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Abstract 7 

Pedestrians, cyclists, and users of motorised two-wheelers account for more than 85% of all the road 8 

fatality victims in Delhi. The three categories are often referred to as vulnerable road users (VRUs). Using 9 

Bayesian hierarchical approach with a Poisson-lognormal regression model, we present spatial analysis of 10 

road fatalities of VRUs with wards as areal units. The model accounts for spatially uncorrelated as well as 11 

correlated error. The explanatory variables include demographic factors, traffic characteristics, as well as 12 

built environment features. We found that fatality risk has a negative association with socio-economic 13 

status (literacy rate), population density, and number of roundabouts, and has a positive association with 14 

percentage of population as workers, number of bus stops, number of flyovers (grade separators), and 15 

vehicle kilometers travelled. The negative effect of roundabouts, though statistically insignificant, is in 16 

accordance with their speed calming effects for which they have been used to replace signalised junctions 17 

in various parts of the world. Fatality risk is 80% higher at the density of 50 persons per hectare (pph) than 18 

at overall city-wide density of 250 pph. The presence of a flyover increases the relative risk by 15% 19 

compared to no flyover. Future studies should investigate the causal mechanism through which denser 20 

neighborhoods become safer. Given the risk posed by flyovers, their use as congestion mitigation measure 21 

should be discontinued within urban areas.   22 

1. Introduction 23 

Indian cities have witnessed an exponential growth of vehicles during the previous two decades or so, 24 

contributed largely by motorised two-wheelers (MTW) (Pucher et al., 2007; MoRTH, 2012). Coincident to 25 

this, burden from road traffic injuries in India has also been rising, and the number of deaths have more 26 

than doubled from 1991 through 2011 (Mohan et al., 2015). According to the official sources, there were 27 

more than 140,000 road deaths in year 2013-14 (NCRB, 2015). When expressed as the number of road 28 

deaths per 100,000 persons, fatality risk in India is 2 to 4 times higher than high-income settings such as 29 

the UK, Germany, France and Canada (MoRTH, 2012).  30 

A majority of the victims are men in age-group 15–59 years (Gururaj, 2008; Mohan et al., 2009; Hsiao et 31 

al., 2013). Pedestrians, cyclists, and MTW riders have the largest share. The three road-user categories, 32 

with no rigid barrier protecting them against traumatic forces, are often termed as vulnerable road users 33 

(VRU) (Peden et al., 2004). Globally, VRUs account for around 46% of all road deaths (WHO, 2015), while 34 

in India this share is much higher.  35 

According to Million Death Study, a national-level mortality survey in India, VRUs accounted for 68% of all 36 

road deaths during the period 2001–2003 (Hsiao et al., 2013). A study conducted in six Indian cities with 37 



Accepted for publication in Accident Analysis and Prevention (2017) 

population ranging between 1 to 2 million reported that the proportion of VRU fatalities for years 2008 38 

through 2011 varied from 84% to 93% (Mohan et al., 2016). This proportion is much lower in high–income 39 

countries and is as low as 22% in the Americas (WHO, 2015). There are multiple factors contributing to 40 

these differences, such as road design, provision of safe infrastructure for pedestrians and cyclists, traffic 41 

management, and the enforcement of speed and alcohol limits. Apart from these, the major underlying 42 

difference is how people travel in these settings.   43 

According to Census 2011, close to one-third of the workers (30%) in Indian cities walk to work, 17% cycle, 44 

a quarter (25%) use some form of public transport (bus, autorickshaw or train), more than one-fifth (22%) 45 

use MTW and only 5% use cars (Census-India, 2016). As a result, 69% of the workers can be categorised 46 

as VRUs during their commute trips. If we consider walking involved in either ends of a public transport 47 

trip, the proportion of work trips involving VRU reach up to 94%.  48 

When trips of all purposes are considered, data from various cities in India show that the share of non-49 

motorised modes is even higher (Arora et al., 2014; RITES, 2008; Goel, 2017). As a result, a large 50 

proportion of road users are exposed to high injury risk through collisions with high-powered motorised 51 

vehicles such as cars, buses, and trucks. This is in complete contrast with high-income settings where a 52 

large proportion of trips are carried out in cars. For instance, 86% of the work trips in the US (2009; 53 

McKenzie and Rapino, 2011), 64% in the UK (2011; Gower, 2013) and 62% in the Netherlands (2007; 54 

MOT, 2009) were carried out using cars. As a result, in case of a crash, the road users in these settings 55 

have much higher protection.  56 

Road transport in India also differs in the form of motorisation from their western counterparts. Increasing 57 

motorisation is not resulting in reduction of VRUs on roads, as MTW remains a preferred mode of private 58 

transport. While MTW in India account for more than two-thirds of private motorised fleet (MoRTH, 59 

2012), their share in western settings such as the USA, UK, Germany and France, is only 3–10% (EEA, 2003; 60 

USDOT, 2015).  61 

A large number of crash-level epidemiological studies have been carried out in India to understand the 62 

causal mechanism of crashes or the injury severity (Garg and Hyder, 2006). However, epidemiology of 63 

crashes using ecological models is lacking. In this study, we present a spatial analysis of VRU fatalities in 64 

Delhi to assess their geographic variation with respect to built environment, demographic factors, and 65 

traffic characteristics.  We restricted our analysis to fatal crashes as number of injury crashes reported by 66 

police are highly underreported in India (Gururaja, 2006; Mohan et al., 2009; Mohan et al., 2015). Delhi 67 

being the capital of India and the seat of federal government has an active police department and is a 68 

dense urban area. Therefore, underreporting of traffic deaths in a setting like Delhi is highly unlikely. 69 

2. Literature Review 70 

Crash rates have been established to have a positive association with the speed of vehicles (Nilsson, 1981; 71 

Cameron and Elvik, 2010). In addition to the probability of a crash, speed of vehicles is also a determinant 72 

of severity level of injuries (OECD/ECMT, 2006; Aarts and Van Schagen, 2006). How fast vehicles travel 73 

on road is a function of built environment (Ewing and Dumbaugh, 2009) and road design features (Torok, 74 

2011; Flitzpatrick et al., 2001), among other factors such as speed limit (Flitzpatrick et al., 2001), or traffic 75 
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conditions (Torok, 2011). Given these links of crashes with speed and that of speed with built 76 

environment, many studies have found association between crash rates and built environment (Ewing et 77 

al., 2003).  78 

There are other factors which result in higher number of crashes such as through increasing the exposure 79 

to risk, increasing the chances of a crash, or increasing the severity of injury. Higher exposure to risk is a 80 

function of economic and demographic factors and mode of travel. Higher crash occurrence is associated 81 

with lack of law enforcement by police and lack of safe infrastructure for pedestrians and cyclists, and 82 

higher severity level can result from lack of forgiving vehicle front to protect pedestrians in a collision, use 83 

of seat belts by cars occupants and helmets by MTW riders and cyclists (Peden et al., 2004).  84 

A large number of studies have carried out area-level crash modelling to quantify the association of road 85 

traffic injuries with built environment and traffic characteristics as well as population characteristics. Such 86 

models, after accounting for confounding variables, estimate the independent effects of different built 87 

environment variables, such as, type of junctions, intersection density, type of roads, speed limit, road 88 

widths, and road curvature. With this knowledge, built environment can be modified in ways which can 89 

increase the safety of road users. The sensitivity of safety to those modifications is given by the 90 

coefficients of the regression models.  91 

Most of the area-level modelling studies have been carried out in settings from highly motorised 92 

developed countries—US, Canada, UK, and Australia. For instance, studies from cities/states in the US 93 

include San Francisco, California (LaScala et al., 2000; Wier et al., 2009), Tucson, Arizona (Guevara et al., 94 

2004), Pennsylvania (Aguero-Valverde and Jovanis, 2006), Hawaii (Kim et al., 2006), Charlotte, North 95 

Carolina (Pulugurtha et al., 2006), California (Chakravarty et al., 2010), San Antonio, Texas (Dumbaugh 96 

et al., 2013), New York city (DiMaggio et al., 2015), Manhattan (Narayanmoorthy et al., 2013), New Jersey 97 

(Demiroluk and Ozbay, 2014), and Hillsborough and Pinellas counties of Florida (Siddiqui et al., 2012; Xu 98 

et al., 2017), from those in Canada include Toronto (Hadayeghi et al., 2003), Greater Vancouver region 99 

(Lovegrove and Sayed, 2006) and British Columbia (MacNab, 2004), those in UK, London (Quddus, 2008), 100 

England (Graham and Glaister, 2003; Noland and Quddus, 2004), and England and Wales (Jones et al., 101 

2008), and in Australia, Melbourne (Amoh-Gyimah et al., 2016). Among low-and middle-income countries 102 

(LMICs), the only study reported is by Wang et al. (2016) in which they modeled pedestrian crashes in 103 

Shanghai city.  104 

The areal unit of analyses used by various studies also varied and included counties (Aguero-Valverde and 105 

Jovanis, 2006; Demiroluk and Ozbay, 2014), census tracts (LaScala et al., 2000; Chakravarty et al., 2010; 106 

Narayanmoorthy et al., 2013; DiMaggio et al., 2015), census statistical area levels (Amoh-Gyimah et al., 107 

2016), wards (Graham and Glaister, 2003; Noland and Quddus, 2004; Quddus, 2008), traffic analysis 108 

zones (TAZ) (Hadayeghi et al., 2003; Pulugurtha et al., 2013; Siddiqui et al., 2012; Wang et al., 2016; Xu 109 

et al., 2017), city blocks (Dumbaugh et al., 2013) or grids (Kim et al., 2006).  110 

The modeling has been carried out using non-spatial models (Hadayeghi et al., 2003; Graham and 111 

Glaister, 2003; Noland and Quddus, 2004; Kim et al., 2006; Pulugurtha et al., 2013; Lovegrove and Sayed, 112 

2006; Wier et al., 2009; Chakravarty et al., 2010; Dumbaugh et al., 2013), spatial models (LaScala et al., 113 

2000; Macnab, 2004; Narayanmoorthy et al., 2013; Demiroluk and Ozbay, 2014; DiMaggio et al., 2015; 114 

Wang et al., 2016), as well as both (Quddus, 2008; Aguero-Valverde and Jovanis,  2006; Siddiqui et al., 115 

2012; Amoh-Gyimah et al., 2016; Xu et al., 2017). Spatial models have accounted for spatial correlation 116 

using traditional econometric models, such as spatial autoregressive models (Quddus, 2008; LaScala et 117 
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al., 2000) or spatial error models (Quddus, 2008) or using more recently developed hierarchical Bayesian 118 

modelling which include specifications of error terms for uncorrelated heterogeneity as well as spatial 119 

heterogeneity (Macnab, 2004; Aguero-Valverde and Jovanis, 2006; Quddus, 2008; Siddiqui et al., 2012; 120 

Wang et al., 2016; Amoh-Gyimah et al., 2016; Xu et al., 2017).  121 

It is noteworthy that even though a major share of global road traffic injury burden is contributed by 122 

LMICs, their representation in such studies is almost absent. In Indian cities, most roads do not have 123 

posted speed limits, and when they do, police rarely enforces those. As a result, speed chosen by drivers 124 

is likely to be much more associated with traffic conditions, road design features and other built 125 

environment factors. This underscores the importance of built environment as risk factor for crashes in 126 

Indian cities. Other factors which set Indian cities apart from their high-income counterparts are lack of 127 

safe infrastructure for non-motorised modes, heterogeneous mix of traffic, low level of car-based travel 128 

and a high share of MTW. The contrasting contexts of on-road traffic mix, built environment, 129 

demographics, and level of traffic enforcement between India and high-income countries warrant an area-130 

level crash study in an Indian city. 131 

3. Case study city—Delhi 132 

Delhi is the capital city of India and one of the most heavily motorised large cities in India. Among the 133 

cities with population more than 10 million, it has the highest ownership of cars, with more than one in 134 

every 5 households owning a car (Guttikunda et al., 2014). Delhi along with its contiguous cities have 135 

grown rapidly over the last two decades. The population of the region more than doubled from 10 million 136 

in 1991 to 22 million in 2011, with Delhi contributing 16.7 million to the latter. Over the same period, the 137 

number of registered vehicles have increased by more than 300%. Public transport (PT) is served through 138 

a combination of road– and rail–based modes. These include buses, intermediate public transportation 139 

such as cycle rickshaws, electric rickshaws, auto rickshaws or tuktuks, and mini buses, and rail-based 140 

systems including metro rail and commuter rail (Goel and Guttikunda, 2015; Goel and Tiwari, 2015).  141 

 142 

According to Census 2011, among all the work trips in Delhi, up to a quarter of trips are walked (26%), 143 

one-tenth are cycled (11%), one-third use some form of public transport (32%), 17% use MTW and  13% 144 

use cars (Census-India, 2016). A large number of grade-separated intersections have been built in Delhi 145 

as a measure to reduce congestion as well as to reduce vehicular idling. Cycle lanes have been built as a 146 

part of 5.8-km long bus rapid transit corridor, while almost no other road in Delhi has cycle lanes. Though 147 

small isolated sections of cycle lanes have been built in various parts of the city. There is no helmet use 148 

among bicycle users in Delhi. 149 

4. Data 150 

In this study we model road deaths corresponding to the 3-year period: 2010 to 2012. The year 2011 151 

corresponds to the latest Census. The inclusion of fatalities for three years brings stability in the fatality 152 

counts for disaggregated spatial units within the city. We used case-specific fatal crashes reported in First 153 

Information Reports (FIRs) compiled by Delhi Traffic Police for the years 2010 through 2012. FIRs are the 154 

first set of information documented by police department as reported by those involved in the crash or 155 

anyone who knows about the crash or by a police official (Mohan et al., 2015).  156 
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The case-specific details consist of date, time, location, police station of the crash location, striking vehicle 157 

type, and victim road-user type. Age and gender of crash victims were available for year 2010 only. The 158 

three-year period includes a total of 5972 fatalities, which amounts to 1991 fatalities per year, and 11.9 159 

fatalities per 100,000 persons, assuming 2011 census population as average of the 3-year period. In 160 

comparison, New York has a fatality rate of 3 per 100,000 persons (NYDMV, 2014), Greater London, 1.6, 161 

(TFL, 2014), and Amsterdam, 2 (iamsterdam, 2014). The three VRU categories, pedestrians (45.5%), 162 

cyclists (5.9%), and motorised two-wheeler (MTW) riders (34.5%), contribute 86% (5138) of all the 163 

fatalities.  164 

The location of the crashes mentioned in the FIR data consisted of the name of the road where the crash 165 

occurred along with a landmark. Using this information, geographical coordinates of the crash locations 166 

were identified using Google Maps as well as Wikimapia (http://wikimapia.org/country/India/Delhi/). The 167 

latter has information regarding informal landmarks known among local population and collected through 168 

crowdsourcing, which are often missing in Google Maps. In addition, we referred to jurisdiction map of 169 

police stations. Landmarks of some of the crash locations were reported using serial number of pillars of 170 

elevated metro corridors, and were also not available on Wikimapia. For these, we visited those road 171 

sections and geo-located those pillars using GPS.  172 

We use wards as areal units which are administrative units in the city for the purpose of municipal 173 

corporations. In 2011, Delhi was divided in to 282 wards with an average size of 4.9 km2 with more than 174 

half (54%) of all the wards having an area of less than 2 km2. The average number of VRU fatalities across 175 

the wards is 18 varying from a minimum of zero to maximum of 183. We used ward-specific demographic 176 

and socio-economic statistics from Primary Census Abstract (PCA) reported by Census 2011.  177 

From PCA, we used population, literacy rate, and percent of population who are workers. The population 178 

of wards also vary from ~14,000 to ~146,000 with an average of ~58,000. Literacy rate is defined as the 179 

percentage of population above 6 years who are literate. Workers have been classified based on the 180 

length of employment during the past one year—main worker: 6 months or more, marginal worker: less 181 

than 6 months, and non-worker: no employment. For our analysis, we only used the main worker 182 

category. 183 

In the absence of city-wide traffic counts, modelled vehicle kilometers travelled (VKT) were used from 184 

Travel Demand Forecast Study (TDFS) commissioned by Transport Department of Delhi (RITES, 2008). The 185 

study carried out traffic assignment model for 2007 which consisted of volume of vehicles in each link 186 

(road segments), expressed as Passenger Car Units. TDFS also included validation of assignment model 187 

with the observed traffic counts at various locations. We used model output for 2007 and estimated ward-188 

specific VKT using the sum total of product of length of each link and its corresponding volume. While the 189 

traffic deaths in our model refer to 2010-2012 period, we assume that 2007 traffic volume is sufficient for 190 

assessing relative variation across the wards. Even if the growth in traffic volume occurred, we assume 191 

that growth rate was consistent across the wards.  192 

The model of road deaths presented in this study also accounts for exposure for each ward. We calculated 193 

exposure as the sum of population of the ward and the total number of daily person trips destined to the 194 
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ward. This was then multiplied by 3 since the fatality counts correspond to a three-year period. Thus, 195 

exposure accounts for population residing in the ward as well those visiting the ward during the course of 196 

a day. For instance, in case of a ward with offices and other commercial land use, while the residing 197 

population could be small, it will still attract a large number of people during the day. For estimating the 198 

number of external trips to wards we used TDFS study. 199 

From TDFS, origin-destination (OD) matrices of person trips estimated for year 2011 were available for 200 

motorised modes and classified among four categories—car, MTW, intermediate public transport (IPT) 201 

which includes auto rickshaws (or tuk-tuks), and public transport (PT) including bus and train. We used 202 

OD matrices for year 2011 as these need to be consistent with the population which corresponds to 2011. 203 

We used sum total of all modes to estimate total trips destined to each zone. The OD units in TDFS are 204 

traffic analysis zones (TAZs) which were formed using wards. In cases where ward size was much bigger, 205 

TAZs were formed by dividing the ward into two or more units. By overlaying the TAZ over wards in a GIS 206 

platform, TAZs were mapped to their corresponding wards. Using this correspondence, ward-specific VKT 207 

and exposure were calculated using zonal data. The total number of external trips to each ward are shown 208 

in Table 1 as Person trips destined to ward.  209 

Table 1: Descriptive statistics 210 

  Mean Standard Deviation Min Median Max 
Population 58,046 19,205 14,217 54,404 145,715 
Population Density  

(persons per km2) 

49,359 38,216 1808 40,796 279,200 
Person trips destined to ward 38,786 31,192 5287 30,450 300,213 
VKT 2581 3396 20 1631 36,326 
# Bus stops 12 13 0 9 67 
# Flyovers 0 1 0 0 7 
# Roundabouts 0 1 0 0 12 
Area 4.9 10.7 0.3 1.9 80.0 
# VRU fatalities 18 20 0 13 183 
% Population main workers 32.3 4.0 23.7 32.3 46.1 
% Population (>6 years) literate 86.6 5.5 72.0 87.5 97.1 

For built environment variables we included grade separators (overpass/flyovers), roundabouts, bus 211 

stops, and built-up population density. Built up area was identified using Google Earth for 2013 (Goel and 212 

Guttikunda, 2015), using which ward-specific population density were estimated. The average built-up 213 

population density of wards is 490 persons per hectare (pph), with 60% of the wards within 500 pph and 214 

85% within 800 pph. Other built environment variables were also identified using Google Earth for year 215 

2012. In case of grade-separated intersections, we used the corresponding intersection as a point location 216 

to represent grade separator. Most flyovers in Delhi connect two parallel legs of a major intersection to 217 

facilitate the uninterrupted movement of through moving traffic. Few flyovers span across more than one 218 

intersection and are often referred to as elevated roads. For those flyovers, we denoted locations at their 219 

beginnings and at their ends. Table 1 presents descriptive statistics of all the variables. 220 

5. Method 221 

The objective of this study is to explore the effect of built environment and demographic and 222 

socioeconomic characteristics of the population on the fatality risk of VRUs. For this, we used the Bayesian 223 

hierarchical modelling framework as proposed by Besag, York and Mollié (BYM) (Besag et al., 1991). The 224 
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model has been implemented widely such as for cancer mapping by Cramb et al. (2011) and injury 225 

modelling by Quddus (2008) and Dimaggio et al. (2015). The model is described as follows: 226 

𝑦𝑖 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃𝑖) 
   

(1) 
log(𝜃𝑖) = log(𝑒𝑖) + β0 + β𝑖X𝑖 + δ𝑖 + ν𝑖  

   
(2) 

where, 𝑦𝑖  are the observed VRU fatality counts in each ward 𝑖, 𝜃𝑖 are the expected count of fatalities,  X𝑖 227 

represents a vector of explanatory variables, or covariates for each ward, 𝑒𝑖 is the exposure, β0 is the 228 

intercept, β is a vector of fixed effect parameters, δ𝑖  is the uncorrelated heterogeneity or unstructured 229 

error, and ν𝑖  is the spatially correlated heterogeneity. The random error components represent the effects 230 

of unmeasured/unknown risk factors. Here, δ𝑖  represents overdispersion and accounts for variation in the 231 

expected fatality risk of wards after controlling for the independent variables, and  ν𝑖  represents spatial 232 

patterns affecting fatality risk and not accounted for by the independent variables.  233 

The first level of the hierarchical modeling framework presented in the equation (1) represents ward-level 234 

observed crash counts (y𝑖)  generated from a Poisson distribution with an expected count of 𝜃𝑖. The 235 

second level, presented in equation (2), includes the linear relationship between log of expected counts 236 

and independent variables. Here, exposure (𝑒𝑖) is an offset (a covariate with coefficient value 1) and, 237 

therefore, effectively acts as a denominator for left-hand side of the equation. This in turn expresses the 238 

dependent variables as risk (log (λ𝑖)=log (𝜃𝑖/𝑒𝑖)). Therefore, this modelling framework accounts for 239 

exposed population explicitly, rather than treating it as a covariate. Note that exposure is the sum total 240 

of population and the number of external trips destined to the ward. 241 

The Bayesian modelling was done using R-INLA (Rue et al., 2009) which is an R package and employs 242 

Integrated Nested Laplace Approximations to estimate the posterior distributions. R-INLA has been 243 

recently developed as a computationally efficient alternative to Monte Carlo Markov Chain (MCMC). 244 

Unlike MCMC methods which rely on simulation methods to trace posterior distribution, INLA estimates 245 

parameters using a closed-form deterministic method and is much faster. It has been applied in injury 246 

modeling by Dimaggio et al. (2015).  247 

R-INLA includes a latent model for uncorrelated random effects (δ𝑖), in which these effects are modelled 248 

as δ𝑖~𝑁(0,1/𝜏δ), where 𝜏δ refers to the precision of the Normal distribution and is inverse of the 249 

variance. log (𝜏δ) is assigned a prior of log-gamma distribution with mean and precision of 1 and 0.0005, 250 

respectively. Using log (𝜏δ) instead of simply 𝜏δ provides some advantages as log (𝜏δ) is not constrained 251 

to be positive. Fixed effects, including the intercept, have a Gaussian prior with fixed mean and precision 252 

(𝑁(0,0.001)).  253 

For spatial dependence we use the intrinsic conditional autoregressive (CAR) specification as proposed by 254 

Besag et al. (1991). According to this specification, the spatial random effects ν𝑖 are distributed as: 255 

ν𝑖|ν𝑗 , 𝜏ν~𝑁 (
1

 n𝑖 
∑ ν𝑗

𝑖~𝑗

,
1

 𝜏νn
𝑖
 
)         𝑖 ≠ 𝑗 256 
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where, 𝑗 refers to the indices of all wards which are neighbours of a given ward 𝑖, and n𝑖  is the total 257 

number of neighbours of ward 𝑖. To determine the number of neighbours and to identify the pairs of 258 

wards as neighbours, a contiguous neighbor-adjacency matrix was created using the poly2nb function in 259 

the spdep R package (Bivand et al., 2011). To define neighbours, we used queen adjacency method 260 

according to which two wards are neighbours if they share a common boundary or a point.  261 

 262 

The above specification implies that spatial component of error at any ward (ν𝑖) has a normal distribution. 263 

That distribution is centered around the mean of the spatial error components of all its neighbouring 264 

wards and the variation around the mean is inversely proportional to the number of its neighbours. As 265 

the number of neighbouring wards increase, the spread of the distribution around the mean value also 266 

reduces.  267 

 268 

Similar to log (𝜏δ),log (𝜏ν) is also assigned a prior of log-gamma distribution with mean and precision of 1 269 

and 0.0005. The parameters describing the priors are often referred to as hyper-parameters, which in the 270 

current specifications are 𝜏δ and 𝜏ν, for uncorrelated and spatially correlated error terms, respectively. 271 

Their respective distributions are called hyperprior distributions. Fixed effects, on the other hand, have 272 

no hyperparameters. Note that all the priors are defined with very large variances (inverse of variance 273 

varies from 0 for intercept, to 0.0005 for hyperparameters, to 0.001 for other fixed effects), and therefore, 274 

these priors are uninformative, signifying lack of our prior understanding of these effects.  275 

Note that while 𝜏δ is an indicator of uncorrelated heterogeneity across all wards, 𝜏ν represents the 276 

variation of the conditional autoregressive specification, therefore the two cannot be interpreted in the 277 

similar manner. Using R-INLA output, we obtained the posterior distributions of spatial error components 278 

of each of the ward. To estimate variance of spatial components, we simulated 1000 random values of 279 

spatial components of each of the ward using their corresponding posterior distributions. For each of 280 

those 1000 runs, we estimated variance of spatial error across all wards, and the mean of 1000 variance 281 

values was estimated as the variance of spatial error component.  282 

To compare the performance of Bayesian models, Deviance information criterion (DIC) is estimated which 283 

is a Bayesian version of Akaike information criterion (AIC). DIC is calculated as: 284 

𝐷𝐼𝐶 =  𝐷(𝜃𝐵𝑎𝑦𝑒𝑠) + 2𝑝𝐷𝐼𝐶 285 

where, the first term in right-hand side is the deviance calculated for the posterior mean of the estimated 286 

parameters, and second term is the effective number of parameters in the model. Compared to maximum 287 

likelihood method, in Bayesian hierarchical modeling, deviance is evaluated at mean of posterior 288 

distributions rather than maximum likelihood estimate of parameters and the number of effective 289 

parameters tend to be less (Gelman et al., 2014, p. 172). Similar to AIC, lower value of DIC implies higher 290 

predictive accuracy. 291 

5.1 Selection of variables 292 

Before progressing to development of the regression model, we investigate the Pearson correlation 293 

between various variables in order to avoid multicollinearity between the independent variables. VKT has 294 
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high positive correlation with number of bus stops and high negative correlation with population density. 295 

Population density and number of bus stops are also highly negatively correlated. We found that adding 296 

the three variables together did not significantly affect the standard deviations of their coefficients 297 

compared to when they are added individually. In addition, magnitude of the coefficients also changed by 298 

a maximum of 25% in case of population density. At the same time, DIC reduced significantly by 5 units 299 

compared to the model with only VKT among the three variables. Therefore, in the final model, all the 300 

three variables were retained.  301 

Table 2: Results of intercept-only and full model using Bayesian Hierarchical modelling 302 

 Intercept-only model Full model 

Variable mean (sd) P2.5 P97.5 mean (sd) P2.5 P97.5 

Intercept -10.108 (0.042) -10.192 -10.024 -8.049 (1.480) -10.988 -5.170 

% Literate    -0.024 (0.009) -0.042 -0.006 

% Main workers     0.039 (0.016)  0.008  0.071 

ln(Population density)    -0.355 (0.090) -0.532 -0.177 

ln(VKT)     0.317 (0.064)  0.192  0.445 

# Bus stops     0.012 (0.004)  0.004  0.021 

# Flyovers     0.137 (0.056)  0.028  0.247 

# Roundabouts    -0.042 (0.038) -0.117  0.034 

𝜏δ (iid component) 3.069 (1.103) 1.503 5.772  3.434 (0.651)  2.304  4.85 

𝜏ν (spatial component) 0.467 (0.136) 0.251 0.779   9.706 (11.461) 1.548 38.67 

DIC 1737.91   1705.71   

 303 

Figure 1: Relative risk of VRU fatality risk in wards across Delhi 304 

6. Results 305 

We obtained results for an intercept-only as well as a full model, as shown in Table 2. The table shows 306 

mean and 2.5th and 97.5th percentiles of the posterior distributions of all coefficients as well as error 307 

components, and also presented are the DIC values. The percentiles represent the 95% confidence 308 

interval (CI). We found that for the frailty or intercept-only model, 66% of the variance is due to spatial 309 
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component, while the rest is due to unstructured heterogeneity of ward. Full model explained 89% of the 310 

variation of spatial error, however, it explained less than 20% of the variation in uncorrelated 311 

heterogeneity. In the intercept-only model, exponential of intercept term,exp( β0), represents the 312 

background fatality risk across the wards and exponential of sum of two error components,exp (δ𝑖 + ν𝑖), 313 

represents the relative risk of each ward, and the latter is presented in Figure1. 314 

On the basis of 95% CI of posterior distributions, all the coefficients are significantly different from zero, 315 

except number of roundabouts. Percentage of literate population, number of roundabouts and 316 

population density have a negative association with fatality risk and percentage of population as workers, 317 

number of bus stops, number of flyovers, and VKT have positive association. Here, a positive association 318 

indicates that with an increase in a variable, the fatality risk increases. 319 

7. Discussion 320 

7.1 Socio-economics and demographics 321 

An increase in literacy rate, which is an indicator of socio-economic status (SES) of the ward, is associated 322 

with lower risk of fatalities. This is possible because population with low SES are more likely to be VRUs 323 

as they walk, cycle, use PT or ride MTW for their daily travel. In Delhi, only one-fifth of all households own 324 

a car (Census-India, 2012). With low level of car ownership, whether an individual is VRU or not is highly 325 

sensitive to their income level. Million Death Study (Hsiao et al., 2013) also reported pedestrian deaths 326 

to be positively associated with living in poorer neighborhoods. A large number of studies have shown 327 

similar results linking higher risk of fatalities, or number of road crashes in general, with lower SES 328 

(Aguero-Valverde and Jovanis, 2006; Wier et al., 2009; DiMaggio et al., 2015; Xu et al., 2017). 329 

The percentage of population as main workers is positively associated with the fatality risk. According to 330 

Census 2011, 65% of the main workers in Delhi are in the age group 30–59, and 86% of them are males. 331 

Therefore, workers represent a specific demographic group, which is predominantly male in the age group 332 

30–59. This is also reflected in the age and sex distribution of injuries. For the three-year fatality data 333 

(2010-2012) reported in the current study, sex of victims was reported for year 2010, according to which 334 

males accounted for 91% of all fatality victims, while their share in overall population is 54% (Census-335 

India, 2012). The disproportionate share of men in the age group 15-59 years was also reported by the 336 

Million Death Study (Hsiao et al., 2013). This explains a positive association of main workers with fatality 337 

risk.  338 

It is interesting to note that even though Pearson correlation between percentage of main workers and 339 

percentage of literate population is positive, the coefficients of the two variables are opposite in signs. 340 

This means that SES (indicated by literacy) and demographics (indicated by workers) have their 341 

independent effects which are opposite in directions. 342 

 343 

7.2 Traffic volume and roundabouts 344 

Positive effect of VKT is expected and has been consistently reported by all studies which considered it as 345 

one of the covariates (Amoh-Gyimah et al., 2016; Demiroluk and Ozbay, 2014; DiMaggio et al., 2015; 346 

Quddus, 2008; Xu et al., 2017; Aguero-Valverde and Jovanis, 2006; Huang et al., 2010; Wier et al., 2009). 347 

According to the posterior distribution of coefficient of number of roundabouts, up to 85th percentile 348 
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value is a negative. One of the benefits of Bayesian method over frequentist method is that while the 349 

latter reports coefficients as single values, the former reports them as distributions of values. Thus it can 350 

be said that, given the data, there is more evidence in favour of a negative association of roundabouts 351 

with fatality risk than a positive or no effect.  352 

The negative association of roundabouts with fatality risk is also expected from international experience. 353 

Roundabouts have been adopted globally as a traffic calming measure because of their effectiveness to 354 

reduce road crashes. According to a meta-analysis of 28 studies in non-US locations, conversion of 355 

intersections to roundabouts resulted in 50-70% reduction of the fatal crashes (Elvik, 2003). In Holland, 356 

before-and-after studies of the construction of about 200 roundabouts showed a significant drop of 89% 357 

of pedestrian fatalities (Schoon and Van Minnen, 1994).  358 

7.3 Flyovers and bus stops 359 

Apart from roundabouts, flyovers and bus stops are two other variables representing road infrastructure, 360 

and we will discuss the two together because of their related features. Flyovers have a strong positive 361 

association with fatality risk, with one flyover increasing the relative risk by 15% compared to no flyover. 362 

Bus stops are also positively related to fatality risk. These effects are independent of the volume of traffic. 363 

The coefficients of the two variables may not be isolated effects of the two infrastructure elements and 364 

could also be indicating the effect of other built environment features which occur simultaneously.  365 

 366 

Flyovers in Delhi have been built along major arterial roads (for instance the two ring roads) as well as 367 

highways. Bus stops in Delhi are also located on most major roads, of which arterials and highways are 368 

subsets. Most residential and commercial areas do not have enough carriageway width for movement of 369 

the bus. Therefore, both bus stops and flyovers are likely to represent road types with heavy vehicular 370 

movement. The roads with flyovers also have 40 to 50% higher average speed than other major roads 371 

(Mohan et al., 2017). 372 

A study conducted in Delhi (Khatoon et al., 2013) studied traffic characteristics before and after the 373 

replacement of signalised junction with a flyover. The study reported that the average speed travelled by 374 

trucks and buses as well as the variability of the speed of all vehicle types increased after the construction 375 

of flyover. Another study from Delhi also found presence of flyovers as a significant factor affecting the 376 

number of pedestrian crashes (Rankavat and Tiwari, 2015). Thus there is a strong evidence suggesting 377 

that construction of flyovers results in high increase in the risk of injuries.  378 

One of the major confounding variables which has been excluded in this analysis is the volume of trucks, 379 

which may bring endogeneity in the model results. A network of national highways pass through the city 380 

in multiple directions making it a natural route for long–distance trucks as well as a hub for goods 381 

exchange. A large proportion of goods movement occurs in Delhi through road-based freight modes. High 382 

volume of trucks is also a major source of pollution in Delhi (Goel and Guttikunda, 2015). It is possible 383 

that the model may have introduced an upward bias in the effect of number of flyovers and number of 384 

bus stops. However, given the magnitude of association for both bus stops and flyovers as well as high 385 

statistical significance indicated by their posterior distributions, the addition of any other risk factor is 386 

unlikely to change the direction of association.  387 
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 388 
Figure 2: Relative risk at different density levels compared to city-level average (250 pph) 389 

7.4 Population density 390 

Population density is log transformed therefore its coefficient cannot be interpreted in the similar manner 391 

as other independent variables. Since the relative risk is an exponent of product of the variable and its 392 

coefficient (exp(β𝑖X𝑖)), the relative risk (RR) of population density can be expressed as power functions, 393 

as1:  394 

𝑅𝑅 = (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦)−0.355 395 

In order to understand the effect of density, we expressed the relative risk with respect to the overall 396 

average population density (total population/total built-up area) of 250 pph. Figure 2 indicates that 397 

relative risk of fatalities is more than 1.8 times higher at density of 50 pph compared to city-level average. 398 

The non-linear curve shows that at higher density levels, the effect of density flattens off and the most 399 

reduction in relative risk is up to a density of 850 pph. There are various factors which could result in this 400 

association of density with risk and we discuss those in the following text.  401 

High density locations are more likely to have higher number of pedestrians. In the absence of dedicated 402 

facilities for pedestrians and cyclists, the two slow-moving road users occupy the curb-side lane of the 403 

roads. This effectively slows down the traffic and makes roads safer. With an increase in the volume of 404 

pedestrian, their risk reduces, and this phenomenon is referred to as safety-in-numbers (Jacobsen, 2003; 405 

Elvik and Bjørnskau, 2015). Thus the negative association of relative risk with density may likely be an 406 

indicator of safety-in-numbers. 407 

High density also attracts higher number of IPT, such as cycle rickshaws, auto rickshaws, and e-rickshaws. 408 

These modes are demand responsive and are operated by private operators. Therefore, their volumes are 409 

proportional to density or the demand. Since buses do not operate through streets in residential areas, 410 

IPT is also used for last-mile connectivity of a bus or metro trip (Goel and Tiwari, 2015). In the absence of 411 

                                                           
1 𝑒𝛽.ln(𝑋) = 𝑋𝛽 
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dedicated parking bays or stops, these vehicles idle along the curb-side lane for passenger boarding and 412 

alighting, leading to further congestion. On-street parking/idling effectively narrows the roads, and driver 413 

tend to be more cautious while driving through those sections (Gattis, 2000).  414 

In Delhi, as well as in most Indian cities, most informal neighborhoods or commercial areas have high 415 

built-up density and narrow roads. Informality implies that most growth in built-up is in-situ (as opposed 416 

to Greenfield development). Also, the street design is not according to municipal bye-laws which ensure 417 

wide-enough streets. Formally designed high-income neighborhoods often have wider streets, but due to 418 

on-street car parking by the residents, road widths are effectively reduced.  419 

As a result, most through movement of motorised traffic occurs on major roads, and those driving through 420 

the narrow streets tend to drive slow. In addition to slower and low volume of traffic, trucks and buses 421 

are almost absent in these locations. While trucks are restricted by police, buses do not ply due to lack of 422 

space. This can also be seen through a negative correlation of population density with both, number of 423 

bus stops as well as VKT, which in turn are proxies of major roads. Therefore, high density should also be 424 

interpreted as a proxy of residential/commercial land-use and street design, and these correlates of high 425 

density act as speed calming measures.  426 

The relationship of crash risk with population density has been inconsistent across the studies. While 427 

Graham and Glaister (2003) and Noland and Quddus (2004) reported a negative association between 428 

density and crash risk, Lovegrove and Sayed (2006), Huang et al. (2010), Dumbaugh and Li (2010), 429 

Chakravarty et al. (2010), Siddiqui et al. (2012), and Narayanmoorthy et al. (2013) reported a positive 430 

association between the two. Both the studies showing negative relationship were based on country-wide 431 

analysis in the UK using wards as areal units, and all the studies showing positive relationship were based 432 

in either US or Canada— Florida, San Antonio, California, Manhattan, and Vancouver.  433 

 434 

The cities in the US have higher car ownership and lower population density than the UK (Guiliano and 435 

Narayan, 2003). Compared to both US and UK, Delhi’s density is an order of magnitude higher and car 436 

ownership a magnitude of order lower. In a setting with high car ownership, higher density may imply 437 

higher number of cars against a smaller number of pedestrians. In contrast, in a setting such as Delhi, it 438 

implies much higher number of pedestrians in conflict with comparatively smaller number of motorised 439 

modes. Thus, density can imply different mechanisms in place in different settings.  440 

 441 

8. Conclusion 442 

Pedestrians, cyclists and MTW users constitute the largest group of fatality victims in Delhi. In Delhi as 443 

well as in most Indian cities, overall traffic enforcement is weak, especially in terms of speed as well as 444 

alcohol limit. In addition, the infrastructure facilities for pedestrians are poor, for cyclists almost absent, 445 

and MTW use the same lanes as other motorised modes. The mixing of VRUs with vehicles of much larger 446 

weight and speed results in greater injury risk. In this context, improving safety through design of built 447 

environment can prove to be highly effective. Therefore, it is important to understand built environment 448 

factors which affect fatality risk. In this study we assessed the risk resulting from roundabouts, bus stops, 449 

flyovers and population density while controlling for traffic volumes and population characteristics. 450 

 451 
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With higher emphasis on smooth traffic flow and higher speed, a large number of flyovers have been built 452 

within populated areas in Delhi as well as many Indian cities. We found that an addition of a flyover 453 

increases the fatality risk in a ward by up to 15%, and this effect is independent of traffic volume. While 454 

the construction of flyovers pose a challenge of lock-in, their effect on speed of vehicles can be controlled 455 

by using speed enforcement by the police or using passive measures such as installment of rumble strips. 456 

Given the high risk posed by addition of flyovers, their use as congestion mitigation measures within urban 457 

areas should be discontinued.  458 

 459 

In addition, cities in India need to consider the use of roundabouts as an alternative of traffic junctions to 460 

minimise the number of road crashes. Many cities in India are doing exactly the reverse by replacing 461 

roundabouts with traffic junctions. For traffic planners to willingly adopt roundabouts, it is important that 462 

their designs are based on latest international experience which result in increased safety as well as 463 

efficient traffic movement.  464 

 465 

There is a positive association with fatality risk and social deprivation, thus indicating socio-economic 466 

inequity of injury risk. Given a negative relationship of risk and population density, future studies should 467 

investigate the street design and built environment features of high density locations in Delhi to 468 

understand the causal mechanism behind this relationship. These factors can then be incorporated in 469 

future city designs. 470 
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