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We prove that the Poisson/Gaudin–Mehta phase transition conjectured to occur when
the bandwidth of an N × N symmetric band matrix grows like b =

√
N is naturally

observable in the rate of convergence of the level density to the Wigner semi-circle law.

Specifically, we show for periodic and non-periodic band matrices the rate of convergence
of the fourth moment of the level density is independent of the boundary conditions in the
localized regime b� √

N with a rate of O( 1
b
) for both cases, whereas in the delocalized

regime b � √
N where boundary effects become important, the rate of convergence for

the two ensembles differs significantly, slowing to O( b
N

) for non-periodic band matrices.
Additionally, we examine the case of thick non-periodic band matrices b = cN , showing
that the fourth moment is maximally deviated from the Wigner semi-circle law when
b = 2

5
N , and provide numerical evidence that the eigenvector statistics also exhibit

critical behavior at this point.

Keywords: Random band matrix; Poisson/Gaudin–Mehta transition; Anderson transi-
tion; global statistics.

Mathematics Subject Classification 2010: 60B20, 82B44, 15B52

1. Introduction

An important open problem in random matrix theory is the Poisson/Gaudin–Mehta
conjecture on the existence of a phase transition in the local eigenvalue statistics of
random real symmetric band matrices.

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution
of this work is permitted, provided the original work is properly cited.
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Conjecture 1. The limiting local bulk statistics of a random band matrix with
independent entries and bandwidth b � Nα are Poisson if α < 1

2 and are Gaudin–
Mehta if α > 1

2 .

This paper concerns the question of whether this phase transition is also observ-
able in the global eigenvalue statistics, e.g. the level density of the eigenvalues.

Definition 1. An N ×N matrix H is a real symmetric random band matrix with
bandwidth b if the following four conditions hold:

(1) H is a real symmetric matrix.
(2) The upper triangular elements hij , i ≤ j, are jointly independent symmetric

real random variables.
(3) For ‖i− j‖ < b, Ehij = 0, Eh2

ij = 1, E h4
ij = q.

(4) For ‖i− j‖ ≥ b, hij = 0.

The metric on the entries is defined as

‖i− j‖ = min(|i− j|, N − |i− j|)
for periodic band matrices, and as

‖i− j‖ = |i− j|
for non-periodic band matrices. The matrix ensembles associated to these two cases
will be denoted as PBEN,b,q and NBEN,b,q, respectively.

The limiting level densities of random band matrices were first considered in
1991 by Bogachev, Khorunzhii, Molchanov, and Pastur [3, 12]. In these papers,
they obtained the following result:

Proposition 1. In the limit N → ∞, the normalized level density of a periodic
random band matrix with bandwidth b = cNα is given by the Wigner semi-circle
law for any 0 < α ≤ 1 and 0 < c ≤ 1. For non-periodic band matrices, the limiting
level density is given by the Wigner semi-circle law only if 0 < α < 1 or α = 1 and
c = 1.

This is surprising for two reasons: first, the Wigner semi-circle law extends down
to small bandwidths b = O(Nε), but even more surprisingly, it does not hold for
very large bandwidths b = cN in the non-periodic case. It would therefore seem
that the Poisson/Gaudin–Mehta transition is unobservable at a macroscopic scale,
and indeed, the authors of [12] make an interesting remark to this effect:

[The parameter b2

N ] does not play a special role in the formation of the den-
sity of states of the considered matrices. However, we are not inclined to
regard our results as incompatible with the interesting [Poisson/Gaudin–
Mehta conjecture], since, as is well known, the integrated density of states
has very little sensitivity to the localization properties of the states of ran-
dom operators.
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We contend that this is not the case: “very little sensitivity” is not the same as
“none”. Our main result is a proof that the critical parameter does indeed play a
special role on the global scale, by controlling the rate of convergence of the level
density to the Wigner semi-circle law. Under the assumption that q �= 2,a we show
that the rate of convergence of the fourth moment of the level density in the localized
regime α < 1

2 is the same for both periodic and non-periodic ensembles with a rate
of O(N−α), whilst in the delocalized regime α > 1

2 , the rate of convergence differs
significantly between the two cases, increasing to the much slower rate of O(N1−α)
in the non-periodic case.

Theorem 1. In the limit N → ∞, the fourth moment of the normalized level
density

m4(σN,b,q) =
∫ ∞

−∞
x4σN,b,q(dx) (1)

of a non-periodic band ensemble with bandwidth b = Nα, 0 < α < 1, has asymptotic
expansion

m4(σN,b,q) = 2 +
(

1
3
Nα−1 +

q − 2
2

N−α

)
+ Oq(N2α−2 +N−2α),

where q is the fourth moment of the entries.

Theorem 2. In the limit N → ∞, the fourth moment of the normalized level
density

m4(σN,b,q) =
∫ ∞

−∞
x4σN,b,q(dx) (2)

of a periodic band ensemble with bandwidth b = Nα, 0 < α < 1, has asymptotic
expansion

m4(σN,b,q) = 2 +
q − 2

2
N−α + Oq(N2α−2 +N−2α),

where q is the fourth moment of the entries.

The proof may be found in Sec. 4, and an explanation as to why this macroscopic
behavior is a indeed genuine Poisson/Gaudin–Mehta phenomenon in Sec. 5.

2. Previous Results

2.1. Local statistics

The Poisson/Gaudin–Mehta conjecture appears as the final entry in Percy Deift’s
list of open problems in integrable systems and random matrices [6]. Interest in this

aThe case q = 2 is somewhat degenerate as this is when the fourth moment of the entries coincides
with the fourth moment of the Wigner semi-circle law. We expect that a similar relationship
holds for higher moments with the degenerate case being when the distribution of the entries is
semi-circular.
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conjecture can be traced back to the numerical work of Seligman, Verbaarschot,
and Zirnbauer [14], and Casati, Izrailev, and Molinari [5] in the late 1980s/early
1990s. Since this time, progress has been rather modest: results concerning local
universality are only just beginning to emerge, and only apply to periodic band
matrices with large bandwidth. For a specially structured “periodic block band
GUE” with large bandwidth b = cN , Shcherbina [15] proved local universality for
energies |λ| < √

2 using a rigorous supersymmetric method; Bourgade et al. [4]
strengthened this result using heat flow methods combined with a new mean field
reduction technique to prove local universality for more general periodic band
Wigner ensembles in both the real symmetric/Hermitian cases for all energies in
the bulk, again for b = cN .

Outside of numerical simulation and heuristic supersymmetric arguments (see
Fyodorov and Mirlin [11]), the only results indicating the critical bandwidth
b =

√
N have concerned the two-point correlation function of the characteristic

polynomial

F2(λ1, λ2) = E(det(A− λ1) det(A− λ2)), (3)

which, for any λ0 ∈ (−2, 2) and ξ varying in any compact set C ⊂ R, in the scaling
limit goes to

D−1
2 F2

(
λ0 +

ξ

Nρ(λ0)
, λ0 − ξ

Nρ(λ0)

)
→ sin(2πξ)

2πξ
(4)

if α > 1
2 [16], and goes to

D−1
2 F2

(
λ0 +

ξ

Nρ(λ0)
, λ0 − ξ

Nρ(λ0)

)
→ 1 (5)

if α < 1
2 [17], where

D2 = F2(λ0, λ0). (6)

These results, although consistent with Poisson/Gaudin–Mehta local statistics, do
not imply it.

On the other hand, much more is known at the edge of the spectrum: Sodin
showed that for real symmetric/Hermitian periodic band matrices with symmetric
subgaussian entries, the limiting distribution of the extreme eigenvalues is given
by the Tracy–Widom distribution if b � N

5
6 and by some other distribution if

b� N
5
6 [18].

2.2. Mesoscopic statistics

Mesoscopic statistics describe the eigenvalues on scales which are intermediate to the
local and global regimes, probing the spectrum in ranges which are much larger than
the typical eigenvalue gap size, but still small enough so that macroscopic properties
(such as the density) are constant. One such example is the variance of the number
of eigenvalues Nχ on an energy interval of size 1

N � χ � 1. Motivated by their
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investigations into small metallic conductors, Altshuler and Shklovskii introduced
this statistic in [1], showing that the mesoscopic statistics undergo a phase transition
at a scale χc = min

(
b2

N2 ,
1
b2

)
. For χ � χc, they predicted what is now known as

the Altshuler–Shklovskii formula for band matrices

Var(Nχ) � N

b

√
χ. (7)

This expression holds in both Possion and Gaudin–Mehta regimes. On the other
hand, for χ� χc, there are two possible cases: for b2 � N

Var(Nχ) � logN, (8)

whereas for b2 � N

Var(Nχ) � Nχ. (9)

These expressions were recently put on rigorous footing by Erdős and Knowles
in [8, 9], under the assumption that χ� b−

1
3 . These formulas are consistent with the

Poisson/Gaudin–Mehta conjecture, but we will defer discussion of this relationship
until Sec. 5.

2.3. Eigenvector statistics

Compared to the local statistics, the situation has been somewhat better on the
eigenvector side of the story. Phrased in terms of the eigenvectors, the analogous
conjecture is as follows.

Conjecture 2. The bulk eigenvector localization length l for a random band matrix
with independent entries and bandwidth b is l � min(b2, N).

Due to the connection with disordered conductors, this is also known as the
Anderson transition conjecture for band matrices. The first result concerning this
conjecture was due to Schenker [13], who provided an upper bound l ≤ b8. A lower
bound of l ≥ b

7
6 was demonstrated by Erdős and Knowles [7]; together with Yau

and Yin [10], they improved this to l ≥ b
5
4 . These lower bounds hold in a weaker

sense, in that they only hold for “most” eigenvectors. A strong lower bound of
l ≥ b

7
6 for eigenvectors with corresponding eigenvalues |λ| < √

2 was shown by Bao
and Erdős [2] for block band ensembles with entries matching Gaussians to four
moments.

3. Correlation Functions

The one-point correlation function or level density of a Hermitian random matrix
H ∼ EN is the unique measure ρN : B(R) → R

+ such that∫ ∞

−∞
f(x)ρN (dx) =

N∑
i=1

E f(λi) (10)

for all continuous compactly supported functions f : R → R, where λi are the
N ordered eigenvalues of H . For discrete ensembles, ρN can only be defined as a
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measure on R, but for continuous ensembles we can write ρN(dx) = ρN(x)dx as a
density. In this case, we equivalently have

ρN (x) = N

∫ ∞

−∞
· · ·
∫ ∞

−∞
P (x1, . . . , xN )dx2 · · ·dxN , (11)

where P (x1, . . . , xN ) is the joint density of the eigenvalues. From the one point
correlation function, we construct the normalized one-point correlation function or
normalized level density σN : B(R) → R

+ through the rescaling

σN (x) = νρN (ξx), (12)

where the scaling parameters

ξ =

√
m2(ρN )
m0(ρN )

(13)

and

ν =

√
m2(ρN )
m0(ρN )3

(14)

are given in terms of the moments of the one point correlation function

mk(ρN ) =
∫ ∞

−∞
xkρN (dx) = E tr(Hk). (15)

This scaling is chosen so that

m0(σN ) = m2(σN ) = 1, (16)

i.e. so that σN is a probability measure with variance 1. From this scaling, we
therefore have

mk(σN ) =
m0(ρN )

k
2−1mk(ρN )

m2(ρN )
k
2

=
N

k
2−1

E tr(Hk)

(E tr(H2))
k
2

, (17)

and in particular, the fourth moment of σN is

m4(σN ) =
N E tr(H4)
(E tr(H2))2

. (18)

4. Critical Behavior on the Global Scale

In terms of moments, Proposition 1 states that in the limit N → ∞, b = Nα, the
moments of normalized level density mk(σN,b,q) of a band ensemble will converge
to those of the Wigner semi-circle mk(µsc). What about the moments for finite N
and b? Figure 1 shows a numerical simulation of m4(σN,b,q). As can be seen, for
b� √

N , the rate of convergence to the Wigner semi-circle law is the same for both
periodic and non-periodic ensembles, however, for b� √

N , the rates of convergence
are very different.

Remark 1. In the following, it will be convenient to take N = mb as an integer
multiple of the bandwidth b, where m ∈ N is not necessarily fixed. In this case, the

1850002-6

R
an

do
m

 M
at

ri
ce

s:
 T

he
or

y 
A

pp
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
A

M
B

R
ID

G
E

 U
N

IV
E

R
SI

T
Y

 o
n 

03
/0

2/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

January 25, 2018 8:6 WSPC/S2010-3263 RMTA 1850002

Evidence of the Poisson/Gaudin–Mehta phase transition
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200,b,3
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400,b,3
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400,b,3

Fig. 1. This figure shows log(|m4(σN,b,q) − 2|) against α with b = Nα for N = 200, 400, q = 3.

non-periodic/periodic band matrices can be represented as

H =




A1 L1

L�
1 A2 L2

L�
2 A3

. . .

. . . . . . Lm−1

L�
m−1 Am



, (19)

H =




A1 L1 Lm

L�
1 A2 L2

L�
2 A3

. . .

. . . . . . Lm−1

L�
m L�

m−1 Am



, (20)

where the Ai are b × b random matrices drawn from NBEb,b,q, and the Li are
strictly lower triangular b × b random matrices with independent entries lij below
the diagonal. We may consider these lower triangular blocks Li as drawn from an
ensemble LTEb,q, defined in the obvious way.

Remark 2. To simplify notation, we drop subscripts to indicate a generic element.

Lemma 1. Let A ∼ NBEb,b,q and L1, L2 ∼ LTEb,q be b × b jointly independent
random matrices. Then

E tr(A4) = 2b3 + (q − 2)b2, (21)

E tr(A2LL�) =
b3 − b2

2
, (22)
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E tr(A2L�L) =
b3 − b2

2
, (23)

E tr(L�
1 L1L2L

�
2 ) =

b3 − 3b2 + 2b
6

, (24)

E tr(LL�LL�) =
4b3 + (3q − 12)b2 − (3q − 8)b

6
. (25)

Proof. The proof requires a straight forward, but tedious, moment calculation.
Details may be found in the appendix.

We are now ready to prove our main result.

Proof of Theorem 1. The second moment of H ∼ NBEN,b,q is simply equal to
the number of entries inside the band

E tr(H2) = E tr(HH�) =
∑
i,j

E h2
ij = 2Nb−N − b2 + b. (26)

The calculation of the fourth moment is more involved. Taking the dimension N =
mb as an integer multiple of the bandwidth, H can be represented in block form as
in Eq. (20). Assuming that b ≤ N

2 , we can then write C = H2,

C =




A2
1+L1L

�
1 A1L1+L1A2 L1L2

(A1L1+L1A2)� L�
1 L1+A2

2+L2L
�
2 A2L2+L2A3 L2L3

(L1L2)� (A2L2+L2A3)�
. . . . . . . . .

(L2L3)�
. . .

. . . Lm−2Lm−1

. . . Am−1Lm−1+Lm−1Am

(Lm−2Lm−1)� (Am−1Lm−1+Lm−1Am)� L�
m−1Lm−1+A2

m




,

(27)

or, in block coordinates

Ci,i = L�
i−1Li−1 +A2

i + LiL
�
i ,

Ci,i+1 = C�
i+1,i = AiLi + LiAi+1, (28)

Ci,i+2 = C�
i+2,i = LiLi+1

with the convention that L0 = Lm = 0. The fourth moment of H is hence

E trH4 = E trC2 =
m∑
i,j

E tr(CijC
�
ij )

=
m∑
i

E tr((L�
i−1Li−1 +A2

i + LiL
�
i )(L�

i−1Li−1 +A2
i + LiL

�
i )�)
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+ 2
m−1∑

i

E tr((AiLi + LiAi+1)(AiLi + LiAi+1)�)

+ 2
m−2∑

i

E tr((LiLi+1)(LiLi+1)�). (29)

In each of the three sums, the terms being summed over are identical, with the
exception of the first and last term in the first sum. We therefore have

E trH4 = (m− 2) E tr((L�
1 L1 +A2 + L2L

�
2 )(L�

1 L1 +A2 + L2L
�
2 )�)

+ 2 E tr((A2 + L�L)(A2 + L�L)�)

+ 2(m− 1) E tr((A1L+ LA2)(A1L+ LA2)�)

+ 2(m− 2) E tr((L1L2)(L1L2)�). (30)

Expanding this out and applying Lemma 1, we find

E trH4 = mE tr(A4) + (6m− 8) E tr(A2LL�) + 2mE tr(A2L�L)

+ (4m− 8) E tr(L�
1 L1L2L

�
2 ) + (2m− 2) E tr(LL�LL�)

= 8mb3 + (2q − 12)mb2 − (q − 4)mb− 20
3
b3 − (q − 12)b2 +

(
q − 16

3

)
b

= 8Nb2 + (2q − 12)Nb− (q − 4)N − 20
3
b3 − (q − 12)b2 +

(
q − 16

3

)
b.

(31)

Together with Eq. (26), we find the fourth moment of the normalized level density
as

m4(σN,b,q)

=
N

(
8Nb2 + (2q − 12)Nb− (q − 4)N − 20

3
b3 − (q − 12)b2 +

(
q − 16

3

)
b

)
(2Nb−N − b2 + b)2

= 2 +
(2q− 4)N2b+

4
3
Nb3− (q− 2)N2− qNb2+

(
q − 4

3

)
Nb−2b4+4b3− 2b2

(2Nb−N − b2 + b)2
.

(32)

Setting b = Nα, 0 < α < 1, we then have

m4(σN,b,q) = 2 +
(

1
3
Nα−1 +

q − 2
2

N−α

)
+ Oq(N2α−2 +N−2α), (33)
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or, in terms of the critical parameter η = b√
N

,

m4(σN,b,q) = 2 +
1√
N

(
1
3
η +

q − 2
2

η−1

)
+ Oq

(
η2 + η−2

N

)
. (34)

Remark 3. Interestingly, although the expression for the fourth moment of the
level density (32) is exact for b ≤ N

2 , it is false for b > N
2 . This because the

combinatorial structure of the problem is different in this region.

Proof of Theorem 2. We will omit the details as the calculation is essentially the
same as in the non-periodic case. For H ∼ PBEN,b,q, the second moment is

E tr(H2) = 2Nb−N, (35)

and the fourth moment is

E tr(H4) = mE tr((L�
1 L1 +A2 + L2L

�
2 )(L�

1 L1 +A2 + L2L
�
2 )�)

+ 2mE tr((A1L+ LA2)(A1L+ LA2)�)

+ 2mE tr((L1L2)(L1L2)�)

= 8Nb2 + (2q − 12)Nb− (q − 4)N. (36)

This gives the fourth moment of the normalized density as

m4(σN,b,q) = 2 +
q − 2
2b− 1

= 2 +
q − 2

2
N−α + Oq(N−2α). (37)

5. Relationships Between Scales

The connections across scales in the eigenvalue/eigenvector statistics are most
clearly seen from the disordered conductor perspective, where our band matrix is
interpreted as the Hamiltonian for a single electron Anderson tight binding model
on N sites with hopping range b; the diagonal elements are seen as random on sites
potentials, and the off diagonal elements as random hopping amplitudes.

Let us first look at the case where the eigenvectors are localized with length
l � N . Under the assumption that the localization positions ci of the eigenvectors
ψi are independent and uniformly distributed, i.e.

|ψi|(j) ≤ Cie
−|j−ci|

l (38)

for some random Ci = O(l−
1
2 ), if we choose two consecutive eigenvalues λ1, λ2 in

the bulk at random, then their associated eigenvectors will not significantly overlap
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with high probability 1− l
N . If we then vary the on-site potential/hopping energies

on just the sites on which ψ1 was supported, leaving those on which ψ2 was sup-
ported unchanged, we would shift λ1 whilst keeping λ2 constant; the eigenvalues
are independent and the gap distribution will be Poisson.

Attempting to continue this argument to mesoscopic scales reveals why Poisson
statistics break down: in an energy window of size χ there will be O(Nχ) eigenvalues,
and if this is much larger than N

l , i.e. if χ � 1
l , then a significant number of

eigenvectors must overlap and will therefore not display Poisson statistics above
this scale. Indeed, the Altshuler–Shklovskii formula predicts that the variance in
the number of energy levels in a window will be much smaller than the Poisson
case if N

b

√
χ� Nχ, i.e. if χ� 1

b2 . Putting these two descriptions of the transition
together gives the correct prediction of the localization length as length as l � b2,
as pointed out by Erdős and Knowles in [8, 9].

Although the variance in the Altshuler–Shklovskii regime is much less than the
Poisson case, it is of course much more than typical mean field statistics where
Var(Nχ) � logN : on mesoscopic scales, the spectrum of band matrices displays a
sort of soft rigidity.

The connection between the local eigenvalue statistics and the eigenvector statis-
tics for the delocalized regime follows essentially as before: when the eigenvectors
are delocalized, their supports will overlap significantly; changing the onsite poten-
tial and hopping amplitudes to shift a single eigenvalue will of course modify the
other, typically in the same direction, as both eigenvectors feel the same change.
This manifests as the famous RMT eigenvalue repulsion, resulting in Gaudin–Mehta
local statistics. Unfortunately, these simple heuristics do not seem to have an inter-
pretation in the mesoscopic regime.

From the Anderson model perspective, the periodic/non-periodic band matrices
correspond to models of periodic/non-periodic conductors. We believe that reason
the two models display different rates of convergence for their macroscopic statistics
in the delocalized regime is because it is here that a significant quantity of the
eigenvectors feels the effect of the boundary. An important difference between the
two models is that for the non-periodic band matrices, the sites near the edges are
less connected than those in the middle. Specifically, if b ≤ i ≤ N−b then deg(ui) =
2(b−1), whereas if i < b or i > N−b then b−1 ≤ deg(ui) < 2(b−1). Heuristically, we
expect that the nature of the boundary effect on a given eigenvector will depend on
its associated eigenvalue: eigenvectors with smaller eigenvalues should tend to have
slightly more mass in the boundary region (see Sec. 5.1 for further discussion on this
point). Consider what happens when we “periodize” a non-periodic band matrix:
upon introducing the corner blocks, only those eigenvalues whose eigenvectors are
significantly supported in the boundary regions will undergo a shift in energy, and
as a result, almost all eigenvalues will have the same distribution in both cases. On
the other hand, when the eigenvectors are delocalized, all eigenvectors are supported
on the boundary; changing the conductor from periodic to non-periodic will then
shift all eigenvalues and so will be observable in the macroscopic statistics.
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5.1. Thick band matrices

In this final section, we would like to present a few observations on thick non-
periodic band matrices. As discussed in Proposition 1, the level density of non-
periodic band matrices does not converge to the Wigner semi-circle law for large
bandwidths b = cN , 0 < c < 1. The question then arises as for what c is the
deviation from the semi-circle law maximal? From the Anderson model perspective,
one might guess that this should occur when c = 1

2 , because this is when there is
no homogeneous middle section in the conductor. In other words, this is when the
difference between the periodic and non-periodic cases is largest; to periodize the
conductor for c = 1

2 requires the addition of N2

4 elements in the corner, which is
maximal. It is therefore surprising that maximum deviation from the semi-circle law
occurs not when c = 1

2 , but when c = 2
5 . What is even more surprising is that at this

point that the eigenvectors are also maximally deviated from the mean field case in
the sense that they are least flat. This provides further evidence that eigenvector
delocalization and macroscopic statistics are indeed related.

Corollary 1. In the limit N → ∞, the fourth moment of the level density of a non-
periodic band matrix with bandwidth b = cN has a local maximum at c = 2

5 + o(1).

Proof. Taking b = cN , 0 < c ≤ 1
2 , the fourth moment of the normalized level

density is

m4(σN,b,q)

= 2 +

(2q − 4)N4c+ 4
3N

4c3 − (q − 2)N2 − qN3c2 +
(
q − 4

3

)
N2c

−2N4c4 + 4N3c3 − 2N2c2

(2N2c−N −N2c2 +Nc)2

= 2 −
2c2 − 4

3
c

(c− 2)2
+ O

(
1
N

)
. (39)

Taking the derivative with respect to c gives

∂cm4(σN,b,q) =
4
3

5c− 2
(c− 2)3

+ O

(
1
N

)
(40)

and which will go to zero in the limit N → ∞ only if c = 2
5 + o(1). Checking the

second partial derivative shows that this critical point is a maximum.

Remark 4. This proof only covers the range 0 < c ≤ 1
2 , but we see numerically

(Fig. 2) that this is the only critical point when the bandwidth is thick b = cN .
When q > 2, a second critical point exists near b � N− 1

2 , which corresponds to the
crossover in the convergence rate of the fourth moment.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

2.2

2.4

2.6

2.8

3

 N = 100
 N = 200
 N = 400

Fig. 2. This figure shows m4(σN,b,q) against c with b = cN for N = 100, 200, 400. A local maximum
is evident near b = 2

5
N , rather than b = N

2
as we might otherwise expect. The local minimum

near b � √
N corresponds to the bandwidth with fastest convergence to the Wigner semi-circle

law.

Turning to the eigenvectors, we would like to examine a statistic that measures
their global flatness. An appropriate choice is the total inverse participation ratio

I4(Q) =
∑

j

I4(ψ(j)), (41)

where I4(ψ(j)) =
∑

i |ψ(j)
i |4 is the inverse participation ratio of the jth eigenvector

ψ(j). Heuristically, this quantity is on the order of N
lav

, where lav is the average local-
ization length. For large N , we expect lav = O(min(b2, N)), as contributions from
the edge eigenvectors will be negligible. We will therefore have I4(Q) = O(1) for
b� √

N and I4(Q) = O(N
b2 ) for b� √

N across the localization/delocalization tran-
sition, and complete flatness I4(Q) = 3 when b = N . Numerical evidence (Figs. 3
and 4) confirms these expectations, and importantly, indicates that a local max-
imum can again be seen around b � 2

5N . This maximum is rather difficult to
detect numerically, and is only unequivocally apparent for N � 4000. These figures
show that like the macroscopic eigenvalue statistics, the eigenvector localization
properties of non-periodic band matrices differ from the mean field case at large
bandwidths.

Why do the eigenvectors also display a local maximum? The reason, again, is due
to boundary effects. Until the first transition point b � √

N , the localization length
grows as l � b2 causing I4(Q) to decay as O(N

b2 ). After this point, the Anderson
delocalization mechanism becomes saturated and secondary phenomena affecting
I4(Q) at the scale of O(1) become visible. In the delocalization regime, we expect
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5
 N = 2000
 N = 4000
 N = 8000

Fig. 3. This figure shows the logarithm of the total inverse participation ratio log(I4(Q)) for
3 sequences of random matrices drawn from a Gaussian NPEN,b,q with N = 2000, 4000, 8000,
plotted against α with b = Nα. This figure highlights the Anderson transition: for α < 1

2
, the

gradient is approximately −2 log(N), which is consistent with I4(Q) = O( N
b2

); for α > 1
2
, the

curves are approximately flat, which is again consistent with I4(Q) = O(1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

3.1

3.2  N = 2000
 N = 4000
 N = 8000

Fig. 4. This figure shows the same data as Fig. 3, but now with a linear scale plotting I4(Q)
against c with b = cN . This highlights the local maximum in I4(Q), which can be seen to form as
N increases around b ∼ 2

5
N .

that the eigenvector component fluctuations should be relatively uniform across the
homogeneous central section, only changingb significantly in the boundary regions
i < b, i > N − b. Further, as the delocalization condition implies that |ψ(j)

i |4 =
O( 1

N2 ), the fluctuations at the edge and in the middle are of the same order, i.e.
they are different only up to a constant factor. Putting this all together, we see that
boundary effects will become significant when the two regions are of comparable

bWhether the boundary fluctuations are smaller or larger than the central fluctuations is irrelevant
as I4(ψ) will increase in both cases due to the normalization

P
i |ψi|2 = 1.
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size, i.e. when b � N . Continuing this argument, it is easy to see that I4(Q) will
attain a local maximum in this regime, because although the boundary effect reduces
eigenvector flatness, when b = N we recover a standard Wigner ensemble, whose
eigenvectors have uniform fluctuations.

As mentioned in Sec. 5, the nature of the boundary effect on a given eigenvector
depends on its associated eigenvalue: eigenvectors with smaller eigenvalues tend to
have more mass in the boundary region, those with larger eigenvalues tend to have
more mass in the central region. We can justify this as follows: consider the 2N×2N
matrix

H =

[
A 0

0 B

]
, (42)

where A ∼ NBEN,2 and B ∼ NBEN,N . As H is block diagonal, the eigenvalues
of H will be the same as those of A and B. From the second moment of the
level densities, the eigenvalues of A will be of size O(1), whereas those of B will
be of size O(

√
N). Hence, in an interval of size O(1) around the origin, H will

have approximately O(N) eigenvalues originally from A, and O(
√
N) eigenvalues

originally from B. As a result, if we choose an eigenvalue at random in this region,
with high probability the associated eigenvector will be localized, and located in
the region 1 ≤ i ≤ N . Now, consider the matrix Ĥ = H + P , where P is a matrix
of zeros except for a random pN,N+1 = pN+1,N = p. This couples the eigenvalues
and eigenvectors of A and B together; as a conductor, this represents a model of
a thin wire attached to a conducting “ball”. As we have only introduced a small
perturbation, the eigenvectors ψ̂ and eigenvalues λ̂ of Ĥ should be close to those of
H . For the eigenvalues, we have from the Lidskii inequality

2N∑
i

|λi − λ̂i|2 ≤ tr(P 2) = 2p2 = O(1). (43)

If we again pick an eigenvalue at random from an O(1) interval around the origin,
in the worst case scenario, we will have

|λi − λ̂i|2 = O

(
1
N

)
, (44)

i.e. |λi − λ̂i| = O( 1√
N

) with high probability.c The corresponding eigenvectors are
also close to the original. If we assume that the localization positions c of the original
(localized) eigenvectors ψ are uniformly distributed over indices 1, . . . , N , then

|ψi| ≤ Ce
−|i−c|

l (45)

cOf course, in the worst case scenario for a fixed eigenvalue, we would have |λi − λ̂i| = 2p2, but
as we are choosing an eigenvalue at random this would give |λi − λ̂i| = 0 with high probability,
which is better; the worst case is when the deviation is spread uniformly across all eigenvalues in
the region of interest.
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with c ≤ N − log(N) with high probability. As the bandwidth is equal to 2 in the
upper region, we have l = O(1) and the random C = O(1). Then

(Ĥ − λ)ψ = Hψ − λψ + Pψ

= Pψ. (46)

Taking norms, we have

‖Pψ‖2
2 = p2|ψN |2 + p2|ψN+1|2

≤ C2|p|2(e−2|N−c|
l + e

−2|N+1−c|
l

)
≤ 2C2|p|2e−2|N−N+log(N)|

l

= O
(
N

−2
l

)
, (47)

i.e. so ‖Pψ‖2 = O(N− 1
l ) with high probability. The end result is that small eigen-

values are likely to have eigenvectors supported in regions of the lattice where
conductor is less connected (i.e. the bandwidth is smaller). From this, we can also
conclude that larger eigenvalues will have eigenvectors supported in regions where
the conductor is thicker, as the thin region is already completely occupied. This “ball
and chain” model thus serves as an extreme example of what we should expect to
see in the case of interest, as the conductor is thinner at the edges. Importantly,
because of this combined spacial/energy structure, we should be able to separate
the boundary effects from the stochastic effects by examining

Y (Q) =
∑
i,j

E(|ψ(j)
i |2)2. (48)

Let us first consider the two limiting cases, when b = 1 and b = N . In both
cases, Y (Q) will be equal to 1, because E(|ψ(j)

i |2)2 = 1
N2 for all i, j. If our heuristics

are correct about the nature of the boundary effect for 1 < b < N , then near the
boundary E(|ψ(j)

i |2)2 > 1
N2 for small eigenvalues and E(|ψ(j)

i |2)2 < 1
N2 for large

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.01

1.02

1.03

1.04  N = 100
 N = 200

Fig. 5. This figure shows Y (Q) against c with b = cN for a Gaussian NPEN,b,q, N = 100, 200. A
maximum is again seen near b = 2

5
N .
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eigenvalues; the net effect should become significant when b � N , causing Y (Q) to
reach a maximum somewhere in this regime. Figure 5 shows a numerical simulation
of Y (Q) as a function of the bandwidth for several choices of N . The maximum
is now clear, and remarkably, occurs exactly when the level density has maximum
deviation at b = 2

5N .

6. Conclusion

We have shown that the rate of convergence of fourth moment of the normalized
level density for band matrices is independent of the boundary condition in the
localized regime, but in the delocalized regime the rate of convergence for non-
periodic band ensembles differs significantly from the periodic case. We also have
examined the relationship between the boundary effect and the level density in
the thick bandwidth case, finding the surprising result that when b = 2

5N both
the eigenvalue and eigenvector statistics are maximally deviated from their Wigner
matrix counterparts. These results raise several questions:

(1) Is there evidence of a phase transition in higher order moments? Numerical
results suggest yes, see Fig. 6.

(2) Is there evidence of a phase transition in the local statistics at b = 2
5N? We

were unable to find numerical evidence of this, but given the lack of flatness of
the eigenvectors in this regime, the existence of such a transition is plausible.

(3) Is there evidence in the global statistics of the phase transition of the largest
eigenvalue at N5/6 [18]? We have not detected any sign of this transition in

0 10 20 30 40 50 60 70 80 90 100

5.2

5.6

6
 m

6

0 10 20 30 40 50 60 70 80 90 100

15

17

19
 m

8

0 10 20 30 40 50 60 70 80 90 100

45

55

65
 m

10

Fig. 6. Higher order moments for a Gaussian NPE with N = 100. Again, local maxima and minima
are seen near b � √

N and b = 2
5
N .
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numerical experiments, and we suspect that this transition is too localized to
have an observable effect on the global statistics.
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Appendix A

Proof of Lemma 1. We first note that the trace and expectation operators
commute

E(tr(A)) = tr(E(A)) (A.1)

for all matrices A. This is easy to see as a result of the linearity of expectation:

E(tr(A)) = E

(∑
i

aii

)
=
∑

i

E(aii) = tr(E(A)).

This result will be useful as it allows us to compute the expectation of independent
matrices before taking their product, e.g.

E(tr(AB)) = tr(E(AB)) = tr(E(A) E(B)). (A.2)

The left-hand side of Eq. (21) may be expanded as

E tr(A4) =
b∑

i,j

E ã2
ij =

b∑
i

E ã2
ii +

b∑
i�=j

E ã2
ij , (A.3)

where ãij are the elements of the matrix A2. For the diagonal elements, we have

E(ã2
ii) = E

b∑
k=1

a4
ik + E

b∑
k �=l

a2
ika

2
il

= bE a4 + b(b− 1)(E a2)2

= qb+ b(b− 1). (A.4)

For the off diagonal elements, we have

E(ã2
ij) = E

b∑
k=1

a2
ika

2
jk + E

b∑
k �=l

b∑
l=1

aikajkailajl. (A.5)

As i �= j and k �= l, every term of second sum has at least two elements which are
different and thus has expectation zero. Therefore,

E(ã2
ij) = bEa2

1a
2
2 = b. (A.6)
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The fourth moment of A is hence

E tr(A4) =
b∑
i

qb+ b(b− 1) +
b∑

i�=j

b

= b(qb+ b(b− 1)) + b2(b − 1)

= 2b3 + (q − 2)b2. (A.7)

For Eq. (22), we use the commutativity of the trace and expectation operators
together with the independence of A and L to give

E tr(A2LL�) = tr(EA2
E(LL�)). (A.8)

The expectation of A2 is diagonal as

E ãii =
b∑

k=1

E a2
ik = b

E ãij =
b∑

k=1

E aik E ajk = 0.

(A.9)

Denoting the entries of LL� by l̃ and using the fact that lij is zero if i ≤ j, the
diagonal elements are

l̃ii =
b∑

k=1

l2ik =
i−1∑
k=1

l2ik, (A.10)

the upper triangular elements i < j are

l̃ij =
b∑

k=1

likljk =
i−1∑
k=1

likljk, (A.11)

and the lower triangular elements i > j are

l̃ij =
b∑

k=1

liklij =
j−1∑
k=1

likljk = l̃ji. (A.12)

Taking expectations gives

E l̃ii = i− 1

E l̃ij = 0
(A.13)

and thus ELL� is also diagonal. We hence have

E tr(A2LL�) =
b∑

i=1

E ãii E l̃ii =
b∑

i=1

b(i− 1) =
b3 − b2

2
. (A.14)

Similarly, for Eq. (23), we have

E tr(A2L�L) = tr(EA2
E(LL�)). (A.15)
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The diagonal entries of LL� are

l̃ii =
b∑
k

l2ki =
b∑

k=i+1

l2ki (A.16)

and the upper/lower triangular elements are

l̃ij =
b∑

k=1

lkilkj =
b∑

k=i+1

lkilkj = l̃ji. (A.17)

Taking expectations gives

E l̃ii = b− i

E l̃ij = 0
(A.18)

so ELL� is diagonal. Hence

E tr(A2L�L) =
b∑

i=1

E ãii E l̃ij =
b∑

i=1

b(b− i) =
b3 − b2

2
. (A.19)

Using (A.13) and (A.18), Eq. (24) is

E tr(L�
1 L1L2L

�
2 ) = tr(EL�LELL�)

=
b∑

i=1

(i− 1)(b− i)

=
b3 − 3b2 + 2b

6
. (A.20)

Finally, Eq. (25) may be expressed as

E tr(LL�LL�) = E tr(LL�(LL�)�) =
b∑

i,j

E l̃2ij =
b∑
i

E l̃2ii +
b∑

i�=j

E l̃2ij , (A.21)

where the l̃ij are the elements of LL�. The terms in the first sum are

E l̃2ii = E

i−1∑
k=1

l4ik + E

i−1∑
k �=m

l2ikl
2
im

= (i− 1) E l4 + (i− 1)(i− 2)(E l2)2

= q(i− 1) + (i− 1)(i− 2), (A.22)

and those in the second sum are

E l̃2ij = E

i−1∑
k=1

l2ikl
2
ij + E

i−1∑
k �=m

i−1∑
m

likljklimljm

= (i− 1). (A.23)
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Thus,

E tr(LL�LL�) =
b∑
i

q(i− 1) + (i− 1)(i− 2) +
b∑

i�=j

(i− 1)

=
4b3 − (3q − 12)b2 − (3q − 8)b

6
. (A.24)
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