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Abstract Ancient masonry structures often rely on
the masonry arch as a load bearing element. The under-
standing of its response under seismic actions is a
first fundamental step towards the comprehension of
the behaviour of more complex structures. It is well
known that the stability of masonry arches is primarily
related to the geometry. The safety assessment under
seismic actions is usually carried out by considering
known deterministic geometrical parameters, such as
thickness, rise and span, and the voussoirs are assumed
with equal dimensions. However, many factors, like
defects or irregularities in the shape of the voussoirs
and imprecise construction, produce variations of the
geometry with respect to the nominal one and, as a
consequence, may effect the ability of the arch to resist
seismic actions. In this paper, the effect of geometri-
cal irregularities on the dynamic response of circular
masonry arches is considered. Irregular geometries are
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obtained through a random generation of the key geo-
metrical parameters, and the effect of these irregular-
ities is quantified by analysing the dynamic response
to ground motion. The masonry arch is modelled as
a four-link mechanism, i.e. a system made of three
rigid blocks hinged at their ends. The position of the
hinges at the instant of activation of themotion is deter-
mined through limit analysis. Lagrange’s equations of
motion have been written for the generated irregular
geometries and solved through numerical integration.
The results are summarised by a fragility surface that
quantify the extent to which geometrical uncertainties
can alter the dynamic response of themasonry arch and
increase its seismic vulnerability.

Keywords Masonry arch ·Geometrical irregularities ·
Dynamic analysis · Limit analysis

1 Introduction

Masonry constructions represent a significant por-
tion of the world’s heritage building stock. Seismic
events have produced severe damages to these struc-
tures, highlighting the need to better understand their
behaviour to protect the human life and cultural her-
itage.Arch-type elements are common inmasonry con-
structions. The knowledge of their seismic response is a
fundamental objective to understand how seismic loads
can be transmitted though the masonry bearing ele-
ments of complex structures and to define an adequate
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reinforcement [2]. In this context, masonry construc-
tions often show the presence of geometrical irregular-
ities associated with imprecise construction or struc-
tural degradation due to environmental actions. Hence,
the understanding of the influence of these geometri-
cal irregularities on collapse is necessary for adequate
safety assessment.

The static analysis of arches and vaults is often
carried out using limit analysis, based on the well-
known assumptions [14,15]: (i) masonry has no tensile
strength, (ii) the compressive strength of masonry is
infinite and (iii) sliding does not occur. This approach
represents an effective tool for a rapid safety assessment
of masonry constructions and is based on the assump-
tion that the equilibrium condition, the yield criterion
and the mechanism condition must be satisfied at col-
lapse. In other terms, collapse occurs for the maximum
load at which a thrust line, in equilibrium with the act-
ing loads and passing through all joints of the masonry
arch, can be found. The evaluation of the load multi-
plier that activates the kinematic chain is essentially
a stability problem, not related to the strength of the
material. Hence, the collapse behaviour is assumed to
be governed by the shape and geometry of the arch,
rather than by material properties [13]. In this frame-
work, the effect of the earthquakes can be approximated
by static-equivalent horizontal forces [11].

The problem of the influence of uncertainties on
the stability of masonry structures has been addressed
by some authors, following different approaches. Psy-
charis et al. [19] investigated the loss of stability due
to imperfections, with reference to the classical prob-
lem of free-standing columns, by means of the distinct
element method, taking into account the uncertainty
related to the initial tilt of the column or the reduc-
tion of contact area due to edge damage. The effect
of geometrical uncertainties on the bearing capacity
of masonry arches has been studied by some authors
in the framework of the equilibrium analysis of rigid
body mechanism [1,3,20,21] or by means of the finite
elements method [22], considering the irregularity of
the structure through the regeneration of real geom-
etry, the identification of a local defect or modelling
the uncertainty related to the shape of each constitutive
stone element of the arch. A different approach has
been proposed in [4] where the limit analysis is carried
out taking into account the geometrical uncertainties
modelled as random variables.

It should be noted that limit analysis can provide
the horizontal load multiplier that turns the structure
into a mechanism, but the evolution of the dynamic
motion cannot be analysed. Moreover, to the knowl-
edge of the authors, there are no contributions dealing
with the influence of geometrical uncertainties on the
dynamic behaviour of the masonry arch.

The single rocking block provides a simple model
that behaves, in essence, similarly to the dynamic
response of the masonry arch. Housner [16] studied
the overturning of a rigid block subjected to horizontal
forces. A dynamic analysis of the circularmasonry arch
was carried out by Oppenheim, considering an equiv-
alent SDOF system made of three rigid links hinged
at their ends [18]. Clemente [5], also investigated free
vibrations of the arch, and its response to harmonic base
acceleration. DeJong and Ochsendorf [11] investigated
the dynamic response with discrete element modelling,
and showed that assuming failure due to direct over-
turning, without rocking, is unsafe. Oppenheim’s ana-
lytical model was enriched by De Lorenzis et al. [6],
taking into account the dissipation of energy caused
by the impact. This improved model allows simulation
of the motion of the arch through continued cycles of
rocking. The analytical predictions were subsequently
compared to results from experimental tests on model
arches [9]. Recently, using a similar approach, analyt-
ical modelling has also been carried out to study the
dynamic behaviour of the pointed arch [17]. In addi-
tion, a methodology to derive an equivalence between
SDOF rocking structures (or mechanisms, e.g. the cir-
cular masonry arch) and the single rocking block has
been developed by DeJong and Dimitrakopoulos [10].
An interesting investigation on failure domains and col-
lapse modes of masonry arch on buttresses has been
carried out in [12], where a parametric study based
on the discrete element method has been performed to
evaluate the dynamic behaviour and the sensitivity of
the response to changes in the excitation, geometry and
mechanical parameters.

In this paper, the dynamic response of the masonry
arch has been analysed using an analytical model
consisting of a four-link mechanism, while taking
into account geometrical irregularities described by
means of random variables. In the first part, irreg-
ular arch geometries are defined and the analytical
model adopted for the study of the dynamic response
is described. In the second part, dynamic analysis has
been performed on the arch geometry considered by
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Fig. 1 Geometrical
parameters for the definition
of the nominal arch shape
(a), generic uncertain
voussoir shape (b) and
probability density
functions of the angle of
embrace αi , the thickness ti
and the radius Ri (c) [4]

χ χ

(b)(a)

(c)

Oppenheim [18], taking into account the geometrical
uncertainties related to imprecise construction, shape
defects or deterioration. The response of Oppenheim’s
arch to step impulse base acceleration has been com-
pared to those of two uncertain geometries, generated
from the nominal one. The effects of geometrical uncer-
tainties on dynamic collapse are shown by means of
fragility curves.

2 Geometrical model

The deterministic geometry (or nominal geometry) of
the circularmasonry arch has been defined by assigning
the radius R, the angle of embrace α and the thickness
t . The arch has been discretised into n voussoirs by
radial lines passing though the centre O (Fig. 1a).

The uncertain geometry of the masonry arch has
been generated by assuming: (i) radial joints, (ii) deter-
ministic value of the angle of embrace α of the whole
arch and (iii) uniform probability density functions for
the random geometrical parameters (independent vari-
ables). The parameters that define the nominal geome-
try of the arch have been related to each voussoir: αi ,
ti and Ri denote, respectively, the angle of embrace of

the generic i-th voussoir, the thickness and radius of the
mean circular construction line of the same voussoir.
The uncertainties related to the shape of the voussoirs
have been modelled by considering these parameters
as random variables (Fig. 1b), with uniform probabil-
ity density functions (Fig. 1c) [4]:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α̃i = E[α̃i ] + ε α/n · p̃αi = α/n + ε α/n · p̃αi

= α/n (1 + ε p̃αi )

t̃i = E[t̃i ] + ε t · p̃ti = t + ε t · p̃ti = t (1 + ε p̃ti )

R̃i = E[R̃i ] + χ R · p̃Ri = R + χ R · p̃Ri = R (1 + χ p̃Ri )

(1)

where ε defines the amplitudeof the rangeof variability,
χ = ε t/R and p̃αi , p̃ti , p̃Ri are random independent
samples taken from a uniform probability density func-
tion defined in the range [− 1, 1]. The mean values of
the random geometrical parameters have been assumed
equal to the corresponding nominal values.

In this paper, the arch geometry analysed by Oppen-
heim [18] has been considered,with a radius R = 10m,
an angle of embrace α = 157.5◦, a thickness t = 1.5m
and a number of voussoirs n = 7. This nominal geome-
try will be hereinafter denoted as “Oppenheim’s arch”,
while in the presence of geometrical uncertainties it
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will be called “random Oppenheim’s arch”. In order to
study the behaviour of the masonry arch with geomet-
rical uncertainties in the dynamic field, a value of the
tolerance ε = 0.10 has been assumed, corresponding
to χ = 0.015. Considering that a value of ε = 0.03
refers to the tolerance prescribed by the standard codes
of the industrial production of brick masonry, a tol-
erance ε = 0.10 appears justifiable when dealing with
masonry archesmade of natural stones or whose geom-
etry has been modified by environmental factors or
imprecise construction. In the following, the dynamic
responses of two samples of randomOppenheim’s arch,
denoted as arch RA-1 and RA-2, have been compared
to the nominal one, denoted as NA.

3 Loading system and activation conditions of the
mechanism

The arch has been subjected to a horizontal base accel-
eration ẍg , as a function of time t . The evaluation of
themechanismactivation conditions under the horizon-
tal ground motion has been carried out through limit
analysis. Following this approach, each voussoir of the
arch has been subjected to a vertical force Fi = mi g
and to a horizontal force FSi = k Fi , where mi is the
mass of the voussoir and g the gravity acceleration. In
order to evaluate the horizontal load multiplier k, the
fulfilment of the equilibrium condition, the yield cri-
terion and the mechanism condition has been imposed
at collapse. A thrust line in equilibrium with the act-
ing loads, lying inside the boundaries of the arch and
corresponding to a four-hinge mechanism has been
found [3]. Following this approach, the activation of
motion corresponds to a value ẍg/g of the horizontal
base acceleration greater than or equal to the horizon-
tal load multiplier k. In Fig. 2, the activation condi-
tions of Oppenheim’s arch NA, in terms of collapse
hinges and thrust line at collapse, are represented. For
the nominal geometry, a unique horizontal load multi-
plier k can be calculated, corresponding to a collapse
mechanism denoted by Mech-n; k was found equal to
0.37.

When a random geometry is considered, the load
multiplier becomes a random variable k̃; moreover two
values of the horizontal load multiplier can be deter-
mined for each sample (generated arch), denoted by
k̃l and k̃r , because the structure is non-symmetric with
respect to the vertical axis passing through the crown.

A

B

C

D
NA

Mech-n

Fig. 2 Collapse hinges and thrust line of Oppenheim’s arch NA

These two values of the horizontal load multiplier cor-
respond to differentmechanisms,which can be denoted
by Mech-l (Fig. 3a) and Mech-r (Fig. 3b), respectively.
Hence, the activation of motion could occur at k̃l or
k̃r , depending on the relative direction of the ground
motion:
{
ẍg(t0)/g <= −|k̃l | motion starts with Mech-l

ẍg(t0)/g >= |k̃r | motion starts with Mech-r

(2)

where t0 is the initial time and the ground acceleration
ẍg has a positive sign if directed from left to right. In
order to evaluate the activation mechanism of motion,
the limit analysis was applied considering horizontal
forces acting from left to right. Therefore, in the follow-
ing, mechanism Mech-r (Fig. 3b) is analysed consid-
ering an arch geometry mirrored respect to the vertical
direction.

The activation conditions for random Oppenheim’s
arches RA-1 and RA-2 are shown in Fig. 4. In the
same figure, in order to better understand the generated
geometry variation, random arches (black colour) are
superimposed to Oppenheim’s arch NA (red colour).
The collapse hinges and the thrust line related to mech-
anism Mech-l are represented, respectively, in Fig. 4a,
c for arch RA-1 and RA-2, while in Fig. 4b, d) mecha-
nisms Mech-r are depicted mirrored respect to the ver-
tical direction. The corresponding horizontal load mul-
tipliers for random arch RA-1 are equal to k̃l = 0.4111
and k̃r = 0.3104, while for random arch RA-2 it results
k̃l = 0.3946 and k̃r = 0.3501.

The results of the limit analysis procedure, both in
terms of horizontal load multipliers and progressive
angle β j corresponding to the collapse hinges (Fig. 1a),
are summarised in Table 1 (for Oppenheim’s arch no
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(a) (b)

Fig. 3 Mechanism Mech-l (a) and Mech-r (b) with the corresponding forces acting on the i-th voussoir

Fig. 4 Collapse hinges and
thrust line of random arches
RA-1 and RA-2 (black),
superimposed to
Oppenheim’s arch NA (red).
Case: a mechanism Mech-l
for random arch RA-1, b
mechanism Mech-r
mirrored respect to the
vertical direction for
random arch RA-1, c
mechanism Mech-l for
random arch RA-2, d
mechanism Mech-r
mirrored respect to the
vertical direction for
random arch RA-2

(b)(a)

(c) (d)

RA-1
Mech-lA

B

C

D

A

B

C

D A

B

C

D-

-

-

-

A

B

C

D-

-

-

-RA-1
Mech-r

RA-2
Mech-l

RA-2
Mech-r

distinction has been made betweenMech-l andMech-r
because a unique collapse mechanism Mech-n can be
detected).

4 Analytical model for the dynamic analysis

4.1 Lagrangian coordinate

The dynamic behaviour of the arch has been studied
by modelling the structure as a four-link mechanism,
following the approach proposed by Oppenheim [18]
and with the impact model proposed by De Lorenzis et
al. [6]. An equivalent SDOF systemmade of three rigid
blocks has been considered, whose generic displaced

configuration can be defined by a unique Lagrangian
coordinate. It will be denoted by θ or θ ′ when referring,
respectively, to mechanismMech-l (Fig. 3a) or Mech-r
(Fig. 3b). The value of theLagrangian coordinate corre-
sponding to the instant of activation of motion, namely
to the undisplaced configuration, will be denoted by θu
(or θ ′

u). Hence, each displaced configuration of the arch
corresponds to a value θ < θu (or θ ′ < θ ′

u).

4.2 Critical rotation angle

Once the mechanism of the arch has been activated,
a condition of unstable equilibrium can be identi-
fied. This state corresponds to a non-recovery rotation,
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Table 1 Activation conditions for the analysed arches in terms of horizontal load multiplier and progressive angle of the collapse hinges

k k̃l k̃r βA (A′) (rad) βB (B′) (rad) βC (C ′) (rad) βD (D′) (rad)

NA, Mech-n 0.3700 – – 0.1963 1.3744 2.1598 2.9452

RA-1, Mech-l – 0.3946 – 0.1963 0.9749 2.1417 2.9452

RA-1, Mech-r – – 0.3501 0.1963 0.9999 2.1667 2.9452

RA-2, Mech-l – 0.4111 – 0.1963 1.0240 2.1633 2.9452

RA-2, Mech-r – – 0.3104 0.1963 1.3562 2.1176 2.9452

namely to a critical value θcr (or θ ′
cr ) of the Lagrangian

coordinate. If the arch is releasedwith zero initial veloc-
ity, in the absence of external loads or ground accel-
eration, in a displaced configuration corresponding to
θ0 > θcr (with θ0 < θu), itwill return to theundisplaced
configuration corresponding to θu , while for θ0 < θcr
the arch will collapse. With reference to the notation of
Fig. 5, e.g. dealing with Mech-l, let us define the law
of the potential energy for the equivalent SDOF system
[18]:

V = g
[
mAB rAB sin(θ + ψ) + mBC AB sin θ

+mBC rBC sin(θBC + ψBC )

+mCD rCD sin(θCD + ψCD)
]

(3)

wheremAB ,mBC andmCD are themasses of the blocks
delimited by the respective hinges; rAB , rBC , rCD are
the distances between hinges A, B, D and the cen-
tres of mass G1, G2, G3, respectively; AB denotes the
length of the link delimited by hinges A and B; θBC
and θCD are the rotation angles of the links BC and
CD, functions of θ ; ψ , ψBC and ψCD are the angles
between links AB, BC , CD, respectively, and the cen-
tre of mass of the corresponding block. By deriving
respect to θ Eq. (3) it results:

∂V

∂θ
= gmABrAB cos(θ + ψ) + g mBC AB cos θ

+ gmBCrBC cos(θBC + ψBC )
∂θBC

∂θ

+ gmCDrCD cos(θCD + ψCD)
∂θCD

∂θ

(4)

The critical rotation angle θcr can be evaluated by
imposing a zero value of thefirst derivative of the poten-
tial energy expressed by Eq. (4).

Fig. 5 Rotation angles and centres ofmass related tomechanism
Mech-l [6]

4.3 Equation of motion in the presence of geometrical
uncertainties

Let us assume that mechanism Mech-l has been acti-
vated first, with hinges in position A, B,C , D (Fig. 3a).
The equation ofmotion can be determined starting from
Lagrange’s equations:

d

dt

(∂T

∂θ̇

)
− ∂T

∂θ
+ ∂V

∂θ
= Q (5)

where T is the kinetic energy of the system, V is the
potential energy and Q the generalised forcing function
related to the non-conservative forces. The equation
of motion corresponding to a kinematics governed by
mechanismMech-l can bewritten in the following form

Ml(θ) θ̈ + Ll(θ) θ̇2 + Fl(θ) g = Pl(θ) ẍg (6)

where the coefficients Ml(θ), Ll(θ), Fl(θ), Pl(θ),
defined in [18], have been determined with reference
to mechanismMech-l, taking into account the geomet-
rical irregularities when evaluating the inertial prop-
erties. The time history of the Lagrangian coordinate
θ(t) completely describes themotion of the arch before
an eventual impact occurs. Let us denote by θ0 and
θ̇0 the initial conditions in terms of rotation and rota-
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Dynamic response of masonry arch with geometrical irregularities 615

tional velocity at the beginning of the motion, namely
at t0 = 0. If the arch starts moving from its undisplaced
configuration, corresponding to θ0 = θu , equation of
motion (6) is valid only for the condition θ < θ0. The
arch will move following mechanism Mech-l until an
impact occur. In fact, after the first half cycle ofmotion,
when it results again θ = θ0, the arch returns to its
start configuration: the joints corresponding to the four
hinges A, B,C, D close and an impact occurs. At the
instant of the impact, mechanism Mech-r will be acti-
vated, with hinges in position A′, B ′, C ′, D′ (Fig. 3b).
Because of the geometrical uncertainties, after impact
the hinges will not form in a symmetric configuration.
Hence, when the kinematics is determined by mecha-
nism Mech-r the equation of motion becomes:

Mr (θ
′) θ̈ ′ + Lr (θ

′) θ̇ ′2 + Fr (θ
′) g = −Pr (θ

′) ẍg
(7)

where the coefficients Mr (θ
′), Lr (θ

′), Fr (θ ′), Pr (θ ′)
have been determined referring to mechanism Mech-
r, considering the geometrical irregularities. Equation
(7) must be solved with the initial conditions θ ′

0 = θ ′
u

and θ̇ ′
0 = θ̇ ′

f , being θ̇ ′
f the rotational velocity of the

equivalent link A′B ′ immediately after impact. Hence,
function θ ′(t) that describes the motion after impact
can be determined.

4.4 Impact modelling

The solution of the impact problem, consisting in
the evaluation of the rotational velocity immediately
after impact θ̇ ′

f , has been carried out according to the
methodology proposed by De Lorenzis et al. [6].

FollowingHousner’s approach related to the rocking
block [16], impulsive forces associated with the impact
are supposed to cause a variation of the rotational veloc-
ities and are applied at the opposite edges of the thick-
ness respect to the collapse hinges. The value of the
rotational velocity θ̇ ′

f of the link A′B ′ after impact is
determined by imposing the equilibrium of linear and
angular moments. Then, since the rotational velocity
immediately before impact θ̇i is known, the coefficient
of restitution can be defined:

cv = θ̇ ′
f

θ̇i
(8)

Following the observations provided byDeLorenzis
et al. [6], once the geometrical parameters that define

the shape of the nominal arch have been fixed (the angle
of embrace α, the radius R of the mean circular con-
struction line and the thickness t), the coefficient of
restitution cv can be evaluated. In this paper, as a first
approximation, the value determined for the nominal
geometry has been adopted also for the corresponding
random arches.

5 Results

In the following, in order to investigate the influence
of geometrical irregularities on the dynamic behaviour,
results related to Oppenheim’s arch NA are compared
to those obtained from random arches RA-1 and RA-2.
First, the trend of the potential energy is determined,
by varying the value of the Lagrangian coordinate, to
evaluate the critical rotational angle. Then, free vibra-
tions problem and dynamic response under rectangular
pulse base acceleration are analysed.

The geometries of the four-link mechanisms corre-
sponding toOppenheim’s archNA, arch RA-1 and arch
RA-2 can be quickly defined. The undisplaced configu-
ration at the instant of activation of mechanismMech-l
can be identified by the definition of the Lagrangian
coordinate θu , the angles θBC (θu) and θCD(θu) and
by the links length AB, BC and CD. With refer-
ence to Mech-r, the parameters θ ′

u , θ
′
BC (θ ′

u), θ
′
CD(θ ′

u),
A′B ′, B ′C ′ andC ′D′ identify the geometry of the four-
link mechanism. The values of these parameters are
reported in Table 2.

5.1 Effect of geometrical uncertainties on the critical
rotation angle

Let us consider Oppenheim’s arch NA and assume
decreasing values of θ , starting from the undisplaced
configuration corresponding to θ0 = θu . At each value
of theLagrangian coordinate, the potential energyV (θ)

is evaluated by means of Eq. (3). In Fig. 6, the trend of
the potential energy for Oppenheim’s arch is presented
as a function of φ = θu − θ [18]. Starting from the
undisplaced configuration, if θ decreases, the poten-
tial energy V (θ) increases until a maximum value is
reached, corresponding to θcr = 0.8281 (θu − θ =
0.0691). For values θ > θcr the work done by the self-
weight is negative, since it tends to bring the arch to the
undisplaced configuration. For values θ < θcr the trend
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Table 2 Geometrical parameters of the four-link mechanisms corresponding to Oppenheim’s arch NA, arch RA-1 and arch RA-2

Oppenheim’s arch NA Arch RA-1 Arch RA-2 Unit measure

θu 0.8972 1.1454 1.1336 rad

θBC (θu) − 0.3755 − 0.0828 − 0.1366 rad

θCD (θu) 2.3390 2.3569 2.3506 rad

AB 11.18 7.62 8.13 m

BC 7.78 10.99 10.85 m

CD 7.78 8.06 7.82 m

θ ′
u 0.8972 1.1215 0.9002 rad

θ ′
BC (θ ′

u) − 0.3755 − 0.1057 − 0.3504 rad

θ ′
CD (θ ′

u) 2.3390 2.3219 2.3263 rad

A′B ′ 11.18 7.86 11.10 m

B ′C ′ 7.78 11.02 7.58 m

C ′D′ 7.78 7.72 8.06 m

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.95
0.96
0.97
0.98
0.99

1
1.01
1.02
1.03
1.04

θ c
r
=

0.
82

81

θu − θ (rad)

V
(θ
)/

V
(θ

u
)

Fig. 6 Potential energy of Oppenheim’s arch NA [18]

of V (θ) decreases: the work done by the self-weight is
positive because it tends to accommodate the displace-
ments associated with the collapse mechanism [7].

The results related to Oppenheim’s arch NA (Fig. 2)
can be compared to those obtained by considering the
uncertain geometries previously introduced (arch RA-
1 and arch RA-2 depicted in Fig. 4). In Figs. 7 and 8,
the trends of potential energy for the random arches are
represented depending on φ = θu − θ (φ′ = θ ′

u − θ ′).
Regarding arch RA-1, the values of the critical rotation
angle are θcr = 0.9689 (θu − θ = 0.1765) for Mech-l
and θ ′

cr = 0.9670 (θ ′
u − θ ′ = 0.1545) for Mech-r. For

arch RA-2 it results θcr = 0.9613 (θu − θ = 0.1723)
and θ ′

cr = 0.8375 (θ ′
u − θ ′ = 0.0627) for Mech-l and

Mech-r, respectively. These results are summarised in
Table 3 in terms of the ratio θcr/θu (or θ ′

cr/θ
′
u), which

quantifies the displacement capacity of the arch, where

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.95
0.96
0.97
0.98
0.99

1
1.01
1.02
1.03
1.04

θ c
r
=

0.
96

70
θ c

r
=

0.
96

89
θu − θ (rad)

V
( θ
)/
V
( θ

u
)

Mech-r
Mech-l

Fig. 7 Potential energy of arch RA-1 for Mech-l and Mech-r

the values θu (or θ ′
u) correspond to the undisplaced con-

figurations provided in Table 2. In particular, a high
value of θcr/θu (or θ ′

cr/θ
′
u) indicates a small displace-

ment capacity. From the results, it can be stated that
the value of the potential energy has been modified
by the geometrical uncertainties. The ratio θcr/θu (or
θ ′
cr/θ

′
u) for random Oppenheim’s arches may be lower

or greater than that corresponding toOppenheim’s arch,
namely the displacement capacitymay be, respectively,
bigger or smaller, depending on the geometrical uncer-
tainties.

5.2 Free vibrations

The free vibrations of the arch have been studied fol-
lowing the analysis carried out by Clemente [5]. The
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Fig. 8 Potential energy of arch RA-2 for Mech-l and Mech-r

Table 3 Ratio θcr/θu (or θ ′
cr/θ

′
u) between the critical rotation

angle and the Lagrangian coordinate related to the undisplaced
configuration

Arch geometry θcr/θu (or θ ′
cr/θ

′
u)

Oppenheim’s arch NA, Mech-n 0.923

Arch RA-1, Mech-l 0.846

Arch RA-1, Mech-r 0.862

Arch RA-2, Mech-l 0.848

Arch RA-2, Mech-r 0.930

arch at the instant t0 = 0 has been released from an
initial rotation of the mechanismMech-l. The equation
of motion (6) has been solved assuming zero ground
acceleration and the following initial conditions in term
of rotation and rotational velocity: θ0 = θ and θ̇0 = 0,
with θu > θ > θcr . The initial conditions can be
equivalently expressed in terms of the relative rotation
φ = θu − θ between the undisplaced configuration and
the displaced one: φ0 = φ and φ̇0 = 0.

A value of φ0 = θu − θ0 = 0.02 has been assumed,
so that θ0 = θu − φ0 > θcr for all the analysed cases.
First, the free vibrations have been studied with the
assumption of a unitary value for the coefficient of resti-
tution cv = 1, namely assuming no energy dissipation
during the impact. In Figs. 9, 10 and 11, the results for
Oppenheim’s arch NA, arch RA-1 and arch RA-2 are
represented. As expected, the maximum amplitude of
the oscillation for the random Oppenheim’s arches is
different, but constant, in each direction.

The free vibrations analysis has been repeated taking
into account the dissipation of energy due to the impact.
The coefficient of restitution cv has been calculated for
the Oppenheim’s arch and found to be equal to cv =
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Fig. 9 Free vibrations of Oppenheim’s arch NA for cv = 1
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Fig. 10 Free vibrations of arch RA-1 for cv = 1
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Fig. 11 Free vibrations of arch RA-2 for cv = 1

0.875. InFigs. 12, 13 and14, the damped free vibrations
for Oppenheim’s arch NA, arch RA-1 and arch RA-2
are represented. As expected, the maximum amplitude
of the oscillations in each direction decreases with time
increase.

5.3 Rectangular pulse base acceleration

5.3.1 Time history and initial conditions

The dynamic response to the idealised forcing func-
tion adopted by Oppenheim [18] has been analysed.
The arches have been subjected to a pulse with con-
stant ground acceleration ẍg and duration tp, followed
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Fig. 12 Free vibrations of Oppenheim’s archNA for cv = 0.875
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Fig. 13 Free vibrations of arch RA-1 for cv = 0.875
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Fig. 14 Free vibrations of arch RA-2 for cv = 0.875

by a pulse in the opposite direction having the half
magnitude and twice the duration.

The arch motion has been determined depending
on time, by solving alternatively Eqs. (6) and (7),
considering the arch in its undisplaced configuration
with zero initial velocity, subjected to the time his-
tory ẍg(t) from the instant t0 = 0. The correspond-
ing initial conditions related to mechanism Mech-l are
θ0 = θu and θ̇0 = 0, while for mechanism Mech-r
it results θ ′

0 = θ ′
u and θ̇ ′

0 = 0. The impact problem
has been solved at each instant for which it results
θ = θu or θ ′ = θ ′

u , depending on the type of mech-
anism involved (Mech-l or Mech-r), namely when the
arch reaches the undisplaced configuration. The fail-

ure condition has been identified in correspondence of
ever-increasing values of θ (or θ ′) or equivalently of φ

(or φ′). It should be noted that for this type of impulse
base acceleration, even if, as effect of the first pulse,
the Lagrangian coordinate θ assumes values lower than
the critical one θcr and the arch would tend to failure,
it may or may not collapse depending on the magni-
tude and duration of the impulse in the opposite direc-
tion.

5.3.2 Effects of geometrical uncertainties on the
dynamic response

In order to highlight the effects of geometrical uncer-
tainties on the dynamic response, the results related
to the Oppenheim’s arch have been compared to those
of the random arches. As an example, in the follow-
ing, the arches have been subjected to the impulse base
motions adopted by De Lorenzis et al. [6], correspond-
ing to a value of the ground acceleration ẍg equal to
− 1 g with three different durations tp equal to 0.44,
0.27 and 0.20 s. The results are shown in Fig. 15 for
Oppenheim’s arch NA, the random arches RA-1 and
RA-2. The acceleration time histories are represented
in Fig. 15a. The literature results by De Lorenzis et
al. [6] regarding Oppenheim’s arch have been found
and they are presented by the blue curves of Fig. 15b–
d, respectively, for tp equal to 0.44, 0.27 and 0.20 s.
Similarly, in the same figure, the dynamic responses of
the random arches RA-1 and RA-2 are presented by
red and green curves, respectively. The results related
to the acceleration data ẍg = − 1 g and tp = 0.44 s
of Fig. 15b, show that Oppenheim’s arch failure occurs
during the first half cycle of motion without impacts,
while the arches RA-1 and RA-2 collapse during the
second half cycle of motion, after an impact has previ-
ously occurred. In Fig. 15c, the dynamic response for
ẍg = − 1 g and tp = 0.27 s is shown. The behaviour
of the three arches is quite similar and characterized
by the collapse during the second half cycle of motion
after an impact, although the failure in the presence
of geometrical uncertainties seems to occur for lower
values of time respect to Oppenheim’s arch NA. It is
interesting the dynamic response to the impulse base
acceleration of magnitude ẍg = − 1 g and duration
tp = 0.20 s, represented in Fig. 15d. It can be observed
that both Oppenheim’s arch NA and arch RA-1 recover
after subsequent impacts, while arch RA-2 fails dur-
ing the second half cycle of motion after an impact. In
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Fig. 15 Time history of the ground acceleration with ẍg = −1 g (a) and dynamic response in terms of φ (or φ′) for the Oppenheim’s
arch NA (blue), the arch RA-1 (red) and the arch RA-2 (green) for the cases tp = 0.44 (b), tp = 0.27 (c) and tp = 0.20 (d)

this case, the uncertainties modified significantly the
dynamic response.

5.3.3 Fragility curves

The dynamic analysis has been repeated by varying
the magnitude of the acceleration ẍg and the duration
tp of the impulse base motion, in order to determine the
failure domains provided by Oppenheim [18] and De
Lorenzis et al. [6]. The results, which refer to a nominal
geometry, are represented in Fig. 16. The continuous
black line with asterisks corresponds to the boundary
related to the failure during the first half cycle ofmotion
and is the same as that obtained by Oppenheim [18].
The boundary corresponding to failure during the sec-
ond half cycle of motion is represented by the black
continuous dotted curve, which is coincident with the
curve by De Lorenzis et al. [6]. This curve gives the

collapse condition of the arch in terms of peak accel-
eration and time duration and it will be called the fail-
ure curve. The horizontal black dashed line in Fig. 16
indicates the horizontal loadmultiplier ofOppenheim’s
arch k = 0.37, determined by limit analysis, below
which there is no activation of themotion for this deter-
ministic arch, which moves rigidly with the ground.
This limit may not be valid for arches with geometrical
uncertainties, as observed inSect. 3. Formore details on
the calculation of the horizontal loadmultiplier by limit
analysis, following a probabilistic approach, see [4].
Region (1) in Fig. 16, between the horizontal dashed
black line and the failure curve, corresponds to states
of recovery for Oppenheim’s arch; region (2) identifies
the states of collapse during the second half cycle of
motion, while region (3) above the upper curve with
asterisk corresponds to failure conditions during the
first half cycle of motion [6].
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Fig. 16 Failure domain for
Oppenheim’s arch (ε = 0)
related to an impulse base
motion with duration tp and
magnitude acceleration ẍg :
region of recovery (1),
collapse after the second
half cycle of motion (2) and
collapse after the first half
cycle of motion (3) [6,8,18]
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In order to quantify the effect of the geometrical
uncertainties on the collapse condition in the dynamic
field, fragility curves were obtained. Each fragility
curve corresponds to a fixed value of impulse dura-
tion and was determined according to the procedure
described below. A sample of h = 40 random Oppen-
heim’s arches were generated, following the method-
ology described at Sect. 2. Values of the impulse dura-
tion t p equal to 0.4, 0.5, 0.6, 0.7 s were considered.
At each one of these, increasing values of the accelera-
tion magnitude ẍg were applied, with an interval equal
to 0.01 g. For each couple (t p, ẍg), dynamic analy-
sis was performed on the h elements of the generated
sample of random arches; the dynamic analysis was
executed twice for each arch, since both directions of
ground motion were considered. Then, the estimated
cumulative probability of failure PF was calculated as
follows:

PF (t p, ẍg) = h f (t p, ẍg)

h
(9)

where h f (t p, ẍg) is the number of random arches that
failed in the presence of an impulse base motion hav-
ing time duration t p and magnitude acceleration ẍg ,
with h f ≤ h. The fragility curve at a fixed value of the
impulse duration t p can be obtained by presenting the
estimated cumulative probability of failure PF depend-
ing on the acceleration magnitude ẍg . In particular, the
fragility curve for Oppenheim’s arch, when the geo-

metrical uncertainties are neglected, can be defined as
follows:

{
PF (t p, ẍg) = 0 if ẍg < ẍ g
PF (t p, ẍg) = 1 if ẍg ≥ ẍ g

(10)

where t p and ẍ g/g are the coordinates of the point Q
belonging to the failure curve of Fig. 16.

In Fig. 17, the fragility curve for the randomOppen-
heim’s arch (in the presence of geometrical uncertain-
ties), related to the case t p = 0.40 s, is presented by the
dashed black line that approximates (fifth degree poly-
nomial function) the numerical results (black dots).
The vertical dash-dot black line corresponds to the fail-
ure acceleration ẍ g = 0.49 g of the Oppenheim’s arch
(without geometrical uncertainties). In the same figure,
the results obtained by means of limit analysis, when
the dynamic behaviour is not considered, have been
represented by a blue colour. Following the procedure
proposed by Cavalagli et al. [4], a set of s = 1000
random Oppenheim’s arches has been generated using
the uniform probability density functions of Fig. 1c.
For each random arch, two values of the horizontal
load multiplier have been determined by limit analysis,
denoted as k̃l and k̃r . Then, theminimumvalue between
them has been determined k̃ = min(k̃l , k̃r ). The blue
continuous curve of Fig. 17 represents the estimation
of the cumulative probability function of the horizon-
tal load multiplier k̃. This curve provides an interest-
ing comparison with the dashed black curve, since it
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Fig. 17 Fragility curve for random Oppenheim’s arch (ε =
0.10) corresponding to tp = 0.40 s (black dashed curve with
dots) and estimation of the cumulative probability function of the
random horizontal load multiplier k̃ determined by limit analysis
(blue continuous curve). The vertical lines represent the accel-

erations of activation of the mechanism when the geometrical
uncertainties are not taken into account (ε = 0): limit analy-
sis (blue line) or dynamic analysis under rectangular pulse base
acceleration (black line). (Color figure online)
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ẍg (g)

P
F

tp = 0.50 s

ẍ
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Fig. 18 Fragility curve for random Oppenheim’s arch (ε =
0.10) corresponding to tp = 0.50 s (black dashed curve with
dots) and estimation of the cumulative probability function of the
random horizontal load multiplier k̃ determined by limit analysis
(blue continuous curve). The vertical lines represent the accel-

erations of activation of the mechanism when the geometrical
uncertainties are not taken into account (ε = 0): limit analy-
sis (blue line) or dynamic analysis under rectangular pulse base
acceleration (black line). (Color figure online)

identifies the probability of collapse in the presence of
geometrical uncertainties when the dynamic effects are
not considered. The vertical dash-dot blue line corre-
sponds to the horizontal load multiplier k determined
for Oppenheim’s arch without geometrical uncertain-
ties, by means of limit analysis.

Similarly, in Figs. 18, 19 and 20 the fragility curves
related, respectively, to the cases t p = 0.50, 0.60, 0.70
s have been represented (black dashed curves with
dots), together with the cumulative probability func-
tion of the horizontal load multiplier determined by
limit analysis (blue continuous curves).
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Fig. 19 Fragility curve for random Oppenheim’s arch (ε =
0.10) corresponding to tp = 0.60 s (black dashed curve with
dots) and estimation of the cumulative probability function of the
random horizontal load multiplier k̃ determined by limit analysis
(blue continuous curve). The vertical lines represent the accel-

erations of activation of the mechanism when the geometrical
uncertainties are not taken into account (ε = 0): limit analy-
sis (blue line) or dynamic analysis under rectangular pulse base
acceleration (black line). (Color figure online)
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Fig. 20 Fragility curve for random Oppenheim’s arch (ε =
0.10) corresponding to tp = 0.70 s (black dashed curve with
dots) and estimation of the cumulative probability function of the
random horizontal load multiplier k̃ determined by limit analysis
(blue continuous curve). The vertical lines represent the accel-

erations of activation of the mechanism when the geometrical
uncertainties are not taken into account (ε = 0): limit analy-
sis (blue line) or dynamic analysis under rectangular pulse base
acceleration (black line). (Color figure online)

An effective representation of the sensitivity of fail-
ure conditionswith respect to geometrical uncertainties
is given by the fragility surface of the random Oppen-
heim’s arch shown in Fig. 21 (corresponding to a value
of the tolerance equal to ε = 0.10). This surface has

been obtained connecting, by means of plane surfaces,
the fragility curves of Figs. 17, 18, 19 and 20. The verti-
cal curved surface corresponds to the failure surface for
Oppenheim’s arch when the geometrical uncertainties
are neglected. The fragility surface for Oppenheim’s
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Fig. 21 Fragility surface
for random Oppenheim’s
arch (ε = 0.10),
superimposed to the
cylindric vertical surface
representing the fragility
surface for Oppenheim’s
arch (ε = 0)

P F

fragility surface
for random
Oppenheim’s arch

fragility surface
for Oppenheim’s arch

failure curve

arch generally overestimates the dynamic resistance
if geometrical uncertainties are considered. In fact, a
portion of the fragility surface for the random Oppen-
heim’s arch lies on the side of lower values of magni-
tude acceleration, compared to the cylindrical fragility
surface. In other words, if the geometrical uncertainties
are neglected, an estimated cumulative probability of
failure PF = 0 is predicted, while actually it may be
different respect to zero.

6 Conclusions

From theunderstanding that the stability of themasonry
arch, while adopting Heyman’s hypotheses, is essen-
tially a geometrical equilibrium problem (between the
arch geometry and the thrust line,which in turn depends
on the geometry), it follows that geometrical irregular-
ities can play therefore a crucial role. In this paper,
to verify this conjecture, the dynamic behaviour of
the masonry arch has been investigated taking into
account geometrical uncertainties that could be related
to defects of shape of the voussoirs, imprecision of
construction or deterioration due to environmental fac-
tors. The non linear dynamical model of Oppenheim’s
arch has been adopted, where the dissipation of energy,
due to impact between the rigid blocks, has been mod-
elled following the approach proposed by De Lorenzis
et al., estimating the resulting reduction of the rota-
tional velocity. Assuming Oppenheim’s arch as deter-
ministic or nominal arch, the geometrical uncertain-

ties have been included in the dynamic analysis con-
sidering arches with random geometry; in particular,
the radius of the mean circular construction line of the
arch, the thickness and the angle of embrace of each
voussoir have been assumed as random variables, with
independent uniformprobability density functions. The
dynamic behaviour of the generated samples has been
investigated under a step impulse base acceleration.
The results confirmed that geometrical uncertainties
modify the dynamic behaviour of the arch, and that
even if a deterministic calculation predicts recovery
after subsequent impacts, failure may occur when geo-
metrical uncertainties are considered. Moreover, the
fragility surface of the arch versus the characteristics
of step impulse base acceleration (duration and peak
acceleration) has been estimated; this surface identi-
fies the three-dimensional failure domain of the arch
with geometrical uncertainties. More analyses are nec-
essary in order to consider different types of acceler-
ation time histories, such as harmonic or earthquake
excitation. It could also be interesting to investigate the
effects of uncertainties on different nominal geometries
or arch shapes. However, obtained results highlight that
geometrical irregularities should be considered while
studying the dynamic stability of the masonry arch and
this should be especially taken into account when con-
ducting a seismic vulnerability analysis.
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