the presence of amphetamine, methamphetamine, benzodiazepines, cocaine, opiates 

and tetrahydrocannabinol (Medix Pro-Split Integrated Cup, Multi Drug Screening Test; Sobercheck 

Ltd). Participant demographics were compared across cohorts using the appropriate statistical tests 

in IBM SPSS Statistics Version 23.  



2.2. Data acquisition 

Structural and resting-state fMRI scans were acquired using a Siemens Magnetom Skyra 3T scanner. 

All but four of the participants were imaged using a 32-channel head coil. Two FLR and two with 

UTRS were imaged using a 20-channel head coil. T1-weighted images were acquired using a 

magnetization-prepared 180-degrees radio-frequency pulses and rapid gradient-echo (MPRAGE) 

sequence (Brant-Zawadzki et al., 1992). Acquisition parameters were as follows: repetition time (TR) 

1900 ms; echo time (TE) 2.39 ms; inversion time (TI) 900 ms; flip angle 9°; repetition 1; acceleration 

factor 2; field of view (FOV) 230 mm; matrix 256 x 256; voxel size 0.9 x 0.9 x 0.8 mm. 

Resting-state functional images were acquired over 8 minutes using echo-planar imaging (EPI) with 

the following parameters: TR 3000 ms, TE 30 ms; echo spacing 0.65 ms (0.62 ms for last 7 

participants, following software upgrade); phase-encode direction A>>P; 54 slices; 160 volumes; FOV 

192 mm; acceleration factor 2; matrix 64 x 64; voxel size 3.0 x 3.0 x 3.0 mm. Participants were asked 

to lie still with eyes open and concentrate on a fixation cross. Gradient distortion images for 

functional data were acquired using a gradient echo pulse sequence with the following parameters: 

TR 655 ms; TE1 4.92 ms; TE2 7.38 ms; voxel size 3.4 x 3.4 x 2.4 mm; phase-encode direction A>>P; 

FOV 220 mm. 

2.3. Image pre-processing 

Structural data were processed with the Advanced Normalization Toolkit (Tustison et al., 2014). 

Processing steps included initial N4 bias correction of raw structural images; brain extraction using a 

hybrid segmentation/template-based strategy;  construction of a study-specific template and 

segmentation priors based on all participants in the cohort; alternation between study-specific prior-

based segmentation and “pure tissue” posterior probability weighted bias correction using Atropos 

and N4; DiReCT-based cortical thickness estimation; normalization to a study-specific template and 

cortical parcellation using the AT116 anatomical parcellation template. 

Pre-processing of functional data was conducted using the BrainWavelet Toolbox 

(www.brainwavelet.org) (Patel et al., 2014).  Pre-processing steps have previously been reported 

(Simas et al., 2015) and included slice time correction; rigid-body head movement correction; affine 

co-registration to the skull-stripped structural image using a grey matter mask; registration to the 

MNI152_T1_1mm template in Talairach space (TT_N27); and spatial smoothing (6 mm full width at 

half maximum). Secondary motion artefacts in the fMRI data were modelled and removed using 

unsupervised timeseries despiking in the wavelet domain (Patel et al., 2014). Default parameters 

were used for despiking and were equivalent to those used by Patel et al. (Patel et al., 2014). 

http://www.brainwavelet.org/


Motion-related events across different frequencies were detected as chains of maximal and minimal 

wavelet coefficients. All coefficients belonging to a maximal or minimal chain were set to zero in the 

wavelet domain and the timeseries was recomposed. Due to the manner in which this algorithm 

detects these events, it is able to remove both slower, prolonged motion artefacts (such as spin 

history type effects) and higher frequency artefacts (such as spikes) (Patel et al., 2014). This method 

has been shown to out-perform standard despiking algorithms and achieve superior removal of 

motion artefacts in high-motion cohorts compared to scrubbing and regression-only models (Patel et 

al., 2014).  

Following wavelet despiking, further motion correction was performed using signal regression of the 

six motion parameters estimated during rigid-body head movement correction, their first order 

temporal derivatives and the cerebrospinal fluid (CSF) signal. High pass frequency filtering above 

0.02 Hz was then performed, followed by spatial smoothing (6 mm full width at half maximum 

Gaussian kernel) to minimise the influence of border placement during parcellation. 

Difference in head motion between groups was assessed using DVARS, the root mean square 

variance of frame-to-frame difference in percent signal change across all voxels of the brain (Smyser 

et al., 2010). Mean DVARS were compared between groups using a one-way ANOVA. 

Motion-corrected fMRI data were subjected to parcellation and divided into 116 parcels using the 

AFNI TT N27 EZ ML atlas. For each individual, the mean timeseries was extracted from each of the 

116 anatomically parcellated regions (nodes). The extracted signals were decomposed into four 

frequency bands by wavelet transform (Salvador et al., 2005): scale 1, 0.125–0.25 Hz; scale 2, 0.06–

0.125 Hz; scale 3, 0.03–0.06 Hz; scale 4, 0.02–0.03 Hz (Achard et al., 2006). Based on evidence from 

previous resting-state fMRI studies demonstrating that most salient differences between healthy 

controls and people with schizophrenia occur at frequencies in the range of 0.06 to 0.125 Hz (Achard 

et al., 2006; Lynall et al., 2010), the scale 2 wavelet was selected for comparisons in the current 

study. 

The strength of a connection between two nodes was the Pearson’s correlation coefficient of the 

wavelet coefficients. Positively and negatively weighted, undirected correlation matrices were 

derived and further analysis was undertaken using Matlab 2015a (MathWorks, U.S.A). All self-

connections were removed from correlation matrices prior to analysis. 

2.4. Network-based statistics 

Comparisons of functional network organisation were performed in Matlab 2015a using the Network 

Based Statistic (NBS) Toolbox (Zalesky et al., 2010). NBS seeks to identify arrangements of node-to-



node connections (structures) formed by links that surpass a given threshold (Zalesky et al., 2010). 

The topological extent of each structure is then used to determine its significance (Zalesky et al., 

2010). Permutation testing (using random assignment of each subject to a group) ascribes a p value 

(controlled for the family-wise error; FWE) to each structure based on its size (Zalesky et al., 2010). 

The total number of permutations for which the size of the permuted structure is greater than the 

size of the actual structure determines the p value for that arrangement of connections (Zalesky et 

al., 2010). Using NBS, a one-way ANOVA (FWE-corrected α≤0.05) applying equal weighting to all 

groups was performed to establish whether there was a difference between the groups. Data were 

permuted 5000 times using the network-based statistics method, applying a range of test statistic 

thresholds. The test statistic represents the relative weighting of an edge in a network. The size of 

the threshold affects the extent (and thereby visualisation) of the network but does not affect the 

statistical significance of connections within the network (Zalesky et al., 2010). This is illustrated in 

the visual depiction of network edges shown in Figure 1 (edges shown in light blue will be eliminated 

when viewed at a higher threshold but still contribute to the significant difference in connectivity 

between the groups). For optimal visualisation of sub-networks identified in the post-hoc analysis, a 

threshold of 4.9 was chosen, as it showed a substantial degree of dysconnection while still granting 

partition of dysconnections into meaningful subnetworks; lower thresholds produced networks that 

were too dense to enable inference and larger thresholds produced networks that were too sparse. 

Networks were determined based on their extent (i.e. the number of connections they comprised). 

Post-hoc T-tests (α≤0.05, corrected for multiple comparisons using the Bonferroni method) were 

performed to reveal the directionality of any differences established during the ANOVA (again, the 

network-based statistic method with 5000 permutations was employed). As only 1-tailed T-tests are 

permitted by the NBS software, all comparisons were run in both directions and corrected for using 

the Bonferroni method. Brain networks were visualized with the BrainNet Viewer 

(http://www.nitrc.org/projects/bnv/) (Xia et al., 2013). 

2.5. Influence of antipsychotic dose, symptom severity and drug-use on dysconnectivity 

As antipsychotic dose and symptom severity may have influenced dysconnectivity outcomes, 

associations between chlorpromazine equivalents/PANSS subscale scores and the strength of 

network connectivity in the ANOVA sub-network were assessed. Healthy controls were not 

interviewed using the PANSS but were given a contrived score of 30 for the purpose of this analysis. 

Likewise, all controls were given a chlorpromazine equivalent score of zero. The potential influence 

of recreational drug-use (measured using the ASSIST) was assessed only for those participants that 

completed the ASSIST questionnaire. 

http://www.nitrc.org/projects/bnv/


To assess the effect of each covariate on the strength of connectivity in the ANOVA sub-network, 

first, the binary sub-network matrix (with ones representing edges included in the sub-network) was 

linearised and multiplied by the edge strength information contained in each participant’s scale 2 

wavelet correlation matrix; this produced a matrix containing connection strength information for all 

edges contained in the sub-network for every participant. As correlation matrices were positively 

and negatively weighted, the absolute value of connection strength was used for further analysis (to 

retain weight information without positive and negative values cancelling one another out). The 

mean absolute connection strength across all edges of the sub-network was then compared 

between groups, adding chlorpromazine equivalents, PANSS sub-scale scores and ASSIST scores as 

covariates. Limited degrees of freedom required that each covariate be assessed in a separate 

analysis of covariance (ANCOVA). Pairwise comparisons of main effects were conducted, using the 

Bonferroni correction for multiple comparisons. 

2.6. Validation of results using alternative parcellation scheme 

To ensure that the results obtained with the AFNI 116 parcellation scheme were robust, findings 

were validated using an alternative parcellation scheme. To ensure full coverage of the cerebrum 

and cerebellum, brain data was parcellated using a custom-made 1 mm MNI atlas combining parcels 

from the Human Brainnetome Atlas (Fan et al., 2016) (modified from the original Desikan–Killiany 

(DK) atlas (Desikan et al., 2006)) and the probabilistic MR atlas of the human cerebellum (MNIflirt-

maxprob-thr50-1mm) (Diedrichsen et al., 2009). The final atlas contained 272 parcels; any 

overlapping voxels were removed from the atlas to prevent bias toward one parcellation scheme or 

the other. As before, motion-corrected fMRI data from participants were subjected to parcellation 

and the mean timeseries was extracted from each of the 272 regions. Scale 2 wavelet data were 

used for further analysis in NBS.  

 

3. Results 

3.1. Participant demographics 

Data from 17 healthy controls, 18 FLR, 18 individuals with TRS and 16 individuals with UTRS were 

included in the analysis. Demographic data are presented in Table 1.  

3.2. Between-groups comparison of head motion 



Mean (standard deviation) DVARS were 11.1 (1.6), 12.7 (2.8), 12.6 (3.2) and 13.1 (4.3) for controls, 

FLR, those with TRS and those with UTRS, respectively; ANOVA revealed no significant differences in 

head motion between groups (F=1.205; p=0.315). 

3.3. Network-based statistics  

Network organisation across groups was compared using network-based statistics (Zalesky et al., 

2010). ANOVA revealed a significant difference in connectivity between groups that extended 

primarily between cerebellar and parietal regions to the frontal cortex (p<0.05; Figure 1). Post-hoc T-

tests revealed significantly weaker network connectivity in individuals with UTRS compared to 

healthy controls (p<0.05, Bonferroni corrected) but no differences in connectivity between controls 

and FLR or those with TRS or between any of the schizophrenia cohorts. Differences observed in the 

post-hoc T-tests mirrored those identified in the ANOVA.  

Dysconnections in those with UTRS divided into three sub-networks, representing cerebellar-frontal 

dysconnections (Figure 2, sub-network 1; p<0.012 corrected), cingulo-frontal-temporal 

dysconnections (Figure 2, sub-network 2; p=0.036 corrected) and fronto-parietal dysconnections 

(Figure 2, sub-network 3; p=0.036 corrected). Mean absolute connection strengths for each sub-

network were compared between groups and are illustrated in Figure S1 of the supplementary 

material. In all cases, healthy controls had the greatest mean connection strength and those with 

UTRS the weakest connection strength. FLR generally had weaker mean connection strength than 

those with TRS; however, as mentioned above, no significant differences were observed between 

these groups. 

3.4. Influence of antipsychotic dose and symptom scores on dysconnectivity 

Details of the effects of chlorpromazine equivalents, PANSS sub-scores and ASSIST score on the 

relationship between treatment group and sub-network connection strength are provided in 

supplementary table S1. Briefly, no effect of any baseline characteristic was observed in the ANCOVA 

(p>0.05 for all covariates). Post-hoc pairwise comparisons revealed some additional effects of 

treatment group (see supplementary table S1); however these effects should be interpreted with 

care, given that healthy controls were assigned contrived values for chlorpromazine equivalents and 

PANSS scores and not all participants completed the ASSIST questionnaire.  

3.5. Validation of results using alternative parcellation scheme 

To validate findings obtained with the AFNI 116 parcellation scheme, data were analysed using an 

alternative 272-parcellation method. Network-based statistics revealed a statistically significant 



effect between groups (ANOVA: p<0.05), attributable to a significant reduction in connectivity in 

those with UTRS compared with healthy controls (post-hoc T-test: p<0.05, Bonferroni corrected). 

Two sub-networks were identified, which most closely resembled sub-networks 1 and 3 from the 

original analysis (details provided in supplementary Figure S2). 

 

4. Discussion 

Here, we investigated whether disruptions in resting-state functional connectivity are associated 

with resistance to antipsychotic treatment in people with schizophrenia. Network-based statistics 

revealed large disruptions in functional connectivity across three sub-networks in those with UTRS 

compared to healthy controls, but no significant differences between any other groups. A key 

distinction between this study and previous network-based statistics studies in schizophrenia was 

the identification of a large sub-network (sub-network 1) consisting primarily of interhemispheric 

dysconnections between cerebellar and prefrontal nodes. Prior exclusion of cerebellar nodes had 

prevented identification of any potential cerebellar dysconnections in previous work, though other 

nodes identified as dysconnected in the current study are in agreement with previous findings 

(Cocchi et al., 2014; Zalesky et al., 2010). 

The identification of a dysconnected cerebellar network in UTRS follows results from voxel-based 

morphometry analysis in the same cohort of individuals that identified, among other disruptions, a 

reduction in grey matter density in the left cerebellum of individuals with UTRS in contrast to healthy 

controls (Anderson et al., 2015). Likewise, regions of sub-network 2, including middle temporal gyri, 

anterior cingulate gyrus and ventromedial prefrontal cortices, exhibited decreased grey matter 

density in people with UTRS compared with healthy controls (Anderson et al., 2015). Post-mortem 

studies indicate that grey matter reductions observed in schizophrenia are attributable to a decrease 

in the cortical neuropil, comprised of axons, dendrites and pre- and post-synaptic terminals of 

cortical neurons (Glantz et al., 2006). Functional dysconnections in sub-networks 1 and 2 of those 

with UTRS may therefore arise from disruptions to synaptic communication at the cellular level. 

Unlike nodes within the first two sub-networks, regions of sub-network 3 (consisting of prefrontal 

and medial parietal cortices) were not associated with areas of grey matter loss in those with UTRS 

(Anderson et al., 2015). Cocchi et al. previously showed that functional dysconnections identified 

using network-based statistics correlate with decreases in structural integrity in only some cases; 

functional and structural dysconnections may not always occur concurrently (Cocchi et al., 2014). 



Consequently, the underlying pathophysiology of sub-network 3 may differ from that of sub-

networks 1 and 2.  

This is the first study to employ network-based statistics to identify functional biomarkers of 

treatment resistance in people with schizophrenia. Although individuals with this disorder have been 

experiencing variable responses to antipsychotic medication for decades (Kane and Correll, 2016), 

until recently, few studies had sought to investigate structural, functional or neurochemical 

differences between FLR, those with TRS and those with UTRS (Gillespie et al., 2017). With regard to 

functional differences, Molina Rodriguez et al. identified lower perfusion in the thalamus, left basal 

ganglia and right prefrontal regions in those who developed UTRS (Rodriguez et al., 1996) and found 

that individuals with high metabolic activity in the dorsolateral prefrontal cortex were more likely to 

experience improvements in negative symptoms following administration of clozapine (Molina et al., 

2003). Although no statistically significant differences in functional connectivity were observed 

between those with TRS and UTRS in the current study, connection strength across all three sub-

networks was lower in those with UTRS compared with TRS and a lack of significance in this case 

may stem from insufficient statistical power.  

More recent research has mainly focused on white matter disruptions in treatment-resistant or 

clozapine-eligible individuals rather than those with UTRS but may still provide context in which to 

consider the current findings. Of specific interest to the current study, Reis Marques et al. conducted 

an investigation in first-episode psychosis to determine whether pre-treatment fractional anisotropy 

(FA) could distinguish responders from non-responders to a 12 week course of antipsychotics (Reis 

Marques et al., 2014). They identified lower FA in non-responders compared with responders in 

several white matter tracts, including the uncinate, stria terminali, superior frontal-occipital tract, 

CC, internal and external capsule and corona radiata (Reis Marques et al., 2014). Unpublished work 

from our lab has revealed lower FA in people with TRS compared with healthy controls (and those 

with UTRS) but no significant differences between healthy controls and FLR or people with UTRS. 

These findings in combination with those of the current study suggest that the disruptions in 

functional connectivity observed in those with UTRS are unlikely to be due to abnormalities in white 

matter structure, despite reports of white matter disruption in those eligible for and responding to 

clozapine.  

This study benefits from a well characterised cohort of participants, demonstrating similar degrees 

of symptom severity and duration of illness, as well as similar ratios of male to female participants. 

Statistical comparison of participants who completed the ASSIST questionnaire revealed higher rates 

of drug-taking behaviour in FLR and those with UTRS compared with healthy controls. However, no 



statistically significant differences in positive drug screen on the day of testing and no effect of 

ASSIST score on connection strength were observed, suggesting that exposure to recreational drugs 

was unlikely to account for the differences observed between groups in the current study. Similarly, 

although prescribed antipsychotic dose (measured in chlorpromazine equivalents) was higher in 

those with UTRS compared with FLR and those with TRS, no effect of chlorpromazine equivalents on 

network connection strength was observed. The same was true for symptom severity. 

A common criticism of fMRI (and particularly connectomics) studies is a lack of reproducibility, both 

within and between study cohorts (Thirion et al., 2014). To evaluate the robustness of the current 

findings, data were subjected to two parcellation schemes (116 AFNI parcellation and 272 custom-

made parcellation). Results of the second parcellation corroborated those of the first, demonstrating 

statistically significant dysconnections in the UTRS group compared with healthy controls. Sub-

networks were also similar across parcellation schemes. Although the 272 parcellation gave only two 

sub-networks where the 116 parcellation gave three, regions of the missing sub-network were 

incorporated into the two that remained.  

The study’s cross–sectional design imparts a degree of uncertainty about the underlying cause of 

observed differences. Future work is required to establish whether differences between controls and 

individuals with UTRS exist at treatment onset. If so, functional connectivity may become a useful 

predictive biomarker of treatment resistance in schizophrenia. 

Results of the current analysis extend on those of earlier studies utilising network-based statistics to 

reveal functional dysconnectivity in people with schizophrenia (Cocchi et al., 2014; Zalesky et al., 

2010). Here we have demonstrated that ultra-treatment-resistance is associated with large 

disruptions to network connectivity, in particular cerebellar-frontal networks, in people with 

schizophrenia. Although we did not observe any significant differences between FLR, those with TRS 

and those with UTRS in the current study, investigation of a larger cohort of participants studied 

longitudinally may reveal some relationship between degree of dysconnection and treatment 

resistance.  
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