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1. The problem

The upper bound derived in Kerswell (2016) is incorrect. This is because the I4 and
I5 integrals centred at the top boundary are not exactly analogous to their counterparts
at the lower boundary counter to what is written just under equation (2.23) (in Kerswell
2016). Instead, in both these cases, full volume integrals must be included due to the
roughness which scale differently with `. Specifically, the estimates for the I4 and I5
integrals centred at the top boundary are

Itop5 := 〈
∫ 1

1−`

∫∫∫
V(Λ)

|u · ∇2a| dV dΛ 〉

≤ ` 〈
∫∫∫

V(1)

|u · ∇2a| dV 〉 − 〈
∫ 1

1−`

∫∫∫
V(Λ)

|u · ∇2a| dΛ 〉

≤ O(`
√
ε) + O(`5/2

√
ε),

where V(Λ) := V(1) − V(Λ) so the last term can be estimated as in expression (2.23),
and

Itop4 := 〈
∫ 1

1−`

∫∫∫
V(Λ)

|u · (u ·∇)a| dV dΛ 〉

≤ ` 〈
∫∫∫

V(1)

|u · (u ·∇)a| dV 〉 − 〈
∫ 1

1−`

∫∫∫
V(Λ)

|u · (u ·∇)a| dΛ 〉

≤ O(`ε) + O(`3ε)

where again the last term can be estimated as in expression (2.22). The first term of
O(`ε) on the right hand side in this modified estimate of Itop4 is the key new addition
which breaks the bound. To see this, it is best to start with equation (2.16) rearranged
slightly as follows

(1− `)Gr +
1

A
〈
∫∫∫

V(1)

u · (u ·∇)a + u · ∇2a dV 〉 =

1

A
〈 1

`

∫ 1

1−`

∫
S(Λ)

(a · u)u · n̂ + u · (n̂ ·∇)a− a · (n̂ ·∇)u dS dΛ

−1

`

∫ `

0

∫
S(Λ)

(a · u)u · n̂ + u · (n̂ ·∇)a− a · (n̂ ·∇)u dS dΛ

+
1

`

∫ 1

1−`

∫∫∫
V(Λ)

u · (u ·∇)a + u · ∇2a dV dΛ

+
1

`

∫ `

0

∫∫∫
V(Λ)

u · (u ·∇)a + u · ∇2a dV dΛ 〉 (1.1)
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to highlight the full volume integrals present (now on the left). Then the arguments
presented in the paper are correct to reach (2.24) which now reads

(1−`)Gr+ 1

A
〈
∫∫∫

V(1)

u·(u·∇)a+u·∇2a dV 〉 ≤ 1

`

{
(B1`

2+B4`
3)ε+(B2`+B3+B5`

2)
√
`ε

}
.

(1.2)
For `→ 0, this is (using the fact that Gr = ε/U ){

1

U
+
〈
∫∫∫
V(1)

u · (u ·∇)a dV 〉
〈
∫∫∫
V(1)
|∇u|2 dV 〉

}
ε ≤ B1`ε+B3

√
ε/`+ h.o.t. (1.3)

since

〈
∫∫∫

V(1)

u · ∇2a dV 〉 ≤ O(
√
Aε)� B3

√
ε/`. (1.4)

The RHS is minimised as before by ` = ε−1/3 so that{
1

U
+
〈
∫∫∫
V(1)

u · (u ·∇)a dV 〉
〈
∫∫∫
V(1)
|∇u|2 dV 〉

}
ε ≤ Cε2/3 (1.5)

where C is an O(1) constant or rewriting

ε ≤ C3U3

/{
1 +

U〈
∫∫∫
V(1)

u · (u ·∇)a dV 〉
〈
∫∫∫
V(1)
|∇u|2 dV 〉

}3

. (1.6)

Since no lower bound is available on the denominator, this does not provide a bound
on ε. In fact, the better way to view (1.5) is that it presents an upper bound on the
denominator {

1 +
U〈
∫∫∫
V(1)

u · (u ·∇)a dV 〉
〈
∫∫∫
V(1)
|∇u|2 dV 〉

}
≤ O(Uε−1/3) (1.7)

rather than a bound on ε.

2. Why there is no quick fix

It became apparent that there must be a problem with the bound in Kerswell (2016)
when a connection was very recently made (Chernyshenko 2017) between the ‘boundary
layer’ method of Otto & Seis (Seis 2015) and the Background method (Doering &
Constantin 1994). It is worthwhile illustrating this connection in the simpler context
of the smooth-walled channel flow problem before giving the background velocity field
corresponding to the Otto-Seis ‘boundary layer’ bounding analysis presented in Kerswell
(2016). This background field has shears throughout the interior and so cannot ever
satisfy the spectral constraint necessary to get a bound in the Background approach.
This, unfortunately, makes it clear that there is no simple fix of the flawed bound in
Kerswell (2016).

We adopt Seis’s (2015) notation (see his §4) so that if

(NS) :=
∂u

∂t
+ u ·∇u + ∇p−∇2u−Gr x̂ (2.1)

then (NS) = 0 and ∇ · u = 0 with u(x, y, 0) = u(x, y, 1) = 0 define the channel flow
problem.
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2.1. The Background method

The background method is to construct the functional

L[u,ν] := 〈
∫ 1

0

|∇u|2 dz〉 − α〈
∫ 1

0

ν · (NS) dz〉 (2.2)

where α is a balance (scalar) parameter (usually ‘a’ in past work), ν(x, t) is a Lagrange
multiplier field, and

(·) :=
1

LxLy

∫ Lx

0

∫ Ly

0

(·) dydx (2.3)

is an average over the rectangle (x, y) ∈ [0, Lx] × [0, Ly]. The key step is to restrict the
difference between u and ν by defining a background field φ(z) such that

u(x, t) = φ(z)x̂ + ν(x, t) (2.4)

where φ carries the mass flux of the flow but vanishes at the boundaries. In particular, if
the energy dissipation rate is sought in terms of the mean flow U rather than the imposed
pressure gradient (Gr) then

U :=

∫ 1

0

u · x̂ dz =

∫ 1

0

φdz (2.5)

(see eqn (2.29), Kerswell 2016). Rewriting L in terms of ν and φ, and then integrating
by parts, the boundedness of the kinetic energy and the fact that both φ and ν vanish
on z = 0 and 1 leads to the simplified expression

L[ν, φ] =

∫ 1

0

φ
′2 dz − 〈G(ν;φ, α) 〉 (2.6)

where

G :=

∫ 1

0

(α− 1)|∇ν|2 + αν1ν3φ
′ − (α− 2)ν1φ

′′ dz. (2.7)

Then the background method (Doering & Constantin 1994) is the observation that

L ≤
∫ 1

0

φ
′2 dz −min

ν
G(ν;φ, α) (2.8)

where only steady fields now need to be considered. The important point is minG only
exists for α > 1 and φ which satisfy the spectral constraint (Doering & Constantin 1994).
The best bound is found by then minimising the whole RHS over the (convex) set of such
φ and α.

2.2. The Otto-Seis ‘boundary layer’ method

The starting point for the Otto-Seis ‘boundary layer’ approach is again (2.2) and the same
decomposition u = φ(z)x̂ + ν is used. The key difference now is that L is re-expressed
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in terms of u and φ rather than ν and φ. So

L[u, φ] = 〈
∫ 1

0

|∇u|2 dz〉 − α〈
∫ 1

0

(u− φ(z)x̂) · (NS) dz〉

= 〈
∫ 1

0

|∇u|2 dz〉 − α〈 d
dt

∫ 1

0

1
2u2 dz +

∫ 1

0

|∇u|2 dz −GrU〉

− α〈
∫ 1

0

φ′(uw − uz)dz〉 − αGrU (2.9)

= (1− α)〈
∫ 1

0

|∇u|2 dz〉 − α〈
∫ 1

0

φ
′
(uw − uz)dz〉. (2.10)

At this point, the Euler-Lagrange equations

δL
δu

= 0 &
δL
δφ

=
δL
δα

= 0 (2.11)

contain the background method bound as a solution but there is no means to identify it
as such (i.e appreciate that the associated value of L is a bound on the dissipation rate).
Instead, the Otto-Seis approach appears to be to select a simplifying value of α = 1 so
that the RHS reduces to

ε = −〈
∫ 1

0

φ
′
(uw − uz)dz〉 (2.12)

and then to choose a simple trial function

φ(z) :=
U

1− `
×

 (1− z)/` 1− ` ≤ z ≤ 1
1 ` ≤ z ≤ 1− `
z/` 0 ≤ z ≤ `

(2.13)

(designed so that
∫ 1

0
φdz = U with boundary layers of size `). This converts (2.12) into

(1− `)Gr =
1

`

∫ 1

1−`
(uw − uz) dz −

1

`

∫ `

0

(uw − uz) dz (2.14)

(after using ε = UGr) which is eqn (4.10) in Seis (2015) and then the strategy is to
bound the terms on the RHS using powers of ε. The fundamental observation is that
the derivative of the background field is what appears in the Otto-Seis ‘boundary layer’
method (Chernyshenko 2017) .

2.3. Background field for the rough problem

In the rough channel flow problem, the background (vector) field corresponding to the
‘boundary layer’ method as applied in Kerswell (2016) is φ(λ)a (generalised from φ(z)x̂
in the smooth-walled problem) where

λ :=
z − f(x, y)

g(x, y)− f(x, y)
, a :=

x̂ + Fx(x, y, λ)ẑ

g(x, y)− f(x, y)
& F (x, y, λ) := (1−λ)f(x, y)+λg(x, y).

For example∫∫∫
V(Λ)

φ(λ)a · (NS) dV =

∫ 1

0

φ(λ)

∫ Ly

0

∫
C(λ,y)

ŝ · (NS) ds dy dλ (2.15)

where the RHS is (2.6) of Kerswell (2016) before integrating with a general weight φ(λ)
over λ ∈ [0, 1]. Taking φ(λ) again as the piecewise-linear trial function defined in (2.13) al-
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lows the shears associated with it to be controllable. However, a varies spatially through-
out the domain and so the shears associated with the combination do not vanish at some
controlled distance from the boundary. This is what prevents the background method
working and also has to break the boundary layer method. Unfortunately, this is a known
limitation of the background method with no work-around currently on the horizon.
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