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The allotropes of boron continue to challenge structural elucidation and solid-state theory. Here we use
machine learning combined with random structure searching (RSS) algorithms to systematically construct
an interatomic potential for boron. Starting from ensembles of randomized atomic configurations, we use
alternating single-point quantum-mechanical energy and force computations, Gaussian approximation
potential (GAP) fitting, and GAP-driven RSS to iteratively generate a representation of the element’s
potential-energy surface. Beyond the total energies of the very different boron allotropes, our model readily
provides atom-resolved, local energies and thus deepened insight into the frustrated β-rhombohedral boron
structure. Our results open the door for the efficient and automated generation of GAPs, and other machine-
learning-based interatomic potentials, and suggest their usefulness as a tool for materials discovery.
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Elemental boron presents a number of complex crystal
structures as a direct consequence of its unique and
electron-deficient bonding nature [1–3]. This poses formi-
dable challenges for experimentalists and theorists alike.
Among the most fundamental is determining the thermo-
dynamically stable ground state between two competing
forms: α-rhombohedral boron, which contains B12 icosa-
hedra exclusively [4], and β-rhombohedral boron (β-B in
the following), which exhibits partial occupations and
geometric frustration, most unusual for an elemental
ground-state structure [5–9]. The energy difference
between the α and β forms has been studied extensively
using density-functional theory (DFT) [8–15] and recently
probed by calorimetric experiments [16]; the consensus is
now that β-B is indeed more stable at ambient conditions.
In recent years, DFT has played a central role not only in

understanding β-B but also in the discovery and structural
elucidation of other allotropes. Prominently, a high-
pressure structure dubbed γ-B28 has been determined with
the aid of evolutionary crystal-structure searching [17], as
well as direct methods [18,19]. Similar techniques have
recently identified “borophenes” and other two-dimensional
boron allotropes with interesting electronic properties
[20–22].
Despite their widespread successes [23], DFT-based

structure-searching algorithms are severely restricted by
their high computational cost. While excellent empirical
interatomic potentials are available today for many solid-
state systems, there is a conspicuous lack of such potentials
for boron [24]—the single interatomic potential in the
literature, as the authors stress, is fitted to quantum-
mechanical reference data for α-boron exclusively [24].

No empirical potential is known to us that could reliably
describe the potential-energy surface (PES) of elemental
boron applicable to multiple phases.
To overcome the performance and scaling limitations of

DFT, machine learning (ML) is increasingly used these
days for both creating interatomic potential models [25]
and for speeding up structure-searching algorithms [26,27].
Fast ML-based potentials have been suggested to be useful
for driving structure searches [28], and indeed, we have
shown that a ML potential initially fitted for liquid and
amorphous carbon [29] can be used to discover hitherto
unknown hypothetical carbon allotropes [30]. However,
many carbon (as well as silicon) networks can readily be
generated by direct enumeration [31–33]. It would now be
interesting to apply ML-driven searches to a system with
more complex structure and bonding, for which boron is an
ideal and challenging test case.
In this Letter, we demonstrate how a ML-based inter-

atomic potential can be systematically constructed by the
iterative exploration of configuration space without prior
knowledge of any local minima. It was recently shown that
evolutionary searches provide diverse and representative
input structures for fitting ML potentials [34], but here, we
take this concept further by searching “on the fly” [35–37];
our structure search is driven not by DFT but by the ML
model itself, and it generates input data for the next
iteration of ML training; this is repeated until a “consistent”
model is achieved, i.e., one that does not generate new
structures that significantly alter the potential when added
to the training set. Therefore, the searching is neither done
ex post, as in our previous work that used an existing GAP
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[30], nor merely as a means to an end, but here it is the
central technique we use for exploring and fitting a
complex PES.
We start our search from an ensemble of randomized

periodic structures, similar in spirit to the ab initio random
structure searching (AIRSS) technique [38,39]. Our pro-
tocol includes two components. First, we generate random
structures with 2–32 individual atoms per unit cell corre-
sponding to a wide range of densities, aiming for a
comprehensive sampling of the PES including higher-
energy regions. Second, we generate structures with either
8 or 12 at:=cell that are repeated by 1–4 space-group
symmetry operations, and an initial density more closely
centered around that of α-B12; such a more constrained
input is closer to what would typically be used in AIRSS.
We stress that α-B12, or other known crystalline forms, do
not enter our fit at this time, and indeed, being able to find
α-B12 “from scratch” is a challenging and crucial proof for
the transferability of the potential (vide infra).
We generated 500 random structures with each of these

two approaches, and we used single-point DFT-PBE
computations [40] to obtain their energies and forces.
These reference data were generated using dense spacing
of k meshes (0.02 Å−1), a plane-wave cutoff energy of
800 eV, and on-the-fly pseudopotentials as implemented in
CASTEP 8.0 [41]. The resulting energies are shown in
Fig. 1(a) as light green points.
The first (and less constrained) approach yields highly

scattered results, as expected, and the unrelaxed trial
structures have a median energy of 6.1 eV=at. above
α-B12. The other seeding procedure gives 1.3 eV=at.,
and the resulting structures lie much closer together in
the E–V plot [Fig. 1(a)]. Normally, one would now relax
these structures using DFT [34,39]. Instead, we show in the
following how single-point computations are sufficient to
initialize a model that then progressively explores lower-
lying configurations without prior knowledge of existing
crystal structures.
To “machine-learn” the PES spanned by these seed

points, we fitted a Gaussian approximation potential
(GAP) model [42] using a systematic protocol for combin-
ing properly scaled two-, three-, and many-body descrip-
tors and a radial cutoff of 3.7 Å. This is similar to previous
work where details of the approach may be found [29]. In
particular, we encode many-body interactions using the
smooth overlap of atomic environments (SOAP) kernel
[43], the only modification being a properly chosen
smoothness parameter as described below.
With the initial potential available (denoted “generation

0” in the following), we performed random structure
searching, creating new seeds as above but now relaxing
them using GAP. We therefore call this technique
“GAP-RSS.” In all GAP-RSS searches, we applied ran-
domized external pressure values, drawn from an expo-
nential distribution with a width of 100 GPa and a rate

parameter of λ ¼ 5, to sample more densely packed
structures. We took snapshots of these relaxations after 5
and up to 200 conjugate-gradient steps, respectively: the
former sample the early stages of relaxation trajectories,
and the latter are close to the local minima. The results of
single-point DFT computations on these snapshots were
added to the database after each iteration [Fig. 1(a)–1(b)].
We performed this process twice (generation 1–2), and then
added two generations, feeding back only local minima
(3–4), after which the distribution of energies in the training
database was deemed to be converged [Fig. 1(b)].
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FIG. 1. The iterative construction of a machine-learning model
for the potential-energy surface of boron. (a) An energy–volume
plot for the training database of DFT reference computations.
Starting with an initial seed of random structures (light green), we
iteratively generate new seeds and relax them using the previous
generation of the GAP, adding data points after 5 (teal) and up to
200 (purple) conjugate-gradient (CG) steps. The optimized α-B12

structure is set as the energy zero. (b) The evolution of DFT
energies in the progressively generated database, for (i) less
constrained and (ii) more constrained initial seed structures;
(iii) GAP-RSS snapshots after 5 CG steps; (iv) the same after up
to 200 CG steps; see text for details. Boxes denote percentiles
corresponding to one standard deviation (68%); bold horizontal
lines denote the median, and whiskers the entire range of data.
(c) RMSE energy errors for test sets of distorted crystal structures
with small unit cells. After step 4, these crystal structures were
added to the database (“þC”).
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While our protocol deliberately starts without knowledge
of the crystalline phases, we show that it can indeed
progressively “learn” their total energies. In Fig. 1(c), we
test the prediction error for the three phases with well-
defined unit cells, and we find that this error is continuously
improved with the growing size of the reference database.
The α-B12 structure shows the largest total-energy error
among the three, which seems intuitive given the quite
unique structural feature of B12 icosahedra linked by
short intericosahedral bonds. We furthermore performed
“diagnostic” GAP-RSS runs, using 5,000 attempts with
12 at:=cell and a limited set of symmetry operations, and all
of these correctly returned the α-B12 structure one or more
times. In other words, even the zeroth-generation model can
identify this challenging structure in principle. Therefore,
after generation 4, we chose to add data for distorted unit
cells of the known crystal structures to the training database
(“4þ C”)—as expected, this reduces the RMSE to very
close to zero [Fig. 1(c)].
The final database contains the results of 5,038 single-

point computations (corresponding to over 97,000 individ-
ual atomic environments). We emphasize again that only
single point DFT calculations were performed; no sampling
or searching was done with DFT.
We found that the results of our procedure depend on the

smoothness of the potential, which is controlled by a single
parameter, σat, in the SOAP formalism [43]. A setting of
σat ¼ 0.5 Å was previously used successfully to fit GAP
models for carbon [29] and tungsten [44], but it did not
produce stable potentials for early-generation GAP-RSS
minimizations in our experiments. A smoother potential is
required to interpolate between the high-energy data points
at the early stages of GAP-RSS, while still being accurate
enough for finding local minima at all. We found σat ¼
0.75 Å to be a viable choice for structure searching and
used this throughout the iterations, together with nmax ¼
lmax ¼ 8 for the spherical-harmonics expansion of the
neighbor density in SOAP (as described in Ref. [43]).
Once the database was completed, we performed a final fit
on the same database but with tighter settings of σat ¼
0.5 Å and nmax ¼ lmax ¼ 12.
To validate our potential, we computed DFT energies at

varied unit-cell volumes for the most important boron
allotropes [17], viz. α-B12, γ-B28, a high-pressure α-Ga type
polymorph, and β-B. To represent the disordered structure
of the latter, we use the discrete “β-B106” structural model
(see below) that provides a good approximant of the
experimentally determined mixed occupations and is prac-
tically degenerate with α-B12 in DFT energy [12]. Indeed,
Fig. 2 illustrates immediately why the PES of boron is such
a challenging case: the energy differences between three
polymorphs containing B12 units are tiny, and only the
fundamentally different [α-Ga] structure (not containing
any B12 icosahedra) is clearly distinct from the other
polymorphs on this energy scale. Still, our final GAP

reproduces the energy of all these structures extremely
well (Fig. 2).
As a further test, we generated discrete trial structures

with site occupations that are not part of the training
(Fig. 3): recall that our reference database does contain β-B,
but it describes it using only one particular set of occupa-
tions (β-B106). Here, by contrast, we started from the most
detailed structural model available, which was proposed
based on single-crystal x-ray diffraction from a highly pure
sample (carbon impurities ≈150 ppm) [7]. Besides the
known B13 and B16 sites (which have previously reported
site occupations of approximately 3=4 and 1=4, respec-
tively; Ref. [6]), this model contains additional partially
occupied sites, labeled B17–B20, with occupations of just a
few percent [7]. We randomly generated ten structures,
each containing 321 atoms in hexagonal cell setup, as a
representative of the partial occupancies observed exper-
imentally. None of these discrete structures had been
included in the GAP fitting, and so they provide another
benchmark for the potential. Again, the GAP result is in
very good agreement with DFT.
We finally show how a common feature of interatomic

potentials can here be turned into a distinct advantage.
Interatomic potentials for materials, by their essential
nature and similarly to biomolecular force fields, are
typically a combination of terms for long-range interactions
(describing electrostatics and dispersion) and short-range
(often called “bonded”) interactions [25]. We focus here on
the latter, which can be understood as a decomposition the
total energy E of a collection of atoms into a sum of atomic
contributions, E ¼ P

iεi, where the local atomic energy εi
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FIG. 2. The energy–volume plots for boron allotropes. The
symbols denote the results of DFT computations, whereas lines
connect GAP energies for the same structures. Two versions of
the potential have been fitted to the complete reference database:
one (dashed lines) using the smooth settings as in the iterative
protocol, and one (thick lines) with the final, tighter settings.
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depends only on a region around the i-th atom as specified
by a cutoff radius (here, rcut ¼ 3.7 Å). While this intrinsi-
cally limits the attainable accuracy of the potential (since
quantum mechanics is fundamentally long-ranged) [29,42],
this approximation is often rather good, and here, it
allows us to analyze the local stability of atoms—which
otherwise is not straightforwardly possible within a quan-
tum-mechanical framework. This is particularly interesting
for β-B.
Figure 4(a) shows GAP-computed local energies εi for

individual atoms in a characteristic fragment from β-B,
described using the simplistic β-B105 model without any
partial occupations [45]. Besides icosahedral B12 units, this
structure contains B28 building blocks that can be regarded
as triply fused icosahedra. Figure 4(a) shows two such
complete clusters, connected to an isolated atom (B15) at
the center of the unit cell, via three apical atoms (B13) each.
However, the latter site has been shown to be only partially
occupied [5–7], and the GAP analysis corroborates this: a
full occupation of the B13 sites is clearly unfavorable due
to high local energies (red).
Indeed, a more favorable structural model is obtained

when only five of six B13 sites are occupied [Fig. 4(b)]
[12], in accord with the more recent structural refinements
in the experimental literature [5–7]. In this case, which
corresponds to the β-B106 model used in Fig. 2, the local
energies of the remaining two B13 atoms are significantly
lowered. Vacancy formation also stabilizes the central
B15 atom. In turn, one of the constituent icosahedra is
now defective due to the presence of a vacancy (□), and
therefore, the neighboring atoms have higher local ener-
gies (pale red) than those in the complete fragment above

(blue). Future work will deal with a more quantitative
treatment of different mixed occupations, in the spirit of
Ref. [8], but now using GAP.
In conclusion, we have generated an interatomic potential

for elemental boron that describes the energetics of multiple
polymorphs by unifying ideas from machine-learning
potential fitting and random structure searching. We have
shown that it is possible to explore and fit a challenging
potential-energy surface at the same time. Our protocol
requires single-pointDFT calculations only, and therefore, it
can explore configuration space with reasonable computa-
tional effort. We used the Gaussian approximation potential
framework for fitting here, but other methods, such as
artificial neural networks, can be combined with the same
ideas. Our next methodological efforts will attempt to
integrate selected results of large searches (such as the
5,000 attempts mentioned above) directly into the iterations
that construct the potential. This way, we envision that it
should be ultimately possible to “learn” significant crystal
structures in a fully automatic fashion. In the long run, this is
expected to enable the routine construction of interatomic
potentials of unprecedented quality and flexibility for the
purpose of materials discovery.

Data supporting this publication are available at [47].
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