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The study of vortex-ring-induced mixing has been significant for understanding stratified7

turbulent mixing in the absence of a mean flow. Renewed interest in this topic has8

prompted the development of a one-dimensional model for the evolution of a stratified9

system in the context of isolated mixing events. This model is compared to numerical10

simulations and physical experiments of vortex rings interacting with a stratification.11

Qualitative agreement between the evolution of the density profiles is observed, along12

with close quantitative agreement of the mixing efficiency. This model highlights the key13

dynamical features of such isolated mixing events.14

1. Introduction15

Understanding the mixing produced by turbulent motion in a stratified environment16

remains elusive. Such mixing is particularly relevant in an oceanographic context (Ivey17

et al. 2008). The energy cascade found in turbulent flows results in a large range of length18

scales, which complicates the analysis. However, Turner (1968), while examining grid-19

generated stratified turbulence (with no mean flow), argued that most of the mixing of the20

density field was generated by independent localized mixing events, resulting from large-21

scale turbulent eddies impacting the density interface. These findings motivated Linden22

(1973) to study isolated vortex-ring mixing events as an analogy to the intermittent23

large-eddie dynamics. Vortex rings provide a reproducible coherent structure of vorticity24

with defined length and velocity scales, making them the ideal candidate for studying25

turbulent-eddie mixing events. Indeed, Linden’s work on vortex rings has had a significant26

impact on the stratified turbulence literature (Linden 1979; Fernando 1991). Recent27

advances in experimental fluid mechanics have prompted a return to these vortex-ring28

experiments. Direct measurements of the density field evolution as a result of vortex-ring-29

induced mixing events have been recently presented in Olsthoorn & Dalziel (2015). The30

current paper presents a one-dimensional (1D) model for the mixing induced by isolated31

mixing events driven by a source of coherent (non-turbulent) energy, such as the mixing32

induced by a sequence of vortex rings. In this discussion, we will focus on mixing events33

with a length scale larger than the thickness of the density interface. Understanding34

the fluid mixing that occurs in this simplified context provides insight into the mixing35

produced by fully developed stratified turbulence.36

Building on the work of Balmforth et al. (1998), we model the stratified vortex-ring37

experiments as a coupled system of equations for the coherent vortex ring energy density38

(T ), stirring energy density (e) and the background (sorted) density field (ρ). To ensure39

the validity of this approach, we compare the model results with both numerical simula-40

tions of the mixing events (presented here) and the experimental results of Olsthoorn &41
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Figure 1: Representative snapshots of a stratified vortex-ring experiment provided every
two advective time units. This plot presents the computed azimuthal vorticity field with
overlaid velocity field vectors (left) and the evolution of the density field (right) within a
vertical light sheet. A dashed line as been added to denote the estimated initial position of
the density interface. The experimental details associated with this figure are provided in
Olsthoorn & Dalziel (2017). For reference, the parameters associated with this experiment
are Re = 2400, Ri = 2.3.
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Dalziel (2015). The mixing efficiency, calculated for all three methodologies, is shown to42

be highly consistent.43

The remainder of this discussion is organized as follows: §2 describes the mechanical44

and dynamical evolution of the physical vortex-ring experiments. Section 3 then details45

the construction of a 1D mixing model to predict the mixing within such a system. These46

model results are supplemented with numerical simulations, as described in §4. Finally,47

§5 compares the mixing efficiency results for all three methodologies, and summarizes48

these findings.49

2. Description of the Physical Vortex-Ring-Induced Mixing50

Experiments51

We attempt to model the mixing produced by a large number of independent vortex-52

ring-induced mixing experiments. Physical measurements of such a system have been53

recently reported in Olsthoorn & Dalziel (2015). In each of those experiments, a tank was54

initially filled with a stable density stratification consisting of two nearly-homogeneous55

layers with a sharp density transition between them. For the remainder of this paper,56

we will denote this type of stratification as a ‘continuous two-layer stratification’, with57

the understanding that the stratification is approximately two-layer with a continuous58

transition region between them. A sequence of vortex rings were then generated within59

the tank, such that they propagated along the direction of gravity. The maximum distance60

below the interface that any vortex ring penetrated was small compared with the depth61

of the lower layer fluid, such that the bottom of the tank did not significantly affect the62

dynamics of the flow. As each vortex ring translated under its self-induced velocity, it63

displaced the isosurfaces of the density field. The perturbation to the density field resulted64

in the production of secondary vorticity through a baroclinic torque. This secondary65

vorticity was produced directly at the location of the density interface. Lawrie & Dalziel66

(2011) have previously argued that the co-location of vorticity with the peak density67

gradients, as was the case in these experiments, will lead to a high mixing efficiency.68

Further, in a recent publication, Olsthoorn & Dalziel (2017) have demonstrated that the69

coupling of the secondary vorticity with the impinging vortex ring results in an instability70

that rapidly generates turbulence. Thus, to review, each propagating vortex ring displaces71

the isopycnal surfaces, which produces secondary vorticity that, through an interaction72

with the vortex ring, is unstable to an instability identified in Olsthoorn & Dalziel (2017).73

The subsequent turbulent production further enhances the stirring of the density field,74

generating density fluctuations down to the Kolmogorov scale. In the experiments of75

Olsthoorn & Dalziel (2015), the time interval between the generation of each vortex ring76

was sufficient to allow the fluid within the tank to become nearly quiescent (except for77

thermal fluctuations). By measuring the density field between a sequence of these mixing78

events, Olsthoorn & Dalziel (2015) quantified the mixing induced by each vortex ring.79

Figure 1 presents representative snapshots of a single stratified vortex-ring experiment.80

Although presented slightly differently, the experiment shown in figure 1 is the same as81

one of those presented in figure 2 of Olsthoorn & Dalziel (2017), to which the reader82

is referred for details on the experimental setup. Here, figure 1 shows the computed83

azimuthal vorticity field with overlaid velocity field vectors (left) and the evolution of84

the density field (right) within a vertical laser sheet. These equally spaced snapshots85

highlight the propagation of the vortex ring (figure 1(a)), the displacement of the density86

interface (figure 1(b)), followed by the production of secondary vorticity (figure 1(c)),87

the instability of the vortex ring (figure 1(d)), and the slow transition back to quiescence88

(figure 1(e)). While this figure has been generated from a single vortex-ring experiment,89
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Figure 2: Diagram of the simplified energy pathway for the vortex ring experiments. The
input of kinetic energy from the vortex ring (KEring) will lead to an increase in the
gravitational potential energy (BPE) of the system. The size of each energy reservoir
does not correspond to its relative contribution.

each of these five steps are characteristic of the vortex-ring experiments considered here.90

Note that the height of the mixing region is comparable to the diameter of the impacting91

vortex ring.92

The above description of the vortex-ring experiment’s mechanics highlights the stirring93

(and the associated production of strong density gradients) of the density field. This94

is only one component of mixing, which occurs through a combination of stirring and95

diffusion. In the vortex-ring experiments, the smallest scale features of the flow were96

produced through the turbulent eddies. Thus, we argue, that the majority of the fine97

scale stirring, and consequently the mixing, induced by the vortex ring will only occur98

once the flow becomes unstable to the instability discussed in Olsthoorn & Dalziel (2017).99

As we will see below, we construct our model such that the growth rate of the vortex-ring100

instability will limit the mixing rate.101

Both a velocity and length scare are required in order to parameterize the vortex-ring-
induced mixing. For the vortex-ring experiments, it is natural to select the vortex-ring
propagation velocity U as the characteristic velocity, and the vortex-ring diameter a as
the characteristic length scale. This paper focuses on three dimensionless parameters:
the Reynolds number (Re, the ratio of inertia to viscous forces), the Richardson number
(Ri, the ratio of buoyancy to advective forces), and the Schmidt number (Sc, the ratio
of viscous to molecular diffusion). These are defined as

Re =
Ua

ν
, Ri =

g (ρ2 − ρ1)

ρ1

a

U2
, Sc =

ν

κ
. (2.1)

Here, g is the acceleration due to gravity, ρ1, ρ2 are densities associated with the strat-102

ification, ν is the kinematic viscosity (here, ν = 1 × 10−6 m2/s) and κ is the coefficient103

of mass diffusion. In this paper, we will model the vortex-ring-induced mixing produced104

in the physical experiments and in numerical simulations (presented in §4). With each of105

these methodologies, we will ensure consistency by comparing the Reynolds, Richardson,106

and Schmidt numbers.107
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Figure 3: Diagram of the energy pathways in the model construction. The kinetic energy
of the vortex ring [T ](a) breaks down into stirring energy [e] (b), which subsequently
mixes the density profile [ρ] (c) changing the background potential energy of the system
[BPE].

Another important parameter is the kinetic energy of each vortex ring (KEring). Ac-
cording to Norbury (1973), the kinetic energy of a vortex ring is given as

KEring = CKE

(
1

2
ρ1U

2

)(
4

3
π
(a

2

)3)
. (2.2)

The constant CKE is a function of the vortex ring aspect ratio (the ratio of the core108

width to ring diameter). For the vortex rings used in Olsthoorn & Dalziel (2015), a value109

of CKE = 6.5 has been estimated, and thus we use this value when discussing the model110

experiments below.111

Figure 2 presents a diagram of the energy pathways resulting from the input of KEring.112

The propagating vortex ring produces available potential energy (APE, see Winters et al.113

(1995)) by displacing the isopycnal surfaces from their equilibrium position that, in turn,114

generates the kinetic energy (KE) associated with the secondary vorticity. In general,115

KE will produce APE in the system (and vice versa) via a reversible buoyancy flux (H).116

The instability that results from the coupling of the primary vortex ring and secondary117

vorticity then produces turbulent kinetic energy (TKE) at a rate I. This TKE production118

is coupled to (both generates and is generated by) the APE associated with the small119

scale stirring of the density field that, through diffusion, mixes the stratification at some120

rate M, increasing the background potential energy (BPE) of the system. KE (predomi-121

nantly through TKE) also viscously dissipates at a rate ε, acting as a source for internal122

energy. Diffusion of the background density profile (Dρ) will also slowly increase the BPE123
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of the system. There are additional partitions of energy in the system, such as internal124

waves, that are not specifically labeled within figure 2 as these other energy reservoirs125

do not significantly contribute to the dominant mixing mechanism. This description of126

the energy pathways is consistent with the work of Winters et al. (1995), who considered127

mixing in an oceanographic context. The total KE and APE, excluding KEring, will be128

denoted as stirring energy. Here, stirring is a result of both the coherent (reproducible)129

motions and the turbulent fluctuations. We denote the energy associated with the coher-130

ent motions as ‘coherent stirring energy’, and likewise, we denote the energy associated131

with the turbulent fluctuations as ‘turbulent stirring energy’. We argue that the turbu-132

lent fluctuations (turbulent stirring energy) are the dominant contributor to the change133

in the BPE of the system. We will return to this when we discuss the model construction.134

In the experiments, once the transient stirring energy in the system had sufficiently135

dissipated, another vortex ring was generated and the cycle repeated. This process contin-136

ued until the desired number of vortex rings was generated. We will model the repetitive137

generation of vortex rings below.138

3. Model of the Vortex-Ring-Induced Mixing Experiments139

The purpose of the present model is to predict the mixing produced by isolated vortex-140

ring-induced mixing events within a stratified fluid. To characterize this system, we model141

the coherent vortex-ring energy density (T ), the stirring energy density (e) and the142

background density field (ρ). We consider horizontally averaged quantities such that143

each variable is only a function of a single spatial (vertical) dimension and time. This144

model builds upon the conceptualization introduced in figure 2. As the majority of the145

mixing and dissipation will result from turbulent motions, we model e as a turbulent146

quantity. That is, the model includes the coherent stirring energy implicitly through the147

model breakdown parameter IM . Figure 3 presents a cartoon of the simplified model.148

Note that the evolution of e and T are dependent on the density field creating a coupled149

dynamical system for T, e and ρ. As discussed above, the coherent energy T does not150

directly mix the density field (ρ), but acts as a propagating source for e.151

This model can be written as a system of three couple differential equations:

∂tT = A− IM + S, ∂te = De − ε− gB + IM , ∂tρ = −∂zB + Dρ. (3.1)

The non-turbulent vortex ring energy density (T ) is produced (S), is advected (A), and152

will, in the presence of the stratification, feed the stirring energy, e, at a rate IM . The153

stirring energy then diffuses (De), dissipates (ε), and produces BPE via an irreversible154

buoyancy flux (B) that raises the centre of mass of the density field ρ. That is, B is155

positive semi-definite. Finally, the density field also diffuses (Dρ). Each of the operators,156

described above, will vary with the vertical coordinate z and time t.157

Balmforth et al. (1998) constructed a turbulence model that coupled the horizontally-
averaged turbulent kinetic energy and the density (buoyancy) field. That model depends
critically on a mixing length scale l, over which the turbulent eddies can mix the sur-
rounding fluid. We follow an approach similar to Balmforth et al. (1998) to model e and
ρ. In this formulation, we write:

De = ∂z [(νe + ν) ∂ze] , ε = β
e

3
2

l
, B = −ανe∂zρ, (3.2)

Dρ = κ∂2zρ. (3.3)

Here, we have augmented the previous model with an explicit kinematic viscosity (ν)
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a (10−3 m) U (10−3m/s) ∆ρ ( 10−5 kg/m3) A(m2) Re Ri Sc Notes

Phys. Exp. E1 45.2 ± 1.6 37.1 ± 1.0 1.5 - 3.9 0.4 × 0.2 1700 4.8-12.3 700
E2 48.3 ± 1.5 39.0 ± 1.5 2.1 - 4.1 0.4 × 0.2 1900 3.1-6.5 700
E3 50.6 ± 0.5 54.2 ± 1.8 1.1 - 3.8 0.4 × 0.2 2700 3.1-11.7 700
E4 49.9 ± 0.6 49.8 ± 3.3 1.8 - 7.4 0.45 × 0.45 2500 3.5-14.6 700

Resolution τ(s)
Num. Exp. N1 (70) 25.0 0.5 - 2 0.1 × 0.1 1750 5.8-22.8 3 128x128x512 30

N2 (70) 37.5 0.5 - 2 0.1 × 0.1 2625 2.5-10.2 3 128x128x512 30
N3 (70) 50.0 0.5 - 4 0.1 × 0.1 3500 1.4-11.2 3 192x192x768 40
N4 33.1 70.8 1-6 0.1 × 0.1 2343 1.3-3.9 3 128x128x512 40

Model Exp. M1 40 40 1 - 8 0.4 × 0.2 1600 2.5-19.6 1000
M2 20 20 1 - 8 0.4 × 0.2 400 4.9-39.2 1000
M3 40 40 1 - 8 0.4 × 0.2 1600 2.5-19.6 3
M4 40 40 1 - 8 0.4 × 0.2 1600 2.5-19.6 1000 Linear Strat.

Table 1: Table of the relevant characteristic parameters of the different vortex-ring cases. Data from the physical experiments was taken
from Olsthoorn & Dalziel (2015). Note that the diameter of the Hill’s vortex ring (highlighted (·)) is defined as 2R.
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L (m) z0 (m) σρ (m) H0 (m) τR (s)

Num. Exp. 0.5 0.375 0.02 0.15 30-40

Model Exp. 0.35 0.3 0.02 0.15 30

Table 2: Table of the dimensional domain parameters for the model and numerical sim-
ulation.

and molecular diffusivity (κ). Both e and ρ are primarily driven by eddie diffusion,
defined in terms of a turbulent viscosity that, on dimensional grounds, is given as νe =
l
√
e. The turbulent dissipation (ε) and buoyancy flux (B) are similarly constructed. The

parameters α and β are model constants and will be discussed below. Finally, the non-
dimensional turbulent length scale (l) will depend on the local density gradient. For a
nearly uniform density field, this length scale will be set by the vortex ring diameter
(l = a). However, where there is a strong density gradient, the vertical length scales are
constrained. The experimental work of Park et al. (1994) suggested that, in a strongly
stratified environment, the turbulent length scale will be proportional to e√

g|∂zρ|
. As

such, Balmforth et al. (1998) proposed a simple model for the length scale that preserves
these limits,

l =
a
√
e√

e− γg∂zρ
, (3.4)

with free parameter γ.158

To model the vortex-ring system, we need to augment this model with the input of
energy from the vortex ring, T . We define the advection A and breakdown IM terms as:

A = U∂zT, IM = λg

(
ρ− ρ1
ρ0

)√
T . (3.5)

The density ρ1 = ρ(z = z0) is the density at the vortex ring initialization height z0. The159

advection term (A) prescribes that T is transported vertically downward at the constant160

propagation speed U . Based upon the work of Olsthoorn & Dalziel (2017), we know161

that the stratified vortex-ring system is unstable, with a growth rate proportional to the162

bulk Richardson number of the flow. The parameterization of IM , which is constructed163

on dimensional grounds, captures this dependence (see below) with constant λ, a free164

parameter that we will set to unity.165

Finally, we must prescribe the generation rate S of the vortex rings. In this model, T
is forced periodically and instantaneously. That is, after each time interval ∆t = τR, a
vortex ring is instantaneously introduced into the system. Mathematically, this is written
as

S =

N∑
n=0

KERing

Aa
f(z − z0)δ (t− nτR) . (3.6)

Here, A is the plan area of the stratified tank and δ is a Dirac delta function. The system166

is periodically forced for a specified number of iterations N . The index n is the vortex-167

ring generation number, which identifies the number of vortex rings that have been input168

into the system. The functional form of f(z) is defined below.169
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We non-dimensionalize the physical parameters as

z′ =
z

a
, t′ =

U

a
t, (3.7)

T ′ =
T

U2
, e′ =

e

U2
, ρ′ =

ρ− ρ0
ρ2 − ρ0

, (3.8)

∆ρ′ =
ρ2 − ρ0
ρ0

, τ =
UτR
a

, K ′ =
KERing

ρ0U2Aa
, (3.9)

where the reference density ρ0 is selected to be the initial minimum density of the system.
Similarly, ∆ρ′ is defined as the difference between the initial maximum and minimum den-
sity of the system, from which we specify an initial Richardson number Ri0 = g ρ2−ρ0ρ0

a
U2 .

Finally, K ′ is the non-dimensionalized kinetic energy of the vortex ring. The model then
reduces to the following, dropping the primes for convenience:

∂tT = ∂zT − λRi0(ρ− ρ1)
√
T +

N∑
n=0

Kf(z − z0)δ (t− nτ) , (3.10)

∂te = ∂z

[(
νe +

1

Re

)
∂ze

]
− β e

3
2

l
+ αRi0νe∂zρ+ λRi0(ρ− ρ1)

√
T , (3.11)

∂tρ = ∂z

[(
ανe +

1

Re Sc

)
∂zρ

]
. (3.12)

The functional form of f is then given:

f(z) =
1√

2πσ2
exp

[
− z2

2σ2

]
, (3.13)

Here, σ = 1
4 such that the width of the forcing equals the vortex ring size.170

This model has four free parameters. The work of Tominaga & Stathopoulos (2007)171

has shown that the turbulent Schmidt (Prandtl) number α has a typical value of 0.2-172

1.3, depending on the flow structure. For the purposes of this model, we set α = 1. As173

reported in Vassilicos (2015) for decaying turbulence, the dissipation parameter β, where174

it is constant, has a value near one, and thus we set β = 1. With reference to Park et al.175

(1994), the parameter γ is order one, and thus we set this parameter to one. Based upon176

the work of Olsthoorn & Dalziel (2017), we suggest that the value of λ is also O(1). The177

vortex breakdown parameter λ is therefore also set to one. Thus, in this paper we restrict178

ourselves to the case where the free parameters are all set to unity. We return to this179

later.180

The model was implemented on a uniform grid, using pseudospectral spatial derivatives181

and a first-order semi-implicit time stepping scheme. The computational domain was182

defined with 1024 grid points. Varying the number of grid points demonstrated that this183

resolution was sufficient for the parameter sets presented here. The code was shown to184

preserve mass to near machine precision. Adaptive time stepping was used to control the185

total energy conservation, which had a relative energy loss typically within O(10−4). A186

spectral filter was also used to limit the aliasing of the Fourier modes.187

We ran a set of model experiments (runs) in a manner similar to that described
for the physical experiments in §2. Four parameter cases were performed, which pre-
scribe the functional form of the stratification and the vortex-ring parameters. We label
these model cases M1-M4. For each of these cases, four different stratification strengths
(∆ρ = {0.01, 0.02, 0.04, 0.08}) were set, resulting in a total of 16 runs. As described in
§2, each model run will comprise of sequentially generated vortex rings enumerated as
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Figure 4: Plot of the evolution of the density profiles for one run (∆ρ = 0.01) from each
of the model cases. Here, model experiments (a) M1, (b) M2: High Ri, (c) M3: Low Sc,
and (d) M4: Linear Stratification are all presented. Density profiles are plotted just prior
to the generation of vortex ring n = {0, 125, 250, 375}.

n = {0, 1, 2, .., N}, for a total of N = 500 generated vortex rings in each of the 16 runs,
as prescribed by equation (3.13). The parameters associated with each of these runs are
presented in table 1. In the first three model cases (M1-M3), similar to the experiments
of Olsthoorn & Dalziel (2015), a continuous two-layer density profile was specified using
a tanh function, with an initial interface height of H0 and an interface thickness of σρ.
These density profiles are prescribed as

ρM1−M3(z, t = 0) =
1

2

(
1− tanh

[
z −H0

σρ

])
. (3.14)

The dimensionalized initial conditions are given in table 2 and were selected to approxi-
mate the physical experiments performed with salt-water in Olsthoorn & Dalziel (2015).
The fourth case (M4) was initialized with a linear stratification, given

ρM4(z, t = 0) = (z − L). (3.15)

Here, L is the height of the domain.188

Figure 4 shows the evolution of the density profiles for one run (∆ρ = 0.01) from189

each of the four model cases. Density profiles were plotted just prior to the generation190

of vortex ring n = {0, 125, 250, 375}. The results show excellent qualitative agreement191

with the physical experiments. We observe that, as in Olsthoorn & Dalziel (2015), the192

evolution of the density profiles is defined by three generic characteristics. First, the193

vortex rings sharpen the density interface. Second, the vortex rings generate a middle194

fluid layer that is near homogeneously mixed. Third, the growth of the middle fluid layer195

is limited by the vortex ring injection height.196

Comparison of figure 4(a)(Model Exp. M1) and figure 4(b)(M2) demonstrates how197

the density field evolution changes for different vortex ring parameters (M1 : Re =198

1600,Ri = 2.5 versus M2 : Re = 400,Ri = 4.9). The same characteristic evolution of the199
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Figure 5: Plot of the partition of energy between the integrated vortex-ring energy (VRE)
and stirring energy (SE) for vortex ring n = 250. The change in potential energy (∆BPE)
and the integrated dissipation (D) are also plotted. Time has been normalized by the
inter vortex-ring spacing τ . Data has been plotted for M1 with ∆ρ = 0.01.

.

density profiles is observed for M2, though only a small amount of scouring of the density200

interface has occurred due to the decrease in kinetic energy input. Figure 4(c)(M3) varies201

the molecular diffusivity (κ) of the stratification (Sc = 3 versus Sc = 1000). Again, the202

same features of the density profiles are observable, except that the vortex rings are203

no longer able to effectively sharpen the lower interface as it diffuses. Due to the finite204

domain size, significant diffusion of the density interface can limit the run time of the205

model. This will be important when discussing the numerical simulations below. Finally,206

figure 4(d)(M4) encapsulates the effect of a different initial background stratification207

(linear profile), demonstrating the same characteristic evolution, although we have no208

matching physical experiments against which to compare these runs.209

Figure 5 shows the partition of energy for the model experiments for a single mixing210

event (n = 250) of M1 (∆ρ = 0.01). This shows the integrated vortex-ring energy (VRE211

=
∫ L
0
Tdz′ ) and integrated stirring energy (SE =

∫ L
0
edz′ ), along with the change212

in background potential energy (∆BPE) of the system (correcting for the background213

diffusion Dρ). The integrated dissipation (D =
∫ t
tn

∫ L
0
εdz′dt′) has also been plotted. We214

observe that the mixing is temporally confined near the peak in e, as emphasized in §2.215

However, data on the time-dependent dissipation and mixing rates are not available for216

the physical experiments and thus comparison is limited to that of the density profiles217

ρ(z, t).218

4. Simulation of the Vortex-Ring-Induced Mixing Experiments219

We validate the 1D model results using a 3D pseudospectral numerical solver (SPINS;
see Subich et al. (2013)) to solve the incompressible Navier-Stokes equations under the
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Boussinesq approximation. These equations can be written as

(∂t + u · ∇)u = −∇p− Riρgẑ +
1

Re
∇2u, (4.1)

(∂t + u · ∇) ρ =
1

Re Sc
∇2ρ, (4.2)

∇ · u = 0. (4.3)

Here, u and p are the velocity and pressure fields, respectively. Boldface variables denote220

vector quantities.221

Experimental visualizations of the interaction of a vortex ring with a stratified inter-222

face (see Olsthoorn & Dalziel (2017)) demonstrate that, where the vortex ring propagates223

parallel to the direction of gravity, the flow field remains predominantly axisymmetric224

about the vortex ring axis throughout the majority of the interaction, despite the forma-225

tion of a three-dimensional instability. In order to facilitate the numerical computations,226

we take partial advantage of this symmetry by simulating a quarter ring in a triply peri-227

odic, free-slip (cosine transform) domain. The parameters associated with the numerical228

simulations can be found in table 1. Grid resolution studies determined that the resolu-229

tion (see table 1) was sufficient to estimate the mixing efficiency, although we note that230

we do not resolve down to the Batchelor scale of the flow. As with the model results,231

a high molecular diffusivity results in a thick density interface, which will eventually232

violate the continuous two-layer setup considered here, and will limit the run-time of233

each experiment. Thus, we desire the lowest diffusivity that is computationally viable. In234

these simulations, we select Sc = 3. Four sets of numerical simulations were performed.235

The initial density stratification for each case was defined via a tanh profile similar to236

(3.14). See table 2 for the initial conditions.237

Three sets of simulations (Num. Exp. N1-N3) were initialized with a Hill’s spherical
vortex as it is a classical vortex ring solution. The Hill’s vortex can be written as

ur =


3
2U

zr
R2 r 6 R

3
2U

zr
R2

(
R2

z2+r2

) 5
2

r > R
, uz =


3
2U
(

5
3 −

2r2+z2

R2

)
r 6 R

U

[(
R2

r2+z2

) 5
2
(

2z2−r2
2R2

)
− 1

]
r > R

.

In this paper, R is the radius of the Hill’s vortex, and U < 0 is its propagation speed. We238

note that there is a mismatch between the definition of the Hill’s vortex diameter (2R)239

and the experimentally measured vortex-ring diameter that was defined as the distance240

between vorticity centroids (see Olsthoorn & Dalziel (2015)). A random initial velocity241

perturbation of O(10−4), relative to the vortex-ring propagation speed, was added to the242

numerical simulations in order to trigger any instabilities in the interaction between the243

vortex ring and the stratification.244

For the fourth set of simulations (N4), a different initial condition was used to assess245

the dependence of the results on the ring aspect ratio (core size/ring diameter). Similar246

to Archer et al. (2009), a vorticity distribution was initialized into the numerical solver247

(we used an azimuthally rotated shielded dipole) that, when time evolved, produced a248

coherent vortex ring. This resultant non-spherical vortex ring was then used as the initial249

condition for the numerical mixing simulations. Fitting the vortex core to a Gaussian250

distribution, we estimate the aspect ratio of this vortex ring to be 0.17. In the physical251

experiments, the vortex rings had an aspect ratio of ≈ 0.1.252

As with the experimental setup described in §2, and the model setup described in §3,253

the simulations were run by generating vortex rings that interact with the stratification.254

The flow was then evolved until the velocity field dissipated sufficiently. After a delay255
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Figure 6: Plot of the sorted density profile every twenty vortex ring generations of one
numerical simulation (N3: Re = 3500, Ri = 2.75). A solid line is drawn at z = z0.

(τ), the velocity field for a new vortex ring was superimposed (by addition) onto the256

residual velocity field. This cycle was repeated until the desired number of iterations257

was achieved. We set the end time to be 100 vortex rings. Thirteen different parameter258

cases (requiring 1300 simulations) were performed for various Reynolds and Richardson259

numbers, the details of which can be found in table 1. As with the experimental results of260

Olsthoorn & Dalziel (2015) and the model results above, there is an initial setup period,261

within which the functional form of the stratification varies. After this setup period, the262

stratification tends to a self-similar form and the mixing rate is nearly constant, and it263

is this value that is reported.264

Figure 6 shows the sorted density profile every 20 vortex ring generations for one265

numerical simulation (N3: Re = 3500, Ri = 2.75). Here, we again observe the same char-266

acteristic features of the background density field evolution. Note the similarity between267

figure 4(c) and figure 6. As before, the diffusion of the background stratification is signif-268

icant and must be accounted for when considering the mixing rate of each vortex ring.269

270

Additionally, figure 7(a) shows the evolution of the distribution of energy into its var-271

ious compartments for the first vortex ring of one numerical simulation (N3: Re = 3500,272

Ri = 2.75). This figure is reminiscent of figure 5 from the model results. In particular,273

the time dependence of the mixing (M) and the total dissipation (D) provided in figure274

7(a) are similar to those found previously in figure 5, though their relative values are275

different. Unlike the model, the numerical simulations explicitly support the generation276

of APE. Associated with this APE is the generation of internal waves that manifest277

as oscillations between the APE and the kinetic energy (KE). Figure 7(b) shows the278

relative energy distribution prior to the generation of a new vortex ring, for all vortex279

ring generations. This plot quantifies the incremental change to the mixing rate of each280

subsequent vortex ring. Both panels (a)-(b) have been normalized by the initial vortex-281

ring energy (E) and the interval τ between vortex rings for comparison with the model282
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Figure 7: (a) Plot of the energy partition for the first vortex ring interaction of Num.
Exp. N3 (N3: Re = 3500, Ri = 2.75). Note that the KE is initially slightly above 1 as
a result of the initial perturbation. (b) Plot of the energy partition at the end of each
subsequent n vortex ring interactions.

results. Typical net relative energy loss at time t = τ is 5 × 10−3. Due to the late-time283

exponential decay of the internal waves generated, there will always be some residual284

stirring energy (RE = KE + APE at t = τ) in the system prior to subsequent vortex ring285

generations. As there is a practical limitation on the length of each numerical simulation,286

we terminated the simulations when RE
KEring

= O(10%). The physical experiments also287

have RE, though it is much less than that of the numerical simulations, as we can wait288

longer between vortex ring generations at almost no cost. As this residual energy remains289

nearly constant with subsequent vortex ring generations, the RE will have a small, near290

constant, contribution to the increase in BPE of the system, when compared to the mean291

mixing rate of each vortex ring. As mentioned above, these simulations demonstrate an292

initialization period, after which the change in potential energy of the system is near293

constant.294

5. Discussion and Conclusion295

For each experiment, we compute the ratio of the change in background potential
energy (∆BPE) between successive vortex rings (∆t = τ) versus the energy of the input
vortex ring (KEring). We define this ratio as the mixing efficiency (η), indicating the
amount of background potential energy change for a given energy input. This definition
of the mixing efficiency is unambiguous where RE = 0. Where RE 6= 0, provided that
the RE is constant between vortex ring generations, the associated mixing will also be
constant and the interpretation of the mixing efficiency remains well defined over the
interval between vortex rings. The mixing efficiency is then computed as

η =
∆BPE−∆PEκ

KEring
, where ∆BPE = gAρ0∆ρa2

∫ [
ρ(n+1)
s − ρ(n)s

]
zdz. (5.1)

Here, ρ
(n)
s is the sorted density profile after n vortex rings have been produced. The296

change in BPE is corrected for the diffusive increase in potential energy (∆PEκ =297

gAκτ (ρ(0)− ρ(L))) as we are interested only in the contribution due to the vortex ring.298
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Comparing the model, numerical simulations and physical experiments, figure 8 shows299

the mixing efficiency determined for all cases identified in table 1. In this plot, the mixing300

efficiency is near constant with Ri. Error bars are computed as the root mean squared301

error from the associated mean mixing efficiency value, once the system has completed its302

initial setup period. We observe that the mixing efficiency of the numerical simulations303

(ηN ≈ 0.45) is slightly higher than the physical, salt-water experiments (η0 ≈ 0.42),304

as would be expected from the lower Sc. (The computational resources necessary to305

use the experimental value of Sc were not available.) The mixing efficiencies found in306

the model are consistently higher still (ηM ≈ 0.49) than the numerical simulations or307

physical experiments, though it is still within the experimental uncertainty of the physical308

experiments.309

As we have noted previously, the model is dependent on four free parameters (α, β, γ, λ).310

Figure 9 presents the linear parameter analysis for the four free model parameters. In311

each of the four plots, one of the four parameters was varied while the other three were312

held constant. In each case the mixing efficiency was computed for one run of case M1313

(∆ρ = 0.01) at n = 100. We note that an increase in the dissipation parameter β by314

≈ 15% (see figure 9(b)) would account for the difference between the experimental value315

of the mixing efficiency and the model runs. It is worth noting that that the parameters316

associated with the dissipation rate are where most of the sensitivity of the model resides.317

A more precise parameter selection is left for future work.318

As the Richardson number decreases below O(1), the mixing efficiency dependence319

on Ri becomes more ambiguous. Indeed, recent work by Shrinivas & Hunt (2015) has320

indicated that the vertical confinement of turbulent mixing may change the mixing ef-321

ficiency dependence on Ri. This confinement will be especially pronounced at low Ri322

due to the deep penetration of the vortex rings into the lower layer. The confinement is323

entirely omitted in the model due to its 1D construction. As the effect of confinement324

will influence the three-dimensional structure of the flow, one might initially model it by325

modifying the propagation speed (U) of the vortex rings near the boundaries. We do not326

attempt this here.327

Finally, we want to highlight that the mixing efficiency is defined here as an aggregate,328

time-independent quantity. That is, the net fluid mixing that results from a given energy329

input. This definition suggests that vortex rings are effective mixers as they transport330

energy directly to the density interface (with minimal dissipation), produce vorticity331

directly at the location of the peak in the density gradient (which Lawrie & Dalziel332

(2011) argued would result in a high mixing efficiency), and, through a flow instability333

(see Olsthoorn & Dalziel (2017)), generate turbulence. This series of events enables each334

vortex ring to create a near optimal mixing state such that nearly all the vortex ring335

energy is deposited directly at the location of peak mixing. That is, the kinetic energy336

of the vortex ring produces stirring energy at the location of peak density gradient.337

In addition, turbulent stirring energy is generated at a rate proportional to the bulk338

Richardson number of the system, which is essential for the system to establish a self-339

similar density profile. The model, which is a simplification of the vortex ring system,340

emphasizes this picture by only generating stirring energy (at a rate proportional to341

the bulk Richardson number) where the density field is not constant; where mixing can342

occur. This is in contrast to grid generated turbulence, which dissipates significantly343

before reaching the density interface.344

This paper presents a model for isolated vortex-ring-induced stratified mixing exper-345

iments. This work has been shown to provide qualitative and quantitative agreement346

with both physical experiments and numerical simulations. At moderate Ri, the mixing347

efficiency of the vortex rings has been shown, in all three methodologies, to be near con-348
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Figure 8: Mixing efficiency as a function of Richardson number for the model, numerical simulations, and physical experiments found in
table 1. The black solid line corresponds to the mean mixing efficiency of the physical experiments (η0 = 0.42). The dashed red line is the
estimated mixing efficiency of the numerical simulations (ηN = 0.45).
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stant after an initialization period with very similar asymptotic values. This constant349

mixing efficiency regime of the vortex-ring experiments has been previously reported in350

Olsthoorn & Dalziel (2015), although the numerical work found in this paper demon-351

strates this regime at a much lower Schmidt number (Sc = 3 versus Sc = 700). The 1D352

model constructed in the paper encapsulates the essential features of the energy pathways353

for the vortex-ring-induced mixing experiments. In particular, this work highlights the354

important contribution of the vortex-ring breakdown being proportional to the Richard-355

son number (IM ∝ Ri0). As demonstrated in Olsthoorn & Dalziel (2017), the dominant356

vortex-ring instability in the strongly stratified system (Ri> O(1)) has a growth rate357

proportional to the bulk Richardson number of the flow. This model demonstrates that358

the identified vortex-ring instability plays a key role in establishing the constant mixing359

efficiency regime.360

We study vortex-ring-induced mixing in analogy to large-scale turbulent-eddie mixing361

events. However, it should be clear that stratified turbulence is characterized by its362

large range of length scales and complex flow structures. As such, a natural extension363

of the present model would investigate a convolution of the individual mixing events364

discussed here. Future work will investigate the application of this model to a mixing365

box experiment, similar to the one described in Turner (1968).366
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