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This paper investigates the effects of finite flat porous extensions to semi-infinite imper-
meable flat plates in an attempt to control trailing-edge noise through bio-inspired adap-
tations. Specifically the problem of sound generated by a gust convecting in uniform mean
steady flow scattering off the trailing edge and permeable-impermeable junction is con-
sidered. This setup supposes that any realistic trailing-edge adaptation to a blade would
be sufficiently small so that the turbulent boundary layer encapsulates both the porous
edge and the permeable-impermeable junction, and therefore the interaction of acoustics
generated at these two discontinuous boundaries is important. The acoustic problem is
tackled analytically through use of the Wiener-Hopf method. A two-dimensional matrix
Wiener-Hopf problem arises due to the two interaction points (the trailing edge and
the permeable-impermeable junction). This paper discusses a new iterative method for
solving this matrix Wiener-Hopf equation which extends to further two-dimensional prob-
lems in particular those involving analytic terms that exponentially grow in the upper
or lower half planes. This method is an extension of the commonly used “pole removal”
technique and avoids the needs for full matrix factorisation. Convergence of this iterative
method to an exact solution is shown to be particularly fast when terms neglected in
the second step are formally smaller than all other terms retained. The new method is
validated by comparing the iterative solutions for acoustic scattering by a finite imper-
meable plate against a known solution (obtained in terms of Mathieu functions). The
final acoustic solution highlights the effects of the permeable-impermeable junction on
the generated noise, in particular how this junction affects the far-field noise generated
by high-frequency gusts by creating an interference to typical trailing-edge scattering.
This effect results in partially porous plates predicting a lower noise reduction than fully
porous plates when compared to fully impermeable plates.

1. Introduction
The noise generated by aerodynamic bodies in fluid flow has motivated significant

research for decades, ranging from simple analytical models for flat plates in uniform flow
with unsteady perturbations (Amiet 1975) to high-fidelity numerical models that predict
the noise generated by turbulent interactions with realistic thick aerofoils (Gill et al.
2013; Allampalli et al. 2009; Lockard & Morris 1998; Kim & Haeri 2015). A particularly
important and unavoidable source of aerofoil noise is so-called trailing-edge noise which is
generated by turbulence in the boundary layer scattering off the sharp trailing edge of an
aerofoil. The analytic work of Howe (1998) presents a simplified picture of a line vortex
interacting with the trailing edge of a semi-infinite flat plate and predicts the effects of
a rigid trailing-edge condition on the acoustic scattering. With this boundary condition

† Email address for correspondence: A.Kisil@damtp.cam.ac.uk
‡ Email address for correspondence: L.J.Ayton@damtp.cam.ac.uk



2 A. Kisil, & L. J. Ayton

being key to the total level of far-field noise generated by turbulence-edge interaction,
it is clear why the next steps into the investigation of reducing trailing-edge noise were
to consider adapted trailing edge designs, for example a serrated edge (Lyu et al. 2016;
Oerlemans 2016), a rough surface canopy (Clark et al. 2016), or a porous and/or flexible
edge (Jaworski & Peake 2013; Schlanderer & Sandberg 2016; Geyer & Sarradj 2014).
These adapted designs are inspired by the silent flight of owls, first discussed by (Graham
1934), and now with increasing pressure on the aviation industry to reduce aircraft noise
(European Commission 2011) are of great interest worldwide.

In order to understand and quickly predict any noise-reduction capabilities of adapted
trailing-edge designs we turn to analytic solutions to elucidate the physics of the fluid-
structure interactions. Recently (Jaworski & Peake 2013) used the Wiener-Hopf technique
to obtain an analytic solution capable of predicting the far-field trailing-edge noise from
a semi infinite poroelastic plate in uniform flow of characteristic Mach number M < 1.
It is shown that, whilst a rigid impermeable edge has a far-field acoustic power scaling of
M5 (Ffowcs Williams & Hall 1970), scalings ofM6 andM7 can be achieved with suitable
tuning of the porosity and elasticity of the edge. A further key insight is that porosity is
seen to dominate low-frequency noise reduction, whilst elasticity affects high-frequency
noise. The work of Jaworski & Peake (2013) has recently been extended to consider the
effects of a finite leading edge (Cavalieri et al. 2016) although in this case the full plate is
poroelastic. Practical application of trailing edge adaptations would be restricted to short
extensions to minimise adverse aerodynamic effects, therefore it is sensible to assume the
turbulent boundary layer would encounter both rigid and porous sections of a plate. For
this reason in this paper we investigate the noise generated by a gust convecting over a
semi-infinite rigid plate with finite porous extension. To do so we use the Wiener-Hopf
technique.

The Wiener-Hopf technique (Noble 1958) affords itself to the scattering of sound by
edges since these are problems with mixed boundary conditions: a velocity condition on
the plate y = 0, x < 0, and a pressure continuity condition behind the plate y = 0, x >
0. With two mixed boundary conditions like these, one constructs a one-dimensional
(or scalar) Wiener-Hopf problem requiring the multiplicative factorisation of a scalar
kernel function, K(α), into two parts that are analytic in the upper and lower halves
of the complex α-plane, i.e. K(α) = K+(α)K−(α), where ± denotes analyticity in the
upper/lower half plane respectively. Analytic factorisations are tractable in some cases,
such as the Sommerfeld diffraction problem (Crighton et al. 1996), however in more
complicated situations such as the poroelastic plate of (Jaworski & Peake 2013) closed-
form factorisation can only be found in certain asymptotic limits, and otherwise have to
be computed numerically.

In more complicated scattering problems with more than two mixed boundary condi-
tions, such as a finite elastic strip (Scott 1992), or a perforated plate (Abrahams 1999),
one is faced with a matrix kernel to factorise. The general question of constructive ma-
trix Wiener–Hopf factorisation is open: (Lawrie & Abrahams 2007; Rogosin & Mishuris
2016). In this paper we are concerned with a class of Wiener–Hopf equations with trian-
gular matrix functions containing exponential factors. More precisely finding functions
Φ

(0)
− (α), Φ

(L)
− (α), Ψ

(0)
+ (α) and Ψ

(L)
+ (α) analytic in respective half-planes, satisfying the

relationship(
Φ

(0)
− (α)

Φ
(L)
− (α)

)
=

(
A(α) B(α)eiαL

C(α)e−iαL 0

)(
Ψ

(0)
+ (α)

Ψ
(L)
+ (α)

)
+

(
f1(α)
f2(α)

)
, (1.1)

on the real line. The remaining functions A(α), B(α) and C(α) are known and L is a
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positive constant. Many problems have a Wiener–Hopf equation of this type (Antipov
2015; Aktosun et al. 1992) or could be reduced to such equation by performing matrix
manipulations. Presently no complete solution of (1.1) is known. We note that there is
an additional difficulty in finding a factorisation of the matrix in (1.1) because of the
presence of analytic functions eiαL and e−iαL which have exponential growth in one of
the half-planes.

In the literature concerning applications of the Wiener–Hopf technique, one of the most
widely used methods is so-called “pole removal” or “singularities matching” (Noble 1958,
§ 4.4, 5.3); (Daniele & Zich 2014, § 4.4.2). It has a severe limitation that certain functions
have to be rational or meromorphic. One way to extend the use of this method is by
employing a rational approximation (Abrahams 2000; Kisil 2013), which was successfully
used in (Abrahams et al. 2008; Abrahams 1996; Veitch & Peake 2008). However, even
with this extension the class of functions which can be solved is rather limited. In Ayton
(2016) scattering by a finite flat plate with poroelastic extension is considered yielding
a 3 x 3 Wiener-Hopf matrix system. The far-field acoustics are obtained by employing
rational approximations, however this approach cannot be used to determine mid- or
near-field results accurately since the functions involved are not meromorphic and cannot
be accurately represented by rational functions everywhere. Additionally, the results were
most accurate in Ayton (2016) when considering high frequency interactions. In this
paper we propose a different extension to the pole removal technique for functions that
have arbitrary singularities. This new method is suitable for accurately predicting the
scattered field everywhere, and is not restrictive on frequency. This new method could also
be extended to higher-dimensional matrices, however in this paper we shall specifically
only consider 2 x 2 matrices.

The proposed procedure is related to Schwarzschild’s series. In the original paper
(Schwarzschild 1901) Schwarzschild studied diffraction of a normal incidence plane wave
by a slit of finite length in a perfectly conducting screen. This was achieved by considering
the diffractions from the each half-planes as a sequence of excitations from the other. This
was later extended to near-normal incidence in (Karp & Russek 1956) and to all angles in
(Millar 1958; Grinberg 1957). Schwarzschild’s series relates to a more general framework
of Geometric Theory of Diffraction (Keller 1962) and the Physical Theory of Diffraction,
see Ufimtsev et al. (2003, § 8.7.3). What is common between all those approaches and the
one proposed in this paper is the idea of solving parts of the problem and then bringing
the parts together in an iterative manner. Recently, the Schwarzschild’s series were used
in (Lyu et al. 2016; Roger & Moreau 2005) but only to obtain the scattered pressure
on the surface of the flat plate, and the far-field sound was obtained using the surface
pressure integral based on the theories of Kirchhoff and Curle.

The proposed procedure in this paper could be summarised as follows (see Section 3
for details):
(a) A partial factorisation with exponential factors in the desired half-planes.
(b) Additive splitting of some terms.
(c) Application of Liouville’s theorem.
(d) Iterative procedure to determine the remaining unknowns.

Importantly, this method is entirely algorithmic and bypasses the need to construct
a multiplicative matrix factorisation. Theoretical aspect of this method were addressed
in (Kisil 2017). We validate the method by considering the two-dimensional Wiener-Hopf
problem of the scattering of a sound wave by a finite impermeable plate, which has a
known solution (McLachlan 1964). We then use the method to investigate the generation
of sound by a gust convecting in uniform flow over a semi-infinite impermeable plate with
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Figure 1: Diagram of the model problem: a semi-infinite rigid plate lies in y = 0, x < 0,
and a finite porous plate lies in y = 0, 0 < x < L. An unsteady perturbation, φi, convects
with the mean flow in the positive x direction.

a finite porous extension. We use these results to investigate the effects of a impermeable-
permeable junction on the results predicted by (Jaworski & Peake 2013).

We present full details for the derivation of the porous-extension problem in Section
2, followed by the iterative Wiener-Hopf method in Section 3. In Section 4 we briefly
discuss the appropriate formulation of the finite-plate problem. In Section 5.1 we present
results validating the new Wiener-Hopf factorisation method by comparing our finite
plate results to the known solution, then in Section 5.2 we present results for the gust
interacting with a porous extension and the effects of an impermeable-permeable junction
on the noise reduction predictions of Jaworski & Peake (2013). Finally we discuss our
conclusions in Section 6.

2. Formulation of the problem
In order to investigate the effect of a finite porous edge on trailing-edge noise, we con-

sider the generation of noise by a convective gust with velocity potential φi(x, y)eik3z−iωt

interacting with a semi-infinite impermeable plate, x ∈ (−∞, 0), y = 0, with a porous
edge, x ∈ (0, L), y = 0, such that the impermeable-permeable junction is at x, y = 0,
as illustrated in Figure 1. The steady background mean flow is parallel to the plate in
the positive x-direction and has Mach number M . The matrix Wiener–Hopf problem is
obtained by considering the Fourier transform of appropriate boundary conditions with
respect to the ends of the porous plate at x = 0 and x = L.

We introduce a scattered velocity potential of the form

φ1(x, y)eik3z−iωt,

and in what follows, the time factor e−iωt will be omitted and we shall neglect the
z-dependence (k3 = 0).

The velocity potential φi associated with a gust incident at angle θi to the x axis with
wavenumber k0 is

φi = exp(ik0x cos θi − ik0y sin θi). (2.1)
The governing convective Helmholtz equation is

(1−M2)
∂2φ1
∂x2

+
∂2φ1
∂y2

− 2i
ω

c0
M
∂φ1
∂x

+
ω2

c20
φ1 = 0, (2.2)

with ω = k0 cos θiMc0 and c0 is the speed of sound.
We apply a convective transform,

φ1 = φ eik0 cos θiM
2x/β2

, (2.3)

where β2 = 1 −M2, and the Prandtl-Glauert transformation (y → βy) to reduce the



Aerodynamic noise from edges with porous extensions 5

governing equation to ( ∂

∂x2
+

∂

∂y2
+ w2

)
φ = 0,

where w = δM , with δ = k0 cos θi/β
2. Full details of the convective transform and

Prandtl-Glauert scaling can be found in Tsai (1992).
The boundary conditions on the impermeable and permeable sections are;

∂φ(x, y)

∂y
+
∂φi(x, y)

∂y
= 0, y = 0, −∞ < x < 0, (2.4)

∂φ(x, y)

∂y
+
∂φi(x, y)

∂y
=
µ

2
∆ (φ(x, 0) + φi(x, 0)) , y = 0, 0 < x < L, (2.5)

respectively, where ∆ stands for the jump across y = 0+ and y = 0−, and µ is the
porosity parameter (µ = αHKR/(πR

2β)) for a porous plate with evenly-spaced circular
apertures of radius R, Rayleigh conductivity of KR = 2R, and fractional open area αH
(see Howe (1998)). The conditions on the permeable section are equivalent to impedance
boundary conditions. We require the length scale of the incident disturbance to be larger
than the aperture radius, k0R � 1, and the fractional open area to be small, α2

H � 1,
so that the porous boundary condition provides a first-order correction accounting for
the perforations in the plate. We shall focus on small µ values as this will be beneficial
later to ensure rapid convergence of the iterative method. For comparison, the range of
corresponding µ values investigated by Jaworski & Peake (2013) in connection to the
silent flight of owl is µ ∈ [10−9, 12.24].

We require

φ(x, 0) + φi(x, 0) = 0, x > L, (2.6)

to ensure continuity of pressure downstream of the plate. Also ∂φ(x,y)
∂y (which will be

denoted by φ′(x, y) ) must be continuous across y = 0

∂φ(x, 0+)

∂y
=
∂φ(x, 0−)

∂y
, y = 0. (2.7)

The solution, φ, is required to satisfies the Sommerfeld radiation condition for outgoing
waves at infinity,

r−1/2
(
∂φ

∂r
− ik0φ

)
→ 0, where r =

√
x2 + y2, (2.8)

and the edge conditions are taken as in Noble (1958, § 2.1) to achieve the least singular
solutions.

φ(x, 0)→ c1, as x→ 0−, (2.9a)
φ(x, 0)→ c2, as x→ L−, (2.9b)
∂φ(x, 0)

∂y
→ c3x

−1/2, as x→ 0+, (2.9c)

∂φ(x, 0)

∂y
→ c4x

−1/2, as x→ L+, (2.9d)

where ci are constants. The two conditions at L impose the unsteady Kutta conditions,
see Ayton et al. (2016) for more details.
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2.1. Reduction to Wiener–Hopf Equation
The next step is to write down the relationship between different half-range Fourier
transforms by using the boundary conditions. These relations can be combined to form
a matrix Wiener–Hopf equation.

We define the half-range and full-range Fourier transforms with respect to x = 0 by

Φ(α, y) =

∫ 0

−∞
φ(ξ, y)eiαξdξ +

∫ ∞
0

φ(ξ, y)eiαξdξ,

=Φ
(0)
− (α, y) + Φ

(0)
+ (α, y),

and the Fourier transforms with respect to the point x = L by

Φ(L)(α, y) =

∫ L

−∞
φ(ξ, y)eiα(ξ−L)dξ +

∫ ∞
L

φ(ξ, y)eiα(ξ−L)dξ,

=Φ
(L)
− (α, y) + Φ

(L)
+ (α, y).

At the end of the analysis the inverse Fourier transforms are applied. The relation between
the transforms is

Φ(L)(α, y) = Φ(α, y)e−iαL.

We can also define the transform of the finite interval only

Φ1(α, y) =

∫ L

0

φ(ξ, y)eiαξdξ,

and note that

Φ1(α, y) = eiαLΦ
(L)
− (α, y)− Φ

(0)
− (α, y).

Now transforming the boundary conditions for the rigid plate, (2.4), we obtain

Φ
′(0)
− (α, 0) = −Φ

′(0)
i− (α, 0). (2.10)

From the condition on the porous plate, (2.5),

Φ
′

1(α, 0) + Φ
′

i 1(α, 0) = µΦ1(α, 0). (2.11)

where we use Φ1(α, 0+) = −Φ1(α, 0−). Finally from (2.6) we obtain

Φ
(L)
+ (α, 0) = 0. (2.12)

The solution to the governing equation can be written as

Φ(α, y) = sgn(y)A(α)e−γ|y|, (2.13)

where γ(α) =
√
α2 − w2 (were the branch cuts are chosen in the standard way, see Noble

(1958, pg 9). The Wiener-Hopf equations are now obtained from the following relation-
ships

Φ
′(0)
− + Φ

′

1 + eiαLΦ
′(L)
+ = −γeiαL(Φ

(L)
+ + Φ

(L)
− ), (2.14)

Φ
′(0)
− + Φ

′(0)
+ = −γeiαL(Φ

(L)
+ + Φ

(L)
− ), (2.15)

by substituting the known transforms (2.10),(2.11) and (2.12), and using the relation-
ship Φ′(α, y) = −γΦ(α, y). The Wiener–Hopf equations can now finally be written (by
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substituting an expression for Φ
(L)
− from (2.14) to (2.15)) as:(

Φ
(0)
− (α)

Φ
(L)
− (α)

)
= −

(
1

γ(α) − P PeiαL

1
γ(α)e

−iαL 0

)(
Φ
′(0)
+ (α)

Φ
′(L)
+ (α)

)
−
(
f1(α)
f2(α)

)
, (2.16)

where P = −1
µ . The forcing provided by the gust is

f1 =
k0 sin θi

γ(α)(α+ δ)
+
k0 sin θi
(α+ δ)

(−P + Pei(α+δ)L) +
1

i(α+ δ)
ei(α+δ)L, (2.17)

and

f2 =
k0 sin θi

γ(α)(α+ δ)
e−iαL +

1

i(α+ δ)
eiδL. (2.18)

We note that on the left hand side of (2.16) the unknown functions are minus half-
transforms, Φ

(0)
− (α) and Φ

(L)
− (α), and on the right are the derivatives of the plus half-

transforms, Φ
′(0)
+ (α) and Φ

′(L)
+ (α).

The behaviour of various transforms at infinity is determined by the edge conditions
(2.9). We have Φ

(0)
− (α) → α−1 and Φ

(L)
− (α) → α−1 as α → ∞ in the lower half-plane,

and Φ
′(0)
+ (α)→ α−1/2 and Φ

′(L)
+ (α)→ α−1/2 as α→∞ in the upper half-plane.

2.2. Far-field acoustic directivity
Supposing we can solve (2.16) for the unknown Φ terms, we can determine the full
acoustic solution, (2.13), which can be written as

Φ(α, y) = Φ
(L)
− (α, 0)sgn(y)e−γ|y|

This can be inverted to obtain the velocity potential

φ(x, y) =
sgn(y)

2π

∫ ∞
−∞

Φ
(L)
− (α, 0)e−iαx−γ|y|dα,

which for x, y →∞ can be approximated by the method of steepest descents to yield

φ(r, θ) ∼
√
we−πi/4√

2π
Φ

(L)
− (−w cos θ, 0) sin θ

eiwr√
r

where (r, θ) are polar coordinates measured from the rigid-porous junction, x = y = 0.
The far-field directivity, D(θ), is then defined via

φ(r, θ) ∼ D(θ)
eiwr√
r
, r →∞. (2.19)

3. Approximate Wiener–Hopf Factorisation
We look for an approximate matrix factorisation of (2.16). We will be using the stan-

dard results in the theory of scalar Wiener–Hopf factorisation, and in what follows a su-
perscript/subscript + (or −) indicates that the function is analytic in the upper (lower)
half-plane. Functions without the superscript/subscript are known. A convention is in-
troduced here to distinguish the additive and the multiplicative factorisation by using a
superscript and subscript notation (e.gK(α) = K−(α)+K+(α) for additive Wiener–Hopf
splitting and K(α) = K−(α)K+(α) for multiplicative factorisation). For more details on
the scalar factorisation see (Noble 1958; Daniele & Zich 2014).

The most characteristic aspect of the Wiener–Hopf method is the application of Liou-
ville’s theorem in order to obtain two separate connected equations from one equation.
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In order for Liouville’s theorem to be used two conditions have to be satisfied: the ana-
lyticity and (at most) polynomial growth at infinity. These two conditions will be treated
here in turn. First, a partial factorisation is considered that has the exponential functions
in the right place (in the half-planes where they decay exponentially) and some of the
required analyticity. To do so we premultiply (2.16) by a suitably chosen matrix yielding(

−e−iαL
P−

1−γP
P−

1
P−

0

)(
Φ

(0)
−

Φ
(L)
−

)

= −
(

0 −P+
P+

γP − P+ P+e
iαL

)(
Φ
′(0)
+

Φ
′(L)
+

)
+

(
f3
f4

)
,

or re-arranged (
−e−iαL
P−

1
P−

1
P−

0

)(
Φ

(0)
−

Φ
(L)
−

)
+

(
−γP+Φ

(L)
−

1
γP−

Φ
′(0)
+

)

= −
(

0 −P+

−P+ P+e
iαL

)(
Φ
′(0)
+

Φ
′(L)
+

)
+

(
f3
f4

)
,

where f4 = −f1/P− (with f1 given by (2.17)) and f3 defined as

f3 =
k0 sin θie

−iαLP+

(α+ δ)
[2ei(α+δ)L] +

1

i(α+ δ)
eiδLγP+.

Even though our example problem of a finite porous section has P = const, this method
extends to P (α) with at most polynomial growth at infinity, for example in the case of an
elastic edge P (α) would be a polynomial of degree 4. Therefore we include the relevant
details of the factorisation in the more general case, which is suitable for tackling any
matrix of the form (1.1).

The next step is to perform some additive splittings;

γP+Φ
(L)
− = (γP+Φ

(L)
− )− + (γP+Φ

(L)
− )+,

1

γP−
Φ
′(0)
+ = (

1

γP−
Φ
′(0)
+ )− + (

1

γP−
Φ
′(0)
+ )+.

Note that we cannot calculate these directly since Φ
(L)
− and Φ

′(0)
+ are unknown. An

approximation for the splittings will be found later. Note the similarities with the “pole
removal” or “singularities matching” Noble (1958, § 4.4, 5.3) Daniele & Zich (2014, § 4.4.2)
where one of ()− or ()+ would be an infinite sum of unknown coefficients. Those unknown
coefficients are determined later in an approximate fashion.

We would like to note that (2.16) cannot be fully solved by first performing rational
approximation and then “pole removal” method. The reason is that a rational approxi-
mation of γ or 1

γ which is accurate on the whole real line is not possible. This is due to
the fact that γ → |α| as |α| → ∞ and no rational function has this property. It is on the
other hand possible to obtain good rational approximation on an interval of the real line
and that in turn could be used to obtain far-field solution using steepest descent method.
So in this case the proposed method is the only way of fully extending “pole removal”
technique.

Now Liouville’s theorem can be applied because the exponential functions are in the
correct place and all the functions have the desired analyticity. Thus, we can apply the
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Wiener–Hopf procedure as usual and the four equations become

−e−iαL

P−
Φ

(0)
− +

1

P−
Φ

(L)
− −

(
γP+Φ

(L)
−

)−
− f−3 =0,

P+Φ
′(L)
+ +

(
γP+Φ

(L)
−

)+
+ f+3 =0,

1

P−
Φ

(0)
− +

(
1

γP−
Φ
′(0)
+

)−
− f−4 =C,

P+Φ
′(0)
+ − P+e

iαLΦ
′(L)
+ −

(
1

γP−
Φ
′(0)
+

)+

+ f+4 =C,

where C is a constant. It turns out that this constant plays no role as is discussed at
the end of Section 4.1, so can be taken to be zero. The four equations can be rearranged
(and their order changed):

Φ
(L)
− =P−

( (
γP+Φ

(L)
−

)−
+ f−3

)
+ e−iαLΦ

(0)
− , (3.1)

Φ
′(L)
+ =

1

P+

(
−
(
γP+Φ

(L)
−

)+
− f+3

)
, (3.2)

Φ
′(0)
+ =

1

P+

(( 1

γP−
Φ
′(0)
+

)+

− f+4
)

+ eiαLΦ
′(L)
+ . (3.3)

Φ
(0)
− =P−

(
−
(

1

γP−
Φ
′(0)
+

)−
+ f−4

)
, (3.4)

When the equations are written in this form it is clear that if Φ
(L)
− is known then it

could be used to calculate Φ
′(L)
+ from (3.2) and this, in turn, produces Φ

′(0)
+ by looking at

(3.3) followed by the calculation of Φ
(0)
− in (3.4) and then it loops round. This observation

will form the basis to the iterative procedure. So far the solution is exact but in order to
make progress an approximation is needed.

In order to solve approximately we will describe an iterative procedure and denote the
nth iteration by Φ

(L)n
− . The equation (3.1) is going to be approximated by neglecting the

e−iαLΦ
(0)
− term (which as we will see later is small in many cases) i.e.

Φ
(L)1
− = P−

(
(γP+Φ

(L)1
− )− + f−3

)
, (3.5)

which corresponds to only considering the junction at x = L. In other words we are
considering the problem of scattering from a semi-infinite porous plane. Note that Φ

(L)1
−

is an approximation to Φ
(L)
− but importantly Φ

(L)1
− have the same analyticity properties

as Φ
(L)
− . The above equation (3.5) can be rearranged as a scalar Wiener–Hopf equation

in the following manner, (
1− γP
P−

Φ
(L)1
−

)−
= f−3 .

We introduce an unknown function D+ defined by(
1− γP
P−

Φ
(L)1
−

)+

= D+,
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then adding together yields

1− γP
P−

Φ
(L)1
− = D+ + f−3 , (3.6)

which is a Wiener–Hopf equation, with solution

Φ
(L)1
− =

P−
(1− γP )−

((
f−3

(1− γP )+

)−)
.

Also we are able to compute
(
γP+Φ

(L)1
−

)+
(which we need in (3.2)) by considering D+.

Note that

D+ =

(
1− γP
P−

Φ
(L)1
−

)+

= −
(
γP+Φ

(L)1
−

)+
,

and solving the Wiener–Hopf equation (3.6) for D+ gives

D+ = (1− γP )+

(
−
(

f−3
(1− γP )+

)+
)
.

So we are solving this Wiener–Hopf matrix factorisation by first considering the scalar
equation which arises from one of the junctions (x = L) in the boundary conditions. So
now using (3.2) we easily obtain an expression for Φ

′(L)1
+ . This in turn is used in (3.3)

to reduce the solution for Φ
′(0)1
+ to a scalar Wiener–Hopf problem in the same fashion as

(3.5). This is now coupling junction at x = L with the junction at x = 0, and gives

Φ
′(0)1
+ =

γ+
(γP − 1)+

( (−f+4 + P+e
iαLΦ

′(L)1
+ )P−γ−

(γP − 1)−

)+
 .

An expression for Φ
(0)1
− can in turn be obtained from (3.4). In order to simplify again

note that(
1

γP−
Φ
′(0)1
+

)−
=

(γP − 1)−
P−γ−

−( (−f+4 + P+e
iαLΦ

′(L)1
+ )P−γ−

(γP − 1)−

)− .

Once Φ
(0)1
− is computed this can be looped round to calculate Φ

(L)2
− from using the full

equation (3.1) and (3.4). As the loops are performed the coupling between the junction
x = L and x = 0 is successively corrected and Φ

′(0)n
+ approaches the correct solution. As

it is shown in the next sections, in practice in most case the convergence is very fast and
the desired accuracy is achieved for n = 2 or n = 3.

The formula, after some computation, for the iterations would be

Φ
′(0)n
+ =

−1

(K3)+

f
+
4 + eiαL

((
γP+Φ

(L)n−1
−

)+
+ f+3

)
(K3)−


+

, (3.7)
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where K3 = γP−1
γP−

and also

Φ
(L)n
− =

1

(K1)−

f
−
3 + e−iαL

(
−
(

1
γP−

Φ
′(0)n
+

)−
+ f−4

)
(K1)+


−

, (3.8)

with K1 = γP−1
P−

.

3.1. Convergence
The convergence of the proposed procedure was considered in (Kisil 2017). It gave some of
the sufficient conditions for convergence but not the necessary conditions. In this paper
the class of matrix (1.1) is more general than is considered in that paper. Two main
differences are that: we have no common strip of analyticity in (1.1) and A, B and C
do not belong to the classes described in (Kisil 2017). With respect to the later, on the
application of Liouville’s theorem the entire functions are constant rather than zero, this
is discussed in Section 4.1.

In the case when k0 has a small imaginary part the convergence analysis follows almost
unchanged as in (Kisil 2017). This gives that convergence occurs for large enough |k0|, and
is faster the larger |k0| is. We found that the procedure converges fast, for a large range
of parameters, even without “the strip of analyticity” in other words we have taken k0
without an imaginary part. This is unlike other methods such as rational approximation
and “pole removal” rely on taking non-zero imaginary part in k0. In this paper we also
found that the results converge faster for large |k0| (which is equivalent to larger L) as
was is found in (Kisil 2017).

Note that the issue of convergence and the issue of having good first approximation
(3.5) are quite different. It is very much possible to have a very bad first approximation
which converges fast to the correct solution (see Figure 5 in (Kisil 2017)). On the other
hand it is also possible to have a situation where no matter how close to the exact
solution is the initial guess (as long as it is not exactly the solution) each iteration will
make the solution only further away from the exact solution, so diverges. Of course in
the case where there is convergence picking a better first guess means that the error
in the iterations is smaller and so fewer iterations are needed. A better first guess can
be achieved sometimes by first considering (3.3) rather than (3.1) (and neglecting the
exponential term) or by keeping some of the exponential term e.g. e−iαLP−f−4 in (3.1).

For the acoustic problems considered here we have found that the second and the third
iteration were very close together, in almost all cases. This means that Φ

(L)3
− and Φ

′(0)3
+

satisfy (2.16) almost exactly and hence are very close to the exact solution. In summary,
although we could not guarantee a priori that the method would converge for (2.16),
once it is found to converge we can deduce it is close to the correct solution.

4. A finite plate
4.1. Wiener–Hopf formulation

As a way of verifying the procedure in the previous section we consider a simpler problem
to which an exact solution can be constructed using Mathieu functions in the limit of
zero porosity. Even for this simple problem the resulting Wiener–Hopf matrix equation
cannot be solved exactly.

We look at the situation where the semi-infinite rigid plate is not present, only the finite
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porous plate. We also suppose there is no background flow, and the incident perturbation
is given by

φi = exp(−ik0x cos θi − ik0y sin θi − ik0ct).
The governing equation for the scattered field is( ∂

∂x2
+

∂

∂y2
+ k20

)
φ = 0,

The boundary condition required on the plate transforms to

Φ
′

1(α, 0) = µΦ1(α, 0)− k0 sin θi
α− k0 cos θi

(
ei(α−k0 cos θi)L − 1

)
,

and since there is no plate for x < 0 and x > L we require

Φ
(L)
+ (α, 0) = 0 = Φ

(0)
− (α, 0).

Now the Wiener–Hopf equations arise from the following

Φ
′(0)
+ + Φ

′

1 + eiαLΦ
′(L)
− = −γeiαL(Φ

(L)
+ + Φ

(L)
− ),

Φ
(0)
− + Φ

(0)
+ = eiαL(Φ

(L)
+ + Φ

(L)
− ),

giving (
Φ
′(0)
− (α)

Φ
(L)
− (α)

)
= −

(
− 1
P + γ(α) eiαL

−e−iαL 0

)(
Φ

(0)
+ (α)

Φ
′(L)
+ (α)

)
+

(
g1(α)

0

)
,

with

g1(α) =
k0 sin θi

α− k0 cos θi

(
ei(α−k0 cos θi)L − 1

)
.

Again we need to know the growth at infinity of Φ
′(0)
− (α), Φ

(L)
− (α), Φ

(0)
+ (α) and Φ

′(L)
+ (α)

in relevant half-planes. We have Φ
′(0)
− (α) → α−1/2 and Φ

(L)
− (α) → α−1 as α → ∞ in

the lower half-plane and Φ
(0)
+ (α) → α−1 and Φ

′(L)
+ (α) → α−1/2 as α → ∞ in the upper

half-plane.
For a finite impermeable plate we can set µ = 0 (equivalently P → −∞). In this case

an exact solution for the scattering of a plane wave by a plate can be found in terms of
Mathieu functions (discussed in the following subsection).

The equation has the same structure as before and is solved using the same method
which we will not repeat here but simply state the relevant formula. The four equations
this time are

−e−iαLΦ
′(0)
− − γ−Φ

(L)
− −

(
γ+Φ

(L)
−

)−
− g−2 =C1,

Φ
′(L)
+ +

(
γ+Φ

(L)
−

)+
+ g+2 =C1,

Φ
′(0)
− +

(
γ−Φ

(0)
+

)−
− g−1 =C2,

−γ+Φ
(0)
+ − eiαLΦ

′(L)
+ −

(
γ−Φ

(0)
+

)+
+ g+1 =C2,

where g2 = −e−iαLg1. For the initial step we have

Φ
(L)1
− =

−1

(γ)−

(
g−4

(γ)+

)−
,
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where we defined g−4 = g−2 + C1, g+4 = g+2 − C1 and g−3 = g1 + C2, g+3 = g+1 − C2. The
iterative solution is obtained

Φ
(L)n
− =

−1

(γ)−

g
−
4 + e−iαL

((
γΦ

(0)n
+

)−
+ g−3

)
(γ)+


−

, (4.1)

and

Φ
(0)n
+ =

1

(γ)+

g
+
3 + eiαL

(
−
(
γΦ

(L)n−1
−

)+
+ g+4

)
(γ)−


+

. (4.2)

We notice from the formulation above that the constants C1,2 cancel at each stage.
For example,

Φ
(0)1
+ =

1

(γ)+


g+3 + eiαL

((
γ+

(
g−4
(γ)+

)−)+

+ g+4

)
(γ)−


+

, (4.3)

where (
γ+

(
g−4

(γ)+

)−)+

=

(
γ+

g−4
(γ)+

− γ+
(
g−4

(γ)+

)+
)+

= −γ+
(
g−4

(γ)+

)+

.

Considering only the terms in (4.3) that contain constants C1,2 we find

1

(γ)+

−C2 − eiαL
(
γ+

(
C1

γ+

)+
− C1

)
γ−


+

= 0,

hence neither C1 nor C2 contribute towards the calculation of Φ
(0)1
+ . A similar calculation

shows neither contribute to Φ
(L)2
− , and so on for all iterative steps.

4.2. Exact solution
An exact solution of acoustic scattering by a finite rigid plate currently cannot be ob-
tained using a Wiener–Hopf formulation but it is possible using other methods. It is
achieved by considering the Helmholtz equation in an elliptic coordinate system (McLach-
lan 1964). The advantage of this coordinate transformation is that the boundary condition
on a finite-range interval, i.e. a degenerate ellipse, maps to a full-range elliptic coordinate
interval.

Here we present the exact solution without derivation (which can be found in (McLach-
lan 1964)). To transform from the Cartesian coordinate to the elliptic coordinates we use
the formula

x =
d

2
cosh ξ cos η y =

d

2
sinh ξ sin η (4.4)

where d is the focal distance of the ellipses.
We first need to introduce the even and odd angular Mathieu functions, which are
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denoted by

Hm(η; q) =

{
cem(η; q), m = 0, 1, 2 . . .

sem(η; q), m = 1, 2, 3 . . .

The even and odd radial Mathieu functions of first and second order are denoted by

Gm(ξ; q) =

{
Jem(ξ; q), Jom(ξ; q), first kind,
Nem(ξ; q), Nom(ξ; q), second kind,

and finally the Mathieu-Hankel function is given by

Ho(1)m (ξ; q) = Jom(ξ; q) + iNom(ξ; q).

The scattered acoustic field can be thus expressed as in McLachlan (1964, 19.14)
∞∑
r=0

SrHor(ξ)ser(η),

where the coefficients Sr are found to be

Sn = −in
√

8πsen(α)
Jo′n(0)

Ho′n(0)
.

This solution is valid everywhere. In order to calculate the far-field numerically an asymp-
totic formula is used for Hor(ξ). We shall refer to this solution as the ‘Mathieu solution’.

5. Results
Here we investigate the effects of a finite porous extension on the generation of noise by

of a gust convecting past a trailing edge by implementing the new Wiener-Hopf factorisa-
tion procedure as outlined in the preceding sections. First we illustrate the convergence
of the new factorisation method by considering the scattering of a plane sound wave by
a finite rigid plate in zero mean flow, for which the solution is known.

5.1. Validation of the Iterative Method
We begin by illustrating our new iterative factorisation method by considering the scatter-
ing of a plane sound wave of frequency k0 and incidence angle θi by a finite impermeable
plate of length 2 as discussed in Section 4. The iterative procedure converges quickly
when the initially neglected term, e−iαLΦ

(0)
− is much smaller than the terms initially

retained (Kisil 2017). It is known from Ayton & Peake (2013) that for high-frequency
finite-plate acoustic interactions, the dominant contribution to the scattered field can be
calculated from only one edge (as if the plate were semi-infinite). The correction term due
to the rescattering of this acoustic field by the second edge is O(k

−1/2
0 ) smaller, except

at shallow angles directly upstream and downstream where the two fields are formally of
the same magnitude to enforce edge continuity conditions. Subsequent correction terms
continue to be O(k

−1/2
0 ) smaller than the last term calculated.

With this in mind we consider the scattering of plane waves of frequencies k0 =
1, 6, 10, 16. In Figure 2 we show the truncated Mathieu solutions against the 1st and
2nd iterative solutions for the far-field acoustic directivity for a sound wave with incident
angle θi = π/4. For k0 = 1 we do not expect convergence of the result, as the initially
neglected term is not small. Indeed in Figure 2a we see the first and second iterative
solutions vary greatly, however they give us some insight into how the iterative proce-
dure works: the initial solution neglects one scattering edge (at x = 0), thus we see a
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semi-infinite style directivity pattern which is zero at θ = 0 but non-zero at θ = π. The
second iteration introduces a correction for the x = 0 edge, thus forcing the pressure to
be zero at θ = π, but as the iterative procedure is not complete we no longer have zero
pressure at θ = 0. Even after 5 iterations we found that the solution had not converged
for k0 = 1, thus we believe in this case the iterative procedure is simply not appropriate.

For frequencies k0 = 6, 10, 16 there is good agreement between the iterative solution
and the Mathieu solution after just 2 iterations, with better agreement for the higher
frequencies (as expected). The key differences between the 1st and 2nd iterative solutions
follow similar reasoning to the k0 = 1, with the 1st iterative solutions having significant
errors for θ = π which are quickly corrected by the time of the 2nd iteration. We note
however that the first iteration does not resemble high-frequency single-edge scattering
(i.e. a semi-infinite plate result) as it includes oscillations which arise from leading- and
trailing-edge interaction. These are present in the first iterative solution because the
forcing, f3,4, used in the initial steps come from finite-plate forcing, not semi-infinite
plate forcing, thus includes some interacting leading- and trailing-edge terms.

5.2. Semi-infinite impermeable plate with finite porous extension
5.2.1. Comparison to Ayton (2016)

Here we compare results for our semi-infinite partially porous plate to the sound scat-
tering results for a finite partially porous plate given by Ayton (2016). Ayton (2016) uses
a pole removal technique to obtain the far-field acoustic directivity due to a sound wave
scattering off a flat plate that consists of a finite impermeable rigid section and a finite
poroelastic section (which for the purposes of this section we consider to be only porous).
For our new iterative method we require a multiplicative factorisation of (γP −1), equiv-
alently, µ+ γ, where the constant porosity parameter, µ, is small. We can therefore use
the asymptotic factorisation from Crighton & Leppington (1970);

(µ+ γ(α))± = γ±(α)

(
1 +

µ

πγ(α)
cos−1

(
± α
k0

)
+ o(µ)

)
,

and neglect the o(µ) contribution. This factorisation is obtained by supposing (µ+γ)± =
γ± + µG± + o(µ2), and using the known additive factorisation γ = γ+ + γ− from Noble
(1958, p. 21) to solve for G±.

For investigation of µ = O(1) a numerical factorisation of µ + γ could be performed
similar to that used in Jaworski & Peake (2013). Note the pole removal method does
not rely on an asymptotic factorisation thus can investigate plates with higher porosity
distributions.

First we consider a direct comparison of the two methods by applying the pole removal
technique to the semi-infinite partially porous plate. In Figure 3 we see good agreement
between the two methods for mid and high frequencies. The results are heavily dominated
by the Fresnel zone at the angle of reflection of the incident sound wave, θ = 3π/4 and
uniformly valid expansions for the far-field directivity are required to deal with the pole
singularity at this angle. Note that the pole removal method of Ayton (2016) was seen
only to be accurate at high frequencies and does not have a formal error bound to an
exact solution, whilst our new iterative method is proved to converge to the exact solution
(Kisil 2017) thus is able to present results to within a specified error bound. Further,
the pole removal method can only recover the far-field acoustic field and not the mid or
near field. A benefit of the new method in this paper is that we can not only consider
a wider range of frequencies, but we can also obtain the scattered field at any point
in the domain, thus can use near-field results from a far-field incident sound wave to
obtain an acoustic amplification factor for far-field scattering from a near field source
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Figure 2: Far-field scattered acoustic directivity generated by a plane sound wave incident
at 45◦ from the far field of varying frequencies k0 scattering off of a finite impermeable
plate of length 2. Solutions obtained from the 1st and 2nd iterative steps are plotted
against the Mathieu solution.
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Figure 3: Comparison of far-field directivity calculated using the iterative method (It) or
pole removal method (PR) for an incident sound wave with frequency k0 impinging on a
semi-infinite flat plate with porous section of length L = 1, µ = 0.1.
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Figure 4: Comparison of far-field directivity calculated using the iterative method (It)
for a semi-infinite plate to the directivity from a finite plate calculated using the pole
removal method (PR). Both have porous lengths of L = 1, sound wave frequency k0 = 5
incident from angle π/4, and porosity µ = 0.1. The finite impermeable plate length, Lim,
is allowed to vary. (Colour online).

by reciprocity (Jaworski & Peake 2013). We shall comment on this amplification factor
shortly. The main advantage of the pole removal method over the iterative approach is
that it is easy to adapt for use on any size matrix Wiener-Hopf problem (Ayton (2016)
considers a 3 x 3 matrix problem), whilst the iterative method would be more complicated
to adapt to higher dimensions, and likely require stricter conditions to be placed on the
parameters used to ensure convergence.

By including the finite leading edge we see it have a big effect on the overall directivity
in Figure 4 for the scattering of a sound wave. In particular the Fresnel regions at the
angle of direct reflection of the incident wave (thereby indicated by the largest lobes) are
significantly altered by the extra leading-edge scattered field. Uniformly valid expansions
for the far-field directivity are now not required, as the combination of the Fresnel re-
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gions from the leading and trailing edges regularise one another, resulting in the pole at
θ = 3π/4 becoming a removable singularity. As such, the leading-edge field significantly
reduces the overall impact of the trailing-edge Fresnel region on the far-field noise. As
the length of the impermeable section is increased, the amplitude of the Fresnel region
increases, and the modulation of the directivity increases. We also observe that the finite
leading edge reduces the scattered field directly upstream for any plate length, illustrat-
ing that the leading-edge field is formally the same magnitude as the trailing-edge field
close to the downstream direction (as discussed in Section 5.1).

For sound scattering we therefore note that there is a great influence of a finite leading
edge on the overall predictions of the far-field noise as both leading and trailing-edge
scattered fields particularly in the Fresnel regions since both the leading and trailing
edge directly scatter the sound wave at angle θ = 3π/4. However, we are not concerned
by this influence for predicting trailing-edge noise as our convective gust model supposes
the incident field does not interact with the leading edge directly. And, of course, for
a convective gust there are no Fresnel regions thus no regularisation of the far-field
directivity is required.

5.2.2. Trailing-edge noise
Now that we have validated our new approach, we consider the original problem of a

convective boundary layer gust interacting with the semi-infinite partially porous plate.
In all results in this section we shall take θi = π/4, and L = 1.

We begin by illustrating the convergence of the iterative procedure in Figure 5 which
shows the far-field acoustic directivity for different k0 and µ values. After 2 iterations the
solution is indistinguishable from the 3rd iteration in each case with differences of less
that 10−5 between the two solutions. The convergence of the iterative method is fast in
this case for low frequency (compared to the finite plate case where the condition of high
frequency ensured quick convergence), since we restrict attention to low porosity, and
therefore by considering the scalings of terms in the initial equation, (3.1), in terms of
porosity, µ � 1, or equivalently |P | � 1, we see the initially neglected term, Φ

(0)
− e−iαL,

is smaller than those retained. We illustrate the relative size of the neglected terms in
Figures 6 to verify it is indeed formally smaller than the initially retained terms, thus
we expect (and see) quick convergence of the iterative method. For lower values of µ and
lower frequencies k0 the relative size of the neglected term is much smaller than at higher
values of µ and k0, however in these cases the neglected term is still formally smaller and
therefore the iterative procedure converges.

From hereon in our results are given as the 2nd iterative solution.
Figure 7 shows the effects of altering the porosity parameter µ on the far-field acoustic

directivity for gusts of different frequencies, k0. We see that the reduction of far-field
acoustic pressure achievable by an increasingly porous plate is lessened as incident fre-
quency increases as expected from the results of Jaworski & Peake (2013). However at
high frequency the directivity pattern, although not significantly reducing in magnitude,
significantly changes in overall shape.

For low frequencies, the acoustic directivity behaves as a single source from just the
trailing edge, x = L, (driven by a pressure jump across the trailing edge) therefore
increasing porosity behaves in an identical manner to that seen for the scattering of a
near-field trailing-edge source by a finite porous plate investigated in Cavalieri et al.
(2016, Figure 7a). At higher frequencies, the source is no longer compact therefore there
is notable interaction from scattering by the trailing edge, x = L, and the impermeable-
permeable junction, x = 0. This secondary acoustic field, emanating from the permeable-
impermeable junction, is expected to be weaker than the secondary source in Cavalieri
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Figure 5: Far-field acoustic directivity generated by a convective gust in mean flow M =
0.6 of varying frequencies k0 interacting with a semi-infinite impermeable plate with an
attached finite porous plate of unit length and porosity parameter µ. First, second, and
third iterative solutions are presented.
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Figure 6: Absolute value of the two terms on the RHS of (3.1) as calculated after one
complete iterative loop. First term is the dashed line, second term (which is initially
neglected) is the solid line.

et al. (2016), the (finite) leading-edge field. We see from Figure 7 that at high frequency
k0 = 2, increasing porosity rotates the directivity away from the upstream direction
without drastically altering the overall magnitude compared to the rigid plate. This
effect is different to the effects of the finite leading edge seen in Cavalieri et al. (2016,
Figure 7b) (reduction of overall magnitude and oscillations).

We can consider the effect of the secondary acoustic field emanating from permeable-
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Figure 7: Far-field acoustic directivity generated by gusts of varying frequencies k0 in-
teracting with a semi-infinite impermeable plate with an attached finite porous plate of
unit length and porosity parameter µ, in mean flow M = 0.6.

impermeable junction by considering the correction term between the first iterative so-
lution and the converged iterative solution (which for the cases we consider here is the
second iterative solution), since the first solution accounts for the edge at x = L and suc-
cessive solutions correct for the edge at x = 0. Figure 5 shows the far-field directivities
calculated by the first and second iterative solutions; for low frequencies this correction
rescales the overall pressure almost uniformly over all θ directions. This indicates the
source at x = 0 behaves in an identical but weaker manner to the source at x = L,
i.e. is dipole-like. For k0 = 2, µ = 0.3 we see a significant change in directivity between
the first and second iterative solutions, therefore the permeable-impermeable junction is
no longer behaving in an identical manner to the trailing edge. The trailing edge (first
solution) directs noise strongly at some angle π/2 < ϑ < π as expected for edge inter-
action in subsonic flow with high Mach number, M = 0.6. The permeable-impermeable
junction (correction to the first solution) instead seems to direct noise predominantly at
some angle ϑ′ < ϑ.

In Figure 8 we investigate the far-field directivity generated by the difference between
the first and second iterative solutions for high-frequency interactions withM = 0.6, and
indeed see that for higher frequencies the impermeable-permeable correction term has a
significantly different directivity pattern that is directed away from the main region of
pressure for the trailing edge term. We also see that whilst increasing porosity reduces
the magnitude of the trailing-edge term, it increases the magnitude of the correction
term, therefore when the two terms are combined there is little difference in the overall
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Figure 8: Absolute value of the difference between the first and second iterative solutions
(I-P Junction), compared to the first iterative solution (TE) for M = 0.6.

magnitude of the acoustic pressure in Figure 7 (d). The directivity pattern generated
by the correction term is significantly different to the sin θ/2 directivity expected from a
finite leading edge.

Finally we can investigate the acoustic amplification factor, B due to a near-field
acoustic source; by considering the near-field scattering of a far-field incident sound wave
we can invoke reciprocity to obtain the far-field acoustic amplification due to a near-field
quadrapole source. The amplification factor is defined in Jaworski & Peake (2013) as
B = |B̃|k−20 , where

∂Φ+

∂y
(α, 0) ∼ B̃α−1/2 as |α| → ∞. (5.1)

It is seen in Jaworski & Peake (2013) that for a low porosity edge with αH = 0.0014
(equivalent to µ = 0.034) the amplification factor as a function of frequency has a gradient
of −1 for low frequency, and a gradient of −1.5 for high frequency (which is also the
gradient found for a rigid edge). We recover these limits for low porosities in Figure 9 as
expected since the near-field quadrapole primarily only interacts with the porous section
of the plate, thus this can be well approximated by the semi-infinite porous plate.

These results further validate our new approach, however considering a near-field
trailing-edge source does not suitably investigate the effects of a impermeable-permeable
junction lying within the turbulent boundary layer - this paper has focussed on a con-
vective gust over both the impermeable and permeable sections of the plate to enable
turbulence to interact with both the junction and the trailing edge.

In this section we have determined that at low frequencies the impermeable-permeable
junction seems not to greatly affect the noise generated in the far field by near field
turbulence, and thus the predictions by Jaworski & Peake (2013) using a semi-infinite
permeable plate are accurate even if the plate were only partially porous. However, for
higher frequency turbulence, the impermeable-permeable junctions has a greater effect
on the far-field directivity pattern, thus we expect for high frequencies the predictions of
Jaworski & Peake (2013) may not be sufficiently accurate to present the full picture of a
partially porous aerofoil. Thus we investigate the effects of the impermeable-permeable
junction on specifically high-frequency interactions in the following section.
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Figure 9: Amplification factor, B, as a function of frequency k0 for a range of partially
porous plates. (Colour online).

5.3. Effects of porosity on high-frequency turbulence
It is known that trailing-edge noise dominates overall aerofoil noise for high-frequency
interactions, whilst at mid- to low-frequency interactions leading-edge noise dominates
(Chaitanya et al. 2015). A proposed parameter indicating where trailing-edge noise be-
comes dominant is ω∗t/U∗ > 1, where ω∗ is dimensionalised frequency, t is the ratio of
aerofoil thickness to chord length, and U∗ is dimensionalised mean flow velocity. Thus if
we wish to investigate the effects of porosity on total aerofoil noise generation, we wish
to consider a high-frequency regime where trailing-edge noise plays a key part. Despite
previous studies indicating that porosity only has an effect at low frequencies, (Jaworski
& Peake 2013), we have seen in the previous section that a partially porous semi-infinite
plate behaves differently to a fully rigid (or indeed fully porous) semi-infinite plate, due
to the interaction between the impermeable-permeable junction and the trailing edge
tip itself. This interaction is influential at high frequencies because the wavelength of
the gust is much shorter than the distance between the two points, and is clearly not
modelled in Jaworski & Peake (2013)’s work for a fully porous plate.

Figure 10 shows the difference in dB of the sound power predicted from a fully porous
plate to that predicted from our partially porous plate, namely

∆P (k0) = 10 log10

[ ∫ π
0
|Dfully(θ)|2dθ∫ π

0
|Dpartial(θ)|2dθ

]
, (5.2)

where Dpartial(θ) is the directivity predicted for our partially porous plate, (2.19), and
Dfully(θ) is the corresponding directivity predicted if the plate were fully porous.

We see for all mid to high frequencies and all porosity parameters the relative difference
is always negative. We therefore assess that the effect of the permeable-impermeable joint
is to slightly increase the total noise generated at the trailing edge in comparison to either
a fully rigid or fully porous plate (since at high frequencies these two predictions are
identical). This increase is minor (approximately 1-2dB) in comparison to the decreases
in noise seen at low frequencies. The increase is greatest for higher porosity plates since
there is a bigger difference in the two scattering points thus a greater interaction effect of
the two fields. The difference in sound oscillates with frequency k0 since an interference
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Figure 10: ∆P (k0) for semi-infinite partially porous plates with varying porosity param-
eter, µ.
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Figure 11: Interference function, 1 + µ eiM
2L(k0+3), for various µ with fixed L = 1.

between the trailing edge and the impermeable-permeable junction can be constructive
or destructive. Our prediction of an increase in noise for a partially porous plate is in
agreement with the experimental findings of Geyer & Sarradj (2014), although they
speculated that their observed high-frequency noise increase for partially porous aerofoil
(compared to fully impermeable aerofoils) was due to increased surface roughness noise.
As our model does not allow for roughness noise, we propose a combination of increased
roughness noise, and interference effects between the impermeable-permeable junction
and trailing edge can lead to an increase of noise at high frequencies when an aerofoil is
partially porous.

Using the results of Figure 10 we can estimate the interaction effect of the impermeable-
permeable junction to be of the form 1 + µ eiM

2Lk0 , where the 1 denotes the scattering
from the porous trailing-edge tip, and the µ eiM

2Lk0 is the interference caused by the
impermeable-permeable junction, which sensibly tends to zero as the plate becomes fully
rigid. In Figure 11 we plot this interaction function (shifted to align with Figure 10) across
the same range of frequencies as used Figure 10, and see good relative agreement between
results. This implies that the overall radiation is generated by two fields; a trailing-edge
field and an impermeable-permeable junction field which interfere when summed in the
far field.

One would perhaps expect as k0 → ∞ the interaction effect to significantly decay as
the interference should scale inversely with k0 and therefore the partially porous plate to
behave identically to the fully porous plate. We do not see this in our integrated results
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Figure 12: Far-field directivity for partially porous plate with µ = 0.1, L = 1, M = 0.6
compared to a fully rigid plate, µ = 0.

because the two acoustic fields directly upstream (θ = π) are of the same magnitude
thus any constructive or destructive interference here will always have a notable effect
on the total sound. We illustrate this feature, in the extreme cases of k0 = 100, 110, in
Figure 12; we clearly see for the majority of the far field the acoustic directivities are in
very good agreement, however as we approach the downstream direction, the interference
leads to a large different between the directivities.

6. Conclusions
This paper investigates the interaction of a convective gust with a partially porous

semi-infinite plate in uniform steady flow. We find, in agreement with previous work, that
porous trailing-edge adaptations can significantly reduce low-frequency interaction noise.
New insight into the effects of a the impermeable-permeable junction have been found as
we see increasing porosity has the capability to rotate the far-field directivity away from
the upstream region for mid-frequency interactions due to interference between acoustic
fields from the permeable-impermeable junction, and the trailing-edge tip itself. Whilst
a porous trailing-edge adaptation does not significantly reduce far-field mid-frequency
trailing-edge noise it could prove useful for controlling the predominant direction of noise
propagation. Further, at high-frequencies the interference of the impermeable-permeable
junction has been seen to increase the total far-field noise slightly when compared to a
fully rigid plate in agreement with experimental findings of Geyer & Sarradj (2014).

Elasticity has not been included in this problem as the interaction between the mean
flow and the elastic plate would cause significant complications to the analysis. An ap-
proach involving matched asymptotic expansions, similar to Abrahams (1983), and the
Wiener-Hopf technique could be used to tackle the elasticity problem in the future. We
have also restricted the porosity of the extension to satisfy µ � 1 to allow both an
asymptotic factorisation of the kernel function, µ+γ, and to ensure rapid convergence of
the iterative solution. This restriction only discounts a small range of values investigated
by Jaworski & Peake (2013). Currently the iterative procedure using an asymptotic fac-
torisation of µ+γ, implemented in Mathematica on a standard 4-core desktop computer,
calculates the third iteration for the results presented in under 60 seconds.

This paper also presents the application of a new way of solving Wiener–Hopf equations
of (1.1). We present a constructive iterating method of approximate solution of the
Wiener–Hopf matrix problem. This is an innovative way which allows us to consider the
two scalar equations corresponding to the transition points separately and then couple
them in an iterative manner. This paper provided some examples of how the procedure
could be numerically implemented in acoustics. Both problems considered cannot be
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solved using standard Wiener–Hopf techniques. The solution of finite rigid plate problem
is obtained using a different method (Mathieu functions) and is presented in order to
validate the proposed method. They were found to be in good agreement. It is found
that for the two acoustic problems which were considered the convergence is very fast
and only two or three iterations are required. We have also included an illustration of
when the method is not expected to converge see Figure 5 (a). This is due to the fact
that the neglected terms where not small. We believe this method to be more versatile
and more accurate than the pole removal method used in Ayton (2016), as the iterative
method can allow the solution to be found anywhere in the scattering domain (not just
the far field), and is proven to formally converge to an exact solution, thus allows us to
determine accurate error bounds.

We expect the proposed method to find applications in a variety of fields. Many prob-
lems could be reduced to Wiener–Hopf equations of type (1.1). The matrix is typical for
problems which have two changes in the boundary conditions. This method could also be
applied to a wider class of Wiener–Hopf systems than (1.1), in particular Wiener–Hopf
matrix need not be triangular.
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