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Abstract
Gravitational waves are one of the most important diagnostic tools in the 
analysis of strong-gravity dynamics and have been turned into an observational 
channel with LIGO’s detection of GW150914. Aside from their importance in 
astrophysics, black holes and compact matter distributions have also assumed a 
central role in many other branches of physics. These applications often involve 
spacetimes with D  >  4 dimensions where the calculation of gravitational waves 
is more involved than in the four dimensional case, but has now become possible 
thanks to substantial progress in the theoretical study of general relativity in 
D  >  4. Here, we develop a numerical implementation of the formalism by 
Godazgar and Reall [1]—based on projections of the Weyl tensor analogous to 
the Newman–Penrose scalars—that allows for the calculation of gravitational 
waves in higher dimensional spacetimes with rotational symmetry. We apply 
and test this method in black-hole head-on collisions from rest in D  =  6 
spacetime dimensions and find that a fraction 8.19 0.05 10 4( )± × −  of the 
Arnowitt–Deser–Misner mass is radiated away from the system, in excellent 
agreement with literature results based on the Kodama–Ishibashi perturbation 
technique. The method presented here complements the perturbative approach 
by automatically including contributions from all multipoles rather than 
computing the energy content of individual multipoles.
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1. Introduction

Gravitational waves (GWs) entered the limelight with the recent detection of GW150914 
[2]—soon followed by a second detection GW151226 [3]—which not only constitutes the 
first observation of a black-hole (BH) binary system, but also marks a true milestone in gravi-
tational physics. This breakthrough has opened a qualitatively new path for measuring BH 
parameters [4, 5], testing Einstein’s theory of general relativity [6] and probing extreme astro-
physical objects and their formation history [7], and substantially broadens the scope of multi-
messenger astronomy [8]. GW modelling, however, finds important applications beyond the 
revolutionary field of GW astronomy. Many fundamental questions in general relativity in 
D  =  4 and D  >  4 spacetime dimensions concern the stability of strong-gravity sources (see 
[9–16] and references therein) in the context of cosmic censorship violation, the solutions’ 
significance as physical objects or expanding our understanding of the strong-field regime of 
general relativity. For instance, GW extraction from numerical simulations of rapidly spinning 
Myers–Perry BHs demonstrates how excess angular momentum is shed in order to allow the 
BH to settle down into a more slowly rotating configuration [13]. GW emission also repre-
sents a channel for mass-energy loss in ultra-relativistic collisions that are studied in the con-
text of the so-called TeV gravity scenarios that may explain the hierarchy problem in physics; 
for reviews see e.g. [17–19].

The calculation of GW signals in the theoretical modelling of D  =  4 dimensional sources 
in the framework of general relativity has been increasingly well understood following semi-
nal work by Pirani, Bondi, Sachs and others in the 1950s and 1960s; see e.g. [20–26] and [27] 
for a review. Applications are now routinely found in numerical and (semi-)analytic calcul-
ations [28–37] even though care needs to be taken when applied to numerical simulations on 
finite domains [38].

The numerical study of solutions to Einstein’s equations has proven incredibly useful for 
understanding the behaviour of black holes and other compact objects. Most recently, the 
application of numerical relativity in the generation of gravitational waveform templates for 
GW data analysis [37, 39–44] contributed to the above mentioned detection of GW150914.

The wave extraction techniques presently used in numerical simulations of astrophysical 
GW sources can be classified as follows: perturbative methods based on the formalism devel-
oped by Regge, Wheeler, Zerilli and Moncrief [9, 10, 45]; application of the quadrupole form-
ula [46] in matter simulations [47, 48]; a method using the Landau–Lifshitz pseudo-tensor 
[49, 50] ; Cauchy characteristic extraction [51–53]; and, probably the most popular technique, 
using the Weyl scalars from the Newman–Penrose formalism [24, 54–60]. A comparison of 
various of these techniques is given in [36] and an extended review in [61].

The calculation of GWs in higher dimensional relativity requires generalisation of these 
techniques to D  >  4. The extraction of the GW energy flux from the Landau–Lifshitz pseudo-
tensor has been generalised straightforwardly to higher dimensions in [62, 63]. An extension 
of the Regge–Wheeler–Zerilli–Moncrief formalism for perturbations of spherically symmet-
ric background spacetimes is available in the form of the Kodama and Ishibashi (KI) formal-
ism [64, 65] and forms the basis of the wave extraction techniques developed in [66, 67]. The 
main assumption there is that far away from the strong-field regime, the spacetime is perturba-
tively close to the Tangherlini [68] spacetime. The deviations from this background facilitate 
the construction of master functions according to the KI formalism which in turn provide 
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the energy flux in the different (l,m) radiation multipoles. Even though both methods are in 
practice applied at finite extraction radius, their predictions have been found to agree within 
a  ∼1% error tolerance when applied to BH head-on collisions starting from rest in D  =  5 [69]. 
Recent years have also seen considerable progress in the understanding of the peeling proper-
ties of the Weyl tensor; see [1, 70] and references therein.

In particular, Godazgar and Reall [1] have performed a decomposition of the Weyl tensor in 
higher dimensions, and derived a generalisation of the Newman–Penrose formalism for wave 
extraction to D  >  4. This analysis provides us with a quantity analogous to the Weyl scalar 4Ψ , 
from which we can calculate the energy radiated in gravitational waves in a similar fashion 
to the method in D  =  4. The one qualitative difference between the D  =  4 and D  >  4 cases 
comes in the availiability of a mode decomposition of the gravitational wave. In D  =  4 we 
can project the Weyl scalar onto spin weighted spherical harmonics, due to the decoupling of 
the equations of motion as shown by Teukolsky [71, 72]. In higher dimensions however, a set 
of conditions identified as sufficient for decoupling are not satisfied in black hole spacetimes 
[73], and so at present we are unable to project out the angular dependence of the gravitational 
wave energy. The numerical implementation of this formalism and probing the accuracy for a 
concrete example application is the subject of this paper.

For this purpose, we require a formulation of the higher dimensional Einstein equa-
tions suitable for numerical integration. For computational practicality, all higher dimensional 
time evolutions in numerical relativity have employed symmetry assumptions to reduce the 
problem to an effective ‘d  +  1’ dimensional computation where typically d 3⩽ . This has been 
achieved in practice by either (i) imposing the symmetries directly on the metric line element 
[74], (ii) dimensional reduction by isometry of the Einstein field equations [75, 76] or (iii) use 
of so-called Cartoon methods [13, 77–80]. In our implementation, we use the latter method 
combined with the Baumgarte–Shapiro–Shibata–Nakamura [81, 82] (BSSN) formulation of 
the Einstein equations as expanded in detail in [83]. The relevant expressions for the GW 
computation, however, will be expressed in terms of the Arnowitt–Deser–Misner [84] (ADM) 
variables, and the formalism as presented here can be straightforwardly applied in other com-
mon evolution systems used in numerical relativity.

The paper is structured as follows. In section 2 we describe the notation used in the remain-
der of this work. In section 3 we recapitulate the key results of [1] which sets up the formal-
ism. In section 4 we put the formalism into a form compatible with the modified Cartoon 
dimensional reduction of our simulations. In section 5 we describe the numerical set up used 
in our simulations, analyse the energy radiated in BH collisions in D  =  6 and compare the 
predictions with literature results based on alternative wave extraction techniques.

2. Notation and indices

The key goal of our work is to extract the GW signal from dynamical, asymptotically flat D 
dimensional spacetimes, i.e. manifolds M equipped with a metric gAB, A B D, 0, , 1= … − , 
of signature D  −  2 that obey the Einstein equations with vanishing cosmological constant

G R Rg T
1

2
8 .AB AB AB ABπ= − = (2.1)

Here, TAB is the energy momentum tensor which we assume to vanish in the wave zone, RAB 
and R denote the Ricci tensor and scalar, respectively, and we are using units where the gravi-
tational constant and the speed of light G  =  c  =  1. Furthermore, we define the Riemann tensor 
and Christoffel symbols according to the conventions of Misner, Thorne and Wheeler [85].
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The ADM space-time decomposition as reformulated by York [86] writes the metric line 
element in the form

s g x x t x t x xd d d d 2 d d d d ,AB
A B

I
I

I
I

IJ
I J2 2 2( )α β β β γ= = − + + + (2.2)

where I J D, 1, , 1= … − , α and Iβ  denote the lapse function and shift vector, respectively, 
and IJγ  is the spatial metric that determines the geometry of hypersurfaces t const= . For this 
choice of coordinates and variables, the Einstein equations (2.1) result in one Hamiltonian 
and D  −  1 momentum constraints as well as D(D  −  1)/2 evolution equations cast into first- 
order-in-time form by introducing the extrinsic curvature KIJ through

K2 ;t IJ
M

M IJ MJ I
M

IM J
M

IJγ β γ γ β γ β α∂ = ∂ + ∂ + ∂ − (2.3)

for a detailed review of this decomposition see [87, 88].
In the remainder of this work we assume that the ADM variables are available. The BSSN 

formulation, for example, employs a conformally rescaled spatial metric IJγ̃ , the rescaled 
traceless extrinsic curvature AIJ˜ , a conformal factor χ, the trace of the extrinsic curvature K 
and contracted Christoffel symbols IΓ̃  associated with the conformal metric. These are related 
to the ADM variables by

K K

A K
D

K K A
D

K

, det , ,

1
,

1

1

1 1

1
,

,

D
IJ

MN
MN

IJ IJ
IJ IJ

IJ IJ IJ IJ IJ IJ

I MN
MN
I

1 1    

˜    ⇔    ˜

˜    ⇔    ˜ ˜

˜ ˜ ˜

/( )

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

χ γ γ γ γ

γ χγ γ
χ
γ

χ γ
χ

γ

γ

= = =

= =

= −
−

= +
−

Γ = Γ

− −

 

(2.4)

so that the ADM variables can be reconstructed straightforwardly at every time in the evo-
lution. For other popular evolution systems such as the conformal Z4 system [89–91] or the 
generalised harmonic formulation [77, 92] the ADM variables are obtained in similar fashion 
or directly from the spacetime metric components through equations (2.2) and (2.3).

Many practical applications of higher dimensional numerical relativity employ symmetry 
assumptions that reduce the computational domain to an effective three dimensional spatial 
grid using the aforementioned techniques. The reasons are two-fold: (i) the computational 
cost of simulations in D  >  3  +  1 dimensions massively increases with any dimension added 
and (ii) the SO(D  −  d) rotational symmetry accommodates many applications of interest that 
can therefore be handled by relatively straightforward extensions of numerical codes origi-
nally developed for astrophysical systems in four spacetime dimensions. The so-called car-
toon methods have been developed for this specific purpose. An illustration of the idea is 
given in figure 1, where rotational symmetry is assumed in every plane spanned by two of 
the coordinates (z, wa), where a d D1, , 1= + … − . Knowledge of the tensorial components 
in the d dimensional hypersurface spanned by = … −x z i d, , 1, , 1i( ) ˆˆ  then is sufficient to 
describe the entire spacetime. In numerical evolutions, however, there remains the question 
of evaluating derivatives perpendicular to that plane. In the original cartoon version [93], this 
was achieved through ghost zones off the computational domain which are populated by rota-
tion of the data on the plane and then facilitate evaluation of the derivatives through standard 
discretisation methods. A modification of this method introduced in [77] (see also [13, 79, 
80]), dispenses with the need for ghost zones. Instead, the required derivatives are obtained 
through analytic relations from derivatives in the on-domain directions. A detailed discussion 
and some example cases for the derivation of these relations are given in [83].
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In general, this method reduces the number of effective (spatial) dimensions from D  −  1 
to d, where d D1 2⩽ ⩽ − . d  =  1 corresponds to spherical symmetry, i.e. SO(D  −  1) isom-
etry, and the other extreme d  =  D  −  2 corresponds to the axisymmetric case SO(2) with rota-
tional symmetry about one axis. As already detailed in [83], axisymmetry represents a special 
case that imposes fewer constraints on the components of tensors and their derivatives and is 
therefore most conveniently handled numerically in a manner similar but not identical to the 
general case. We will discuss first in detail the case d D1 3⩽ ⩽ −  and then describe the spe-
cific recipe for dealing with d  =  D  −  2. Probably the most important situation encountered in 
practical applications is that of an effective d  =  3 dimensional spatial computational domain. 
Whenever the expressions developed in the remainder of this work for general d are not trivi-
ally converted to d  =  3, we shall explicitly write down the d  =  3 version in addition to the 
general case.

Let us start by considering a spacetime with at least two rotational Killing vectors which 
is the scenario discussed in sections 2 and 3 of [83]. For convenience, we will employ two 
specific coordinate systems adapted to this situation. The first is a set of Cartesian coordinates

X t x x z w w t x z w t x w, , , , , , , , , , , , ,A d

d

d D

D d

i a i a1 1

1

1 1

1

( ) ( ) ( )
( ) ( )

ˆ= … … = =−

− ×

+ −

− − ×
� ����� ����� � ������� �������

 

(2.5)

where middle Latin indices without (with) a caret range from i d1, ,= …  (i d1, , 1ˆ = … − ) 
and early Latin indices run from a d D1, , 1= + … − ; see figure 1. The second is a system of 
spherical coordinates

Y t r t r, , , , , , , ,A D

D

2 3 1

2

( ) ( )
( )

φ φ φ φ= … = α−

− ×
� �������� �������� (2.6)

Figure 1. Illustration of the cartoon method. The D  −  1 dimensional spatial domain 
is represented by D  −  1 Cartesian coordinates xî , z and wa where i d1, , 1ˆ = … − , 
a d D1, , 1= + … −  and d is the number of effective dimensions of the computational 
domain. Rotational symmetry is assumed in all planes spanned by two of the (z, wa). For  
example, collisions of black holes in the xî  plane, possibly with spin S inside this plane, 
can be modelled this way.
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where Greek indices run from α = … −D2, , 1. We use middle, upper case Latin indices to denote 
all spatial coordinates of either of these systems, so that X x z w, ,I i a( )ˆ=  and Y r,I ( )φ= α  with 
I D1, , 1= … − . Rotational symmetry is assumed in all directions  φ = + … −a d D, 1, , 1a . 
In the special case d  =  3, we use the notation x x y,i ( )ˆ≡ , so that equation (2.5) becomes

X t x y z w w, , , , , , .A D4 1( )= … − (2.7)

We orient the Cartesian coordinates (2.5) such that they are related to the spherical coor-
dinates (2.6) by

φ
φ φ

φ φ φ
φ φ φ φ
φ φ φ φ φ

φ φ φ
φ φ φ φ
φ φ φ φ

≡ =
≡ =

≡ = …
≡ = …

= …

= …
= …
= …

− − −

− +

+ − + +

− − −

− − − −

− − − −

�

�

w x r

w x r

w x r

w z r

w r

w r

w r

w r

cos ,

sin cos ,

sin sin cos ,

sin sin sin cos ,

sin sin sin sin cos ,

sin sin cos ,

sin sin sin cos ,

sin sin sin sin .

d d d d

d d d d

d d d d d

D D D

D D D D

D D D D

1 1 2

2 2 2 3

1 1 2 1

2 1 1

1 2 1 1 2

3 2 3 2

2 2 3 2 1

1 2 3 2 1

( ) 
( ) 

( ) 
( ) 
 (2.8)

Here 0, 2D 1 [ ]φ π∈− , and all other 0,[ ]φ π∈α , and we have formally extended the w coordi-
nates to also include (in parentheses in the equation) w xi i=  which turns out to be convenient 
in the notation below in section 4. Note that for the orientation chosen here, the x axis denotes 
the reference axis for the first polar angle rather than the z axis which more commonly plays 
this role for spherical coordinates in three spatial dimensions.

For orientation among the different sets of indices, we conclude this section with a glossary 
listing index variables and their ranges as employed throughout this work.

 • Upper case early Latin indices A B C, , , … range over the full spacetime from 0 to D  −  1.
 • Upper case middle Latin indices I J K, , , … denote all spatial indices, inside and outside 

the effective computational domain, running from 1 to D  −  1.
 • Lower case middle Latin indices i j k, , , … denote indices in the spatial computational 

domain and run from 1 to d. For d  =  3, we have x x y z, ,i ( )= .
 • Lower case middle Latin indices with a caret i j, ,ˆ ˆ … run from 1 to d  −  1 and represent 

the xi (without caret) excluding z. In d  =  3, we write x x y,i ( )ˆ = .
 • Lower case early Latin indices a b c, , , … denote spatial indices outside the computational 

domain, ranging from d  +  1 to D  −  1.
 • Greek indices , ,α β … denote all angular directions and range from 2 to D  −  1.
 • Greek indices with a caret , ,ˆ ˆα β … denote the subset of angular coordinates in the com-

putational domain, i.e. range from d2, ,… . As before, a caret thus indicates a truncation 
of the index range.

 • Put inside parentheses, indices cover the same range but merely denote labels rather than 
tensor indices.

 • An index 0 denotes a contraction with the timelike normal to the foliation, rather than the 
time component, as detailed below in section 4.1.1.

 • A∇  denotes the covariant derivative in the full D dimensional spacetime, whereas DI 
denotes the covariant derivative on a spatial hypersurface and is calculated from the 
spatial metric IJγ .

W G Cook and U Sperhake Class. Quantum Grav. 34 (2017) 035010
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 • We denote by R with appropriate indices the Riemann tensor (or Ricci tensor/scalar) of 
the full D dimensional spacetime, and by R the spatial Riemann tensor (or Ricci tensor/
scalar) calculated from IJγ .

3. Theoretical formalism

Our wave extraction from numerical BH simulations in D  >  4 dimensions is based on the for-
malism developed by Godazgar and Reall [1]. In this section, we summarise the key findings 
and expressions from their work.

The derivation [1] is based on the definition of asymptotic flatness using Bondi coordinates 
[26] u, ,( )r φα  where u is retarded time, r the radius and φα are D  −  2 angular coordinates 
covering the unit D  −  2 sphere. A spacetime is asymptotically flat at future null infinity [94] if 
the metric outside a cylindrical world tube of finite radius can be written in terms of functions 

u, ,( )r φαA , u, ,( )r φαB , u, ,( )r φαC  as

s u u h u ud e d 2e d d d d d d ,2 2 2 ( )( )r r φ φ= − − + + +αβ
α α β βA C CB B (3.1)

with hdet detω=αβ αβ where ωαβ is the unit metric on the D  −  2 sphere. For an asymptotically 
flat spacetime hαβ can be expanded as [94]

h
h u,

,
s

s

D s
0

1

2 1
( )

( )

⩾

( )

/r
∑ω φ

φ
= +αβ αβ

γ αβ
γ+

+ − (3.2)

and the Bondi news function is obtained from this expansion as the leading-order correc-

tion h 1( )
αβ.

In analogy with the D  =  4 case, a null frame of vectors is constructed which is asymptoti-
cally given by4

l k
u

m,
1

2
, .        ( )

r r φ
= −

∂
∂

=
∂
∂
−

∂
∂

=
∂
∂

α α (3.3)

Note that all the tetrad vectors are real in contrast to the D  =  4 dimensional case where the 
two vectors m(2) and m(3) are often written as two complex null vectors. Next, the components 
of the Weyl tensor are projected onto the frame (3.3) and the leading order term in the radial 
coordinate is extracted. Following [1], we denote this quantity by ′Ω  and its components are 
given by

C k m k m
e e h1

2

¨
.ABCD

A B C D
D

D

1

2 1
2

ˆ ˆ
( )( )( ) ( ) ( )

( ) ( )
( )

/
/

r
r′Ω ≡ = − +α β α β

α
µ

β
ν

µν
−

−O (3.4)

Here ê( )α
β  denote a set of vectors forming an orthonormal basis for the unit metric ωαβ on the 

D  −  2 sphere. In practice, this basis is constructed using Gram–Schmidt orthonormalisation 
starting with the radial unit vector.

As with the Newman–Penrose scalar 4Ψ  in the four dimensional case, we note that this is 
the contraction of the Weyl tensor with the ingoing null vector twice and two spatial vectors. 
Whereas in D  =  4 the two polarisations of the gravitational waves are encoded in the real and 

4 The construction of the exact analogue of the Kinnersley [95] tetrad in general spacetimes at finite radius is subject 
of ongoing research even in D  =  4 (see e.g. [34, 96]). In practice, the error arising from the use of an asymptotic 
form of the tetrad at finite extraction radii is mitigated by extracting at various radii and extrapolating to infinity 
[37] and we pursue this approach, too, in this work.
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imaginary parts of 4Ψ , here ( )( )′Ω α β  is purely real, with the ,α β labels providing the different 
polarisations.

The final ingredient for extracting the energy radiated in GWs is the rate of change of the 
Bondi mass given by [94]

M u h h˙ 1

32
˙ ˙ d .

S

1 1

D 2
( ) ( ) ( )∫π ω= αβ

αβ
−

 (3.5)

By substituting in for ḣ
1( )
αβ from the definition of ( )( )Ω′α β  we obtain an expression for the mass 

loss.

( ) ( ˜ ) ˜
→

( )( )
r

r
r ∫ ∫π

φ ω= − Ω′ α β γ

∞

−

−∞−
⎜ ⎟
⎛
⎝

⎞
⎠M u u u˙ lim

8
, , d d ,

D

S

u2 2

D 2
 (3.6)

where the notation 2( )…  implies summation over the ,( ) ( )α β  labels inside the parentheses, 
and dω denotes the area element of the D  −  2 sphere. In practice, we will apply equation (3.6) 
at constant radius r, therefore replace retarded time u with ‘normal’ time t and start the integra-
tion at t  =  0 rather than −∞, assuming that GWs generated prior to the start of the simulation 
can be neglected.

4. Modified cartoon implementation

The formalism summarised in the previous section is valid in generic D dimensional space-
times with or without symmetries. We now assume that the spacetime under consideration 
obeys SO(D  −  d) isometry with d D1 3⩽ ⩽ − , and will derive the expressions required for 
applying the GW extraction formalism of section 3 to numerical simulations employing the 
modified Cartoon method.

Throughout this derivation, we will make use of the expressions for scalars, vectors and 
tensors in spacetimes with SO(D  −  d) symmetry and the regularisation of their components 
at z  =  0 as listed in appendices A and B of [83]. The key result of these relations for our pur-
poses is that the ADM variables α, Iβ , IJγ , KIJ for a spacetime with SO(D  −  d) isometry can 
be expressed completely in terms of their d dimensional components iβ , ijγ  and Kij as well as 
two additional functions wwγ  and Kww according to

K
K

K

, 0 ,

0

0
,

0

0
,

I i

IJ
ij

ab ww

IJ
ij

ab ww

( )
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

β β

γ
γ

δ γ

δ

=

=

=

 (4.1)

while the scalar α remains unchanged.
From the viewpoint of numerical applications, the key relations of the procedure reviewed 

in section 3 are equations (3.4) and (3.6). The first provides ( )( )′Ω α β  in terms of the Weyl tensor 
and the normal frame, and the second tells us how to calculate the mass loss from ( )( )′Ω α β . The 
latter is a straightforward integration conveniently applied as a post processing operation, so 
that we can focus here on the former equation. For this purpose, we first note that in practice 
wave extraction is performed in the wave zone far away from the sources. Even if the sources 
are made up of non-trivial energy matter fields, the GW signal is calculated in vacuum where 
the Weyl and Riemann tensors are the same. Our task at hand is then twofold: (i) calculate the 
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Riemann tensor from the ADM variables and (ii) to construct a null frame. These two tasks are 
the subject of the remainder of this section.

4.1. The Riemann tensor

4.1.1. The (D  −  1)  +  1 splitting of the Riemann tensor. The ADM formalism is based on a 
space-time decomposition of the D dimensional spacetime manifold into a one-parameter 
family of spacelike hypersurfaces which are characterised by a future-pointing, unit normal 
timelike field nA. This normal field together with the projection operator

n n ,A
B

A
B

A
Bδ⊥ = + (4.2)

allows us to split tensor fields into components tangential or orthogonal to the spatial hyper-
surfaces by contracting each tensor index either with nA or with B

A⊥ . For a symmetric rank 
(0,2) tensor, for example, we thus obtain the following three contributions

T T n n T T T n T T, , .AB
A B

A A
C

A CB
B

AB
C

A
D

B CD00 0 0       ≡ ⊥ =⊥ ≡⊥ ⊥ ≡⊥ ⊥ (4.3)

The most important projections for our study are those of the Riemann tensor which are 
given by the Gauss–Codazzi relations used in the standard ADM splitting of the Einstein 
equations (see e.g. [87])

R K K K K ,ABCD ABCD AC BD AD CB⊥ = + −R (4.4)

R R n D K D K ,A CD ABCD
B

C AD D AC0 ( )⊥ ≡⊥ = − + (4.5)

⊥ ≡⊥ = ⊥ + + −
= + −

R

R

R R n n R KK K K

KK K K ,
A C ABCD

B D
AC AC AC AE

E
C

AC AC AE
E

C

0 0 ( )
 

(4.6)

where in the last line we used the fact that in vacuum RAC and, hence, its projec-
tion vanishes (note, however, that in general 0AC≠R  even in vacuum). Furthermore 
D K K K KC AD C AD CA

B
BD CD

B
AB= ∂ − Γ − Γ  is the covariant derivative of the extrinsic curvature 

defined on the spatial hypersurface, with Christoffel symbols calculated from the induced 
metric ABγ . Equations (4.4)–(4.6) tell us how to reconstruct the full D dimensional Riemann 
tensor from D  −  1 dimensional quantities defined on the spatial hypersurfaces which foliate 
our spacetime.

From this point on, we will use coordinates adapted to the (D  −  1)  +  1 split. In such coor-
dinates, we can replace in equations  (4.4)–(4.6) the spacetime indices A B, , … on the left 
and right-hand side by spatial indices I J, , … while the time components of the spacetime 
Riemann tensor are taken into account through the contractions with the unit timelike normal 
nA and which we denote with the suffix 0 in (4.5) and (4.6). Note that more than two con-
tractions of the Riemann tensor with the timelike unit normal nA vanish by symmetry of the 
Riemann tensor.

4.1.2. The Riemann tensor in SO(D  −  3) symmetry. The expressions given in the previous sec-
tion for the components of the Riemann tensor are valid for general spacetimes with or with-
out symmetries. In this section, we will work out the form of the components of the Riemann 
tensor in spacetimes with SO(D  −  d) isometry for d D1 3⩽ ⩽ − .

For this purpose we recall the Cartesian coordinate system X x z w, ,I i a( )ˆ=  of equa-
tion  (2.5), adapted to a spacetime that is symmetric under rotations in any plane spanned 
by two of the z w, a( ). We discuss in turn how the terms appearing on the right-hand sides of 
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equations  (4.4)–(4.6) simplify under this symmetry. We begin with the components of the 
spatial Riemann tensor, given in terms of the spatial metric and Christoffel symbols by

1

2
.

IJKL L I JK K J IL K I JL L J IK

MN IK
N

JL
M

MN IL
N

JK
M

( )γ γ γ γ

γ γ

= ∂ ∂ + ∂ ∂ − ∂ ∂ − ∂ ∂

− Γ Γ + Γ Γ

R
 

(4.7)

The rotational symmetry imposes conditions on the derivatives of the metric, the Christoffel 
symbols and the components of the Riemann tensor that are obtained in complete analogy to 
the derivation in section 2.2 and appendix A of [83]. We thus calculate all components of the 
Riemann tensor, where its indices can vary over the coordinates inside and outside the com-
putational domain, and obtain

1

2
,ijkl l i jk k j il k i jl l j ik mn ik

n
jl
m

mn il
n

jk
m( )γ γ γ γ γ γ= ∂∂ + ∂ ∂ − ∂ ∂ − ∂ ∂ − Γ Γ + Γ ΓR (4.8)

0,ajkl =R (4.9)

,iajb ab iwjwδ=R R (4.10)

z z

z z

1

2

1

2

1

4
,

iwjw
i j z z j i ww

z i
j z j z ww

j i ww mn ij
n

ww
m

z ij z i j z iz jz ww ww
i ww j ww

2

2

( ) ( )
(

) )

( )

γ δ γ
δ
γ δ γ

γ γ

γ δ γ δ δ γ
γ γ γ

≡
∂ − ∂

−
−

− ∂∂ − Γ Γ

−
∂

+
−

+ ∂ ∂

R

 

(4.11)

z

1

2
,ww

m ml
l ww

z
m mz

wwγ γ
δ γ γ

Γ ≡ − ∂ +
−

 (4.12)

0,abcl =R (4.13)

,abcd ac bd bc ad wuwu( )δ δ δ δ= −R R (4.14)

z z

1

4
.wuwu

mn
m ww n ww ww

zm

m ww
ww

zz
ww
2

2
γ γ γ γ

γ
γ

γ γ γ
≡ − ∂ ∂ − ∂ +

−
R (4.15)

For the right-hand side of equation (4.6), we also need the spatial Ricci tensor which is 
obtained from contraction of the Riemann tensor over the first and third index. In SO(D  −  d) 
symmetry, its non-vanishing components are

D d 1 ,ij
mn

minj
ww

iwjw( )γ γ= + − −R R R (4.16)

,ab ab wwδ=R R (4.17)

D d 2 .ww
mn

mwnw
ww

wuwu( )γ γ≡ + − −R R R (4.18)

Note that the last expression, ww
wuwuγ R , does not involve a summation over w, but merely 

stands for the product of wwγ  with the expression (4.15).
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The components of the extrinsic curvature are given by equation  (4.1). Its derivative  
is directly obtained from the expressions (A.1)–(A.12) in appendix A of [83] and can be  
written as

D K K K K ,i jk i jk ij
l

kl ik
l

lj= ∂ − Γ − Γ (4.19)

D K K K ,i ab ab i ww ww
ww

i ww( )δ γ γ= ∂ − ∂ (4.20)

D K
K K

z
K K

1

2
.a bj ab

jz jz ww
ww

ww
j ww ij ww

i⎛
⎝
⎜

⎞
⎠
⎟δ

δ
γ γ=

−
− ∂ − Γ (4.21)

Next, we plug the expressions assembled in equations (4.7)–(4.21) into the Gauss–Codazzi 
equations  (4.4)–(4.6) where, we recall, early Latin indices A B, , … are now replaced by 
I J, , … following our switch to adapted coordinates. Splitting the index range I into i a,( ) 
for components inside and outside the computational domain, and recalling that an index 0 
denotes contraction with n, we can write the resulting components of the spacetime Riemann 
tensor as

R K K K K ,ijkl ijkl ik jl il jk= + −R (4.22)

R R ,ibkd bd iwkwδ= (4.23)

R K K ,iwkw iwkw ik ww≡ +R (4.24)

R K ,abcd ac bd bc ad wuwu ww
2( )( )δ δ δ δ= − +R (4.25)

R R 0,ajkl abcl= = (4.26)

R D K D K ,i kl l ik k il0 = − (4.27)

R R ,a ck ac w wk0 0δ= (4.28)

R K K
K K

z
K

1

2
,w wk k ww

ww
ww k ww

kz kz ww
ww
m

mk0 γ γ
δ

≡ ∂ − ∂ −
−

+ Γ (4.29)

R R R 0,a cd i kd a kl0 0 0= = = (4.30)

R KK K K ,i j ij ij im j
m

0 0 = + −R (4.31)

K K D d K1 ,mn
mn

ww
ww( )γ γ= + − − (4.32)

R R ,a b ab w w0 0 0 0δ= (4.33)

R K K K ,w w ww
ww

ww ww0 0 ( )γ≡ + −R (4.34)

R 0.a i0 0 = (4.35)

With these expressions, we are able to calculate all components of the spacetime Riemann 
tensor directly from the ADM variables ijγ , wwγ , Kij and Kww and their spatial derivatives. There 
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remains, however, one subtlety arising from the presence of terms containing explicit division 
by z. Numerical codes employing vertex centered grids need to evaluate these terms at z  =  0. 
As described in detail in appendix A, all the above terms involving division by z are indeed 
regular and can be rewritten in a form where this is manifest with no divisions by zero.

4.2. The null frame

The null frame we need for the projections of the Weyl tensor consists of D unit vectors as 
given in equation (3.3): (i) the ingoing null vector kA, (ii) the outgoing null vector lA which, 
however, does not explicitly appear in the scalars (3.4) for the outgoing gravitational radiation, 

and (iii) the (D  −  2) vectors mA
( )α  pointing in the angular directions on the sphere.

We begin this construction with the D  −  2 unit basis vectors on the D  −  2 sphere, mA
( )α , 

and recall for this purpose equation (2.8) that relates our spherical coordinates r,( )φα  to the 
Cartesian x z w, ,i a( )ˆ . The set of spatial vectors, although not yet in orthonormalised form, then 
consists of a radial vector denoted by m 1˜ ( ) and D  −  2 angular vectors m̃( )α  whose components 
in Cartesian coordinates X x z w, ,I i a( )ˆ=  on the computational domain wa  =  0 are obtained 
through the chain rule

m
r

X

r X
m

r
x x z

1
, , , , 0, , 0 ,

I

I
I d

1 1
1 1˜       ˜ ( )( ) ( )=

∂
∂
=
∂
∂

∂
∂

⇒ = … …− (4.36)

˜ ( )
φ φ

=
∂
∂

=
∂
∂

∂
∂

α α αm
X

X
.

I

I (4.37)

We can ignore time components here, because our coordinates are adapted to the space-
time split, so that all spatial vectors have vanishing time components and this feature is pre-
served under the eventual Gram–Schmidt orthonormalisation. Plugging equation  (2.8) into 
(4.37), we obtain for m̃( )α  (after rescaling by r sin sin2φ φ× ×…× α)

w

w w

w w

w

w w

w w
w w

w w

w w
w w

w

w w

, ,

0

0
2

, ,

0

0 ,

0

0
0

.

s

D s

D

m

s

D s

D

D

m

D D

D D

D D

m

D

D D

m

2

1 2

1 2

1 1

1 2

1

1 2

1 1

2 2 1 2

3 2

3 1

1 2

2 1

I

I D
I

D
I2

2 1

( )
 
 
 

( )

( )

( ) ( )

 

( )

˜
˜ ˜ ˜( )

( )
( ) ( )

⎪

⎪⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎫
⎬
⎭

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

∑

∑

α−

…

− ×

− …

− −
−

α
α α

α

α

=
−

−

=

=
−

−

− −

− −

=

− −

− −

− −

=

−

− −

=
α

− −

�
�
�
�

� �������� ��������

�

�

� �������� ��������

�
�
�

� ����������� �����������

�
�
�

� ������ ������

 

(4.38)

In D  =  4 dimensions, these vectors, together with m 1˜ ( ) of equation (4.36) would form the start-
ing point for Gram–Schmidt orthonormalisation; see e.g. appendix C in [57]. In D 5⩾  dimen-
sional spacetimes with SO(D  −  d) symmetry, however, we face an additional difficulty: on the 
computational domain wa  =  0, all components of the vectors m m, ,d D1 1˜ ˜( ) ( )…+ −  vanish and 
their normalisation would result in divisions of zero by zero. This difficulty is overcome by 
rewriting the Cartesian components of the vectors in terms of spherical coordinates and then 
exploiting the freedom we have in suitably orienting the frame. The details of this procedure 
are given in appendix B where we derive a manifestly regular set of spatial vectors given by
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m x x0 , , 0, , 0 ,A d
1

1˜ (         )( ) = | … | … (4.39)

m x x x x x x0 , , , , 0, , 0 ,A d
2 2

2 1 2 1 3 1˜ (                     )( ) ρ= | − … | … (4.40)

m x x x x0, 0, , 0, , , , 0, , 0 ,A d

2

2 1 1˜ (                         )( ˆ )
( ˆ )

ˆ
ˆ ˆ ˆρ= | … − … | …α

α
α

α α α

− ×

− −
� �

� ���� ���� (4.41)

m x x0, 0, , 0, , 0, , 0 ,d
A

d

d d

2

1˜ (                     )( )
( )

= | … − | …
− ×

−
� �

� ���� ���� (4.42)

m 0 0, , 0 1, 0, , 0 ,d
A

d

1˜ (                   )( ) = | … | …+

×
� ���� ���� (4.43)

m 0 0, , 0 0, , 0, 1 ,D
A

d

1˜ (                   )( ) = | … | …−

×

� �

� ���� ���� (4.44)

where wI s I
D s1 2( )ρ = ∑ =
− , we have restored, for completeness, the time component and the 

vertical bars highlight the three component sectors: time, spatial on-domain, and spatial 
 off-domain. Equations (4.43) and (4.44) can, of course, be conveniently written in short-hand 

notation as m a
A A

a˜ ( ) δ= . For the special case d  =  3, the vectors are given by

m x y z0 , , 0, , 0 ,A
1˜ (               )( ) = | | … (4.45)

m y z xy xz0 , , 0, , 0 ,A
2

2 2˜ (               )( ) = | − − | … (4.46)

m z y0 0, , 0, , 0 ,A
3˜ (                 )( ) = | − | … (4.47)

m 0 0, 0, 0 1, 0, , 0 ,A
4˜ (                   )( ) = | | … (4.48)

�� (4.49)

m 0 0, 0, 0 0, , 0, 1 ,D
A

1˜ (                   )( ) = | | …− (4.50)

The next step is to orthonormalise these vectors. Clearly the vectors m a
A
( ) with components 

in the wa dimensions are normalised by:

m
1

a
A

ww

A
a( ) γ

δ= (4.51)

For the remaining d vectors given by equations (4.39)–(4.42) or, for d  =  3, the spatial triad 
consisting of the three vectors (4.45)–(4.47), we use standard Gram–Schmidt orthonormali-
sation. Note that under this procedure the components outside the computational domain of 
these vectors remain zero and can therefore be ignored.

The final element of the null frame we need is the ingoing null vector, which we call kA. 

Given in [1] as u 1

2
/ / r∂ ∂ − ∂ ∂  asymptotically, we transform out of Bondi coordinates, sending 
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u t r, ,( ) → ( )r  and furthermore use the freedom of rescaling this null vector by applying a con-
stant factor of5 2

k n m
1

2
A A A

1( )( )= − (4.52)

Expressing the timelike unit normal field nA in terms of our gauge variables , Iα β  we find

k m
1

2

1
, ,A

I
I
1( )

⎛
⎝
⎜

⎞
⎠
⎟

α
β
α

= − − (4.53)

where m m, 0, , 0 , , 0, , 0I i I i
1 1( )   ( )( ) ( )β β= … = … . This result provides the ingoing null vector 

for any choice of d and is the version implemented in the code.

4.3. The projections of the Weyl tensor

Finally, we calculate the projections of the Weyl tensor that encode the outgoing gravitational 
radiation

( )( ) ( ) ( )Ω′ =α β α βR k m k m ,ABCD
A B C D (4.54)

(see equation  (3.4)) where kA is given by equation  (4.53) and the normal frame vectors 
m m, , D2 1( ) ( )… −  are those obtained from Gram–Schmidt orthonormalising the right-hand 
sides of equations (4.39)–(4.44).

We first note that ( )( )Ω′α β  is symmetric in ↔α β, so contractions solely with m m, , d2( ) ( )…  

will result in d(d  −  1)/2 components Ω′α β( ˆ )( ˆ). For the special case d  =  3, we obtain the three 
components    ( )( ) ( )( ) ( )( )Ω′ Ω′ Ω′, ,2 2 2 3 3 3 . The null vector k has vanishing w components and from 
equations (4.22)–(4.35) we see that all components of the Riemann tensor where an odd num-
ber of indices is in the range a b, , … are zero. The only non-vanishing terms involving the 
Riemann tensor with off-domain indices a b, , …, therefore, have either four such indices or 

two and contain a Kronecker delta abδ ; see equations  (4.23), (4.25), (4.28) and (4.33). As 

a consequence, the mixed components Ω′ =α 0a( ˆ )( )  and the purely off-domain components 
δΩ′ ∝a b ab( )( ) . The list of all non-vanishing components ( )( )Ω′α β  is then given by

Ω′ = − −

+

α β α β α β α β

α β

⎡
⎣

⎤
⎦

R m m R m m m R m m m

R m m m m

1

4

,

k l
k l

mk l
m k l

kml
k m l

mknl
m k n l

0 0 0 1 0 1

1 1

( ˆ )( ˆ) ( ˆ ) ( ˆ) ( ) ( ˆ ) ( ˆ) ( ˆ ) ( ) ( ˆ)

( ) ( ˆ ) ( ) ( ˆ)

 
(4.55)

′δΩ′ = Ω ,a b ab w w( )( ) ( )( ) (4.56)

γ
Ω′ = − − +⎡⎣ ⎤⎦R R m R m R m m

1

4
,w w

ww
w w w wk

k
w wl

l
wkwl

k l
0 0 0 1 0 1 1 1( )( ) ( ) ( ) ( ) ( ) (4.57)

where d, 2, ,ˆ ˆα β = …  and all components of the Riemann tensor on the right-hand sides are 
listed in the set of equations (4.22)–(4.35). In particular, the components Rw0w0, Rw0wk and 
Rwkwl, which contain indices in the off-domain directions, are obtained from equations (4.34), 
(4.29) and (4.24), respectively and thus derived directly from quantities computed in the 
simulation (the ijγ , Kij, wwγ  and Kww that appear on the right-hand sides of these equations or 

5 The convention we adopt here is more common (though not unanimous) in numerical relativity.
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enter in the calculation of the spatial Riemann tensor). It should be noted here that ( )( )′Ω α β  

is trace free, and so w w( )( )′Ω  can be calculated from the diagonal terms , d d2 2( )( ) ( )( )′Ω …Ω′ . In a 
numerical simulation, the components of ( )( )′Ω α β  are calculated as functions of time and then 
can be integrated according to equation  (3.6) to extract the amount of energy radiated in 
gravitational waves.

4.4. SO(2) symmetry

In the axisymmetric case d  =  D  −  2 there exists only one w direction (off domain). As dis-
cussed in section 4 of [83], we keep all tensor components as we would in the absence of 
symmetry, and the modified Cartoon method and, thus, the rotational symmetry only enters in 
the calculation of spatial derivatives in the w direction. For SO(2) symmetry, the extraction of 
gravitational waves therefore proceeds as follows.

 • All components of the ADM metric and extrinsic curvature are extracted on the D  −  2 
dimensional computational domain.

 • The spatial Riemann tensor and its contractions are directly evaluated using equation (4.7) 
with the relations of appendix C in [83] for off-domain derivatives.

 • The necessary components of the spacetime Riemann tensor and its projections onto the 
timelike unit normal are evaluated through equations (4.4)–(4.6).

 • The null frame is constructed as detailed in section 4.2, simply setting d  =  D  −  2.
 • All the projections of the Weyl tensor onto the null frame vectors are obtained from 

equation (4.55), but now covering the entire range of spatial indices

′Ω = − −

+

α β α β α β α β

α β

⎡⎣
⎤⎦

R m m R m m m R m m m

R m m m m

1

4

.

K L
K L

MK L
M K L

KML
K M L

MKNL
M K N L

0 0 0 1 0 1

1 1

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
 

(4.58)

Note that with the existence of more components of the Riemann tensor, more projections of 

the Weyl tensor now exist, specifically cross-terms such as ( )( )Ω′ w2 . This can be seen straightfor-
wardly by using SO(2) modified Cartoon terms from appendix C of [83] and the expressions 
for the full and spatial Riemann tensor given in equations (4.4) and (4.7). For example, we can 

see that a component such as Rwijk is non-zero. This will contribute to terms of the form ( ˆ )( )Ω′α w . 
As already emphasised in [83], the key gain in employing the modified Cartoon method for 
simulating axisymmetric spacetimes does not lie in the elimination of tensor components, but 
in the dimensional reduction of the computational domain.

5. Numerical simulations

In the remainder of this work, we will implement the specific version of the wave extraction 
for d  =  3 and D  =  6 and simulate head-on collisions of equal-mass, non-spinning BHs start-
ing from rest. We will calibrate the numerical uncertainties arising from the numerical dis-
cretisation of the equations (fourth order in space and time and second order at the outer and 
refinement boundaries), the use of large but finite extraction radii and also consider the depen-
dency of the results on the initial separation of the BHs. This type of collisions has already 
been studied by Witek et al [69] who calculate the GW energy using the Kodama–Ishibashi 
formalism, which enables us to compare our findings with their values.

W G Cook and U Sperhake Class. Quantum Grav. 34 (2017) 035010



16

5.1. Code infrastructure and numerical set-up

We perform evolutions using the LEAN code [57, 97] which is based on CACTUS [98, 99] 
and uses CARPET [100, 101] for mesh refinement. The Einstein equations are implemented in 
the BSSN formulation with the modified Cartoon method employed to reduce computational 
cost. For the explicit equations under the SO(D  −  3) symmetry that we use, see section 3.2 of 
[83] with parameter d  =  3. Without loss of generality, we perform collisions along the x axis, 
such that the centre-of mass is located at the origin of the grid, and impose octant symmetry.

We specify the gauge in terms of the ‘1  +  log’ and ‘Γ driver’ conditions for the lapse func-
tion and shift vector (see e.g. [102]) according to

K2 ,t
m

mα β α α∂ = ∂ − (5.1)

R

1

4

1

2
,t

i m
m

i i

h

i
1 3

˜
/β β β β∂ = ∂ + Γ − (5.2)

with initial values 1α = , 0iβ = .
The BH initial data is calculated using the higher dimensional generalisation of  

Brill–Lindquist data [103, 104] given in terms of the ADM variables by

K
X X

0, , 1
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,IJ IJ
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IJ
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D K K D

4 3

1
1 2 3 2

     
( )

/( )
( )/⎡⎣ ⎤⎦

∑γ ψ δ ψ
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= = = +
∑ −

−

=
− −

N

N

N
 (5.3)

where the summation over N  and K extends over the multiple BHs and spatial coordinates, 
respectively, and XK

N  denotes the position of the N th BH. As mentioned above, we place 
the BHs on the x axis in the centre-of-mass frame, so that in the equal-mass case, we have 
X x1

0=±N . Our initial configuration is therefore completely specified by the initial separa-
tion which we measure in units of the horizon radius Rh of a single BH. The BH mass and the 
radius Rh are related through the mass parameter μ by

M

D
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16
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2
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D

D
D
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2
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1 2

1

2( )( )
       

( )/
µ

π
µ

π
=

−
= =

Γ−

−
−

−

−A
A (5.4)

where D 2−A  is the surface area of the unit (D  −  2) sphere.
The computational domain used for these simulations consists of a set of eight nested refine-

ment levels which we characterise in terms of the following parameters: (i) the resolution h 
on the innermost level which gets coarser by a factor of two on each consecutive outer level,  
(ii) the size L of the domain which describes the distance of the outermost edge from the origin, 
and (iii) the resolution H on the refinement level where the gravitational waves are extracted.

For each simulation, we calculate the ( )( )′Ω α β  on our three dimensional computational grid 
and project them onto a two dimensional array representing a spherical grid at fixed coordi-
nate radius. The data thus obtained on the extraction sphere are inserted into equation (3.6). 

The ( )( )′Ω α β  are scalars and so in our angular coordinate system do not depend on , , D4 1φ φ… − , 
so the integral over the sphere in (3.6) can be simplified:

M u
r

I˙ lim
8

sin sin d d ,
r

D

D
D D

2

4
0 0

2 3 2 4 3 3 2( ) [ ]   ( )   ( ) 
→ ∫ ∫ ′π

φ φ φ φ= − Ω
π π

∞

−

−
− −A

 

(5.5)

where I ud
u2

2( )[ ] ˜( )( )′∫′Ω ≡ Ω α β−∞
. A final integration over time of the variable Ṁ then gives 

the total radiated energy.
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5.2. Numerical results

We begin our numerical study with an estimate of the uncertainty in our GW estimates arising 
from the discretisation of the equations. For this purpose, we have evolved two BHs initially 
located at at x x R4.0 h0  =± =±  using a computational grid of size L  =  181Rh and three 
resolutions h R 50.8h1 /= , h R 63.5h2 /=  and h R 76.2h3 /=  which corresponds to H R 2.12h1 /= , 
H R 2.65h2 /=  and H R 3.17h3 /=  in the extraction zone.

We measure the radiated energy in units of the total ADM mass of the spacetime, which for 
Brill–Lindquist data is given by equation (5.4) with 1 2µ µ µ≡ + , the mass parameters of the 
initial BHs. The radiated energy as a function of time is shown in the upper panel of  figure 2. 
The radiation is almost exclusively concentrated within a window of t R20 h ∆ ≈  around merger. 
During the infall and the post-merger period, in contrast, Erad remains nearly constant. In com-
parison with collisions in D  =  4 dimensions, we find the burst of spurious (colloquially referred 
to as ‘junk’) radiation significantly weaker, presumably because the Brill–Lindquist data in 
higher D more closely represent two black holes in isolation due to the higher fall-off rate of 
the gravitational interaction. By comparing the high-resolution result with that obtained for the 
coarser grids, we can test the order of convergence. To leading order, the numerical result fh 
for some variable obtained at finite resolution h is related to the continuum limit solution f by 
f f hh

n( )= +O , where n denotes the order of convergence. By evaluating the quotient

Q
f f

f f

h h

h h

1

1
,n

h h

h h

n

n
1 2

3 2

1 2

2 3

( / )
( / )

=
−

−
=

−
− (5.6)

we can then plot the two differences f fh h1 2
−  and f fh h2 3

−  and test whether their ratio is con-
sistent with a given value n. The results for our study are shown in the lower panel of figure 2 
which demonstrates that our numerical results converge at fourth order. The discretisation 
error of the total radiated energy is then obtained as the difference between the finite resolu-
tion result and that predicted by Richardson extrapolation (see upper panel in the figure). We 
obtain for the high-resolution case a total radiated energy E M8.19 10rad

4
ADM = × −  with a 

discretisation error of  ∼0.4%, but note that the error in the cumulative energy peaks at a larger 
value of a few % during the sharp increase of E trad( ) marking the merger phase.

A second source of error arises from the extraction at finite radius. Following standard 
practice (see e.g. [37]), we estimate this uncertainty by extracting the GW energy at a set of 
seven or eight finite radii in the range 40Rh to 110Rh and extrapolating these values assuming 
a functional dependency

E r E
a

r r

1
,rad rad 2

( ) ( ) ⎜ ⎟
⎛
⎝

⎞
⎠= ∞ + +O (5.7)

where a is a coefficient obtained through the fitting of the numerical data. By applying this 
procedure, we estimate the uncertainty due to the extraction radius at 0.2% at R 110 Rex h =  
and 0.4% at R R60 hex  = .

An independent check of our results is available in comparing the radiated energy with 
the predictions of the perturbative extraction method [66] based on the Kodama–Ishibashi 
formalism. For this purpose, we have calculated using h R 76.2h3 /=  the gravitational-wave 
energy radiated in the quadrupole mode as predicted by the Kodama–Ishibashi formalism. 
Contributions from higher-order multipoles are negligible for this comparison; for odd l they 
vanish completely by symmetry and for even l up to l  =  8 they are well below the numerical 
uncertainty budget. This quadrupole energy is compared with the result obtained from the 
Weyl tensor in figure 3. The difference for the total radiated energy is about 0.3%, though a 
larger temporary discrepancy for Erad as a function of time is encountered during the steep 

W G Cook and U Sperhake Class. Quantum Grav. 34 (2017) 035010



18

increase at merger, up to a few %. This discrepancy is within the error budget of the two 
extraction methods.

Finally, we have measured the dependency of the total radiated energy on the initial 
separation of the BHs. In addition to the simulations discussed so far, we have performed  
high-resolution simulations placing the BHs at x R7.8 h0  =±  and x R12.8 h0  =± . We have 
found very small variations at a level of 0.1% in the radiated energy for these cases, well below 
the combined error budget obtained above. Compared with collisions in D  =  4 dimensions  
(see e.g. table II in [57]), Erad shows significantly weaker variation with initial separation in 

Figure 2. Upper panel: radiated energy as a function of time obtained for the highest 
resolution h R 76.2h3 /=  (solid curve) and Richardson extrapolated to infinite resolution 
assuming fourth-order convergence (dashed curve). The curves are nearly on top of 
each other and we plot in the lower half of the panel their difference to show the level 
of agreement. Lower panel: convergence plot for the radiated energy Erad extracted 
at r R50.4 hex  =  from an equal-mass collision of two non-spinning BHs in D  =  6 
starting from a separation 8Rh. The results shown have been obtained using resolutions 
h R 50.8h1 /= , h R 63.5h2 /=  and h R 76.2h3 /= . The difference in radiated energy between 
the medium and high-resolution simulations has been rescaled by a factor Q4  =  2.784 
expected for fourth-order convergence.
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D  =  6. We attribute this to the more rapid fall-off of the force of gravity in higher dimensions 
leading to a prolonged but dynamically slow infall phase which generates barely any GWs.

In summary, we find the total energy radiated in gravitational waves in a head-on collision 
of two equal-mass, non-spinning BHs to be

E M8.19 0.05 10 ,rad
4

ADM( )  = ± × −
 

(5.8)

in excellent agreement with the value 8.1 0.4 10 4( )± × −  reported in the independent study by 
[69] using dimensional reduction by isometry and the Kodama–Ishibashi formalism.

6. Conclusions

The extraction of gravitational waves from numerical simulations is one of the most impor-
tant diagnostic tools in studying the strong-field dynamics of compact objects in four as well 
as higher dimensional spacetimes. In this work we have formulated the Weyl tensor based 
wave extraction technique of Godazgar and Reall [1]—a higher dimensional generalisation 
of the Newman–Penrose scalars—in a form suitable for numerical simulations of D  >  4 
dimensional spacetimes with SO(D  −  d), d D1 2⩽ ⩽ − , symmetry employing the modified 
Cartoon method. The only prerequisite for implementing our formalism is the availability of 
the ADM variables on each spatial hypersurface of the effective computational domain. These 
are constructed straightforwardly from all commonly used numerical evolution systems such 
as BSSN, generalised harmonic or conformal Z4.

The recipe for extracting the GW signal then consists of the following steps.

 (1) Computation of the on and off-domain components of the spatial Riemann tensor (which 
equals the Weyl tensor in the vacuum extraction region) and the derivative of the extrinsic 
curvature according to equations (4.8)–(4.21).

 (2) Reconstruction of the components of the spacetime Riemann tensor as well as its contrac-
tions with the unit timelike normal from the quantities of the previous step according to 
equations (4.22)–(4.35).

Figure 3. Gravitational wave energy Erad as a function of time using h R 76.2h3 /=  and 
extracted at r R50.4 hex  =  for the D  =  6 equal-mass head-on collision. The prediction 
by the new formalism is compared with that of the Kodama–Ishibashi formalism for the 
quadrupole mode (the higher-order multipoles provide negligible contributions in this 
case). The bottom panel shows the differences between the two curves.
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 (3) Construction of the null-frame vectors through Gram–Schmidt orthonormalising the 
expressions of equations (4.39)–(4.44) and then using (4.53) for the ingoing null vector.

 (4) Calculation of the projections Ω′α β( )( ) of the Weyl tensor onto the null frame vectors using 
equations (4.55)–(4.57).

 (5) Calculation of the energy flux in GWs through equation (3.6) and integration in time of 
the flux to obtain the total radiated energy.

The most common case of modelling higher dimensional spacetimes with rotational symme-
tries is the case of d  =  3 effective spatial dimensions which allows for straightforward gener-
alisation of existing codes (typically developed for 3  +  1 spacetimes) and also accommodates 
sufficiently complex dynamics to cover most of the important applications of higher dimen-
sional numerical relativity. We have, for this purpose, explicitly given the specific expressions 
of some of our relations for d  =  3 where these are not trivially derived from their general 
counterparts.

For testing the efficacy and accuracy of this method, we have applied the wave extraction 
to the study of equal-mass, non-spinning head-on collisions of BHs starting from rest in D  =  6 
using d  =  3. We find these collisions to radiate a fraction 8.19 0.05 10 4( )± × −  of the ADM 
mass in GWs, in excellent agreement with a previous study [69] employing a perturbative 
extraction technique based on the Kodama–Ishibashi formalism. We find this energy to be 
essentially independent of the initial separation which we have varied from 8.0 to 15.6 and 
25.6 times the horizon radius of a single BH. We attribute this result to the higher fall-off rate 
of the gravitational attraction in higher dimensions and the correspondingly slow dynamics 
during the infall stage.

We finally note that the Weyl tensor based wave extraction ideally complements the per-
turbative extraction technique of the Kodama–Ishibashi formalism. The latter provides the 
energy contained in individual (l,m) radiation multipoles but inevitably requires cutoff at 

some finite l. In contrast, the ( )( )′Ω α β  facilitate calculation of the total radiation, but without 
multipolar decomposition. It is by putting both extraction techniques together, that we obtain 
a comprehensive description of the entire wave signal. Future applications include the stabil-
ity of highly spinning BHs and their transition from unstable to stable configurations, the 
wave emission in evolutions of black rings and an extended study of higher dimensional BH 
collisions over a wider range of dimensionality D, initial boosts and with non-zero impact 
parameter. These studies require particularly high resolution to accurately model the rapid 
fall-off of gravity, especially for D 4� , and are therefore beyond the scope of the present 
study. However, the foundation for analysing in detail the GW energy emission in these and 
many more scenarios is now available in as convenient a form as in the more traditional 3  +  1 
explorations of numerical relativity.
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Appendix A. Regularisation of terms at z  =  0

For the axisymmetric case d  =  D  −  2, we only need to regularise terms appearing in the 
calcul ation of derivatives in the off-domain w direction. All these terms are given explicitly in 
appendix C of [83], so that in the following we can focus exclusively on the additional terms 
appearing for d D1 3⩽ ⩽ − , i.e. for spacetimes admitting two or more rotational Killing vec-
tor fields.

The treatment of these terms proceeds in close analogy to that of the BSSN equations in 
the modified Cartoon approach as described in detail in appendix B of [83]. In contrast to that 
work, however, we will not be using the conformally rescaled metric of the BSSN equations, 
which satisfies the simplifying condition det 1γ̃ = , and so certain regularised terms involving 
the inversion of the metric will differ from the expressions obtained for the BSSN equations.

We start with a brief summary of the techniques and the main assumptions we will use to 
regularise expressions:

A.1. Regularity

We require all tensor components and their derivatives to be regular when expressed in 
Cartesian coordinates. Under transformation to spherical coordinates this implies that ten-
sors containing an odd (even) number of radial indices, i.e. z indices in our notation, contain 
exclusively odd (even) powers of z in a series expansion around z  =  0. Using such a series 
expansion enables us to trade divisions by z for derivatives with respect to z. For example, for 
the z component of a vector field V, we obtain

V

z

a z a z

z
a a z a V ,

z

z
z1 3

3

1 3
2

1=
+ +…

= + +… =∗ =∗ ∂ (A.1)

where we have introduced the symbol =∗  to denote equality in the limit z 0→ .

A.2. Absence of conical singularities

We require that the spacetime contain no conical singularity at the origin z  =  0.  
For the implications of this condition, we consider the coordinate transformation  
from x z w w w, , , , ,i d a D1 1( )ˆ … …+ −  to x w w w w, , , , , , , ,i d a a D1 1 1 1( )ˆ ρ ϕ… …+ − + − . As no other 
w b a,b   ≠ , coordinates will enter into this discussion we shall refer to wa as w. In these  
coordinates we have that

z zw w
2 ,zz zw ww

2

2 2

2

2
γ

ρ
γ

ρ
γ

ρ
γ= + +ρρ (A.2)

w wz z2 ,zz zw ww
2 2γ γ γ γ= − +ϕϕ (A.3)

and the line element for vanishing xd 0î =  and wd 0b = , b a≠ , is given by

γ ρ γ ϕ= +ρρ ϕϕsd d d .2 2 2 (A.4)
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Requiring the circumference to be the radius times 2π, we have that 2γ ρ γ=ϕϕ ρρ. Substituting 
the above expressions and taking the limit z 0→ , we obtain

z .zz ww
2( )γ γ− =∗ O (A.5)

Taking the time derivative of this relation and using the definition of the extrinsic curvature, 
we find that likewise

K K z .zz ww
2( )− =∗ O (A.6)

A.3. Inverse metric

Various terms that we need to address contain factors of the inverse metric IJγ . In the practical 
regularisation procedure, these terms are conveniently handled by expressing IJγ  in terms of 
the downstairs metric components ijγ  and wwγ  which are the fields we evolve numerically. We 
know the metric takes the following form:
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γ γ γ
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 (A.7)

and we shall denote the upper left quadrant by the matrix Mij. For simplicity, we will use the 
index î  to denote xî  in this section, so e.g. cofactors C Cx x12 1 2=  and C Cz x z1 1= . Similarly the 
indices i j, , ... will stand for the xi, i.e. include the z component.

We can now write the cofactor of an element in the top left quadrant of IJγ  as

C M1 detij
i j

ww kl k j l i,( ) ( ){ }γ= − η+
≠ ≠ (A.8)

where D d 1η = − −  and the notation Mdet kl k j l i,( ){ }≠ ≠  denotes the determinant of the matrix 
obtained by crossing out the jth row and ith column of Mkl. Likewise, we may add further 
inequalities inside the braces to denote matrices obtained by crossing out more than one row 
and column. We can then use this expression for Cij and the determinant of the right hand side 
of equation (A.7),

M

det det

det ,

IJ ww ij

ww zz kl k z l z,( ){ }

γ γ γ

γ γ

=

=∗

η

η
≠ ≠

 (A.9)

in order to obtain expressions for inverse metric components according to

C

det
.ij ij

IJ

γ
γ

= (A.10)

For d  =  3, this procedure starts from the spatial metric
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The components Cij of the cofactor matrix (which is symmetric) are given by
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(A.12)

the determinant becomes

det 2

,

IJ ww xx yy zz xy xz yz xx yz yy xz zz xy
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η
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(A.13)

and the inverse metric follows by inserting these into equation (A.10).
Using these techniques, we can regularise all terms in equations (4.11), (4.12), (4.15), (4.21) 
and (4.29) that contain divisions by z. It turns out to be convenient to combine the individual 
terms into the following six expressions.

 (1) 

z
z
i zi

wwδ γ γ−

  We express ziγ  in terms of the metric, and trade divisions by z for derivatives z∂  and obtain
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  For the d  =  3 case this reduces to
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 (A.15)
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 (4) 
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  Using equations (A.7)–(A.10), we express the inverse metric components zjγ  in terms of 
the downstairs metric and trade the division by z for a z derivative. We thus obtain
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  which in the case d  =  3 reduces to
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  The regularisation of this term proceeds in analogy to that of term (9) in appendix B of 
[83], except we do not set det 1γ = . By rewriting C1 detzz zz zz

IJ zz/ /γ γ γ γ= = , trading 
divisions by z for z derivatives and using zzz ww

2( )γ γ=∗ +O , we obtain
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  which in the case d  =  3 reduces to
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 (6) 

K K

z
iz iz wwδ−

  The division by z is again traded for a derivative if i z≠  and for i  =  z, we use 
K K zzz ww

2( )= +O , so that
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Appendix B. Normalisation of the spatial normal frame vectors

In this section, we discuss how the set of spatial normal frame vectors, equation (4.38), can 
be recast in a form suitable for applying Gram–Schmidt orthonormalisation. It turns out to be 
convenient to first rescale the m̃( )α  such that they would acquire unit length in a flat spacetime 
with spatial metric IJδ . Denoting these rescaled vectors with a caret, we have

m

w w

w

w w

w w
w w

D

D
1

0

0
2

, 2, , 1.

s

D

s
s

D

s

s

D s

D

D

1
2

1

1
2

1 2

1

1 2

1 1

ˆ

 
 
 

( )

( )

  ( )

 ( )

⎪

⎪

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎫
⎬
⎭

⎫

⎬
⎪⎪

⎭
⎪⎪

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

∑

α

α

α=

∑ ∑

− ×

−

− ×

= … −α

α α

α

α α

α

α

=

−

= −

−

=
−

−

− −

− −

�

�

 

(B.1)

Recall that we formally set w x w x, , d d1 1 1 1≡ … ≡− − , w zd≡ . As a convenient shorthand, we 
define
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w ,I
s I

D
s2

1
2( )∑ρ ≡

=

−

 (B.2)

so that, for instance, r1
2 2ρ = , w wD

4
2 4 2 1 2( ) ( )ρ = +…+ − , wD

D
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1ρ =−
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us to write
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We can now express the angles φα in terms of the radial variables Iρ ,
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Using these relations in (B.3), we obtain
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where n D1, , α= … − , and we formally set cos 1D 1φ ≡−  and sin 1s 1 φ∏ ≡α
α α
= + .

Now, in our computational domain 0d 1
2ρ =+ , which, from the definition of our coordinate 

system in equation (2.8) gives

r sin sin 0d2 2 2 2 1φ φ… =+ (B.6)

Since , , d2φ φ…  are arbitrary in our computational domain, we must have either 0 ord 1    φ π=+ . 
Without loss of generality, we choose 0d 1φ =+ , which fixes the d  −  1 vectors
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which, up to rescaling by 1ˆ ˆρ ρα α− , are equal to the vectors in equations  (4.40)–(4.42). For 
the remaining vectors, we can use the rotational freedom in the angles , ,d D2 1φ φ…+ − . Any 
choice for these values will satisfy w w 0d D1 1= … = =+ −  as required on our computational 
domain and we merely need to ensure that we choose these angles such that the resulting set 
of vectors is orthogonal. This is most conveniently achieved by setting

0,d D2 1φ φ= … = =+ − (B.10)

which, inserted into equation (B.5), implies

m a d D, 1, , 1.a
I

a
Iˆ    ( ) δ= = + … − (B.11)

Combined with equations (B.7)–(B.9) and restoring the tilde in place of the caret on the m a˜ ( ), 
we have recovered equations (4.43) and (4.44) in section 4.2 for the angular vectors. For the 
case d  =  3 we have just two non-trivial vectors:
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D
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2 2 3 2 3
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recovering equations (4.46)–(4.50).
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